xref: /netbsd/sys/compat/linux/common/linux_misc.c (revision 95f2ee88)
1 /*	$NetBSD: linux_misc.c,v 1.260 2023/07/29 15:04:29 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1995, 1998, 1999, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
9  * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Linux compatibility module. Try to deal with various Linux system calls.
35  */
36 
37 /*
38  * These functions have been moved to multiarch to allow
39  * selection of which machines include them to be
40  * determined by the individual files.linux_<arch> files.
41  *
42  * Function in multiarch:
43  *	linux_sys_break			: linux_break.c
44  *	linux_sys_alarm			: linux_misc_notalpha.c
45  *	linux_sys_getresgid		: linux_misc_notalpha.c
46  *	linux_sys_nice			: linux_misc_notalpha.c
47  *	linux_sys_readdir		: linux_misc_notalpha.c
48  *	linux_sys_setresgid		: linux_misc_notalpha.c
49  *	linux_sys_time			: linux_misc_notalpha.c
50  *	linux_sys_utime			: linux_misc_notalpha.c
51  *	linux_sys_waitpid		: linux_misc_notalpha.c
52  *	linux_sys_old_mmap		: linux_oldmmap.c
53  *	linux_sys_oldolduname		: linux_oldolduname.c
54  *	linux_sys_oldselect		: linux_oldselect.c
55  *	linux_sys_olduname		: linux_olduname.c
56  *	linux_sys_pipe			: linux_pipe.c
57  */
58 
59 #include <sys/cdefs.h>
60 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.260 2023/07/29 15:04:29 christos Exp $");
61 
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/namei.h>
65 #include <sys/proc.h>
66 #include <sys/dirent.h>
67 #include <sys/epoll.h>
68 #include <sys/eventfd.h>
69 #include <sys/file.h>
70 #include <sys/stat.h>
71 #include <sys/filedesc.h>
72 #include <sys/ioctl.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/mman.h>
77 #include <sys/mount.h>
78 #include <sys/poll.h>
79 #include <sys/prot.h>
80 #include <sys/reboot.h>
81 #include <sys/resource.h>
82 #include <sys/resourcevar.h>
83 #include <sys/select.h>
84 #include <sys/signal.h>
85 #include <sys/signalvar.h>
86 #include <sys/socket.h>
87 #include <sys/time.h>
88 #include <sys/times.h>
89 #include <sys/vnode.h>
90 #include <sys/uio.h>
91 #include <sys/wait.h>
92 #include <sys/utsname.h>
93 #include <sys/unistd.h>
94 #include <sys/vfs_syscalls.h>
95 #include <sys/swap.h>		/* for SWAP_ON */
96 #include <sys/sysctl.h>		/* for KERN_DOMAINNAME */
97 #include <sys/kauth.h>
98 #include <sys/futex.h>
99 
100 #include <sys/ptrace.h>
101 #include <machine/ptrace.h>
102 
103 #include <sys/syscall.h>
104 #include <sys/syscallargs.h>
105 
106 #include <compat/sys/resource.h>
107 
108 #include <compat/linux/common/linux_machdep.h>
109 #include <compat/linux/common/linux_types.h>
110 #include <compat/linux/common/linux_signal.h>
111 #include <compat/linux/common/linux_ipc.h>
112 #include <compat/linux/common/linux_sem.h>
113 
114 #include <compat/linux/common/linux_fcntl.h>
115 #include <compat/linux/common/linux_mmap.h>
116 #include <compat/linux/common/linux_dirent.h>
117 #include <compat/linux/common/linux_util.h>
118 #include <compat/linux/common/linux_misc.h>
119 #include <compat/linux/common/linux_statfs.h>
120 #include <compat/linux/common/linux_limit.h>
121 #include <compat/linux/common/linux_ptrace.h>
122 #include <compat/linux/common/linux_reboot.h>
123 #include <compat/linux/common/linux_emuldata.h>
124 #include <compat/linux/common/linux_sched.h>
125 
126 #include <compat/linux/linux_syscallargs.h>
127 
128 const int linux_ptrace_request_map[] = {
129 	LINUX_PTRACE_TRACEME,	PT_TRACE_ME,
130 	LINUX_PTRACE_PEEKTEXT,	PT_READ_I,
131 	LINUX_PTRACE_PEEKDATA,	PT_READ_D,
132 	LINUX_PTRACE_POKETEXT,	PT_WRITE_I,
133 	LINUX_PTRACE_POKEDATA,	PT_WRITE_D,
134 	LINUX_PTRACE_CONT,	PT_CONTINUE,
135 	LINUX_PTRACE_KILL,	PT_KILL,
136 	LINUX_PTRACE_ATTACH,	PT_ATTACH,
137 	LINUX_PTRACE_DETACH,	PT_DETACH,
138 # ifdef PT_STEP
139 	LINUX_PTRACE_SINGLESTEP,	PT_STEP,
140 # endif
141 	LINUX_PTRACE_SYSCALL,	PT_SYSCALL,
142 	-1
143 };
144 
145 const struct linux_mnttypes linux_fstypes[] = {
146 	{ MOUNT_FFS,		LINUX_DEFAULT_SUPER_MAGIC	},
147 	{ MOUNT_NFS,		LINUX_NFS_SUPER_MAGIC 		},
148 	{ MOUNT_MFS,		LINUX_DEFAULT_SUPER_MAGIC	},
149 	{ MOUNT_MSDOS,		LINUX_MSDOS_SUPER_MAGIC		},
150 	{ MOUNT_LFS,		LINUX_DEFAULT_SUPER_MAGIC	},
151 	{ MOUNT_FDESC,		LINUX_DEFAULT_SUPER_MAGIC	},
152 	{ MOUNT_NULL,		LINUX_DEFAULT_SUPER_MAGIC	},
153 	{ MOUNT_OVERLAY,	LINUX_DEFAULT_SUPER_MAGIC	},
154 	{ MOUNT_UMAP,		LINUX_DEFAULT_SUPER_MAGIC	},
155 	{ MOUNT_KERNFS,		LINUX_DEFAULT_SUPER_MAGIC	},
156 	{ MOUNT_PROCFS,		LINUX_PROC_SUPER_MAGIC		},
157 	{ MOUNT_AFS,		LINUX_DEFAULT_SUPER_MAGIC	},
158 	{ MOUNT_CD9660,		LINUX_ISOFS_SUPER_MAGIC		},
159 	{ MOUNT_UNION,		LINUX_DEFAULT_SUPER_MAGIC	},
160 	{ MOUNT_ADOSFS,		LINUX_ADFS_SUPER_MAGIC		},
161 	{ MOUNT_EXT2FS,		LINUX_EXT2_SUPER_MAGIC		},
162 	{ MOUNT_CFS,		LINUX_DEFAULT_SUPER_MAGIC	},
163 	{ MOUNT_CODA,		LINUX_CODA_SUPER_MAGIC		},
164 	{ MOUNT_FILECORE,	LINUX_DEFAULT_SUPER_MAGIC	},
165 	{ MOUNT_NTFS,		LINUX_DEFAULT_SUPER_MAGIC	},
166 	{ MOUNT_SMBFS,		LINUX_SMB_SUPER_MAGIC		},
167 	{ MOUNT_PTYFS,		LINUX_DEVPTS_SUPER_MAGIC	},
168 	{ MOUNT_TMPFS,		LINUX_TMPFS_SUPER_MAGIC		}
169 };
170 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
171 
172 # ifdef DEBUG_LINUX
173 #define	DPRINTF(a)	uprintf a
174 # else
175 #define	DPRINTF(a)
176 # endif
177 
178 /* Local linux_misc.c functions: */
179 static void linux_to_bsd_mmap_args(struct sys_mmap_args *,
180     const struct linux_sys_mmap_args *);
181 static int linux_mmap(struct lwp *, const struct linux_sys_mmap_args *,
182     register_t *, off_t);
183 
184 
185 /*
186  * The information on a terminated (or stopped) process needs
187  * to be converted in order for Linux binaries to get a valid signal
188  * number out of it.
189  */
190 int
bsd_to_linux_wstat(int st)191 bsd_to_linux_wstat(int st)
192 {
193 
194 	int sig;
195 
196 	if (WIFSIGNALED(st)) {
197 		sig = WTERMSIG(st);
198 		if (sig >= 0 && sig < NSIG)
199 			st= (st & ~0177) | native_to_linux_signo[sig];
200 	} else if (WIFSTOPPED(st)) {
201 		sig = WSTOPSIG(st);
202 		if (sig >= 0 && sig < NSIG)
203 			st = (st & ~0xff00) |
204 			    (native_to_linux_signo[sig] << 8);
205 	}
206 	return st;
207 }
208 
209 /*
210  * wait4(2).  Passed on to the NetBSD call, surrounded by code to
211  * reserve some space for a NetBSD-style wait status, and converting
212  * it to what Linux wants.
213  */
214 int
linux_sys_wait4(struct lwp * l,const struct linux_sys_wait4_args * uap,register_t * retval)215 linux_sys_wait4(struct lwp *l, const struct linux_sys_wait4_args *uap, register_t *retval)
216 {
217 	/* {
218 		syscallarg(int) pid;
219 		syscallarg(int *) status;
220 		syscallarg(int) options;
221 		syscallarg(struct rusage50 *) rusage;
222 	} */
223 	int error, status, options, linux_options, pid = SCARG(uap, pid);
224 	struct rusage50 ru50;
225 	struct rusage ru;
226 	proc_t *p;
227 
228 	linux_options = SCARG(uap, options);
229 	if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS))
230 		return (EINVAL);
231 
232 	options = 0;
233 	if (linux_options & LINUX_WAIT4_WNOHANG)
234 		options |= WNOHANG;
235 	if (linux_options & LINUX_WAIT4_WUNTRACED)
236 		options |= WUNTRACED;
237 	if (linux_options & LINUX_WAIT4_WCONTINUED)
238 		options |= WCONTINUED;
239 	if (linux_options & LINUX_WAIT4_WALL)
240 		options |= WALLSIG;
241 	if (linux_options & LINUX_WAIT4_WCLONE)
242 		options |= WALTSIG;
243 # ifdef DIAGNOSTIC
244 	if (linux_options & LINUX_WAIT4_WNOTHREAD)
245 		printf("WARNING: %s: linux process %d.%d called "
246 		       "waitpid with __WNOTHREAD set!\n",
247 		       __FILE__, l->l_proc->p_pid, l->l_lid);
248 
249 # endif
250 
251 	error = do_sys_wait(&pid, &status, options,
252 	    SCARG(uap, rusage) != NULL ? &ru : NULL);
253 
254 	retval[0] = pid;
255 	if (pid == 0)
256 		return error;
257 
258 	p = curproc;
259 	mutex_enter(p->p_lock);
260 	sigdelset(&p->p_sigpend.sp_set, SIGCHLD); /* XXXAD ksiginfo leak */
261 	mutex_exit(p->p_lock);
262 
263 	if (SCARG(uap, rusage) != NULL) {
264 		rusage_to_rusage50(&ru, &ru50);
265 		error = copyout(&ru, SCARG(uap, rusage), sizeof(ru));
266 	}
267 
268 	if (error == 0 && SCARG(uap, status) != NULL) {
269 		status = bsd_to_linux_wstat(status);
270 		error = copyout(&status, SCARG(uap, status), sizeof status);
271 	}
272 
273 	return error;
274 }
275 
276 /*
277  * Linux brk(2).  Like native, but always return the new break value.
