1 /* SSA Dominator optimizations for trees
2    Copyright (C) 2001-2021 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "cfgloop.h"
33 #include "gimple-fold.h"
34 #include "tree-eh.h"
35 #include "tree-inline.h"
36 #include "gimple-iterator.h"
37 #include "tree-cfg.h"
38 #include "tree-into-ssa.h"
39 #include "domwalk.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-ssa-threadupdate.h"
42 #include "tree-ssa-scopedtables.h"
43 #include "tree-ssa-threadedge.h"
44 #include "tree-ssa-dom.h"
45 #include "gimplify.h"
46 #include "tree-cfgcleanup.h"
47 #include "dbgcnt.h"
48 #include "alloc-pool.h"
49 #include "tree-vrp.h"
50 #include "vr-values.h"
51 #include "gimple-ssa-evrp-analyze.h"
52 #include "alias.h"
53 
54 /* This file implements optimizations on the dominator tree.  */
55 
56 /* Structure for recording edge equivalences.
57 
58    Computing and storing the edge equivalences instead of creating
59    them on-demand can save significant amounts of time, particularly
60    for pathological cases involving switch statements.
61 
62    These structures live for a single iteration of the dominator
63    optimizer in the edge's AUX field.  At the end of an iteration we
64    free each of these structures.  */
65 class edge_info
66 {
67  public:
68   typedef std::pair <tree, tree> equiv_pair;
69   edge_info (edge);
70   ~edge_info ();
71 
72   /* Record a simple LHS = RHS equivalence.  This may trigger
73      calls to derive_equivalences.  */
74   void record_simple_equiv (tree, tree);
75 
76   /* If traversing this edge creates simple equivalences, we store
77      them as LHS/RHS pairs within this vector.  */
78   vec<equiv_pair> simple_equivalences;
79 
80   /* Traversing an edge may also indicate one or more particular conditions
81      are true or false.  */
82   vec<cond_equivalence> cond_equivalences;
83 
84  private:
85   /* Derive equivalences by walking the use-def chains.  */
86   void derive_equivalences (tree, tree, int);
87 };
88 
89 /* Track whether or not we have changed the control flow graph.  */
90 static bool cfg_altered;
91 
92 /* Bitmap of blocks that have had EH statements cleaned.  We should
93    remove their dead edges eventually.  */
94 static bitmap need_eh_cleanup;
95 static vec<gimple *> need_noreturn_fixup;
96 
97 /* Statistics for dominator optimizations.  */
98 struct opt_stats_d
99 {
100   long num_stmts;
101   long num_exprs_considered;
102   long num_re;
103   long num_const_prop;
104   long num_copy_prop;
105 };
106 
107 static struct opt_stats_d opt_stats;
108 
109 /* Local functions.  */
110 static void record_equality (tree, tree, class const_and_copies *);
111 static void record_equivalences_from_phis (basic_block);
112 static void record_equivalences_from_incoming_edge (basic_block,
113 						    class const_and_copies *,
114 						    class avail_exprs_stack *);
115 static void eliminate_redundant_computations (gimple_stmt_iterator *,
116 					      class const_and_copies *,
117 					      class avail_exprs_stack *);
118 static void record_equivalences_from_stmt (gimple *, int,
119 					   class avail_exprs_stack *);
120 static void dump_dominator_optimization_stats (FILE *file,
121 					       hash_table<expr_elt_hasher> *);
122 
123 /* Constructor for EDGE_INFO.  An EDGE_INFO instance is always
124    associated with an edge E.  */
125 
edge_info(edge e)126 edge_info::edge_info (edge e)
127 {
128   /* Free the old one associated with E, if it exists and
129      associate our new object with E.  */
130   free_dom_edge_info (e);
131   e->aux = this;
132 
133   /* And initialize the embedded vectors.  */
134   simple_equivalences = vNULL;
135   cond_equivalences = vNULL;
136 }
137 
138 /* Destructor just needs to release the vectors.  */
139 
~edge_info(void)140 edge_info::~edge_info (void)
141 {
142   this->cond_equivalences.release ();
143   this->simple_equivalences.release ();
144 }
145 
146 /* NAME is known to have the value VALUE, which must be a constant.
147 
148    Walk through its use-def chain to see if there are other equivalences
149    we might be able to derive.
150 
151    RECURSION_LIMIT controls how far back we recurse through the use-def
152    chains.  */
153 
154 void
derive_equivalences(tree name,tree value,int recursion_limit)155 edge_info::derive_equivalences (tree name, tree value, int recursion_limit)
156 {
157   if (TREE_CODE (name) != SSA_NAME || TREE_CODE (value) != INTEGER_CST)
158     return;
159 
160   /* This records the equivalence for the toplevel object.  Do
161      this before checking the recursion limit.  */
162   simple_equivalences.safe_push (equiv_pair (name, value));
163 
164   /* Limit how far up the use-def chains we are willing to walk.  */
165   if (recursion_limit == 0)
166     return;
167 
168   /* We can walk up the use-def chains to potentially find more
169      equivalences.  */
170   gimple *def_stmt = SSA_NAME_DEF_STMT (name);
171   if (is_gimple_assign (def_stmt))
172     {
173       enum tree_code code = gimple_assign_rhs_code (def_stmt);
174       switch (code)
175 	{
176 	/* If the result of an OR is zero, then its operands are, too.  */
177 	case BIT_IOR_EXPR:
178 	  if (integer_zerop (value))
179 	    {
180 	      tree rhs1 = gimple_assign_rhs1 (def_stmt);
181 	      tree rhs2 = gimple_assign_rhs2 (def_stmt);
182 
183 	      value = build_zero_cst (TREE_TYPE (rhs1));
184 	      derive_equivalences (rhs1, value, recursion_limit - 1);
185 	      value = build_zero_cst (TREE_TYPE (rhs2));
186 	      derive_equivalences (rhs2, value, recursion_limit - 1);
187 	    }
188 	  break;
189 
190 	/* If the result of an AND is nonzero, then its operands are, too.  */
191 	case BIT_AND_EXPR:
192 	  if (!integer_zerop (value))
193 	    {
194 	      tree rhs1 = gimple_assign_rhs1 (def_stmt);
195 	      tree rhs2 = gimple_assign_rhs2 (def_stmt);
196 
197 	      /* If either operand has a boolean range, then we
198 		 know its value must be one, otherwise we just know it
199 		 is nonzero.  The former is clearly useful, I haven't
200 		 seen cases where the latter is helpful yet.  */
201 	      if (TREE_CODE (rhs1) == SSA_NAME)
202 		{
203 		  if (ssa_name_has_boolean_range (rhs1))
204 		    {
205 		      value = build_one_cst (TREE_TYPE (rhs1));
206 		      derive_equivalences (rhs1, value, recursion_limit - 1);
207 		    }
208 		}
209 	      if (TREE_CODE (rhs2) == SSA_NAME)
210 		{
211 		  if (ssa_name_has_boolean_range (rhs2))
212 		    {
213 		      value = build_one_cst (TREE_TYPE (rhs2));
214 		      derive_equivalences (rhs2, value, recursion_limit - 1);
215 		    }
216 		}
217 	    }
218 	  break;
219 
220 	/* If LHS is an SSA_NAME and RHS is a constant integer and LHS was
221 	   set via a widening type conversion, then we may be able to record
222 	   additional equivalences.  */
223 	case NOP_EXPR:
224 	case CONVERT_EXPR:
225 	  {
226 	    tree rhs = gimple_assign_rhs1 (def_stmt);
227 	    tree rhs_type = TREE_TYPE (rhs);
228 	    if (INTEGRAL_TYPE_P (rhs_type)
229 		&& (TYPE_PRECISION (TREE_TYPE (name))
230 		    >= TYPE_PRECISION (rhs_type))
231 		&& int_fits_type_p (value, rhs_type))
232 	      derive_equivalences (rhs,
233 				   fold_convert (rhs_type, value),
234 				   recursion_limit - 1);
235 	    break;
236 	  }
237 
238 	/* We can invert the operation of these codes trivially if
239 	   one of the RHS operands is a constant to produce a known
240 	   value for the other RHS operand.  */
241 	case POINTER_PLUS_EXPR:
242 	case PLUS_EXPR:
243 	  {
244 	    tree rhs1 = gimple_assign_rhs1 (def_stmt);
245 	    tree rhs2 = gimple_assign_rhs2 (def_stmt);
246 
247 	    /* If either argument is a constant, then we can compute
248 	       a constant value for the nonconstant argument.  */
249 	    if (TREE_CODE (rhs1) == INTEGER_CST
250 		&& TREE_CODE (rhs2) == SSA_NAME)
251 	      derive_equivalences (rhs2,
252 				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
253 						value, rhs1),
254 				   recursion_limit - 1);
255 	    else if (TREE_CODE (rhs2) == INTEGER_CST
256 		     && TREE_CODE (rhs1) == SSA_NAME)
257 	      derive_equivalences (rhs1,
258 				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
259 						value, rhs2),
260 				   recursion_limit - 1);
261 	    break;
262 	  }
263 
264 	/* If one of the operands is a constant, then we can compute
265 	   the value of the other operand.  If both operands are
266 	   SSA_NAMEs, then they must be equal if the result is zero.  */
267 	case MINUS_EXPR:
268 	  {
269 	    tree rhs1 = gimple_assign_rhs1 (def_stmt);
270 	    tree rhs2 = gimple_assign_rhs2 (def_stmt);
271 
272 	    /* If either argument is a constant, then we can compute
273 	       a constant value for the nonconstant argument.  */
274 	    if (TREE_CODE (rhs1) == INTEGER_CST
275 		&& TREE_CODE (rhs2) == SSA_NAME)
276 	      derive_equivalences (rhs2,
277 				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
278 						rhs1, value),
279 				   recursion_limit - 1);
280 	    else if (TREE_CODE (rhs2) == INTEGER_CST
281 		     && TREE_CODE (rhs1) == SSA_NAME)
282 	      derive_equivalences (rhs1,
283 				   fold_binary (PLUS_EXPR, TREE_TYPE (rhs1),
284 						value, rhs2),
285 				   recursion_limit - 1);
286 	    else if (integer_zerop (value))
287 	      {
288 		tree cond = build2 (EQ_EXPR, boolean_type_node,
289 				    gimple_assign_rhs1 (def_stmt),
290 				    gimple_assign_rhs2 (def_stmt));
291 		tree inverted = invert_truthvalue (cond);
292 		record_conditions (&this->cond_equivalences, cond, inverted);
293 	      }
294 	    break;
295 	  }
296 
297 	case EQ_EXPR:
298 	case NE_EXPR:
299 	  {
300 	    if ((code == EQ_EXPR && integer_onep (value))
301 		|| (code == NE_EXPR && integer_zerop (value)))
302 	      {
303 		tree rhs1 = gimple_assign_rhs1 (def_stmt);
304 		tree rhs2 = gimple_assign_rhs2 (def_stmt);
305 
306 		/* If either argument is a constant, then record the
307 		   other argument as being the same as that constant.
