1 //===-- tsan_interceptors_posix.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 // FIXME: move as many interceptors as possible into
12 // sanitizer_common/sanitizer_common_interceptors.inc
13 //===----------------------------------------------------------------------===//
14 
15 #include "sanitizer_common/sanitizer_atomic.h"
16 #include "sanitizer_common/sanitizer_errno.h"
17 #include "sanitizer_common/sanitizer_glibc_version.h"
18 #include "sanitizer_common/sanitizer_libc.h"
19 #include "sanitizer_common/sanitizer_linux.h"
20 #include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
21 #include "sanitizer_common/sanitizer_platform_limits_posix.h"
22 #include "sanitizer_common/sanitizer_placement_new.h"
23 #include "sanitizer_common/sanitizer_posix.h"
24 #include "sanitizer_common/sanitizer_stacktrace.h"
25 #include "sanitizer_common/sanitizer_tls_get_addr.h"
26 #include "interception/interception.h"
27 #include "tsan_interceptors.h"
28 #include "tsan_interface.h"
29 #include "tsan_platform.h"
30 #include "tsan_suppressions.h"
31 #include "tsan_rtl.h"
32 #include "tsan_mman.h"
33 #include "tsan_fd.h"
34 
35 #include <stdarg.h>
36 
37 using namespace __tsan;
38 
39 DECLARE_REAL(void *, memcpy, void *to, const void *from, SIZE_T size)
40 DECLARE_REAL(void *, memset, void *block, int c, SIZE_T size)
41 
42 #if SANITIZER_FREEBSD || SANITIZER_APPLE
43 #define stdout __stdoutp
44 #define stderr __stderrp
45 #endif
46 
47 #if SANITIZER_NETBSD
48 #define dirfd(dirp) (*(int *)(dirp))
49 #define fileno_unlocked(fp)              \
50   (((__sanitizer_FILE *)fp)->_file == -1 \
51        ? -1                              \
52        : (int)(unsigned short)(((__sanitizer_FILE *)fp)->_file))
53 
54 #define stdout ((__sanitizer_FILE*)&__sF[1])
55 #define stderr ((__sanitizer_FILE*)&__sF[2])
56 
57 #define nanosleep __nanosleep50
58 #define vfork __vfork14
59 #endif
60 
61 #ifdef __mips__
62 const int kSigCount = 129;
63 #else
64 const int kSigCount = 65;
65 #endif
66 
67 #ifdef __mips__
68 struct ucontext_t {
69   u64 opaque[768 / sizeof(u64) + 1];
70 };
71 #else
72 struct ucontext_t {
73   // The size is determined by looking at sizeof of real ucontext_t on linux.
74   u64 opaque[936 / sizeof(u64) + 1];
75 };
76 #endif
77 
78 #if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1 || \
79     defined(__s390x__)
80 #define PTHREAD_ABI_BASE  "GLIBC_2.3.2"
81 #elif defined(__aarch64__) || SANITIZER_PPC64V2
82 #define PTHREAD_ABI_BASE  "GLIBC_2.17"
83 #elif SANITIZER_LOONGARCH64
84 #define PTHREAD_ABI_BASE  "GLIBC_2.36"
85 #elif SANITIZER_RISCV64
86 #  define PTHREAD_ABI_BASE "GLIBC_2.27"
87 #endif
88 
89 extern "C" int pthread_attr_init(void *attr);
90 extern "C" int pthread_attr_destroy(void *attr);
91 DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
92 extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
93 extern "C" int pthread_atfork(void (*prepare)(void), void (*parent)(void),
94                               void (*child)(void));
95 extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
96 extern "C" int pthread_setspecific(unsigned key, const void *v);
97 DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
98 DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
99 DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size)
100 DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr)
101 extern "C" int pthread_equal(void *t1, void *t2);
102 extern "C" void *pthread_self();
103 extern "C" void _exit(int status);
104 #if !SANITIZER_NETBSD
105 extern "C" int fileno_unlocked(void *stream);
106 extern "C" int dirfd(void *dirp);
107 #endif
108 #if SANITIZER_NETBSD
109 extern __sanitizer_FILE __sF[];
110 #else
111 extern __sanitizer_FILE *stdout, *stderr;
112 #endif
113 #if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD
114 const int PTHREAD_MUTEX_RECURSIVE = 1;
115 const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
116 #else
117 const int PTHREAD_MUTEX_RECURSIVE = 2;
118 const int PTHREAD_MUTEX_RECURSIVE_NP = 2;
119 #endif
120 #if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD
121 const int EPOLL_CTL_ADD = 1;
122 #endif
123 const int SIGILL = 4;
124 const int SIGTRAP = 5;
125 const int SIGABRT = 6;
126 const int SIGFPE = 8;
127 const int SIGSEGV = 11;
128 const int SIGPIPE = 13;
129 const int SIGTERM = 15;
130 #if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_APPLE || SANITIZER_NETBSD
131 const int SIGBUS = 10;
132 const int SIGSYS = 12;
133 #else
134 const int SIGBUS = 7;
135 const int SIGSYS = 31;
136 #endif
137 #if SANITIZER_HAS_SIGINFO
138 const int SI_TIMER = -2;
139 #endif
140 void *const MAP_FAILED = (void*)-1;
141 #if SANITIZER_NETBSD
142 const int PTHREAD_BARRIER_SERIAL_THREAD = 1234567;
143 #elif !SANITIZER_APPLE
144 const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
145 #endif
146 const int MAP_FIXED = 0x10;
147 typedef long long_t;
148 typedef __sanitizer::u16 mode_t;
149 
150 // From /usr/include/unistd.h
151 # define F_ULOCK 0      /* Unlock a previously locked region.  */
152 # define F_LOCK  1      /* Lock a region for exclusive use.  */
153 # define F_TLOCK 2      /* Test and lock a region for exclusive use.  */
154 # define F_TEST  3      /* Test a region for other processes locks.  */
155 
156 #if SANITIZER_FREEBSD || SANITIZER_APPLE || SANITIZER_NETBSD
157 const int SA_SIGINFO = 0x40;
158 const int SIG_SETMASK = 3;
159 #elif defined(__mips__)
160 const int SA_SIGINFO = 8;
161 const int SIG_SETMASK = 3;
162 #else
163 const int SA_SIGINFO = 4;
164 const int SIG_SETMASK = 2;
165 #endif
166 
167 namespace __tsan {
168 struct SignalDesc {
169   bool armed;
170   __sanitizer_siginfo siginfo;
171   ucontext_t ctx;
172 };
173 
174 struct ThreadSignalContext {
175   int int_signal_send;
176   SignalDesc pending_signals[kSigCount];
177   // emptyset and oldset are too big for stack.
178   __sanitizer_sigset_t emptyset;
179   __sanitizer_sigset_t oldset;
180 };
181 
EnterBlockingFunc(ThreadState * thr)182 void EnterBlockingFunc(ThreadState *thr) {
183   for (;;) {
184     // The order is important to not delay a signal infinitely if it's
185     // delivered right before we set in_blocking_func. Note: we can't call
186     // ProcessPendingSignals when in_blocking_func is set, or we can handle
187     // a signal synchronously when we are already handling a signal.
188     atomic_store(&thr->in_blocking_func, 1, memory_order_relaxed);
189     if (atomic_load(&thr->pending_signals, memory_order_relaxed) == 0)
190       break;
191     atomic_store(&thr->in_blocking_func, 0, memory_order_relaxed);
192     ProcessPendingSignals(thr);
193   }
194 }
195 
196 // The sole reason tsan wraps atexit callbacks is to establish synchronization
197 // between callback setup and callback execution.
198 struct AtExitCtx {
199   void (*f)();
200   void *arg;
201   uptr pc;
202 };
203 
204 // InterceptorContext holds all global data required for interceptors.
205 // It's explicitly constructed in InitializeInterceptors with placement new
206 // and is never destroyed. This allows usage of members with non-trivial
207 // constructors and destructors.
208 struct InterceptorContext {
209   // The object is 64-byte aligned, because we want hot data to be located
210   // in a single cache line if possible (it's accessed in every interceptor).
211   ALIGNED(64) LibIgnore libignore;
212   __sanitizer_sigaction sigactions[kSigCount];
213 #if !SANITIZER_APPLE && !SANITIZER_NETBSD
214   unsigned finalize_key;
215 #endif
216 
217   Mutex atexit_mu;
218   Vector<struct AtExitCtx *> AtExitStack;
219 
InterceptorContext__tsan::InterceptorContext220   InterceptorContext() : libignore(LINKER_INITIALIZED), atexit_mu(MutexTypeAtExit), AtExitStack() {}
221 };
222 
223 static ALIGNED(64) char interceptor_placeholder[sizeof(InterceptorContext)];
interceptor_ctx()224 InterceptorContext *interceptor_ctx() {
225   return reinterpret_cast<InterceptorContext*>(&interceptor_placeholder[0]);
226 }
227 
libignore()228 LibIgnore *libignore() {
229   return &interceptor_ctx()->libignore;
230 }
231 
InitializeLibIgnore()232 void InitializeLibIgnore() {
233   const SuppressionContext &supp = *Suppressions();
234   const uptr n = supp.SuppressionCount();
235   for (uptr i = 0; i < n; i++) {
236     const Suppression *s = supp.SuppressionAt(i);
237     if (0 == internal_strcmp(s->type, kSuppressionLib))
238       libignore()->AddIgnoredLibrary(s->templ);
239   }
240   if (flags()->ignore_noninstrumented_modules)
241     libignore()->IgnoreNoninstrumentedModules(true);
242   libignore()->OnLibraryLoaded(0);
243 }
244 
245 // The following two hooks can be used by for cooperative scheduling when
246 // locking.
247 #ifdef TSAN_EXTERNAL_HOOKS
248 void OnPotentiallyBlockingRegionBegin();
249 void OnPotentiallyBlockingRegionEnd();
250 #else
OnPotentiallyBlockingRegionBegin()251 SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionBegin() {}
OnPotentiallyBlockingRegionEnd()252 SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionEnd() {}
253 #endif
254 
255 }  // namespace __tsan
256 
SigCtx(ThreadState * thr)257 static ThreadSignalContext *SigCtx(ThreadState *thr) {
258   // This function may be called reentrantly if it is interrupted by a signal
259   // handler. Use CAS to handle the race.
260   uptr ctx = atomic_load(&thr->signal_ctx, memory_order_relaxed);
261   if (ctx == 0 && !thr->is_dead) {
262     uptr pctx =
263         (uptr)MmapOrDie(sizeof(ThreadSignalContext), "ThreadSignalContext");
264     MemoryResetRange(thr, (uptr)&SigCtx, pctx, sizeof(ThreadSignalContext));
265     if (atomic_compare_exchange_strong(&thr->signal_ctx, &ctx, pctx,
266                                        memory_order_relaxed)) {
267       ctx = pctx;
268     } else {
269       UnmapOrDie((ThreadSignalContext *)pctx, sizeof(ThreadSignalContext));
270     }
271   }
272   return (ThreadSignalContext *)ctx;
273 }
274 
ScopedInterceptor(ThreadState * thr,const char * fname,uptr pc)275 ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
276                                      uptr pc)
277     : thr_(thr) {
278   LazyInitialize(thr);
279   if (UNLIKELY(atomic_load(&thr->in_blocking_func, memory_order_relaxed))) {
280     // pthread_join is marked as blocking, but it's also known to call other
281     // intercepted functions (mmap, free). If we don't reset in_blocking_func
282     // we can get deadlocks and memory corruptions if we deliver a synchronous
283     // signal inside of an mmap/free interceptor.
284     // So reset it and restore it back in the destructor.
285     // See https://github.com/google/sanitizers/issues/1540
286     atomic_store(&thr->in_blocking_func, 0, memory_order_relaxed);
287     in_blocking_func_ = true;
288   }
289   if (!thr_->is_inited) return;
290   if (!thr_->ignore_interceptors) FuncEntry(thr, pc);
291   DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
292   ignoring_ =
293       !thr_->in_ignored_lib && (flags()->ignore_interceptors_accesses ||
294                                 libignore()->IsIgnored(pc, &in_ignored_lib_));
295   EnableIgnores();
296 }
297 
~ScopedInterceptor()298 ScopedInterceptor::~ScopedInterceptor() {
299   if (!thr_->is_inited) return;
300   DisableIgnores();
301   if (UNLIKELY(in_blocking_func_))
302     EnterBlockingFunc(thr_);
303   if (!thr_->ignore_interceptors) {
304     ProcessPendingSignals(thr_);
305     FuncExit(thr_);
306     CheckedMutex::CheckNoLocks();
307   }
308 }
309 
310 NOINLINE
EnableIgnoresImpl()311 void ScopedInterceptor::EnableIgnoresImpl() {
312   ThreadIgnoreBegin(thr_, 0);
313   if (flags()->ignore_noninstrumented_modules)
314     thr_->suppress_reports++;
315   if (in_ignored_lib_) {
316     DCHECK(!thr_->in_ignored_lib);
317     thr_->in_ignored_lib = true;
318   }
319 }
320 
321 NOINLINE
DisableIgnoresImpl()322 void ScopedInterceptor::DisableIgnoresImpl() {
323   ThreadIgnoreEnd(thr_);
324   if (flags()->ignore_noninstrumented_modules)
325     thr_->suppress_reports--;
326   if (in_ignored_lib_) {
327     DCHECK(thr_->in_ignored_lib);
328     thr_->in_ignored_lib = false;
329   }
330 }
331 
332 #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
333 #if SANITIZER_FREEBSD || SANITIZER_NETBSD
334 #  define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
335 #else
336 #  define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
337 #endif
338 #if SANITIZER_FREEBSD
339 #  define TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(func) \
340     INTERCEPT_FUNCTION(_pthread_##func)
341 #else
342 #  define TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(func)
343 #endif
344 #if SANITIZER_NETBSD
345 #  define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) \
346     INTERCEPT_FUNCTION(__libc_##func)
347 #  define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) \
348     INTERCEPT_FUNCTION(__libc_thr_##func)
349 #else
350 #  define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
351 #  define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
352 #endif
353 
354 #define READ_STRING_OF_LEN(thr, pc, s, len, n)                 \
355   MemoryAccessRange((thr), (pc), (uptr)(s),                         \
356     common_flags()->strict_string_checks ? (len) + 1 : (n), false)
357 
358 #define READ_STRING(thr, pc, s, n)                             \
359     READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
360 
361 #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
362 
363 struct BlockingCall {
BlockingCallBlockingCall364   explicit BlockingCall(ThreadState *thr)
365       : thr(thr) {
366     EnterBlockingFunc(thr);
367     // When we are in a "blocking call", we process signals asynchronously
368     // (right when they arrive). In this context we do not expect to be
369     // executing any user/runtime code. The known interceptor sequence when
370     // this is not true is: pthread_join -> munmap(stack). It's fine
371     // to ignore munmap in this case -- we handle stack shadow separately.
372     thr->ignore_interceptors++;
373   }
374 
~BlockingCallBlockingCall375   ~BlockingCall() {
376     thr->ignore_interceptors--;
377     atomic_store(&thr->in_blocking_func, 0, memory_order_relaxed);
378   }
379 
380   ThreadState *thr;
381 };
382 
TSAN_INTERCEPTOR(unsigned,sleep,unsigned sec)383 TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
384   SCOPED_TSAN_INTERCEPTOR(sleep, sec);
385   unsigned res = BLOCK_REAL(sleep)(sec);
386   AfterSleep(thr, pc);
387   return res;
388 }
389 
TSAN_INTERCEPTOR(int,usleep,long_t usec)390 TSAN_INTERCEPTOR(int, usleep, long_t usec) {
391   SCOPED_TSAN_INTERCEPTOR(usleep, usec);
392   int res = BLOCK_REAL(usleep)(usec);
393   AfterSleep(thr, pc);
394   return res;
395 }
396 
TSAN_INTERCEPTOR(int,nanosleep,void * req,void * rem)397 TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
398   SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
399   int res = BLOCK_REAL(nanosleep)(req, rem);
400   AfterSleep(thr, pc);
401   return res;
402 }
403 
TSAN_INTERCEPTOR(int,pause,int fake)404 TSAN_INTERCEPTOR(int, pause, int fake) {
405   SCOPED_TSAN_INTERCEPTOR(pause, fake);
406   return BLOCK_REAL(pause)(fake);
407 }
408 
409 // Note: we specifically call the function in such strange way
410 // with "installed_at" because in reports it will appear between
411 // callback frames and the frame that installed the callback.
at_exit_callback_installed_at()412 static void at_exit_callback_installed_at() {
413   AtExitCtx *ctx;
414   {
415     // Ensure thread-safety.
