1 //===- UnwindInfoSection.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "UnwindInfoSection.h"
10 #include "InputSection.h"
11 #include "OutputSection.h"
12 #include "OutputSegment.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "Target.h"
17
18 #include "lld/Common/ErrorHandler.h"
19 #include "lld/Common/Memory.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/BinaryFormat/MachO.h"
23 #include "llvm/Support/Parallel.h"
24
25 #include "mach-o/compact_unwind_encoding.h"
26
27 #include <numeric>
28
29 using namespace llvm;
30 using namespace llvm::MachO;
31 using namespace llvm::support::endian;
32 using namespace lld;
33 using namespace lld::macho;
34
35 #define COMMON_ENCODINGS_MAX 127
36 #define COMPACT_ENCODINGS_MAX 256
37
38 #define SECOND_LEVEL_PAGE_BYTES 4096
39 #define SECOND_LEVEL_PAGE_WORDS (SECOND_LEVEL_PAGE_BYTES / sizeof(uint32_t))
40 #define REGULAR_SECOND_LEVEL_ENTRIES_MAX \
41 ((SECOND_LEVEL_PAGE_BYTES - \
42 sizeof(unwind_info_regular_second_level_page_header)) / \
43 sizeof(unwind_info_regular_second_level_entry))
44 #define COMPRESSED_SECOND_LEVEL_ENTRIES_MAX \
45 ((SECOND_LEVEL_PAGE_BYTES - \
46 sizeof(unwind_info_compressed_second_level_page_header)) / \
47 sizeof(uint32_t))
48
49 #define COMPRESSED_ENTRY_FUNC_OFFSET_BITS 24
50 #define COMPRESSED_ENTRY_FUNC_OFFSET_MASK \
51 UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(~0)
52
53 // Compact Unwind format is a Mach-O evolution of DWARF Unwind that
54 // optimizes space and exception-time lookup. Most DWARF unwind
55 // entries can be replaced with Compact Unwind entries, but the ones
56 // that cannot are retained in DWARF form.
57 //
58 // This comment will address macro-level organization of the pre-link
59 // and post-link compact unwind tables. For micro-level organization
60 // pertaining to the bitfield layout of the 32-bit compact unwind
61 // entries, see libunwind/include/mach-o/compact_unwind_encoding.h
62 //
63 // Important clarifying factoids:
64 //
65 // * __LD,__compact_unwind is the compact unwind format for compiler
66 // output and linker input. It is never a final output. It could be
67 // an intermediate output with the `-r` option which retains relocs.
68 //
69 // * __TEXT,__unwind_info is the compact unwind format for final
70 // linker output. It is never an input.
71 //
72 // * __TEXT,__eh_frame is the DWARF format for both linker input and output.
73 //
74 // * __TEXT,__unwind_info entries are divided into 4 KiB pages (2nd
75 // level) by ascending address, and the pages are referenced by an
76 // index (1st level) in the section header.
77 //
78 // * Following the headers in __TEXT,__unwind_info, the bulk of the
79 // section contains a vector of compact unwind entries
80 // `{functionOffset, encoding}` sorted by ascending `functionOffset`.
81 // Adjacent entries with the same encoding can be folded to great
82 // advantage, achieving a 3-order-of-magnitude reduction in the
83 // number of entries.
84 //
85 // Refer to the definition of unwind_info_section_header in
86 // compact_unwind_encoding.h for an overview of the format we are encoding
87 // here.
88
89 // TODO(gkm): how do we align the 2nd-level pages?
90
91 // The offsets of various fields in the on-disk representation of each compact
92 // unwind entry.
93 struct CompactUnwindOffsets {
94 uint32_t functionAddress;
95 uint32_t functionLength;
96 uint32_t encoding;
97 uint32_t personality;
98 uint32_t lsda;
99
CompactUnwindOffsetsCompactUnwindOffsets100 CompactUnwindOffsets(size_t wordSize) {
101 if (wordSize == 8)
102 init<uint64_t>();
103 else {
104 assert(wordSize == 4);
105 init<uint32_t>();
106 }
107 }
108
109 private:
initCompactUnwindOffsets110 template <class Ptr> void init() {
111 functionAddress = offsetof(Layout<Ptr>, functionAddress);
112 functionLength = offsetof(Layout<Ptr>, functionLength);
113 encoding = offsetof(Layout<Ptr>, encoding);
114 personality = offsetof(Layout<Ptr>, personality);
115 lsda = offsetof(Layout<Ptr>, lsda);
116 }
117
118 template <class Ptr> struct Layout {
119 Ptr functionAddress;
120 uint32_t functionLength;
121 compact_unwind_encoding_t encoding;
122 Ptr personality;
123 Ptr lsda;
124 };
125 };
126
127 // LLD's internal representation of a compact unwind entry.