278  */
279 int
linux_sys_brk(struct lwp * l,const struct linux_sys_brk_args * uap,register_t * retval)280 linux_sys_brk(struct lwp *l, const struct linux_sys_brk_args *uap, register_t *retval)
281 {
282 	/* {
283 		syscallarg(char *) nsize;
284 	} */
285 	struct proc *p = l->l_proc;
286 	struct vmspace *vm = p->p_vmspace;
287 	struct sys_obreak_args oba;
288 
289 	SCARG(&oba, nsize) = SCARG(uap, nsize);
290 
291 	(void) sys_obreak(l, &oba, retval);
292 	retval[0] = (register_t)((char *)vm->vm_daddr + ptoa(vm->vm_dsize));
293 	return 0;
294 }
295 
296 /*
297  * Implement the fs stat functions. Straightforward.
298  */
299 int
linux_sys_statfs(struct lwp * l,const struct linux_sys_statfs_args * uap,register_t * retval)300 linux_sys_statfs(struct lwp *l, const struct linux_sys_statfs_args *uap, register_t *retval)
301 {
302 	/* {
303 		syscallarg(const char *) path;
304 		syscallarg(struct linux_statfs *) sp;
305 	} */
306 	struct statvfs *sb;
307 	struct linux_statfs ltmp;
308 	int error;
309 
310 	sb = STATVFSBUF_GET();
311 	error = do_sys_pstatvfs(l, SCARG(uap, path), ST_WAIT, sb);
312 	if (error == 0) {
313 		bsd_to_linux_statfs(sb, &ltmp);
314 		error = copyout(&ltmp, SCARG(uap, sp), sizeof ltmp);
315 	}
316 	STATVFSBUF_PUT(sb);
317 
318 	return error;
319 }
320 
321 int
linux_sys_fstatfs(struct lwp * l,const struct linux_sys_fstatfs_args * uap,register_t * retval)322 linux_sys_fstatfs(struct lwp *l, const struct linux_sys_fstatfs_args *uap, register_t *retval)
323 {
324 	/* {
325 		syscallarg(int) fd;
326 		syscallarg(struct linux_statfs *) sp;
327 	} */
328 	struct statvfs *sb;
329 	struct linux_statfs ltmp;
330 	int error;
331 
332 	sb = STATVFSBUF_GET();
333 	error = do_sys_fstatvfs(l, SCARG(uap, fd), ST_WAIT, sb);
334 	if (error == 0) {
335 		bsd_to_linux_statfs(sb, &ltmp);
336 		error = copyout(&ltmp, SCARG(uap, sp), sizeof ltmp);
337 	}
338 	STATVFSBUF_PUT(sb);
339 
340 	return error;
341 }
342 
343 /*
344  * uname(). Just copy the info from the various strings stored in the
345  * kernel, and put it in the Linux utsname structure. That structure
346  * is almost the same as the NetBSD one, only it has fields 65 characters
347  * long, and an extra domainname field.
348  */
349 int
linux_sys_uname(struct lwp * l,const struct linux_sys_uname_args * uap,register_t * retval)350 linux_sys_uname(struct lwp *l, const struct linux_sys_uname_args *uap, register_t *retval)
351 {
352 	/* {
353 		syscallarg(struct linux_utsname *) up;
354 	} */
355 	struct linux_utsname luts;
356 
357 	memset(&luts, 0, sizeof(luts));
358 	strlcpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
359 	strlcpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
360 	strlcpy(luts.l_release, linux_release, sizeof(luts.l_release));
361 	strlcpy(luts.l_version, linux_version, sizeof(luts.l_version));
362 	strlcpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine));
363 	strlcpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
364 
365 	return copyout(&luts, SCARG(uap, up), sizeof(luts));
366 }
367 
368 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */
369 /* Used indirectly on: arm, i386, m68k */
370 
371 /*
372  * New type Linux mmap call.
373  * Only called directly on machines with >= 6 free regs.
374  */
375 int
linux_sys_mmap(struct lwp * l,const struct linux_sys_mmap_args * uap,register_t * retval)376 linux_sys_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval)
377 {
378 	/* {
379 		syscallarg(unsigned long) addr;
380 		syscallarg(size_t) len;
381 		syscallarg(int) prot;
382 		syscallarg(int) flags;
383 		syscallarg(int) fd;
384 		syscallarg(linux_off_t) offset;
385 	} */
386 
387 	if (SCARG(uap, offset) & PAGE_MASK)
388 		return EINVAL;
389 
390 	return linux_mmap(l, uap, retval, SCARG(uap, offset));
391 }
392 
393 /*
394  * Guts of most architectures' mmap64() implementations.  This shares
395  * its list of arguments with linux_sys_mmap().
396  *
397  * The difference in linux_sys_mmap2() is that "offset" is actually
398  * (offset / pagesize), not an absolute byte count.  This translation
399  * to pagesize offsets is done inside glibc between the mmap64() call
400  * point, and the actual syscall.
401  */
402 int
linux_sys_mmap2(struct lwp * l,const struct linux_sys_mmap2_args * uap,register_t * retval)403 linux_sys_mmap2(struct lwp *l, const struct linux_sys_mmap2_args *uap, register_t *retval)
404 {
405 	/* {
406 		syscallarg(unsigned long) addr;
407 		syscallarg(size_t) len;
408 		syscallarg(int) prot;
409 		syscallarg(int) flags;
410 		syscallarg(int) fd;
411 		syscallarg(linux_off_t) offset;
412 	} */
413 
414 	return linux_mmap(l, uap, retval,
415 	    ((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
416 }
417 
418 /*
419  * Massage arguments and call system mmap(2).
420  */
421 static int
linux_mmap(struct lwp * l,const struct linux_sys_mmap_args * uap,register_t * retval,off_t offset)422 linux_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval, off_t offset)
423 {
424 	struct sys_mmap_args cma;
425 	int error;
426 	size_t mmoff=0;
427 
428 	linux_to_bsd_mmap_args(&cma, uap);
429 	SCARG(&cma, pos) = offset;
430 
431 	if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
432 		/*
433 		 * Request for stack-like memory segment. On linux, this
434 		 * works by mmap()ping (small) segment, which is automatically
435 		 * extended when page fault happens below the currently
436 		 * allocated area. We emulate this by allocating (typically
437 		 * bigger) segment sized at current stack size limit, and
438 		 * offsetting the requested and returned address accordingly.
439 		 * Since physical pages are only allocated on-demand, this
440 		 * is effectively identical.
441 		 */
442 		rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
443 
444 		if (SCARG(&cma, len) < ssl) {
445 			/* Compute the address offset */
446 			mmoff = round_page(ssl) - SCARG(uap, len);
447 
448 			if (SCARG(&cma, addr))
449 				SCARG(&cma, addr) = (char *)SCARG(&cma, addr) - mmoff;
450 
451 			SCARG(&cma, len) = (size_t) ssl;
452 		}
453 	}
454 
455 	error = sys_mmap(l, &cma, retval);
456 	if (error)
457 		return (error);
458 
459 	/* Shift the returned address for stack-like segment if necessary */
460 	retval[0] += mmoff;
461 
462 	return (0);
463 }
464 
465 static void
linux_to_bsd_mmap_args(struct sys_mmap_args * cma,const struct linux_sys_mmap_args * uap)466 linux_to_bsd_mmap_args(struct sys_mmap_args *cma, const struct linux_sys_mmap_args *uap)
467 {
468 	int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
469 
470 	flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
471 	flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
472 	flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
473 	flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
474 	flags |= cvtto_bsd_mask(fl, LINUX_MAP_LOCKED, MAP_WIRED);
475 	/* XXX XAX ERH: Any other flags here?  There are more defined... */
476 
477 	SCARG(cma, addr) = (void *)SCARG(uap, addr);
478 	SCARG(cma, len) = SCARG(uap, len);
479 	SCARG(cma, prot) = SCARG(uap, prot);
480 	if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
481 		SCARG(cma, prot) |= VM_PROT_READ;
482 	SCARG(cma, flags) = flags;
483 	SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
484 	SCARG(cma, PAD) = 0;
485 }
486 
487 #define	LINUX_MREMAP_MAYMOVE	1
488 #define	LINUX_MREMAP_FIXED	2
489 
490 int
linux_sys_mremap(struct lwp * l,const struct linux_sys_mremap_args * uap,register_t * retval)491 linux_sys_mremap(struct lwp *l, const struct linux_sys_mremap_args *uap, register_t *retval)
492 {
493 	/* {
494 		syscallarg(void *) old_address;
495 		syscallarg(size_t) old_size;
496 		syscallarg(size_t) new_size;
497 		syscallarg(u_long) flags;
498 	} */
499 
500 	struct proc *p;
501 	struct vm_map *map;
502 	vaddr_t oldva;
503 	vaddr_t newva;
504 	size_t oldsize;
505 	size_t newsize;
506 	int flags;
507 	int uvmflags;
508 	int error;
509 
510 	flags = SCARG(uap, flags);
511 	oldva = (vaddr_t)SCARG(uap, old_address);
512 	oldsize = round_page(SCARG(uap, old_size));
513 	newsize = round_page(SCARG(uap, new_size));
514 	if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) {
515 		error = EINVAL;
516 		goto done;
517 	}
518 	if ((flags & LINUX_MREMAP_FIXED) != 0) {
519 		if ((flags & LINUX_MREMAP_MAYMOVE) == 0) {
520 			error = EINVAL;
521 			goto done;
522 		}
523 #if 0 /* notyet */
524 		newva = SCARG(uap, new_address);
525 		uvmflags = MAP_FIXED;
526 #else /* notyet */
527 		error = EOPNOTSUPP;
528 		goto done;
529 #endif /* notyet */
530 	} else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) {
531 		uvmflags = 0;
532 	} else {
533 		newva = oldva;
534 		uvmflags = MAP_FIXED;
535 	}
536 	p = l->l_proc;
537 	map = &p->p_vmspace->vm_map;
538 	error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p,
539 	    uvmflags);
540 
541 done:
542 	*retval = (error != 0) ? 0 : (register_t)newva;
543 	return error;
544 }
545 
546 #ifdef USRSTACK
547 int
linux_sys_mprotect(struct lwp * l,const struct linux_sys_mprotect_args * uap,register_t * retval)548 linux_sys_mprotect(struct lwp *l, const struct linux_sys_mprotect_args *uap, register_t *retval)
549 {
550 	/* {
551 		syscallarg(const void *) start;
552 		syscallarg(unsigned long) len;
553 		syscallarg(int) prot;
554 	} */
555 	struct vm_map_entry *entry;
556 	struct vm_map *map;
557 	struct proc *p;
558 	vaddr_t end, start, len, stacklim;
559 	int prot, grows;
560 
561 	start = (vaddr_t)SCARG(uap, start);
562 	len = round_page(SCARG(uap, len));
563 	prot = SCARG(uap, prot);
564 	grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP);
565 	prot &= ~grows;
566 	end = start + len;
567 
568 	if (start & PAGE_MASK)
569 		return EINVAL;
570 	if (end < start)
571 		return EINVAL;
572 	if (end == start)
573 		return 0;
574 
575 	if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
576 		return EINVAL;
577 	if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP))
578 		return EINVAL;
579 
580 	p = l->l_proc;
581 	map = &p->p_vmspace->vm_map;
582 	vm_map_lock(map);
583 # ifdef notdef
584 	VM_MAP_RANGE_CHECK(map, start, end);
585 # endif
586 	if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
587 		vm_map_unlock(map);
588 		return ENOMEM;
589 	}
590 
591 	/*
592 	 * Approximate the behaviour of PROT_GROWS{DOWN,UP}.