416     Lock l(&interceptor_ctx()->atexit_mu);
417 
418     // Pop AtExitCtx from the top of the stack of callback functions
419     uptr element = interceptor_ctx()->AtExitStack.Size() - 1;
420     ctx = interceptor_ctx()->AtExitStack[element];
421     interceptor_ctx()->AtExitStack.PopBack();
422   }
423 
424   ThreadState *thr = cur_thread();
425   Acquire(thr, ctx->pc, (uptr)ctx);
426   FuncEntry(thr, ctx->pc);
427   ((void(*)())ctx->f)();
428   FuncExit(thr);
429   Free(ctx);
430 }
431 
cxa_at_exit_callback_installed_at(void * arg)432 static void cxa_at_exit_callback_installed_at(void *arg) {
433   ThreadState *thr = cur_thread();
434   AtExitCtx *ctx = (AtExitCtx*)arg;
435   Acquire(thr, ctx->pc, (uptr)arg);
436   FuncEntry(thr, ctx->pc);
437   ((void(*)(void *arg))ctx->f)(ctx->arg);
438   FuncExit(thr);
439   Free(ctx);
440 }
441 
442 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
443       void *arg, void *dso);
444 
445 #if !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,atexit,void (* f)())446 TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
447   if (in_symbolizer())
448     return 0;
449   // We want to setup the atexit callback even if we are in ignored lib
450   // or after fork.
451   SCOPED_INTERCEPTOR_RAW(atexit, f);
452   return setup_at_exit_wrapper(thr, GET_CALLER_PC(), (void (*)())f, 0, 0);
453 }
454 #endif
455 
TSAN_INTERCEPTOR(int,__cxa_atexit,void (* f)(void * a),void * arg,void * dso)456 TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
457   if (in_symbolizer())
458     return 0;
459   SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
460   return setup_at_exit_wrapper(thr, GET_CALLER_PC(), (void (*)())f, arg, dso);
461 }
462 
setup_at_exit_wrapper(ThreadState * thr,uptr pc,void (* f)(),void * arg,void * dso)463 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
464       void *arg, void *dso) {
465   auto *ctx = New<AtExitCtx>();
466   ctx->f = f;
467   ctx->arg = arg;
468   ctx->pc = pc;
469   Release(thr, pc, (uptr)ctx);
470   // Memory allocation in __cxa_atexit will race with free during exit,
471   // because we do not see synchronization around atexit callback list.
472   ThreadIgnoreBegin(thr, pc);
473   int res;
474   if (!dso) {
475     // NetBSD does not preserve the 2nd argument if dso is equal to 0
476     // Store ctx in a local stack-like structure
477 
478     // Ensure thread-safety.
479     Lock l(&interceptor_ctx()->atexit_mu);
480     // __cxa_atexit calls calloc. If we don't ignore interceptors, we will fail
481     // due to atexit_mu held on exit from the calloc interceptor.
482     ScopedIgnoreInterceptors ignore;
483 
484     res = REAL(__cxa_atexit)((void (*)(void *a))at_exit_callback_installed_at,
485                              0, 0);
486     // Push AtExitCtx on the top of the stack of callback functions
487     if (!res) {
488       interceptor_ctx()->AtExitStack.PushBack(ctx);
489     }
490   } else {
491     res = REAL(__cxa_atexit)(cxa_at_exit_callback_installed_at, ctx, dso);
492   }
493   ThreadIgnoreEnd(thr);
494   return res;
495 }
496 
497 #if !SANITIZER_APPLE && !SANITIZER_NETBSD
on_exit_callback_installed_at(int status,void * arg)498 static void on_exit_callback_installed_at(int status, void *arg) {
499   ThreadState *thr = cur_thread();
500   AtExitCtx *ctx = (AtExitCtx*)arg;
501   Acquire(thr, ctx->pc, (uptr)arg);
502   FuncEntry(thr, ctx->pc);
503   ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
504   FuncExit(thr);
505   Free(ctx);
506 }
507 
TSAN_INTERCEPTOR(int,on_exit,void (* f)(int,void *),void * arg)508 TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
509   if (in_symbolizer())
510     return 0;
511   SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
512   auto *ctx = New<AtExitCtx>();
513   ctx->f = (void(*)())f;
514   ctx->arg = arg;
515   ctx->pc = GET_CALLER_PC();
516   Release(thr, pc, (uptr)ctx);
517   // Memory allocation in __cxa_atexit will race with free during exit,
518   // because we do not see synchronization around atexit callback list.
519   ThreadIgnoreBegin(thr, pc);
520   int res = REAL(on_exit)(on_exit_callback_installed_at, ctx);
521   ThreadIgnoreEnd(thr);
522   return res;
523 }
524 #define TSAN_MAYBE_INTERCEPT_ON_EXIT TSAN_INTERCEPT(on_exit)
525 #else
526 #define TSAN_MAYBE_INTERCEPT_ON_EXIT
527 #endif
528 
529 // Cleanup old bufs.
JmpBufGarbageCollect(ThreadState * thr,uptr sp)530 static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
531   for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
532     JmpBuf *buf = &thr->jmp_bufs[i];
533     if (buf->sp <= sp) {
534       uptr sz = thr->jmp_bufs.Size();
535       internal_memcpy(buf, &thr->jmp_bufs[sz - 1], sizeof(*buf));
536       thr->jmp_bufs.PopBack();
537       i--;
538     }
539   }
540 }
541 
SetJmp(ThreadState * thr,uptr sp)542 static void SetJmp(ThreadState *thr, uptr sp) {
543   if (!thr->is_inited)  // called from libc guts during bootstrap
544     return;
545   // Cleanup old bufs.
546   JmpBufGarbageCollect(thr, sp);
547   // Remember the buf.
548   JmpBuf *buf = thr->jmp_bufs.PushBack();
549   buf->sp = sp;
550   buf->shadow_stack_pos = thr->shadow_stack_pos;
551   ThreadSignalContext *sctx = SigCtx(thr);
552   buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
553   buf->in_blocking_func = atomic_load(&thr->in_blocking_func, memory_order_relaxed);
554   buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
555       memory_order_relaxed);
556 }
557 
LongJmp(ThreadState * thr,uptr * env)558 static void LongJmp(ThreadState *thr, uptr *env) {
559   uptr sp = ExtractLongJmpSp(env);
560   // Find the saved buf with matching sp.
561   for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
562     JmpBuf *buf = &thr->jmp_bufs[i];
563     if (buf->sp == sp) {
564       CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
565       // Unwind the stack.
566       while (thr->shadow_stack_pos > buf->shadow_stack_pos)
567         FuncExit(thr);
568       ThreadSignalContext *sctx = SigCtx(thr);
569       if (sctx)
570         sctx->int_signal_send = buf->int_signal_send;
571       atomic_store(&thr->in_blocking_func, buf->in_blocking_func,
572           memory_order_relaxed);
573       atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
574           memory_order_relaxed);
575       JmpBufGarbageCollect(thr, buf->sp - 1);  // do not collect buf->sp
576       return;
577     }
578   }
579   Printf("ThreadSanitizer: can't find longjmp buf\n");
580   CHECK(0);
581 }
582 
583 // FIXME: put everything below into a common extern "C" block?
__tsan_setjmp(uptr sp)584 extern "C" void __tsan_setjmp(uptr sp) { SetJmp(cur_thread_init(), sp); }
585 
586 #if SANITIZER_APPLE
587 TSAN_INTERCEPTOR(int, setjmp, void *env);
588 TSAN_INTERCEPTOR(int, _setjmp, void *env);
589 TSAN_INTERCEPTOR(int, sigsetjmp, void *env);
590 #else  // SANITIZER_APPLE
591 
592 #if SANITIZER_NETBSD
593 #define setjmp_symname __setjmp14
594 #define sigsetjmp_symname __sigsetjmp14
595 #else
596 #define setjmp_symname setjmp
597 #define sigsetjmp_symname sigsetjmp
598 #endif
599 
DEFINE_REAL(int,setjmp_symname,void * env)600 DEFINE_REAL(int, setjmp_symname, void *env)
601 DEFINE_REAL(int, _setjmp, void *env)
602 DEFINE_REAL(int, sigsetjmp_symname, void *env)
603 #if !SANITIZER_NETBSD
604 DEFINE_REAL(int, __sigsetjmp, void *env)
605 #endif
606 
607 // The real interceptor for setjmp is special, and implemented in pure asm. We
608 // just need to initialize the REAL functions so that they can be used in asm.
609 static void InitializeSetjmpInterceptors() {
610   // We can not use TSAN_INTERCEPT to get setjmp addr, because it does &setjmp and
611   // setjmp is not present in some versions of libc.
612   using __interception::InterceptFunction;
613   InterceptFunction(SANITIZER_STRINGIFY(setjmp_symname), (uptr*)&REAL(setjmp_symname), 0, 0);
614   InterceptFunction("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
615   InterceptFunction(SANITIZER_STRINGIFY(sigsetjmp_symname), (uptr*)&REAL(sigsetjmp_symname), 0,
616                     0);
617 #if !SANITIZER_NETBSD
618   InterceptFunction("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
619 #endif
620 }
621 #endif  // SANITIZER_APPLE
622 
623 #if SANITIZER_NETBSD
624 #define longjmp_symname __longjmp14
625 #define siglongjmp_symname __siglongjmp14
626 #else
627 #define longjmp_symname longjmp
628 #define siglongjmp_symname siglongjmp
629 #endif
630 
TSAN_INTERCEPTOR(void,longjmp_symname,uptr * env,int val)631 TSAN_INTERCEPTOR(void, longjmp_symname, uptr *env, int val) {
632   // Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
633   // bad things will happen. We will jump over ScopedInterceptor dtor and can
634   // leave thr->in_ignored_lib set.
635   {
636     SCOPED_INTERCEPTOR_RAW(longjmp_symname, env, val);
637   }
638   LongJmp(cur_thread(), env);
639   REAL(longjmp_symname)(env, val);
640 }
641 
TSAN_INTERCEPTOR(void,siglongjmp_symname,uptr * env,int val)642 TSAN_INTERCEPTOR(void, siglongjmp_symname, uptr *env, int val) {
643   {
644     SCOPED_INTERCEPTOR_RAW(siglongjmp_symname, env, val);
645   }
646   LongJmp(cur_thread(), env);
647   REAL(siglongjmp_symname)(env, val);
648 }
649 
650 #if SANITIZER_NETBSD
TSAN_INTERCEPTOR(void,_longjmp,uptr * env,int val)651 TSAN_INTERCEPTOR(void, _longjmp, uptr *env, int val) {
652   {
653     SCOPED_INTERCEPTOR_RAW(_longjmp, env, val);
654   }
655   LongJmp(cur_thread(), env);
656   REAL(_longjmp)(env, val);
657 }
658 #endif
659 
660 #if !SANITIZER_APPLE
TSAN_INTERCEPTOR(void *,malloc,uptr size)661 TSAN_INTERCEPTOR(void*, malloc, uptr size) {
662   if (in_symbolizer())
663     return InternalAlloc(size);
664   void *p = 0;
665   {
666     SCOPED_INTERCEPTOR_RAW(malloc, size);
667     p = user_alloc(thr, pc, size);
668   }
669   invoke_malloc_hook(p, size);
670   return p;
671 }
672 
673 // In glibc<2.25, dynamic TLS blocks are allocated by __libc_memalign. Intercept
674 // __libc_memalign so that (1) we can detect races (2) free will not be called
675 // on libc internally allocated blocks.
TSAN_INTERCEPTOR(void *,__libc_memalign,uptr align,uptr sz)676 TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
677   SCOPED_INTERCEPTOR_RAW(__libc_memalign, align, sz);
678   return user_memalign(thr, pc, align, sz);
679 }
680 
TSAN_INTERCEPTOR(void *,calloc,uptr size,uptr n)681 TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
682   if (in_symbolizer())
683     return InternalCalloc(size, n);
684   void *p = 0;
685   {
686     SCOPED_INTERCEPTOR_RAW(calloc, size, n);
687     p = user_calloc(thr, pc, size, n);
688   }
689   invoke_malloc_hook(p, n * size);
690   return p;
691 }
692 
TSAN_INTERCEPTOR(void *,realloc,void * p,uptr size)693 TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
694   if (in_symbolizer())
695     return InternalRealloc(p, size);
696   if (p)
697     invoke_free_hook(p);
698   {
699     SCOPED_INTERCEPTOR_RAW(realloc, p, size);
700     p = user_realloc(thr, pc, p, size);
701   }
702   invoke_malloc_hook(p, size);
703   return p;
704 }
705 
TSAN_INTERCEPTOR(void *,reallocarray,void * p,uptr size,uptr n)706 TSAN_INTERCEPTOR(void*, reallocarray, void *p, uptr size, uptr n) {
707   if (in_symbolizer())
708     return InternalReallocArray(p, size, n);
709   if (p)
710     invoke_free_hook(p);
711   {
712     SCOPED_INTERCEPTOR_RAW(reallocarray, p, size, n);
713     p = user_reallocarray(thr, pc, p, size, n);
714   }
715   invoke_malloc_hook(p, size);
716   return p;
717 }
718 
TSAN_INTERCEPTOR(void,free,void * p)719 TSAN_INTERCEPTOR(void, free, void *p) {
720   if (p == 0)
721     return;
722   if (in_symbolizer())
723     return InternalFree(p);
724   invoke_free_hook(p);
725   SCOPED_INTERCEPTOR_RAW(free, p);
726   user_free(thr, pc, p);
727 }
728 
TSAN_INTERCEPTOR(void,cfree,void * p)729 TSAN_INTERCEPTOR(void, cfree, void *p) {
730   if (p == 0)
731     return;
732   if (in_symbolizer())
733     return InternalFree(p);
734   invoke_free_hook(p);
735   SCOPED_INTERCEPTOR_RAW(cfree, p);
736   user_free(thr, pc, p);
737 }
738 
TSAN_INTERCEPTOR(uptr,malloc_usable_size,void * p)739 TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
740   SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
741   return user_alloc_usable_size(p);
742 }
743 #endif
744 
TSAN_INTERCEPTOR(char *,strcpy,char * dst,const char * src)745 TSAN_INTERCEPTOR(char *, strcpy, char *dst, const char *src) {
746   SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src);
747   uptr srclen = internal_strlen(src);
748   MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
749   MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
750   return REAL(strcpy)(dst, src);
751 }
752 
TSAN_INTERCEPTOR(char *,strncpy,char * dst,char * src,uptr n)753 TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
754   SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
755   uptr srclen = internal_strnlen(src, n);
756   MemoryAccessRange(thr, pc, (uptr)dst, n, true);
757   MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
758   return REAL(strncpy)(dst, src, n);
759 }
760 
TSAN_INTERCEPTOR(char *,strdup,const char * str)761 TSAN_INTERCEPTOR(char*, strdup, const char *str) {
762   SCOPED_TSAN_INTERCEPTOR(strdup, str);
763   // strdup will call malloc, so no instrumentation is required here.