128 struct CompactUnwindEntry {
129 uint64_t functionAddress;
130 uint32_t functionLength;
131 compact_unwind_encoding_t encoding;
132 Symbol *personality;
133 InputSection *lsda;
134 };
135
136 using EncodingMap = DenseMap<compact_unwind_encoding_t, size_t>;
137
138 struct SecondLevelPage {
139 uint32_t kind;
140 size_t entryIndex;
141 size_t entryCount;
142 size_t byteCount;
143 std::vector<compact_unwind_encoding_t> localEncodings;
144 EncodingMap localEncodingIndexes;
145 };
146
147 // UnwindInfoSectionImpl allows us to avoid cluttering our header file with a
148 // lengthy definition of UnwindInfoSection.
149 class UnwindInfoSectionImpl final : public UnwindInfoSection {
150 public:
UnwindInfoSectionImpl()151 UnwindInfoSectionImpl() : cuOffsets(target->wordSize) {}
getSize() const152 uint64_t getSize() const override { return unwindInfoSize; }
153 void prepare() override;
154 void finalize() override;
155 void writeTo(uint8_t *buf) const override;
156
157 private:
158 void prepareRelocations(ConcatInputSection *);
159 void relocateCompactUnwind(std::vector<CompactUnwindEntry> &);
160 void encodePersonalities();
161 Symbol *canonicalizePersonality(Symbol *);
162
163 uint64_t unwindInfoSize = 0;
164 std::vector<decltype(symbols)::value_type> symbolsVec;
165 CompactUnwindOffsets cuOffsets;
166 std::vector<std::pair<compact_unwind_encoding_t, size_t>> commonEncodings;
167 EncodingMap commonEncodingIndexes;
168 // The entries here will be in the same order as their originating symbols
169 // in symbolsVec.
170 std::vector<CompactUnwindEntry> cuEntries;
171 // Indices into the cuEntries vector.
172 std::vector<size_t> cuIndices;
173 std::vector<Symbol *> personalities;
174 SmallDenseMap<std::pair<InputSection *, uint64_t /* addend */>, Symbol *>
175 personalityTable;
176 // Indices into cuEntries for CUEs with a non-null LSDA.
177 std::vector<size_t> entriesWithLsda;
178 // Map of cuEntries index to an index within the LSDA array.
179 DenseMap<size_t, uint32_t> lsdaIndex;
180 std::vector<SecondLevelPage> secondLevelPages;
181 uint64_t level2PagesOffset = 0;
182 // The highest-address function plus its size. The unwinder needs this to
183 // determine the address range that is covered by unwind info.
184 uint64_t cueEndBoundary = 0;
185 };
186
UnwindInfoSection()187 UnwindInfoSection::UnwindInfoSection()
188 : SyntheticSection(segment_names::text, section_names::unwindInfo) {
189 align = 4;
190 }
191
192 // Record function symbols that may need entries emitted in __unwind_info, which
193 // stores unwind data for address ranges.
194 //
195 // Note that if several adjacent functions have the same unwind encoding and
196 // personality function and no LSDA, they share one unwind entry. For this to
197 // work, functions without unwind info need explicit "no unwind info" unwind
198 // entries -- else the unwinder would think they have the unwind info of the
199 // closest function with unwind info right before in the image. Thus, we add
200 // function symbols for each unique address regardless of whether they have
201 // associated unwind info.
addSymbol(const Defined * d)202 void UnwindInfoSection::addSymbol(const Defined *d) {
203 if (d->unwindEntry)
204 allEntriesAreOmitted = false;
205 // We don't yet know the final output address of this symbol, but we know that
206 // they are uniquely determined by a combination of the isec and value, so
207 // we use that as the key here.
208 auto p = symbols.insert({{d->isec, d->value}, d});
209 // If we have multiple symbols at the same address, only one of them can have
210 // an associated unwind entry.
