xref: /openbsd/gnu/usr.bin/binutils/gdb/rs6000-nat.c (revision 63addd46)
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2 
3    Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4    1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5    Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 2 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 59 Temple Place - Suite 330,
22    Boston, MA 02111-1307, USA.  */
23 
24 #include "defs.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "xcoffsolib.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "libbfd.h"		/* For bfd_default_set_arch_mach (FIXME) */
32 #include "bfd.h"
33 #include "gdb-stabs.h"
34 #include "regcache.h"
35 #include "arch-utils.h"
36 #include "ppc-tdep.h"
37 #include "exec.h"
38 
39 #include <sys/ptrace.h>
40 #include <sys/reg.h>
41 
42 #include <sys/param.h>
43 #include <sys/dir.h>
44 #include <sys/user.h>
45 #include <signal.h>
46 #include <sys/ioctl.h>
47 #include <fcntl.h>
48 #include <errno.h>
49 
50 #include <a.out.h>
51 #include <sys/file.h>
52 #include "gdb_stat.h"
53 #include <sys/core.h>
54 #define __LDINFO_PTRACE32__	/* for __ld_info32 */
55 #define __LDINFO_PTRACE64__	/* for __ld_info64 */
56 #include <sys/ldr.h>
57 #include <sys/systemcfg.h>
58 
59 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
60    debugging 32-bit and 64-bit processes.  Define a typedef and macros for
61    accessing fields in the appropriate structures. */
62 
63 /* In 32-bit compilation mode (which is the only mode from which ptrace()
64    works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
65 
66 #ifdef __ld_info32
67 # define ARCH3264
68 #endif
69 
70 /* Return whether the current architecture is 64-bit. */
71 
72 #ifndef ARCH3264
73 # define ARCH64() 0
74 #else
75 # define ARCH64() (register_size (current_gdbarch, 0) == 8)
76 #endif
77 
78 /* Union of 32-bit and 64-bit ".reg" core file sections. */
79 
80 typedef union {
81 #ifdef ARCH3264
82   struct __context64 r64;
83 #else
84   struct mstsave r64;
85 #endif
86   struct mstsave r32;
87 } CoreRegs;
88 
89 /* Union of 32-bit and 64-bit versions of ld_info. */
90 
91 typedef union {
92 #ifndef ARCH3264
93   struct ld_info l32;
94   struct ld_info l64;
95 #else
96   struct __ld_info32 l32;
97   struct __ld_info64 l64;
98 #endif
99 } LdInfo;
100 
101 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
102    declare and initialize a variable named VAR suitable for use as the arch64
103    parameter to the various LDI_*() macros. */
104 
105 #ifndef ARCH3264
106 # define ARCH64_DECL(var)
107 #else
108 # define ARCH64_DECL(var) int var = ARCH64 ()
109 #endif
110 
111 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
112    otherwise.  This technique only works for FIELDs with the same data type in
113    32-bit and 64-bit versions of ld_info. */
114 
115 #ifndef ARCH3264
116 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
117 #else
118 # define LDI_FIELD(ldi, arch64, field) \
119   (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
120 #endif
121 
122 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
123    process otherwise. */
124 
125 #define LDI_NEXT(ldi, arch64)		LDI_FIELD(ldi, arch64, next)
126 #define LDI_FD(ldi, arch64)		LDI_FIELD(ldi, arch64, fd)
127 #define LDI_FILENAME(ldi, arch64)	LDI_FIELD(ldi, arch64, filename)
128 
129 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
130 
131 static void vmap_exec (void);
132 
133 static void vmap_ldinfo (LdInfo *);
134 
135 static struct vmap *add_vmap (LdInfo *);
136 
137 static int objfile_symbol_add (void *);
138 
139 static void vmap_symtab (struct vmap *);
140 
141 static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
142 
143 static void exec_one_dummy_insn (void);
144 
145 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
146 
147 /* Given REGNO, a gdb register number, return the corresponding
148    number suitable for use as a ptrace() parameter.  Return -1 if
149    there's no suitable mapping.  Also, set the int pointed to by
150    ISFLOAT to indicate whether REGNO is a floating point register.  */
151 
152 static int
regmap(int regno,int * isfloat)153 regmap (int regno, int *isfloat)
154 {
155   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
156 
157   *isfloat = 0;
158   if (tdep->ppc_gp0_regnum <= regno
159       && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
160     return regno;
161   else if (tdep->ppc_fp0_regnum >= 0
162            && tdep->ppc_fp0_regnum <= regno
163            && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
164     {
165       *isfloat = 1;
166       return regno - tdep->ppc_fp0_regnum + FPR0;
167     }
168   else if (regno == PC_REGNUM)
169     return IAR;
170   else if (regno == tdep->ppc_ps_regnum)
171     return MSR;
172   else if (regno == tdep->ppc_cr_regnum)
173     return CR;
174   else if (regno == tdep->ppc_lr_regnum)
175     return LR;
176   else if (regno == tdep->ppc_ctr_regnum)
177     return CTR;
178   else if (regno == tdep->ppc_xer_regnum)
179     return XER;
180   else if (tdep->ppc_fpscr_regnum >= 0
181            && regno == tdep->ppc_fpscr_regnum)
182     return FPSCR;
183   else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
184     return MQ;
185   else
186     return -1;
187 }
188 
189 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
190 
191 static int
rs6000_ptrace32(int req,int id,int * addr,int data,int * buf)192 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
193 {
194   int ret = ptrace (req, id, (int *)addr, data, buf);
195 #if 0
196   printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