593 	 */
594 
595 	stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
596 	if (grows & LINUX_PROT_GROWSDOWN) {
597 		if (USRSTACK - stacklim <= start && start < USRSTACK) {
598 			start = USRSTACK - stacklim;
599 		} else {
600 			start = entry->start;
601 		}
602 	} else if (grows & LINUX_PROT_GROWSUP) {
603 		if (USRSTACK <= end && end < USRSTACK + stacklim) {
604 			end = USRSTACK + stacklim;
605 		} else {
606 			end = entry->end;
607 		}
608 	}
609 	vm_map_unlock(map);
610 	return uvm_map_protect_user(l, start, end, prot);
611 }
612 #endif /* USRSTACK */
613 
614 /*
615  * This code is partly stolen from src/lib/libc/compat-43/times.c
616  */
617 
618 #define	CONVTCK(r)	(r.tv_sec * hz + r.tv_usec / (1000000 / hz))
619 
620 int
linux_sys_times(struct lwp * l,const struct linux_sys_times_args * uap,register_t * retval)621 linux_sys_times(struct lwp *l, const struct linux_sys_times_args *uap, register_t *retval)
622 {
623 	/* {
624 		syscallarg(struct times *) tms;
625 	} */
626 	struct proc *p = l->l_proc;
627 	struct timeval t;
628 	int error;
629 
630 	if (SCARG(uap, tms)) {
631 		struct linux_tms ltms;
632 		struct rusage ru;
633 
634 		memset(&ltms, 0, sizeof(ltms));
635 
636 		mutex_enter(p->p_lock);
637 		calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
638 		ltms.ltms_utime = CONVTCK(ru.ru_utime);
639 		ltms.ltms_stime = CONVTCK(ru.ru_stime);
640 		ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
641 		ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
642 		mutex_exit(p->p_lock);
643 
644 		if ((error = copyout(&ltms, SCARG(uap, tms), sizeof ltms)))
645 			return error;
646 	}
647 
648 	getmicrouptime(&t);
649 
650 	retval[0] = ((linux_clock_t)(CONVTCK(t)));
651 	return 0;
652 }
653 
654 #undef CONVTCK
655 
656 #if !defined(__aarch64__)
657 /*
658  * Linux 'readdir' call. This code is mostly taken from the
659  * SunOS getdents call (see compat/sunos/sunos_misc.c), though
660  * an attempt has been made to keep it a little cleaner (failing
661  * miserably, because of the cruft needed if count 1 is passed).
662  *
663  * The d_off field should contain the offset of the next valid entry,
664  * but in Linux it has the offset of the entry itself. We emulate
665  * that bug here.
666  *
667  * Read in BSD-style entries, convert them, and copy them out.
668  *
669  * Note that this doesn't handle union-mounted filesystems.
670  */
671 int
linux_sys_getdents(struct lwp * l,const struct linux_sys_getdents_args * uap,register_t * retval)672 linux_sys_getdents(struct lwp *l, const struct linux_sys_getdents_args *uap, register_t *retval)
673 {
674 	/* {
675 		syscallarg(int) fd;
676 		syscallarg(struct linux_dirent *) dent;
677 		syscallarg(unsigned int) count;
678 	} */
679 	struct dirent *bdp;
680 	struct vnode *vp;
681 	char *inp, *tbuf;		/* BSD-format */
682 	int len, reclen;		/* BSD-format */
683 	char *outp;			/* Linux-format */
684 	int resid, linux_reclen = 0;	/* Linux-format */
685 	struct file *fp;
686 	struct uio auio;
687 	struct iovec aiov;
688 	struct linux_dirent idb;
689 	off_t off;		/* true file offset */
690 	int buflen, error, eofflag, nbytes, oldcall;
691 	struct vattr va;
692 	off_t *cookiebuf = NULL, *cookie;
693 	int ncookies;
694 
695 	/* fd_getvnode() will use the descriptor for us */
696 	if ((error = fd_getvnode(SCARG(uap, fd), &fp)) != 0)
697 		return (error);
698 
699 	if ((fp->f_flag & FREAD) == 0) {
700 		error = EBADF;
701 		goto out1;
702 	}
703 
704 	vp = (struct vnode *)fp->f_data;
705 	if (vp->v_type != VDIR) {
706 		error = ENOTDIR;
707 		goto out1;
708 	}
709 
710 	vn_lock(vp, LK_SHARED | LK_RETRY);
711 	error = VOP_GETATTR(vp, &va, l->l_cred);
712 	VOP_UNLOCK(vp);
713 	if (error)
714 		goto out1;
715 
716 	nbytes = SCARG(uap, count);
717 	if (nbytes == 1) {	/* emulating old, broken behaviour */
718 		nbytes = sizeof (idb);
719 		buflen = uimax(va.va_blocksize, nbytes);
720 		oldcall = 1;
721 	} else {
722 		buflen = uimin(MAXBSIZE, nbytes);
723 		if (buflen < va.va_blocksize)
724 			buflen = va.va_blocksize;
725 		oldcall = 0;
726 	}
727 	tbuf = malloc(buflen, M_TEMP, M_WAITOK);
728 
729 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
730 	off = fp->f_offset;
731 again:
732 	aiov.iov_base = tbuf;
733 	aiov.iov_len = buflen;
734 	auio.uio_iov = &aiov;
735 	auio.uio_iovcnt = 1;
736 	auio.uio_rw = UIO_READ;
737 	auio.uio_resid = buflen;
738 	auio.uio_offset = off;
739 	UIO_SETUP_SYSSPACE(&auio);
740 	/*
741          * First we read into the malloc'ed buffer, then
742          * we massage it into user space, one record at a time.
743          */
744 	error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
745 	    &ncookies);
746 	if (error)
747 		goto out;
748 
749 	inp = tbuf;
750 	outp = (void *)SCARG(uap, dent);
751 	resid = nbytes;
752 	if ((len = buflen - auio.uio_resid) == 0)
753 		goto eof;
754 
755 	for (cookie = cookiebuf; len > 0; len -= reclen) {
756 		bdp = (struct dirent *)inp;
757 		reclen = bdp->d_reclen;
758 		if (reclen & 3) {
759 			error = EIO;
760 			goto out;
761 		}
762 		if (bdp->d_fileno == 0) {
763 			inp += reclen;	/* it is a hole; squish it out */
764 			if (cookie)
765 				off = *cookie++;
766 			else
767 				off += reclen;
768 			continue;
769 		}
770 		linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
771 		if (reclen > len || resid < linux_reclen) {
772 			/* entry too big for buffer, so just stop */
773 			outp++;
774 			break;
775 		}
776 		/*
777 		 * Massage in place to make a Linux-shaped dirent (otherwise
778 		 * we have to worry about touching user memory outside of
779 		 * the copyout() call).
780 		 */
781 		memset(&idb, 0, sizeof(idb));
782 		idb.d_ino = bdp->d_fileno;
783 		/*
784 		 * The old readdir() call misuses the offset and reclen fields.
785 		 */
786 		if (oldcall) {
787 			idb.d_off = (linux_off_t)linux_reclen;
788 			idb.d_reclen = (u_short)bdp->d_namlen;
789 		} else {
790 			if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
791 				compat_offseterr(vp, "linux_getdents");
792 				error = EINVAL;
793 				goto out;
794 			}
795 			idb.d_off = (linux_off_t)off;
796 			idb.d_reclen = (u_short)linux_reclen;
797 			/* Linux puts d_type at the end of each record */
798 			*((char *)&idb + idb.d_reclen - 1) = bdp->d_type;
799 		}
800 		memcpy(idb.d_name, bdp->d_name,
801 		    MIN(sizeof(idb.d_name), bdp->d_namlen + 1));
802 		if ((error = copyout((void *)&idb, outp, linux_reclen)))
803 			goto out;
804 		/* advance past this real entry */
805 		inp += reclen;
806 		if (cookie)
807 			off = *cookie++; /* each entry points to itself */
808 		else
809 			off += reclen;
810 		/* advance output past Linux-shaped entry */
811 		outp += linux_reclen;
812 		resid -= linux_reclen;
813 		if (oldcall)
814 			break;
815 	}
816 
817 	/* if we squished out the whole block, try again */
818 	if (outp == (void *)SCARG(uap, dent)) {
819 		if (cookiebuf)
820 			free(cookiebuf, M_TEMP);
821 		cookiebuf = NULL;
822 		goto again;
823 	}
824 	fp->f_offset = off;	/* update the vnode offset */
825 
826 	if (oldcall)
827 		nbytes = resid + linux_reclen;
828 
829 eof:
830 	*retval = nbytes - resid;
831 out:
832 	VOP_UNLOCK(vp);
833 	if (cookiebuf)
834 		free(cookiebuf, M_TEMP);
835 	free(tbuf, M_TEMP);
836 out1:
837 	fd_putfile(SCARG(uap, fd));
838 	return error;
839 }
840 #endif
841 
842 #if !defined(__aarch64__)
843 /*
844  * Even when just using registers to pass arguments to syscalls you can
845  * have 5 of them on the i386. So this newer version of select() does
846  * this.