308 
309 		   If neither operand is a constant, then we have a
310 		   conditional name == name equivalence.  */
311 		if (TREE_CODE (rhs1) == INTEGER_CST)
312 		  derive_equivalences (rhs2, rhs1, recursion_limit - 1);
313 		else if (TREE_CODE (rhs2) == INTEGER_CST)
314 		  derive_equivalences (rhs1, rhs2, recursion_limit - 1);
315 	      }
316 	    else
317 	      {
318 		tree cond = build2 (code, boolean_type_node,
319 				    gimple_assign_rhs1 (def_stmt),
320 				    gimple_assign_rhs2 (def_stmt));
321 		tree inverted = invert_truthvalue (cond);
322 		if (integer_zerop (value))
323 		  std::swap (cond, inverted);
324 		record_conditions (&this->cond_equivalences, cond, inverted);
325 	      }
326 	    break;
327 	  }
328 
329 	/* For BIT_NOT and NEGATE, we can just apply the operation to the
330 	   VALUE to get the new equivalence.  It will always be a constant
331 	   so we can recurse.  */
332 	case BIT_NOT_EXPR:
333 	case NEGATE_EXPR:
334 	  {
335 	    tree rhs = gimple_assign_rhs1 (def_stmt);
336 	    tree res;
337 	    /* If this is a NOT and the operand has a boolean range, then we
338 	       know its value must be zero or one.  We are not supposed to
339 	       have a BIT_NOT_EXPR for boolean types with precision > 1 in
340 	       the general case, see e.g. the handling of TRUTH_NOT_EXPR in
341 	       the gimplifier, but it can be generated by match.pd out of
342 	       a BIT_XOR_EXPR wrapped in a BIT_AND_EXPR.  Now the handling
343 	       of BIT_AND_EXPR above already forces a specific semantics for
344 	       boolean types with precision > 1 so we must do the same here,
345 	       otherwise we could change the semantics of TRUTH_NOT_EXPR for
346 	       boolean types with precision > 1.  */
347 	    if (code == BIT_NOT_EXPR
348 		&& TREE_CODE (rhs) == SSA_NAME
349 		&& ssa_name_has_boolean_range (rhs))
350 	      {
351 		if ((TREE_INT_CST_LOW (value) & 1) == 0)
352 		  res = build_one_cst (TREE_TYPE (rhs));
353 		else
354 		  res = build_zero_cst (TREE_TYPE (rhs));
355 	      }
356 	    else
357 	      res = fold_build1 (code, TREE_TYPE (rhs), value);
358 	    derive_equivalences (rhs, res, recursion_limit - 1);
359 	    break;
360 	  }
361 
362 	default:
363 	  {
364 	    if (TREE_CODE_CLASS (code) == tcc_comparison)
365 	      {
366 		tree cond = build2 (code, boolean_type_node,
367 				    gimple_assign_rhs1 (def_stmt),
368 				    gimple_assign_rhs2 (def_stmt));
369 		tree inverted = invert_truthvalue (cond);
370 		if (integer_zerop (value))
371 		  std::swap (cond, inverted);
372 		record_conditions (&this->cond_equivalences, cond, inverted);
373 		break;
374 	      }
375 	    break;
376 	  }
377 	}
378     }
379 }
380 
381 void
record_simple_equiv(tree lhs,tree rhs)382 edge_info::record_simple_equiv (tree lhs, tree rhs)
383 {
384   /* If the RHS is a constant, then we may be able to derive
385      further equivalences.  Else just record the name = name
386      equivalence.  */
387   if (TREE_CODE (rhs) == INTEGER_CST)
388     derive_equivalences (lhs, rhs, 4);
389   else
390     simple_equivalences.safe_push (equiv_pair (lhs, rhs));
391 }
392 
393 /* Free the edge_info data attached to E, if it exists.  */
394 
395 void
free_dom_edge_info(edge e)396 free_dom_edge_info (edge e)
397 {
398   class edge_info *edge_info = (class edge_info *)e->aux;
399 
400   if (edge_info)
401     delete edge_info;
402 }
403 
404 /* Free all EDGE_INFO structures associated with edges in the CFG.
405    If a particular edge can be threaded, copy the redirection
406    target from the EDGE_INFO structure into the edge's AUX field
407    as required by code to update the CFG and SSA graph for
408    jump threading.  */
409 
410 static void
free_all_edge_infos(void)411 free_all_edge_infos (void)
412 {
413   basic_block bb;
414   edge_iterator ei;
415   edge e;
416 
417   FOR_EACH_BB_FN (bb, cfun)
418     {
419       FOR_EACH_EDGE (e, ei, bb->preds)
420         {
421 	  free_dom_edge_info (e);
422 	  e->aux = NULL;
423 	}
424     }
425 }
426 
427 /* We have finished optimizing BB, record any information implied by
428    taking a specific outgoing edge from BB.  */
429 
430 static void
record_edge_info(basic_block bb)431 record_edge_info (basic_block bb)
432 {
433   gimple_stmt_iterator gsi = gsi_last_bb (bb);
434   class edge_info *edge_info;
435 
436   if (! gsi_end_p (gsi))
437     {
438       gimple *stmt = gsi_stmt (gsi);
439       location_t loc = gimple_location (stmt);
440 
441       if (gimple_code (stmt) == GIMPLE_SWITCH)
442 	{
443 	  gswitch *switch_stmt = as_a <gswitch *> (stmt);
444 	  tree index = gimple_switch_index (switch_stmt);
445 
446 	  if (TREE_CODE (index) == SSA_NAME)
447 	    {
448 	      int i;
449               int n_labels = gimple_switch_num_labels (switch_stmt);
450 	      tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
451 	      edge e;
452 	      edge_iterator ei;
453 
454 	      for (i = 0; i < n_labels; i++)
455 		{
456 		  tree label = gimple_switch_label (switch_stmt, i);
457 		  basic_block target_bb
458 		    = label_to_block (cfun, CASE_LABEL (label));
459 		  if (CASE_HIGH (label)
460 		      || !CASE_LOW (label)
461 		      || info[target_bb->index])
462 		    info[target_bb->index] = error_mark_node;
463 		  else
464 		    info[target_bb->index] = label;
465 		}
466 
467 	      FOR_EACH_EDGE (e, ei, bb->succs)
468 		{
469 		  basic_block target_bb = e->dest;
470 		  tree label = info[target_bb->index];
471 
472 		  if (label != NULL && label != error_mark_node)
473 		    {
474 		      tree x = fold_convert_loc (loc, TREE_TYPE (index),
475 						 CASE_LOW (label));
476 		      edge_info = new class edge_info (e);
477 		      edge_info->record_simple_equiv (index, x);
478 		    }
479 		}
480 	      free (info);
481 	    }
482 	}
483 
484       /* A COND_EXPR may create equivalences too.  */
485       if (gimple_code (stmt) == GIMPLE_COND)
486 	{
487 	  edge true_edge;
488 	  edge false_edge;
489 
490           tree op0 = gimple_cond_lhs (stmt);
491           tree op1 = gimple_cond_rhs (stmt);
492           enum tree_code code = gimple_cond_code (stmt);
493 
494 	  extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
495 
496           /* Special case comparing booleans against a constant as we
497              know the value of OP0 on both arms of the branch.  i.e., we
498              can record an equivalence for OP0 rather than COND.
499 
500 	     However, don't do this if the constant isn't zero or one.
501 	     Such conditionals will get optimized more thoroughly during
502 	     the domwalk.  */
503 	  if ((code == EQ_EXPR || code == NE_EXPR)
504 	      && TREE_CODE (op0) == SSA_NAME
505 	      && ssa_name_has_boolean_range (op0)
506 	      && is_gimple_min_invariant (op1)
507 	      && (integer_zerop (op1) || integer_onep (op1)))
508             {
509 	      tree true_val = constant_boolean_node (true, TREE_TYPE (op0));
510 	      tree false_val = constant_boolean_node (false, TREE_TYPE (op0));
511 
512               if (code == EQ_EXPR)
513                 {
514 		  edge_info = new class edge_info (true_edge);
515 		  edge_info->record_simple_equiv (op0,
516 						  (integer_zerop (op1)
517 						   ? false_val : true_val));
518 		  edge_info = new class edge_info (false_edge);
519 		  edge_info->record_simple_equiv (op0,
520 						  (integer_zerop (op1)
521 						   ? true_val : false_val));
522                 }
523               else
524                 {
525 		  edge_info = new class edge_info (true_edge);
526 		  edge_info->record_simple_equiv (op0,
527 						  (integer_zerop (op1)
528 						   ? true_val : false_val));
529 		  edge_info = new class edge_info (false_edge);
530 		  edge_info->record_simple_equiv (op0,
531 						  (integer_zerop (op1)
532 						   ? false_val : true_val));
533                 }
534             }
535 	  /* This can show up in the IL as a result of copy propagation
536 	     it will eventually be canonicalized, but we have to cope
537 	     with this case within the pass.  */
538           else if (is_gimple_min_invariant (op0)
539                    && TREE_CODE (op1) == SSA_NAME)
540             {
541               tree cond = build2 (code, boolean_type_node, op0, op1);
542               tree inverted = invert_truthvalue_loc (loc, cond);
543               bool can_infer_simple_equiv
544                 = !(HONOR_SIGNED_ZEROS (op0)
545                     && real_zerop (op0));
546 	      class edge_info *edge_info;
547 
548 	      edge_info = new class edge_info (true_edge);
549               record_conditions (&edge_info->cond_equivalences, cond, inverted);
550 
551               if (can_infer_simple_equiv && code == EQ_EXPR)
552 		edge_info->record_simple_equiv (op1, op0);
553 
554 	      edge_info = new class edge_info (false_edge);
555               record_conditions (&edge_info->cond_equivalences, inverted, cond);
556 
557               if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
558 		edge_info->record_simple_equiv (op1, op0);
559             }
560 
561           else if (TREE_CODE (op0) == SSA_NAME
562                    && (TREE_CODE (op1) == SSA_NAME
563                        || is_gimple_min_invariant (op1)))
564             {
565               tree cond = build2 (code, boolean_type_node, op0, op1);
566               tree inverted = invert_truthvalue_loc (loc, cond);
567               bool can_infer_simple_equiv
568                 = !(HONOR_SIGNED_ZEROS (op1)
569                     && (TREE_CODE (op1) == SSA_NAME || real_zerop (op1)));
570 	      class edge_info *edge_info;
571 
572 	      edge_info = new class edge_info (true_edge);
573               record_conditions (&edge_info->cond_equivalences, cond, inverted);
574 
575               if (can_infer_simple_equiv && code == EQ_EXPR)
576 		edge_info->record_simple_equiv (op0, op1);
577 
578 	      edge_info = new class edge_info (false_edge);
579               record_conditions (&edge_info->cond_equivalences, inverted, cond);
580 
581               if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
582 		edge_info->record_simple_equiv (op0, op1);
583             }
584         }
585     }
586 }
587 
588 class dom_jt_state : public jt_state
589 {
590 public:
dom_jt_state(const_and_copies * copies,avail_exprs_stack * avails,evrp_range_analyzer * evrp)591   dom_jt_state (const_and_copies *copies, avail_exprs_stack *avails,
592 		evrp_range_analyzer *evrp)
593     : m_copies (copies), m_avails (avails), m_evrp (evrp)
594   {
595   }
push(edge e)596   void push (edge e) override
597   {
598     m_copies->push_marker ();
599     m_avails->push_marker ();
600     m_evrp->push_marker ();
601     jt_state::push (e);
602   }
pop()603   void pop () override
604   {
605     m_copies->pop_to_marker ();
606     m_avails->pop_to_marker ();
607     m_evrp->pop_to_marker ();
608     jt_state::pop ();
609   }
register_equivs_edge(edge e)610   void register_equivs_edge (edge e) override
611   {
612     record_temporary_equivalences (e, m_copies, m_avails);
613   }
record_ranges_from_stmt(gimple * stmt,bool temporary)614   void record_ranges_from_stmt (gimple *stmt, bool temporary) override
615   {
616     m_evrp->record_ranges_from_stmt (stmt, temporary);
617   }
618   void register_equiv (tree dest, tree src, bool update) override;
619 private:
620   const_and_copies *m_copies;
621   avail_exprs_stack *m_avails;
622   evrp_range_analyzer *m_evrp;
623 };
624 
625 void
register_equiv(tree dest,tree src,bool update)626 dom_jt_state::register_equiv (tree dest, tree src, bool update)
627 {
628   m_copies->record_const_or_copy (dest, src);
629 
630   /* If requested, update the value range associated with DST, using
631      the range from SRC.  */
632   if (update)
633     {
634       /* Get new VR we can pass to push_value_range.  */
635       value_range_equiv *new_vr = m_evrp->allocate_value_range_equiv ();
636       new (new_vr) value_range_equiv ();
637 
638       /* There are three cases to consider:
639 
640 	 First if SRC is an SSA_NAME, then we can copy the value range
641 	 from SRC into NEW_VR.