764   return REAL(strdup)(str);
765 }
766 
767 // Zero out addr if it points into shadow memory and was provided as a hint
768 // only, i.e., MAP_FIXED is not set.
fix_mmap_addr(void ** addr,long_t sz,int flags)769 static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
770   if (*addr) {
771     if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
772       if (flags & MAP_FIXED) {
773         errno = errno_EINVAL;
774         return false;
775       } else {
776         *addr = 0;
777       }
778     }
779   }
780   return true;
781 }
782 
783 template <class Mmap>
mmap_interceptor(ThreadState * thr,uptr pc,Mmap real_mmap,void * addr,SIZE_T sz,int prot,int flags,int fd,OFF64_T off)784 static void *mmap_interceptor(ThreadState *thr, uptr pc, Mmap real_mmap,
785                               void *addr, SIZE_T sz, int prot, int flags,
786                               int fd, OFF64_T off) {
787   if (!fix_mmap_addr(&addr, sz, flags)) return MAP_FAILED;
788   void *res = real_mmap(addr, sz, prot, flags, fd, off);
789   if (res != MAP_FAILED) {
790     if (!IsAppMem((uptr)res) || !IsAppMem((uptr)res + sz - 1)) {
791       Report("ThreadSanitizer: mmap at bad address: addr=%p size=%p res=%p\n",
792              addr, (void*)sz, res);
793       Die();
794     }
795     if (fd > 0) FdAccess(thr, pc, fd);
796     MemoryRangeImitateWriteOrResetRange(thr, pc, (uptr)res, sz);
797   }
798   return res;
799 }
800 
801 template <class Munmap>
munmap_interceptor(ThreadState * thr,uptr pc,Munmap real_munmap,void * addr,SIZE_T sz)802 static int munmap_interceptor(ThreadState *thr, uptr pc, Munmap real_munmap,
803                                 void *addr, SIZE_T sz) {
804   UnmapShadow(thr, (uptr)addr, sz);
805   int res = real_munmap(addr, sz);
806   return res;
807 }
808 
809 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,memalign,uptr align,uptr sz)810 TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
811   SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
812   return user_memalign(thr, pc, align, sz);
813 }
814 #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
815 #else
816 #define TSAN_MAYBE_INTERCEPT_MEMALIGN
817 #endif
818 
819 #if !SANITIZER_APPLE
TSAN_INTERCEPTOR(void *,aligned_alloc,uptr align,uptr sz)820 TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
821   if (in_symbolizer())
822     return InternalAlloc(sz, nullptr, align);
823   SCOPED_INTERCEPTOR_RAW(aligned_alloc, align, sz);
824   return user_aligned_alloc(thr, pc, align, sz);
825 }
826 
TSAN_INTERCEPTOR(void *,valloc,uptr sz)827 TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
828   if (in_symbolizer())
829     return InternalAlloc(sz, nullptr, GetPageSizeCached());
830   SCOPED_INTERCEPTOR_RAW(valloc, sz);
831   return user_valloc(thr, pc, sz);
832 }
833 #endif
834 
835 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,pvalloc,uptr sz)836 TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
837   if (in_symbolizer()) {
838     uptr PageSize = GetPageSizeCached();
839     sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
840     return InternalAlloc(sz, nullptr, PageSize);
841   }
842   SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
843   return user_pvalloc(thr, pc, sz);
844 }
845 #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
846 #else
847 #define TSAN_MAYBE_INTERCEPT_PVALLOC
848 #endif
849 
850 #if !SANITIZER_APPLE
TSAN_INTERCEPTOR(int,posix_memalign,void ** memptr,uptr align,uptr sz)851 TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
852   if (in_symbolizer()) {
853     void *p = InternalAlloc(sz, nullptr, align);
854     if (!p)
855       return errno_ENOMEM;
856     *memptr = p;
857     return 0;
858   }
859   SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
860   return user_posix_memalign(thr, pc, memptr, align, sz);
861 }
862 #endif
863 
864 // Both __cxa_guard_acquire and pthread_once 0-initialize
865 // the object initially. pthread_once does not have any
866 // other ABI requirements. __cxa_guard_acquire assumes
867 // that any non-0 value in the first byte means that
868 // initialization is completed. Contents of the remaining
869 // bytes are up to us.
870 constexpr u32 kGuardInit = 0;
871 constexpr u32 kGuardDone = 1;
872 constexpr u32 kGuardRunning = 1 << 16;
873 constexpr u32 kGuardWaiter = 1 << 17;
874 
guard_acquire(ThreadState * thr,uptr pc,atomic_uint32_t * g,bool blocking_hooks=true)875 static int guard_acquire(ThreadState *thr, uptr pc, atomic_uint32_t *g,
876                          bool blocking_hooks = true) {
877   if (blocking_hooks)
878     OnPotentiallyBlockingRegionBegin();
879   auto on_exit = at_scope_exit([blocking_hooks] {
880     if (blocking_hooks)
881       OnPotentiallyBlockingRegionEnd();
882   });
883 
884   for (;;) {
885     u32 cmp = atomic_load(g, memory_order_acquire);
886     if (cmp == kGuardInit) {
887       if (atomic_compare_exchange_strong(g, &cmp, kGuardRunning,
888                                          memory_order_relaxed))
889         return 1;
890     } else if (cmp == kGuardDone) {
891       if (!thr->in_ignored_lib)
892         Acquire(thr, pc, (uptr)g);
893       return 0;
894     } else {
895       if ((cmp & kGuardWaiter) ||
896           atomic_compare_exchange_strong(g, &cmp, cmp | kGuardWaiter,
897                                          memory_order_relaxed))
898         FutexWait(g, cmp | kGuardWaiter);
899     }
900   }
901 }
902 
guard_release(ThreadState * thr,uptr pc,atomic_uint32_t * g,u32 v)903 static void guard_release(ThreadState *thr, uptr pc, atomic_uint32_t *g,
904                           u32 v) {
905   if (!thr->in_ignored_lib)
906     Release(thr, pc, (uptr)g);
907   u32 old = atomic_exchange(g, v, memory_order_release);
908   if (old & kGuardWaiter)
909     FutexWake(g, 1 << 30);
910 }
911 
912 // __cxa_guard_acquire and friends need to be intercepted in a special way -
913 // regular interceptors will break statically-linked libstdc++. Linux
914 // interceptors are especially defined as weak functions (so that they don't
915 // cause link errors when user defines them as well). So they silently
916 // auto-disable themselves when such symbol is already present in the binary. If
917 // we link libstdc++ statically, it will bring own __cxa_guard_acquire which
918 // will silently replace our interceptor.  That's why on Linux we simply export
919 // these interceptors with INTERFACE_ATTRIBUTE.
920 // On OS X, we don't support statically linking, so we just use a regular
921 // interceptor.
922 #if SANITIZER_APPLE
923 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
924 #else
925 #define STDCXX_INTERCEPTOR(rettype, name, ...) \
926   extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
927 #endif
928 
929 // Used in thread-safe function static initialization.
STDCXX_INTERCEPTOR(int,__cxa_guard_acquire,atomic_uint32_t * g)930 STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) {
931   SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
932   return guard_acquire(thr, pc, g);
933 }
934 
STDCXX_INTERCEPTOR(void,__cxa_guard_release,atomic_uint32_t * g)935 STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) {
936   SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
937   guard_release(thr, pc, g, kGuardDone);
938 }
939 
STDCXX_INTERCEPTOR(void,__cxa_guard_abort,atomic_uint32_t * g)940 STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) {
941   SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
942   guard_release(thr, pc, g, kGuardInit);
943 }
944 
945 namespace __tsan {
DestroyThreadState()946 void DestroyThreadState() {
947   ThreadState *thr = cur_thread();
948   Processor *proc = thr->proc();
949   ThreadFinish(thr);
950   ProcUnwire(proc, thr);
951   ProcDestroy(proc);
952   DTLS_Destroy();
953   cur_thread_finalize();
954 }
955 
PlatformCleanUpThreadState(ThreadState * thr)956 void PlatformCleanUpThreadState(ThreadState *thr) {
957   ThreadSignalContext *sctx = (ThreadSignalContext *)atomic_load(
958       &thr->signal_ctx, memory_order_relaxed);
959   if (sctx) {
960     atomic_store(&thr->signal_ctx, 0, memory_order_relaxed);
961     UnmapOrDie(sctx, sizeof(*sctx));
962   }
963 }
964 }  // namespace __tsan
965 
966 #if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
thread_finalize(void * v)967 static void thread_finalize(void *v) {
968   uptr iter = (uptr)v;
969   if (iter > 1) {
970     if (pthread_setspecific(interceptor_ctx()->finalize_key,
971         (void*)(iter - 1))) {
972       Printf("ThreadSanitizer: failed to set thread key\n");
973       Die();
974     }
975     return;
976   }
977   DestroyThreadState();
978 }
979 #endif
980 
981 
982 struct ThreadParam {
983   void* (*callback)(void *arg);
984   void *param;
985   Tid tid;
986   Semaphore created;
987   Semaphore started;
988 };
989 
__tsan_thread_start_func(void * arg)990 extern "C" void *__tsan_thread_start_func(void *arg) {
991   ThreadParam *p = (ThreadParam*)arg;
992   void* (*callback)(void *arg) = p->callback;
993   void *param = p->param;
994   {
995     ThreadState *thr = cur_thread_init();
996     // Thread-local state is not initialized yet.
997     ScopedIgnoreInterceptors ignore;
998 #if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
999     ThreadIgnoreBegin(thr, 0);
1000     if (pthread_setspecific(interceptor_ctx()->finalize_key,
1001                             (void *)GetPthreadDestructorIterations())) {
1002       Printf("ThreadSanitizer: failed to set thread key\n");
1003       Die();
1004     }
1005     ThreadIgnoreEnd(thr);
1006 #endif
1007     p->created.Wait();
1008     Processor *proc = ProcCreate();
1009     ProcWire(proc, thr);
1010     ThreadStart(thr, p->tid, GetTid(), ThreadType::Regular);
1011     p->started.Post();
1012   }
1013   void *res = callback(param);
1014   // Prevent the callback from being tail called,
1015   // it mixes up stack traces.
1016   volatile int foo = 42;
1017   foo++;
1018   return res;
1019 }
1020 
TSAN_INTERCEPTOR(int,pthread_create,void * th,void * attr,void * (* callback)(void *),void * param)1021 TSAN_INTERCEPTOR(int, pthread_create,
1022     void *th, void *attr, void *(*callback)(void*), void * param) {
1023   SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
1024 
1025   MaybeSpawnBackgroundThread();
1026 
1027   if (ctx->after_multithreaded_fork) {
1028     if (flags()->die_after_fork) {
1029       Report("ThreadSanitizer: starting new threads after multi-threaded "
1030           "fork is not supported. Dying (set die_after_fork=0 to override)\n");
1031       Die();
1032     } else {
1033       VPrintf(1,
1034               "ThreadSanitizer: starting new threads after multi-threaded "
1035               "fork is not supported (pid %lu). Continuing because of "
1036               "die_after_fork=0, but you are on your own\n",
1037               internal_getpid());
1038     }
1039   }
1040   __sanitizer_pthread_attr_t myattr;
1041   if (attr == 0) {
1042     pthread_attr_init(&myattr);
1043     attr = &myattr;
1044   }
1045   int detached = 0;
1046   REAL(pthread_attr_getdetachstate)(attr, &detached);
1047   AdjustStackSize(attr);
1048 
1049   ThreadParam p;
1050   p.callback = callback;
1051   p.param = param;
1052   p.tid = kMainTid;
1053   int res = -1;
1054   {
1055     // Otherwise we see false positives in pthread stack manipulation.
1056     ScopedIgnoreInterceptors ignore;
1057     ThreadIgnoreBegin(thr, pc);
1058     res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
1059     ThreadIgnoreEnd(thr);
1060   }
1061   if (res == 0) {
1062     p.tid = ThreadCreate(thr, pc, *(uptr *)th, IsStateDetached(detached));
1063     CHECK_NE(p.tid, kMainTid);
1064     // Synchronization on p.tid serves two purposes:
1065     // 1. ThreadCreate must finish before the new thread starts.
1066     //    Otherwise the new thread can call pthread_detach, but the pthread_t
1067     //    identifier is not yet registered in ThreadRegistry by ThreadCreate.
1068     // 2. ThreadStart must finish before this thread continues.
1069     //    Otherwise, this thread can call pthread_detach and reset thr->sync
1070     //    before the new thread got a chance to acquire from it in ThreadStart.
1071     p.created.Post();
1072     p.started.Wait();
1073   }
1074   if (attr == &myattr)
1075     pthread_attr_destroy(&myattr);
1076   return res;
1077 }
1078 
TSAN_INTERCEPTOR(int,pthread_join,void * th,void ** ret)1079 TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
1080   SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
1081   Tid tid = ThreadConsumeTid(thr, pc, (uptr)th);
1082   ThreadIgnoreBegin(thr, pc);
1083   int res = BLOCK_REAL(pthread_join)(th, ret);
1084   ThreadIgnoreEnd(thr);
1085   if (res == 0) {
1086     ThreadJoin(thr, pc, tid);
1087   }
1088   return res;
1089 }
1090 
1091 DEFINE_REAL_PTHREAD_FUNCTIONS
1092 
TSAN_INTERCEPTOR(int,pthread_detach,void * th)1093 TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
1094   SCOPED_INTERCEPTOR_RAW(pthread_detach, th);
1095   Tid tid = ThreadConsumeTid(thr, pc, (uptr)th);
1096   int res = REAL(pthread_detach)(th);
1097   if (res == 0) {
1098     ThreadDetach(thr, pc, tid);
1099   }
1100   return res;
1101 }
1102 
TSAN_INTERCEPTOR(void,pthread_exit,void * retval)1103 TSAN_INTERCEPTOR(void, pthread_exit, void *retval) {
1104   {
1105     SCOPED_INTERCEPTOR_RAW(pthread_exit, retval);
1106 #if !SANITIZER_APPLE && !SANITIZER_ANDROID
1107     CHECK_EQ(thr, &cur_thread_placeholder);
1108 #endif
1109   }
1110   REAL(pthread_exit)(retval);
1111 }
1112 
1113 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,pthread_tryjoin_np,void * th,void ** ret)1114 TSAN_INTERCEPTOR(int, pthread_tryjoin_np, void *th, void **ret) {
1115   SCOPED_INTERCEPTOR_RAW(pthread_tryjoin_np, th, ret);
1116   Tid tid = ThreadConsumeTid(thr, pc, (uptr)th);
1117   ThreadIgnoreBegin(thr, pc);
1118   int res = REAL(pthread_tryjoin_np)(th, ret);
1119   ThreadIgnoreEnd(thr);
1120   if (res == 0)
1121     ThreadJoin(thr, pc, tid);
1122   else
1123     ThreadNotJoined(thr, pc, tid, (uptr)th);
1124   return res;
1125 }
1126 
TSAN_INTERCEPTOR(int,pthread_timedjoin_np,void * th,void ** ret,const struct timespec * abstime)1127 TSAN_INTERCEPTOR(int, pthread_timedjoin_np, void *th, void **ret,
1128                  const struct timespec *abstime) {
1129   SCOPED_INTERCEPTOR_RAW(pthread_timedjoin_np, th, ret, abstime);
1130   Tid tid = ThreadConsumeTid(thr, pc, (uptr)th);
1131   ThreadIgnoreBegin(thr, pc);
1132   int res = BLOCK_REAL(pthread_timedjoin_np)(th, ret, abstime);
1133   ThreadIgnoreEnd(thr);
1134   if (res == 0)
1135     ThreadJoin(thr, pc, tid);
1136   else
1137     ThreadNotJoined(thr, pc, tid, (uptr)th);
1138   return res;
1139 }
1140 #endif
1141 
1142 // Problem:
1143 // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
1144 // pthread_cond_t has different size in the different versions.
1145 // If call new REAL functions for old pthread_cond_t, they will corrupt memory
1146 // after pthread_cond_t (old cond is smaller).
1147 // If we call old REAL functions for new pthread_cond_t, we will lose  some
1148 // functionality (e.g. old functions do not support waiting against
1149 // CLOCK_REALTIME).
1150 // Proper handling would require to have 2 versions of interceptors as well.
1151 // But this is messy, in particular requires linker scripts when sanitizer
1152 // runtime is linked into a shared library.
1153 // Instead we assume we don't have dynamic libraries built against old
1154 // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
1155 // that allows to work with old libraries (but this mode does not support
1156 // some features, e.g. pthread_condattr_getpshared).
init_cond(void * c,bool force=false)1157 static void *init_cond(void *c, bool force = false) {
1158   // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
1159   // So we allocate additional memory on the side large enough to hold
1160   // any pthread_cond_t object. Always call new REAL functions, but pass
1161   // the aux object to them.
1162   // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
1163   // first word of pthread_cond_t to zero.
1164   // It's all relevant only for linux.
1165   if (!common_flags()->legacy_pthread_cond)
1166     return c;
1167   atomic_uintptr_t *p = (atomic_uintptr_t*)c;
1168   uptr cond = atomic_load(p, memory_order_acquire);
1169   if (!force && cond != 0)
1170     return (void*)cond;
1171   void *newcond = WRAP(malloc)(pthread_cond_t_sz);
1172   internal_memset(newcond, 0, pthread_cond_t_sz);
1173   if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
1174       memory_order_acq_rel))
1175     return newcond;
1176   WRAP(free)(newcond);
1177   return (void*)cond;
1178 }
1179 
1180 namespace {
1181 
1182 template <class Fn>
1183 struct CondMutexUnlockCtx {
1184   ScopedInterceptor *si;
1185   ThreadState *thr;
1186   uptr pc;
1187   void *m;
1188   void *c;
1189   const Fn &fn;
1190 
Cancel__anona5e69ada0211::CondMutexUnlockCtx1191   int Cancel() const { return fn(); }
1192   void Unlock() const;
1193 };
1194 
1195 template <class Fn>
Unlock() const1196 void CondMutexUnlockCtx<Fn>::Unlock() const {
1197   // pthread_cond_wait interceptor has enabled async signal delivery
1198   // (see BlockingCall below). Disable async signals since we are running
1199   // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
1200   // since the thread is cancelled, so we have to manually execute them
1201   // (the thread still can run some user code due to pthread_cleanup_push).