847  */
848 int
linux_sys_select(struct lwp * l,const struct linux_sys_select_args * uap,register_t * retval)849 linux_sys_select(struct lwp *l, const struct linux_sys_select_args *uap, register_t *retval)
850 {
851 	/* {
852 		syscallarg(int) nfds;
853 		syscallarg(fd_set *) readfds;
854 		syscallarg(fd_set *) writefds;
855 		syscallarg(fd_set *) exceptfds;
856 		syscallarg(struct timeval50 *) timeout;
857 	} */
858 
859 	return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
860 	    SCARG(uap, writefds), SCARG(uap, exceptfds),
861 	    (struct linux_timeval *)SCARG(uap, timeout));
862 }
863 
864 /*
865  * Common code for the old and new versions of select(). A couple of
866  * things are important:
867  * 1) return the amount of time left in the 'timeout' parameter
868  * 2) select never returns ERESTART on Linux, always return EINTR
869  */
870 int
linux_select1(struct lwp * l,register_t * retval,int nfds,fd_set * readfds,fd_set * writefds,fd_set * exceptfds,struct linux_timeval * timeout)871 linux_select1(struct lwp *l, register_t *retval, int nfds, fd_set *readfds,
872     fd_set *writefds, fd_set *exceptfds, struct linux_timeval *timeout)
873 {
874 	struct timespec ts0, ts1, uts, *ts = NULL;
875 	struct linux_timeval ltv;
876 	int error;
877 
878 	/*
879 	 * Store current time for computation of the amount of
880 	 * time left.
881 	 */
882 	if (timeout) {
883 		if ((error = copyin(timeout, &ltv, sizeof(ltv))))
884 			return error;
885 		uts.tv_sec = ltv.tv_sec;
886 		uts.tv_nsec = (long)((unsigned long)ltv.tv_usec * 1000);
887 		if (itimespecfix(&uts)) {
888 			/*
889 			 * The timeval was invalid.  Convert it to something
890 			 * valid that will act as it does under Linux.
891 			 */
892 			uts.tv_sec += uts.tv_nsec / 1000000000;
893 			uts.tv_nsec %= 1000000000;
894 			if (uts.tv_nsec < 0) {
895 				uts.tv_sec -= 1;
896 				uts.tv_nsec += 1000000000;
897 			}
898 			if (uts.tv_sec < 0)
899 				timespecclear(&uts);
900 		}
901 		ts = &uts;
902 		nanotime(&ts0);
903 	}
904 
905 	error = selcommon(retval, nfds, readfds, writefds, exceptfds, ts, NULL);
906 
907 	if (error) {
908 		/*
909 		 * See fs/select.c in the Linux kernel.  Without this,
910 		 * Maelstrom doesn't work.
911 		 */
912 		if (error == ERESTART)
913 			error = EINTR;
914 		return error;
915 	}
916 
917 	if (timeout) {
918 		if (*retval) {
919 			/*
920 			 * Compute how much time was left of the timeout,
921 			 * by subtracting the current time and the time
922 			 * before we started the call, and subtracting
923 			 * that result from the user-supplied value.
924 			 */
925 			nanotime(&ts1);
926 			timespecsub(&ts1, &ts0, &ts1);
927 			timespecsub(&uts, &ts1, &uts);
928 			if (uts.tv_sec < 0)
929 				timespecclear(&uts);
930 		} else
931 			timespecclear(&uts);
932 		ltv.tv_sec = uts.tv_sec;
933 		ltv.tv_usec = uts.tv_nsec / 1000;
934 		if ((error = copyout(&ltv, timeout, sizeof(ltv))))
935 			return error;
936 	}
937 
938 	return 0;
939 }
940 #endif
941 
942 /*
943  * Derived from FreeBSD's sys/compat/linux/linux_misc.c:linux_pselect6()
944  * which was contributed by Dmitry Chagin
945  * https://svnweb.freebsd.org/base?view=revision&revision=283403
946  */
947 int
linux_sys_pselect6(struct lwp * l,const struct linux_sys_pselect6_args * uap,register_t * retval)948 linux_sys_pselect6(struct lwp *l,
949 	const struct linux_sys_pselect6_args *uap, register_t *retval)
950 {
951 	/* {
952 		syscallarg(int) nfds;
953 		syscallarg(fd_set *) readfds;
954 		syscallarg(fd_set *) writefds;
955 		syscallarg(fd_set *) exceptfds;
956 		syscallarg(struct timespec *) timeout;
957 		syscallarg(linux_sized_sigset_t *) ss;
958 	} */
959 	struct timespec uts, ts0, ts1, *tsp;
960 	linux_sized_sigset_t lsss;
961 	struct linux_timespec lts;
962 	linux_sigset_t lss;
963 	sigset_t *ssp;
964 	sigset_t ss;
965 	int error;
966 
967 	ssp = NULL;
968 	if (SCARG(uap, ss) != NULL) {
969 		if ((error = copyin(SCARG(uap, ss), &lsss, sizeof(lsss))) != 0)
970 			return (error);
971 		if (lsss.ss_len != sizeof(lss))
972 			return (EINVAL);
973 		if (lsss.ss != NULL) {
974 			if ((error = copyin(lsss.ss, &lss, sizeof(lss))) != 0)
975 				return (error);
976 			linux_to_native_sigset(&ss, &lss);
977 			ssp = &ss;
978 		}
979 	}
980 
981 	if (SCARG(uap, timeout) != NULL) {
982 		error = copyin(SCARG(uap, timeout), &lts, sizeof(lts));
983 		if (error != 0)
984 			return (error);
985 		linux_to_native_timespec(&uts, &lts);
986 
987 		if (itimespecfix(&uts))
988 			return (EINVAL);
989 
990 		nanotime(&ts0);
991 		tsp = &uts;
992 	} else {
993 		tsp = NULL;
994 	}
995 
996 	error = selcommon(retval, SCARG(uap, nfds), SCARG(uap, readfds),
997 	    SCARG(uap, writefds), SCARG(uap, exceptfds), tsp, ssp);
998 
999 	if (error == 0 && tsp != NULL) {
1000 		if (retval != 0) {
1001 			/*
1002 			 * Compute how much time was left of the timeout,
1003 			 * by subtracting the current time and the time
1004 			 * before we started the call, and subtracting
1005 			 * that result from the user-supplied value.
1006 			 */
1007 			nanotime(&ts1);
1008 			timespecsub(&ts1, &ts0, &ts1);
1009 			timespecsub(&uts, &ts1, &uts);
1010 			if (uts.tv_sec < 0)
1011 				timespecclear(&uts);
1012 		} else {
1013 			timespecclear(&uts);
1014 		}
1015 
1016 		native_to_linux_timespec(&lts, &uts);
1017 		error = copyout(&lts, SCARG(uap, timeout), sizeof(lts));
1018 	}
1019 
1020 	return (error);
1021 }
1022 
1023 int
linux_sys_ppoll(struct lwp * l,const struct linux_sys_ppoll_args * uap,register_t * retval)1024 linux_sys_ppoll(struct lwp *l,
1025 	const struct linux_sys_ppoll_args *uap, register_t *retval)
1026 {
1027 	/* {
1028 		syscallarg(struct pollfd *) fds;
1029 		syscallarg(u_int) nfds;
1030 		syscallarg(struct linux_timespec *) timeout;
1031 		syscallarg(linux_sigset_t *) sigset;
1032 	} */
1033 	struct linux_timespec lts0, *lts;
1034 	struct timespec ts0, *ts = NULL;
1035 	linux_sigset_t lsigmask0, *lsigmask;
1036 	sigset_t sigmask0, *sigmask = NULL;
1037 	int error;
1038 
1039 	lts = SCARG(uap, timeout);
1040 	if (lts) {
1041 		if ((error = copyin(lts, &lts0, sizeof(lts0))) != 0)
1042 			return error;
1043 		linux_to_native_timespec(&ts0, &lts0);
1044 		ts = &ts0;
1045 	}
1046 
1047 	lsigmask = SCARG(uap, sigset);
1048 	if (lsigmask) {
1049 		if ((error = copyin(lsigmask, &lsigmask0, sizeof(lsigmask0))))
1050 			return error;
1051 		linux_to_native_sigset(&sigmask0, &lsigmask0);
1052 		sigmask = &sigmask0;
1053 	}
1054 
1055 	return pollcommon(retval, SCARG(uap, fds), SCARG(uap, nfds),
1056 	    ts, sigmask);
1057 }
1058 
1059 /*
1060  * Set the 'personality' (emulation mode) for the current process. Only
1061  * accept the Linux personality here (0). This call is needed because
1062  * the Linux ELF crt0 issues it in an ugly kludge to make sure that
1063  * ELF binaries run in Linux mode, not SVR4 mode.
1064  */
1065 int
linux_sys_personality(struct lwp * l,const struct linux_sys_personality_args * uap,register_t * retval)1066 linux_sys_personality(struct lwp *l, const struct linux_sys_personality_args *uap, register_t *retval)
1067 {
1068 	/* {
1069 		syscallarg(unsigned long) per;
1070 	} */
1071 	struct linux_emuldata *led;
1072 	int per;
1073 
1074 	per = SCARG(uap, per);
1075 	led = l->l_emuldata;
1076 	if (per == LINUX_PER_QUERY) {
1077 		retval[0] = led->led_personality;
1078 		return 0;
1079 	}
1080 
1081 	switch (per & LINUX_PER_MASK) {
1082 	case LINUX_PER_LINUX:
1083 	case LINUX_PER_LINUX32:
1084 		led->led_personality = per;
1085 		break;
1086 
1087 	default:
1088 		return EINVAL;
1089 	}
1090 
1091 	retval[0] = per;
1092 	return 0;
1093 }
1094 
1095 /*
1096  * We have nonexistent fsuid equal to uid.