197 	  req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
198 #endif
199   return ret;
200 }
201 
202 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
203 
204 static int
rs6000_ptrace64(int req,int id,long long addr,int data,int * buf)205 rs6000_ptrace64 (int req, int id, long long addr, int data, int *buf)
206 {
207 #ifdef ARCH3264
208   int ret = ptracex (req, id, addr, data, buf);
209 #else
210   int ret = 0;
211 #endif
212 #if 0
213   printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
214 	  req, id, addr, data, (unsigned int)buf, ret);
215 #endif
216   return ret;
217 }
218 
219 /* Fetch register REGNO from the inferior. */
220 
221 static void
fetch_register(int regno)222 fetch_register (int regno)
223 {
224   int addr[MAX_REGISTER_SIZE];
225   int nr, isfloat;
226 
227   /* Retrieved values may be -1, so infer errors from errno. */
228   errno = 0;
229 
230   nr = regmap (regno, &isfloat);
231 
232   /* Floating-point registers. */
233   if (isfloat)
234     rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
235 
236   /* Bogus register number. */
237   else if (nr < 0)
238     {
239       if (regno >= NUM_REGS)
240 	fprintf_unfiltered (gdb_stderr,
241 			    "gdb error: register no %d not implemented.\n",
242 			    regno);
243       return;
244     }
245 
246   /* Fixed-point registers. */
247   else
248     {
249       if (!ARCH64 ())
250 	*addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
251       else
252 	{
253 	  /* PT_READ_GPR requires the buffer parameter to point to long long,
254 	     even if the register is really only 32 bits. */
255 	  long long buf;
256 	  rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
257 	  if (register_size (current_gdbarch, regno) == 8)
258 	    memcpy (addr, &buf, 8);
259 	  else
260 	    *addr = buf;
261 	}
262     }
263 
264   if (!errno)
265     regcache_raw_supply (current_regcache, regno, (char *) addr);
266   else
267     {
268 #if 0
269       /* FIXME: this happens 3 times at the start of each 64-bit program. */
270       perror ("ptrace read");
271 #endif
272       errno = 0;
273     }
274 }
275 
276 /* Store register REGNO back into the inferior. */
277 
278 static void
store_register(int regno)279 store_register (int regno)
280 {
281   int addr[MAX_REGISTER_SIZE];
282   int nr, isfloat;
283 
284   /* Fetch the register's value from the register cache.  */
285   regcache_raw_collect (current_regcache, regno, addr);
286 
287   /* -1 can be a successful return value, so infer errors from errno. */
288   errno = 0;
289 
290   nr = regmap (regno, &isfloat);
291 
292   /* Floating-point registers. */
293   if (isfloat)
294     rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
295 
296   /* Bogus register number. */
297   else if (nr < 0)
298     {
299       if (regno >= NUM_REGS)
300 	fprintf_unfiltered (gdb_stderr,
301 			    "gdb error: register no %d not implemented.\n",
302 			    regno);
303     }
304 
305   /* Fixed-point registers. */
306   else
307     {
308       if (regno == SP_REGNUM)
309 	/* Execute one dummy instruction (which is a breakpoint) in inferior
310 	   process to give kernel a chance to do internal housekeeping.
311 	   Otherwise the following ptrace(2) calls will mess up user stack
312 	   since kernel will get confused about the bottom of the stack
313 	   (%sp). */
314 	exec_one_dummy_insn ();
315 
316       /* The PT_WRITE_GPR operation is rather odd.  For 32-bit inferiors,
317          the register's value is passed by value, but for 64-bit inferiors,
318 	 the address of a buffer containing the value is passed.  */
319       if (!ARCH64 ())
320 	rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
321       else
322 	{
323 	  /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
324 	     area, even if the register is really only 32 bits. */
325 	  long long buf;
326 	  if (register_size (current_gdbarch, regno) == 8)
327 	    memcpy (&buf, addr, 8);
328 	  else
329 	    buf = *addr;
330 	  rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
331 	}
332     }
333 
334   if (errno)
335     {
336       perror ("ptrace write");
337       errno = 0;
338     }
339 }
340 
341 /* Read from the inferior all registers if REGNO == -1 and just register
342    REGNO otherwise. */
343 
344 void
fetch_inferior_registers(int regno)345 fetch_inferior_registers (int regno)
346 {
347   if (regno != -1)
348     fetch_register (regno);
349 
350   else
351     {
352       struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
353 
354       /* Read 32 general purpose registers.  */
355       for (regno = tdep->ppc_gp0_regnum;
356            regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
357 	   regno++)
358 	{
359 	  fetch_register (regno);
360 	}
361 
362       /* Read general purpose floating point registers.  */
363       if (tdep->ppc_fp0_regnum >= 0)
364         for (regno = 0; regno < ppc_num_fprs; regno++)
365           fetch_register (tdep->ppc_fp0_regnum + regno);
366 
367       /* Read special registers.  */
368       fetch_register (PC_REGNUM);
369       fetch_register (tdep->ppc_ps_regnum);
370       fetch_register (tdep->ppc_cr_regnum);
371       fetch_register (tdep->ppc_lr_regnum);
372       fetch_register (tdep->ppc_ctr_regnum);
373       fetch_register (tdep->ppc_xer_regnum);
374       if (tdep->ppc_fpscr_regnum >= 0)
375         fetch_register (tdep->ppc_fpscr_regnum);
376       if (tdep->ppc_mq_regnum >= 0)
377 	fetch_register (tdep->ppc_mq_regnum);
378     }
379 }
380 
381 /* Store our register values back into the inferior.