211 if (!p.second && d->unwindEntry) {
212 assert(p.first->second == d || !p.first->second->unwindEntry);
213 p.first->second = d;
214 }
215 }
216
prepare()217 void UnwindInfoSectionImpl::prepare() {
218 // This iteration needs to be deterministic, since prepareRelocations may add
219 // entries to the GOT. Hence the use of a MapVector for
220 // UnwindInfoSection::symbols.
221 for (const Defined *d : make_second_range(symbols))
222 if (d->unwindEntry) {
223 if (d->unwindEntry->getName() == section_names::compactUnwind) {
224 prepareRelocations(d->unwindEntry);
225 } else {
226 // We don't have to add entries to the GOT here because FDEs have
227 // explicit GOT relocations, so Writer::scanRelocations() will add those
228 // GOT entries. However, we still need to canonicalize the personality
229 // pointers (like prepareRelocations() does for CU entries) in order
230 // to avoid overflowing the 3-personality limit.
231 FDE &fde = cast<ObjFile>(d->getFile())->fdes[d->unwindEntry];
232 fde.personality = canonicalizePersonality(fde.personality);
233 }
234 }
235 }
236
237 // Compact unwind relocations have different semantics, so we handle them in a
238 // separate code path from regular relocations. First, we do not wish to add
239 // rebase opcodes for __LD,__compact_unwind, because that section doesn't
240 // actually end up in the final binary. Second, personality pointers always
241 // reside in the GOT and must be treated specially.
prepareRelocations(ConcatInputSection * isec)242 void UnwindInfoSectionImpl::prepareRelocations(ConcatInputSection *isec) {
243 assert(!isec->shouldOmitFromOutput() &&
244 "__compact_unwind section should not be omitted");
245
246 // FIXME: Make this skip relocations for CompactUnwindEntries that
247 // point to dead-stripped functions. That might save some amount of
248 // work. But since there are usually just few personality functions
249 // that are referenced from many places, at least some of them likely
250 // live, it wouldn't reduce number of got entries.
251 for (size_t i = 0; i < isec->relocs.size(); ++i) {
252 Reloc &r = isec->relocs[i];
253 assert(target->hasAttr(r.type, RelocAttrBits::UNSIGNED));
254 // Since compact unwind sections aren't part of the inputSections vector,
255 // they don't get canonicalized by scanRelocations(), so we have to do the
256 // canonicalization here.
257 if (auto *referentIsec = r.referent.dyn_cast<InputSection *>())
258 r.referent = referentIsec->canonical();
259
260 // Functions and LSDA entries always reside in the same object file as the
261 // compact unwind entries that references them, and thus appear as section
262 // relocs. There is no need to prepare them. We only prepare relocs for
263 // personality functions.
264 if (r.offset != cuOffsets.personality)
265 continue;
266
267 if (auto *s = r.referent.dyn_cast<Symbol *>()) {
268 // Personality functions are nearly always system-defined (e.g.,
269 // ___gxx_personality_v0 for C++) and relocated as dylib symbols. When an
270 // application provides its own personality function, it might be
271 // referenced by an extern Defined symbol reloc, or a local section reloc.
272 if (auto *defined = dyn_cast<Defined>(s)) {
273 // XXX(vyng) This is a special case for handling duplicate personality
274 // symbols. Note that LD64's behavior is a bit different and it is
275 // inconsistent with how symbol resolution usually work
276 //
277 // So we've decided not to follow it. Instead, simply pick the symbol
278 // with the same name from the symbol table to replace the local one.
279 //
280 // (See discussions/alternatives already considered on D107533)
281 if (!defined->isExternal())
282 if (Symbol *sym = symtab->find(defined->getName()))
283 if (!sym->isLazy())
284 r.referent = s = sym;
285 }
286 if (auto *undefined = dyn_cast<Undefined>(s)) {
287 treatUndefinedSymbol(*undefined, isec, r.offset);
288 // treatUndefinedSymbol() can replace s with a DylibSymbol; re-check.
289 if (isa<Undefined>(s))
290 continue;
291 }
292
293 // Similar to canonicalizePersonality(), but we also register a GOT entry.
294 if (auto *defined = dyn_cast<Defined>(s)) {
295 // Check if we have created a synthetic symbol at the same address.