642 
643 	 Second if SRC is an INTEGER_CST, then we can just set NEW_VR
644 	 to a singleton range.  Note that even if SRC is a constant we
645 	 need to set a suitable output range so that VR_UNDEFINED
646 	 ranges do not leak through.
647 
648 	 Otherwise set NEW_VR to varying.  This may be overly
649 	 conservative.  */
650       if (TREE_CODE (src) == SSA_NAME)
651 	new_vr->deep_copy (m_evrp->get_value_range (src));
652       else if (TREE_CODE (src) == INTEGER_CST)
653 	new_vr->set (src);
654       else
655 	new_vr->set_varying (TREE_TYPE (src));
656 
657       /* This is a temporary range for DST, so push it.  */
658       m_evrp->push_value_range (dest, new_vr);
659     }
660 }
661 
662 class dom_jt_simplifier : public jt_simplifier
663 {
664 public:
dom_jt_simplifier(vr_values * v,avail_exprs_stack * avails)665   dom_jt_simplifier (vr_values *v, avail_exprs_stack *avails)
666     : m_vr_values (v), m_avails (avails) { }
667 
668 private:
669   tree simplify (gimple *, gimple *, basic_block, jt_state *) override;
670   vr_values *m_vr_values;
671   avail_exprs_stack *m_avails;
672 };
673 
674 tree
simplify(gimple * stmt,gimple * within_stmt,basic_block,jt_state *)675 dom_jt_simplifier::simplify (gimple *stmt, gimple *within_stmt,
676 			     basic_block, jt_state *)
677 {
678   /* First see if the conditional is in the hash table.  */
679   tree cached_lhs =  m_avails->lookup_avail_expr (stmt, false, true);
680   if (cached_lhs)
681     return cached_lhs;
682 
683   if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
684     {
685       simplify_using_ranges simplifier (m_vr_values);
686       return simplifier.vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
687 						  gimple_cond_lhs (cond_stmt),
688 						  gimple_cond_rhs (cond_stmt),
689 						  within_stmt);
690     }
691   if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
692     {
693       tree op = gimple_switch_index (switch_stmt);
694       if (TREE_CODE (op) != SSA_NAME)
695 	return NULL_TREE;
696 
697       const value_range_equiv *vr = m_vr_values->get_value_range (op);
698       return find_case_label_range (switch_stmt, vr);
699     }
700   if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
701     {
702       tree lhs = gimple_assign_lhs (assign_stmt);
703       if (TREE_CODE (lhs) == SSA_NAME
704 	  && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
705 	      || POINTER_TYPE_P (TREE_TYPE (lhs)))
706 	  && stmt_interesting_for_vrp (stmt))
707 	{
708 	  edge dummy_e;
709 	  tree dummy_tree;
710 	  value_range_equiv new_vr;
711 	  m_vr_values->extract_range_from_stmt (stmt, &dummy_e, &dummy_tree,
712 						&new_vr);
713 	  tree singleton;
714 	  if (new_vr.singleton_p (&singleton))
715 	    return singleton;
716 	}
717     }
718   return NULL;
719 }
720 
721 class dom_opt_dom_walker : public dom_walker
722 {
723 public:
dom_opt_dom_walker(cdi_direction direction,jump_threader * threader,jt_state * state,evrp_range_analyzer * analyzer,const_and_copies * const_and_copies,avail_exprs_stack * avail_exprs_stack)724   dom_opt_dom_walker (cdi_direction direction,
725 		      jump_threader *threader,
726 		      jt_state *state,
727 		      evrp_range_analyzer *analyzer,
728 		      const_and_copies *const_and_copies,
729 		      avail_exprs_stack *avail_exprs_stack)
730     : dom_walker (direction, REACHABLE_BLOCKS)
731     {
732       m_evrp_range_analyzer = analyzer;
733       m_state = state;
734       m_dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node,
735 					integer_zero_node, NULL, NULL);
736       m_const_and_copies = const_and_copies;
737       m_avail_exprs_stack = avail_exprs_stack;
738       m_threader = threader;
739     }
740 
741   virtual edge before_dom_children (basic_block);
742   virtual void after_dom_children (basic_block);
743 
744 private:
745 
746   /* Unwindable equivalences, both const/copy and expression varieties.  */
747   class const_and_copies *m_const_and_copies;
748   class avail_exprs_stack *m_avail_exprs_stack;
749 
750   /* Dummy condition to avoid creating lots of throw away statements.  */
751   gcond *m_dummy_cond;
752 
753   /* Optimize a single statement within a basic block using the
754      various tables mantained by DOM.  Returns the taken edge if
755      the statement is a conditional with a statically determined
756      value.  */
757   edge optimize_stmt (basic_block, gimple_stmt_iterator *, bool *);
758 
759 
760   void test_for_singularity (gimple *, avail_exprs_stack *);
761 
762   jump_threader *m_threader;
763   evrp_range_analyzer *m_evrp_range_analyzer;
764   jt_state *m_state;
765 };
766 
767 /* Jump threading, redundancy elimination and const/copy propagation.
768 
769    This pass may expose new symbols that need to be renamed into SSA.  For
770    every new symbol exposed, its corresponding bit will be set in
771    VARS_TO_RENAME.  */
772 
773 namespace {
774 
775 const pass_data pass_data_dominator =
776 {
777   GIMPLE_PASS, /* type */
778   "dom", /* name */
779   OPTGROUP_NONE, /* optinfo_flags */
780   TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
781   ( PROP_cfg | PROP_ssa ), /* properties_required */
782   0, /* properties_provided */
783   0, /* properties_destroyed */
784   0, /* todo_flags_start */
785   ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
786 };
787 
788 class pass_dominator : public gimple_opt_pass
789 {
790 public:
pass_dominator(gcc::context * ctxt)791   pass_dominator (gcc::context *ctxt)
792     : gimple_opt_pass (pass_data_dominator, ctxt),
793       may_peel_loop_headers_p (false)
794   {}
795 
796   /* opt_pass methods: */
clone()797   opt_pass * clone () { return new pass_dominator (m_ctxt); }
set_pass_param(unsigned int n,bool param)798   void set_pass_param (unsigned int n, bool param)
799     {
800       gcc_assert (n == 0);
801       may_peel_loop_headers_p = param;
802     }
gate(function *)803   virtual bool gate (function *) { return flag_tree_dom != 0; }
804   virtual unsigned int execute (function *);
805 
806  private:
807   /* This flag is used to prevent loops from being peeled repeatedly in jump
808      threading; it will be removed once we preserve loop structures throughout
809      the compilation -- we will be able to mark the affected loops directly in
810      jump threading, and avoid peeling them next time.  */
811   bool may_peel_loop_headers_p;
812 }; // class pass_dominator
813 
814 unsigned int
execute(function * fun)815 pass_dominator::execute (function *fun)
816 {
817   memset (&opt_stats, 0, sizeof (opt_stats));
818 
819   /* Create our hash tables.  */
820   hash_table<expr_elt_hasher> *avail_exprs
821     = new hash_table<expr_elt_hasher> (1024);
822   class avail_exprs_stack *avail_exprs_stack
823     = new class avail_exprs_stack (avail_exprs);
824   class const_and_copies *const_and_copies = new class const_and_copies ();
825   need_eh_cleanup = BITMAP_ALLOC (NULL);
826   need_noreturn_fixup.create (0);
827 
828   calculate_dominance_info (CDI_DOMINATORS);
829   cfg_altered = false;
830 
831   /* We need to know loop structures in order to avoid destroying them
832      in jump threading.  Note that we still can e.g. thread through loop
833      headers to an exit edge, or through loop header to the loop body, assuming
834      that we update the loop info.
835 
836      TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due
837      to several overly conservative bail-outs in jump threading, case
838      gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is
839      missing.  We should improve jump threading in future then
840      LOOPS_HAVE_PREHEADERS won't be needed here.  */
841   loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES
842 		       | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
843 
844   /* We need accurate information regarding back edges in the CFG
845      for jump threading; this may include back edges that are not part of
846      a single loop.  */
847   mark_dfs_back_edges ();
848 
849   /* We want to create the edge info structures before the dominator walk
850      so that they'll be in place for the jump threader, particularly when
851      threading through a join block.
852 
853      The conditions will be lazily updated with global equivalences as
854      we reach them during the dominator walk.  */
855   basic_block bb;
856   FOR_EACH_BB_FN (bb, fun)
857     record_edge_info (bb);
858 
859   /* Recursively walk the dominator tree optimizing statements.  */
860   evrp_range_analyzer analyzer (true);
861   dom_jt_simplifier simplifier (&analyzer, avail_exprs_stack);
862   dom_jt_state state (const_and_copies, avail_exprs_stack, &analyzer);
863   jump_threader threader (&simplifier, &state);
864   dom_opt_dom_walker walker (CDI_DOMINATORS,
865 			     &threader,
866 			     &state,
867 			     &analyzer,
868 			     const_and_copies,
869 			     avail_exprs_stack);
870   walker.walk (fun->cfg->x_entry_block_ptr);
871 
872   /* Look for blocks where we cleared EDGE_EXECUTABLE on an outgoing
873      edge.  When found, remove jump threads which contain any outgoing
874      edge from the affected block.  */
875   if (cfg_altered)
876     {
877       FOR_EACH_BB_FN (bb, fun)
878 	{
879 	  edge_iterator ei;
880 	  edge e;
881 
882 	  /* First see if there are any edges without EDGE_EXECUTABLE
883 	     set.  */
884 	  bool found = false;
885 	  FOR_EACH_EDGE (e, ei, bb->succs)
886 	    {
887 	      if ((e->flags & EDGE_EXECUTABLE) == 0)
888 		{
889 		  found = true;
890 		  break;
891 		}
892 	    }
893 
894 	  /* If there were any such edges found, then remove jump threads
895 	     containing any edge leaving BB.  */
896 	  if (found)
897 	    FOR_EACH_EDGE (e, ei, bb->succs)
898 	      threader.remove_jump_threads_including (e);
899 	}
900     }
901 
902   {
903     gimple_stmt_iterator gsi;
904     basic_block bb;
905     FOR_EACH_BB_FN (bb, fun)
906       {
907 	for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
908 	  update_stmt_if_modified (gsi_stmt (gsi));
909       }
910   }
911 
912   /* If we exposed any new variables, go ahead and put them into
913      SSA form now, before we handle jump threading.  This simplifies
914      interactions between rewriting of _DECL nodes into SSA form
915      and rewriting SSA_NAME nodes into SSA form after block
916      duplication and CFG manipulation.  */
917   update_ssa (TODO_update_ssa);
918 
919   free_all_edge_infos ();
920 
921   /* Thread jumps, creating duplicate blocks as needed.  */
922   cfg_altered |= threader.thread_through_all_blocks (may_peel_loop_headers_p);
923 
924   if (cfg_altered)
925     free_dominance_info (CDI_DOMINATORS);
926 
927   /* Removal of statements may make some EH edges dead.  Purge
928      such edges from the CFG as needed.  */
929   if (!bitmap_empty_p (need_eh_cleanup))
930     {
931       unsigned i;
932       bitmap_iterator bi;
933 
934       /* Jump threading may have created forwarder blocks from blocks
935 	 needing EH cleanup; the new successor of these blocks, which
936 	 has inherited from the original block, needs the cleanup.
