xref: /openbsd/gnu/usr.bin/binutils-2.17/bfd/linker.c (revision b8417449)
1 /* linker.c -- BFD linker routines
2    Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3    2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4    Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 2 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
21 
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27 
28 /*
29 SECTION
30 	Linker Functions
31 
32 @cindex Linker
33 	The linker uses three special entry points in the BFD target
34 	vector.  It is not necessary to write special routines for
35 	these entry points when creating a new BFD back end, since
36 	generic versions are provided.  However, writing them can
37 	speed up linking and make it use significantly less runtime
38 	memory.
39 
40 	The first routine creates a hash table used by the other
41 	routines.  The second routine adds the symbols from an object
42 	file to the hash table.  The third routine takes all the
43 	object files and links them together to create the output
44 	file.  These routines are designed so that the linker proper
45 	does not need to know anything about the symbols in the object
46 	files that it is linking.  The linker merely arranges the
47 	sections as directed by the linker script and lets BFD handle
48 	the details of symbols and relocs.
49 
50 	The second routine and third routines are passed a pointer to
51 	a <<struct bfd_link_info>> structure (defined in
52 	<<bfdlink.h>>) which holds information relevant to the link,
53 	including the linker hash table (which was created by the
54 	first routine) and a set of callback functions to the linker
55 	proper.
56 
57 	The generic linker routines are in <<linker.c>>, and use the
58 	header file <<genlink.h>>.  As of this writing, the only back
59 	ends which have implemented versions of these routines are
60 	a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
61 	routines are used as examples throughout this section.
62 
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68 
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 	Creating a linker hash table
73 
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 	The linker routines must create a hash table, which must be
77 	derived from <<struct bfd_link_hash_table>> described in
78 	<<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
79 	create a derived hash table.  This entry point is called using
80 	the target vector of the linker output file.
81 
82 	The <<_bfd_link_hash_table_create>> entry point must allocate
83 	and initialize an instance of the desired hash table.  If the
84 	back end does not require any additional information to be
85 	stored with the entries in the hash table, the entry point may
86 	simply create a <<struct bfd_link_hash_table>>.  Most likely,
87 	however, some additional information will be needed.
88 
89 	For example, with each entry in the hash table the a.out
90 	linker keeps the index the symbol has in the final output file
91 	(this index number is used so that when doing a relocatable
92 	link the symbol index used in the output file can be quickly
93 	filled in when copying over a reloc).  The a.out linker code
94 	defines the required structures and functions for a hash table
95 	derived from <<struct bfd_link_hash_table>>.  The a.out linker
96 	hash table is created by the function
97 	<<NAME(aout,link_hash_table_create)>>; it simply allocates
98 	space for the hash table, initializes it, and returns a
99 	pointer to it.
100 
101 	When writing the linker routines for a new back end, you will
102 	generally not know exactly which fields will be required until
103 	you have finished.  You should simply create a new hash table
104 	which defines no additional fields, and then simply add fields
105 	as they become necessary.
106 
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 	Adding symbols to the hash table
111 
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 	The linker proper will call the <<_bfd_link_add_symbols>>
115 	entry point for each object file or archive which is to be
116 	linked (typically these are the files named on the command
117 	line, but some may also come from the linker script).  The
118 	entry point is responsible for examining the file.  For an
119 	object file, BFD must add any relevant symbol information to
120 	the hash table.  For an archive, BFD must determine which
121 	elements of the archive should be used and adding them to the
122 	link.
123 
124 	The a.out version of this entry point is
125 	<<NAME(aout,link_add_symbols)>>.
126 
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132 
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 	Differing file formats
137 
138 	Normally all the files involved in a link will be of the same
139 	format, but it is also possible to link together different
140 	format object files, and the back end must support that.  The
141 	<<_bfd_link_add_symbols>> entry point is called via the target
142 	vector of the file to be added.  This has an important
143 	consequence: the function may not assume that the hash table
144 	is the type created by the corresponding
145 	<<_bfd_link_hash_table_create>> vector.  All the
146 	<<_bfd_link_add_symbols>> function can assume about the hash
147 	table is that it is derived from <<struct
148 	bfd_link_hash_table>>.
149 
150 	Sometimes the <<_bfd_link_add_symbols>> function must store
151 	some information in the hash table entry to be used by the
152 	<<_bfd_final_link>> function.  In such a case the <<creator>>
153 	field of the hash table must be checked to make sure that the
154 	hash table was created by an object file of the same format.
155 
156 	The <<_bfd_final_link>> routine must be prepared to handle a
157 	hash entry without any extra information added by the
158 	<<_bfd_link_add_symbols>> function.  A hash entry without
159 	extra information will also occur when the linker script
160 	directs the linker to create a symbol.  Note that, regardless
161 	of how a hash table entry is added, all the fields will be
162 	initialized to some sort of null value by the hash table entry
163 	initialization function.
164 
165 	See <<ecoff_link_add_externals>> for an example of how to
166 	check the <<creator>> field before saving information (in this
167 	case, the ECOFF external symbol debugging information) in a
168 	hash table entry.
169 
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 	Adding symbols from an object file
174 
175 	When the <<_bfd_link_add_symbols>> routine is passed an object
176 	file, it must add all externally visible symbols in that
177 	object file to the hash table.  The actual work of adding the
178 	symbol to the hash table is normally handled by the function
179 	<<_bfd_generic_link_add_one_symbol>>.  The
180 	<<_bfd_link_add_symbols>> routine is responsible for reading
181 	all the symbols from the object file and passing the correct
182 	information to <<_bfd_generic_link_add_one_symbol>>.
183 
184 	The <<_bfd_link_add_symbols>> routine should not use
185 	<<bfd_canonicalize_symtab>> to read the symbols.  The point of
186 	providing this routine is to avoid the overhead of converting
187 	the symbols into generic <<asymbol>> structures.
188 
189 @findex _bfd_generic_link_add_one_symbol
190 	<<_bfd_generic_link_add_one_symbol>> handles the details of
191 	combining common symbols, warning about multiple definitions,
192 	and so forth.  It takes arguments which describe the symbol to
193 	add, notably symbol flags, a section, and an offset.  The
194 	symbol flags include such things as <<BSF_WEAK>> or
195 	<<BSF_INDIRECT>>.  The section is a section in the object
196 	file, or something like <<bfd_und_section_ptr>> for an undefined
197 	symbol or <<bfd_com_section_ptr>> for a common symbol.
198 
199 	If the <<_bfd_final_link>> routine is also going to need to
200 	read the symbol information, the <<_bfd_link_add_symbols>>
201 	routine should save it somewhere attached to the object file
202 	BFD.  However, the information should only be saved if the
203 	<<keep_memory>> field of the <<info>> argument is TRUE, so
204 	that the <<-no-keep-memory>> linker switch is effective.
205 
206 	The a.out function which adds symbols from an object file is
207 	<<aout_link_add_object_symbols>>, and most of the interesting
208 	work is in <<aout_link_add_symbols>>.  The latter saves
209 	pointers to the hash tables entries created by
210 	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 	so that the <<_bfd_final_link>> routine does not have to call
212 	the hash table lookup routine to locate the entry.
213 
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 	Adding symbols from an archive
218 
219 	When the <<_bfd_link_add_symbols>> routine is passed an
220 	archive, it must look through the symbols defined by the
221 	archive and decide which elements of the archive should be
222 	included in the link.  For each such element it must call the
223 	<<add_archive_element>> linker callback, and it must add the
224 	symbols from the object file to the linker hash table.
225 
226 @findex _bfd_generic_link_add_archive_symbols
227 	In most cases the work of looking through the symbols in the
228 	archive should be done by the
229 	<<_bfd_generic_link_add_archive_symbols>> function.  This
230 	function builds a hash table from the archive symbol table and
231 	looks through the list of undefined symbols to see which
232 	elements should be included.
233 	<<_bfd_generic_link_add_archive_symbols>> is passed a function
234 	to call to make the final decision about adding an archive
235 	element to the link and to do the actual work of adding the
236 	symbols to the linker hash table.
237 
238 	The function passed to
239 	<<_bfd_generic_link_add_archive_symbols>> must read the
240 	symbols of the archive element and decide whether the archive
241 	element should be included in the link.  If the element is to
242 	be included, the <<add_archive_element>> linker callback
243 	routine must be called with the element as an argument, and
244 	the elements symbols must be added to the linker hash table
245 	just as though the element had itself been passed to the
246 	<<_bfd_link_add_symbols>> function.
247 
248 	When the a.out <<_bfd_link_add_symbols>> function receives an
249 	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
250 	passing <<aout_link_check_archive_element>> as the function
251 	argument. <<aout_link_check_archive_element>> calls
252 	<<aout_link_check_ar_symbols>>.  If the latter decides to add
253 	the element (an element is only added if it provides a real,
254 	non-common, definition for a previously undefined or common
255 	symbol) it calls the <<add_archive_element>> callback and then
256 	<<aout_link_check_archive_element>> calls
257 	<<aout_link_add_symbols>> to actually add the symbols to the
258 	linker hash table.
259 
260 	The ECOFF back end is unusual in that it does not normally
261 	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
262 	archives already contain a hash table of symbols.  The ECOFF
263 	back end searches the archive itself to avoid the overhead of
264 	creating a new hash table.
265 
266 INODE
267 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
268 SUBSECTION
269 	Performing the final link
270 
271 @cindex _bfd_link_final_link in target vector
272 @cindex target vector (_bfd_final_link)
273 	When all the input files have been processed, the linker calls
274 	the <<_bfd_final_link>> entry point of the output BFD.  This
275 	routine is responsible for producing the final output file,
276 	which has several aspects.  It must relocate the contents of
277 	the input sections and copy the data into the output sections.
278 	It must build an output symbol table including any local
279 	symbols from the input files and the global symbols from the
280 	hash table.  When producing relocatable output, it must
281 	modify the input relocs and write them into the output file.
282 	There may also be object format dependent work to be done.
283 
284 	The linker will also call the <<write_object_contents>> entry
285 	point when the BFD is closed.  The two entry points must work
286 	together in order to produce the correct output file.
287 
288 	The details of how this works are inevitably dependent upon
289 	the specific object file format.  The a.out
290 	<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
291 
292 @menu
293 @* Information provided by the linker::
294 @* Relocating the section contents::
295 @* Writing the symbol table::
296 @end menu
297 
298 INODE
299 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
300 SUBSUBSECTION
301 	Information provided by the linker
302 
303 	Before the linker calls the <<_bfd_final_link>> entry point,
304 	it sets up some data structures for the function to use.
305 
306 	The <<input_bfds>> field of the <<bfd_link_info>> structure
307 	will point to a list of all the input files included in the
308 	link.  These files are linked through the <<link_next>> field
309 	of the <<bfd>> structure.
310 
311 	Each section in the output file will have a list of
312 	<<link_order>> structures attached to the <<map_head.link_order>>
313 	field (the <<link_order>> structure is defined in
314 	<<bfdlink.h>>).  These structures describe how to create the
315 	contents of the output section in terms of the contents of
316 	various input sections, fill constants, and, eventually, other
317 	types of information.  They also describe relocs that must be
318 	created by the BFD backend, but do not correspond to any input
319 	file; this is used to support -Ur, which builds constructors
320 	while generating a relocatable object file.
321 
322 INODE
323 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
324 SUBSUBSECTION
325 	Relocating the section contents
326 
327 	The <<_bfd_final_link>> function should look through the
328 	<<link_order>> structures attached to each section of the
329 	output file.  Each <<link_order>> structure should either be
330 	handled specially, or it should be passed to the function
331 	<<_bfd_default_link_order>> which will do the right thing
332 	(<<_bfd_default_link_order>> is defined in <<linker.c>>).
333 
334 	For efficiency, a <<link_order>> of type
335 	<<bfd_indirect_link_order>> whose associated section belongs
336 	to a BFD of the same format as the output BFD must be handled
337 	specially.  This type of <<link_order>> describes part of an
338 	output section in terms of a section belonging to one of the
339 	input files.  The <<_bfd_final_link>> function should read the
340 	contents of the section and any associated relocs, apply the
341 	relocs to the section contents, and write out the modified
342 	section contents.  If performing a relocatable link, the
343 	relocs themselves must also be modified and written out.
344 
345 @findex _bfd_relocate_contents
346 @findex _bfd_final_link_relocate
347 	The functions <<_bfd_relocate_contents>> and
348 	<<_bfd_final_link_relocate>> provide some general support for
349 	performing the actual relocations, notably overflow checking.
350 	Their arguments include information about the symbol the
351 	relocation is against and a <<reloc_howto_type>> argument
352 	which describes the relocation to perform.  These functions
353 	are defined in <<reloc.c>>.
354 
355 	The a.out function which handles reading, relocating, and
356 	writing section contents is <<aout_link_input_section>>.  The
357 	actual relocation is done in <<aout_link_input_section_std>>
358 	and <<aout_link_input_section_ext>>.
359 
360 INODE
361 Writing the symbol table, , Relocating the section contents, Performing the Final Link
362 SUBSUBSECTION
363 	Writing the symbol table
364 
365 	The <<_bfd_final_link>> function must gather all the symbols
366 	in the input files and write them out.  It must also write out
367 	all the symbols in the global hash table.  This must be
368 	controlled by the <<strip>> and <<discard>> fields of the
369 	<<bfd_link_info>> structure.
370 
371 	The local symbols of the input files will not have been
372 	entered into the linker hash table.  The <<_bfd_final_link>>
373 	routine must consider each input file and include the symbols
374 	in the output file.  It may be convenient to do this when
375 	looking through the <<link_order>> structures, or it may be
376 	done by stepping through the <<input_bfds>> list.
377 
378 	The <<_bfd_final_link>> routine must also traverse the global
379 	hash table to gather all the externally visible symbols.  It
380 	is possible that most of the externally visible symbols may be
381 	written out when considering the symbols of each input file,
382 	but it is still necessary to traverse the hash table since the
383 	linker script may have defined some symbols that are not in
384 	any of the input files.