296 Symbol *&personality =
297 personalityTable[{defined->isec, defined->value}];
298 if (personality == nullptr) {
299 personality = defined;
300 in.got->addEntry(defined);
301 } else if (personality != defined) {
302 r.referent = personality;
303 }
304 continue;
305 }
306
307 assert(isa<DylibSymbol>(s));
308 in.got->addEntry(s);
309 continue;
310 }
311
312 if (auto *referentIsec = r.referent.dyn_cast<InputSection *>()) {
313 assert(!isCoalescedWeak(referentIsec));
314 // Personality functions can be referenced via section relocations
315 // if they live in the same object file. Create placeholder synthetic
316 // symbols for them in the GOT.
317 Symbol *&s = personalityTable[{referentIsec, r.addend}];
318 if (s == nullptr) {
319 // This runs after dead stripping, so the noDeadStrip argument does not
320 // matter.
321 s = make<Defined>("<internal>", /*file=*/nullptr, referentIsec,
322 r.addend, /*size=*/0, /*isWeakDef=*/false,
323 /*isExternal=*/false, /*isPrivateExtern=*/false,
324 /*includeInSymtab=*/true,
325 /*isThumb=*/false, /*isReferencedDynamically=*/false,
326 /*noDeadStrip=*/false);
327 s->used = true;
328 in.got->addEntry(s);
329 }
330 r.referent = s;
331 r.addend = 0;
332 }
333 }
334 }
335
canonicalizePersonality(Symbol * personality)336 Symbol *UnwindInfoSectionImpl::canonicalizePersonality(Symbol *personality) {
337 if (auto *defined = dyn_cast_or_null<Defined>(personality)) {
338 // Check if we have created a synthetic symbol at the same address.
339 Symbol *&synth = personalityTable[{defined->isec, defined->value}];
340 if (synth == nullptr)
341 synth = defined;
342 else if (synth != defined)
343 return synth;
344 }
345 return personality;
346 }
347
348 // We need to apply the relocations to the pre-link compact unwind section
349 // before converting it to post-link form. There should only be absolute
350 // relocations here: since we are not emitting the pre-link CU section, there
351 // is no source address to make a relative location meaningful.
relocateCompactUnwind(std::vector<CompactUnwindEntry> & cuEntries)352 void UnwindInfoSectionImpl::relocateCompactUnwind(
353 std::vector<CompactUnwindEntry> &cuEntries) {
354 parallelFor(0, symbolsVec.size(), [&](size_t i) {
355 CompactUnwindEntry &cu = cuEntries[i];
356 const Defined *d = symbolsVec[i].second;
357 cu.functionAddress = d->getVA();
358 if (!d->unwindEntry)
359 return;
360
361 // If we have DWARF unwind info, create a CU entry that points to it.
362 if (d->unwindEntry->getName() == section_names::ehFrame) {
363 cu.encoding = target->modeDwarfEncoding | d->unwindEntry->outSecOff;
364 const FDE &fde = cast<ObjFile>(d->getFile())->fdes[d->unwindEntry];
365 cu.functionLength = fde.funcLength;
366 cu.personality = fde.personality;
367 cu.lsda = fde.lsda;
368 return;
369 }
370
371 assert(d->unwindEntry->getName() == section_names::compactUnwind);
372
373 auto buf = reinterpret_cast<const uint8_t *>(d->unwindEntry->data.data()) -
374 target->wordSize;
375 cu.functionLength =
376 support::endian::read32le(buf + cuOffsets.functionLength);
377 cu.encoding = support::endian::read32le(buf + cuOffsets.encoding);
378 for (const Reloc &r : d->unwindEntry->relocs) {
379 if (r.offset == cuOffsets.personality) {
380 cu.personality = r.referent.get<Symbol *>();
381 } else if (r.offset == cuOffsets.lsda) {
382 if (auto *referentSym = r.referent.dyn_cast<Symbol *>())
383 cu.lsda = cast<Defined>(referentSym)->isec;
384 else
385 cu.lsda = r.referent.get<InputSection *>();
386 }
387 }
388 });
389 }
390
391 // There should only be a handful of unique personality pointers, so we can
392 // encode them as 2-bit indices into a small array.
encodePersonalities()393 void UnwindInfoSectionImpl::encodePersonalities() {
394 for (size_t idx : cuIndices) {
395 CompactUnwindEntry &cu = cuEntries[idx];
396 if (cu.personality == nullptr)
397 continue;
398 // Linear search is fast enough for a small array.