1202   CHECK_EQ(atomic_load(&thr->in_blocking_func, memory_order_relaxed), 1);
1203   atomic_store(&thr->in_blocking_func, 0, memory_order_relaxed);
1204   MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock);
1205   // Undo BlockingCall ctor effects.
1206   thr->ignore_interceptors--;
1207   si->~ScopedInterceptor();
1208 }
1209 }  // namespace
1210 
INTERCEPTOR(int,pthread_cond_init,void * c,void * a)1211 INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
1212   void *cond = init_cond(c, true);
1213   SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
1214   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1215   return REAL(pthread_cond_init)(cond, a);
1216 }
1217 
1218 template <class Fn>
cond_wait(ThreadState * thr,uptr pc,ScopedInterceptor * si,const Fn & fn,void * c,void * m)1219 int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si, const Fn &fn,
1220               void *c, void *m) {
1221   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1222   MutexUnlock(thr, pc, (uptr)m);
1223   int res = 0;
1224   // This ensures that we handle mutex lock even in case of pthread_cancel.
1225   // See test/tsan/cond_cancel.cpp.
1226   {
1227     // Enable signal delivery while the thread is blocked.
1228     BlockingCall bc(thr);
1229     CondMutexUnlockCtx<Fn> arg = {si, thr, pc, m, c, fn};
1230     res = call_pthread_cancel_with_cleanup(
1231         [](void *arg) -> int {
1232           return ((const CondMutexUnlockCtx<Fn> *)arg)->Cancel();
1233         },
1234         [](void *arg) { ((const CondMutexUnlockCtx<Fn> *)arg)->Unlock(); },
1235         &arg);
1236   }
1237   if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, (uptr)m);
1238   MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock);
1239   return res;
1240 }
1241 
INTERCEPTOR(int,pthread_cond_wait,void * c,void * m)1242 INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
1243   void *cond = init_cond(c);
1244   SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
1245   return cond_wait(
1246       thr, pc, &si, [=]() { return REAL(pthread_cond_wait)(cond, m); }, cond,
1247       m);
1248 }
1249 
INTERCEPTOR(int,pthread_cond_timedwait,void * c,void * m,void * abstime)1250 INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
1251   void *cond = init_cond(c);
1252   SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
1253   return cond_wait(
1254       thr, pc, &si,
1255       [=]() { return REAL(pthread_cond_timedwait)(cond, m, abstime); }, cond,
1256       m);
1257 }
1258 
1259 #if SANITIZER_LINUX
INTERCEPTOR(int,pthread_cond_clockwait,void * c,void * m,__sanitizer_clockid_t clock,void * abstime)1260 INTERCEPTOR(int, pthread_cond_clockwait, void *c, void *m,
1261             __sanitizer_clockid_t clock, void *abstime) {
1262   void *cond = init_cond(c);
1263   SCOPED_TSAN_INTERCEPTOR(pthread_cond_clockwait, cond, m, clock, abstime);
1264   return cond_wait(
1265       thr, pc, &si,
1266       [=]() { return REAL(pthread_cond_clockwait)(cond, m, clock, abstime); },
1267       cond, m);
1268 }
1269 #define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT TSAN_INTERCEPT(pthread_cond_clockwait)
1270 #else
1271 #define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT
1272 #endif
1273 
1274 #if SANITIZER_APPLE
INTERCEPTOR(int,pthread_cond_timedwait_relative_np,void * c,void * m,void * reltime)1275 INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m,
1276             void *reltime) {
1277   void *cond = init_cond(c);
1278   SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime);
1279   return cond_wait(
1280       thr, pc, &si,
1281       [=]() {
1282         return REAL(pthread_cond_timedwait_relative_np)(cond, m, reltime);
1283       },
1284       cond, m);
1285 }
1286 #endif
1287 
INTERCEPTOR(int,pthread_cond_signal,void * c)1288 INTERCEPTOR(int, pthread_cond_signal, void *c) {
1289   void *cond = init_cond(c);
1290   SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
1291   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1292   return REAL(pthread_cond_signal)(cond);
1293 }
1294 
INTERCEPTOR(int,pthread_cond_broadcast,void * c)1295 INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
1296   void *cond = init_cond(c);
1297   SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
1298   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1299   return REAL(pthread_cond_broadcast)(cond);
1300 }
1301 
INTERCEPTOR(int,pthread_cond_destroy,void * c)1302 INTERCEPTOR(int, pthread_cond_destroy, void *c) {
1303   void *cond = init_cond(c);
1304   SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
1305   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1306   int res = REAL(pthread_cond_destroy)(cond);
1307   if (common_flags()->legacy_pthread_cond) {
1308     // Free our aux cond and zero the pointer to not leave dangling pointers.
1309     WRAP(free)(cond);
1310     atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
1311   }
1312   return res;
1313 }
1314 
TSAN_INTERCEPTOR(int,pthread_mutex_init,void * m,void * a)1315 TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
1316   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
1317   int res = REAL(pthread_mutex_init)(m, a);
1318   if (res == 0) {
1319     u32 flagz = 0;
1320     if (a) {
1321       int type = 0;
1322       if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
1323         if (type == PTHREAD_MUTEX_RECURSIVE ||
1324             type == PTHREAD_MUTEX_RECURSIVE_NP)
1325           flagz |= MutexFlagWriteReentrant;
1326     }
1327     MutexCreate(thr, pc, (uptr)m, flagz);
1328   }
1329   return res;
1330 }
1331 
TSAN_INTERCEPTOR(int,pthread_mutex_destroy,void * m)1332 TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
1333   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
1334   int res = REAL(pthread_mutex_destroy)(m);
1335   if (res == 0 || res == errno_EBUSY) {
1336     MutexDestroy(thr, pc, (uptr)m);
1337   }
1338   return res;
1339 }
1340 
TSAN_INTERCEPTOR(int,pthread_mutex_lock,void * m)1341 TSAN_INTERCEPTOR(int, pthread_mutex_lock, void *m) {
1342   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_lock, m);
1343   MutexPreLock(thr, pc, (uptr)m);
1344   int res = REAL(pthread_mutex_lock)(m);
1345   if (res == errno_EOWNERDEAD)
1346     MutexRepair(thr, pc, (uptr)m);
1347   if (res == 0 || res == errno_EOWNERDEAD)
1348     MutexPostLock(thr, pc, (uptr)m);
1349   if (res == errno_EINVAL)
1350     MutexInvalidAccess(thr, pc, (uptr)m);
1351   return res;
1352 }
1353 
TSAN_INTERCEPTOR(int,pthread_mutex_trylock,void * m)1354 TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
1355   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
1356   int res = REAL(pthread_mutex_trylock)(m);
1357   if (res == errno_EOWNERDEAD)
1358     MutexRepair(thr, pc, (uptr)m);
1359   if (res == 0 || res == errno_EOWNERDEAD)
1360     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1361   return res;
1362 }
1363 
1364 #if !SANITIZER_APPLE
TSAN_INTERCEPTOR(int,pthread_mutex_timedlock,void * m,void * abstime)1365 TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
1366   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
1367   int res = REAL(pthread_mutex_timedlock)(m, abstime);
1368   if (res == 0) {
1369     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1370   }
1371   return res;
1372 }
1373 #endif
1374 
TSAN_INTERCEPTOR(int,pthread_mutex_unlock,void * m)1375 TSAN_INTERCEPTOR(int, pthread_mutex_unlock, void *m) {
1376   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_unlock, m);
1377   MutexUnlock(thr, pc, (uptr)m);
1378   int res = REAL(pthread_mutex_unlock)(m);
1379   if (res == errno_EINVAL)
1380     MutexInvalidAccess(thr, pc, (uptr)m);
1381   return res;
1382 }
1383 
1384 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,pthread_mutex_clocklock,void * m,__sanitizer_clockid_t clock,void * abstime)1385 TSAN_INTERCEPTOR(int, pthread_mutex_clocklock, void *m,
1386                  __sanitizer_clockid_t clock, void *abstime) {
1387   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_clocklock, m, clock, abstime);
1388   MutexPreLock(thr, pc, (uptr)m);
1389   int res = REAL(pthread_mutex_clocklock)(m, clock, abstime);
1390   if (res == errno_EOWNERDEAD)
1391     MutexRepair(thr, pc, (uptr)m);
1392   if (res == 0 || res == errno_EOWNERDEAD)
1393     MutexPostLock(thr, pc, (uptr)m);
1394   if (res == errno_EINVAL)
1395     MutexInvalidAccess(thr, pc, (uptr)m);
1396   return res;
1397 }
1398 #endif
1399 
1400 #if SANITIZER_GLIBC
1401 #  if !__GLIBC_PREREQ(2, 34)
1402 // glibc 2.34 applies a non-default version for the two functions. They are no
1403 // longer expected to be intercepted by programs.
TSAN_INTERCEPTOR(int,__pthread_mutex_lock,void * m)1404 TSAN_INTERCEPTOR(int, __pthread_mutex_lock, void *m) {
1405   SCOPED_TSAN_INTERCEPTOR(__pthread_mutex_lock, m);
1406   MutexPreLock(thr, pc, (uptr)m);
1407   int res = REAL(__pthread_mutex_lock)(m);
1408   if (res == errno_EOWNERDEAD)
1409     MutexRepair(thr, pc, (uptr)m);
1410   if (res == 0 || res == errno_EOWNERDEAD)
1411     MutexPostLock(thr, pc, (uptr)m);
1412   if (res == errno_EINVAL)
1413     MutexInvalidAccess(thr, pc, (uptr)m);
1414   return res;
1415 }
1416 
TSAN_INTERCEPTOR(int,__pthread_mutex_unlock,void * m)1417 TSAN_INTERCEPTOR(int, __pthread_mutex_unlock, void *m) {
1418   SCOPED_TSAN_INTERCEPTOR(__pthread_mutex_unlock, m);
1419   MutexUnlock(thr, pc, (uptr)m);
1420   int res = REAL(__pthread_mutex_unlock)(m);
1421   if (res == errno_EINVAL)
1422     MutexInvalidAccess(thr, pc, (uptr)m);
1423   return res;
1424 }
1425 #  endif
1426 #endif
1427 
1428 #if !SANITIZER_APPLE
TSAN_INTERCEPTOR(int,pthread_spin_init,void * m,int pshared)1429 TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
1430   SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
1431   int res = REAL(pthread_spin_init)(m, pshared);
1432   if (res == 0) {
1433     MutexCreate(thr, pc, (uptr)m);
1434   }
1435   return res;
1436 }
1437 
TSAN_INTERCEPTOR(int,pthread_spin_destroy,void * m)1438 TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
1439   SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
1440   int res = REAL(pthread_spin_destroy)(m);
1441   if (res == 0) {
1442     MutexDestroy(thr, pc, (uptr)m);
1443   }
1444   return res;
1445 }
1446 
TSAN_INTERCEPTOR(int,pthread_spin_lock,void * m)1447 TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
1448   SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
1449   MutexPreLock(thr, pc, (uptr)m);
1450   int res = REAL(pthread_spin_lock)(m);
1451   if (res == 0) {
1452     MutexPostLock(thr, pc, (uptr)m);
1453   }
1454   return res;
1455 }
1456 
TSAN_INTERCEPTOR(int,pthread_spin_trylock,void * m)1457 TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
1458   SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
1459   int res = REAL(pthread_spin_trylock)(m);
1460   if (res == 0) {
1461     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1462   }
1463   return res;
1464 }
1465 
TSAN_INTERCEPTOR(int,pthread_spin_unlock,void * m)1466 TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
1467   SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
1468   MutexUnlock(thr, pc, (uptr)m);
1469   int res = REAL(pthread_spin_unlock)(m);
1470   return res;
1471 }
1472 #endif
1473 
TSAN_INTERCEPTOR(int,pthread_rwlock_init,void * m,void * a)1474 TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
1475   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
1476   int res = REAL(pthread_rwlock_init)(m, a);
1477   if (res == 0) {
1478     MutexCreate(thr, pc, (uptr)m);
1479   }
1480   return res;
1481 }
1482 
TSAN_INTERCEPTOR(int,pthread_rwlock_destroy,void * m)1483 TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
1484   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
1485   int res = REAL(pthread_rwlock_destroy)(m);
1486   if (res == 0) {
1487     MutexDestroy(thr, pc, (uptr)m);
1488   }
1489   return res;
1490 }
1491 
TSAN_INTERCEPTOR(int,pthread_rwlock_rdlock,void * m)1492 TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
1493   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
1494   MutexPreReadLock(thr, pc, (uptr)m);
1495   int res = REAL(pthread_rwlock_rdlock)(m);
1496   if (res == 0) {
1497     MutexPostReadLock(thr, pc, (uptr)m);
1498   }
1499   return res;
1500 }
1501 
TSAN_INTERCEPTOR(int,pthread_rwlock_tryrdlock,void * m)1502 TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
1503   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
1504   int res = REAL(pthread_rwlock_tryrdlock)(m);
1505   if (res == 0) {
1506     MutexPostReadLock(thr, pc, (uptr)m, MutexFlagTryLock);
1507   }
1508   return res;
1509 }
1510 
1511 #if !SANITIZER_APPLE
TSAN_INTERCEPTOR(int,pthread_rwlock_timedrdlock,void * m,void * abstime)1512 TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
1513   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
1514   int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
1515   if (res == 0) {
1516     MutexPostReadLock(thr, pc, (uptr)m);
1517   }
1518   return res;
1519 }
1520 #endif
1521 
TSAN_INTERCEPTOR(int,pthread_rwlock_wrlock,void * m)1522 TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
1523   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
1524   MutexPreLock(thr, pc, (uptr)m);
1525   int res = REAL(pthread_rwlock_wrlock)(m);
1526   if (res == 0) {
1527     MutexPostLock(thr, pc, (uptr)m);
1528   }
1529   return res;
1530 }
1531 
TSAN_INTERCEPTOR(int,pthread_rwlock_trywrlock,void * m)1532 TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
1533   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
1534   int res = REAL(pthread_rwlock_trywrlock)(m);
1535   if (res == 0) {
1536     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1537   }
1538   return res;
1539 }
1540 
1541 #if !SANITIZER_APPLE
TSAN_INTERCEPTOR(int,pthread_rwlock_timedwrlock,void * m,void * abstime)1542 TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
1543   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
1544   int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
1545   if (res == 0) {
1546     MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1547   }
1548   return res;
1549 }
1550 #endif
1551 
TSAN_INTERCEPTOR(int,pthread_rwlock_unlock,void * m)1552 TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
1553   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
1554   MutexReadOrWriteUnlock(thr, pc, (uptr)m);
1555   int res = REAL(pthread_rwlock_unlock)(m);
1556   return res;
1557 }
1558 
1559 #if !SANITIZER_APPLE
TSAN_INTERCEPTOR(int,pthread_barrier_init,void * b,void * a,unsigned count)1560 TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
1561   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
1562   MemoryAccess(thr, pc, (uptr)b, 1, kAccessWrite);
1563   int res = REAL(pthread_barrier_init)(b, a, count);
1564   return res;
1565 }
1566 
TSAN_INTERCEPTOR(int,pthread_barrier_destroy,void * b)1567 TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
1568   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
1569   MemoryAccess(thr, pc, (uptr)b, 1, kAccessWrite);
1570   int res = REAL(pthread_barrier_destroy)(b);
1571   return res;
1572 }
1573 
TSAN_INTERCEPTOR(int,pthread_barrier_wait,void * b)1574 TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
1575   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
1576   Release(thr, pc, (uptr)b);
1577   MemoryAccess(thr, pc, (uptr)b, 1, kAccessRead);
1578   int res = REAL(pthread_barrier_wait)(b);
1579   MemoryAccess(thr, pc, (uptr)b, 1, kAccessRead);
1580   if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
1581     Acquire(thr, pc, (uptr)b);
1582   }
1583   return res;
1584 }
1585 #endif
1586 
TSAN_INTERCEPTOR(int,pthread_once,void * o,void (* f)())1587 TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
1588   SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
1589   if (o == 0 || f == 0)
1590     return errno_EINVAL;
1591   atomic_uint32_t *a;
1592 
1593   if (SANITIZER_APPLE)
1594     a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t)));
1595   else if (SANITIZER_NETBSD)
1596     a = static_cast<atomic_uint32_t*>
1597           ((void *)((char *)o + __sanitizer::pthread_mutex_t_sz));
1598   else
1599     a = static_cast<atomic_uint32_t*>(o);
1600 
1601   // Mac OS X appears to use pthread_once() where calling BlockingRegion hooks
1602   // result in crashes due to too little stack space.