382    If REGNO is -1, do this for all registers.
383    Otherwise, REGNO specifies which register (so we can save time).  */
384 
385 void
store_inferior_registers(int regno)386 store_inferior_registers (int regno)
387 {
388   if (regno != -1)
389     store_register (regno);
390 
391   else
392     {
393       struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
394 
395       /* Write general purpose registers first.  */
396       for (regno = tdep->ppc_gp0_regnum;
397            regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
398 	   regno++)
399 	{
400 	  store_register (regno);
401 	}
402 
403       /* Write floating point registers.  */
404       if (tdep->ppc_fp0_regnum >= 0)
405         for (regno = 0; regno < ppc_num_fprs; regno++)
406           store_register (tdep->ppc_fp0_regnum + regno);
407 
408       /* Write special registers.  */
409       store_register (PC_REGNUM);
410       store_register (tdep->ppc_ps_regnum);
411       store_register (tdep->ppc_cr_regnum);
412       store_register (tdep->ppc_lr_regnum);
413       store_register (tdep->ppc_ctr_regnum);
414       store_register (tdep->ppc_xer_regnum);
415       if (tdep->ppc_fpscr_regnum >= 0)
416         store_register (tdep->ppc_fpscr_regnum);
417       if (tdep->ppc_mq_regnum >= 0)
418 	store_register (tdep->ppc_mq_regnum);
419     }
420 }
421 
422 /* Store in *TO the 32-bit word at 32-bit-aligned ADDR in the child
423    process, which is 64-bit if ARCH64 and 32-bit otherwise.  Return
424    success. */
425 
426 static int
read_word(CORE_ADDR from,int * to,int arch64)427 read_word (CORE_ADDR from, int *to, int arch64)
428 {
429   /* Retrieved values may be -1, so infer errors from errno. */
430   errno = 0;
431 
432   if (arch64)
433     *to = rs6000_ptrace64 (PT_READ_I, PIDGET (inferior_ptid), from, 0, NULL);
434   else
435     *to = rs6000_ptrace32 (PT_READ_I, PIDGET (inferior_ptid), (int *)(long) from,
436                     0, NULL);
437 
438   return !errno;
439 }
440 
441 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
442    to debugger memory starting at MYADDR.  Copy to inferior if
443    WRITE is nonzero.
444 
445    Returns the length copied, which is either the LEN argument or
446    zero.  This xfer function does not do partial moves, since
447    deprecated_child_ops doesn't allow memory operations to cross below
448    us in the target stack anyway.  */
449 
450 int
child_xfer_memory(CORE_ADDR memaddr,char * myaddr,int len,int write,struct mem_attrib * attrib,struct target_ops * target)451 child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
452 		   int write, struct mem_attrib *attrib,
453 		   struct target_ops *target)
454 {
455   /* Round starting address down to 32-bit word boundary. */
456   int mask = sizeof (int) - 1;
457   CORE_ADDR addr = memaddr & ~(CORE_ADDR)mask;
458 
459   /* Round ending address up to 32-bit word boundary. */
460   int count = ((memaddr + len - addr + mask) & ~(CORE_ADDR)mask)
461     / sizeof (int);
462 
463   /* Allocate word transfer buffer. */
464   /* FIXME (alloca): This code, cloned from infptrace.c, is unsafe
465      because it uses alloca to allocate a buffer of arbitrary size.