937 	 Don't clear bits in the bitmap, as that can break the bitmap
938 	 iterator.  */
939       EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
940 	{
941 	  basic_block bb = BASIC_BLOCK_FOR_FN (fun, i);
942 	  if (bb == NULL)
943 	    continue;
944 	  while (single_succ_p (bb)
945 		 && (single_succ_edge (bb)->flags
946 		     & (EDGE_EH|EDGE_DFS_BACK)) == 0)
947 	    bb = single_succ (bb);
948 	  if (bb == EXIT_BLOCK_PTR_FOR_FN (fun))
949 	    continue;
950 	  if ((unsigned) bb->index != i)
951 	    bitmap_set_bit (need_eh_cleanup, bb->index);
952 	}
953 
954       gimple_purge_all_dead_eh_edges (need_eh_cleanup);
955       bitmap_clear (need_eh_cleanup);
956     }
957 
958   /* Fixup stmts that became noreturn calls.  This may require splitting
959      blocks and thus isn't possible during the dominator walk or before
960      jump threading finished.  Do this in reverse order so we don't
961      inadvertedly remove a stmt we want to fixup by visiting a dominating
962      now noreturn call first.  */
963   while (!need_noreturn_fixup.is_empty ())
964     {
965       gimple *stmt = need_noreturn_fixup.pop ();
966       if (dump_file && dump_flags & TDF_DETAILS)
967 	{
968 	  fprintf (dump_file, "Fixing up noreturn call ");
969 	  print_gimple_stmt (dump_file, stmt, 0);
970 	  fprintf (dump_file, "\n");
971 	}
972       fixup_noreturn_call (stmt);
973     }
974 
975   statistics_counter_event (fun, "Redundant expressions eliminated",
976 			    opt_stats.num_re);
977   statistics_counter_event (fun, "Constants propagated",
978 			    opt_stats.num_const_prop);
979   statistics_counter_event (fun, "Copies propagated",
980 			    opt_stats.num_copy_prop);
981 
982   /* Debugging dumps.  */
983   if (dump_file && (dump_flags & TDF_STATS))
984     dump_dominator_optimization_stats (dump_file, avail_exprs);
985 
986   loop_optimizer_finalize ();
987 
988   /* Delete our main hashtable.  */
989   delete avail_exprs;
990   avail_exprs = NULL;
991 
992   /* Free asserted bitmaps and stacks.  */
993   BITMAP_FREE (need_eh_cleanup);
994   need_noreturn_fixup.release ();
995   delete avail_exprs_stack;
996   delete const_and_copies;
997 
998   return 0;
999 }
1000 
1001 } // anon namespace
1002 
1003 gimple_opt_pass *
make_pass_dominator(gcc::context * ctxt)1004 make_pass_dominator (gcc::context *ctxt)
1005 {
1006   return new pass_dominator (ctxt);
1007 }
1008 
1009 /* Valueize hook for gimple_fold_stmt_to_constant_1.  */
1010 
1011 static tree
dom_valueize(tree t)1012 dom_valueize (tree t)
1013 {
1014   if (TREE_CODE (t) == SSA_NAME)
1015     {
1016       tree tem = SSA_NAME_VALUE (t);
1017       if (tem)
1018 	return tem;
1019     }
1020   return t;
1021 }
1022 
1023 /* We have just found an equivalence for LHS on an edge E.
1024    Look backwards to other uses of LHS and see if we can derive
1025    additional equivalences that are valid on edge E.  */
1026 static void
back_propagate_equivalences(tree lhs,edge e,class const_and_copies * const_and_copies)1027 back_propagate_equivalences (tree lhs, edge e,
1028 			     class const_and_copies *const_and_copies)
1029 {
1030   use_operand_p use_p;
1031   imm_use_iterator iter;
1032   bitmap domby = NULL;
1033   basic_block dest = e->dest;
1034 
1035   /* Iterate over the uses of LHS to see if any dominate E->dest.
1036      If so, they may create useful equivalences too.
1037 
1038      ???  If the code gets re-organized to a worklist to catch more
1039      indirect opportunities and it is made to handle PHIs then this
1040      should only consider use_stmts in basic-blocks we have already visited.  */
1041   FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
1042     {
1043       gimple *use_stmt = USE_STMT (use_p);
1044 
1045       /* Often the use is in DEST, which we trivially know we can't use.
1046 	 This is cheaper than the dominator set tests below.  */
1047       if (dest == gimple_bb (use_stmt))
1048 	continue;
1049 
1050       /* Filter out statements that can never produce a useful
1051 	 equivalence.  */
1052       tree lhs2 = gimple_get_lhs (use_stmt);
1053       if (!lhs2 || TREE_CODE (lhs2) != SSA_NAME)
1054 	continue;
1055 
1056       /* Profiling has shown the domination tests here can be fairly
1057 	 expensive.  We get significant improvements by building the
1058 	 set of blocks that dominate BB.  We can then just test
1059 	 for set membership below.
1060 
1061 	 We also initialize the set lazily since often the only uses
1062 	 are going to be in the same block as DEST.  */
1063       if (!domby)
1064 	{
1065 	  domby = BITMAP_ALLOC (NULL);
1066 	  basic_block bb = get_immediate_dominator (CDI_DOMINATORS, dest);
1067 	  while (bb)
1068 	    {
1069 	      bitmap_set_bit (domby, bb->index);
1070 	      bb = get_immediate_dominator (CDI_DOMINATORS, bb);
1071 	    }
1072 	}
1073 
1074       /* This tests if USE_STMT does not dominate DEST.  */
1075       if (!bitmap_bit_p (domby, gimple_bb (use_stmt)->index))
1076 	continue;
1077 
1078       /* At this point USE_STMT dominates DEST and may result in a
1079 	 useful equivalence.  Try to simplify its RHS to a constant
1080 	 or SSA_NAME.  */
1081       tree res = gimple_fold_stmt_to_constant_1 (use_stmt, dom_valueize,
1082 						 no_follow_ssa_edges);
1083       if (res && (TREE_CODE (res) == SSA_NAME || is_gimple_min_invariant (res)))
1084 	record_equality (lhs2, res, const_and_copies);
1085     }
1086 
1087   if (domby)
1088     BITMAP_FREE (domby);
1089 }
1090 
1091 /* Record into CONST_AND_COPIES and AVAIL_EXPRS_STACK any equivalences implied
1092    by traversing edge E (which are cached in E->aux).
1093 
1094    Callers are responsible for managing the unwinding markers.  */
1095 void
record_temporary_equivalences(edge e,class const_and_copies * const_and_copies,class avail_exprs_stack * avail_exprs_stack)1096 record_temporary_equivalences (edge e,
1097 			       class const_and_copies *const_and_copies,
1098 			       class avail_exprs_stack *avail_exprs_stack)
1099 {
1100   int i;
1101   class edge_info *edge_info = (class edge_info *) e->aux;
1102 
1103   /* If we have info associated with this edge, record it into
1104      our equivalence tables.  */
1105   if (edge_info)
1106     {
1107       cond_equivalence *eq;
1108       /* If we have 0 = COND or 1 = COND equivalences, record them
1109 	 into our expression hash tables.  */
1110       for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
1111 	avail_exprs_stack->record_cond (eq);
1112 
1113       edge_info::equiv_pair *seq;
1114       for (i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
1115 	{
1116 	  tree lhs = seq->first;
1117 	  if (!lhs || TREE_CODE (lhs) != SSA_NAME)
1118 	    continue;
1119 
1120 	  /* Record the simple NAME = VALUE equivalence.  */
1121 	  tree rhs = seq->second;
1122 
1123 	  /* If this is a SSA_NAME = SSA_NAME equivalence and one operand is
1124 	     cheaper to compute than the other, then set up the equivalence
1125 	     such that we replace the expensive one with the cheap one.
1126 
1127 	     If they are the same cost to compute, then do not record
1128 	     anything.  */
1129 	  if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME)
1130 	    {
1131 	      gimple *rhs_def = SSA_NAME_DEF_STMT (rhs);
1132 	      int rhs_cost = estimate_num_insns (rhs_def, &eni_size_weights);
1133 
1134 	      gimple *lhs_def = SSA_NAME_DEF_STMT (lhs);
1135 	      int lhs_cost = estimate_num_insns (lhs_def, &eni_size_weights);
1136 
1137 	      if (rhs_cost > lhs_cost)
1138 	        record_equality (rhs, lhs, const_and_copies);
1139 	      else if (rhs_cost < lhs_cost)
1140 	        record_equality (lhs, rhs, const_and_copies);
1141 	    }
1142 	  else
1143 	    record_equality (lhs, rhs, const_and_copies);
1144 
1145 
1146 	  /* Any equivalence found for LHS may result in additional
1147 	     equivalences for other uses of LHS that we have already
1148 	     processed.  */
1149 	  back_propagate_equivalences (lhs, e, const_and_copies);
1150 	}
1151     }
1152 }
1153 
1154 /* PHI nodes can create equivalences too.