1603   if (guard_acquire(thr, pc, a, !SANITIZER_APPLE)) {
1604     (*f)();
1605     guard_release(thr, pc, a, kGuardDone);
1606   }
1607   return 0;
1608 }
1609 
1610 #if SANITIZER_GLIBC
TSAN_INTERCEPTOR(int,__fxstat,int version,int fd,void * buf)1611 TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
1612   SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
1613   if (fd > 0)
1614     FdAccess(thr, pc, fd);
1615   return REAL(__fxstat)(version, fd, buf);
1616 }
1617 
TSAN_INTERCEPTOR(int,__fxstat64,int version,int fd,void * buf)1618 TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
1619   SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
1620   if (fd > 0)
1621     FdAccess(thr, pc, fd);
1622   return REAL(__fxstat64)(version, fd, buf);
1623 }
1624 #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat); TSAN_INTERCEPT(__fxstat64)
1625 #else
1626 #define TSAN_MAYBE_INTERCEPT___FXSTAT
1627 #endif
1628 
1629 #if !SANITIZER_GLIBC || __GLIBC_PREREQ(2, 33)
TSAN_INTERCEPTOR(int,fstat,int fd,void * buf)1630 TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
1631   SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
1632   if (fd > 0)
1633     FdAccess(thr, pc, fd);
1634   return REAL(fstat)(fd, buf);
1635 }
1636 #  define TSAN_MAYBE_INTERCEPT_FSTAT TSAN_INTERCEPT(fstat)
1637 #else
1638 #  define TSAN_MAYBE_INTERCEPT_FSTAT
1639 #endif
1640 
1641 #if __GLIBC_PREREQ(2, 33)
TSAN_INTERCEPTOR(int,fstat64,int fd,void * buf)1642 TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
1643   SCOPED_TSAN_INTERCEPTOR(fstat64, fd, buf);
1644   if (fd > 0)
1645     FdAccess(thr, pc, fd);
1646   return REAL(fstat64)(fd, buf);
1647 }
1648 #  define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
1649 #else
1650 #  define TSAN_MAYBE_INTERCEPT_FSTAT64
1651 #endif
1652 
TSAN_INTERCEPTOR(int,open,const char * name,int oflag,...)1653 TSAN_INTERCEPTOR(int, open, const char *name, int oflag, ...) {
1654   va_list ap;
1655   va_start(ap, oflag);
1656   mode_t mode = va_arg(ap, int);
1657   va_end(ap);
1658   SCOPED_TSAN_INTERCEPTOR(open, name, oflag, mode);
1659   READ_STRING(thr, pc, name, 0);
1660   int fd = REAL(open)(name, oflag, mode);
1661   if (fd >= 0)
1662     FdFileCreate(thr, pc, fd);
1663   return fd;
1664 }
1665 
1666 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,open64,const char * name,int oflag,...)1667 TSAN_INTERCEPTOR(int, open64, const char *name, int oflag, ...) {
1668   va_list ap;
1669   va_start(ap, oflag);
1670   mode_t mode = va_arg(ap, int);
1671   va_end(ap);
1672   SCOPED_TSAN_INTERCEPTOR(open64, name, oflag, mode);
1673   READ_STRING(thr, pc, name, 0);
1674   int fd = REAL(open64)(name, oflag, mode);
1675   if (fd >= 0)
1676     FdFileCreate(thr, pc, fd);
1677   return fd;
1678 }
1679 #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
1680 #else
1681 #define TSAN_MAYBE_INTERCEPT_OPEN64
1682 #endif
1683 
TSAN_INTERCEPTOR(int,creat,const char * name,int mode)1684 TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
1685   SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
1686   READ_STRING(thr, pc, name, 0);
1687   int fd = REAL(creat)(name, mode);
1688   if (fd >= 0)
1689     FdFileCreate(thr, pc, fd);
1690   return fd;
1691 }
1692 
1693 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,creat64,const char * name,int mode)1694 TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
1695   SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
1696   READ_STRING(thr, pc, name, 0);
1697   int fd = REAL(creat64)(name, mode);
1698   if (fd >= 0)
1699     FdFileCreate(thr, pc, fd);
1700   return fd;
1701 }
1702 #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
1703 #else
1704 #define TSAN_MAYBE_INTERCEPT_CREAT64
1705 #endif
1706 
TSAN_INTERCEPTOR(int,dup,int oldfd)1707 TSAN_INTERCEPTOR(int, dup, int oldfd) {
1708   SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
1709   int newfd = REAL(dup)(oldfd);
1710   if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
1711     FdDup(thr, pc, oldfd, newfd, true);
1712   return newfd;
1713 }
1714 
TSAN_INTERCEPTOR(int,dup2,int oldfd,int newfd)1715 TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
1716   SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
1717   int newfd2 = REAL(dup2)(oldfd, newfd);
1718   if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1719     FdDup(thr, pc, oldfd, newfd2, false);
1720   return newfd2;
1721 }
1722 
1723 #if !SANITIZER_APPLE
TSAN_INTERCEPTOR(int,dup3,int oldfd,int newfd,int flags)1724 TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
1725   SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
1726   int newfd2 = REAL(dup3)(oldfd, newfd, flags);
1727   if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1728     FdDup(thr, pc, oldfd, newfd2, false);
1729   return newfd2;
1730 }
1731 #endif
1732 
1733 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,eventfd,unsigned initval,int flags)1734 TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
1735   SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
1736   int fd = REAL(eventfd)(initval, flags);
1737   if (fd >= 0)
1738     FdEventCreate(thr, pc, fd);
1739   return fd;
1740 }
1741 #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
1742 #else
1743 #define TSAN_MAYBE_INTERCEPT_EVENTFD
1744 #endif
1745 
1746 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,signalfd,int fd,void * mask,int flags)1747 TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
1748   SCOPED_INTERCEPTOR_RAW(signalfd, fd, mask, flags);
1749   FdClose(thr, pc, fd);
1750   fd = REAL(signalfd)(fd, mask, flags);
1751   if (!MustIgnoreInterceptor(thr))
1752     FdSignalCreate(thr, pc, fd);
1753   return fd;
1754 }
1755 #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
1756 #else
1757 #define TSAN_MAYBE_INTERCEPT_SIGNALFD
1758 #endif
1759 
1760 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,inotify_init,int fake)1761 TSAN_INTERCEPTOR(int, inotify_init, int fake) {
1762   SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
1763   int fd = REAL(inotify_init)(fake);
1764   if (fd >= 0)
1765     FdInotifyCreate(thr, pc, fd);
1766   return fd;
1767 }
1768 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
1769 #else
1770 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
1771 #endif
1772 
1773 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,inotify_init1,int flags)1774 TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
1775   SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
1776   int fd = REAL(inotify_init1)(flags);
1777   if (fd >= 0)
1778     FdInotifyCreate(thr, pc, fd);
1779   return fd;
1780 }
1781 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
1782 #else
1783 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
1784 #endif
1785 
TSAN_INTERCEPTOR(int,socket,int domain,int type,int protocol)1786 TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
1787   SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
1788   int fd = REAL(socket)(domain, type, protocol);
1789   if (fd >= 0)
1790     FdSocketCreate(thr, pc, fd);
1791   return fd;
1792 }
1793 
TSAN_INTERCEPTOR(int,socketpair,int domain,int type,int protocol,int * fd)1794 TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
1795   SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
1796   int res = REAL(socketpair)(domain, type, protocol, fd);
1797   if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
1798     FdPipeCreate(thr, pc, fd[0], fd[1]);
1799   return res;
1800 }
1801 
TSAN_INTERCEPTOR(int,connect,int fd,void * addr,unsigned addrlen)1802 TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
1803   SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
1804   FdSocketConnecting(thr, pc, fd);
1805   int res = REAL(connect)(fd, addr, addrlen);
1806   if (res == 0 && fd >= 0)
1807     FdSocketConnect(thr, pc, fd);
1808   return res;
1809 }
1810 
TSAN_INTERCEPTOR(int,bind,int fd,void * addr,unsigned addrlen)1811 TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
1812   SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
1813   int res = REAL(bind)(fd, addr, addrlen);
1814   if (fd > 0 && res == 0)
1815     FdAccess(thr, pc, fd);
1816   return res;
1817 }
1818 
TSAN_INTERCEPTOR(int,listen,int fd,int backlog)1819 TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
1820   SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
1821   int res = REAL(listen)(fd, backlog);
1822   if (fd > 0 && res == 0)
1823     FdAccess(thr, pc, fd);
1824   return res;
1825 }
1826 
TSAN_INTERCEPTOR(int,close,int fd)1827 TSAN_INTERCEPTOR(int, close, int fd) {
1828   SCOPED_INTERCEPTOR_RAW(close, fd);
1829   if (!in_symbolizer())
1830     FdClose(thr, pc, fd);
1831   return REAL(close)(fd);
1832 }
1833 
1834 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,__close,int fd)1835 TSAN_INTERCEPTOR(int, __close, int fd) {
1836   SCOPED_INTERCEPTOR_RAW(__close, fd);
1837   FdClose(thr, pc, fd);
1838   return REAL(__close)(fd);
1839 }
1840 #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
1841 #else
1842 #define TSAN_MAYBE_INTERCEPT___CLOSE
1843 #endif
1844 
1845 // glibc guts
1846 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(void,__res_iclose,void * state,bool free_addr)1847 TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
1848   SCOPED_INTERCEPTOR_RAW(__res_iclose, state, free_addr);
1849   int fds[64];
1850   int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
1851   for (int i = 0; i < cnt; i++) FdClose(thr, pc, fds[i]);
1852   REAL(__res_iclose)(state, free_addr);
1853 }
1854 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
1855 #else
1856 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
1857 #endif
1858 
TSAN_INTERCEPTOR(int,pipe,int * pipefd)1859 TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
1860   SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
1861   int res = REAL(pipe)(pipefd);
1862   if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1863     FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1864   return res;
1865 }
1866 
1867 #if !SANITIZER_APPLE
TSAN_INTERCEPTOR(int,pipe2,int * pipefd,int flags)1868 TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
1869   SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
1870   int res = REAL(pipe2)(pipefd, flags);
1871   if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1872     FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1873   return res;
1874 }
1875 #endif
1876 
TSAN_INTERCEPTOR(int,unlink,char * path)1877 TSAN_INTERCEPTOR(int, unlink, char *path) {
1878   SCOPED_TSAN_INTERCEPTOR(unlink, path);
1879   Release(thr, pc, File2addr(path));
1880   int res = REAL(unlink)(path);
1881   return res;
1882 }
1883 
TSAN_INTERCEPTOR(void *,tmpfile,int fake)1884 TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
1885   SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
1886   void *res = REAL(tmpfile)(fake);
1887   if (res) {
1888     int fd = fileno_unlocked(res);
1889     if (fd >= 0)
1890       FdFileCreate(thr, pc, fd);
1891   }
1892   return res;
1893 }
1894 
1895 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,tmpfile64,int fake)1896 TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
1897   SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
1898   void *res = REAL(tmpfile64)(fake);
1899   if (res) {
1900     int fd = fileno_unlocked(res);
1901     if (fd >= 0)
1902       FdFileCreate(thr, pc, fd);
1903   }
1904   return res;
1905 }
1906 #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
1907 #else
1908 #define TSAN_MAYBE_INTERCEPT_TMPFILE64
1909 #endif
1910 
FlushStreams()1911 static void FlushStreams() {
1912   // Flushing all the streams here may freeze the process if a child thread is
1913   // performing file stream operations at the same time.
1914   REAL(fflush)(stdout);
1915   REAL(fflush)(stderr);
1916 }
1917 
TSAN_INTERCEPTOR(void,abort,int fake)1918 TSAN_INTERCEPTOR(void, abort, int fake) {
1919   SCOPED_TSAN_INTERCEPTOR(abort, fake);
1920   FlushStreams();
1921   REAL(abort)(fake);
1922 }
1923 
TSAN_INTERCEPTOR(int,rmdir,char * path)1924 TSAN_INTERCEPTOR(int, rmdir, char *path) {
1925   SCOPED_TSAN_INTERCEPTOR(rmdir, path);
1926   Release(thr, pc, Dir2addr(path));
1927   int res = REAL(rmdir)(path);
1928   return res;
1929 }
1930 
TSAN_INTERCEPTOR(int,closedir,void * dirp)1931 TSAN_INTERCEPTOR(int, closedir, void *dirp) {
1932   SCOPED_INTERCEPTOR_RAW(closedir, dirp);
1933   if (dirp) {
1934     int fd = dirfd(dirp);
1935     FdClose(thr, pc, fd);
1936   }
1937   return REAL(closedir)(dirp);
1938 }
1939 
1940 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,epoll_create,int size)1941 TSAN_INTERCEPTOR(int, epoll_create, int size) {
1942   SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
1943   int fd = REAL(epoll_create)(size);
1944   if (fd >= 0)
1945     FdPollCreate(thr, pc, fd);
1946   return fd;
1947 }
1948 
TSAN_INTERCEPTOR(int,epoll_create1,int flags)1949 TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
1950   SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
1951   int fd = REAL(epoll_create1)(flags);
1952   if (fd >= 0)
1953     FdPollCreate(thr, pc, fd);
1954   return fd;
1955 }
1956 
TSAN_INTERCEPTOR(int,epoll_ctl,int epfd,int op,int fd,void * ev)1957 TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
1958   SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
1959   if (epfd >= 0)
1960     FdAccess(thr, pc, epfd);
1961   if (epfd >= 0 && fd >= 0)
1962     FdAccess(thr, pc, fd);
1963   if (op == EPOLL_CTL_ADD && epfd >= 0) {
1964     FdPollAdd(thr, pc, epfd, fd);
1965     FdRelease(thr, pc, epfd);
1966   }
1967   int res = REAL(epoll_ctl)(epfd, op, fd, ev);
1968   return res;
1969 }
1970 
TSAN_INTERCEPTOR(int,epoll_wait,int epfd,void * ev,int cnt,int timeout)1971 TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
1972   SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
1973   if (epfd >= 0)
1974     FdAccess(thr, pc, epfd);
1975   int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
1976   if (res > 0 && epfd >= 0)
1977     FdAcquire(thr, pc, epfd);
1978   return res;
1979 }
1980 
TSAN_INTERCEPTOR(int,epoll_pwait,int epfd,void * ev,int cnt,int timeout,void * sigmask)1981 TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout,
1982                  void *sigmask) {
1983   SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask);
1984   if (epfd >= 0)
1985     FdAccess(thr, pc, epfd);
1986   int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask);
1987   if (res > 0 && epfd >= 0)
1988     FdAcquire(thr, pc, epfd);
1989   return res;
1990 }
1991 
TSAN_INTERCEPTOR(int,epoll_pwait2,int epfd,void * ev,int cnt,void * timeout,void * sigmask)1992 TSAN_INTERCEPTOR(int, epoll_pwait2, int epfd, void *ev, int cnt, void *timeout,
1993                  void *sigmask) {
1994   SCOPED_INTERCEPTOR_RAW(epoll_pwait2, epfd, ev, cnt, timeout, sigmask);
1995   // This function is new and may not be present in libc and/or kernel.
1996   // Since we effectively add it to libc (as will be probed by the program
1997   // using dlsym or a weak function pointer) we need to handle the case
1998   // when it's not present in the actual libc.