385 
386 	The <<strip>> field of the <<bfd_link_info>> structure
387 	controls which symbols are written out.  The possible values
388 	are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
389 	then the <<keep_hash>> field of the <<bfd_link_info>>
390 	structure is a hash table of symbols to keep; each symbol
391 	should be looked up in this hash table, and only symbols which
392 	are present should be included in the output file.
393 
394 	If the <<strip>> field of the <<bfd_link_info>> structure
395 	permits local symbols to be written out, the <<discard>> field
396 	is used to further controls which local symbols are included
397 	in the output file.  If the value is <<discard_l>>, then all
398 	local symbols which begin with a certain prefix are discarded;
399 	this is controlled by the <<bfd_is_local_label_name>> entry point.
400 
401 	The a.out backend handles symbols by calling
402 	<<aout_link_write_symbols>> on each input BFD and then
403 	traversing the global hash table with the function
404 	<<aout_link_write_other_symbol>>.  It builds a string table
405 	while writing out the symbols, which is written to the output
406 	file at the end of <<NAME(aout,final_link)>>.
407 */
408 
409 static bfd_boolean generic_link_add_object_symbols
410   (bfd *, struct bfd_link_info *, bfd_boolean collect);
411 static bfd_boolean generic_link_add_symbols
412   (bfd *, struct bfd_link_info *, bfd_boolean);
413 static bfd_boolean generic_link_check_archive_element_no_collect
414   (bfd *, struct bfd_link_info *, bfd_boolean *);
415 static bfd_boolean generic_link_check_archive_element_collect
416   (bfd *, struct bfd_link_info *, bfd_boolean *);
417 static bfd_boolean generic_link_check_archive_element
418   (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
419 static bfd_boolean generic_link_add_symbol_list
420   (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
421    bfd_boolean);
422 static bfd_boolean generic_add_output_symbol
423   (bfd *, size_t *psymalloc, asymbol *);
424 static bfd_boolean default_data_link_order
425   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
426 static bfd_boolean default_indirect_link_order
427   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
428    bfd_boolean);
429 
430 /* The link hash table structure is defined in bfdlink.h.  It provides
431    a base hash table which the backend specific hash tables are built
432    upon.  */
433 
434 /* Routine to create an entry in the link hash table.  */
435 
436 struct bfd_hash_entry *
_bfd_link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)437 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
438 			struct bfd_hash_table *table,
439 			const char *string)
440 {
441   /* Allocate the structure if it has not already been allocated by a
442      subclass.  */
443   if (entry == NULL)
444     {
445       entry = bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
446       if (entry == NULL)
447 	return entry;
448     }
449 
450   /* Call the allocation method of the superclass.  */
451   entry = bfd_hash_newfunc (entry, table, string);
452   if (entry)
453     {
454       struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
455 
456       /* Initialize the local fields.  */
457       h->type = bfd_link_hash_new;
458       memset (&h->u.undef.next, 0,
459 	      (sizeof (struct bfd_link_hash_entry)
460 	       - offsetof (struct bfd_link_hash_entry, u.undef.next)));
461     }
462 
463   return entry;
464 }
465 
466 /* Initialize a link hash table.  The BFD argument is the one
467    responsible for creating this table.  */
468 
469 bfd_boolean
_bfd_link_hash_table_init(struct bfd_link_hash_table * table,bfd * abfd,struct bfd_hash_entry * (* newfunc)(struct bfd_hash_entry *,struct bfd_hash_table *,const char *),unsigned int entsize)470 _bfd_link_hash_table_init
471   (struct bfd_link_hash_table *table,
472    bfd *abfd,
473    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
474 				      struct bfd_hash_table *,
475 				      const char *),
476    unsigned int entsize)
477 {
478   table->creator = abfd->xvec;
479   table->undefs = NULL;
480   table->undefs_tail = NULL;
481   table->type = bfd_link_generic_hash_table;
482 
483   return bfd_hash_table_init (&table->table, newfunc, entsize);
484 }
485 
486 /* Look up a symbol in a link hash table.  If follow is TRUE, we
487    follow bfd_link_hash_indirect and bfd_link_hash_warning links to
488    the real symbol.  */
489 
490 struct bfd_link_hash_entry *
bfd_link_hash_lookup(struct bfd_link_hash_table * table,const char * string,bfd_boolean create,bfd_boolean copy,bfd_boolean follow)491 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
492 		      const char *string,
493 		      bfd_boolean create,
494 		      bfd_boolean copy,
495 		      bfd_boolean follow)
496 {
497   struct bfd_link_hash_entry *ret;
498 
499   ret = ((struct bfd_link_hash_entry *)
500 	 bfd_hash_lookup (&table->table, string, create, copy));
501 
502   if (follow && ret != NULL)
503     {
504       while (ret->type == bfd_link_hash_indirect
505 	     || ret->type == bfd_link_hash_warning)
506 	ret = ret->u.i.link;
507     }
508 
509   return ret;
510 }
511 
512 /* Look up a symbol in the main linker hash table if the symbol might
513    be wrapped.  This should only be used for references to an
514    undefined symbol, not for definitions of a symbol.  */
515 
516 struct bfd_link_hash_entry *
bfd_wrapped_link_hash_lookup(bfd * abfd,struct bfd_link_info * info,const char * string,bfd_boolean create,bfd_boolean copy,bfd_boolean follow)517 bfd_wrapped_link_hash_lookup (bfd *abfd,
518 			      struct bfd_link_info *info,
519 			      const char *string,
520 			      bfd_boolean create,
521 			      bfd_boolean copy,
522 			      bfd_boolean follow)
523 {
524   bfd_size_type amt;
525 
526   if (info->wrap_hash != NULL)
527     {
528       const char *l;
529       char prefix = '\0';
530 
531       l = string;
532       if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
533 	{
534 	  prefix = *l;
535 	  ++l;
536 	}
537 
538 #undef WRAP
539 #define WRAP "__wrap_"
540 
541       if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
542 	{
543 	  char *n;
544 	  struct bfd_link_hash_entry *h;
545 
546 	  /* This symbol is being wrapped.  We want to replace all
547              references to SYM with references to __wrap_SYM.  */
548 
549 	  amt = strlen (l) + sizeof WRAP + 1;
550 	  n = bfd_malloc (amt);
551 	  if (n == NULL)
552 	    return NULL;
553 
554 	  n[0] = prefix;
555 	  n[1] = '\0';
556 	  strcat (n, WRAP);
557 	  strcat (n, l);
558 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
559 	  free (n);
560 	  return h;
561 	}
562 
563 #undef WRAP
564 
565 #undef REAL
566 #define REAL "__real_"
567 
568       if (*l == '_'
569 	  && strncmp (l, REAL, sizeof REAL - 1) == 0
570 	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
571 			      FALSE, FALSE) != NULL)
572 	{
573 	  char *n;
574 	  struct bfd_link_hash_entry *h;
575 
576 	  /* This is a reference to __real_SYM, where SYM is being
577              wrapped.  We want to replace all references to __real_SYM
578              with references to SYM.  */
579 
580 	  amt = strlen (l + sizeof REAL - 1) + 2;
581 	  n = bfd_malloc (amt);
582 	  if (n == NULL)
583 	    return NULL;
584 
585 	  n[0] = prefix;
586 	  n[1] = '\0';
587 	  strcat (n, l + sizeof REAL - 1);
588 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
589 	  free (n);
590 	  return h;
591 	}
592 
593 #undef REAL
594     }
595 
596   return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
597 }
598 
599 /* Traverse a generic link hash table.  The only reason this is not a
600    macro is to do better type checking.  This code presumes that an
601    argument passed as a struct bfd_hash_entry * may be caught as a
602    struct bfd_link_hash_entry * with no explicit cast required on the
603    call.  */
604 
605 void
bfd_link_hash_traverse(struct bfd_link_hash_table * table,bfd_boolean (* func)(struct bfd_link_hash_entry *,void *),void * info)606 bfd_link_hash_traverse
607   (struct bfd_link_hash_table *table,
608    bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
609    void *info)
610 {
611   bfd_hash_traverse (&table->table,
612 		     (bfd_boolean (*) (struct bfd_hash_entry *, void *)) func,
613 		     info);
614 }
615 
616 /* Add a symbol to the linker hash table undefs list.  */
617 
618 void
bfd_link_add_undef(struct bfd_link_hash_table * table,struct bfd_link_hash_entry * h)619 bfd_link_add_undef (struct bfd_link_hash_table *table,
620 		    struct bfd_link_hash_entry *h)
621 {
622   BFD_ASSERT (h->u.undef.next == NULL);
623   if (table->undefs_tail != NULL)
624     table->undefs_tail->u.undef.next = h;
625   if (table->undefs == NULL)
626     table->undefs = h;
627   table->undefs_tail = h;
628 }
629 
630 /* The undefs list was designed so that in normal use we don't need to
631    remove entries.  However, if symbols on the list are changed from
632    bfd_link_hash_undefined to either bfd_link_hash_undefweak or
633    bfd_link_hash_new for some reason, then they must be removed from the
634    list.  Failure to do so might result in the linker attempting to add
635    the symbol to the list again at a later stage.  */
636 
637 void
bfd_link_repair_undef_list(struct bfd_link_hash_table * table)638 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
639 {
640   struct bfd_link_hash_entry **pun;
641 
642   pun = &table->undefs;
643   while (*pun != NULL)
644     {
645       struct bfd_link_hash_entry *h = *pun;
646 
647       if (h->type == bfd_link_hash_new
648 	  || h->type == bfd_link_hash_undefweak)
649 	{
650 	  *pun = h->u.undef.next;
651 	  h->u.undef.next = NULL;
652 	  if (h == table->undefs_tail)
653 	    {
654 	      if (pun == &table->undefs)
655 		table->undefs_tail = NULL;
656 	      else
657 		/* pun points at an u.undef.next field.  Go back to
658 		   the start of the link_hash_entry.  */
659 		table->undefs_tail = (struct bfd_link_hash_entry *)
660 		  ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
661 	      break;
662 	    }
663 	}
664       else
665 	pun = &h->u.undef.next;
666     }
667 }
668 
669 /* Routine to create an entry in a generic link hash table.  */
670 
671 struct bfd_hash_entry *
_bfd_generic_link_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)672 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
673 				struct bfd_hash_table *table,
674 				const char *string)
675 {
676   /* Allocate the structure if it has not already been allocated by a
677      subclass.  */
678   if (entry == NULL)
679     {
680       entry =
681 	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
682       if (entry == NULL)
683 	return entry;
684     }
685 
686   /* Call the allocation method of the superclass.  */
687   entry = _bfd_link_hash_newfunc (entry, table, string);
688   if (entry)
689     {
690       struct generic_link_hash_entry *ret;
691 
692       /* Set local fields.  */
693       ret = (struct generic_link_hash_entry *) entry;
694       ret->written = FALSE;
695       ret->sym = NULL;
696     }
697 
698   return entry;
699 }
700 
701 /* Create a generic link hash table.  */
702 
703 struct bfd_link_hash_table *
_bfd_generic_link_hash_table_create(bfd * abfd)704 _bfd_generic_link_hash_table_create (bfd *abfd)
705 {
706   struct generic_link_hash_table *ret;
707   bfd_size_type amt = sizeof (struct generic_link_hash_table);
708 
709   ret = bfd_malloc (amt);
710   if (ret == NULL)
711     return NULL;
712   if (! _bfd_link_hash_table_init (&ret->root, abfd,
713 				   _bfd_generic_link_hash_newfunc,
714 				   sizeof (struct generic_link_hash_entry)))
715     {
716       free (ret);
717       return NULL;
718     }
719   return &ret->root;
720 }
721 
722 void
_bfd_generic_link_hash_table_free(struct bfd_link_hash_table * hash)723 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
724 {
725   struct generic_link_hash_table *ret
726     = (struct generic_link_hash_table *) hash;
727 
728   bfd_hash_table_free (&ret->root.table);
729   free (ret);
730 }
731 
732 /* Grab the symbols for an object file when doing a generic link.  We
733    store the symbols in the outsymbols field.  We need to keep them
734    around for the entire link to ensure that we only read them once.