1155 
1156    Ignoring any alternatives which are the same as the result, if
1157    all the alternatives are equal, then the PHI node creates an
1158    equivalence.  */
1159 
1160 static void
record_equivalences_from_phis(basic_block bb)1161 record_equivalences_from_phis (basic_block bb)
1162 {
1163   gphi_iterator gsi;
1164 
1165   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
1166     {
1167       gphi *phi = gsi.phi ();
1168 
1169       /* We might eliminate the PHI, so advance GSI now.  */
1170       gsi_next (&gsi);
1171 
1172       tree lhs = gimple_phi_result (phi);
1173       tree rhs = NULL;
1174       size_t i;
1175 
1176       for (i = 0; i < gimple_phi_num_args (phi); i++)
1177 	{
1178 	  tree t = gimple_phi_arg_def (phi, i);
1179 
1180 	  /* Ignore alternatives which are the same as our LHS.  Since
1181 	     LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1182 	     can simply compare pointers.  */
1183 	  if (lhs == t)
1184 	    continue;
1185 
1186 	  /* If the associated edge is not marked as executable, then it
1187 	     can be ignored.  */
1188 	  if ((gimple_phi_arg_edge (phi, i)->flags & EDGE_EXECUTABLE) == 0)
1189 	    continue;
1190 
1191 	  t = dom_valueize (t);
1192 
1193 	  /* If T is an SSA_NAME and its associated edge is a backedge,
1194 	     then quit as we cannot utilize this equivalence.  */
1195 	  if (TREE_CODE (t) == SSA_NAME
1196 	      && (gimple_phi_arg_edge (phi, i)->flags & EDGE_DFS_BACK))
1197 	    break;
1198 
1199 	  /* If we have not processed an alternative yet, then set
1200 	     RHS to this alternative.  */
1201 	  if (rhs == NULL)
1202 	    rhs = t;
1203 	  /* If we have processed an alternative (stored in RHS), then
1204 	     see if it is equal to this one.  If it isn't, then stop
1205 	     the search.  */
1206 	  else if (! operand_equal_for_phi_arg_p (rhs, t))
1207 	    break;
1208 	}
1209 
1210       /* If we had no interesting alternatives, then all the RHS alternatives
1211 	 must have been the same as LHS.  */
1212       if (!rhs)
1213 	rhs = lhs;
1214 
1215       /* If we managed to iterate through each PHI alternative without
1216 	 breaking out of the loop, then we have a PHI which may create
1217 	 a useful equivalence.  We do not need to record unwind data for
1218 	 this, since this is a true assignment and not an equivalence
1219 	 inferred from a comparison.  All uses of this ssa name are dominated
1220 	 by this assignment, so unwinding just costs time and space.  */
1221       if (i == gimple_phi_num_args (phi))
1222 	{
1223 	  if (may_propagate_copy (lhs, rhs))
1224 	    set_ssa_name_value (lhs, rhs);
1225 	  else if (virtual_operand_p (lhs))
1226 	    {
1227 	      gimple *use_stmt;
1228 	      imm_use_iterator iter;
1229 	      use_operand_p use_p;
1230 	      /* For virtual operands we have to propagate into all uses as
1231 	         otherwise we will create overlapping life-ranges.  */
1232 	      FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
1233 	        FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1234 	          SET_USE (use_p, rhs);
1235 	      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
1236 	        SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
1237 	      gimple_stmt_iterator tmp_gsi = gsi_for_stmt (phi);
1238 	      remove_phi_node (&tmp_gsi, true);
1239 	    }
1240 	}
1241     }
1242 }
1243 
1244 /* Record any equivalences created by the incoming edge to BB into
1245    CONST_AND_COPIES and AVAIL_EXPRS_STACK.  If BB has more than one
1246    incoming edge, then no equivalence is created.  */
1247 
1248 static void
record_equivalences_from_incoming_edge(basic_block bb,class const_and_copies * const_and_copies,class avail_exprs_stack * avail_exprs_stack)1249 record_equivalences_from_incoming_edge (basic_block bb,
1250     class const_and_copies *const_and_copies,
1251     class avail_exprs_stack *avail_exprs_stack)
1252 {
1253   edge e;
1254   basic_block parent;
1255 
1256   /* If our parent block ended with a control statement, then we may be
1257      able to record some equivalences based on which outgoing edge from
1258      the parent was followed.  */
1259   parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1260 
1261   e = single_pred_edge_ignoring_loop_edges (bb, true);
1262 
1263   /* If we had a single incoming edge from our parent block, then enter
1264      any data associated with the edge into our tables.  */
1265   if (e && e->src == parent)
1266     record_temporary_equivalences (e, const_and_copies, avail_exprs_stack);
1267 }
1268 
1269 /* Dump statistics for the hash table HTAB.  */
1270 
1271 static void
htab_statistics(FILE * file,const hash_table<expr_elt_hasher> & htab)1272 htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab)
1273 {
1274   fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1275 	   (long) htab.size (),
1276 	   (long) htab.elements (),
1277 	   htab.collisions ());
1278 }
1279 
1280 /* Dump SSA statistics on FILE.  */
1281 
1282 static void
dump_dominator_optimization_stats(FILE * file,hash_table<expr_elt_hasher> * avail_exprs)1283 dump_dominator_optimization_stats (FILE *file,
1284 				   hash_table<expr_elt_hasher> *avail_exprs)
1285 {
1286   fprintf (file, "Total number of statements:                   %6ld\n\n",
1287 	   opt_stats.num_stmts);
1288   fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
1289            opt_stats.num_exprs_considered);
1290 
1291   fprintf (file, "\nHash table statistics:\n");
1292 
1293   fprintf (file, "    avail_exprs: ");
1294   htab_statistics (file, *avail_exprs);
1295 }
1296 
1297 
1298 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1299    This constrains the cases in which we may treat this as assignment.  */
1300 
1301 static void
record_equality(tree x,tree y,class const_and_copies * const_and_copies)1302 record_equality (tree x, tree y, class const_and_copies *const_and_copies)
1303 {
1304   tree prev_x = NULL, prev_y = NULL;
1305 
1306   if (tree_swap_operands_p (x, y))
1307     std::swap (x, y);
1308 
1309   /* Most of the time tree_swap_operands_p does what we want.  But there
1310      are cases where we know one operand is better for copy propagation than
1311      the other.  Given no other code cares about ordering of equality
1312      comparison operators for that purpose, we just handle the special cases
1313      here.  */
1314   if (TREE_CODE (x) == SSA_NAME && TREE_CODE (y) == SSA_NAME)
1315     {
1316       /* If one operand is a single use operand, then make it
1317 	 X.  This will preserve its single use properly and if this
1318 	 conditional is eliminated, the computation of X can be
1319 	 eliminated as well.  */
1320       if (has_single_use (y) && ! has_single_use (x))
1321 	std::swap (x, y);
1322     }
1323   if (TREE_CODE (x) == SSA_NAME)
1324     prev_x = SSA_NAME_VALUE (x);
1325   if (TREE_CODE (y) == SSA_NAME)
1326     prev_y = SSA_NAME_VALUE (y);
1327 
1328   /* If one of the previous values is invariant, or invariant in more loops
1329      (by depth), then use that.
1330      Otherwise it doesn't matter which value we choose, just so
1331      long as we canonicalize on one value.  */
1332   if (is_gimple_min_invariant (y))
1333     ;
1334   else if (is_gimple_min_invariant (x))
1335     prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1336   else if (prev_x && is_gimple_min_invariant (prev_x))
1337     x = y, y = prev_x, prev_x = prev_y;
1338   else if (prev_y)
1339     y = prev_y;
1340 
1341   /* After the swapping, we must have one SSA_NAME.  */
1342   if (TREE_CODE (x) != SSA_NAME)
1343     return;
1344 
1345   /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1346      variable compared against zero.  If we're honoring signed zeros,
1347      then we cannot record this value unless we know that the value is
1348      nonzero.  */
1349   if (HONOR_SIGNED_ZEROS (x)
1350       && (TREE_CODE (y) != REAL_CST
1351 	  || real_equal (&dconst0, &TREE_REAL_CST (y))))
1352     return;
1353 
1354   const_and_copies->record_const_or_copy (x, y, prev_x);
1355 }
1356 
1357 /* Returns true when STMT is a simple iv increment.  It detects the
1358    following situation:
1359 
1360    i_1 = phi (..., i_k)
1361    [...]
1362    i_j = i_{j-1}  for each j : 2 <= j <= k-1
1363    [...]
1364    i_k = i_{k-1} +/- ...  */
1365 
1366 bool
simple_iv_increment_p(gimple * stmt)1367 simple_iv_increment_p (gimple *stmt)
1368 {
1369   enum tree_code code;
1370   tree lhs, preinc;
1371   gimple *phi;
1372   size_t i;
1373 
1374   if (gimple_code (stmt) != GIMPLE_ASSIGN)
1375     return false;
1376 
1377   lhs = gimple_assign_lhs (stmt);
1378   if (TREE_CODE (lhs) != SSA_NAME)
1379     return false;
1380 
1381   code = gimple_assign_rhs_code (stmt);
1382   if (code != PLUS_EXPR
1383       && code != MINUS_EXPR
1384       && code != POINTER_PLUS_EXPR)
1385     return false;
1386 
1387   preinc = gimple_assign_rhs1 (stmt);
1388   if (TREE_CODE (preinc) != SSA_NAME)
1389     return false;
1390 
1391   phi = SSA_NAME_DEF_STMT (preinc);
1392   while (gimple_code (phi) != GIMPLE_PHI)
1393     {
1394       /* Follow trivial copies, but not the DEF used in a back edge,
1395 	 so that we don't prevent coalescing.  */
1396       if (!gimple_assign_ssa_name_copy_p (phi))
1397 	return false;
1398       preinc = gimple_assign_rhs1 (phi);
1399       phi = SSA_NAME_DEF_STMT (preinc);
1400     }
1401 
1402   for (i = 0; i < gimple_phi_num_args (phi); i++)
1403     if (gimple_phi_arg_def (phi, i) == lhs)
1404       return true;
1405 
1406   return false;
1407 }
1408 
1409 /* Propagate know values from SSA_NAME_VALUE into the PHI nodes of the
1410    successors of BB.  */
1411 
1412 static void
cprop_into_successor_phis(basic_block bb,class const_and_copies * const_and_copies)1413 cprop_into_successor_phis (basic_block bb,
1414 			   class const_and_copies *const_and_copies)
1415 {
1416   edge e;
1417   edge_iterator ei;
1418 
1419   FOR_EACH_EDGE (e, ei, bb->succs)
1420     {
1421       int indx;
1422       gphi_iterator gsi;
1423 
1424       /* If this is an abnormal edge, then we do not want to copy propagate
1425 	 into the PHI alternative associated with this edge.  */
1426       if (e->flags & EDGE_ABNORMAL)
1427 	continue;
1428 
1429       gsi = gsi_start_phis (e->dest);
1430       if (gsi_end_p (gsi))
1431 	continue;
1432 
1433       /* We may have an equivalence associated with this edge.  While
1434 	 we cannot propagate it into non-dominated blocks, we can
1435 	 propagate them into PHIs in non-dominated blocks.  */
1436 
1437       /* Push the unwind marker so we can reset the const and copies
1438 	 table back to its original state after processing this edge.  */
1439       const_and_copies->push_marker ();
1440 
1441       /* Extract and record any simple NAME = VALUE equivalences.
1442 
1443 	 Don't bother with [01] = COND equivalences, they're not useful
1444 	 here.  */
1445       class edge_info *edge_info = (class edge_info *) e->aux;
1446 
1447       if (edge_info)
1448 	{
1449 	  edge_info::equiv_pair *seq;
1450 	  for (int i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
1451 	    {
1452 	      tree lhs = seq->first;
1453 	      tree rhs = seq->second;
1454 
1455 	      if (lhs && TREE_CODE (lhs) == SSA_NAME)
1456 		const_and_copies->record_const_or_copy (lhs, rhs);
1457 	    }
1458 
1459 	}
1460 
1461       indx = e->dest_idx;
1462       for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
1463 	{
1464 	  tree new_val;
1465 	  use_operand_p orig_p;
1466 	  tree orig_val;
1467           gphi *phi = gsi.phi ();
1468 
1469 	  /* The alternative may be associated with a constant, so verify
1470 	     it is an SSA_NAME before doing anything with it.  */
1471 	  orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
1472 	  orig_val = get_use_from_ptr (orig_p);
1473 	  if (TREE_CODE (orig_val) != SSA_NAME)
1474 	    continue;
1475 
1476 	  /* If we have *ORIG_P in our constant/copy table, then replace
1477 	     ORIG_P with its value in our constant/copy table.  */
1478 	  new_val = SSA_NAME_VALUE (orig_val);
1479 	  if (new_val
1480 	      && new_val != orig_val
1481 	      && may_propagate_copy (orig_val, new_val))
1482 	    propagate_value (orig_p, new_val);
1483 	}
1484 
1485       const_and_copies->pop_to_marker ();
1486     }
1487 }
1488 
1489 edge
before_dom_children(basic_block bb)1490 dom_opt_dom_walker::before_dom_children (basic_block bb)
1491 {
1492   gimple_stmt_iterator gsi;
1493 
1494   if (dump_file && (dump_flags & TDF_DETAILS))
1495     fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
1496 
1497   m_evrp_range_analyzer->enter (bb);
1498 
1499   /* Push a marker on the stacks of local information so that we know how
1500      far to unwind when we finalize this block.  */
1501   m_avail_exprs_stack->push_marker ();
1502   m_const_and_copies->push_marker ();
1503 
1504   record_equivalences_from_incoming_edge (bb, m_const_and_copies,
1505 					  m_avail_exprs_stack);
1506 
1507   /* PHI nodes can create equivalences too.  */
1508   record_equivalences_from_phis (bb);
1509 
1510   /* Create equivalences from redundant PHIs.  PHIs are only truly
1511      redundant when they exist in the same block, so push another
1512      marker and unwind right afterwards.  */
1513   m_avail_exprs_stack->push_marker ();
1514   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1515     eliminate_redundant_computations (&gsi, m_const_and_copies,
1516 				      m_avail_exprs_stack);
1517   m_avail_exprs_stack->pop_to_marker ();
1518 
1519   edge taken_edge = NULL;
1520   /* Initialize visited flag ahead of us, it has undefined state on
1521      pass entry.  */
1522   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1523     gimple_set_visited (gsi_stmt (gsi), false);
1524   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1525     {
1526       /* Do not optimize a stmt twice, substitution might end up with
1527          _3 = _3 which is not valid.  */
1528       if (gimple_visited_p (gsi_stmt (gsi)))
1529 	{
1530 	  gsi_next (&gsi);
1531 	  continue;
1532 	}
1533 
1534       m_state->record_ranges_from_stmt (gsi_stmt (gsi), false);
1535       bool removed_p = false;
1536       taken_edge = this->optimize_stmt (bb, &gsi, &removed_p);
1537       if (!removed_p)
1538 	gimple_set_visited (gsi_stmt (gsi), true);
1539 
1540       /* Go back and visit stmts inserted by folding after substituting
1541 	 into the stmt at gsi.  */
1542       if (gsi_end_p (gsi))
1543 	{
1544 	  gcc_checking_assert (removed_p);
1545 	  gsi = gsi_last_bb (bb);
1546 	  while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)))
1547 	    gsi_prev (&gsi);
1548 	}
1549       else
1550 	{
1551 	  do
1552 	    {
1553 	      gsi_prev (&gsi);
1554 	    }
1555 	  while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)));
1556 	}
1557       if (gsi_end_p (gsi))
1558 	gsi = gsi_start_bb (bb);
1559       else
1560 	gsi_next (&gsi);
1561     }
1562 
1563   /* Now prepare to process dominated blocks.  */
1564   record_edge_info (bb);
1565   cprop_into_successor_phis (bb, m_const_and_copies);
1566   if (taken_edge && !dbg_cnt (dom_unreachable_edges))
1567     return NULL;
1568 
1569   return taken_edge;
1570 }
1571 
1572 /* We have finished processing the dominator children of BB, perform
1573    any finalization actions in preparation for leaving this node in
1574    the dominator tree.  */
1575 
1576 void
after_dom_children(basic_block bb)1577 dom_opt_dom_walker::after_dom_children (basic_block bb)
1578 {
1579   m_threader->thread_outgoing_edges (bb);
1580   m_avail_exprs_stack->pop_to_marker ();
1581   m_const_and_copies->pop_to_marker ();
1582   m_evrp_range_analyzer->leave (bb);
1583 }
1584 
1585 /* Search for redundant computations in STMT.  If any are found, then
1586    replace them with the variable holding the result of the computation.