1097  * If modification is requested, refuse.
1098  */
1099 int
linux_sys_setfsuid(struct lwp * l,const struct linux_sys_setfsuid_args * uap,register_t * retval)1100 linux_sys_setfsuid(struct lwp *l, const struct linux_sys_setfsuid_args *uap, register_t *retval)
1101 {
1102 	 /* {
1103 		 syscallarg(uid_t) uid;
1104 	 } */
1105 	 uid_t uid;
1106 
1107 	 uid = SCARG(uap, uid);
1108 	 if (kauth_cred_getuid(l->l_cred) != uid)
1109 		 return sys_nosys(l, uap, retval);
1110 
1111 	 *retval = uid;
1112 	 return 0;
1113 }
1114 
1115 int
linux_sys_setfsgid(struct lwp * l,const struct linux_sys_setfsgid_args * uap,register_t * retval)1116 linux_sys_setfsgid(struct lwp *l, const struct linux_sys_setfsgid_args *uap, register_t *retval)
1117 {
1118 	/* {
1119 		syscallarg(gid_t) gid;
1120 	} */
1121 	gid_t gid;
1122 
1123 	gid = SCARG(uap, gid);
1124 	if (kauth_cred_getgid(l->l_cred) != gid)
1125 		return sys_nosys(l, uap, retval);
1126 
1127 	*retval = gid;
1128 	return 0;
1129 }
1130 
1131 int
linux_sys_setresuid(struct lwp * l,const struct linux_sys_setresuid_args * uap,register_t * retval)1132 linux_sys_setresuid(struct lwp *l, const struct linux_sys_setresuid_args *uap, register_t *retval)
1133 {
1134 	/* {
1135 		syscallarg(uid_t) ruid;
1136 		syscallarg(uid_t) euid;
1137 		syscallarg(uid_t) suid;
1138 	} */
1139 
1140 	/*
1141 	 * Note: These checks are a little different than the NetBSD
1142 	 * setreuid(2) call performs.  This precisely follows the
1143 	 * behavior of the Linux kernel.
1144 	 */
1145 
1146 	return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
1147 			    SCARG(uap, suid),
1148 			    ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
1149 			    ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
1150 			    ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
1151 }
1152 
1153 int
linux_sys_getresuid(struct lwp * l,const struct linux_sys_getresuid_args * uap,register_t * retval)1154 linux_sys_getresuid(struct lwp *l, const struct linux_sys_getresuid_args *uap, register_t *retval)
1155 {
1156 	/* {
1157 		syscallarg(uid_t *) ruid;
1158 		syscallarg(uid_t *) euid;
1159 		syscallarg(uid_t *) suid;
1160 	} */
1161 	kauth_cred_t pc = l->l_cred;
1162 	int error;
1163 	uid_t uid;
1164 
1165 	/*
1166 	 * Linux copies these values out to userspace like so:
1167 	 *
1168 	 *	1. Copy out ruid.
1169 	 *	2. If that succeeds, copy out euid.
1170 	 *	3. If both of those succeed, copy out suid.
1171 	 */
1172 	uid = kauth_cred_getuid(pc);
1173 	if ((error = copyout(&uid, SCARG(uap, ruid), sizeof(uid_t))) != 0)
1174 		return (error);
1175 
1176 	uid = kauth_cred_geteuid(pc);
1177 	if ((error = copyout(&uid, SCARG(uap, euid), sizeof(uid_t))) != 0)
1178 		return (error);
1179 
1180 	uid = kauth_cred_getsvuid(pc);
1181 
1182 	return (copyout(&uid, SCARG(uap, suid), sizeof(uid_t)));
1183 }
1184 
1185 int
linux_sys_ptrace(struct lwp * l,const struct linux_sys_ptrace_args * uap,register_t * retval)1186 linux_sys_ptrace(struct lwp *l, const struct linux_sys_ptrace_args *uap, register_t *retval)
1187 {
1188 	/* {
1189 		i386, m68k, powerpc: T=int
1190 		alpha, amd64: T=long
1191 		syscallarg(T) request;
1192 		syscallarg(T) pid;
1193 		syscallarg(T) addr;
1194 		syscallarg(T) data;
1195 	} */
1196 	const int *ptr;
1197 	int request;
1198 	int error;
1199 
1200 	ptr = linux_ptrace_request_map;
1201 	request = SCARG(uap, request);
1202 	while (*ptr != -1)
1203 		if (*ptr++ == request) {
1204 			struct sys_ptrace_args pta;
1205 
1206 			SCARG(&pta, req) = *ptr;
1207 			SCARG(&pta, pid) = SCARG(uap, pid);
1208 			SCARG(&pta, addr) = (void *)SCARG(uap, addr);
1209 			SCARG(&pta, data) = SCARG(uap, data);
1210 
1211 			/*
1212 			 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
1213 			 * to continue where the process left off previously.
1214  			 * The same thing is achieved by addr == (void *) 1
1215 			 * on NetBSD, so rewrite 'addr' appropriately.
1216 			 */
1217 			if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
1218 				SCARG(&pta, addr) = (void *) 1;
1219 
1220 			error = sysent[SYS_ptrace].sy_call(l, &pta, retval);
1221 			if (error)
1222 				return error;
1223 			switch (request) {
1224 			case LINUX_PTRACE_PEEKTEXT:
1225 			case LINUX_PTRACE_PEEKDATA:
1226 				error = copyout (retval,
1227 				    (void *)SCARG(uap, data),
1228 				    sizeof *retval);
1229 				*retval = SCARG(uap, data);
1230 				break;
1231 			default:
1232 				break;
1233 			}
1234 			return error;
1235 		}
1236 		else
1237 			ptr++;
1238 
1239 	return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
1240 }
1241 
1242 int
linux_sys_reboot(struct lwp * l,const struct linux_sys_reboot_args * uap,register_t * retval)1243 linux_sys_reboot(struct lwp *l, const struct linux_sys_reboot_args *uap, register_t *retval)
1244 {
1245 	/* {
1246 		syscallarg(int) magic1;
1247 		syscallarg(int) magic2;
1248 		syscallarg(int) cmd;
1249 		syscallarg(void *) arg;
1250 	} */
1251 	struct sys_reboot_args /* {
1252 		syscallarg(int) opt;
1253 		syscallarg(char *) bootstr;
1254 	} */ sra;
1255 	int error;
1256 
1257 	if ((error = kauth_authorize_system(l->l_cred,
1258 	    KAUTH_SYSTEM_REBOOT, 0, NULL, NULL, NULL)) != 0)
1259 		return(error);
1260 
1261 	if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
1262 		return(EINVAL);
1263 	if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
1264 	    SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
1265 	    SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
1266 		return(EINVAL);
1267 
1268 	switch ((unsigned long)SCARG(uap, cmd)) {
1269 	case LINUX_REBOOT_CMD_RESTART:
1270 		SCARG(&sra, opt) = RB_AUTOBOOT;
1271 		break;
1272 	case LINUX_REBOOT_CMD_HALT:
1273 		SCARG(&sra, opt) = RB_HALT;
1274 		break;
1275 	case LINUX_REBOOT_CMD_POWER_OFF:
1276 		SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
1277 		break;
1278 	case LINUX_REBOOT_CMD_RESTART2:
1279 		/* Reboot with an argument. */
1280 		SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
1281 		SCARG(&sra, bootstr) = SCARG(uap, arg);
1282 		break;
1283 	case LINUX_REBOOT_CMD_CAD_ON:
1284 		return(EINVAL);	/* We don't implement ctrl-alt-delete */
1285 	case LINUX_REBOOT_CMD_CAD_OFF:
1286 		return(0);
1287 	default:
1288 		return(EINVAL);
1289 	}
1290 
1291 	return(sys_reboot(l, &sra, retval));
1292 }
1293 
1294 /*
1295  * Copy of compat_12_sys_swapon().
1296  */
1297 int
linux_sys_swapon(struct lwp * l,const struct linux_sys_swapon_args * uap,register_t * retval)1298 linux_sys_swapon(struct lwp *l, const struct linux_sys_swapon_args *uap, register_t *retval)
1299 {
1300 	/* {
1301 		syscallarg(const char *) name;
1302 	} */
1303 	struct sys_swapctl_args ua;
1304 
1305 	SCARG(&ua, cmd) = SWAP_ON;
1306 	SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name));
1307 	SCARG(&ua, misc) = 0;	/* priority */
1308 	return (sys_swapctl(l, &ua, retval));
1309 }
1310 
1311 /*
1312  * Stop swapping to the file or block device specified by path.