735    If we read them multiple times, we might wind up with relocs and
736    the hash table pointing to different instances of the symbol
737    structure.  */
738 
739 static bfd_boolean
generic_link_read_symbols(bfd * abfd)740 generic_link_read_symbols (bfd *abfd)
741 {
742   if (bfd_get_outsymbols (abfd) == NULL)
743     {
744       long symsize;
745       long symcount;
746 
747       symsize = bfd_get_symtab_upper_bound (abfd);
748       if (symsize < 0)
749 	return FALSE;
750       bfd_get_outsymbols (abfd) = bfd_alloc (abfd, symsize);
751       if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
752 	return FALSE;
753       symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
754       if (symcount < 0)
755 	return FALSE;
756       bfd_get_symcount (abfd) = symcount;
757     }
758 
759   return TRUE;
760 }
761 
762 /* Generic function to add symbols to from an object file to the
763    global hash table.  This version does not automatically collect
764    constructors by name.  */
765 
766 bfd_boolean
_bfd_generic_link_add_symbols(bfd * abfd,struct bfd_link_info * info)767 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
768 {
769   return generic_link_add_symbols (abfd, info, FALSE);
770 }
771 
772 /* Generic function to add symbols from an object file to the global
773    hash table.  This version automatically collects constructors by
774    name, as the collect2 program does.  It should be used for any
775    target which does not provide some other mechanism for setting up
776    constructors and destructors; these are approximately those targets
777    for which gcc uses collect2 and do not support stabs.  */
778 
779 bfd_boolean
_bfd_generic_link_add_symbols_collect(bfd * abfd,struct bfd_link_info * info)780 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
781 {
782   return generic_link_add_symbols (abfd, info, TRUE);
783 }
784 
785 /* Indicate that we are only retrieving symbol values from this
786    section.  We want the symbols to act as though the values in the
787    file are absolute.  */
788 
789 void
_bfd_generic_link_just_syms(asection * sec,struct bfd_link_info * info ATTRIBUTE_UNUSED)790 _bfd_generic_link_just_syms (asection *sec,
791 			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
792 {
793   sec->output_section = bfd_abs_section_ptr;
794   sec->output_offset = sec->vma;
795 }
796 
797 /* Add symbols from an object file to the global hash table.  */
798 
799 static bfd_boolean
generic_link_add_symbols(bfd * abfd,struct bfd_link_info * info,bfd_boolean collect)800 generic_link_add_symbols (bfd *abfd,
801 			  struct bfd_link_info *info,
802 			  bfd_boolean collect)
803 {
804   bfd_boolean ret;
805 
806   switch (bfd_get_format (abfd))
807     {
808     case bfd_object:
809       ret = generic_link_add_object_symbols (abfd, info, collect);
810       break;
811     case bfd_archive:
812       ret = (_bfd_generic_link_add_archive_symbols
813 	     (abfd, info,
814 	      (collect
815 	       ? generic_link_check_archive_element_collect
816 	       : generic_link_check_archive_element_no_collect)));
817       break;
818     default:
819       bfd_set_error (bfd_error_wrong_format);
820       ret = FALSE;
821     }
822 
823   return ret;
824 }
825 
826 /* Add symbols from an object file to the global hash table.  */
827 
828 static bfd_boolean
generic_link_add_object_symbols(bfd * abfd,struct bfd_link_info * info,bfd_boolean collect)829 generic_link_add_object_symbols (bfd *abfd,
830 				 struct bfd_link_info *info,
831 				 bfd_boolean collect)
832 {
833   bfd_size_type symcount;
834   struct bfd_symbol **outsyms;
835 
836   if (! generic_link_read_symbols (abfd))
837     return FALSE;
838   symcount = _bfd_generic_link_get_symcount (abfd);
839   outsyms = _bfd_generic_link_get_symbols (abfd);
840   return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
841 }
842 
843 /* We build a hash table of all symbols defined in an archive.  */
844 
845 /* An archive symbol may be defined by multiple archive elements.
846    This linked list is used to hold the elements.  */
847 
848 struct archive_list
849 {
850   struct archive_list *next;
851   unsigned int indx;
852 };
853 
854 /* An entry in an archive hash table.  */
855 
856 struct archive_hash_entry
857 {
858   struct bfd_hash_entry root;
859   /* Where the symbol is defined.  */
860   struct archive_list *defs;
861 };
862 
863 /* An archive hash table itself.  */
864 
865 struct archive_hash_table
866 {
867   struct bfd_hash_table table;
868 };
869 
870 /* Create a new entry for an archive hash table.  */
871 
872 static struct bfd_hash_entry *
archive_hash_newfunc(struct bfd_hash_entry * entry,struct bfd_hash_table * table,const char * string)873 archive_hash_newfunc (struct bfd_hash_entry *entry,
874 		      struct bfd_hash_table *table,
875 		      const char *string)
876 {
877   struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
878 
879   /* Allocate the structure if it has not already been allocated by a
880      subclass.  */
881   if (ret == NULL)
882     ret = bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
883   if (ret == NULL)
884     return NULL;
885 
886   /* Call the allocation method of the superclass.  */
887   ret = ((struct archive_hash_entry *)
888 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
889 
890   if (ret)
891     {
892       /* Initialize the local fields.  */
893       ret->defs = NULL;
894     }
895 
896   return &ret->root;
897 }
898 
899 /* Initialize an archive hash table.  */
900 
901 static bfd_boolean
archive_hash_table_init(struct archive_hash_table * table,struct bfd_hash_entry * (* newfunc)(struct bfd_hash_entry *,struct bfd_hash_table *,const char *),unsigned int entsize)902 archive_hash_table_init
903   (struct archive_hash_table *table,
904    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
905 				      struct bfd_hash_table *,
906 				      const char *),
907    unsigned int entsize)
908 {
909   return bfd_hash_table_init (&table->table, newfunc, entsize);
910 }
911 
912 /* Look up an entry in an archive hash table.  */
913 
914 #define archive_hash_lookup(t, string, create, copy) \
915   ((struct archive_hash_entry *) \
916    bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
917 
918 /* Allocate space in an archive hash table.  */
919 
920 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
921 
922 /* Free an archive hash table.  */
923 
924 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
925 
926 /* Generic function to add symbols from an archive file to the global
927    hash file.  This function presumes that the archive symbol table
928    has already been read in (this is normally done by the
929    bfd_check_format entry point).  It looks through the undefined and
930    common symbols and searches the archive symbol table for them.  If
931    it finds an entry, it includes the associated object file in the
932    link.
933 
934    The old linker looked through the archive symbol table for
935    undefined symbols.  We do it the other way around, looking through
936    undefined symbols for symbols defined in the archive.  The
937    advantage of the newer scheme is that we only have to look through
938    the list of undefined symbols once, whereas the old method had to
939    re-search the symbol table each time a new object file was added.
940 
941    The CHECKFN argument is used to see if an object file should be
942    included.  CHECKFN should set *PNEEDED to TRUE if the object file
943    should be included, and must also call the bfd_link_info
944    add_archive_element callback function and handle adding the symbols
945    to the global hash table.  CHECKFN should only return FALSE if some
946    sort of error occurs.
947 
948    For some formats, such as a.out, it is possible to look through an
949    object file but not actually include it in the link.  The
950    archive_pass field in a BFD is used to avoid checking the symbols
951    of an object files too many times.  When an object is included in
952    the link, archive_pass is set to -1.  If an object is scanned but
953    not included, archive_pass is set to the pass number.  The pass
954    number is incremented each time a new object file is included.  The
955    pass number is used because when a new object file is included it
956    may create new undefined symbols which cause a previously examined
957    object file to be included.  */
958 
959 bfd_boolean
_bfd_generic_link_add_archive_symbols(bfd * abfd,struct bfd_link_info * info,bfd_boolean (* checkfn)(bfd *,struct bfd_link_info *,bfd_boolean *))960 _bfd_generic_link_add_archive_symbols
961   (bfd *abfd,
962    struct bfd_link_info *info,
963    bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
964 {
965   carsym *arsyms;
966   carsym *arsym_end;
967   register carsym *arsym;
968   int pass;
969   struct archive_hash_table arsym_hash;
970   unsigned int indx;
971   struct bfd_link_hash_entry **pundef;
972 
973   if (! bfd_has_map (abfd))
974     {
975       /* An empty archive is a special case.  */
976       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
977 	return TRUE;
978       bfd_set_error (bfd_error_no_armap);
979       return FALSE;
980     }
981 
982   arsyms = bfd_ardata (abfd)->symdefs;
983   arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
984 
985   /* In order to quickly determine whether an symbol is defined in
986      this archive, we build a hash table of the symbols.  */
987   if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc,
988 				 sizeof (struct archive_hash_entry)))
989     return FALSE;
990   for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
991     {
992       struct archive_hash_entry *arh;
993       struct archive_list *l, **pp;
994 
995       arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
996       if (arh == NULL)
997 	goto error_return;
998       l = ((struct archive_list *)
999 	   archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
1000       if (l == NULL)
1001 	goto error_return;
1002       l->indx = indx;
1003       for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
1004 	;
1005       *pp = l;
1006       l->next = NULL;
1007     }
1008 
1009   /* The archive_pass field in the archive itself is used to
1010      initialize PASS, sine we may search the same archive multiple
1011      times.  */
1012   pass = abfd->archive_pass + 1;
1013 
1014   /* New undefined symbols are added to the end of the list, so we
1015      only need to look through it once.  */
1016   pundef = &info->hash->undefs;
1017   while (*pundef != NULL)
1018     {
1019       struct bfd_link_hash_entry *h;
1020       struct archive_hash_entry *arh;
1021       struct archive_list *l;
1022 
1023       h = *pundef;
1024 
1025       /* When a symbol is defined, it is not necessarily removed from
1026 	 the list.  */
1027       if (h->type != bfd_link_hash_undefined
1028 	  && h->type != bfd_link_hash_common)
1029 	{
1030 	  /* Remove this entry from the list, for general cleanliness
1031 	     and because we are going to look through the list again
1032 	     if we search any more libraries.  We can't remove the
1033 	     entry if it is the tail, because that would lose any
1034 	     entries we add to the list later on (it would also cause
1035 	     us to lose track of whether the symbol has been
1036 	     referenced).  */
1037 	  if (*pundef != info->hash->undefs_tail)
1038 	    *pundef = (*pundef)->u.undef.next;
1039 	  else
1040 	    pundef = &(*pundef)->u.undef.next;
1041 	  continue;
1042 	}
1043 
1044       /* Look for this symbol in the archive symbol map.  */
1045       arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1046       if (arh == NULL)
1047 	{
1048 	  /* If we haven't found the exact symbol we're looking for,
1049 	     let's look for its import thunk */
1050 	  if (info->pei386_auto_import)
1051 	    {
1052 	      bfd_size_type amt = strlen (h->root.string) + 10;
1053 	      char *buf = bfd_malloc (amt);
1054 	      if (buf == NULL)
1055 		return FALSE;
1056 
1057 	      sprintf (buf, "__imp_%s", h->root.string);
1058 	      arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1059 	      free(buf);
1060 	    }
1061 	  if (arh == NULL)
1062 	    {
1063 	      pundef = &(*pundef)->u.undef.next;
1064 	      continue;
1065 	    }
1066 	}
1067       /* Look at all the objects which define this symbol.  */
1068       for (l = arh->defs; l != NULL; l = l->next)
1069 	{
1070 	  bfd *element;
1071 	  bfd_boolean needed;
1072 
1073 	  /* If the symbol has gotten defined along the way, quit.  */
1074 	  if (h->type != bfd_link_hash_undefined
1075 	      && h->type != bfd_link_hash_common)
1076 	    break;
1077 
1078 	  element = bfd_get_elt_at_index (abfd, l->indx);
1079 	  if (element == NULL)
1080 	    goto error_return;
1081 
1082 	  /* If we've already included this element, or if we've
1083 	     already checked it on this pass, continue.  */
1084 	  if (element->archive_pass == -1
1085 	      || element->archive_pass == pass)
1086 	    continue;
1087 
1088 	  /* If we can't figure this element out, just ignore it.  */
1089 	  if (! bfd_check_format (element, bfd_object))
1090 	    {
1091 	      element->archive_pass = -1;
1092 	      continue;
1093 	    }
1094 
1095 	  /* CHECKFN will see if this element should be included, and
1096 	     go ahead and include it if appropriate.  */
1097 	  if (! (*checkfn) (element, info, &needed))
1098 	    goto error_return;
1099 
1100 	  if (! needed)
1101 	    element->archive_pass = pass;
1102 	  else
1103 	    {
1104 	      element->archive_pass = -1;
1105 
1106 	      /* Increment the pass count to show that we may need to
1107 		 recheck object files which were already checked.  */
1108 	      ++pass;
1109 	    }
1110 	}
1111 
1112       pundef = &(*pundef)->u.undef.next;
1113     }
1114 
1115   archive_hash_table_free (&arsym_hash);
1116 
1117   /* Save PASS in case we are called again.  */
1118   abfd->archive_pass = pass;
1119 
1120   return TRUE;
1121 
1122  error_return:
1123   archive_hash_table_free (&arsym_hash);
1124   return FALSE;
1125 }
1126 
1127 /* See if we should include an archive element.  This version is used
1128    when we do not want to automatically collect constructors based on
1129    the symbol name, presumably because we have some other mechanism
1130    for finding them.  */
1131 
1132 static bfd_boolean
generic_link_check_archive_element_no_collect(bfd * abfd,struct bfd_link_info * info,bfd_boolean * pneeded)1133 generic_link_check_archive_element_no_collect (
1134 					       bfd *abfd,