466      For very large xfers, this could crash GDB's stack.  */
467   int *buf = (int *) alloca (count * sizeof (int));
468 
469   int arch64 = ARCH64 ();
470   int i;
471 
472   if (!write)
473     {
474       /* Retrieve memory a word at a time. */
475       for (i = 0; i < count; i++, addr += sizeof (int))
476 	{
477 	  if (!read_word (addr, buf + i, arch64))
478 	    return 0;
479 	  QUIT;
480 	}
481 
482       /* Copy memory to supplied buffer. */
483       addr -= count * sizeof (int);
484       memcpy (myaddr, (char *)buf + (memaddr - addr), len);
485     }
486   else
487     {
488       /* Fetch leading memory needed for alignment. */
489       if (addr < memaddr)
490 	if (!read_word (addr, buf, arch64))
491 	  return 0;
492 
493       /* Fetch trailing memory needed for alignment. */
494       if (addr + count * sizeof (int) > memaddr + len)
495 	if (!read_word (addr + (count - 1) * sizeof (int),
496                         buf + count - 1, arch64))
497 	  return 0;
498 
499       /* Copy supplied data into memory buffer. */
500       memcpy ((char *)buf + (memaddr - addr), myaddr, len);
501 
502       /* Store memory one word at a time. */
503       for (i = 0, errno = 0; i < count; i++, addr += sizeof (int))
504 	{
505 	  if (arch64)
506 	    rs6000_ptrace64 (PT_WRITE_D, PIDGET (inferior_ptid), addr, buf[i], NULL);
507 	  else
508 	    rs6000_ptrace32 (PT_WRITE_D, PIDGET (inferior_ptid), (int *)(long) addr,
509 		      buf[i], NULL);
510 
511 	  if (errno)
512 	    return 0;
513 	  QUIT;
514 	}
515     }
516 
517   return len;
518 }
519 
520 /* Execute one dummy breakpoint instruction.  This way we give the kernel
521    a chance to do some housekeeping and update inferior's internal data,
522    including u_area. */
523 
524 static void
exec_one_dummy_insn(void)525 exec_one_dummy_insn (void)
526 {
527 #define	DUMMY_INSN_ADDR	(TEXT_SEGMENT_BASE)+0x200
528 
529   char shadow_contents[BREAKPOINT_MAX];		/* Stash old bkpt addr contents */
530   int ret, status, pid;
531   CORE_ADDR prev_pc;
532 
533   /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
534      assume that this address will never be executed again by the real
535      code. */
536 
537   target_insert_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
538 
539   /* You might think this could be done with a single ptrace call, and
540      you'd be correct for just about every platform I've ever worked
541      on.  However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
542      the inferior never hits the breakpoint (it's also worth noting
543      powerpc-ibm-aix4.1.3 works correctly).  */
544   prev_pc = read_pc ();
545   write_pc (DUMMY_INSN_ADDR);
546   if (ARCH64 ())
547     ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
548   else
549     ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
550 
551   if (ret != 0)
552     perror ("pt_continue");
553 
554   do
555     {
556       pid = wait (&status);
557     }
558   while (pid != PIDGET (inferior_ptid));
559 
560   write_pc (prev_pc);
561   target_remove_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
562 }
563 
564 /* Fetch registers from the register section in core bfd. */
565 
566 static void
fetch_core_registers(char * core_reg_sect,unsigned core_reg_size,int which,CORE_ADDR reg_addr)567 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
568 		      int which, CORE_ADDR reg_addr)
569 {
570   CoreRegs *regs;
571   int regi;
572   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
573 
574   if (which != 0)
575     {
576       fprintf_unfiltered
577 	(gdb_stderr,
578 	 "Gdb error: unknown parameter to fetch_core_registers().\n");
579       return;
580     }
581 
582   regs = (CoreRegs *) core_reg_sect;
583 
584   /* Put the register values from the core file section in the regcache.  */
585 
586   if (ARCH64 ())
587     {
588       for (regi = 0; regi < ppc_num_gprs; regi++)
589         regcache_raw_supply (current_regcache, tdep->ppc_gp0_regnum + regi,
590 			     (char *) &regs->r64.gpr[regi]);
591 
592       if (tdep->ppc_fp0_regnum >= 0)
593         for (regi = 0; regi < ppc_num_fprs; regi++)
594           regcache_raw_supply (current_regcache, tdep->ppc_fp0_regnum + regi,
595 			       (char *) &regs->r64.fpr[regi]);
596 
597       regcache_raw_supply (current_regcache, PC_REGNUM,
598 			   (char *) &regs->r64.iar);
599       regcache_raw_supply (current_regcache, tdep->ppc_ps_regnum,
600 			   (char *) &regs->r64.msr);
601       regcache_raw_supply (current_regcache, tdep->ppc_cr_regnum,
602 			   (char *) &regs->r64.cr);
603       regcache_raw_supply (current_regcache, tdep->ppc_lr_regnum,
604 			   (char *) &regs->r64.lr);
605       regcache_raw_supply (current_regcache, tdep->ppc_ctr_regnum,
606 			   (char *) &regs->r64.ctr);
607       regcache_raw_supply (current_regcache, tdep->ppc_xer_regnum,
608 			   (char *) &regs->r64.xer);
609       if (tdep->ppc_fpscr_regnum >= 0)
610         regcache_raw_supply (current_regcache, tdep->ppc_fpscr_regnum,
611 			     (char *) &regs->r64.fpscr);
612     }
613   else
614     {
615       for (regi = 0; regi < ppc_num_gprs; regi++)
616         regcache_raw_supply (current_regcache, tdep->ppc_gp0_regnum + regi,
617 			     (char *) &regs->r32.gpr[regi]);
618 
619       if (tdep->ppc_fp0_regnum >= 0)
620         for (regi = 0; regi < ppc_num_fprs; regi++)
621           regcache_raw_supply (current_regcache, tdep->ppc_fp0_regnum + regi,
622 			       (char *) &regs->r32.fpr[regi]);
623 
624       regcache_raw_supply (current_regcache, PC_REGNUM,
625 			   (char *) &regs->r32.iar);
626       regcache_raw_supply (current_regcache, tdep->ppc_ps_regnum,
627 			   (char *) &regs->r32.msr);
628       regcache_raw_supply (current_regcache, tdep->ppc_cr_regnum,
629 			   (char *) &regs->r32.cr);
630       regcache_raw_supply (current_regcache, tdep->ppc_lr_regnum,
631 			   (char *) &regs->r32.lr);
632       regcache_raw_supply (current_regcache, tdep->ppc_ctr_regnum,
633 			   (char *) &regs->r32.ctr);
634       regcache_raw_supply (current_regcache, tdep->ppc_xer_regnum,
635 			   (char *) &regs->r32.xer);
636       if (tdep->ppc_fpscr_regnum >= 0)
637         regcache_raw_supply (current_regcache, tdep->ppc_fpscr_regnum,
638 			     (char *) &regs->r32.fpscr);
639       if (tdep->ppc_mq_regnum >= 0)
640 	regcache_raw_supply (current_regcache, tdep->ppc_mq_regnum,
641 			     (char *) &regs->r32.mq);
642     }
643 }
644 
645 
646 /* Copy information about text and data sections from LDI to VP for a 64-bit
647    process if ARCH64 and for a 32-bit process otherwise. */
648 
649 static void
vmap_secs(struct vmap * vp,LdInfo * ldi,int arch64)650 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
651 {
652   if (arch64)
653     {
654       vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
655       vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
656       vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
657       vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
658     }
659   else
660     {
661       vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
662       vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
663       vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
664       vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
665     }
666 
667   /* The run time loader maps the file header in addition to the text
668      section and returns a pointer to the header in ldinfo_textorg.