1587 
1588    If safe, record this expression into AVAIL_EXPRS_STACK and
1589    CONST_AND_COPIES.  */
1590 
1591 static void
eliminate_redundant_computations(gimple_stmt_iterator * gsi,class const_and_copies * const_and_copies,class avail_exprs_stack * avail_exprs_stack)1592 eliminate_redundant_computations (gimple_stmt_iterator* gsi,
1593 				  class const_and_copies *const_and_copies,
1594 				  class avail_exprs_stack *avail_exprs_stack)
1595 {
1596   tree expr_type;
1597   tree cached_lhs;
1598   tree def;
1599   bool insert = true;
1600   bool assigns_var_p = false;
1601 
1602   gimple *stmt = gsi_stmt (*gsi);
1603 
1604   if (gimple_code (stmt) == GIMPLE_PHI)
1605     def = gimple_phi_result (stmt);
1606   else
1607     def = gimple_get_lhs (stmt);
1608 
1609   /* Certain expressions on the RHS can be optimized away, but cannot
1610      themselves be entered into the hash tables.  */
1611   if (! def
1612       || TREE_CODE (def) != SSA_NAME
1613       || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
1614       || gimple_vdef (stmt)
1615       /* Do not record equivalences for increments of ivs.  This would create
1616 	 overlapping live ranges for a very questionable gain.  */
1617       || simple_iv_increment_p (stmt))
1618     insert = false;
1619 
1620   /* Check if the expression has been computed before.  */
1621   cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, insert, true);
1622 
1623   opt_stats.num_exprs_considered++;
1624 
1625   /* Get the type of the expression we are trying to optimize.  */
1626   if (is_gimple_assign (stmt))
1627     {
1628       expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
1629       assigns_var_p = true;
1630     }
1631   else if (gimple_code (stmt) == GIMPLE_COND)
1632     expr_type = boolean_type_node;
1633   else if (is_gimple_call (stmt))
1634     {
1635       gcc_assert (gimple_call_lhs (stmt));
1636       expr_type = TREE_TYPE (gimple_call_lhs (stmt));
1637       assigns_var_p = true;
1638     }
1639   else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
1640     expr_type = TREE_TYPE (gimple_switch_index (swtch_stmt));
1641   else if (gimple_code (stmt) == GIMPLE_PHI)
1642     /* We can't propagate into a phi, so the logic below doesn't apply.
1643        Instead record an equivalence between the cached LHS and the
1644        PHI result of this statement, provided they are in the same block.
1645        This should be sufficient to kill the redundant phi.  */
1646     {
1647       if (def && cached_lhs)
1648 	const_and_copies->record_const_or_copy (def, cached_lhs);
1649       return;
1650     }
1651   else
1652     gcc_unreachable ();
1653 
1654   if (!cached_lhs)
1655     return;
1656 
1657   /* It is safe to ignore types here since we have already done
1658      type checking in the hashing and equality routines.  In fact
1659      type checking here merely gets in the way of constant
1660      propagation.  Also, make sure that it is safe to propagate
1661      CACHED_LHS into the expression in STMT.  */
1662   if ((TREE_CODE (cached_lhs) != SSA_NAME
1663        && (assigns_var_p
1664            || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
1665       || may_propagate_copy_into_stmt (stmt, cached_lhs))
1666   {
1667       gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
1668 			   || is_gimple_min_invariant (cached_lhs));
1669 
1670       if (dump_file && (dump_flags & TDF_DETAILS))
1671 	{
1672 	  fprintf (dump_file, "  Replaced redundant expr '");
1673 	  print_gimple_expr (dump_file, stmt, 0, dump_flags);
1674 	  fprintf (dump_file, "' with '");
1675 	  print_generic_expr (dump_file, cached_lhs, dump_flags);
1676           fprintf (dump_file, "'\n");
1677 	}
1678 
1679       opt_stats.num_re++;
1680 
1681       if (assigns_var_p
1682 	  && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
1683 	cached_lhs = fold_convert (expr_type, cached_lhs);
1684 
1685       propagate_tree_value_into_stmt (gsi, cached_lhs);
1686 
1687       /* Since it is always necessary to mark the result as modified,
1688          perhaps we should move this into propagate_tree_value_into_stmt
1689          itself.  */
1690       gimple_set_modified (gsi_stmt (*gsi), true);
1691   }
1692 }
1693 
1694 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
1695    the available expressions table or the const_and_copies table.
1696    Detect and record those equivalences into AVAIL_EXPRS_STACK.
1697 
1698    We handle only very simple copy equivalences here.  The heavy
1699    lifing is done by eliminate_redundant_computations.  */
1700 
1701 static void
record_equivalences_from_stmt(gimple * stmt,int may_optimize_p,class avail_exprs_stack * avail_exprs_stack)1702 record_equivalences_from_stmt (gimple *stmt, int may_optimize_p,
1703 			       class avail_exprs_stack *avail_exprs_stack)
1704 {
1705   tree lhs;
1706   enum tree_code lhs_code;
1707 
1708   gcc_assert (is_gimple_assign (stmt));
1709 
1710   lhs = gimple_assign_lhs (stmt);
1711   lhs_code = TREE_CODE (lhs);
1712 
1713   if (lhs_code == SSA_NAME
1714       && gimple_assign_single_p (stmt))
1715     {
1716       tree rhs = gimple_assign_rhs1 (stmt);
1717 
1718       /* If the RHS of the assignment is a constant or another variable that
1719 	 may be propagated, register it in the CONST_AND_COPIES table.  We
1720 	 do not need to record unwind data for this, since this is a true
1721 	 assignment and not an equivalence inferred from a comparison.  All
1722 	 uses of this ssa name are dominated by this assignment, so unwinding
1723 	 just costs time and space.  */
1724       if (may_optimize_p
1725 	  && (TREE_CODE (rhs) == SSA_NAME
1726 	      || is_gimple_min_invariant (rhs)))
1727 	{
1728 	  rhs = dom_valueize (rhs);
1729 
1730 	  if (dump_file && (dump_flags & TDF_DETAILS))
1731 	    {
1732 	      fprintf (dump_file, "==== ASGN ");
1733 	      print_generic_expr (dump_file, lhs);
1734 	      fprintf (dump_file, " = ");
1735 	      print_generic_expr (dump_file, rhs);
1736 	      fprintf (dump_file, "\n");
1737 	    }
1738 
1739 	  set_ssa_name_value (lhs, rhs);
1740 	}
1741     }
1742 
1743   /* Make sure we can propagate &x + CST.  */
1744   if (lhs_code == SSA_NAME
1745       && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
1746       && TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR
1747       && TREE_CODE (gimple_assign_rhs2 (stmt)) == INTEGER_CST)
1748     {
1749       tree op0 = gimple_assign_rhs1 (stmt);
1750       tree op1 = gimple_assign_rhs2 (stmt);
1751       tree new_rhs
1752 	= build1 (ADDR_EXPR, TREE_TYPE (op0),
1753 		  fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (op0)),
1754 			       unshare_expr (op0), fold_convert (ptr_type_node,
1755 								 op1)));
1756       if (dump_file && (dump_flags & TDF_DETAILS))
1757 	{
1758 	  fprintf (dump_file, "==== ASGN ");
1759 	  print_generic_expr (dump_file, lhs);
1760 	  fprintf (dump_file, " = ");
1761 	  print_generic_expr (dump_file, new_rhs);
1762 	  fprintf (dump_file, "\n");
1763 	}
1764 
1765       set_ssa_name_value (lhs, new_rhs);
1766     }
1767 
1768   /* A memory store, even an aliased store, creates a useful
1769      equivalence.  By exchanging the LHS and RHS, creating suitable
1770      vops and recording the result in the available expression table,
1771      we may be able to expose more redundant loads.  */
1772   if (!gimple_has_volatile_ops (stmt)
1773       && gimple_references_memory_p (stmt)
1774       && gimple_assign_single_p (stmt)
1775       && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
1776 	  || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
1777       && !is_gimple_reg (lhs))
1778     {
1779       tree rhs = gimple_assign_rhs1 (stmt);
1780       gassign *new_stmt;
1781 
1782       /* Build a new statement with the RHS and LHS exchanged.  */
1783       if (TREE_CODE (rhs) == SSA_NAME)
1784         {
1785           /* NOTE tuples.  The call to gimple_build_assign below replaced
1786              a call to build_gimple_modify_stmt, which did not set the
1787              SSA_NAME_DEF_STMT on the LHS of the assignment.  Doing so
1788              may cause an SSA validation failure, as the LHS may be a
1789              default-initialized name and should have no definition.  I'm
1790              a bit dubious of this, as the artificial statement that we
1791              generate here may in fact be ill-formed, but it is simply
1792              used as an internal device in this pass, and never becomes
1793              part of the CFG.  */
1794 	  gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
1795           new_stmt = gimple_build_assign (rhs, lhs);
1796           SSA_NAME_DEF_STMT (rhs) = defstmt;
1797         }
1798       else
1799         new_stmt = gimple_build_assign (rhs, lhs);
1800 
1801       gimple_set_vuse (new_stmt, gimple_vdef (stmt));
1802 
1803       /* Finally enter the statement into the available expression
1804 	 table.  */
1805       avail_exprs_stack->lookup_avail_expr (new_stmt, true, true);
1806     }
1807 }
1808 
1809 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
1810    CONST_AND_COPIES.  */
1811 
1812 static void
cprop_operand(gimple * stmt,use_operand_p op_p,range_query * query)1813 cprop_operand (gimple *stmt, use_operand_p op_p, range_query *query)
1814 {
1815   tree val;
1816   tree op = USE_FROM_PTR (op_p);
1817 
1818   /* If the operand has a known constant value or it is known to be a
1819      copy of some other variable, use the value or copy stored in
1820      CONST_AND_COPIES.  */
1821   val = SSA_NAME_VALUE (op);
1822   if (!val)
1823     {
1824       value_range r;
1825       tree single;
1826       if (query->range_of_expr (r, op, stmt) && r.singleton_p (&single))
1827 	val = single;
1828     }
1829 
1830   if (val && val != op)
1831     {
1832       /* Do not replace hard register operands in asm statements.  */
1833       if (gimple_code (stmt) == GIMPLE_ASM
1834 	  && !may_propagate_copy_into_asm (op))
1835 	return;
1836 
1837       /* Certain operands are not allowed to be copy propagated due
1838 	 to their interaction with exception handling and some GCC
1839 	 extensions.  */
1840       if (!may_propagate_copy (op, val))
1841 	return;
1842 
1843       /* Do not propagate copies into BIVs.