399 auto it = find(personalities, cu.personality);
400 uint32_t personalityIndex; // 1-based index
401 if (it != personalities.end()) {
402 personalityIndex = std::distance(personalities.begin(), it) + 1;
403 } else {
404 personalities.push_back(cu.personality);
405 personalityIndex = personalities.size();
406 }
407 cu.encoding |=
408 personalityIndex << countTrailingZeros(
409 static_cast<compact_unwind_encoding_t>(UNWIND_PERSONALITY_MASK));
410 }
411 if (personalities.size() > 3)
412 error("too many personalities (" + Twine(personalities.size()) +
413 ") for compact unwind to encode");
414 }
415
canFoldEncoding(compact_unwind_encoding_t encoding)416 static bool canFoldEncoding(compact_unwind_encoding_t encoding) {
417 // From compact_unwind_encoding.h:
418 // UNWIND_X86_64_MODE_STACK_IND:
419 // A "frameless" (RBP not used as frame pointer) function large constant
420 // stack size. This case is like the previous, except the stack size is too
421 // large to encode in the compact unwind encoding. Instead it requires that
422 // the function contains "subq $nnnnnnnn,RSP" in its prolog. The compact
423 // encoding contains the offset to the nnnnnnnn value in the function in
424 // UNWIND_X86_64_FRAMELESS_STACK_SIZE.
425 // Since this means the unwinder has to look at the `subq` in the function
426 // of the unwind info's unwind address, two functions that have identical
427 // unwind info can't be folded if it's using this encoding since both
428 // entries need unique addresses.
429 static_assert(static_cast<uint32_t>(UNWIND_X86_64_MODE_STACK_IND) ==
430 static_cast<uint32_t>(UNWIND_X86_MODE_STACK_IND));
431 if ((target->cpuType == CPU_TYPE_X86_64 || target->cpuType == CPU_TYPE_X86) &&
432 (encoding & UNWIND_MODE_MASK) == UNWIND_X86_64_MODE_STACK_IND) {
433 // FIXME: Consider passing in the two function addresses and getting
434 // their two stack sizes off the `subq` and only returning false if they're
435 // actually different.
436 return false;
437 }
438 return true;
439 }
440
441 // Scan the __LD,__compact_unwind entries and compute the space needs of
442 // __TEXT,__unwind_info and __TEXT,__eh_frame.
finalize()443 void UnwindInfoSectionImpl::finalize() {
444 if (symbols.empty())
445 return;
446
447 // At this point, the address space for __TEXT,__text has been
448 // assigned, so we can relocate the __LD,__compact_unwind entries
449 // into a temporary buffer. Relocation is necessary in order to sort
450 // the CU entries by function address. Sorting is necessary so that
451 // we can fold adjacent CU entries with identical encoding+personality
452 // and without any LSDA. Folding is necessary because it reduces the
453 // number of CU entries by as much as 3 orders of magnitude!
454 cuEntries.resize(symbols.size());
455 // The "map" part of the symbols MapVector was only needed for deduplication
456 // in addSymbol(). Now that we are done adding, move the contents to a plain
457 // std::vector for indexed access.
458 symbolsVec = symbols.takeVector();
459 relocateCompactUnwind(cuEntries);
460
461 // Rather than sort & fold the 32-byte entries directly, we create a
462 // vector of indices to entries and sort & fold that instead.
463 cuIndices.resize(cuEntries.size());
464 std::iota(cuIndices.begin(), cuIndices.end(), 0);
465 llvm::sort(cuIndices, [&](size_t a, size_t b) {
466 return cuEntries[a].functionAddress < cuEntries[b].functionAddress;
467 });
468
469 // Record the ending boundary before we fold the entries.
470 cueEndBoundary = cuEntries[cuIndices.back()].functionAddress +
471 cuEntries[cuIndices.back()].functionLength;
472
473 // Fold adjacent entries with matching encoding+personality and without LSDA
474 // We use three iterators on the same cuIndices to fold in-situ:
475 // (1) `foldBegin` is the first of a potential sequence of matching entries
476 // (2) `foldEnd` is the first non-matching entry after `foldBegin`.