669      Adjust the text start address to point to the real start address
670      of the text section.  */
671   vp->tstart += vp->toffs;
672 }
673 
674 /* handle symbol translation on vmapping */
675 
676 static void
vmap_symtab(struct vmap * vp)677 vmap_symtab (struct vmap *vp)
678 {
679   struct objfile *objfile;
680   struct section_offsets *new_offsets;
681   int i;
682 
683   objfile = vp->objfile;
684   if (objfile == NULL)
685     {
686       /* OK, it's not an objfile we opened ourselves.
687          Currently, that can only happen with the exec file, so
688          relocate the symbols for the symfile.  */
689       if (symfile_objfile == NULL)
690 	return;
691       objfile = symfile_objfile;
692     }
693   else if (!vp->loaded)
694     /* If symbols are not yet loaded, offsets are not yet valid. */
695     return;
696 
697   new_offsets =
698     (struct section_offsets *)
699     alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
700 
701   for (i = 0; i < objfile->num_sections; ++i)
702     new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
703 
704   /* The symbols in the object file are linked to the VMA of the section,
705      relocate them VMA relative.  */
706   new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
707   new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
708   new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
709 
710   objfile_relocate (objfile, new_offsets);
711 }
712 
713 /* Add symbols for an objfile.  */
714 
715 static int
objfile_symbol_add(void * arg)716 objfile_symbol_add (void *arg)
717 {
718   struct objfile *obj = (struct objfile *) arg;
719 
720   syms_from_objfile (obj, NULL, 0, 0, 0, 0);
721   new_symfile_objfile (obj, 0, 0);
722   return 1;
723 }
724 
725 /* Add symbols for a vmap. Return zero upon error.  */
726 
727 int
vmap_add_symbols(struct vmap * vp)728 vmap_add_symbols (struct vmap *vp)
729 {
730   if (catch_errors (objfile_symbol_add, vp->objfile,
731 		    "Error while reading shared library symbols:\n",
732 		    RETURN_MASK_ALL))
733     {
734       /* Note this is only done if symbol reading was successful.  */
735       vp->loaded = 1;
736       vmap_symtab (vp);
737       return 1;
738     }
739   return 0;
740 }
741 
742 /* Add a new vmap entry based on ldinfo() information.
743 
744    If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
745    core file), the caller should set it to -1, and we will open the file.