1999   if (!REAL(epoll_pwait2)) {
2000     errno = errno_ENOSYS;
2001     return -1;
2002   }
2003   if (MustIgnoreInterceptor(thr))
2004     REAL(epoll_pwait2)(epfd, ev, cnt, timeout, sigmask);
2005   if (epfd >= 0)
2006     FdAccess(thr, pc, epfd);
2007   int res = BLOCK_REAL(epoll_pwait2)(epfd, ev, cnt, timeout, sigmask);
2008   if (res > 0 && epfd >= 0)
2009     FdAcquire(thr, pc, epfd);
2010   return res;
2011 }
2012 
2013 #  define TSAN_MAYBE_INTERCEPT_EPOLL \
2014     TSAN_INTERCEPT(epoll_create);    \
2015     TSAN_INTERCEPT(epoll_create1);   \
2016     TSAN_INTERCEPT(epoll_ctl);       \
2017     TSAN_INTERCEPT(epoll_wait);      \
2018     TSAN_INTERCEPT(epoll_pwait);     \
2019     TSAN_INTERCEPT(epoll_pwait2)
2020 #else
2021 #define TSAN_MAYBE_INTERCEPT_EPOLL
2022 #endif
2023 
2024 // The following functions are intercepted merely to process pending signals.
2025 // If program blocks signal X, we must deliver the signal before the function
2026 // returns. Similarly, if program unblocks a signal (or returns from sigsuspend)
2027 // it's better to deliver the signal straight away.
TSAN_INTERCEPTOR(int,sigsuspend,const __sanitizer_sigset_t * mask)2028 TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
2029   SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
2030   return REAL(sigsuspend)(mask);
2031 }
2032 
TSAN_INTERCEPTOR(int,sigblock,int mask)2033 TSAN_INTERCEPTOR(int, sigblock, int mask) {
2034   SCOPED_TSAN_INTERCEPTOR(sigblock, mask);
2035   return REAL(sigblock)(mask);
2036 }
2037 
TSAN_INTERCEPTOR(int,sigsetmask,int mask)2038 TSAN_INTERCEPTOR(int, sigsetmask, int mask) {
2039   SCOPED_TSAN_INTERCEPTOR(sigsetmask, mask);
2040   return REAL(sigsetmask)(mask);
2041 }
2042 
TSAN_INTERCEPTOR(int,pthread_sigmask,int how,const __sanitizer_sigset_t * set,__sanitizer_sigset_t * oldset)2043 TSAN_INTERCEPTOR(int, pthread_sigmask, int how, const __sanitizer_sigset_t *set,
2044     __sanitizer_sigset_t *oldset) {
2045   SCOPED_TSAN_INTERCEPTOR(pthread_sigmask, how, set, oldset);
2046   return REAL(pthread_sigmask)(how, set, oldset);
2047 }
2048 
2049 namespace __tsan {
2050 
ReportErrnoSpoiling(ThreadState * thr,uptr pc,int sig)2051 static void ReportErrnoSpoiling(ThreadState *thr, uptr pc, int sig) {
2052   VarSizeStackTrace stack;
2053   // StackTrace::GetNestInstructionPc(pc) is used because return address is
2054   // expected, OutputReport() will undo this.
2055   ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
2056   ThreadRegistryLock l(&ctx->thread_registry);
2057   ScopedReport rep(ReportTypeErrnoInSignal);
2058   rep.SetSigNum(sig);
2059   if (!IsFiredSuppression(ctx, ReportTypeErrnoInSignal, stack)) {
2060     rep.AddStack(stack, true);
2061     OutputReport(thr, rep);
2062   }
2063 }
2064 
CallUserSignalHandler(ThreadState * thr,bool sync,bool acquire,int sig,__sanitizer_siginfo * info,void * uctx)2065 static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
2066                                   int sig, __sanitizer_siginfo *info,
2067                                   void *uctx) {
2068   CHECK(thr->slot);
2069   __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
2070   if (acquire)
2071     Acquire(thr, 0, (uptr)&sigactions[sig]);
2072   // Signals are generally asynchronous, so if we receive a signals when
2073   // ignores are enabled we should disable ignores. This is critical for sync
2074   // and interceptors, because otherwise we can miss synchronization and report
2075   // false races.
2076   int ignore_reads_and_writes = thr->ignore_reads_and_writes;
2077   int ignore_interceptors = thr->ignore_interceptors;
2078   int ignore_sync = thr->ignore_sync;
2079   // For symbolizer we only process SIGSEGVs synchronously
2080   // (bug in symbolizer or in tsan). But we want to reset
2081   // in_symbolizer to fail gracefully. Symbolizer and user code
2082   // use different memory allocators, so if we don't reset
2083   // in_symbolizer we can get memory allocated with one being
2084   // feed with another, which can cause more crashes.
2085   int in_symbolizer = thr->in_symbolizer;
2086   if (!ctx->after_multithreaded_fork) {
2087     thr->ignore_reads_and_writes = 0;
2088     thr->fast_state.ClearIgnoreBit();
2089     thr->ignore_interceptors = 0;
2090     thr->ignore_sync = 0;
2091     thr->in_symbolizer = 0;
2092   }
2093   // Ensure that the handler does not spoil errno.
2094   const int saved_errno = errno;
2095   errno = 99;
2096   // This code races with sigaction. Be careful to not read sa_sigaction twice.
2097   // Also need to remember pc for reporting before the call,
2098   // because the handler can reset it.
2099   volatile uptr pc = (sigactions[sig].sa_flags & SA_SIGINFO)
2100                          ? (uptr)sigactions[sig].sigaction
2101                          : (uptr)sigactions[sig].handler;
2102   if (pc != sig_dfl && pc != sig_ign) {
2103     // The callback can be either sa_handler or sa_sigaction.
2104     // They have different signatures, but we assume that passing
2105     // additional arguments to sa_handler works and is harmless.
2106     ((__sanitizer_sigactionhandler_ptr)pc)(sig, info, uctx);
2107   }
2108   if (!ctx->after_multithreaded_fork) {
2109     thr->ignore_reads_and_writes = ignore_reads_and_writes;
2110     if (ignore_reads_and_writes)
2111       thr->fast_state.SetIgnoreBit();
2112     thr->ignore_interceptors = ignore_interceptors;
2113     thr->ignore_sync = ignore_sync;
2114     thr->in_symbolizer = in_symbolizer;
2115   }
2116   // We do not detect errno spoiling for SIGTERM,
2117   // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
2118   // tsan reports false positive in such case.
2119   // It's difficult to properly detect this situation (reraise),
2120   // because in async signal processing case (when handler is called directly
2121   // from rtl_generic_sighandler) we have not yet received the reraised
2122   // signal; and it looks too fragile to intercept all ways to reraise a signal.
2123   if (ShouldReport(thr, ReportTypeErrnoInSignal) && !sync && sig != SIGTERM &&
2124       errno != 99)
2125     ReportErrnoSpoiling(thr, pc, sig);
2126   errno = saved_errno;
2127 }
2128 
ProcessPendingSignalsImpl(ThreadState * thr)2129 void ProcessPendingSignalsImpl(ThreadState *thr) {
2130   atomic_store(&thr->pending_signals, 0, memory_order_relaxed);
2131   ThreadSignalContext *sctx = SigCtx(thr);
2132   if (sctx == 0)
2133     return;
2134   atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
2135   internal_sigfillset(&sctx->emptyset);
2136   int res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->emptyset, &sctx->oldset);
2137   CHECK_EQ(res, 0);
2138   for (int sig = 0; sig < kSigCount; sig++) {
2139     SignalDesc *signal = &sctx->pending_signals[sig];
2140     if (signal->armed) {
2141       signal->armed = false;
2142       CallUserSignalHandler(thr, false, true, sig, &signal->siginfo,
2143                             &signal->ctx);
2144     }
2145   }
2146   res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->oldset, 0);
2147   CHECK_EQ(res, 0);
2148   atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
2149 }
2150 
2151 }  // namespace __tsan
2152 
is_sync_signal(ThreadSignalContext * sctx,int sig,__sanitizer_siginfo * info)2153 static bool is_sync_signal(ThreadSignalContext *sctx, int sig,
2154                            __sanitizer_siginfo *info) {
2155   // If we are sending signal to ourselves, we must process it now.
2156   if (sctx && sig == sctx->int_signal_send)
2157     return true;
2158 #if SANITIZER_HAS_SIGINFO
2159   // POSIX timers can be configured to send any kind of signal; however, it
2160   // doesn't make any sense to consider a timer signal as synchronous!
2161   if (info->si_code == SI_TIMER)
2162     return false;
2163 #endif
2164   return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL || sig == SIGTRAP ||
2165          sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS;
2166 }
2167 
sighandler(int sig,__sanitizer_siginfo * info,void * ctx)2168 void sighandler(int sig, __sanitizer_siginfo *info, void *ctx) {
2169   ThreadState *thr = cur_thread_init();
2170   ThreadSignalContext *sctx = SigCtx(thr);
2171   if (sig < 0 || sig >= kSigCount) {
2172     VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
2173     return;
2174   }
2175   // Don't mess with synchronous signals.
2176   const bool sync = is_sync_signal(sctx, sig, info);
2177   if (sync ||
2178       // If we are in blocking function, we can safely process it now
2179       // (but check if we are in a recursive interceptor,
2180       // i.e. pthread_join()->munmap()).
2181       atomic_load(&thr->in_blocking_func, memory_order_relaxed)) {
2182     atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
2183     if (atomic_load(&thr->in_blocking_func, memory_order_relaxed)) {
2184       atomic_store(&thr->in_blocking_func, 0, memory_order_relaxed);
2185       CallUserSignalHandler(thr, sync, true, sig, info, ctx);
2186       atomic_store(&thr->in_blocking_func, 1, memory_order_relaxed);
2187     } else {
2188       // Be very conservative with when we do acquire in this case.
2189       // It's unsafe to do acquire in async handlers, because ThreadState
2190       // can be in inconsistent state.
2191       // SIGSYS looks relatively safe -- it's synchronous and can actually
2192       // need some global state.
2193       bool acq = (sig == SIGSYS);
2194       CallUserSignalHandler(thr, sync, acq, sig, info, ctx);
2195     }
2196     atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
2197     return;
2198   }
2199 
2200   if (sctx == 0)
2201     return;
2202   SignalDesc *signal = &sctx->pending_signals[sig];
2203   if (signal->armed == false) {
2204     signal->armed = true;
2205     internal_memcpy(&signal->siginfo, info, sizeof(*info));
2206     internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
2207     atomic_store(&thr->pending_signals, 1, memory_order_relaxed);
2208   }
2209 }
2210 
TSAN_INTERCEPTOR(int,raise,int sig)2211 TSAN_INTERCEPTOR(int, raise, int sig) {
2212   SCOPED_TSAN_INTERCEPTOR(raise, sig);
2213   ThreadSignalContext *sctx = SigCtx(thr);
2214   CHECK_NE(sctx, 0);
2215   int prev = sctx->int_signal_send;
2216   sctx->int_signal_send = sig;
2217   int res = REAL(raise)(sig);
2218   CHECK_EQ(sctx->int_signal_send, sig);
2219   sctx->int_signal_send = prev;
2220   return res;
2221 }
2222 
TSAN_INTERCEPTOR(int,kill,int pid,int sig)2223 TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
2224   SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
2225   ThreadSignalContext *sctx = SigCtx(thr);
2226   CHECK_NE(sctx, 0);
2227   int prev = sctx->int_signal_send;
2228   if (pid == (int)internal_getpid()) {
2229     sctx->int_signal_send = sig;
2230   }
2231   int res = REAL(kill)(pid, sig);
2232   if (pid == (int)internal_getpid()) {
2233     CHECK_EQ(sctx->int_signal_send, sig);
2234     sctx->int_signal_send = prev;
2235   }
2236   return res;
2237 }
2238 
TSAN_INTERCEPTOR(int,pthread_kill,void * tid,int sig)2239 TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
2240   SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
2241   ThreadSignalContext *sctx = SigCtx(thr);
2242   CHECK_NE(sctx, 0);
2243   int prev = sctx->int_signal_send;
2244   bool self = pthread_equal(tid, pthread_self());
2245   if (self)
2246     sctx->int_signal_send = sig;
2247   int res = REAL(pthread_kill)(tid, sig);
2248   if (self) {
2249     CHECK_EQ(sctx->int_signal_send, sig);
2250     sctx->int_signal_send = prev;
2251   }
2252   return res;
2253 }
2254 
TSAN_INTERCEPTOR(int,gettimeofday,void * tv,void * tz)2255 TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
2256   SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
2257   // It's intercepted merely to process pending signals.
2258   return REAL(gettimeofday)(tv, tz);
2259 }
2260 
TSAN_INTERCEPTOR(int,getaddrinfo,void * node,void * service,void * hints,void * rv)2261 TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
2262     void *hints, void *rv) {
2263   SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
2264   // We miss atomic synchronization in getaddrinfo,
2265   // and can report false race between malloc and free
2266   // inside of getaddrinfo. So ignore memory accesses.
2267   ThreadIgnoreBegin(thr, pc);
2268   int res = REAL(getaddrinfo)(node, service, hints, rv);
2269   ThreadIgnoreEnd(thr);
2270   return res;
2271 }
2272 
TSAN_INTERCEPTOR(int,fork,int fake)2273 TSAN_INTERCEPTOR(int, fork, int fake) {
2274   if (in_symbolizer())
2275     return REAL(fork)(fake);
2276   SCOPED_INTERCEPTOR_RAW(fork, fake);
2277   return REAL(fork)(fake);
2278 }
2279 
atfork_prepare()2280 void atfork_prepare() {
2281   if (in_symbolizer())
2282     return;
2283   ThreadState *thr = cur_thread();
2284   const uptr pc = StackTrace::GetCurrentPc();
2285   ForkBefore(thr, pc);
2286 }
2287 
atfork_parent()2288 void atfork_parent() {
2289   if (in_symbolizer())
2290     return;
2291   ThreadState *thr = cur_thread();
2292   const uptr pc = StackTrace::GetCurrentPc();
2293   ForkParentAfter(thr, pc);
2294 }
2295 
atfork_child()2296 void atfork_child() {
2297   if (in_symbolizer())
2298     return;
2299   ThreadState *thr = cur_thread();
2300   const uptr pc = StackTrace::GetCurrentPc();
2301   ForkChildAfter(thr, pc, true);
2302   FdOnFork(thr, pc);
2303 }
2304 
2305 #if !SANITIZER_IOS
TSAN_INTERCEPTOR(int,vfork,int fake)2306 TSAN_INTERCEPTOR(int, vfork, int fake) {
2307   // Some programs (e.g. openjdk) call close for all file descriptors
2308   // in the child process. Under tsan it leads to false positives, because
2309   // address space is shared, so the parent process also thinks that
2310   // the descriptors are closed (while they are actually not).
2311   // This leads to false positives due to missed synchronization.
2312   // Strictly saying this is undefined behavior, because vfork child is not
2313   // allowed to call any functions other than exec/exit. But this is what
2314   // openjdk does, so we want to handle it.
2315   // We could disable interceptors in the child process. But it's not possible
2316   // to simply intercept and wrap vfork, because vfork child is not allowed
2317   // to return from the function that calls vfork, and that's exactly what
2318   // we would do. So this would require some assembly trickery as well.
2319   // Instead we simply turn vfork into fork.
2320   return WRAP(fork)(fake);
2321 }
2322 #endif
2323 
2324 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,clone,int (* fn)(void *),void * stack,int flags,void * arg,int * parent_tid,void * tls,pid_t * child_tid)2325 TSAN_INTERCEPTOR(int, clone, int (*fn)(void *), void *stack, int flags,
2326                  void *arg, int *parent_tid, void *tls, pid_t *child_tid) {
2327   SCOPED_INTERCEPTOR_RAW(clone, fn, stack, flags, arg, parent_tid, tls,
2328                          child_tid);
2329   struct Arg {
2330     int (*fn)(void *);
2331     void *arg;
2332   };
2333   auto wrapper = +[](void *p) -> int {
2334     auto *thr = cur_thread();
2335     uptr pc = GET_CURRENT_PC();
2336     // Start the background thread for fork, but not for clone.
2337     // For fork we did this always and it's known to work (or user code has
2338     // adopted). But if we do this for the new clone interceptor some code
2339     // (sandbox2) fails. So model we used to do for years and don't start the
2340     // background thread after clone.