477 // The semi-open interval [ foldBegin .. foldEnd ) contains a range
478 // entries that can be folded into a single entry and written to ...
479 // (3) `foldWrite`
480 auto foldWrite = cuIndices.begin();
481 for (auto foldBegin = cuIndices.begin(); foldBegin < cuIndices.end();) {
482 auto foldEnd = foldBegin;
483 // Common LSDA encodings (e.g. for C++ and Objective-C) contain offsets from
484 // a base address. The base address is normally not contained directly in
485 // the LSDA, and in that case, the personality function treats the starting
486 // address of the function (which is computed by the unwinder) as the base
487 // address and interprets the LSDA accordingly. The unwinder computes the
488 // starting address of a function as the address associated with its CU
489 // entry. For this reason, we cannot fold adjacent entries if they have an
490 // LSDA, because folding would make the unwinder compute the wrong starting
491 // address for the functions with the folded entries, which in turn would
492 // cause the personality function to misinterpret the LSDA for those
493 // functions. In the very rare case where the base address is encoded
494 // directly in the LSDA, two functions at different addresses would
495 // necessarily have different LSDAs, so their CU entries would not have been
496 // folded anyway.
497 while (++foldEnd < cuIndices.end() &&
498 cuEntries[*foldBegin].encoding == cuEntries[*foldEnd].encoding &&
499 !cuEntries[*foldBegin].lsda && !cuEntries[*foldEnd].lsda &&
500 // If we've gotten to this point, we don't have an LSDA, which should
501 // also imply that we don't have a personality function, since in all
502 // likelihood a personality function needs the LSDA to do anything
503 // useful. It can be technically valid to have a personality function
504 // and no LSDA though (e.g. the C++ personality __gxx_personality_v0
505 // is just a no-op without LSDA), so we still check for personality
506 // function equivalence to handle that case.
507 cuEntries[*foldBegin].personality ==
508 cuEntries[*foldEnd].personality &&
509 canFoldEncoding(cuEntries[*foldEnd].encoding))
510 ;
511 *foldWrite++ = *foldBegin;
512 foldBegin = foldEnd;
513 }
514 cuIndices.erase(foldWrite, cuIndices.end());
515
516 encodePersonalities();
517
518 // Count frequencies of the folded encodings
519 EncodingMap encodingFrequencies;
520 for (size_t idx : cuIndices)
521 encodingFrequencies[cuEntries[idx].encoding]++;
522
523 // Make a vector of encodings, sorted by descending frequency
524 for (const auto &frequency : encodingFrequencies)
525 commonEncodings.emplace_back(frequency);
526 llvm::sort(commonEncodings,
527 [](const std::pair<compact_unwind_encoding_t, size_t> &a,
528 const std::pair<compact_unwind_encoding_t, size_t> &b) {
529 if (a.second == b.second)
530 // When frequencies match, secondarily sort on encoding
531 // to maintain parity with validate-unwind-info.py
532 return a.first > b.first;
533 return a.second > b.second;
534 });
535
536 // Truncate the vector to 127 elements.
537 // Common encoding indexes are limited to 0..126, while encoding
538 // indexes 127..255 are local to each second-level page
539 if (commonEncodings.size() > COMMON_ENCODINGS_MAX)
540 commonEncodings.resize(COMMON_ENCODINGS_MAX);
541
542 // Create a map from encoding to common-encoding-table index
543 for (size_t i = 0; i < commonEncodings.size(); i++)
544 commonEncodingIndexes[commonEncodings[i].first] = i;
545
546 // Split folded encodings into pages, where each page is limited by ...
547 // (a) 4 KiB capacity
548 // (b) 24-bit difference between first & final function address
549 // (c) 8-bit compact-encoding-table index,
550 // for which 0..126 references the global common-encodings table,
551 // and 127..255 references a local per-second-level-page table.
552 // First we try the compact format and determine how many entries fit.
553 // If more entries fit in the regular format, we use that.