746 
747    Return the vmap new entry.  */
748 
749 static struct vmap *
add_vmap(LdInfo * ldi)750 add_vmap (LdInfo *ldi)
751 {
752   bfd *abfd, *last;
753   char *mem, *objname, *filename;
754   struct objfile *obj;
755   struct vmap *vp;
756   int fd;
757   ARCH64_DECL (arch64);
758 
759   /* This ldi structure was allocated using alloca() in
760      xcoff_relocate_symtab(). Now we need to have persistent object
761      and member names, so we should save them. */
762 
763   filename = LDI_FILENAME (ldi, arch64);
764   mem = filename + strlen (filename) + 1;
765   mem = savestring (mem, strlen (mem));
766   objname = savestring (filename, strlen (filename));
767 
768   fd = LDI_FD (ldi, arch64);
769   if (fd < 0)
770     /* Note that this opens it once for every member; a possible
771        enhancement would be to only open it once for every object.  */
772     abfd = bfd_openr (objname, gnutarget);
773   else
774     abfd = bfd_fdopenr (objname, gnutarget, fd);
775   if (!abfd)
776     {
777       warning ("Could not open `%s' as an executable file: %s",
778 	       objname, bfd_errmsg (bfd_get_error ()));
779       return NULL;
780     }
781 
782   /* make sure we have an object file */
783 
784   if (bfd_check_format (abfd, bfd_object))
785     vp = map_vmap (abfd, 0);
786 
787   else if (bfd_check_format (abfd, bfd_archive))
788     {
789       last = 0;
790       /* FIXME??? am I tossing BFDs?  bfd? */
791       while ((last = bfd_openr_next_archived_file (abfd, last)))
792 	if (DEPRECATED_STREQ (mem, last->filename))
793 	  break;
794 
795       if (!last)
796 	{
797 	  warning ("\"%s\": member \"%s\" missing.", objname, mem);
798 	  bfd_close (abfd);
799 	  return NULL;
800 	}
801 
802       if (!bfd_check_format (last, bfd_object))
803 	{
804 	  warning ("\"%s\": member \"%s\" not in executable format: %s.",
805 		   objname, mem, bfd_errmsg (bfd_get_error ()));
806 	  bfd_close (last);
807 	  bfd_close (abfd);
808 	  return NULL;
809 	}
810 
811       vp = map_vmap (last, abfd);
812     }
813   else
814     {
815       warning ("\"%s\": not in executable format: %s.",
816 	       objname, bfd_errmsg (bfd_get_error ()));
817       bfd_close (abfd);
818       return NULL;
819     }
820   obj = allocate_objfile (vp->bfd, 0);
821   vp->objfile = obj;
822 
823   /* Always add symbols for the main objfile.  */
824   if (vp == vmap || auto_solib_add)
825     vmap_add_symbols (vp);
826   return vp;
827 }
828 
829 /* update VMAP info with ldinfo() information
830    Input is ptr to ldinfo() results.  */
831 
832 static void
vmap_ldinfo(LdInfo * ldi)833 vmap_ldinfo (LdInfo *ldi)
834 {
835   struct stat ii, vi;
836   struct vmap *vp;
837   int got_one, retried;
838   int got_exec_file = 0;
839   uint next;
840   int arch64 = ARCH64 ();
841 
842   /* For each *ldi, see if we have a corresponding *vp.
843      If so, update the mapping, and symbol table.
844      If not, add an entry and symbol table.  */
845 
846   do
847     {
848       char *name = LDI_FILENAME (ldi, arch64);
849       char *memb = name + strlen (name) + 1;
850       int fd = LDI_FD (ldi, arch64);
851 
852       retried = 0;
853 
854       if (fstat (fd, &ii) < 0)
855 	{
856 	  /* The kernel sets ld_info to -1, if the process is still using the
857 	     object, and the object is removed. Keep the symbol info for the
858 	     removed object and issue a warning.  */
859 	  warning ("%s (fd=%d) has disappeared, keeping its symbols",
860 		   name, fd);
861 	  continue;
862 	}
863     retry:
864       for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
865 	{
866 	  struct objfile *objfile;
867 
868 	  /* First try to find a `vp', which is the same as in ldinfo.
869 	     If not the same, just continue and grep the next `vp'. If same,
870 	     relocate its tstart, tend, dstart, dend values. If no such `vp'
871 	     found, get out of this for loop, add this ldi entry as a new vmap
872 	     (add_vmap) and come back, find its `vp' and so on... */
873 
874 	  /* The filenames are not always sufficient to match on. */
875 
876 	  if ((name[0] == '/' && !DEPRECATED_STREQ (name, vp->name))
877 	      || (memb[0] && !DEPRECATED_STREQ (memb, vp->member)))
878 	    continue;
879 
880 	  /* See if we are referring to the same file.
881 	     We have to check objfile->obfd, symfile.c:reread_symbols might
882 	     have updated the obfd after a change.  */
883 	  objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
884 	  if (objfile == NULL
885 	      || objfile->obfd == NULL
886 	      || bfd_stat (objfile->obfd, &vi) < 0)
887 	    {
888 	      warning ("Unable to stat %s, keeping its symbols", name);
889 	      continue;
890 	    }
891 
892 	  if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
893 	    continue;
894 
895 	  if (!retried)
896 	    close (fd);
897 
898 	  ++got_one;
899 
900 	  /* Found a corresponding VMAP.  Remap!  */
901 
902 	  vmap_secs (vp, ldi, arch64);
903 
904 	  /* The objfile is only NULL for the exec file.  */
905 	  if (vp->objfile == NULL)
906 	    got_exec_file = 1;
907 
908 	  /* relocate symbol table(s). */
909 	  vmap_symtab (vp);
910 
911 	  /* Announce new object files.  Doing this after symbol relocation
912 	     makes aix-thread.c's job easier. */
913 	  if (deprecated_target_new_objfile_hook && vp->objfile)
914 	    deprecated_target_new_objfile_hook (vp->objfile);
915 
916 	  /* There may be more, so we don't break out of the loop.  */
917 	}
918 
919       /* if there was no matching *vp, we must perforce create the sucker(s) */
920       if (!got_one && !retried)
921 	{
922 	  add_vmap (ldi);
923 	  ++retried;
924 	  goto retry;
925 	}
926     }
927   while ((next = LDI_NEXT (ldi, arch64))
928 	 && (ldi = (void *) (next + (char *) ldi)));
929 
930   /* If we don't find the symfile_objfile anywhere in the ldinfo, it
931      is unlikely that the symbol file is relocated to the proper
932      address.  And we might have attached to a process which is
933      running a different copy of the same executable.  */
934   if (symfile_objfile != NULL && !got_exec_file)
935     {
936       warning ("Symbol file %s\nis not mapped; discarding it.\n\
937 If in fact that file has symbols which the mapped files listed by\n\
938 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
939 \"add-symbol-file\" commands (note that you must take care of relocating\n\
940 symbols to the proper address).",
941 	       symfile_objfile->name);
942       free_objfile (symfile_objfile);
943       symfile_objfile = NULL;
944     }
945   breakpoint_re_set ();
946 }
947 
948 /* As well as symbol tables, exec_sections need relocation. After
949    the inferior process' termination, there will be a relocated symbol
950    table exist with no corresponding inferior process. At that time, we
951    need to use `exec' bfd, rather than the inferior process's memory space
952    to look up symbols.