2341     ForkChildAfter(thr, pc, false);
2342     FdOnFork(thr, pc);
2343     auto *arg = static_cast<Arg *>(p);
2344     return arg->fn(arg->arg);
2345   };
2346   ForkBefore(thr, pc);
2347   Arg arg_wrapper = {fn, arg};
2348   int pid = REAL(clone)(wrapper, stack, flags, &arg_wrapper, parent_tid, tls,
2349                         child_tid);
2350   ForkParentAfter(thr, pc);
2351   return pid;
2352 }
2353 #endif
2354 
2355 #if !SANITIZER_APPLE && !SANITIZER_ANDROID
2356 typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size,
2357                                     void *data);
2358 struct dl_iterate_phdr_data {
2359   ThreadState *thr;
2360   uptr pc;
2361   dl_iterate_phdr_cb_t cb;
2362   void *data;
2363 };
2364 
IsAppNotRodata(uptr addr)2365 static bool IsAppNotRodata(uptr addr) {
2366   return IsAppMem(addr) && *MemToShadow(addr) != Shadow::kRodata;
2367 }
2368 
dl_iterate_phdr_cb(__sanitizer_dl_phdr_info * info,SIZE_T size,void * data)2369 static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
2370                               void *data) {
2371   dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
2372   // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
2373   // accessible in dl_iterate_phdr callback. But we don't see synchronization
2374   // inside of dynamic linker, so we "unpoison" it here in order to not
2375   // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
2376   // because some libc functions call __libc_dlopen.
2377   if (info && IsAppNotRodata((uptr)info->dlpi_name))
2378     MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2379                      internal_strlen(info->dlpi_name));
2380   int res = cbdata->cb(info, size, cbdata->data);
2381   // Perform the check one more time in case info->dlpi_name was overwritten
2382   // by user callback.
2383   if (info && IsAppNotRodata((uptr)info->dlpi_name))
2384     MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2385                      internal_strlen(info->dlpi_name));
2386   return res;
2387 }
2388 
TSAN_INTERCEPTOR(int,dl_iterate_phdr,dl_iterate_phdr_cb_t cb,void * data)2389 TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) {
2390   SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data);
2391   dl_iterate_phdr_data cbdata;
2392   cbdata.thr = thr;
2393   cbdata.pc = pc;
2394   cbdata.cb = cb;
2395   cbdata.data = data;
2396   int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata);
2397   return res;
2398 }
2399 #endif
2400 
OnExit(ThreadState * thr)2401 static int OnExit(ThreadState *thr) {
2402   int status = Finalize(thr);
2403   FlushStreams();
2404   return status;
2405 }
2406 
2407 #if !SANITIZER_APPLE
HandleRecvmsg(ThreadState * thr,uptr pc,__sanitizer_msghdr * msg)2408 static void HandleRecvmsg(ThreadState *thr, uptr pc,
2409     __sanitizer_msghdr *msg) {
2410   int fds[64];
2411   int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
2412   for (int i = 0; i < cnt; i++)
2413     FdEventCreate(thr, pc, fds[i]);
2414 }
2415 #endif
2416 
2417 #include "sanitizer_common/sanitizer_platform_interceptors.h"
2418 // Causes interceptor recursion (getaddrinfo() and fopen())
2419 #undef SANITIZER_INTERCEPT_GETADDRINFO
2420 // We define our own.
2421 #if SANITIZER_INTERCEPT_TLS_GET_ADDR
2422 #define NEED_TLS_GET_ADDR
2423 #endif
2424 #undef SANITIZER_INTERCEPT_TLS_GET_ADDR
2425 #define SANITIZER_INTERCEPT_TLS_GET_OFFSET 1
2426 #undef SANITIZER_INTERCEPT_PTHREAD_SIGMASK
2427 
2428 #define COMMON_INTERCEPT_FUNCTION_VER(name, ver)                          \
2429   INTERCEPT_FUNCTION_VER(name, ver)
2430 #define COMMON_INTERCEPT_FUNCTION_VER_UNVERSIONED_FALLBACK(name, ver) \
2431   (INTERCEPT_FUNCTION_VER(name, ver) || INTERCEPT_FUNCTION(name))
2432 
2433 #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
2434   SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__);              \
2435   TsanInterceptorContext _ctx = {thr, pc};                \
2436   ctx = (void *)&_ctx;                                    \
2437   (void)ctx;
2438 
2439 #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
2440   if (path)                                           \
2441     Acquire(thr, pc, File2addr(path));                \
2442   if (file) {                                         \
2443     int fd = fileno_unlocked(file);                   \
2444     if (fd >= 0) FdFileCreate(thr, pc, fd);           \
2445   }
2446 
2447 #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
2448   if (file) {                                    \
2449     int fd = fileno_unlocked(file);              \
2450     FdClose(thr, pc, fd);                        \
2451   }
2452 
2453 #define COMMON_INTERCEPTOR_DLOPEN(filename, flag) \
2454   ({                                              \
2455     CheckNoDeepBind(filename, flag);              \
2456     ThreadIgnoreBegin(thr, 0);                    \
2457     void *res = REAL(dlopen)(filename, flag);     \
2458     ThreadIgnoreEnd(thr);                         \
2459     res;                                          \
2460   })
2461 
2462 // Ignore interceptors in OnLibraryLoaded()/Unloaded().  These hooks use code
2463 // (ListOfModules::init, MemoryMappingLayout::DumpListOfModules) that make
2464 // intercepted calls, which can cause deadlockes with ReportRace() which also
2465 // uses this code.
2466 #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
2467   ({                                                        \
2468     ScopedIgnoreInterceptors ignore_interceptors;           \
2469     libignore()->OnLibraryLoaded(filename);                 \
2470   })
2471 
2472 #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED()     \
2473   ({                                              \
2474     ScopedIgnoreInterceptors ignore_interceptors; \
2475     libignore()->OnLibraryUnloaded();             \
2476   })
2477 
2478 #define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
2479   Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
2480 
2481 #define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
2482   Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
2483 
2484 #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
2485   Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
2486 
2487 #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
2488   FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2489 
2490 #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
2491   FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2492 
2493 #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
2494   FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2495 
2496 #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
2497   FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
2498 
2499 #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
2500   ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
2501 
2502 #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name)         \
2503   if (pthread_equal(pthread_self(), reinterpret_cast<void *>(thread))) \
2504     COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name);                     \
2505   else                                                                 \
2506     __tsan::ctx->thread_registry.SetThreadNameByUserId(thread, name)
2507 
2508 #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
2509 
2510 #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
2511   OnExit(((TsanInterceptorContext *) ctx)->thr)
2512 
2513 #define COMMON_INTERCEPTOR_MMAP_IMPL(ctx, mmap, addr, sz, prot, flags, fd,  \
2514                                      off)                                   \
2515   do {                                                                      \
2516     return mmap_interceptor(thr, pc, REAL(mmap), addr, sz, prot, flags, fd, \
2517                             off);                                           \
2518   } while (false)
2519 
2520 #define COMMON_INTERCEPTOR_MUNMAP_IMPL(ctx, addr, sz)           \
2521   do {                                                          \
2522     return munmap_interceptor(thr, pc, REAL(munmap), addr, sz); \
2523   } while (false)
2524 
2525 #if !SANITIZER_APPLE
2526 #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
2527   HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
2528       ((TsanInterceptorContext *)ctx)->pc, msg)
2529 #endif
2530 
2531 #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end)                           \
2532   if (TsanThread *t = GetCurrentThread()) {                                    \
2533     *begin = t->tls_begin();                                                   \
2534     *end = t->tls_end();                                                       \
2535   } else {                                                                     \
2536     *begin = *end = 0;                                                         \
2537   }
2538 
2539 #define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
2540   SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()
2541 
2542 #define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
2543   SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()
2544 
2545 #include "sanitizer_common/sanitizer_common_interceptors.inc"
2546 
2547 static int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2548                           __sanitizer_sigaction *old);
2549 static __sanitizer_sighandler_ptr signal_impl(int sig,
2550                                               __sanitizer_sighandler_ptr h);
2551 
2552 #define SIGNAL_INTERCEPTOR_SIGACTION_IMPL(signo, act, oldact) \
2553   { return sigaction_impl(signo, act, oldact); }
2554 
2555 #define SIGNAL_INTERCEPTOR_SIGNAL_IMPL(func, signo, handler) \
2556   { return (uptr)signal_impl(signo, (__sanitizer_sighandler_ptr)handler); }
2557 
2558 #define SIGNAL_INTERCEPTOR_ENTER() LazyInitialize(cur_thread_init())
2559 
2560 #include "sanitizer_common/sanitizer_signal_interceptors.inc"
2561 
sigaction_impl(int sig,const __sanitizer_sigaction * act,__sanitizer_sigaction * old)2562 int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2563                    __sanitizer_sigaction *old) {
2564   // Note: if we call REAL(sigaction) directly for any reason without proxying
2565   // the signal handler through sighandler, very bad things will happen.
2566   // The handler will run synchronously and corrupt tsan per-thread state.
2567   SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old);
2568   if (sig <= 0 || sig >= kSigCount) {
2569     errno = errno_EINVAL;
2570     return -1;
2571   }
2572   __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
2573   __sanitizer_sigaction old_stored;
2574   if (old) internal_memcpy(&old_stored, &sigactions[sig], sizeof(old_stored));
2575   __sanitizer_sigaction newact;
2576   if (act) {
2577     // Copy act into sigactions[sig].
2578     // Can't use struct copy, because compiler can emit call to memcpy.
2579     // Can't use internal_memcpy, because it copies byte-by-byte,
2580     // and signal handler reads the handler concurrently. It can read
2581     // some bytes from old value and some bytes from new value.
2582     // Use volatile to prevent insertion of memcpy.
2583     sigactions[sig].handler =
2584         *(volatile __sanitizer_sighandler_ptr const *)&act->handler;
2585     sigactions[sig].sa_flags = *(volatile int const *)&act->sa_flags;
2586     internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
2587                     sizeof(sigactions[sig].sa_mask));
2588 #if !SANITIZER_FREEBSD && !SANITIZER_APPLE && !SANITIZER_NETBSD
2589     sigactions[sig].sa_restorer = act->sa_restorer;
2590 #endif
2591     internal_memcpy(&newact, act, sizeof(newact));
2592     internal_sigfillset(&newact.sa_mask);
2593     if ((act->sa_flags & SA_SIGINFO) ||
2594         ((uptr)act->handler != sig_ign && (uptr)act->handler != sig_dfl)) {
2595       newact.sa_flags |= SA_SIGINFO;
2596       newact.sigaction = sighandler;
2597     }
2598     ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
2599     act = &newact;
2600   }
2601   int res = REAL(sigaction)(sig, act, old);
2602   if (res == 0 && old && old->sigaction == sighandler)
2603     internal_memcpy(old, &old_stored, sizeof(*old));
2604   return res;
2605 }
2606 
signal_impl(int sig,__sanitizer_sighandler_ptr h)2607 static __sanitizer_sighandler_ptr signal_impl(int sig,
2608                                               __sanitizer_sighandler_ptr h) {
2609   __sanitizer_sigaction act;
2610   act.handler = h;
2611   internal_memset(&act.sa_mask, -1, sizeof(act.sa_mask));
2612   act.sa_flags = 0;
2613   __sanitizer_sigaction old;
2614   int res = sigaction_symname(sig, &act, &old);
2615   if (res) return (__sanitizer_sighandler_ptr)sig_err;
2616   return old.handler;
2617 }
2618 
2619 #define TSAN_SYSCALL()             \
2620   ThreadState *thr = cur_thread(); \
2621   if (thr->ignore_interceptors)    \
2622     return;                        \
2623   ScopedSyscall scoped_syscall(thr)
2624 
2625 struct ScopedSyscall {
2626   ThreadState *thr;
2627 
ScopedSyscallScopedSyscall2628   explicit ScopedSyscall(ThreadState *thr) : thr(thr) { LazyInitialize(thr); }
2629 
~ScopedSyscallScopedSyscall2630   ~ScopedSyscall() {
2631     ProcessPendingSignals(thr);
2632   }
2633 };
2634 
2635 #if !SANITIZER_FREEBSD && !SANITIZER_APPLE
syscall_access_range(uptr pc,uptr p,uptr s,bool write)2636 static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
2637   TSAN_SYSCALL();
2638   MemoryAccessRange(thr, pc, p, s, write);
2639 }
2640 
syscall_acquire(uptr pc,uptr addr)2641 static USED void syscall_acquire(uptr pc, uptr addr) {
2642   TSAN_SYSCALL();
2643   Acquire(thr, pc, addr);
2644   DPrintf("syscall_acquire(0x%zx))\n", addr);
2645 }
2646 
syscall_release(uptr pc,uptr addr)2647 static USED void syscall_release(uptr pc, uptr addr) {
2648   TSAN_SYSCALL();
2649   DPrintf("syscall_release(0x%zx)\n", addr);
2650   Release(thr, pc, addr);
2651 }
2652 
syscall_fd_close(uptr pc,int fd)2653 static void syscall_fd_close(uptr pc, int fd) {
2654   auto *thr = cur_thread();
2655   FdClose(thr, pc, fd);
2656 }
2657 
syscall_fd_acquire(uptr pc,int fd)2658 static USED void syscall_fd_acquire(uptr pc, int fd) {
2659   TSAN_SYSCALL();
2660   FdAcquire(thr, pc, fd);
2661   DPrintf("syscall_fd_acquire(%d)\n", fd);
2662 }
2663 
syscall_fd_release(uptr pc,int fd)2664 static USED void syscall_fd_release(uptr pc, int fd) {
2665   TSAN_SYSCALL();
2666   DPrintf("syscall_fd_release(%d)\n", fd);
2667   FdRelease(thr, pc, fd);
2668 }
2669 
syscall_pre_fork(uptr pc)2670 static void syscall_pre_fork(uptr pc) { ForkBefore(cur_thread(), pc); }
2671 
syscall_post_fork(uptr pc,int pid)2672 static void syscall_post_fork(uptr pc, int pid) {
2673   ThreadState *thr = cur_thread();
2674   if (pid == 0) {
2675     // child
2676     ForkChildAfter(thr, pc, true);
2677     FdOnFork(thr, pc);
2678   } else if (pid > 0) {
2679     // parent
2680     ForkParentAfter(thr, pc);
2681   } else {
2682     // error
2683     ForkParentAfter(thr, pc);
2684   }
2685 }
2686 #endif
2687 
2688 #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
2689   syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
2690 
2691 #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
2692   syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
2693 
2694 #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
2695   do {                                       \
2696     (void)(p);                               \
2697     (void)(s);                               \
2698   } while (false)
2699 
2700 #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
2701   do {                                        \
2702     (void)(p);                                \
2703     (void)(s);                                \
2704   } while (false)
2705 
2706 #define COMMON_SYSCALL_ACQUIRE(addr) \
2707     syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
2708 
2709 #define COMMON_SYSCALL_RELEASE(addr) \
2710     syscall_release(GET_CALLER_PC(), (uptr)(addr))
2711 
2712 #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
2713 
2714 #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
2715 
2716 #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
2717 
2718 #define COMMON_SYSCALL_PRE_FORK() \
2719   syscall_pre_fork(GET_CALLER_PC())
2720 
2721 #define COMMON_SYSCALL_POST_FORK(res) \
2722   syscall_post_fork(GET_CALLER_PC(), res)
2723 
2724 #include "sanitizer_common/sanitizer_common_syscalls.inc"
2725 #include "sanitizer_common/sanitizer_syscalls_netbsd.inc"
2726 
2727 #ifdef NEED_TLS_GET_ADDR
2728 
handle_tls_addr(void * arg,void * res)2729 static void handle_tls_addr(void *arg, void *res) {
2730   ThreadState *thr = cur_thread();
2731   if (!thr)
2732     return;
2733   DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, thr->tls_addr,
2734                                         thr->tls_addr + thr->tls_size);
2735   if (!dtv)
2736     return;
2737   // New DTLS block has been allocated.
2738   MemoryResetRange(thr, 0, dtv->beg, dtv->size);
2739 }
2740 
2741 #if !SANITIZER_S390
2742 // Define own interceptor instead of sanitizer_common's for three reasons:
2743 // 1. It must not process pending signals.
2744 //    Signal handlers may contain MOVDQA instruction (see below).
2745 // 2. It must be as simple as possible to not contain MOVDQA.
2746 // 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
2747 //    is empty for tsan (meant only for msan).
2748 // Note: __tls_get_addr can be called with mis-aligned stack due to:
2749 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
2750 // So the interceptor must work with mis-aligned stack, in particular, does not
2751 // execute MOVDQA with stack addresses.