1313  */
1314 int
linux_sys_swapoff(struct lwp * l,const struct linux_sys_swapoff_args * uap,register_t * retval)1315 linux_sys_swapoff(struct lwp *l, const struct linux_sys_swapoff_args *uap, register_t *retval)
1316 {
1317 	/* {
1318 		syscallarg(const char *) path;
1319 	} */
1320 	struct sys_swapctl_args ua;
1321 
1322 	SCARG(&ua, cmd) = SWAP_OFF;
1323 	SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/
1324 	return (sys_swapctl(l, &ua, retval));
1325 }
1326 
1327 /*
1328  * Copy of compat_09_sys_setdomainname()
1329  */
1330 /* ARGSUSED */
1331 int
linux_sys_setdomainname(struct lwp * l,const struct linux_sys_setdomainname_args * uap,register_t * retval)1332 linux_sys_setdomainname(struct lwp *l, const struct linux_sys_setdomainname_args *uap, register_t *retval)
1333 {
1334 	/* {
1335 		syscallarg(char *) domainname;
1336 		syscallarg(int) len;
1337 	} */
1338 	int name[2];
1339 
1340 	name[0] = CTL_KERN;
1341 	name[1] = KERN_DOMAINNAME;
1342 	return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
1343 			    SCARG(uap, len), l));
1344 }
1345 
1346 /*
1347  * sysinfo()
1348  */
1349 /* ARGSUSED */
1350 int
linux_sys_sysinfo(struct lwp * l,const struct linux_sys_sysinfo_args * uap,register_t * retval)1351 linux_sys_sysinfo(struct lwp *l, const struct linux_sys_sysinfo_args *uap, register_t *retval)
1352 {
1353 	/* {
1354 		syscallarg(struct linux_sysinfo *) arg;
1355 	} */
1356 	struct linux_sysinfo si;
1357 	struct loadavg *la;
1358 	int64_t filepg;
1359 
1360 	memset(&si, 0, sizeof(si));
1361 	si.uptime = time_uptime;
1362 	la = &averunnable;
1363 	si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1364 	si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1365 	si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
1366 	si.totalram = ctob((u_long)physmem);
1367 	/* uvm_availmem() may sync the counters. */
1368 	si.freeram = (u_long)uvm_availmem(true) * uvmexp.pagesize;
1369 	filepg = cpu_count_get(CPU_COUNT_FILECLEAN) +
1370 	    cpu_count_get(CPU_COUNT_FILEDIRTY) +
1371 	    cpu_count_get(CPU_COUNT_FILEUNKNOWN) -
1372 	    cpu_count_get(CPU_COUNT_EXECPAGES);
1373 	si.sharedram = 0;	/* XXX */
1374 	si.bufferram = (u_long)(filepg * uvmexp.pagesize);
1375 	si.totalswap = (u_long)uvmexp.swpages * uvmexp.pagesize;
1376 	si.freeswap =
1377 	    (u_long)(uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
1378 	si.procs = atomic_load_relaxed(&nprocs);
1379 
1380 	/* The following are only present in newer Linux kernels. */
1381 	si.totalbig = 0;
1382 	si.freebig = 0;
1383 	si.mem_unit = 1;
1384 
1385 	return (copyout(&si, SCARG(uap, arg), sizeof si));
1386 }
1387 
1388 int
linux_sys_getrlimit(struct lwp * l,const struct linux_sys_getrlimit_args * uap,register_t * retval)1389 linux_sys_getrlimit(struct lwp *l, const struct linux_sys_getrlimit_args *uap, register_t *retval)
1390 {
1391 	/* {
1392 		syscallarg(int) which;
1393 # ifdef LINUX_LARGEFILE64
1394 		syscallarg(struct rlimit *) rlp;
1395 # else
1396 		syscallarg(struct orlimit *) rlp;
1397 # endif
1398 	} */
1399 # ifdef LINUX_LARGEFILE64
1400 	struct rlimit orl;
1401 # else
1402 	struct orlimit orl;
1403 # endif
1404 	int which;
1405 
1406 	which = linux_to_bsd_limit(SCARG(uap, which));
1407 	if (which < 0)
1408 		return -which;
1409 
1410 	memset(&orl, 0, sizeof(orl));
1411 	bsd_to_linux_rlimit(&orl, &l->l_proc->p_rlimit[which]);
1412 
1413 	return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
1414 }
1415 
1416 int
linux_sys_setrlimit(struct lwp * l,const struct linux_sys_setrlimit_args * uap,register_t * retval)1417 linux_sys_setrlimit(struct lwp *l, const struct linux_sys_setrlimit_args *uap, register_t *retval)
1418 {
1419 	/* {
1420 		syscallarg(int) which;
1421 # ifdef LINUX_LARGEFILE64
1422 		syscallarg(struct rlimit *) rlp;
1423 # else
1424 		syscallarg(struct orlimit *) rlp;
1425 # endif
1426 	} */
1427 	struct rlimit rl;
1428 # ifdef LINUX_LARGEFILE64
1429 	struct rlimit orl;
1430 # else
1431 	struct orlimit orl;
1432 # endif
1433 	int error;
1434 	int which;
1435 
1436 	if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
1437 		return error;
1438 
1439 	which = linux_to_bsd_limit(SCARG(uap, which));
1440 	if (which < 0)
1441 		return -which;
1442 
1443 	linux_to_bsd_rlimit(&rl, &orl);
1444 	return dosetrlimit(l, l->l_proc, which, &rl);
1445 }
1446 
1447 # if !defined(__aarch64__) && !defined(__mips__) && !defined(__amd64__)
1448 /* XXX: this doesn't look 100% common, at least mips doesn't have it */
1449 int
linux_sys_ugetrlimit(struct lwp * l,const struct linux_sys_ugetrlimit_args * uap,register_t * retval)1450 linux_sys_ugetrlimit(struct lwp *l, const struct linux_sys_ugetrlimit_args *uap, register_t *retval)
1451 {
1452 	return linux_sys_getrlimit(l, (const void *)uap, retval);
1453 }
1454 # endif
1455 
1456 int
linux_sys_prlimit64(struct lwp * l,const struct linux_sys_prlimit64_args * uap,register_t * retval)1457 linux_sys_prlimit64(struct lwp *l, const struct linux_sys_prlimit64_args *uap, register_t *retval)
1458 {
1459 	/* {
1460 		syscallarg(pid_t) pid;
1461 		syscallarg(int) witch;
1462 		syscallarg(struct rlimit *) new_rlp;
1463 		syscallarg(struct rlimit *) old_rlp;
1464 	}; */
1465 	struct rlimit rl, nrl, orl;
1466 	struct rlimit *p;
1467 	int which;
1468 	int error;
1469 
1470 	/* XXX: Cannot operate any process other than its own */
1471 	if (SCARG(uap, pid) != 0)
1472 		return EPERM;
1473 
1474 	which = linux_to_bsd_limit(SCARG(uap, which));
1475 	if (which < 0)
1476 		return -which;
1477 
1478 	p = SCARG(uap, old_rlp);
1479 	if (p != NULL) {
1480 		memset(&orl, 0, sizeof(orl));
1481 		bsd_to_linux_rlimit64(&orl, &l->l_proc->p_rlimit[which]);
1482 		if ((error = copyout(&orl, p, sizeof(orl))) != 0)
1483 			return error;
1484 	}
1485 
1486 	p = SCARG(uap, new_rlp);
1487 	if (p != NULL) {
1488 		if ((error = copyin(p, &nrl, sizeof(nrl))) != 0)
1489 			return error;
1490 
1491 		linux_to_bsd_rlimit(&rl, &nrl);
1492 		return dosetrlimit(l, l->l_proc, which, &rl);
1493 	}
1494 
1495 	return 0;
1496 }
1497 
1498 /*
1499  * This gets called for unsupported syscalls. The difference to sys_nosys()
1500  * is that process does not get SIGSYS, the call just returns with ENOSYS.
1501  * This is the way Linux does it and glibc depends on this behaviour.
1502  */
1503 int
linux_sys_nosys(struct lwp * l,const void * v,register_t * retval)1504 linux_sys_nosys(struct lwp *l, const void *v, register_t *retval)
1505 {
1506 	return (ENOSYS);
1507 }
1508 
1509 int
linux_sys_getpriority(struct lwp * l,const struct linux_sys_getpriority_args * uap,register_t * retval)1510 linux_sys_getpriority(struct lwp *l, const struct linux_sys_getpriority_args *uap, register_t *retval)
1511 {
1512         /* {
1513                 syscallarg(int) which;
1514                 syscallarg(int) who;
1515         } */
1516         struct sys_getpriority_args bsa;
1517         int error;
1518 
1519         SCARG(&bsa, which) = SCARG(uap, which);
1520         SCARG(&bsa, who) = SCARG(uap, who);
1521 
1522         if ((error = sys_getpriority(l, &bsa, retval)))
1523                 return error;
1524 
1525         *retval = NZERO - *retval;
1526 
1527         return 0;
1528 }
1529 
1530 int
linux_do_sys_utimensat(struct lwp * l,int fd,const char * path,struct timespec * tsp,int flags,register_t * retval)1531 linux_do_sys_utimensat(struct lwp *l, int fd, const char *path, struct timespec *tsp, int flags, register_t *retval)
1532 {
1533 	int follow, error;
1534 
1535 	follow = (flags & LINUX_AT_SYMLINK_NOFOLLOW) ? NOFOLLOW : FOLLOW;
1536 
1537 	if (path == NULL && fd != AT_FDCWD) {
1538 		file_t *fp;
1539 
1540 		/* fd_getvnode() will use the descriptor for us */
1541 		if ((error = fd_getvnode(fd, &fp)) != 0)
1542 			return error;
1543 		error = do_sys_utimensat(l, AT_FDCWD, fp->f_data, NULL, 0,
1544 		    tsp, UIO_SYSSPACE);
1545 		fd_putfile(fd);
1546 		return error;
1547 	}
1548 
1549 	return do_sys_utimensat(l, fd, NULL, path, follow, tsp, UIO_SYSSPACE);
1550 }
1551 
1552 int
linux_sys_utimensat(struct lwp * l,const struct linux_sys_utimensat_args * uap,register_t * retval)1553 linux_sys_utimensat(struct lwp *l, const struct linux_sys_utimensat_args *uap,
1554 	register_t *retval)
1555 {
1556 	/* {
1557 		syscallarg(int) fd;
1558 		syscallarg(const char *) path;
1559 		syscallarg(const struct linux_timespec *) times;
1560 		syscallarg(int) flag;
1561 	} */
1562 	int error;
1563 	struct linux_timespec lts[2];
1564 	struct timespec *tsp = NULL, ts[2];
1565 
1566 	if (SCARG(uap, times)) {
1567 		error = copyin(SCARG(uap, times), &lts, sizeof(lts));
1568 		if (error != 0)
1569 			return error;
1570 		linux_to_native_timespec(&ts[0], &lts[0]);
1571 		linux_to_native_timespec(&ts[1], &lts[1]);
1572 		tsp = ts;
1573 	}
1574 
1575 	return linux_do_sys_utimensat(l, SCARG(uap, fd), SCARG(uap, path),
1576 	    tsp, SCARG(uap, flag), retval);
1577 }
1578 
1579 int
linux_sys_futex(struct lwp * l,const struct linux_sys_futex_args * uap,register_t * retval)1580 linux_sys_futex(struct lwp *l, const struct linux_sys_futex_args *uap,
1581 	register_t *retval)
1582 {
1583 	/* {
1584 		syscallarg(int *) uaddr;
1585 		syscallarg(int) op;
1586 		syscallarg(int) val;
1587 		syscallarg(const struct linux_timespec *) timeout;
1588 		syscallarg(int *) uaddr2;
1589 		syscallarg(int) val3;
1590 	} */
1591 	struct linux_timespec lts;
1592 	struct timespec ts, *tsp = NULL;
1593 	int val2 = 0;
1594 	int error;
1595 
1596 	/*
1597 	 * Linux overlays the "timeout" field and the "val2" field.