953 
954    `exec_sections' need to be relocated only once, as long as the exec
955    file remains unchanged.
956  */
957 
958 static void
vmap_exec(void)959 vmap_exec (void)
960 {
961   static bfd *execbfd;
962   int i;
963 
964   if (execbfd == exec_bfd)
965     return;
966 
967   execbfd = exec_bfd;
968 
969   if (!vmap || !exec_ops.to_sections)
970     error ("vmap_exec: vmap or exec_ops.to_sections == 0\n");
971 
972   for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
973     {
974       if (DEPRECATED_STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
975 	{
976 	  exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
977 	  exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
978 	}
979       else if (DEPRECATED_STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
980 	{
981 	  exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
982 	  exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
983 	}
984       else if (DEPRECATED_STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
985 	{
986 	  exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
987 	  exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
988 	}
989     }
990 }
991 
992 /* Set the current architecture from the host running GDB.  Called when
993    starting a child process. */
994 
995 static void
set_host_arch(int pid)996 set_host_arch (int pid)
997 {
998   enum bfd_architecture arch;
999   unsigned long mach;
1000   bfd abfd;
1001   struct gdbarch_info info;
1002 
1003   if (__power_rs ())
1004     {
1005       arch = bfd_arch_rs6000;
1006       mach = bfd_mach_rs6k;
1007     }
1008   else
1009     {
1010       arch = bfd_arch_powerpc;
1011       mach = bfd_mach_ppc;
1012     }
1013 
1014   /* FIXME: schauer/2002-02-25:
1015      We don't know if we are executing a 32 or 64 bit executable,
1016      and have no way to pass the proper word size to rs6000_gdbarch_init.
1017      So we have to avoid switching to a new architecture, if the architecture
1018      matches already.
1019      Blindly calling rs6000_gdbarch_init used to work in older versions of
1020      GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
1021      determine the wordsize.  */
1022   if (exec_bfd)
1023     {
1024       const struct bfd_arch_info *exec_bfd_arch_info;
1025 
1026       exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1027       if (arch == exec_bfd_arch_info->arch)
1028 	return;
1029     }
1030 
1031   bfd_default_set_arch_mach (&abfd, arch, mach);
1032 
1033   gdbarch_info_init (&info);
1034   info.bfd_arch_info = bfd_get_arch_info (&abfd);
1035   info.abfd = exec_bfd;
1036 
1037   if (!gdbarch_update_p (info))
1038     {
1039       internal_error (__FILE__, __LINE__,
1040 		      "set_host_arch: failed to select architecture");
1041     }
1042 }
1043 
1044 
1045 /* xcoff_relocate_symtab -      hook for symbol table relocation.
1046    also reads shared libraries.. */
1047 
1048 void
xcoff_relocate_symtab(unsigned int pid)1049 xcoff_relocate_symtab (unsigned int pid)
1050 {
1051   int load_segs = 64; /* number of load segments */
1052   int rc;
1053   LdInfo *ldi = NULL;
1054   int arch64 = ARCH64 ();
1055   int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1056   int size;
1057 
1058   do
1059     {
1060       size = load_segs * ldisize;
1061       ldi = (void *) xrealloc (ldi, size);
1062 
1063 #if 0
1064       /* According to my humble theory, AIX has some timing problems and
1065          when the user stack grows, kernel doesn't update stack info in time
1066          and ptrace calls step on user stack. That is why we sleep here a
1067          little, and give kernel to update its internals. */
1068       usleep (36000);
1069 #endif
1070 
1071       if (arch64)
1072 	rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1073       else
1074 	rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1075 
1076       if (rc == -1)
1077         {
1078           if (errno == ENOMEM)
1079             load_segs *= 2;
1080           else
1081             perror_with_name ("ptrace ldinfo");
1082         }
1083       else
1084 	{
1085           vmap_ldinfo (ldi);
1086           vmap_exec (); /* relocate the exec and core sections as well. */
1087 	}
1088     } while (rc == -1);
1089   if (ldi)
1090     xfree (ldi);
1091 }
1092 
1093 /* Core file stuff.  */
1094 
1095 /* Relocate symtabs and read in shared library info, based on symbols
1096    from the core file.  */
1097 
1098 void
xcoff_relocate_core(struct target_ops * target)1099 xcoff_relocate_core (struct target_ops *target)
1100 {
1101   struct bfd_section *ldinfo_sec;
1102   int offset = 0;
1103   LdInfo *ldi;
1104   struct vmap *vp;
1105   int arch64 = ARCH64 ();
1106 