TSAN_INTERCEPTOR(void *,__tls_get_addr,void * arg)2752 TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) {
2753   void *res = REAL(__tls_get_addr)(arg);
2754   handle_tls_addr(arg, res);
2755   return res;
2756 }
2757 #else // SANITIZER_S390
TSAN_INTERCEPTOR(uptr,__tls_get_addr_internal,void * arg)2758 TSAN_INTERCEPTOR(uptr, __tls_get_addr_internal, void *arg) {
2759   uptr res = __tls_get_offset_wrapper(arg, REAL(__tls_get_offset));
2760   char *tp = static_cast<char *>(__builtin_thread_pointer());
2761   handle_tls_addr(arg, res + tp);
2762   return res;
2763 }
2764 #endif
2765 #endif
2766 
2767 #if SANITIZER_NETBSD
TSAN_INTERCEPTOR(void,_lwp_exit)2768 TSAN_INTERCEPTOR(void, _lwp_exit) {
2769   SCOPED_TSAN_INTERCEPTOR(_lwp_exit);
2770   DestroyThreadState();
2771   REAL(_lwp_exit)();
2772 }
2773 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT TSAN_INTERCEPT(_lwp_exit)
2774 #else
2775 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT
2776 #endif
2777 
2778 #if SANITIZER_FREEBSD
TSAN_INTERCEPTOR(void,thr_exit,tid_t * state)2779 TSAN_INTERCEPTOR(void, thr_exit, tid_t *state) {
2780   SCOPED_TSAN_INTERCEPTOR(thr_exit, state);
2781   DestroyThreadState();
2782   REAL(thr_exit(state));
2783 }
2784 #define TSAN_MAYBE_INTERCEPT_THR_EXIT TSAN_INTERCEPT(thr_exit)
2785 #else
2786 #define TSAN_MAYBE_INTERCEPT_THR_EXIT
2787 #endif
2788 
2789 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_init, void *c, void *a)
2790 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_destroy, void *c)
2791 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_signal, void *c)
2792 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_broadcast, void *c)
2793 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, cond_wait, void *c, void *m)
2794 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_init, void *m, void *a)
2795 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_destroy, void *m)
2796 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_lock, void *m)
2797 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_trylock, void *m)
2798 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, mutex_unlock, void *m)
2799 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_init, void *l, void *a)
2800 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_destroy, void *l)
2801 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_rdlock, void *l)
2802 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_tryrdlock, void *l)
2803 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_wrlock, void *l)
2804 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_trywrlock, void *l)
2805 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, rwlock_unlock, void *l)
2806 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, once, void *o, void (*i)())
2807 TSAN_INTERCEPTOR_FREEBSD_ALIAS(int, sigmask, int f, void *n, void *o)
2808 
2809 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_init, void *c, void *a)
2810 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_signal, void *c)
2811 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_broadcast, void *c)
2812 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_wait, void *c, void *m)
2813 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_destroy, void *c)
2814 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_init, void *m, void *a)
2815 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_destroy, void *m)
2816 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_lock, void *m)
2817 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_trylock, void *m)
2818 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_unlock, void *m)
2819 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_init, void *m, void *a)
2820 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_destroy, void *m)
2821 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_rdlock, void *m)
2822 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_tryrdlock, void *m)
2823 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_wrlock, void *m)
2824 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_trywrlock, void *m)
2825 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_unlock, void *m)
2826 TSAN_INTERCEPTOR_NETBSD_ALIAS_THR(int, once, void *o, void (*f)())
2827 TSAN_INTERCEPTOR_NETBSD_ALIAS_THR2(int, sigsetmask, sigmask, int a, void *b,
2828   void *c)
2829 
2830 namespace __tsan {
2831 
finalize(void * arg)2832 static void finalize(void *arg) {
2833   ThreadState *thr = cur_thread();
2834   int status = Finalize(thr);
2835   // Make sure the output is not lost.
2836   FlushStreams();
2837   if (status)
2838     Die();
2839 }
2840 
2841 #if !SANITIZER_APPLE && !SANITIZER_ANDROID
unreachable()2842 static void unreachable() {
2843   Report("FATAL: ThreadSanitizer: unreachable called\n");
2844   Die();
2845 }
2846 #endif
2847 
2848 // Define default implementation since interception of libdispatch  is optional.
InitializeLibdispatchInterceptors()2849 SANITIZER_WEAK_ATTRIBUTE void InitializeLibdispatchInterceptors() {}
2850 
InitializeInterceptors()2851 void InitializeInterceptors() {
2852 #if !SANITIZER_APPLE
2853   // We need to setup it early, because functions like dlsym() can call it.
2854   REAL(memset) = internal_memset;
2855   REAL(memcpy) = internal_memcpy;
2856 #endif
2857 
2858   new(interceptor_ctx()) InterceptorContext();
2859 
2860   InitializeCommonInterceptors();
2861   InitializeSignalInterceptors();
2862   InitializeLibdispatchInterceptors();
2863 
2864 #if !SANITIZER_APPLE
2865   InitializeSetjmpInterceptors();
2866 #endif
2867 
2868   TSAN_INTERCEPT(longjmp_symname);
2869   TSAN_INTERCEPT(siglongjmp_symname);
2870 #if SANITIZER_NETBSD
2871   TSAN_INTERCEPT(_longjmp);
2872 #endif
2873 
2874   TSAN_INTERCEPT(malloc);
2875   TSAN_INTERCEPT(__libc_memalign);
2876   TSAN_INTERCEPT(calloc);
2877   TSAN_INTERCEPT(realloc);
2878   TSAN_INTERCEPT(reallocarray);
2879   TSAN_INTERCEPT(free);
2880   TSAN_INTERCEPT(cfree);
2881   TSAN_INTERCEPT(munmap);
2882   TSAN_MAYBE_INTERCEPT_MEMALIGN;
2883   TSAN_INTERCEPT(valloc);
2884   TSAN_MAYBE_INTERCEPT_PVALLOC;
2885   TSAN_INTERCEPT(posix_memalign);
2886 
2887   TSAN_INTERCEPT(strcpy);
2888   TSAN_INTERCEPT(strncpy);
2889   TSAN_INTERCEPT(strdup);
2890 
2891   TSAN_INTERCEPT(pthread_create);
2892   TSAN_INTERCEPT(pthread_join);
2893   TSAN_INTERCEPT(pthread_detach);
2894   TSAN_INTERCEPT(pthread_exit);
2895   #if SANITIZER_LINUX
2896   TSAN_INTERCEPT(pthread_tryjoin_np);
2897   TSAN_INTERCEPT(pthread_timedjoin_np);
2898   #endif
2899 
2900   TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE);
2901   TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE);
2902   TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE);
2903   TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE);
2904   TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE);
2905   TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE);
2906 
2907   TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT;
2908 
2909   TSAN_INTERCEPT(pthread_mutex_init);
2910   TSAN_INTERCEPT(pthread_mutex_destroy);
2911   TSAN_INTERCEPT(pthread_mutex_lock);
2912   TSAN_INTERCEPT(pthread_mutex_trylock);
2913   TSAN_INTERCEPT(pthread_mutex_timedlock);
2914   TSAN_INTERCEPT(pthread_mutex_unlock);
2915 #if SANITIZER_LINUX
2916   TSAN_INTERCEPT(pthread_mutex_clocklock);
2917 #endif
2918 #if SANITIZER_GLIBC
2919 #  if !__GLIBC_PREREQ(2, 34)
2920   TSAN_INTERCEPT(__pthread_mutex_lock);
2921   TSAN_INTERCEPT(__pthread_mutex_unlock);
2922 #  endif
2923 #endif
2924 
2925   TSAN_INTERCEPT(pthread_spin_init);
2926   TSAN_INTERCEPT(pthread_spin_destroy);
2927   TSAN_INTERCEPT(pthread_spin_lock);
2928   TSAN_INTERCEPT(pthread_spin_trylock);
2929   TSAN_INTERCEPT(pthread_spin_unlock);
2930 
2931   TSAN_INTERCEPT(pthread_rwlock_init);
2932   TSAN_INTERCEPT(pthread_rwlock_destroy);
2933   TSAN_INTERCEPT(pthread_rwlock_rdlock);
2934   TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
2935   TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
2936   TSAN_INTERCEPT(pthread_rwlock_wrlock);
2937   TSAN_INTERCEPT(pthread_rwlock_trywrlock);
2938   TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
2939   TSAN_INTERCEPT(pthread_rwlock_unlock);
2940 
2941   TSAN_INTERCEPT(pthread_barrier_init);
2942   TSAN_INTERCEPT(pthread_barrier_destroy);
2943   TSAN_INTERCEPT(pthread_barrier_wait);
2944 
2945   TSAN_INTERCEPT(pthread_once);
2946 
2947   TSAN_MAYBE_INTERCEPT___FXSTAT;
2948   TSAN_MAYBE_INTERCEPT_FSTAT;
2949   TSAN_MAYBE_INTERCEPT_FSTAT64;
2950   TSAN_INTERCEPT(open);
2951   TSAN_MAYBE_INTERCEPT_OPEN64;
2952   TSAN_INTERCEPT(creat);
2953   TSAN_MAYBE_INTERCEPT_CREAT64;
2954   TSAN_INTERCEPT(dup);
2955   TSAN_INTERCEPT(dup2);
2956   TSAN_INTERCEPT(dup3);
2957   TSAN_MAYBE_INTERCEPT_EVENTFD;
2958   TSAN_MAYBE_INTERCEPT_SIGNALFD;
2959   TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
2960   TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
2961   TSAN_INTERCEPT(socket);
2962   TSAN_INTERCEPT(socketpair);
2963   TSAN_INTERCEPT(connect);
2964   TSAN_INTERCEPT(bind);
2965   TSAN_INTERCEPT(listen);
2966   TSAN_MAYBE_INTERCEPT_EPOLL;
2967   TSAN_INTERCEPT(close);
2968   TSAN_MAYBE_INTERCEPT___CLOSE;
2969   TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
2970   TSAN_INTERCEPT(pipe);
2971   TSAN_INTERCEPT(pipe2);
2972 
2973   TSAN_INTERCEPT(unlink);
2974   TSAN_INTERCEPT(tmpfile);
2975   TSAN_MAYBE_INTERCEPT_TMPFILE64;
2976   TSAN_INTERCEPT(abort);
2977   TSAN_INTERCEPT(rmdir);
2978   TSAN_INTERCEPT(closedir);
2979 
2980   TSAN_INTERCEPT(sigsuspend);
2981   TSAN_INTERCEPT(sigblock);
2982   TSAN_INTERCEPT(sigsetmask);
2983   TSAN_INTERCEPT(pthread_sigmask);
2984   TSAN_INTERCEPT(raise);
2985   TSAN_INTERCEPT(kill);
2986   TSAN_INTERCEPT(pthread_kill);
2987   TSAN_INTERCEPT(sleep);
2988   TSAN_INTERCEPT(usleep);
2989   TSAN_INTERCEPT(nanosleep);
2990   TSAN_INTERCEPT(pause);
2991   TSAN_INTERCEPT(gettimeofday);
2992   TSAN_INTERCEPT(getaddrinfo);
2993 
2994   TSAN_INTERCEPT(fork);
2995   TSAN_INTERCEPT(vfork);
2996 #if SANITIZER_LINUX
2997   TSAN_INTERCEPT(clone);
2998 #endif
2999 #if !SANITIZER_ANDROID
3000   TSAN_INTERCEPT(dl_iterate_phdr);
3001 #endif
3002   TSAN_MAYBE_INTERCEPT_ON_EXIT;
3003   TSAN_INTERCEPT(__cxa_atexit);
3004   TSAN_INTERCEPT(_exit);
3005 
3006 #ifdef NEED_TLS_GET_ADDR
3007 #if !SANITIZER_S390
3008   TSAN_INTERCEPT(__tls_get_addr);
3009 #else
3010   TSAN_INTERCEPT(__tls_get_addr_internal);
3011   TSAN_INTERCEPT(__tls_get_offset);
3012 #endif
3013 #endif
3014 
3015   TSAN_MAYBE_INTERCEPT__LWP_EXIT;
3016   TSAN_MAYBE_INTERCEPT_THR_EXIT;
3017 
3018 #if !SANITIZER_APPLE && !SANITIZER_ANDROID
3019   // Need to setup it, because interceptors check that the function is resolved.
3020   // But atexit is emitted directly into the module, so can't be resolved.
3021   REAL(atexit) = (int(*)(void(*)()))unreachable;
3022 #endif
3023 
3024   if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
3025     Printf("ThreadSanitizer: failed to setup atexit callback\n");
3026     Die();
3027   }
3028   if (pthread_atfork(atfork_prepare, atfork_parent, atfork_child)) {
3029     Printf("ThreadSanitizer: failed to setup atfork callbacks\n");
3030     Die();
3031   }
3032 
3033 #if !SANITIZER_APPLE && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
3034   if (pthread_key_create(&interceptor_ctx()->finalize_key, &thread_finalize)) {
3035     Printf("ThreadSanitizer: failed to create thread key\n");
3036     Die();
3037   }
3038 #endif
3039 
3040   TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_init);
3041   TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_destroy);
3042   TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_signal);
3043   TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_broadcast);
3044   TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(cond_wait);
3045   TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_init);
3046   TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_destroy);
3047   TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_lock);
3048   TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_trylock);
3049   TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(mutex_unlock);
3050   TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_init);
3051   TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_destroy);
3052   TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_rdlock);
3053   TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_tryrdlock);
3054   TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_wrlock);
3055   TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_trywrlock);
3056   TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(rwlock_unlock);
3057   TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(once);
3058   TSAN_MAYBE_INTERCEPT_FREEBSD_ALIAS(sigmask);
3059 
3060   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_init);
3061   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_signal);
3062   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_broadcast);
3063   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_wait);
3064   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_destroy);
3065   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_init);
3066   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_destroy);
3067   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_lock);
3068   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_trylock);
3069   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_unlock);
3070   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_init);
3071   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_destroy);
3072   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_rdlock);
3073   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_tryrdlock);
3074   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_wrlock);
3075   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_trywrlock);
3076   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_unlock);
3077   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(once);
3078   TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(sigsetmask);
3079 
3080   FdInit();
3081 }
3082 
3083 }  // namespace __tsan
3084 
3085 // Invisible barrier for tests.
3086 // There were several unsuccessful iterations for this functionality:
3087 // 1. Initially it was implemented in user code using
3088 //    REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
3089 //    MacOS. Futexes are linux-specific for this matter.
3090 // 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
3091 //    "as-if synchronized via sleep" messages in reports which failed some
3092 //    output tests.
3093 // 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
3094 //    visible events, which lead to "failed to restore stack trace" failures.
3095 // Note that no_sanitize_thread attribute does not turn off atomic interception
3096 // so attaching it to the function defined in user code does not help.
3097 // That's why we now have what we have.
3098 constexpr u32 kBarrierThreadBits = 10;
3099 constexpr u32 kBarrierThreads = 1 << kBarrierThreadBits;
3100 
3101 extern "C" {
3102 
__tsan_testonly_barrier_init(atomic_uint32_t * barrier,u32 num_threads)3103 SANITIZER_INTERFACE_ATTRIBUTE void __tsan_testonly_barrier_init(
3104     atomic_uint32_t *barrier, u32 num_threads) {
3105   if (num_threads >= kBarrierThreads) {
3106     Printf("barrier_init: count is too large (%d)\n", num_threads);
3107     Die();
3108   }
3109   // kBarrierThreadBits lsb is thread count,
3110   // the remaining are count of entered threads.
3111   atomic_store(barrier, num_threads, memory_order_relaxed);
3112 }
3113 
barrier_epoch(u32 value)3114 static u32 barrier_epoch(u32 value) {
3115   return (value >> kBarrierThreadBits) / (value & (kBarrierThreads - 1));
3116 }
3117 
__tsan_testonly_barrier_wait(atomic_uint32_t * barrier)3118 SANITIZER_INTERFACE_ATTRIBUTE void __tsan_testonly_barrier_wait(
3119     atomic_uint32_t *barrier) {
3120   u32 old = atomic_fetch_add(barrier, kBarrierThreads, memory_order_relaxed);
3121   u32 old_epoch = barrier_epoch(old);
3122   if (barrier_epoch(old + kBarrierThreads) != old_epoch) {
3123     FutexWake(barrier, (1 << 30));
3124     return;
3125   }
3126   for (;;) {
3127     u32 cur = atomic_load(barrier, memory_order_relaxed);
3128     if (barrier_epoch(cur) != old_epoch)
3129       return;
3130     FutexWait(barrier, cur);
3131   }
3132 }
3133 
3134 }  // extern "C"
3135