1135 					       struct bfd_link_info *info,
1136 					       bfd_boolean *pneeded)
1137 {
1138   return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1139 }
1140 
1141 /* See if we should include an archive element.  This version is used
1142    when we want to automatically collect constructors based on the
1143    symbol name, as collect2 does.  */
1144 
1145 static bfd_boolean
generic_link_check_archive_element_collect(bfd * abfd,struct bfd_link_info * info,bfd_boolean * pneeded)1146 generic_link_check_archive_element_collect (bfd *abfd,
1147 					    struct bfd_link_info *info,
1148 					    bfd_boolean *pneeded)
1149 {
1150   return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1151 }
1152 
1153 /* See if we should include an archive element.  Optionally collect
1154    constructors.  */
1155 
1156 static bfd_boolean
generic_link_check_archive_element(bfd * abfd,struct bfd_link_info * info,bfd_boolean * pneeded,bfd_boolean collect)1157 generic_link_check_archive_element (bfd *abfd,
1158 				    struct bfd_link_info *info,
1159 				    bfd_boolean *pneeded,
1160 				    bfd_boolean collect)
1161 {
1162   asymbol **pp, **ppend;
1163 
1164   *pneeded = FALSE;
1165 
1166   if (! generic_link_read_symbols (abfd))
1167     return FALSE;
1168 
1169   pp = _bfd_generic_link_get_symbols (abfd);
1170   ppend = pp + _bfd_generic_link_get_symcount (abfd);
1171   for (; pp < ppend; pp++)
1172     {
1173       asymbol *p;
1174       struct bfd_link_hash_entry *h;
1175 
1176       p = *pp;
1177 
1178       /* We are only interested in globally visible symbols.  */
1179       if (! bfd_is_com_section (p->section)
1180 	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1181 	continue;
1182 
1183       /* We are only interested if we know something about this
1184 	 symbol, and it is undefined or common.  An undefined weak
1185 	 symbol (type bfd_link_hash_undefweak) is not considered to be
1186 	 a reference when pulling files out of an archive.  See the
1187 	 SVR4 ABI, p. 4-27.  */
1188       h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1189 				FALSE, TRUE);
1190       if (h == NULL
1191 	  || (h->type != bfd_link_hash_undefined
1192 	      && h->type != bfd_link_hash_common))
1193 	continue;
1194 
1195       /* P is a symbol we are looking for.  */
1196 
1197       if (! bfd_is_com_section (p->section))
1198 	{
1199 	  bfd_size_type symcount;
1200 	  asymbol **symbols;
1201 
1202 	  /* This object file defines this symbol, so pull it in.  */
1203 	  if (! (*info->callbacks->add_archive_element) (info, abfd,
1204 							 bfd_asymbol_name (p)))
1205 	    return FALSE;
1206 	  symcount = _bfd_generic_link_get_symcount (abfd);
1207 	  symbols = _bfd_generic_link_get_symbols (abfd);
1208 	  if (! generic_link_add_symbol_list (abfd, info, symcount,
1209 					      symbols, collect))
1210 	    return FALSE;
1211 	  *pneeded = TRUE;
1212 	  return TRUE;
1213 	}
1214 
1215       /* P is a common symbol.  */
1216 
1217       if (h->type == bfd_link_hash_undefined)
1218 	{
1219 	  bfd *symbfd;
1220 	  bfd_vma size;
1221 	  unsigned int power;
1222 
1223 	  symbfd = h->u.undef.abfd;
1224 	  if (symbfd == NULL)
1225 	    {
1226 	      /* This symbol was created as undefined from outside
1227 		 BFD.  We assume that we should link in the object
1228 		 file.  This is for the -u option in the linker.  */
1229 	      if (! (*info->callbacks->add_archive_element)
1230 		  (info, abfd, bfd_asymbol_name (p)))
1231 		return FALSE;
1232 	      *pneeded = TRUE;
1233 	      return TRUE;
1234 	    }
1235 
1236 	  /* Turn the symbol into a common symbol but do not link in
1237 	     the object file.  This is how a.out works.  Object
1238 	     formats that require different semantics must implement
1239 	     this function differently.  This symbol is already on the
1240 	     undefs list.  We add the section to a common section
1241 	     attached to symbfd to ensure that it is in a BFD which
1242 	     will be linked in.  */
1243 	  h->type = bfd_link_hash_common;
1244 	  h->u.c.p =
1245 	    bfd_hash_allocate (&info->hash->table,
1246 			       sizeof (struct bfd_link_hash_common_entry));
1247 	  if (h->u.c.p == NULL)
1248 	    return FALSE;
1249 
1250 	  size = bfd_asymbol_value (p);
1251 	  h->u.c.size = size;
1252 
1253 	  power = bfd_log2 (size);
1254 	  if (power > 4)
1255 	    power = 4;
1256 	  h->u.c.p->alignment_power = power;
1257 
1258 	  if (p->section == bfd_com_section_ptr)
1259 	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1260 	  else
1261 	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1262 							  p->section->name);
1263 	  h->u.c.p->section->flags = SEC_ALLOC;
1264 	}
1265       else
1266 	{
1267 	  /* Adjust the size of the common symbol if necessary.  This
1268 	     is how a.out works.  Object formats that require
1269 	     different semantics must implement this function
1270 	     differently.  */
1271 	  if (bfd_asymbol_value (p) > h->u.c.size)
1272 	    h->u.c.size = bfd_asymbol_value (p);
1273 	}
1274     }
1275 
1276   /* This archive element is not needed.  */
1277   return TRUE;
1278 }
1279 
1280 /* Add the symbols from an object file to the global hash table.  ABFD
1281    is the object file.  INFO is the linker information.  SYMBOL_COUNT
1282    is the number of symbols.  SYMBOLS is the list of symbols.  COLLECT
1283    is TRUE if constructors should be automatically collected by name
1284    as is done by collect2.  */
1285 
1286 static bfd_boolean
generic_link_add_symbol_list(bfd * abfd,struct bfd_link_info * info,bfd_size_type symbol_count,asymbol ** symbols,bfd_boolean collect)1287 generic_link_add_symbol_list (bfd *abfd,
1288 			      struct bfd_link_info *info,
1289 			      bfd_size_type symbol_count,
1290 			      asymbol **symbols,
1291 			      bfd_boolean collect)
1292 {
1293   asymbol **pp, **ppend;
1294 
1295   pp = symbols;
1296   ppend = symbols + symbol_count;
1297   for (; pp < ppend; pp++)
1298     {
1299       asymbol *p;
1300 
1301       p = *pp;
1302 
1303       if ((p->flags & (BSF_INDIRECT
1304 		       | BSF_WARNING
1305 		       | BSF_GLOBAL
1306 		       | BSF_CONSTRUCTOR
1307 		       | BSF_WEAK)) != 0
1308 	  || bfd_is_und_section (bfd_get_section (p))
1309 	  || bfd_is_com_section (bfd_get_section (p))
1310 	  || bfd_is_ind_section (bfd_get_section (p)))
1311 	{
1312 	  const char *name;
1313 	  const char *string;
1314 	  struct generic_link_hash_entry *h;
1315 	  struct bfd_link_hash_entry *bh;
1316 
1317 	  name = bfd_asymbol_name (p);
1318 	  if (((p->flags & BSF_INDIRECT) != 0
1319 	       || bfd_is_ind_section (p->section))
1320 	      && pp + 1 < ppend)
1321 	    {
1322 	      pp++;
1323 	      string = bfd_asymbol_name (*pp);
1324 	    }
1325 	  else if ((p->flags & BSF_WARNING) != 0
1326 		   && pp + 1 < ppend)
1327 	    {
1328 	      /* The name of P is actually the warning string, and the
1329 		 next symbol is the one to warn about.  */
1330 	      string = name;
1331 	      pp++;
1332 	      name = bfd_asymbol_name (*pp);
1333 	    }
1334 	  else
1335 	    string = NULL;
1336 
1337 	  bh = NULL;
1338 	  if (! (_bfd_generic_link_add_one_symbol
1339 		 (info, abfd, name, p->flags, bfd_get_section (p),
1340 		  p->value, string, FALSE, collect, &bh)))
1341 	    return FALSE;
1342 	  h = (struct generic_link_hash_entry *) bh;
1343 
1344 	  /* If this is a constructor symbol, and the linker didn't do
1345              anything with it, then we want to just pass the symbol
1346              through to the output file.  This will happen when
1347              linking with -r.  */
1348 	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1349 	      && (h == NULL || h->root.type == bfd_link_hash_new))
1350 	    {
1351 	      p->udata.p = NULL;
1352 	      continue;
1353 	    }
1354 
1355 	  /* Save the BFD symbol so that we don't lose any backend
1356 	     specific information that may be attached to it.  We only
1357 	     want this one if it gives more information than the
1358 	     existing one; we don't want to replace a defined symbol
1359 	     with an undefined one.  This routine may be called with a
1360 	     hash table other than the generic hash table, so we only
1361 	     do this if we are certain that the hash table is a
1362 	     generic one.  */
1363 	  if (info->hash->creator == abfd->xvec)
1364 	    {
1365 	      if (h->sym == NULL
1366 		  || (! bfd_is_und_section (bfd_get_section (p))
1367 		      && (! bfd_is_com_section (bfd_get_section (p))
1368 			  || bfd_is_und_section (bfd_get_section (h->sym)))))
1369 		{
1370 		  h->sym = p;
1371 		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1372 		     reading, and it should go away when the COFF
1373 		     linker is switched to the new version.  */
1374 		  if (bfd_is_com_section (bfd_get_section (p)))
1375 		    p->flags |= BSF_OLD_COMMON;
1376 		}
1377 	    }
1378 
1379 	  /* Store a back pointer from the symbol to the hash
1380 	     table entry for the benefit of relaxation code until
1381 	     it gets rewritten to not use asymbol structures.
1382 	     Setting this is also used to check whether these
1383 	     symbols were set up by the generic linker.  */
1384 	  p->udata.p = h;
1385 	}
1386     }
1387 
1388   return TRUE;
1389 }
1390 
1391 /* We use a state table to deal with adding symbols from an object
1392    file.  The first index into the state table describes the symbol
1393    from the object file.  The second index into the state table is the
1394    type of the symbol in the hash table.  */
1395 
1396 /* The symbol from the object file is turned into one of these row
1397    values.  */
1398 
1399 enum link_row
1400 {
1401   UNDEF_ROW,		/* Undefined.  */
1402   UNDEFW_ROW,		/* Weak undefined.  */
1403   DEF_ROW,		/* Defined.  */
1404   DEFW_ROW,		/* Weak defined.  */
1405   COMMON_ROW,		/* Common.  */
1406   INDR_ROW,		/* Indirect.  */
1407   WARN_ROW,		/* Warning.  */
1408   SET_ROW		/* Member of set.  */
1409 };
1410 
1411 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1412 #undef FAIL
1413 
1414 /* The actions to take in the state table.  */
1415 
1416 enum link_action
1417 {
1418   FAIL,		/* Abort.  */
1419   UND,		/* Mark symbol undefined.  */
1420   WEAK,		/* Mark symbol weak undefined.  */
1421   DEF,		/* Mark symbol defined.  */
1422   DEFW,		/* Mark symbol weak defined.  */
1423   COM,		/* Mark symbol common.  */
1424   REF,		/* Mark defined symbol referenced.  */
1425   CREF,		/* Possibly warn about common reference to defined symbol.  */
1426   CDEF,		/* Define existing common symbol.  */
1427   NOACT,	/* No action.  */
1428   BIG,		/* Mark symbol common using largest size.  */
1429   MDEF,		/* Multiple definition error.  */
1430   MIND,		/* Multiple indirect symbols.  */
1431   IND,		/* Make indirect symbol.  */
1432   CIND,		/* Make indirect symbol from existing common symbol.  */
1433   SET,		/* Add value to set.  */
1434   MWARN,	/* Make warning symbol.  */
1435   WARN,		/* Issue warning.  */
1436   CWARN,	/* Warn if referenced, else MWARN.  */
1437   CYCLE,	/* Repeat with symbol pointed to.  */
1438   REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1439   WARNC		/* Issue warning and then CYCLE.  */
1440 };
1441 
1442 /* The state table itself.  The first index is a link_row and the
1443    second index is a bfd_link_hash_type.  */
1444 
1445 static const enum link_action link_action[8][8] =
1446 {
1447   /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1448   /* UNDEF_ROW 	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1449   /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1450   /* DEF_ROW 	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1451   /* DEFW_ROW 	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1452   /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
1453   /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1454   /* WARN_ROW   */  {MWARN, WARN,  WARN,  CWARN, CWARN, WARN,  CWARN, NOACT },
1455   /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1456 };
1457 
1458 /* Most of the entries in the LINK_ACTION table are straightforward,
1459    but a few are somewhat subtle.
1460 
1461    A reference to an indirect symbol (UNDEF_ROW/indr or
1462    UNDEFW_ROW/indr) is counted as a reference both to the indirect
1463    symbol and to the symbol the indirect symbol points to.
1464 
1465    A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1466    causes the warning to be issued.
1467 
1468    A common definition of an indirect symbol (COMMON_ROW/indr) is
1469    treated as a multiple definition error.  Likewise for an indirect
1470    definition of a common symbol (INDR_ROW/com).
1471 
1472    An indirect definition of a warning (INDR_ROW/warn) does not cause
1473    the warning to be issued.
1474 
1475    If a warning is created for an indirect symbol (WARN_ROW/indr) no
1476    warning is created for the symbol the indirect symbol points to.
1477 
1478    Adding an entry to a set does not count as a reference to a set,
1479    and no warning is issued (SET_ROW/warn).  */
1480 
1481 /* Return the BFD in which a hash entry has been defined, if known.  */
1482 
1483 static bfd *
hash_entry_bfd(struct bfd_link_hash_entry * h)1484 hash_entry_bfd (struct bfd_link_hash_entry *h)
1485 {
1486   while (h->type == bfd_link_hash_warning)
1487     h = h->u.i.link;
1488   switch (h->type)
1489     {
1490     default:
1491       return NULL;
1492     case bfd_link_hash_undefined:
1493     case bfd_link_hash_undefweak:
1494       return h->u.undef.abfd;
1495     case bfd_link_hash_defined:
1496     case bfd_link_hash_defweak:
1497       return h->u.def.section->owner;
1498     case bfd_link_hash_common:
1499       return h->u.c.p->section->owner;
1500     }
1501   /*NOTREACHED*/
1502 }
1503 
1504 /* Add a symbol to the global hash table.
1505    ABFD is the BFD the symbol comes from.
1506    NAME is the name of the symbol.
1507    FLAGS is the BSF_* bits associated with the symbol.
1508    SECTION is the section in which the symbol is defined; this may be
1509      bfd_und_section_ptr or bfd_com_section_ptr.
1510    VALUE is the value of the symbol, relative to the section.
1511    STRING is used for either an indirect symbol, in which case it is
1512      the name of the symbol to indirect to, or a warning symbol, in
1513      which case it is the warning string.
1514    COPY is TRUE if NAME or STRING must be copied into locally
1515      allocated memory if they need to be saved.
1516    COLLECT is TRUE if we should automatically collect gcc constructor
1517      or destructor names as collect2 does.