1844          See PR23821 and PR62217 for how this can disturb IV and
1845 	 number of iteration analysis.  */
1846       if (TREE_CODE (val) != INTEGER_CST)
1847 	{
1848 	  gimple *def = SSA_NAME_DEF_STMT (op);
1849 	  if (gimple_code (def) == GIMPLE_PHI
1850 	      && gimple_bb (def)->loop_father->header == gimple_bb (def))
1851 	    return;
1852 	}
1853 
1854       /* Dump details.  */
1855       if (dump_file && (dump_flags & TDF_DETAILS))
1856 	{
1857 	  fprintf (dump_file, "  Replaced '");
1858 	  print_generic_expr (dump_file, op, dump_flags);
1859 	  fprintf (dump_file, "' with %s '",
1860 		   (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
1861 	  print_generic_expr (dump_file, val, dump_flags);
1862 	  fprintf (dump_file, "'\n");
1863 	}
1864 
1865       if (TREE_CODE (val) != SSA_NAME)
1866 	opt_stats.num_const_prop++;
1867       else
1868 	opt_stats.num_copy_prop++;
1869 
1870       propagate_value (op_p, val);
1871 
1872       /* And note that we modified this statement.  This is now
1873 	 safe, even if we changed virtual operands since we will
1874 	 rescan the statement and rewrite its operands again.  */
1875       gimple_set_modified (stmt, true);
1876     }
1877 }
1878 
1879 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
1880    known value for that SSA_NAME (or NULL if no value is known).
1881 
1882    Propagate values from CONST_AND_COPIES into the uses, vuses and
1883    vdef_ops of STMT.  */
1884 
1885 static void
cprop_into_stmt(gimple * stmt,range_query * query)1886 cprop_into_stmt (gimple *stmt, range_query *query)
1887 {
1888   use_operand_p op_p;
1889   ssa_op_iter iter;
1890   tree last_copy_propagated_op = NULL;
1891 
1892   FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
1893     {
1894       tree old_op = USE_FROM_PTR (op_p);
1895 
1896       /* If we have A = B and B = A in the copy propagation tables
1897 	 (due to an equality comparison), avoid substituting B for A
1898 	 then A for B in the trivially discovered cases.   This allows
1899 	 optimization of statements were A and B appear as input
1900 	 operands.  */
1901       if (old_op != last_copy_propagated_op)
1902 	{
1903 	  cprop_operand (stmt, op_p, query);
1904 
1905 	  tree new_op = USE_FROM_PTR (op_p);
1906 	  if (new_op != old_op && TREE_CODE (new_op) == SSA_NAME)
1907 	    last_copy_propagated_op = new_op;
1908 	}
1909     }
1910 }
1911 
1912 /* If STMT contains a relational test, try to convert it into an
1913    equality test if there is only a single value which can ever
1914    make the test true.
1915 
1916    For example, if the expression hash table contains:
1917 
1918     TRUE = (i <= 1)
1919 
1920    And we have a test within statement of i >= 1, then we can safely
1921    rewrite the test as i == 1 since there only a single value where
1922    the test is true.
1923 
1924    This is similar to code in VRP.  */
1925 
1926 void
test_for_singularity(gimple * stmt,avail_exprs_stack * avail_exprs_stack)1927 dom_opt_dom_walker::test_for_singularity (gimple *stmt,
1928 					  avail_exprs_stack *avail_exprs_stack)
1929 {
1930   /* We want to support gimple conditionals as well as assignments
1931      where the RHS contains a conditional.  */
1932   if (is_gimple_assign (stmt) || gimple_code (stmt) == GIMPLE_COND)
1933     {
1934       enum tree_code code = ERROR_MARK;
1935       tree lhs, rhs;
1936 
1937       /* Extract the condition of interest from both forms we support.  */
1938       if (is_gimple_assign (stmt))
1939 	{
1940 	  code = gimple_assign_rhs_code (stmt);
1941 	  lhs = gimple_assign_rhs1 (stmt);
1942 	  rhs = gimple_assign_rhs2 (stmt);
1943 	}
1944       else if (gimple_code (stmt) == GIMPLE_COND)
1945 	{
1946 	  code = gimple_cond_code (as_a <gcond *> (stmt));
1947 	  lhs = gimple_cond_lhs (as_a <gcond *> (stmt));
1948 	  rhs = gimple_cond_rhs (as_a <gcond *> (stmt));
1949 	}
1950 
1951       /* We're looking for a relational test using LE/GE.  Also note we can
1952 	 canonicalize LT/GT tests against constants into LE/GT tests.  */
1953       if (code == LE_EXPR || code == GE_EXPR
1954 	  || ((code == LT_EXPR || code == GT_EXPR)
1955 	       && TREE_CODE (rhs) == INTEGER_CST))
1956 	{
1957 	  /* For LT_EXPR and GT_EXPR, canonicalize to LE_EXPR and GE_EXPR.  */
1958 	  if (code == LT_EXPR)
1959 	    rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (rhs),
1960 			       rhs, build_int_cst (TREE_TYPE (rhs), 1));
1961 
1962 	  if (code == GT_EXPR)
1963 	    rhs = fold_build2 (PLUS_EXPR, TREE_TYPE (rhs),
1964 			       rhs, build_int_cst (TREE_TYPE (rhs), 1));
1965 
1966 	  /* Determine the code we want to check for in the hash table.  */
1967 	  enum tree_code test_code;
1968 	  if (code == GE_EXPR || code == GT_EXPR)
1969 	    test_code = LE_EXPR;
1970 	  else
1971 	    test_code = GE_EXPR;
1972 
1973 	  /* Update the dummy statement so we can query the hash tables.  */
1974 	  gimple_cond_set_code (m_dummy_cond, test_code);
1975 	  gimple_cond_set_lhs (m_dummy_cond, lhs);
1976 	  gimple_cond_set_rhs (m_dummy_cond, rhs);
1977 	  tree cached_lhs
1978 	    = avail_exprs_stack->lookup_avail_expr (m_dummy_cond,
1979 						    false, false);
1980 
1981 	  /* If the lookup returned 1 (true), then the expression we
1982 	     queried was in the hash table.  As a result there is only
1983 	     one value that makes the original conditional true.  Update
1984 	     STMT accordingly.  */
1985 	  if (cached_lhs && integer_onep (cached_lhs))
1986 	    {
1987 	      if (is_gimple_assign (stmt))
1988 		{
1989 		  gimple_assign_set_rhs_code (stmt, EQ_EXPR);
1990 		  gimple_assign_set_rhs2 (stmt, rhs);
1991 		  gimple_set_modified (stmt, true);
1992 		}
1993 	      else
1994 		{
1995 		  gimple_set_modified (stmt, true);
1996 		  gimple_cond_set_code (as_a <gcond *> (stmt), EQ_EXPR);
1997 		  gimple_cond_set_rhs (as_a <gcond *> (stmt), rhs);
1998 		  gimple_set_modified (stmt, true);
1999 		}
2000 	    }
2001 	}
2002     }
2003 }
2004 
2005 /* If STMT is a comparison of two uniform vectors reduce it to a comparison
2006    of scalar objects, otherwise leave STMT unchanged.  */
2007 
2008 static void
reduce_vector_comparison_to_scalar_comparison(gimple * stmt)2009 reduce_vector_comparison_to_scalar_comparison (gimple *stmt)
2010 {
2011   if (gimple_code (stmt) == GIMPLE_COND)
2012     {
2013       tree lhs = gimple_cond_lhs (stmt);
2014       tree rhs = gimple_cond_rhs (stmt);
2015 
2016       /* We may have a vector comparison where both arms are uniform
2017 	 vectors.  If so, we can simplify the vector comparison down
2018 	 to a scalar comparison.  */
2019       if (TREE_CODE (TREE_TYPE (lhs)) == VECTOR_TYPE
2020 	  && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE)
2021 	{
2022 	  /* If either operand is an SSA_NAME, then look back to its
2023 	     defining statement to try and get at a suitable source.  */
2024 	  if (TREE_CODE (rhs) == SSA_NAME)
2025 	    {
2026 	      gimple *def_stmt = SSA_NAME_DEF_STMT (rhs);
2027 	      if (gimple_assign_single_p (def_stmt))
2028 		rhs = gimple_assign_rhs1 (def_stmt);
2029 	    }
2030 
2031 	  if (TREE_CODE (lhs) == SSA_NAME)
2032 	    {
2033 	      gimple *def_stmt = SSA_NAME_DEF_STMT (lhs);
2034 	      if (gimple_assign_single_p (def_stmt))
2035 		lhs = gimple_assign_rhs1 (def_stmt);
2036 	    }
2037 
2038 	  /* Now see if they are both uniform vectors and if so replace
2039 	     the vector comparison with a scalar comparison.  */
2040 	  tree rhs_elem = rhs ? uniform_vector_p (rhs) : NULL_TREE;
2041 	  tree lhs_elem = lhs ? uniform_vector_p (lhs) : NULL_TREE;
2042 	  if (rhs_elem && lhs_elem)
2043 	    {
2044 	      if (dump_file && dump_flags & TDF_DETAILS)
2045 		{
2046 		  fprintf (dump_file, "Reducing vector comparison: ");
2047 		  print_gimple_stmt (dump_file, stmt, 0);
2048 		}
2049 
2050 	      gimple_cond_set_rhs (as_a <gcond *>(stmt), rhs_elem);
2051 	      gimple_cond_set_lhs (as_a <gcond *>(stmt), lhs_elem);
2052 	      gimple_set_modified (stmt, true);
2053 
2054 	      if (dump_file && dump_flags & TDF_DETAILS)
2055 		{
2056 		  fprintf (dump_file, "To scalar equivalent: ");
2057 		  print_gimple_stmt (dump_file, stmt, 0);
2058 		  fprintf (dump_file, "\n");
2059 		}
2060 	    }
2061 	}
2062     }
2063 }
2064 
2065 /* Optimize the statement in block BB pointed to by iterator SI.
2066 
2067    We try to perform some simplistic global redundancy elimination and
2068    constant propagation:
2069 
2070    1- To detect global redundancy, we keep track of expressions that have
2071       been computed in this block and its dominators.  If we find that the
2072       same expression is computed more than once, we eliminate repeated
2073       computations by using the target of the first one.