554 for (size_t i = 0; i < cuIndices.size();) {
555 size_t idx = cuIndices[i];
556 secondLevelPages.emplace_back();
557 SecondLevelPage &page = secondLevelPages.back();
558 page.entryIndex = i;
559 uint64_t functionAddressMax =
560 cuEntries[idx].functionAddress + COMPRESSED_ENTRY_FUNC_OFFSET_MASK;
561 size_t n = commonEncodings.size();
562 size_t wordsRemaining =
563 SECOND_LEVEL_PAGE_WORDS -
564 sizeof(unwind_info_compressed_second_level_page_header) /
565 sizeof(uint32_t);
566 while (wordsRemaining >= 1 && i < cuIndices.size()) {
567 idx = cuIndices[i];
568 const CompactUnwindEntry *cuPtr = &cuEntries[idx];
569 if (cuPtr->functionAddress >= functionAddressMax) {
570 break;
571 } else if (commonEncodingIndexes.count(cuPtr->encoding) ||
572 page.localEncodingIndexes.count(cuPtr->encoding)) {
573 i++;
574 wordsRemaining--;
575 } else if (wordsRemaining >= 2 && n < COMPACT_ENCODINGS_MAX) {
576 page.localEncodings.emplace_back(cuPtr->encoding);
577 page.localEncodingIndexes[cuPtr->encoding] = n++;
578 i++;
579 wordsRemaining -= 2;
580 } else {
581 break;
582 }
583 }
584 page.entryCount = i - page.entryIndex;
585
586 // If this is not the final page, see if it's possible to fit more entries
587 // by using the regular format. This can happen when there are many unique
588 // encodings, and we saturated the local encoding table early.
589 if (i < cuIndices.size() &&
590 page.entryCount < REGULAR_SECOND_LEVEL_ENTRIES_MAX) {
591 page.kind = UNWIND_SECOND_LEVEL_REGULAR;
592 page.entryCount = std::min(REGULAR_SECOND_LEVEL_ENTRIES_MAX,
593 cuIndices.size() - page.entryIndex);
594 i = page.entryIndex + page.entryCount;
595 } else {
596 page.kind = UNWIND_SECOND_LEVEL_COMPRESSED;
597 }
598 }
599
600 for (size_t idx : cuIndices) {
601 lsdaIndex[idx] = entriesWithLsda.size();
602 if (cuEntries[idx].lsda)
603 entriesWithLsda.push_back(idx);
604 }
605
606 // compute size of __TEXT,__unwind_info section
607 level2PagesOffset = sizeof(unwind_info_section_header) +
608 commonEncodings.size() * sizeof(uint32_t) +
609 personalities.size() * sizeof(uint32_t) +
610 // The extra second-level-page entry is for the sentinel
611 (secondLevelPages.size() + 1) *
612 sizeof(unwind_info_section_header_index_entry) +
613 entriesWithLsda.size() *
614 sizeof(unwind_info_section_header_lsda_index_entry);
615 unwindInfoSize =
616 level2PagesOffset + secondLevelPages.size() * SECOND_LEVEL_PAGE_BYTES;
617 }
618
619 // All inputs are relocated and output addresses are known, so write!
620
writeTo(uint8_t * buf) const621 void UnwindInfoSectionImpl::writeTo(uint8_t *buf) const {
622 assert(!cuIndices.empty() && "call only if there is unwind info");
623
624 // section header
625 auto *uip = reinterpret_cast<unwind_info_section_header *>(buf);
626 uip->version = 1;
627 uip->commonEncodingsArraySectionOffset = sizeof(unwind_info_section_header);
628 uip->commonEncodingsArrayCount = commonEncodings.size();
629 uip->personalityArraySectionOffset =
630 uip->commonEncodingsArraySectionOffset +
631 (uip->commonEncodingsArrayCount * sizeof(uint32_t));
632 uip->personalityArrayCount = personalities.size();
633 uip->indexSectionOffset = uip->personalityArraySectionOffset +
634 (uip->personalityArrayCount * sizeof(uint32_t));
635 uip->indexCount = secondLevelPages.size() + 1;
636
637 // Common encodings
638 auto *i32p = reinterpret_cast<uint32_t *>(&uip[1]);
639 for (const auto &encoding : commonEncodings)
640 *i32p++ = encoding.first;
641
642 // Personalities
643 for (const Symbol *personality : personalities)
644 *i32p++ = personality->getGotVA() - in.header->addr;
645
646 // FIXME: LD64 checks and warns aboutgaps or overlapse in cuEntries address
647 // ranges. We should do the same too
648
649 // Level-1 index
650 uint32_t lsdaOffset =
651 uip->indexSectionOffset +
652 uip->indexCount * sizeof(unwind_info_section_header_index_entry);
653 uint64_t l2PagesOffset = level2PagesOffset;
654 auto *iep = reinterpret_cast<unwind_info_section_header_index_entry *>(i32p);
655 for (const SecondLevelPage &page : secondLevelPages) {
656 size_t idx = cuIndices[page.entryIndex];
657 iep->functionOffset = cuEntries[idx].functionAddress - in.header->addr;
658 iep->secondLevelPagesSectionOffset = l2PagesOffset;
659 iep->lsdaIndexArraySectionOffset =
660 lsdaOffset + lsdaIndex.lookup(idx) *
661 sizeof(unwind_info_section_header_lsda_index_entry);
662 iep++;
663 l2PagesOffset += SECOND_LEVEL_PAGE_BYTES;
664 }
665 // Level-1 sentinel
666 // XXX(vyng): Note that LD64 adds +1 here.