1518    HASHP, if not NULL, is a place to store the created hash table
1519      entry; if *HASHP is not NULL, the caller has already looked up
1520      the hash table entry, and stored it in *HASHP.  */
1521 
1522 bfd_boolean
_bfd_generic_link_add_one_symbol(struct bfd_link_info * info,bfd * abfd,const char * name,flagword flags,asection * section,bfd_vma value,const char * string,bfd_boolean copy,bfd_boolean collect,struct bfd_link_hash_entry ** hashp)1523 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1524 				  bfd *abfd,
1525 				  const char *name,
1526 				  flagword flags,
1527 				  asection *section,
1528 				  bfd_vma value,
1529 				  const char *string,
1530 				  bfd_boolean copy,
1531 				  bfd_boolean collect,
1532 				  struct bfd_link_hash_entry **hashp)
1533 {
1534   enum link_row row;
1535   struct bfd_link_hash_entry *h;
1536   bfd_boolean cycle;
1537 
1538   if (bfd_is_ind_section (section)
1539       || (flags & BSF_INDIRECT) != 0)
1540     row = INDR_ROW;
1541   else if ((flags & BSF_WARNING) != 0)
1542     row = WARN_ROW;
1543   else if ((flags & BSF_CONSTRUCTOR) != 0)
1544     row = SET_ROW;
1545   else if (bfd_is_und_section (section))
1546     {
1547       if ((flags & BSF_WEAK) != 0)
1548 	row = UNDEFW_ROW;
1549       else
1550 	row = UNDEF_ROW;
1551     }
1552   else if ((flags & BSF_WEAK) != 0)
1553     row = DEFW_ROW;
1554   else if (bfd_is_com_section (section))
1555     row = COMMON_ROW;
1556   else
1557     row = DEF_ROW;
1558 
1559   if (hashp != NULL && *hashp != NULL)
1560     h = *hashp;
1561   else
1562     {
1563       if (row == UNDEF_ROW || row == UNDEFW_ROW)
1564 	h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1565       else
1566 	h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1567       if (h == NULL)
1568 	{
1569 	  if (hashp != NULL)
1570 	    *hashp = NULL;
1571 	  return FALSE;
1572 	}
1573     }
1574 
1575   if (info->notice_all
1576       || (info->notice_hash != NULL
1577 	  && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1578     {
1579       if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1580 					value))
1581 	return FALSE;
1582     }
1583 
1584   if (hashp != NULL)
1585     *hashp = h;
1586 
1587   do
1588     {
1589       enum link_action action;
1590 
1591       cycle = FALSE;
1592       action = link_action[(int) row][(int) h->type];
1593       switch (action)
1594 	{
1595 	case FAIL:
1596 	  abort ();
1597 
1598 	case NOACT:
1599 	  /* Do nothing.  */
1600 	  break;
1601 
1602 	case UND:
1603 	  /* Make a new undefined symbol.  */
1604 	  h->type = bfd_link_hash_undefined;
1605 	  h->u.undef.abfd = abfd;
1606 	  bfd_link_add_undef (info->hash, h);
1607 	  break;
1608 
1609 	case WEAK:
1610 	  /* Make a new weak undefined symbol.  */
1611 	  h->type = bfd_link_hash_undefweak;
1612 	  h->u.undef.abfd = abfd;
1613 	  h->u.undef.weak = abfd;
1614 	  break;
1615 
1616 	case CDEF:
1617 	  /* We have found a definition for a symbol which was
1618 	     previously common.  */
1619 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1620 	  if (! ((*info->callbacks->multiple_common)
1621 		 (info, h->root.string,
1622 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1623 		  abfd, bfd_link_hash_defined, 0)))
1624 	    return FALSE;
1625 	  /* Fall through.  */
1626 	case DEF:
1627 	case DEFW:
1628 	  {
1629 	    enum bfd_link_hash_type oldtype;
1630 
1631 	    /* Define a symbol.  */
1632 	    oldtype = h->type;
1633 	    if (action == DEFW)
1634 	      h->type = bfd_link_hash_defweak;
1635 	    else
1636 	      h->type = bfd_link_hash_defined;
1637 	    h->u.def.section = section;
1638 	    h->u.def.value = value;
1639 
1640 	    /* If we have been asked to, we act like collect2 and
1641 	       identify all functions that might be global
1642 	       constructors and destructors and pass them up in a
1643 	       callback.  We only do this for certain object file
1644 	       types, since many object file types can handle this
1645 	       automatically.  */
1646 	    if (collect && name[0] == '_')
1647 	      {
1648 		const char *s;
1649 
1650 		/* A constructor or destructor name starts like this:
1651 		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1652 		   the second are the same character (we accept any
1653 		   character there, in case a new object file format
1654 		   comes along with even worse naming restrictions).  */
1655 
1656 #define CONS_PREFIX "GLOBAL_"
1657 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1658 
1659 		s = name + 1;
1660 		while (*s == '_')
1661 		  ++s;
1662 		if (s[0] == 'G'
1663 		    && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1664 		  {
1665 		    char c;
1666 
1667 		    c = s[CONS_PREFIX_LEN + 1];
1668 		    if ((c == 'I' || c == 'D')
1669 			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1670 		      {
1671 			/* If this is a definition of a symbol which
1672                            was previously weakly defined, we are in
1673                            trouble.  We have already added a
1674                            constructor entry for the weak defined
1675                            symbol, and now we are trying to add one
1676                            for the new symbol.  Fortunately, this case
1677                            should never arise in practice.  */
1678 			if (oldtype == bfd_link_hash_defweak)
1679 			  abort ();
1680 
1681 			if (! ((*info->callbacks->constructor)
1682 			       (info, c == 'I',
1683 				h->root.string, abfd, section, value)))
1684 			  return FALSE;
1685 		      }
1686 		  }
1687 	      }
1688 	  }
1689 
1690 	  break;
1691 
1692 	case COM:
1693 	  /* We have found a common definition for a symbol.  */
1694 	  if (h->type == bfd_link_hash_new)
1695 	    bfd_link_add_undef (info->hash, h);
1696 	  h->type = bfd_link_hash_common;
1697 	  h->u.c.p =
1698 	    bfd_hash_allocate (&info->hash->table,
1699 			       sizeof (struct bfd_link_hash_common_entry));
1700 	  if (h->u.c.p == NULL)
1701 	    return FALSE;
1702 
1703 	  h->u.c.size = value;
1704 
1705 	  /* Select a default alignment based on the size.  This may
1706              be overridden by the caller.  */
1707 	  {
1708 	    unsigned int power;
1709 
1710 	    power = bfd_log2 (value);
1711 	    if (power > 4)
1712 	      power = 4;
1713 	    h->u.c.p->alignment_power = power;
1714 	  }
1715 
1716 	  /* The section of a common symbol is only used if the common
1717              symbol is actually allocated.  It basically provides a
1718              hook for the linker script to decide which output section
1719              the common symbols should be put in.  In most cases, the
1720              section of a common symbol will be bfd_com_section_ptr,
1721              the code here will choose a common symbol section named
1722              "COMMON", and the linker script will contain *(COMMON) in
1723              the appropriate place.  A few targets use separate common
1724              sections for small symbols, and they require special
1725              handling.  */
1726 	  if (section == bfd_com_section_ptr)
1727 	    {
1728 	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1729 	      h->u.c.p->section->flags = SEC_ALLOC;
1730 	    }
1731 	  else if (section->owner != abfd)
1732 	    {
1733 	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1734 							    section->name);
1735 	      h->u.c.p->section->flags = SEC_ALLOC;
1736 	    }
1737 	  else
1738 	    h->u.c.p->section = section;
1739 	  break;
1740 
1741 	case REF:
1742 	  /* A reference to a defined symbol.  */
1743 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1744 	    h->u.undef.next = h;
1745 	  break;
1746 
1747 	case BIG:
1748 	  /* We have found a common definition for a symbol which
1749 	     already had a common definition.  Use the maximum of the
1750 	     two sizes, and use the section required by the larger symbol.  */
1751 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1752 	  if (! ((*info->callbacks->multiple_common)
1753 		 (info, h->root.string,
1754 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1755 		  abfd, bfd_link_hash_common, value)))
1756 	    return FALSE;
1757 	  if (value > h->u.c.size)
1758 	    {
1759 	      unsigned int power;
1760 
1761 	      h->u.c.size = value;
1762 
1763 	      /* Select a default alignment based on the size.  This may
1764 		 be overridden by the caller.  */
1765 	      power = bfd_log2 (value);
1766 	      if (power > 4)
1767 		power = 4;
1768 	      h->u.c.p->alignment_power = power;
1769 
1770 	      /* Some systems have special treatment for small commons,
1771 		 hence we want to select the section used by the larger
1772 		 symbol.  This makes sure the symbol does not go in a
1773 		 small common section if it is now too large.  */
1774 	      if (section == bfd_com_section_ptr)
1775 		{
1776 		  h->u.c.p->section
1777 		    = bfd_make_section_old_way (abfd, "COMMON");
1778 		  h->u.c.p->section->flags = SEC_ALLOC;
1779 		}
1780 	      else if (section->owner != abfd)
1781 		{
1782 		  h->u.c.p->section
1783 		    = bfd_make_section_old_way (abfd, section->name);
1784 		  h->u.c.p->section->flags = SEC_ALLOC;
1785 		}
1786 	      else
1787 		h->u.c.p->section = section;
1788 	    }
1789 	  break;
1790 
1791 	case CREF:
1792 	  {
1793 	    bfd *obfd;
1794 
1795 	    /* We have found a common definition for a symbol which
1796 	       was already defined.  FIXME: It would nice if we could
1797 	       report the BFD which defined an indirect symbol, but we
1798 	       don't have anywhere to store the information.  */
1799 	    if (h->type == bfd_link_hash_defined
1800 		|| h->type == bfd_link_hash_defweak)
1801 	      obfd = h->u.def.section->owner;
1802 	    else
1803 	      obfd = NULL;
1804 	    if (! ((*info->callbacks->multiple_common)
1805 		   (info, h->root.string, obfd, h->type, 0,
1806 		    abfd, bfd_link_hash_common, value)))
1807 	      return FALSE;
1808 	  }
1809 	  break;
1810 
1811 	case MIND:
1812 	  /* Multiple indirect symbols.  This is OK if they both point
1813 	     to the same symbol.  */
1814 	  if (strcmp (h->u.i.link->root.string, string) == 0)
1815 	    break;
1816 	  /* Fall through.  */
1817 	case MDEF:
1818 	  /* Handle a multiple definition.  */
1819 	  if (!info->allow_multiple_definition)
1820 	    {
1821 	      asection *msec = NULL;
1822 	      bfd_vma mval = 0;
1823 
1824 	      switch (h->type)
1825 		{
1826 		case bfd_link_hash_defined:
1827 		  msec = h->u.def.section;
1828 		  mval = h->u.def.value;
1829 		  break;
1830 	        case bfd_link_hash_indirect:
1831 		  msec = bfd_ind_section_ptr;
1832 		  mval = 0;
1833 		  break;
1834 		default:
1835 		  abort ();
1836 		}
1837 
1838 	      /* Ignore a redefinition of an absolute symbol to the
1839 		 same value; it's harmless.  */
1840 	      if (h->type == bfd_link_hash_defined
1841 		  && bfd_is_abs_section (msec)
1842 		  && bfd_is_abs_section (section)
1843 		  && value == mval)
1844 		break;
1845 
1846 	      if (! ((*info->callbacks->multiple_definition)
1847 		     (info, h->root.string, msec->owner, msec, mval,
1848 		      abfd, section, value)))
1849 		return FALSE;
1850 	    }
1851 	  break;
1852 
1853 	case CIND:
1854 	  /* Create an indirect symbol from an existing common symbol.  */
1855 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1856 	  if (! ((*info->callbacks->multiple_common)
1857 		 (info, h->root.string,
1858 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1859 		  abfd, bfd_link_hash_indirect, 0)))
1860 	    return FALSE;
1861 	  /* Fall through.  */
1862 	case IND:
1863 	  /* Create an indirect symbol.  */
1864 	  {
1865 	    struct bfd_link_hash_entry *inh;
1866 
1867 	    /* STRING is the name of the symbol we want to indirect
1868 	       to.  */
1869 	    inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1870 						copy, FALSE);
1871 	    if (inh == NULL)
1872 	      return FALSE;
1873 	    if (inh->type == bfd_link_hash_indirect
1874 		&& inh->u.i.link == h)
1875 	      {
1876 		(*_bfd_error_handler)
1877 		  (_("%B: indirect symbol `%s' to `%s' is a loop"),
1878 		   abfd, name, string);
1879 		bfd_set_error (bfd_error_invalid_operation);
1880 		return FALSE;
1881 	      }
1882 	    if (inh->type == bfd_link_hash_new)
1883 	      {
1884 		inh->type = bfd_link_hash_undefined;
1885 		inh->u.undef.abfd = abfd;
1886 		bfd_link_add_undef (info->hash, inh);
1887 	      }
1888 
1889 	    /* If the indirect symbol has been referenced, we need to
1890 	       push the reference down to the symbol we are
1891 	       referencing.  */
1892 	    if (h->type != bfd_link_hash_new)
1893 	      {
1894 		row = UNDEF_ROW;
1895 		cycle = TRUE;
1896 	      }
1897 
1898 	    h->type = bfd_link_hash_indirect;
1899 	    h->u.i.link = inh;
1900 	  }
1901 	  break;
1902 
1903 	case SET:
1904 	  /* Add an entry to a set.  */
1905 	  if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1906 						abfd, section, value))
1907 	    return FALSE;
1908 	  break;
1909 
1910 	case WARNC:
1911 	  /* Issue a warning and cycle.  */
1912 	  if (h->u.i.warning != NULL)
1913 	    {
1914 	      if (! (*info->callbacks->warning) (info, h->u.i.warning,
1915 						 h->root.string, abfd,
1916 						 NULL, 0))
1917 		return FALSE;
1918 	      /* Only issue a warning once.  */
1919 	      h->u.i.warning = NULL;
1920 	    }
1921 	  /* Fall through.  */
1922 	case CYCLE:
1923 	  /* Try again with the referenced symbol.  */
1924 	  h = h->u.i.link;
1925 	  cycle = TRUE;
1926 	  break;
1927 
1928 	case REFC:
1929 	  /* A reference to an indirect symbol.  */
1930 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1931 	    h->u.undef.next = h;
1932 	  h = h->u.i.link;
1933 	  cycle = TRUE;
1934 	  break;
1935 
1936 	case WARN:
1937 	  /* Issue a warning.  */
1938 	  if (! (*info->callbacks->warning) (info, string, h->root.string,
1939 					     hash_entry_bfd (h), NULL, 0))
1940 	    return FALSE;
1941 	  break;
1942 
1943 	case CWARN:
1944 	  /* Warn if this symbol has been referenced already,
1945 	     otherwise add a warning.  A symbol has been referenced if
1946 	     the u.undef.next field is not NULL, or it is the tail of the
1947 	     undefined symbol list.  The REF case above helps to
1948 	     ensure this.  */
1949 	  if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1950 	    {
1951 	      if (! (*info->callbacks->warning) (info, string, h->root.string,
1952 						 hash_entry_bfd (h), NULL, 0))
1953 		return FALSE;
1954 	      break;
1955 	    }
1956 	  /* Fall through.  */
1957 	case MWARN:
1958 	  /* Make a warning symbol.  */
1959 	  {
1960 	    struct bfd_link_hash_entry *sub;
1961 
1962 	    /* STRING is the warning to give.  */
1963 	    sub = ((struct bfd_link_hash_entry *)
1964 		   ((*info->hash->table.newfunc)
1965 		    (NULL, &info->hash->table, h->root.string)));
1966 	    if (sub == NULL)
1967 	      return FALSE;
1968 	    *sub = *h;
1969 	    sub->type = bfd_link_hash_warning;
1970 	    sub->u.i.link = h;
1971 	    if (! copy)
1972 	      sub->u.i.warning = string;
1973 	    else
1974 	      {
1975 		char *w;
1976 		size_t len = strlen (string) + 1;
1977 
1978 		w = bfd_hash_allocate (&info->hash->table, len);