2074 
2075    2- Constant values and copy assignments.  This is used to do very
2076       simplistic constant and copy propagation.  When a constant or copy
2077       assignment is found, we map the value on the RHS of the assignment to
2078       the variable in the LHS in the CONST_AND_COPIES table.
2079 
2080    3- Very simple redundant store elimination is performed.
2081 
2082    4- We can simplify a condition to a constant or from a relational
2083       condition to an equality condition.  */
2084 
2085 edge
optimize_stmt(basic_block bb,gimple_stmt_iterator * si,bool * removed_p)2086 dom_opt_dom_walker::optimize_stmt (basic_block bb, gimple_stmt_iterator *si,
2087 				   bool *removed_p)
2088 {
2089   gimple *stmt, *old_stmt;
2090   bool may_optimize_p;
2091   bool modified_p = false;
2092   bool was_noreturn;
2093   edge retval = NULL;
2094 
2095   old_stmt = stmt = gsi_stmt (*si);
2096   was_noreturn = is_gimple_call (stmt) && gimple_call_noreturn_p (stmt);
2097 
2098   if (dump_file && (dump_flags & TDF_DETAILS))
2099     {
2100       fprintf (dump_file, "Optimizing statement ");
2101       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2102     }
2103 
2104   /* STMT may be a comparison of uniform vectors that we can simplify
2105      down to a comparison of scalars.  Do that transformation first
2106      so that all the scalar optimizations from here onward apply.  */
2107   reduce_vector_comparison_to_scalar_comparison (stmt);
2108 
2109   update_stmt_if_modified (stmt);
2110   opt_stats.num_stmts++;
2111 
2112   /* Const/copy propagate into USES, VUSES and the RHS of VDEFs.  */
2113   cprop_into_stmt (stmt, m_evrp_range_analyzer);
2114 
2115   /* If the statement has been modified with constant replacements,
2116      fold its RHS before checking for redundant computations.  */
2117   if (gimple_modified_p (stmt))
2118     {
2119       tree rhs = NULL;
2120 
2121       /* Try to fold the statement making sure that STMT is kept
2122 	 up to date.  */
2123       if (fold_stmt (si))
2124 	{
2125 	  stmt = gsi_stmt (*si);
2126 	  gimple_set_modified (stmt, true);
2127 
2128 	  if (dump_file && (dump_flags & TDF_DETAILS))
2129 	    {
2130 	      fprintf (dump_file, "  Folded to: ");
2131 	      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2132 	    }
2133 	}
2134 
2135       /* We only need to consider cases that can yield a gimple operand.  */
2136       if (gimple_assign_single_p (stmt))
2137         rhs = gimple_assign_rhs1 (stmt);
2138       else if (gimple_code (stmt) == GIMPLE_GOTO)
2139         rhs = gimple_goto_dest (stmt);
2140       else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2141         /* This should never be an ADDR_EXPR.  */
2142         rhs = gimple_switch_index (swtch_stmt);
2143 
2144       if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
2145         recompute_tree_invariant_for_addr_expr (rhs);
2146 
2147       /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
2148 	 even if fold_stmt updated the stmt already and thus cleared
2149 	 gimple_modified_p flag on it.  */
2150       modified_p = true;
2151     }
2152 
2153   /* Check for redundant computations.  Do this optimization only
2154      for assignments that have no volatile ops and conditionals.  */
2155   may_optimize_p = (!gimple_has_side_effects (stmt)
2156                     && (is_gimple_assign (stmt)
2157                         || (is_gimple_call (stmt)
2158                             && gimple_call_lhs (stmt) != NULL_TREE)
2159                         || gimple_code (stmt) == GIMPLE_COND
2160                         || gimple_code (stmt) == GIMPLE_SWITCH));
2161 
2162   if (may_optimize_p)
2163     {
2164       if (gimple_code (stmt) == GIMPLE_CALL)
2165 	{
2166 	  /* Resolve __builtin_constant_p.  If it hasn't been
2167 	     folded to integer_one_node by now, it's fairly
2168 	     certain that the value simply isn't constant.  */
2169 	  tree callee = gimple_call_fndecl (stmt);
2170 	  if (callee
2171 	      && fndecl_built_in_p (callee, BUILT_IN_CONSTANT_P))
2172 	    {
2173 	      propagate_tree_value_into_stmt (si, integer_zero_node);
2174 	      stmt = gsi_stmt (*si);
2175 	    }
2176 	}
2177 
2178       if (gimple_code (stmt) == GIMPLE_COND)
2179 	{
2180 	  tree lhs = gimple_cond_lhs (stmt);
2181 	  tree rhs = gimple_cond_rhs (stmt);
2182 
2183 	  /* If the LHS has a range [0..1] and the RHS has a range ~[0..1],
2184 	     then this conditional is computable at compile time.  We can just
2185 	     shove either 0 or 1 into the LHS, mark the statement as modified
2186 	     and all the right things will just happen below.
2187 
2188 	     Note this would apply to any case where LHS has a range
2189 	     narrower than its type implies and RHS is outside that
2190 	     narrower range.  Future work.  */
2191 	  if (TREE_CODE (lhs) == SSA_NAME
2192 	      && ssa_name_has_boolean_range (lhs)
2193 	      && TREE_CODE (rhs) == INTEGER_CST
2194 	      && ! (integer_zerop (rhs) || integer_onep (rhs)))
2195 	    {
2196 	      gimple_cond_set_lhs (as_a <gcond *> (stmt),
2197 				   fold_convert (TREE_TYPE (lhs),
2198 						 integer_zero_node));
2199 	      gimple_set_modified (stmt, true);
2200 	    }
2201 	  else if (TREE_CODE (lhs) == SSA_NAME)
2202 	    {
2203 	      /* Exploiting EVRP data is not yet fully integrated into DOM
2204 		 but we need to do something for this case to avoid regressing
2205 		 udr4.f90 and new1.C which have unexecutable blocks with
2206 		 undefined behavior that get diagnosed if they're left in the
2207 		 IL because we've attached range information to new
2208 		 SSA_NAMES.  */
2209 	      update_stmt_if_modified (stmt);
2210 	      edge taken_edge = NULL;
2211 	      simplify_using_ranges simpl (m_evrp_range_analyzer);
2212 	      simpl.vrp_visit_cond_stmt (as_a <gcond *> (stmt), &taken_edge);
2213 	      if (taken_edge)
2214 		{
2215 		  if (taken_edge->flags & EDGE_TRUE_VALUE)
2216 		    gimple_cond_make_true (as_a <gcond *> (stmt));
2217 		  else if (taken_edge->flags & EDGE_FALSE_VALUE)
2218 		    gimple_cond_make_false (as_a <gcond *> (stmt));
2219 		  else
2220 		    gcc_unreachable ();
2221 		  gimple_set_modified (stmt, true);
2222 		  update_stmt (stmt);
2223 		  cfg_altered = true;
2224 		  return taken_edge;
2225 		}
2226 	    }
2227 	}
2228 
2229       update_stmt_if_modified (stmt);
2230       eliminate_redundant_computations (si, m_const_and_copies,
2231 					m_avail_exprs_stack);
2232       stmt = gsi_stmt (*si);
2233 
2234       /* Perform simple redundant store elimination.  */
2235       if (gimple_assign_single_p (stmt)
2236 	  && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
2237 	{
2238 	  tree lhs = gimple_assign_lhs (stmt);
2239 	  tree rhs = gimple_assign_rhs1 (stmt);
2240 	  tree cached_lhs;
2241 	  gassign *new_stmt;
2242 	  rhs = dom_valueize (rhs);
2243 	  /* Build a new statement with the RHS and LHS exchanged.  */
2244 	  if (TREE_CODE (rhs) == SSA_NAME)
2245 	    {
2246 	      gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
2247 	      new_stmt = gimple_build_assign (rhs, lhs);
2248 	      SSA_NAME_DEF_STMT (rhs) = defstmt;
2249 	    }
2250 	  else
2251 	    new_stmt = gimple_build_assign (rhs, lhs);
2252 	  gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2253 	  expr_hash_elt *elt = NULL;
2254 	  cached_lhs = m_avail_exprs_stack->lookup_avail_expr (new_stmt, false,
2255 							       false, &elt);
2256 	  if (cached_lhs
2257 	      && operand_equal_p (rhs, cached_lhs, 0)
2258 	      && refs_same_for_tbaa_p (elt->expr ()->kind == EXPR_SINGLE
2259 				       ? elt->expr ()->ops.single.rhs
2260 				       : NULL_TREE, lhs))
2261 	    {
2262 	      basic_block bb = gimple_bb (stmt);
2263 	      unlink_stmt_vdef (stmt);
2264 	      if (gsi_remove (si, true))
2265 		{
2266 		  bitmap_set_bit (need_eh_cleanup, bb->index);
2267 		  if (dump_file && (dump_flags & TDF_DETAILS))
2268 		    fprintf (dump_file, "  Flagged to clear EH edges.\n");
2269 		}
2270 	      release_defs (stmt);
2271 	      *removed_p = true;
2272 	      return retval;
2273 	    }
2274 	}
2275 
2276       /* If this statement was not redundant, we may still be able to simplify
2277 	 it, which may in turn allow other part of DOM or other passes to do
2278 	 a better job.  */
2279       test_for_singularity (stmt, m_avail_exprs_stack);
2280     }
2281 
2282   /* Record any additional equivalences created by this statement.  */
2283   if (is_gimple_assign (stmt))
2284     record_equivalences_from_stmt (stmt, may_optimize_p, m_avail_exprs_stack);
2285 
2286   /* If STMT is a COND_EXPR or SWITCH_EXPR and it was modified, then we may
2287      know where it goes.  */
2288   if (gimple_modified_p (stmt) || modified_p)
2289     {
2290       tree val = NULL;
2291 
2292       if (gimple_code (stmt) == GIMPLE_COND)
2293         val = fold_binary_loc (gimple_location (stmt),
2294 			       gimple_cond_code (stmt), boolean_type_node,
2295 			       gimple_cond_lhs (stmt),
2296 			       gimple_cond_rhs (stmt));
2297       else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2298 	val = gimple_switch_index (swtch_stmt);
2299 
2300       if (val && TREE_CODE (val) == INTEGER_CST)
2301 	{
2302 	  retval = find_taken_edge (bb, val);
2303 	  if (retval)
2304 	    {
2305 	      /* Fix the condition to be either true or false.  */
2306 	      if (gimple_code (stmt) == GIMPLE_COND)
2307 		{
2308 		  if (integer_zerop (val))
2309 		    gimple_cond_make_false (as_a <gcond *> (stmt));
2310 		  else if (integer_onep (val))
2311 		    gimple_cond_make_true (as_a <gcond *> (stmt));
2312 		  else
2313 		    gcc_unreachable ();
2314 
2315 		  gimple_set_modified (stmt, true);
2316 		}
2317 
2318 	      /* Further simplifications may be possible.  */
2319 	      cfg_altered = true;
2320 	    }
2321 	}
2322 
2323       update_stmt_if_modified (stmt);
2324 
2325       /* If we simplified a statement in such a way as to be shown that it
2326 	 cannot trap, update the eh information and the cfg to match.  */
2327       if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
2328 	{
2329 	  bitmap_set_bit (need_eh_cleanup, bb->index);
2330 	  if (dump_file && (dump_flags & TDF_DETAILS))
2331 	    fprintf (dump_file, "  Flagged to clear EH edges.\n");
2332 	}
2333 
2334       if (!was_noreturn
2335 	  && is_gimple_call (stmt) && gimple_call_noreturn_p (stmt))
2336 	need_noreturn_fixup.safe_push (stmt);
2337     }
2338   return retval;
2339 }
2340