1598 	 * "timeout" is only valid for FUTEX_WAIT and FUTEX_WAIT_BITSET
1599 	 * on Linux.
1600 	 */
1601 	const int op = (SCARG(uap, op) & FUTEX_CMD_MASK);
1602 	if ((op == FUTEX_WAIT || op == FUTEX_WAIT_BITSET) &&
1603 	    SCARG(uap, timeout) != NULL) {
1604 		if ((error = copyin(SCARG(uap, timeout),
1605 		    &lts, sizeof(lts))) != 0) {
1606 			return error;
1607 		}
1608 		linux_to_native_timespec(&ts, &lts);
1609 		tsp = &ts;
1610 	} else {
1611 		val2 = (int)(uintptr_t)SCARG(uap, timeout);
1612 	}
1613 
1614 	return linux_do_futex(SCARG(uap, uaddr), SCARG(uap, op),
1615 	    SCARG(uap, val), tsp, SCARG(uap, uaddr2), val2,
1616 	    SCARG(uap, val3), retval);
1617 }
1618 
1619 int
linux_do_futex(int * uaddr,int op,int val,struct timespec * timeout,int * uaddr2,int val2,int val3,register_t * retval)1620 linux_do_futex(int *uaddr, int op, int val, struct timespec *timeout,
1621     int *uaddr2, int val2, int val3, register_t *retval)
1622 {
1623 	/*
1624 	 * Always clear FUTEX_PRIVATE_FLAG for Linux processes.
1625 	 * NetBSD-native futexes exist in different namespace
1626 	 * depending on FUTEX_PRIVATE_FLAG.  This appears not
1627 	 * to be the case in Linux, and some futex users will
1628 	 * mix private and non-private ops on the same futex
1629 	 * object.
1630 	 */
1631 	return do_futex(uaddr, op & ~FUTEX_PRIVATE_FLAG,
1632 			val, timeout, uaddr2, val2, val3, retval);
1633 }
1634 
1635 #define	LINUX_EFD_SEMAPHORE	0x0001
1636 #define	LINUX_EFD_CLOEXEC	LINUX_O_CLOEXEC
1637 #define	LINUX_EFD_NONBLOCK	LINUX_O_NONBLOCK
1638 
1639 static int
linux_do_eventfd2(struct lwp * l,unsigned int initval,int flags,register_t * retval)1640 linux_do_eventfd2(struct lwp *l, unsigned int initval, int flags,
1641     register_t *retval)
1642 {
1643 	int nflags = 0;
1644 
1645 	if (flags & ~(LINUX_EFD_SEMAPHORE | LINUX_EFD_CLOEXEC |
1646 		      LINUX_EFD_NONBLOCK)) {
1647 		return EINVAL;
1648 	}
1649 	if (flags & LINUX_EFD_SEMAPHORE) {
1650 		nflags |= EFD_SEMAPHORE;
1651 	}
1652 	if (flags & LINUX_EFD_CLOEXEC) {
1653 		nflags |= EFD_CLOEXEC;
1654 	}
1655 	if (flags & LINUX_EFD_NONBLOCK) {
1656 		nflags |= EFD_NONBLOCK;
1657 	}
1658 
1659 	return do_eventfd(l, initval, nflags, retval);
1660 }
1661 
1662 int
linux_sys_eventfd(struct lwp * l,const struct linux_sys_eventfd_args * uap,register_t * retval)1663 linux_sys_eventfd(struct lwp *l, const struct linux_sys_eventfd_args *uap,
1664     register_t *retval)
1665 {
1666 	/* {
1667 		syscallarg(unsigned int) initval;
1668 	} */
1669 
1670 	return linux_do_eventfd2(l, SCARG(uap, initval), 0, retval);
1671 }
1672 
1673 int
linux_sys_eventfd2(struct lwp * l,const struct linux_sys_eventfd2_args * uap,register_t * retval)1674 linux_sys_eventfd2(struct lwp *l, const struct linux_sys_eventfd2_args *uap,
1675     register_t *retval)
1676 {
1677 	/* {
1678 		syscallarg(unsigned int) initval;
1679 		syscallarg(int) flags;
1680 	} */
1681 
1682 	return linux_do_eventfd2(l, SCARG(uap, initval), SCARG(uap, flags),
1683 				 retval);
1684 }
1685 
1686 #ifndef __aarch64__
1687 /*
1688  * epoll_create(2).  Check size and call sys_epoll_create1.
1689  */
1690 int
linux_sys_epoll_create(struct lwp * l,const struct linux_sys_epoll_create_args * uap,register_t * retval)1691 linux_sys_epoll_create(struct lwp *l,
1692     const struct linux_sys_epoll_create_args *uap, register_t *retval)
1693 {
1694 	/* {
1695 		syscallarg(int) size;
1696 	} */
1697 	struct sys_epoll_create1_args ca;
1698 
1699 	/*
1700 	 * SCARG(uap, size) is unused.  Linux just tests it and then
1701 	 * forgets it as well.
1702 	 */
1703 	if (SCARG(uap, size) <= 0)
1704 		return EINVAL;
1705 
1706 	SCARG(&ca, flags) = 0;
1707 	return sys_epoll_create1(l, &ca, retval);
1708 }
1709 #endif /* !__aarch64__ */
1710 
1711 /*
1712  * epoll_create1(2).  Translate the flags and call sys_epoll_create1.
1713  */
1714 int
linux_sys_epoll_create1(struct lwp * l,const struct linux_sys_epoll_create1_args * uap,register_t * retval)1715 linux_sys_epoll_create1(struct lwp *l,
1716     const struct linux_sys_epoll_create1_args *uap, register_t *retval)
1717 {
1718 	/* {
1719 		syscallarg(int) flags;
1720 	} */
1721 	struct sys_epoll_create1_args ca;
1722 
1723         if ((SCARG(uap, flags) & ~(LINUX_O_CLOEXEC)) != 0)
1724 		return EINVAL;
1725 
1726 	SCARG(&ca, flags) = 0;
1727 	if ((SCARG(uap, flags) & LINUX_O_CLOEXEC) != 0)
1728 		SCARG(&ca, flags) |= O_CLOEXEC;
1729 
1730 	return sys_epoll_create1(l, &ca, retval);
1731 }
1732 
1733 /*
1734  * epoll_ctl(2).  Copyin event and translate it if necessary and then
1735  * call epoll_ctl_common().
1736  */
1737 int
linux_sys_epoll_ctl(struct lwp * l,const struct linux_sys_epoll_ctl_args * uap,register_t * retval)1738 linux_sys_epoll_ctl(struct lwp *l, const struct linux_sys_epoll_ctl_args *uap,
1739     register_t *retval)
1740 {
1741 	/* {
1742 		syscallarg(int) epfd;
1743 		syscallarg(int) op;
1744 		syscallarg(int) fd;
1745 		syscallarg(struct linux_epoll_event *) event;
1746 	} */
1747 	struct linux_epoll_event lee;
1748 	struct epoll_event ee;
1749 	struct epoll_event *eep;
1750 	int error;
1751 
1752 	if (SCARG(uap, op) != EPOLL_CTL_DEL) {
1753 		error = copyin(SCARG(uap, event), &lee, sizeof(lee));
1754 		if (error != 0)
1755 			return error;
1756 
1757 		/*
1758 		 * On some architectures, struct linux_epoll_event and
1759 		 * struct epoll_event are packed differently... but otherwise
1760 		 * the contents are the same.
1761 		 */
1762 		ee.events = lee.events;
1763 		ee.data = lee.data;
1764 
1765 		eep = &ee;
1766 	} else
1767 		eep = NULL;
1768 
1769 	return epoll_ctl_common(l, retval, SCARG(uap, epfd), SCARG(uap, op),
1770 	    SCARG(uap, fd), eep);
1771 }
1772 
1773 #ifndef __aarch64__
1774 /*
1775  * epoll_wait(2).  Call sys_epoll_pwait().
1776  */
1777 int
linux_sys_epoll_wait(struct lwp * l,const struct linux_sys_epoll_wait_args * uap,register_t * retval)1778 linux_sys_epoll_wait(struct lwp *l,
1779     const struct linux_sys_epoll_wait_args *uap, register_t *retval)
1780 {
1781 	/* {
1782 		syscallarg(int) epfd;
1783 		syscallarg(struct linux_epoll_event *) events;
1784 		syscallarg(int) maxevents;
1785 		syscallarg(int) timeout;
1786 	} */
1787 	struct linux_sys_epoll_pwait_args ea;
1788 
1789 	SCARG(&ea, epfd) = SCARG(uap, epfd);
1790 	SCARG(&ea, events) = SCARG(uap, events);
1791 	SCARG(&ea, maxevents) = SCARG(uap, maxevents);
1792 	SCARG(&ea, timeout) = SCARG(uap, timeout);
1793 	SCARG(&ea, sigmask) = NULL;
1794 
1795 	return linux_sys_epoll_pwait(l, &ea, retval);
1796 }
1797 #endif /* !__aarch64__ */
1798 
1799 /*
1800  * Main body of epoll_pwait2(2).  Translate timeout and sigmask and
1801  * call epoll_wait_common.
1802  */
1803 static int
linux_epoll_pwait2_common(struct lwp * l,register_t * retval,int epfd,struct linux_epoll_event * events,int maxevents,struct linux_timespec * timeout,const linux_sigset_t * sigmask)1804 linux_epoll_pwait2_common(struct lwp *l, register_t *retval, int epfd,
1805     struct linux_epoll_event *events, int maxevents,
1806     struct linux_timespec *timeout, const linux_sigset_t *sigmask)
1807 {
1808 	struct timespec ts, *tsp;
1809 	linux_sigset_t lss;
1810 	sigset_t ss, *ssp;
1811 	struct epoll_event *eep;
1812 	struct linux_epoll_event *leep;
1813 	int i, error;
1814 
1815 	if (maxevents <= 0 || maxevents > EPOLL_MAX_EVENTS)
1816 		return EINVAL;
1817 
1818 	if (timeout != NULL) {
1819 		linux_to_native_timespec(&ts, timeout);
1820 		tsp = &ts;
1821 	} else
1822 		tsp = NULL;
1823 
1824 	if (sigmask != NULL) {
1825 		error = copyin(sigmask, &lss, sizeof(lss));
1826 		if (error != 0)
1827 			return error;
1828 
1829 		linux_to_native_sigset(&ss, &lss);
1830 		ssp = &ss;
1831 	} else
1832 		ssp = NULL;
1833 
1834 	eep = kmem_alloc(maxevents * sizeof(*eep), KM_SLEEP);
1835 
1836 	error = epoll_wait_common(l, retval, epfd, eep, maxevents, tsp,
1837 	    ssp);
1838 	if (error == 0 && *retval > 0) {
1839 		leep = kmem_alloc((*retval) * sizeof(*leep), KM_SLEEP);
1840 
1841 		/* Translate the events (because of packing). */
1842 		for (i = 0; i < *retval; i++) {
1843 			leep[i].events = eep[i].events;
1844 			leep[i].data = eep[i].data;
1845 		}
1846 
1847 		error = copyout(leep, events, (*retval) * sizeof(*leep));
1848 		kmem_free(leep, (*retval) * sizeof(*leep));
1849 	}
1850 
1851 	kmem_free(eep, maxevents * sizeof(*eep));
1852 	return error;
1853 }
1854 
1855 /*
1856  * epoll_pwait(2).  Translate timeout and call sys_epoll_pwait2.