1979 		if (w == NULL)
1980 		  return FALSE;
1981 		memcpy (w, string, len);
1982 		sub->u.i.warning = w;
1983 	      }
1984 
1985 	    bfd_hash_replace (&info->hash->table,
1986 			      (struct bfd_hash_entry *) h,
1987 			      (struct bfd_hash_entry *) sub);
1988 	    if (hashp != NULL)
1989 	      *hashp = sub;
1990 	  }
1991 	  break;
1992 	}
1993     }
1994   while (cycle);
1995 
1996   return TRUE;
1997 }
1998 
1999 /* Generic final link routine.  */
2000 
2001 bfd_boolean
_bfd_generic_final_link(bfd * abfd,struct bfd_link_info * info)2002 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
2003 {
2004   bfd *sub;
2005   asection *o;
2006   struct bfd_link_order *p;
2007   size_t outsymalloc;
2008   struct generic_write_global_symbol_info wginfo;
2009 
2010   bfd_get_outsymbols (abfd) = NULL;
2011   bfd_get_symcount (abfd) = 0;
2012   outsymalloc = 0;
2013 
2014   /* Mark all sections which will be included in the output file.  */
2015   for (o = abfd->sections; o != NULL; o = o->next)
2016     for (p = o->map_head.link_order; p != NULL; p = p->next)
2017       if (p->type == bfd_indirect_link_order)
2018 	p->u.indirect.section->linker_mark = TRUE;
2019 
2020   /* Build the output symbol table.  */
2021   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
2022     if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2023       return FALSE;
2024 
2025   /* Accumulate the global symbols.  */
2026   wginfo.info = info;
2027   wginfo.output_bfd = abfd;
2028   wginfo.psymalloc = &outsymalloc;
2029   _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2030 				   _bfd_generic_link_write_global_symbol,
2031 				   &wginfo);
2032 
2033   /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
2034      shouldn't really need one, since we have SYMCOUNT, but some old
2035      code still expects one.  */
2036   if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2037     return FALSE;
2038 
2039   if (info->relocatable)
2040     {
2041       /* Allocate space for the output relocs for each section.  */
2042       for (o = abfd->sections; o != NULL; o = o->next)
2043 	{
2044 	  o->reloc_count = 0;
2045 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
2046 	    {
2047 	      if (p->type == bfd_section_reloc_link_order
2048 		  || p->type == bfd_symbol_reloc_link_order)
2049 		++o->reloc_count;
2050 	      else if (p->type == bfd_indirect_link_order)
2051 		{
2052 		  asection *input_section;
2053 		  bfd *input_bfd;
2054 		  long relsize;
2055 		  arelent **relocs;
2056 		  asymbol **symbols;
2057 		  long reloc_count;
2058 
2059 		  input_section = p->u.indirect.section;
2060 		  input_bfd = input_section->owner;
2061 		  relsize = bfd_get_reloc_upper_bound (input_bfd,
2062 						       input_section);
2063 		  if (relsize < 0)
2064 		    return FALSE;
2065 		  relocs = bfd_malloc (relsize);
2066 		  if (!relocs && relsize != 0)
2067 		    return FALSE;
2068 		  symbols = _bfd_generic_link_get_symbols (input_bfd);
2069 		  reloc_count = bfd_canonicalize_reloc (input_bfd,
2070 							input_section,
2071 							relocs,
2072 							symbols);
2073 		  free (relocs);
2074 		  if (reloc_count < 0)
2075 		    return FALSE;
2076 		  BFD_ASSERT ((unsigned long) reloc_count
2077 			      == input_section->reloc_count);
2078 		  o->reloc_count += reloc_count;
2079 		}
2080 	    }
2081 	  if (o->reloc_count > 0)
2082 	    {
2083 	      bfd_size_type amt;
2084 
2085 	      amt = o->reloc_count;
2086 	      amt *= sizeof (arelent *);
2087 	      o->orelocation = bfd_alloc (abfd, amt);
2088 	      if (!o->orelocation)
2089 		return FALSE;
2090 	      o->flags |= SEC_RELOC;
2091 	      /* Reset the count so that it can be used as an index
2092 		 when putting in the output relocs.  */
2093 	      o->reloc_count = 0;
2094 	    }
2095 	}
2096     }
2097 
2098   /* Handle all the link order information for the sections.  */
2099   for (o = abfd->sections; o != NULL; o = o->next)
2100     {
2101       for (p = o->map_head.link_order; p != NULL; p = p->next)
2102 	{
2103 	  switch (p->type)
2104 	    {
2105 	    case bfd_section_reloc_link_order:
2106 	    case bfd_symbol_reloc_link_order:
2107 	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2108 		return FALSE;
2109 	      break;
2110 	    case bfd_indirect_link_order:
2111 	      if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2112 		return FALSE;
2113 	      break;
2114 	    default:
2115 	      if (! _bfd_default_link_order (abfd, info, o, p))
2116 		return FALSE;
2117 	      break;
2118 	    }
2119 	}
2120     }
2121 
2122   return TRUE;
2123 }
2124 
2125 /* Add an output symbol to the output BFD.  */
2126 
2127 static bfd_boolean
generic_add_output_symbol(bfd * output_bfd,size_t * psymalloc,asymbol * sym)2128 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2129 {
2130   if (bfd_get_symcount (output_bfd) >= *psymalloc)
2131     {
2132       asymbol **newsyms;
2133       bfd_size_type amt;
2134 
2135       if (*psymalloc == 0)
2136 	*psymalloc = 124;
2137       else
2138 	*psymalloc *= 2;
2139       amt = *psymalloc;
2140       amt *= sizeof (asymbol *);
2141       newsyms = bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2142       if (newsyms == NULL)
2143 	return FALSE;
2144       bfd_get_outsymbols (output_bfd) = newsyms;
2145     }
2146 
2147   bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2148   if (sym != NULL)
2149     ++ bfd_get_symcount (output_bfd);
2150 
2151   return TRUE;
2152 }
2153 
2154 /* Handle the symbols for an input BFD.  */
2155 
2156 bfd_boolean
_bfd_generic_link_output_symbols(bfd * output_bfd,bfd * input_bfd,struct bfd_link_info * info,size_t * psymalloc)2157 _bfd_generic_link_output_symbols (bfd *output_bfd,
2158 				  bfd *input_bfd,
2159 				  struct bfd_link_info *info,
2160 				  size_t *psymalloc)
2161 {
2162   asymbol **sym_ptr;
2163   asymbol **sym_end;
2164 
2165   if (! generic_link_read_symbols (input_bfd))
2166     return FALSE;
2167 
2168   /* Create a filename symbol if we are supposed to.  */
2169   if (info->create_object_symbols_section != NULL)
2170     {
2171       asection *sec;
2172 
2173       for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2174 	{
2175 	  if (sec->output_section == info->create_object_symbols_section)
2176 	    {
2177 	      asymbol *newsym;
2178 
2179 	      newsym = bfd_make_empty_symbol (input_bfd);
2180 	      if (!newsym)
2181 		return FALSE;
2182 	      newsym->name = input_bfd->filename;
2183 	      newsym->value = 0;
2184 	      newsym->flags = BSF_LOCAL | BSF_FILE;
2185 	      newsym->section = sec;
2186 
2187 	      if (! generic_add_output_symbol (output_bfd, psymalloc,
2188 					       newsym))
2189 		return FALSE;
2190 
2191 	      break;
2192 	    }
2193 	}
2194     }
2195 
2196   /* Adjust the values of the globally visible symbols, and write out
2197      local symbols.  */
2198   sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2199   sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2200   for (; sym_ptr < sym_end; sym_ptr++)
2201     {
2202       asymbol *sym;
2203       struct generic_link_hash_entry *h;
2204       bfd_boolean output;
2205 
2206       h = NULL;
2207       sym = *sym_ptr;
2208       if ((sym->flags & (BSF_INDIRECT
2209 			 | BSF_WARNING
2210 			 | BSF_GLOBAL
2211 			 | BSF_CONSTRUCTOR
2212 			 | BSF_WEAK)) != 0
2213 	  || bfd_is_und_section (bfd_get_section (sym))
2214 	  || bfd_is_com_section (bfd_get_section (sym))
2215 	  || bfd_is_ind_section (bfd_get_section (sym)))
2216 	{
2217 	  if (sym->udata.p != NULL)
2218 	    h = sym->udata.p;
2219 	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2220 	    {
2221 	      /* This case normally means that the main linker code
2222                  deliberately ignored this constructor symbol.  We
2223                  should just pass it through.  This will screw up if
2224                  the constructor symbol is from a different,
2225                  non-generic, object file format, but the case will
2226                  only arise when linking with -r, which will probably
2227                  fail anyhow, since there will be no way to represent
2228                  the relocs in the output format being used.  */
2229 	      h = NULL;
2230 	    }
2231 	  else if (bfd_is_und_section (bfd_get_section (sym)))
2232 	    h = ((struct generic_link_hash_entry *)
2233 		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2234 					       bfd_asymbol_name (sym),
2235 					       FALSE, FALSE, TRUE));
2236 	  else
2237 	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2238 					       bfd_asymbol_name (sym),
2239 					       FALSE, FALSE, TRUE);
2240 
2241 	  if (h != NULL)
2242 	    {
2243 	      /* Force all references to this symbol to point to
2244 		 the same area in memory.  It is possible that
2245 		 this routine will be called with a hash table
2246 		 other than a generic hash table, so we double
2247 		 check that.  */
2248 	      if (info->hash->creator == input_bfd->xvec)
2249 		{
2250 		  if (h->sym != NULL)
2251 		    *sym_ptr = sym = h->sym;
2252 		}
2253 
2254 	      switch (h->root.type)
2255 		{
2256 		default:
2257 		case bfd_link_hash_new:
2258 		  abort ();
2259 		case bfd_link_hash_undefined:
2260 		  break;
2261 		case bfd_link_hash_undefweak:
2262 		  sym->flags |= BSF_WEAK;
2263 		  break;
2264 		case bfd_link_hash_indirect:
2265 		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2266 		  /* fall through */
2267 		case bfd_link_hash_defined:
2268 		  sym->flags |= BSF_GLOBAL;
2269 		  sym->flags &=~ BSF_CONSTRUCTOR;
2270 		  sym->value = h->root.u.def.value;
2271 		  sym->section = h->root.u.def.section;
2272 		  break;
2273 		case bfd_link_hash_defweak:
2274 		  sym->flags |= BSF_WEAK;
2275 		  sym->flags &=~ BSF_CONSTRUCTOR;
2276 		  sym->value = h->root.u.def.value;
2277 		  sym->section = h->root.u.def.section;
2278 		  break;
2279 		case bfd_link_hash_common:
2280 		  sym->value = h->root.u.c.size;
2281 		  sym->flags |= BSF_GLOBAL;
2282 		  if (! bfd_is_com_section (sym->section))
2283 		    {
2284 		      BFD_ASSERT (bfd_is_und_section (sym->section));
2285 		      sym->section = bfd_com_section_ptr;
2286 		    }
2287 		  /* We do not set the section of the symbol to
2288 		     h->root.u.c.p->section.  That value was saved so
2289 		     that we would know where to allocate the symbol
2290 		     if it was defined.  In this case the type is
2291 		     still bfd_link_hash_common, so we did not define
2292 		     it, so we do not want to use that section.  */
2293 		  break;
2294 		}
2295 	    }
2296 	}
2297 
2298       /* This switch is straight from the old code in
2299 	 write_file_locals in ldsym.c.  */
2300       if (info->strip == strip_all
2301 	  || (info->strip == strip_some
2302 	      && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2303 				  FALSE, FALSE) == NULL))
2304 	output = FALSE;
2305       else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2306 	{
2307 	  /* If this symbol is marked as occurring now, rather
2308 	     than at the end, output it now.  This is used for
2309 	     COFF C_EXT FCN symbols.  FIXME: There must be a
2310 	     better way.  */
2311 	  if (bfd_asymbol_bfd (sym) == input_bfd
2312 	      && (sym->flags & BSF_NOT_AT_END) != 0)
2313 	    output = TRUE;
2314 	  else
2315 	    output = FALSE;
2316 	}
2317       else if (bfd_is_ind_section (sym->section))
2318 	output = FALSE;
2319       else if ((sym->flags & BSF_DEBUGGING) != 0)
2320 	{
2321 	  if (info->strip == strip_none)
2322 	    output = TRUE;
2323 	  else
2324 	    output = FALSE;
2325 	}
2326       else if (bfd_is_und_section (sym->section)
2327 	       || bfd_is_com_section (sym->section))
2328 	output = FALSE;
2329       else if ((sym->flags & BSF_LOCAL) != 0)
2330 	{
2331 	  if ((sym->flags & BSF_WARNING) != 0)
2332 	    output = FALSE;
2333 	  else
2334 	    {
2335 	      switch (info->discard)
2336 		{
2337 		default:
2338 		case discard_all:
2339 		  output = FALSE;
2340 		  break;
2341 		case discard_sec_merge:
2342 		  output = TRUE;
2343 		  if (info->relocatable
2344 		      || ! (sym->section->flags & SEC_MERGE))
2345 		    break;
2346 		  /* FALLTHROUGH */
2347 		case discard_l:
2348 		  if (bfd_is_local_label (input_bfd, sym))
2349 		    output = FALSE;
2350 		  else
2351 		    output = TRUE;
2352 		  break;
2353 		case discard_none:
2354 		  output = TRUE;
2355 		  break;
2356 		}
2357 	    }
2358 	}
2359       else if ((sym->flags & BSF_CONSTRUCTOR))
2360 	{
2361 	  if (info->strip != strip_all)
2362 	    output = TRUE;
2363 	  else
2364 	    output = FALSE;
2365 	}
2366       else
2367 	abort ();
2368 
2369       /* If this symbol is in a section which is not being included
2370 	 in the output file, then we don't want to output the
2371 	 symbol.  */
2372       if (!bfd_is_abs_section (sym->section)
2373 	  && bfd_section_removed_from_list (output_bfd,
2374 					    sym->section->output_section))
2375 	output = FALSE;
2376 
2377       if (output)
2378 	{
2379 	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2380 	    return FALSE;
2381 	  if (h != NULL)
2382 	    h->written = TRUE;
2383 	}
2384     }
2385 
2386   return TRUE;
2387 }
2388 
2389 /* Set the section and value of a generic BFD symbol based on a linker
2390    hash table entry.  */
2391 
2392 static void
set_symbol_from_hash(asymbol * sym,struct bfd_link_hash_entry * h)2393 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2394 {
2395   switch (h->type)
2396     {
2397     default:
2398       abort ();
2399       break;
2400     case bfd_link_hash_new:
2401       /* This can happen when a constructor symbol is seen but we are
2402          not building constructors.  */
2403       if (sym->section != NULL)
2404 	{
2405 	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2406 	}
2407       else
2408 	{
2409 	  sym->flags |= BSF_CONSTRUCTOR;
2410 	  sym->section = bfd_abs_section_ptr;
2411 	  sym->value = 0;
2412 	}
2413       break;
2414     case bfd_link_hash_undefined:
2415       sym->section = bfd_und_section_ptr;
2416       sym->value = 0;
2417       break;
2418     case bfd_link_hash_undefweak:
2419       sym->section = bfd_und_section_ptr;
2420       sym->value = 0;
2421       sym->flags |= BSF_WEAK;
2422       break;
2423     case bfd_link_hash_defined:
2424       sym->section = h->u.def.section;
2425       sym->value = h->u.def.value;
2426       break;
2427     case bfd_link_hash_defweak:
2428       sym->flags |= BSF_WEAK;
2429       sym->section = h->u.def.section;
2430       sym->value = h->u.def.value;
2431       break;
2432     case bfd_link_hash_common:
2433       sym->value = h->u.c.size;
2434       if (sym->section == NULL)
2435 	sym->section = bfd_com_section_ptr;
2436       else if (! bfd_is_com_section (sym->section))
2437 	{
2438 	  BFD_ASSERT (bfd_is_und_section (sym->section));
2439 	  sym->section = bfd_com_section_ptr;
2440 	}
2441       /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2442       break;
2443     case bfd_link_hash_indirect:
2444     case bfd_link_hash_warning:
2445       /* FIXME: What should we do here?  */
2446       break;
2447     }
2448 }
2449 
2450 /* Write out a global symbol, if it hasn't already been written out.