667 // Unsure whether it's a bug or it's their workaround for something else.
668 // See comments from https://reviews.llvm.org/D138320.
669 iep->functionOffset = cueEndBoundary - in.header->addr;
670 iep->secondLevelPagesSectionOffset = 0;
671 iep->lsdaIndexArraySectionOffset =
672 lsdaOffset + entriesWithLsda.size() *
673 sizeof(unwind_info_section_header_lsda_index_entry);
674 iep++;
675
676 // LSDAs
677 auto *lep =
678 reinterpret_cast<unwind_info_section_header_lsda_index_entry *>(iep);
679 for (size_t idx : entriesWithLsda) {
680 const CompactUnwindEntry &cu = cuEntries[idx];
681 lep->lsdaOffset = cu.lsda->getVA(/*off=*/0) - in.header->addr;
682 lep->functionOffset = cu.functionAddress - in.header->addr;
683 lep++;
684 }
685
686 // Level-2 pages
687 auto *pp = reinterpret_cast<uint32_t *>(lep);
688 for (const SecondLevelPage &page : secondLevelPages) {
689 if (page.kind == UNWIND_SECOND_LEVEL_COMPRESSED) {
690 uintptr_t functionAddressBase =
691 cuEntries[cuIndices[page.entryIndex]].functionAddress;
692 auto *p2p =
693 reinterpret_cast<unwind_info_compressed_second_level_page_header *>(
694 pp);
695 p2p->kind = page.kind;
696 p2p->entryPageOffset =
697 sizeof(unwind_info_compressed_second_level_page_header);
698 p2p->entryCount = page.entryCount;
699 p2p->encodingsPageOffset =
700 p2p->entryPageOffset + p2p->entryCount * sizeof(uint32_t);
701 p2p->encodingsCount = page.localEncodings.size();
702 auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
703 for (size_t i = 0; i < page.entryCount; i++) {
704 const CompactUnwindEntry &cue =
705 cuEntries[cuIndices[page.entryIndex + i]];
706 auto it = commonEncodingIndexes.find(cue.encoding);
707 if (it == commonEncodingIndexes.end())
708 it = page.localEncodingIndexes.find(cue.encoding);
709 *ep++ = (it->second << COMPRESSED_ENTRY_FUNC_OFFSET_BITS) |
710 (cue.functionAddress - functionAddressBase);
711 }
712 if (!page.localEncodings.empty())
713 memcpy(ep, page.localEncodings.data(),
714 page.localEncodings.size() * sizeof(uint32_t));
715 } else {
716 auto *p2p =
717 reinterpret_cast<unwind_info_regular_second_level_page_header *>(pp);
718 p2p->kind = page.kind;
719 p2p->entryPageOffset =
720 sizeof(unwind_info_regular_second_level_page_header);
721 p2p->entryCount = page.entryCount;
722 auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
723 for (size_t i = 0; i < page.entryCount; i++) {
724 const CompactUnwindEntry &cue =
725 cuEntries[cuIndices[page.entryIndex + i]];
726 *ep++ = cue.functionAddress;
727 *ep++ = cue.encoding;
728 }
729 }
730 pp += SECOND_LEVEL_PAGE_WORDS;
731 }
732 }
733
makeUnwindInfoSection()734 UnwindInfoSection *macho::makeUnwindInfoSection() {
735 return make<UnwindInfoSectionImpl>();
736 }
737