1857  */
1858 int
linux_sys_epoll_pwait(struct lwp * l,const struct linux_sys_epoll_pwait_args * uap,register_t * retval)1859 linux_sys_epoll_pwait(struct lwp *l,
1860     const struct linux_sys_epoll_pwait_args *uap, register_t *retval)
1861 {
1862 	/* {
1863 		syscallarg(int) epfd;
1864 		syscallarg(struct linux_epoll_event *) events;
1865 		syscallarg(int) maxevents;
1866 		syscallarg(int) timeout;
1867 		syscallarg(linux_sigset_t *) sigmask;
1868 	} */
1869         struct linux_timespec lts, *ltsp;
1870 	const int timeout = SCARG(uap, timeout);
1871 
1872 	if (timeout >= 0) {
1873 		/* Convert from milliseconds to timespec. */
1874 		lts.tv_sec = timeout / 1000;
1875 		lts.tv_nsec = (timeout % 1000) * 1000000;
1876 
1877 	        ltsp = &lts;
1878 	} else
1879 		ltsp = NULL;
1880 
1881 	return linux_epoll_pwait2_common(l, retval, SCARG(uap, epfd),
1882 	    SCARG(uap, events), SCARG(uap, maxevents), ltsp,
1883 	    SCARG(uap, sigmask));
1884 }
1885 
1886 
1887 /*
1888  * epoll_pwait2(2).  Copyin timeout and call linux_epoll_pwait2_common().
1889  */
1890 int
linux_sys_epoll_pwait2(struct lwp * l,const struct linux_sys_epoll_pwait2_args * uap,register_t * retval)1891 linux_sys_epoll_pwait2(struct lwp *l,
1892     const struct linux_sys_epoll_pwait2_args *uap, register_t *retval)
1893 {
1894 	/* {
1895 		syscallarg(int) epfd;
1896 		syscallarg(struct linux_epoll_event *) events;
1897 		syscallarg(int) maxevents;
1898 	        syscallarg(struct linux_timespec *) timeout;
1899 		syscallarg(linux_sigset_t *) sigmask;
1900 	} */
1901 	struct linux_timespec lts, *ltsp;
1902 	int error;
1903 
1904 	if (SCARG(uap, timeout) != NULL) {
1905 		error = copyin(SCARG(uap, timeout), &lts, sizeof(lts));
1906 		if (error != 0)
1907 			return error;
1908 
1909 		ltsp = &lts;
1910 	} else
1911 		ltsp = NULL;
1912 
1913 	return linux_epoll_pwait2_common(l, retval, SCARG(uap, epfd),
1914 	    SCARG(uap, events), SCARG(uap, maxevents), ltsp,
1915 	    SCARG(uap, sigmask));
1916 }
1917 
1918 #define	LINUX_MFD_CLOEXEC	0x0001U
1919 #define	LINUX_MFD_ALLOW_SEALING	0x0002U
1920 #define	LINUX_MFD_HUGETLB	0x0004U
1921 #define	LINUX_MFD_NOEXEC_SEAL	0x0008U
1922 #define	LINUX_MFD_EXEC		0x0010U
1923 #define	LINUX_MFD_HUGE_FLAGS	(0x3f << 26)
1924 
1925 #define	LINUX_MFD_ALL_FLAGS	(LINUX_MFD_CLOEXEC|LINUX_MFD_ALLOW_SEALING \
1926 				|LINUX_MFD_HUGETLB|LINUX_MFD_NOEXEC_SEAL \
1927 				|LINUX_MFD_EXEC|LINUX_MFD_HUGE_FLAGS)
1928 #define	LINUX_MFD_KNOWN_FLAGS	(LINUX_MFD_CLOEXEC|LINUX_MFD_ALLOW_SEALING)
1929 
1930 #define LINUX_MFD_NAME_MAX	249
1931 
1932 /*
1933  * memfd_create(2).  Do some error checking and then call NetBSD's
1934  * version.
1935  */
1936 int
linux_sys_memfd_create(struct lwp * l,const struct linux_sys_memfd_create_args * uap,register_t * retval)1937 linux_sys_memfd_create(struct lwp *l,
1938     const struct linux_sys_memfd_create_args *uap, register_t *retval)
1939 {
1940 	/* {
1941 		syscallarg(const char *) name;
1942 		syscallarg(unsigned int) flags;
1943 	} */
1944 	int error;
1945 	char *pbuf;
1946 	struct sys_memfd_create_args muap;
1947 	const unsigned int lflags = SCARG(uap, flags);
1948 
1949 	KASSERT(LINUX_MFD_NAME_MAX < NAME_MAX); /* sanity check */
1950 
1951 	if (lflags & ~LINUX_MFD_ALL_FLAGS)
1952 		return EINVAL;
1953 	if ((lflags & LINUX_MFD_HUGE_FLAGS) != 0 &&
1954 	    (lflags & LINUX_MFD_HUGETLB) == 0)
1955 		return EINVAL;
1956 	if ((lflags & LINUX_MFD_HUGETLB) && (lflags & LINUX_MFD_ALLOW_SEALING))
1957 		return EINVAL;
1958 
1959 	/* Linux has a stricter limit for name size */
1960 	pbuf = PNBUF_GET();
1961 	error = copyinstr(SCARG(uap, name), pbuf, LINUX_MFD_NAME_MAX+1, NULL);
1962 	PNBUF_PUT(pbuf);
1963 	pbuf = NULL;
1964 	if (error != 0) {
1965 		if (error == ENAMETOOLONG)
1966 			error = EINVAL;
1967 		return error;
1968 	}
1969 
1970 	if (lflags & ~LINUX_MFD_KNOWN_FLAGS) {
1971 		DPRINTF(("linux_sys_memfd_create: ignored flags %x\n",
1972 		    lflags & ~LINUX_MFD_KNOWN_FLAGS));
1973 	}
1974 
1975 	SCARG(&muap, name) = SCARG(uap, name);
1976 	SCARG(&muap, flags) = lflags & LINUX_MFD_KNOWN_FLAGS;
1977 
1978 	return sys_memfd_create(l, &muap, retval);
1979 }
1980 
1981 #define	LINUX_CLOSE_RANGE_UNSHARE	0x02U
1982 #define	LINUX_CLOSE_RANGE_CLOEXEC	0x04U
1983 
1984 /*
1985  * close_range(2).
1986  */
1987 int
linux_sys_close_range(struct lwp * l,const struct linux_sys_close_range_args * uap,register_t * retval)1988 linux_sys_close_range(struct lwp *l,
1989     const struct linux_sys_close_range_args *uap, register_t *retval)
1990 {
1991 	/* {
1992 		syscallarg(unsigned int) first;
1993 		syscallarg(unsigned int) last;
1994 		syscallarg(unsigned int) flags;
1995 	} */
1996 	unsigned int fd, last;
1997 	file_t *fp;
1998 	filedesc_t *fdp;
1999 	const unsigned int flags = SCARG(uap, flags);
2000 
2001 	if (flags & ~(LINUX_CLOSE_RANGE_CLOEXEC|LINUX_CLOSE_RANGE_UNSHARE))
2002 		return EINVAL;
2003 	if (SCARG(uap, first) > SCARG(uap, last))
2004 		return EINVAL;
2005 
2006 	if (flags & LINUX_CLOSE_RANGE_UNSHARE) {
2007 		fdp = fd_copy();
2008 		fd_free();
2009 	        l->l_proc->p_fd = fdp;
2010 	        l->l_fd = fdp;
2011 	}
2012 
2013 	last = MIN(SCARG(uap, last), l->l_proc->p_fd->fd_lastfile);
2014 	for (fd = SCARG(uap, first); fd <= last; fd++) {
2015 		fp = fd_getfile(fd);
2016 		if (fp == NULL)
2017 			continue;
2018 
2019 		if (flags & LINUX_CLOSE_RANGE_CLOEXEC) {
2020 			fd_set_exclose(l, fd, true);
2021 			fd_putfile(fd);
2022 		} else
2023 			fd_close(fd);
2024 	}
2025 
2026 	return 0;
2027 }
2028 
2029 /*
2030  * readahead(2).  Call posix_fadvise with POSIX_FADV_WILLNEED with some extra
2031  * error checking.
2032  */
2033 int
linux_sys_readahead(struct lwp * l,const struct linux_sys_readahead_args * uap,register_t * retval)2034 linux_sys_readahead(struct lwp *l, const struct linux_sys_readahead_args *uap,
2035     register_t *retval)
2036 {
2037 	/* {
2038 		syscallarg(int) fd;
2039 		syscallarg(off_t) offset;
2040 		syscallarg(size_t) count;
2041 	} */
2042 	file_t *fp;
2043 	int error = 0;
2044 	const int fd = SCARG(uap, fd);
2045 
2046 	fp = fd_getfile(fd);
2047 	if (fp == NULL)
2048 		return EBADF;
2049 	if ((fp->f_flag & FREAD) == 0)
2050 		error = EBADF;
2051 	else if (fp->f_type != DTYPE_VNODE || fp->f_vnode->v_type != VREG)
2052 		error = EINVAL;
2053 	fd_putfile(fd);
2054 	if (error != 0)
2055 		return error;
2056 
2057 	return do_posix_fadvise(fd, SCARG(uap, offset), SCARG(uap, count),
2058 	    POSIX_FADV_WILLNEED);
2059 }
2060