2451    This is called for each symbol in the hash table.  */
2452 
2453 bfd_boolean
_bfd_generic_link_write_global_symbol(struct generic_link_hash_entry * h,void * data)2454 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2455 				       void *data)
2456 {
2457   struct generic_write_global_symbol_info *wginfo = data;
2458   asymbol *sym;
2459 
2460   if (h->root.type == bfd_link_hash_warning)
2461     h = (struct generic_link_hash_entry *) h->root.u.i.link;
2462 
2463   if (h->written)
2464     return TRUE;
2465 
2466   h->written = TRUE;
2467 
2468   if (wginfo->info->strip == strip_all
2469       || (wginfo->info->strip == strip_some
2470 	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2471 			      FALSE, FALSE) == NULL))
2472     return TRUE;
2473 
2474   if (h->sym != NULL)
2475     sym = h->sym;
2476   else
2477     {
2478       sym = bfd_make_empty_symbol (wginfo->output_bfd);
2479       if (!sym)
2480 	return FALSE;
2481       sym->name = h->root.root.string;
2482       sym->flags = 0;
2483     }
2484 
2485   set_symbol_from_hash (sym, &h->root);
2486 
2487   sym->flags |= BSF_GLOBAL;
2488 
2489   if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2490 				   sym))
2491     {
2492       /* FIXME: No way to return failure.  */
2493       abort ();
2494     }
2495 
2496   return TRUE;
2497 }
2498 
2499 /* Create a relocation.  */
2500 
2501 bfd_boolean
_bfd_generic_reloc_link_order(bfd * abfd,struct bfd_link_info * info,asection * sec,struct bfd_link_order * link_order)2502 _bfd_generic_reloc_link_order (bfd *abfd,
2503 			       struct bfd_link_info *info,
2504 			       asection *sec,
2505 			       struct bfd_link_order *link_order)
2506 {
2507   arelent *r;
2508 
2509   if (! info->relocatable)
2510     abort ();
2511   if (sec->orelocation == NULL)
2512     abort ();
2513 
2514   r = bfd_alloc (abfd, sizeof (arelent));
2515   if (r == NULL)
2516     return FALSE;
2517 
2518   r->address = link_order->offset;
2519   r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2520   if (r->howto == 0)
2521     {
2522       bfd_set_error (bfd_error_bad_value);
2523       return FALSE;
2524     }
2525 
2526   /* Get the symbol to use for the relocation.  */
2527   if (link_order->type == bfd_section_reloc_link_order)
2528     r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2529   else
2530     {
2531       struct generic_link_hash_entry *h;
2532 
2533       h = ((struct generic_link_hash_entry *)
2534 	   bfd_wrapped_link_hash_lookup (abfd, info,
2535 					 link_order->u.reloc.p->u.name,
2536 					 FALSE, FALSE, TRUE));
2537       if (h == NULL
2538 	  || ! h->written)
2539 	{
2540 	  if (! ((*info->callbacks->unattached_reloc)
2541 		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2542 	    return FALSE;
2543 	  bfd_set_error (bfd_error_bad_value);
2544 	  return FALSE;
2545 	}
2546       r->sym_ptr_ptr = &h->sym;
2547     }
2548 
2549   /* If this is an inplace reloc, write the addend to the object file.
2550      Otherwise, store it in the reloc addend.  */
2551   if (! r->howto->partial_inplace)
2552     r->addend = link_order->u.reloc.p->addend;
2553   else
2554     {
2555       bfd_size_type size;
2556       bfd_reloc_status_type rstat;
2557       bfd_byte *buf;
2558       bfd_boolean ok;
2559       file_ptr loc;
2560 
2561       size = bfd_get_reloc_size (r->howto);
2562       buf = bfd_zmalloc (size);
2563       if (buf == NULL)
2564 	return FALSE;
2565       rstat = _bfd_relocate_contents (r->howto, abfd,
2566 				      (bfd_vma) link_order->u.reloc.p->addend,
2567 				      buf);
2568       switch (rstat)
2569 	{
2570 	case bfd_reloc_ok:
2571 	  break;
2572 	default:
2573 	case bfd_reloc_outofrange:
2574 	  abort ();
2575 	case bfd_reloc_overflow:
2576 	  if (! ((*info->callbacks->reloc_overflow)
2577 		 (info, NULL,
2578 		  (link_order->type == bfd_section_reloc_link_order
2579 		   ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2580 		   : link_order->u.reloc.p->u.name),
2581 		  r->howto->name, link_order->u.reloc.p->addend,
2582 		  NULL, NULL, 0)))
2583 	    {
2584 	      free (buf);
2585 	      return FALSE;
2586 	    }
2587 	  break;
2588 	}
2589       loc = link_order->offset * bfd_octets_per_byte (abfd);
2590       ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2591       free (buf);
2592       if (! ok)
2593 	return FALSE;
2594 
2595       r->addend = 0;
2596     }
2597 
2598   sec->orelocation[sec->reloc_count] = r;
2599   ++sec->reloc_count;
2600 
2601   return TRUE;
2602 }
2603 
2604 /* Allocate a new link_order for a section.  */
2605 
2606 struct bfd_link_order *
bfd_new_link_order(bfd * abfd,asection * section)2607 bfd_new_link_order (bfd *abfd, asection *section)
2608 {
2609   bfd_size_type amt = sizeof (struct bfd_link_order);
2610   struct bfd_link_order *new;
2611 
2612   new = bfd_zalloc (abfd, amt);
2613   if (!new)
2614     return NULL;
2615 
2616   new->type = bfd_undefined_link_order;
2617 
2618   if (section->map_tail.link_order != NULL)
2619     section->map_tail.link_order->next = new;
2620   else
2621     section->map_head.link_order = new;
2622   section->map_tail.link_order = new;
2623 
2624   return new;
2625 }
2626 
2627 /* Default link order processing routine.  Note that we can not handle
2628    the reloc_link_order types here, since they depend upon the details
2629    of how the particular backends generates relocs.  */
2630 
2631 bfd_boolean
_bfd_default_link_order(bfd * abfd,struct bfd_link_info * info,asection * sec,struct bfd_link_order * link_order)2632 _bfd_default_link_order (bfd *abfd,
2633 			 struct bfd_link_info *info,
2634 			 asection *sec,
2635 			 struct bfd_link_order *link_order)
2636 {
2637   switch (link_order->type)
2638     {
2639     case bfd_undefined_link_order:
2640     case bfd_section_reloc_link_order:
2641     case bfd_symbol_reloc_link_order:
2642     default:
2643       abort ();
2644     case bfd_indirect_link_order:
2645       return default_indirect_link_order (abfd, info, sec, link_order,
2646 					  FALSE);
2647     case bfd_data_link_order:
2648       return default_data_link_order (abfd, info, sec, link_order);
2649     }
2650 }
2651 
2652 /* Default routine to handle a bfd_data_link_order.  */
2653 
2654 static bfd_boolean
default_data_link_order(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,asection * sec,struct bfd_link_order * link_order)2655 default_data_link_order (bfd *abfd,
2656 			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2657 			 asection *sec,
2658 			 struct bfd_link_order *link_order)
2659 {
2660   bfd_size_type size;
2661   size_t fill_size;
2662   bfd_byte *fill;
2663   file_ptr loc;
2664   bfd_boolean result;
2665 
2666   BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2667 
2668   size = link_order->size;
2669   if (size == 0)
2670     return TRUE;
2671 
2672   fill = link_order->u.data.contents;
2673   fill_size = link_order->u.data.size;
2674   if (fill_size != 0 && fill_size < size)
2675     {
2676       bfd_byte *p;
2677       fill = bfd_malloc (size);
2678       if (fill == NULL)
2679 	return FALSE;
2680       p = fill;
2681       if (fill_size == 1)
2682 	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2683       else
2684 	{
2685 	  do
2686 	    {
2687 	      memcpy (p, link_order->u.data.contents, fill_size);
2688 	      p += fill_size;
2689 	      size -= fill_size;
2690 	    }
2691 	  while (size >= fill_size);
2692 	  if (size != 0)
2693 	    memcpy (p, link_order->u.data.contents, (size_t) size);
2694 	  size = link_order->size;
2695 	}
2696     }
2697 
2698   loc = link_order->offset * bfd_octets_per_byte (abfd);
2699   result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2700 
2701   if (fill != link_order->u.data.contents)
2702     free (fill);
2703   return result;
2704 }
2705 
2706 /* Default routine to handle a bfd_indirect_link_order.  */
2707 
2708 static bfd_boolean
default_indirect_link_order(bfd * output_bfd,struct bfd_link_info * info,asection * output_section,struct bfd_link_order * link_order,bfd_boolean generic_linker)2709 default_indirect_link_order (bfd *output_bfd,
2710 			     struct bfd_link_info *info,
2711 			     asection *output_section,
2712 			     struct bfd_link_order *link_order,
2713 			     bfd_boolean generic_linker)
2714 {
2715   asection *input_section;
2716   bfd *input_bfd;
2717   bfd_byte *contents = NULL;
2718   bfd_byte *new_contents;
2719   bfd_size_type sec_size;
2720   file_ptr loc;
2721 
2722   BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2723 
2724   input_section = link_order->u.indirect.section;
2725   input_bfd = input_section->owner;
2726   if (input_section->size == 0)
2727     return TRUE;
2728 
2729   BFD_ASSERT (input_section->output_section == output_section);
2730   BFD_ASSERT (input_section->output_offset == link_order->offset);
2731   BFD_ASSERT (input_section->size == link_order->size);
2732 
2733   if (info->relocatable
2734       && input_section->reloc_count > 0
2735       && output_section->orelocation == NULL)
2736     {
2737       /* Space has not been allocated for the output relocations.