1107   /* Size of a struct ld_info except for the variable-length filename. */
1108   int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1109 
1110   /* Allocated size of buffer.  */
1111   int buffer_size = nonfilesz;
1112   char *buffer = xmalloc (buffer_size);
1113   struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1114 
1115   ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1116   if (ldinfo_sec == NULL)
1117     {
1118     bfd_err:
1119       fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1120 			bfd_errmsg (bfd_get_error ()));
1121       do_cleanups (old);
1122       return;
1123     }
1124   do
1125     {
1126       int i;
1127       int names_found = 0;
1128 
1129       /* Read in everything but the name.  */
1130       if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1131 				    offset, nonfilesz) == 0)
1132 	goto bfd_err;
1133 
1134       /* Now the name.  */
1135       i = nonfilesz;
1136       do
1137 	{
1138 	  if (i == buffer_size)
1139 	    {
1140 	      buffer_size *= 2;
1141 	      buffer = xrealloc (buffer, buffer_size);
1142 	    }
1143 	  if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1144 					offset + i, 1) == 0)
1145 	    goto bfd_err;
1146 	  if (buffer[i++] == '\0')
1147 	    ++names_found;
1148 	}
1149       while (names_found < 2);
1150 
1151       ldi = (LdInfo *) buffer;
1152 
1153       /* Can't use a file descriptor from the core file; need to open it.  */
1154       if (arch64)
1155 	ldi->l64.ldinfo_fd = -1;
1156       else
1157 	ldi->l32.ldinfo_fd = -1;
1158 
1159       /* The first ldinfo is for the exec file, allocated elsewhere.  */
1160       if (offset == 0 && vmap != NULL)
1161 	vp = vmap;
1162       else
1163 	vp = add_vmap (ldi);
1164 
1165       /* Process next shared library upon error. */
1166       offset += LDI_NEXT (ldi, arch64);
1167       if (vp == NULL)
1168 	continue;
1169 
1170       vmap_secs (vp, ldi, arch64);
1171 
1172       /* Unless this is the exec file,
1173          add our sections to the section table for the core target.  */
1174       if (vp != vmap)
1175 	{
1176 	  struct section_table *stp;
1177 
1178 	  target_resize_to_sections (target, 2);
1179 	  stp = target->to_sections_end - 2;
1180 
1181 	  stp->bfd = vp->bfd;
1182 	  stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1183 	  stp->addr = vp->tstart;
1184 	  stp->endaddr = vp->tend;
1185 	  stp++;
1186 
1187 	  stp->bfd = vp->bfd;
1188 	  stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1189 	  stp->addr = vp->dstart;
1190 	  stp->endaddr = vp->dend;
1191 	}
1192 
1193       vmap_symtab (vp);
1194 
1195       if (deprecated_target_new_objfile_hook && vp != vmap && vp->objfile)
1196 	deprecated_target_new_objfile_hook (vp->objfile);
1197     }
1198   while (LDI_NEXT (ldi, arch64) != 0);
1199   vmap_exec ();
1200   breakpoint_re_set ();
1201   do_cleanups (old);
1202 }
1203 
1204 int
kernel_u_size(void)1205 kernel_u_size (void)
1206 {
1207   return (sizeof (struct user));
1208 }
1209 
1210 /* Under AIX, we have to pass the correct TOC pointer to a function
1211    when calling functions in the inferior.
1212    We try to find the relative toc offset of the objfile containing PC
1213    and add the current load address of the data segment from the vmap.  */
1214 
1215 static CORE_ADDR
find_toc_address(CORE_ADDR pc)1216 find_toc_address (CORE_ADDR pc)
1217 {
1218   struct vmap *vp;
1219   extern CORE_ADDR get_toc_offset (struct objfile *);	/* xcoffread.c */
1220 
1221   for (vp = vmap; vp; vp = vp->nxt)
1222     {
1223       if (pc >= vp->tstart && pc < vp->tend)
1224 	{
1225 	  /* vp->objfile is only NULL for the exec file.  */
1226 	  return vp->dstart + get_toc_offset (vp->objfile == NULL
1227 					      ? symfile_objfile
1228 					      : vp->objfile);
1229 	}
1230     }
1231   error ("Unable to find TOC entry for pc %s\n", hex_string (pc));
1232 }
1233 
1234 /* Register that we are able to handle rs6000 core file formats. */
1235 
1236 static struct core_fns rs6000_core_fns =
1237 {
1238   bfd_target_xcoff_flavour,		/* core_flavour */
1239   default_check_format,			/* check_format */
1240   default_core_sniffer,			/* core_sniffer */
1241   fetch_core_registers,			/* core_read_registers */
1242   NULL					/* next */
1243 };
1244 
1245 void
_initialize_core_rs6000(void)1246 _initialize_core_rs6000 (void)
1247 {
1248   /* Initialize hook in rs6000-tdep.c for determining the TOC address when
1249      calling functions in the inferior.  */
1250   rs6000_find_toc_address_hook = find_toc_address;
1251 
1252   /* Initialize hook in rs6000-tdep.c to set the current architecture when
1253      starting a child process. */
1254   rs6000_set_host_arch_hook = set_host_arch;
1255 
1256   deprecated_add_core_fns (&rs6000_core_fns);
1257 }
1258