2738 	 This can happen when we are called by a specific backend
2739 	 because somebody is attempting to link together different
2740 	 types of object files.  Handling this case correctly is
2741 	 difficult, and sometimes impossible.  */
2742       (*_bfd_error_handler)
2743 	(_("Attempt to do relocatable link with %s input and %s output"),
2744 	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2745       bfd_set_error (bfd_error_wrong_format);
2746       return FALSE;
2747     }
2748 
2749   if (! generic_linker)
2750     {
2751       asymbol **sympp;
2752       asymbol **symppend;
2753 
2754       /* Get the canonical symbols.  The generic linker will always
2755 	 have retrieved them by this point, but we are being called by
2756 	 a specific linker, presumably because we are linking
2757 	 different types of object files together.  */
2758       if (! generic_link_read_symbols (input_bfd))
2759 	return FALSE;
2760 
2761       /* Since we have been called by a specific linker, rather than
2762 	 the generic linker, the values of the symbols will not be
2763 	 right.  They will be the values as seen in the input file,
2764 	 not the values of the final link.  We need to fix them up
2765 	 before we can relocate the section.  */
2766       sympp = _bfd_generic_link_get_symbols (input_bfd);
2767       symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2768       for (; sympp < symppend; sympp++)
2769 	{
2770 	  asymbol *sym;
2771 	  struct bfd_link_hash_entry *h;
2772 
2773 	  sym = *sympp;
2774 
2775 	  if ((sym->flags & (BSF_INDIRECT
2776 			     | BSF_WARNING
2777 			     | BSF_GLOBAL
2778 			     | BSF_CONSTRUCTOR
2779 			     | BSF_WEAK)) != 0
2780 	      || bfd_is_und_section (bfd_get_section (sym))
2781 	      || bfd_is_com_section (bfd_get_section (sym))
2782 	      || bfd_is_ind_section (bfd_get_section (sym)))
2783 	    {
2784 	      /* sym->udata may have been set by
2785 		 generic_link_add_symbol_list.  */
2786 	      if (sym->udata.p != NULL)
2787 		h = sym->udata.p;
2788 	      else if (bfd_is_und_section (bfd_get_section (sym)))
2789 		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2790 						  bfd_asymbol_name (sym),
2791 						  FALSE, FALSE, TRUE);
2792 	      else
2793 		h = bfd_link_hash_lookup (info->hash,
2794 					  bfd_asymbol_name (sym),
2795 					  FALSE, FALSE, TRUE);
2796 	      if (h != NULL)
2797 		set_symbol_from_hash (sym, h);
2798 	    }
2799 	}
2800     }
2801 
2802   /* Get and relocate the section contents.  */
2803   sec_size = (input_section->rawsize > input_section->size
2804 	      ? input_section->rawsize
2805 	      : input_section->size);
2806   contents = bfd_malloc (sec_size);
2807   if (contents == NULL && sec_size != 0)
2808     goto error_return;
2809   new_contents = (bfd_get_relocated_section_contents
2810 		  (output_bfd, info, link_order, contents, info->relocatable,
2811 		   _bfd_generic_link_get_symbols (input_bfd)));
2812   if (!new_contents)
2813     goto error_return;
2814 
2815   /* Output the section contents.  */
2816   loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2817   if (! bfd_set_section_contents (output_bfd, output_section,
2818 				  new_contents, loc, input_section->size))
2819     goto error_return;
2820 
2821   if (contents != NULL)
2822     free (contents);
2823   return TRUE;
2824 
2825  error_return:
2826   if (contents != NULL)
2827     free (contents);
2828   return FALSE;
2829 }
2830 
2831 /* A little routine to count the number of relocs in a link_order
2832    list.  */
2833 
2834 unsigned int
_bfd_count_link_order_relocs(struct bfd_link_order * link_order)2835 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2836 {
2837   register unsigned int c;
2838   register struct bfd_link_order *l;
2839 
2840   c = 0;
2841   for (l = link_order; l != NULL; l = l->next)
2842     {
2843       if (l->type == bfd_section_reloc_link_order
2844 	  || l->type == bfd_symbol_reloc_link_order)
2845 	++c;
2846     }
2847 
2848   return c;
2849 }
2850 
2851 /*
2852 FUNCTION
2853 	bfd_link_split_section
2854 
2855 SYNOPSIS
2856         bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2857 
2858 DESCRIPTION
2859 	Return nonzero if @var{sec} should be split during a
2860 	reloceatable or final link.
2861 
2862 .#define bfd_link_split_section(abfd, sec) \
2863 .       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2864 .
2865 
2866 */
2867 
2868 bfd_boolean
_bfd_generic_link_split_section(bfd * abfd ATTRIBUTE_UNUSED,asection * sec ATTRIBUTE_UNUSED)2869 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2870 				 asection *sec ATTRIBUTE_UNUSED)
2871 {
2872   return FALSE;
2873 }
2874 
2875 /*
2876 FUNCTION
2877 	bfd_section_already_linked
2878 
2879 SYNOPSIS
2880         void bfd_section_already_linked (bfd *abfd, asection *sec,
2881 					 struct bfd_link_info *info);
2882 
2883 DESCRIPTION
2884 	Check if @var{sec} has been already linked during a reloceatable
2885 	or final link.
2886 
2887 .#define bfd_section_already_linked(abfd, sec, info) \
2888 .       BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2889 .
2890 
2891 */
2892 
2893 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2894    once into the output.  This routine checks each section, and
2895    arrange to discard it if a section of the same name has already
2896    been linked.  This code assumes that all relevant sections have the
2897    SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2898    section name.  bfd_section_already_linked is called via
2899    bfd_map_over_sections.  */
2900 
2901 /* The hash table.  */
2902 
2903 static struct bfd_hash_table _bfd_section_already_linked_table;
2904 
2905 /* Support routines for the hash table used by section_already_linked,
2906    initialize the table, traverse, lookup, fill in an entry and remove
2907    the table.  */
2908 
2909 void
bfd_section_already_linked_table_traverse(bfd_boolean (* func)(struct bfd_section_already_linked_hash_entry *,void *),void * info)2910 bfd_section_already_linked_table_traverse
2911   (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2912 			void *), void *info)
2913 {
2914   bfd_hash_traverse (&_bfd_section_already_linked_table,
2915 		     (bfd_boolean (*) (struct bfd_hash_entry *,
2916 				       void *)) func,
2917 		     info);
2918 }
2919 
2920 struct bfd_section_already_linked_hash_entry *
bfd_section_already_linked_table_lookup(const char * name)2921 bfd_section_already_linked_table_lookup (const char *name)
2922 {
2923   return ((struct bfd_section_already_linked_hash_entry *)
2924 	  bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2925 			   TRUE, FALSE));
2926 }
2927 
2928 void
bfd_section_already_linked_table_insert(struct bfd_section_already_linked_hash_entry * already_linked_list,asection * sec)2929 bfd_section_already_linked_table_insert
2930   (struct bfd_section_already_linked_hash_entry *already_linked_list,
2931    asection *sec)
2932 {
2933   struct bfd_section_already_linked *l;
2934 
2935   /* Allocate the memory from the same obstack as the hash table is
2936      kept in.  */
2937   l = bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2938   l->sec = sec;
2939   l->next = already_linked_list->entry;
2940   already_linked_list->entry = l;
2941 }
2942 
2943 static struct bfd_hash_entry *
already_linked_newfunc(struct bfd_hash_entry * entry ATTRIBUTE_UNUSED,struct bfd_hash_table * table,const char * string ATTRIBUTE_UNUSED)2944 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2945 			struct bfd_hash_table *table,
2946 			const char *string ATTRIBUTE_UNUSED)
2947 {
2948   struct bfd_section_already_linked_hash_entry *ret =
2949     bfd_hash_allocate (table, sizeof *ret);
2950 
2951   ret->entry = NULL;
2952 
2953   return &ret->root;
2954 }
2955 
2956 bfd_boolean
bfd_section_already_linked_table_init(void)2957 bfd_section_already_linked_table_init (void)
2958 {
2959   return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2960 				already_linked_newfunc,
2961 				sizeof (struct bfd_section_already_linked_hash_entry),
2962 				42);
2963 }
2964 
2965 void
bfd_section_already_linked_table_free(void)2966 bfd_section_already_linked_table_free (void)
2967 {
2968   bfd_hash_table_free (&_bfd_section_already_linked_table);
2969 }
2970 
2971 /* This is used on non-ELF inputs.  */
2972 
2973 void
_bfd_generic_section_already_linked(bfd * abfd,asection * sec,struct bfd_link_info * info ATTRIBUTE_UNUSED)2974 _bfd_generic_section_already_linked (bfd *abfd, asection *sec,
2975 				     struct bfd_link_info *info ATTRIBUTE_UNUSED)
2976 {
2977   flagword flags;
2978   const char *name;
2979   struct bfd_section_already_linked *l;
2980   struct bfd_section_already_linked_hash_entry *already_linked_list;
2981 
2982   flags = sec->flags;
2983   if ((flags & SEC_LINK_ONCE) == 0)
2984     return;
2985 
2986   /* FIXME: When doing a relocatable link, we may have trouble
2987      copying relocations in other sections that refer to local symbols
2988      in the section being discarded.  Those relocations will have to
2989      be converted somehow; as of this writing I'm not sure that any of
2990      the backends handle that correctly.
2991 
2992      It is tempting to instead not discard link once sections when
2993      doing a relocatable link (technically, they should be discarded
2994      whenever we are building constructors).  However, that fails,
2995      because the linker winds up combining all the link once sections
2996      into a single large link once section, which defeats the purpose
2997      of having link once sections in the first place.  */
2998 
2999   name = bfd_get_section_name (abfd, sec);
3000 
3001   already_linked_list = bfd_section_already_linked_table_lookup (name);
3002 
3003   for (l = already_linked_list->entry; l != NULL; l = l->next)
3004     {
3005       bfd_boolean skip = FALSE;
3006       struct coff_comdat_info *s_comdat
3007 	= bfd_coff_get_comdat_section (abfd, sec);
3008       struct coff_comdat_info *l_comdat
3009 	= bfd_coff_get_comdat_section (l->sec->owner, l->sec);
3010 
3011       /* We may have 3 different sections on the list: group section,
3012 	 comdat section and linkonce section. SEC may be a linkonce or
3013 	 comdat section. We always ignore group section. For non-COFF
3014 	 inputs, we also ignore comdat section.
3015 
3016 	 FIXME: Is that safe to match a linkonce section with a comdat
3017 	 section for COFF inputs?  */
3018       if ((l->sec->flags & SEC_GROUP) != 0)
3019 	skip = TRUE;
3020       else if (bfd_get_flavour (abfd) == bfd_target_coff_flavour)
3021 	{
3022 	  if (s_comdat != NULL
3023 	      && l_comdat != NULL
3024 	      && strcmp (s_comdat->name, l_comdat->name) != 0)
3025 	    skip = TRUE;
3026 	}
3027       else if (l_comdat != NULL)
3028 	skip = TRUE;
3029 
3030       if (!skip)
3031 	{
3032 	  /* The section has already been linked.  See if we should
3033              issue a warning.  */
3034 	  switch (flags & SEC_LINK_DUPLICATES)
3035 	    {
3036 	    default:
3037 	      abort ();
3038 
3039 	    case SEC_LINK_DUPLICATES_DISCARD:
3040 	      break;
3041 
3042 	    case SEC_LINK_DUPLICATES_ONE_ONLY:
3043 	      (*_bfd_error_handler)
3044 		(_("%B: warning: ignoring duplicate section `%A'\n"),
3045 		 abfd, sec);
3046 	      break;
3047 
3048 	    case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3049 	      /* FIXME: We should really dig out the contents of both
3050                  sections and memcmp them.  The COFF/PE spec says that
3051                  the Microsoft linker does not implement this
3052                  correctly, so I'm not going to bother doing it
3053                  either.  */
3054 	      /* Fall through.  */
3055 	    case SEC_LINK_DUPLICATES_SAME_SIZE:
3056 	      if (sec->size != l->sec->size)
3057 		(*_bfd_error_handler)
3058 		  (_("%B: warning: duplicate section `%A' has different size\n"),
3059 		   abfd, sec);
3060 	      break;
3061 	    }
3062 
3063 	  /* Set the output_section field so that lang_add_section
3064 	     does not create a lang_input_section structure for this
3065 	     section.  Since there might be a symbol in the section
3066 	     being discarded, we must retain a pointer to the section
3067 	     which we are really going to use.  */
3068 	  sec->output_section = bfd_abs_section_ptr;
3069 	  sec->kept_section = l->sec;
3070 
3071 	  return;
3072 	}
3073     }
3074 
3075   /* This is the first section with this name.  Record it.  */
3076   bfd_section_already_linked_table_insert (already_linked_list, sec);
3077 }
3078 
3079 /* Convert symbols in excluded output sections to absolute.  */
3080 
3081 static bfd_boolean
fix_syms(struct bfd_link_hash_entry * h,void * data)3082 fix_syms (struct bfd_link_hash_entry *h, void *data)
3083 {
3084   bfd *obfd = (bfd *) data;
3085 
3086   if (h->type == bfd_link_hash_warning)
3087     h = h->u.i.link;
3088 
3089   if (h->type == bfd_link_hash_defined
3090       || h->type == bfd_link_hash_defweak)
3091     {
3092       asection *s = h->u.def.section;
3093       if (s != NULL
3094 	  && s->output_section != NULL
3095 	  && (s->output_section->flags & SEC_EXCLUDE) != 0
3096 	  && bfd_section_removed_from_list (obfd, s->output_section))
3097 	{
3098 	  h->u.def.value += s->output_offset + s->output_section->vma;
3099 	  h->u.def.section = bfd_abs_section_ptr;
3100 	}
3101     }
3102 
3103   return TRUE;
3104 }
3105 
3106 void
_bfd_fix_excluded_sec_syms(bfd * obfd,struct bfd_link_info * info)3107 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3108 {
3109   bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3110 }
3111