xref: /dragonfly/lib/libc/stdtime/localtime.c (revision 56e344b8)
1 /*
2 ** This file is in the public domain, so clarified as of
3 ** 1996-06-05 by Arthur David Olson.
4 **
5 ** $FreeBSD: head/contrib/tzcode/stdtime/localtime.c 226828 2011-10-27 08:44:07Z trociny $
6 */
7 
8 /*
9 ** Leap second handling from Bradley White.
10 ** POSIX-style TZ environment variable handling from Guy Harris.
11 */
12 
13 /*LINTLIBRARY*/
14 
15 #include "namespace.h"
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 
19 #include <errno.h>
20 #include <fcntl.h>
21 #include <time.h>
22 #include <pthread.h>
23 #include "private.h"
24 #include "libc_private.h"
25 #include "un-namespace.h"
26 
27 #include "tzfile.h"
28 
29 #ifndef TZ_ABBR_MAX_LEN
30 #define TZ_ABBR_MAX_LEN	16
31 #endif /* !defined TZ_ABBR_MAX_LEN */
32 
33 #ifndef TZ_ABBR_CHAR_SET
34 #define TZ_ABBR_CHAR_SET \
35 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
36 #endif /* !defined TZ_ABBR_CHAR_SET */
37 
38 #ifndef TZ_ABBR_ERR_CHAR
39 #define TZ_ABBR_ERR_CHAR	'_'
40 #endif /* !defined TZ_ABBR_ERR_CHAR */
41 
42 #define	_MUTEX_LOCK(x)		if (__isthreaded) _pthread_mutex_lock(x)
43 #define	_MUTEX_UNLOCK(x)	if (__isthreaded) _pthread_mutex_unlock(x)
44 
45 #define _RWLOCK_RDLOCK(x)						\
46 		do {							\
47 			if (__isthreaded) _pthread_rwlock_rdlock(x);	\
48 		} while (0)
49 
50 #define _RWLOCK_WRLOCK(x)						\
51 		do {							\
52 			if (__isthreaded) _pthread_rwlock_wrlock(x);	\
53 		} while (0)
54 
55 #define _RWLOCK_UNLOCK(x)						\
56 		do {							\
57 			if (__isthreaded) _pthread_rwlock_unlock(x);	\
58 		} while (0)
59 
60 /*
61 ** Someone might make incorrect use of a time zone abbreviation:
62 **	1.	They might reference tzname[0] before calling tzset (explicitly
63 **		or implicitly).
64 **	2.	They might reference tzname[1] before calling tzset (explicitly
65 **		or implicitly).
66 **	3.	They might reference tzname[1] after setting to a time zone
67 **		in which Daylight Saving Time is never observed.
68 **	4.	They might reference tzname[0] after setting to a time zone
69 **		in which Standard Time is never observed.
70 **	5.	They might reference tm.TM_ZONE after calling offtime.
71 ** What's best to do in the above cases is open to debate;
72 ** for now, we just set things up so that in any of the five cases
73 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
74 ** string "tzname[0] used before set", and similarly for the other cases.
75 ** And another: initialize tzname[0] to "ERA", with an explanation in the
76 ** manual page of what this "time zone abbreviation" means (doing this so
77 ** that tzname[0] has the "normal" length of three characters).
78 */
79 #define WILDABBR	"   "
80 
81 static char		wildabbr[] = WILDABBR;
82 
83 static const char	gmt[] = "UTC";
84 
85 /*
86 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
87 ** We default to US rules as of 1999-08-17.
88 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
89 ** implementation dependent; for historical reasons, US rules are a
90 ** common default.
91 */
92 #ifndef TZDEFRULESTRING
93 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
94 #endif /* !defined TZDEFDST */
95 
96 struct ttinfo {				/* time type information */
97 	int_fast32_t	tt_gmtoff;	/* UT offset in seconds */
98 	int		tt_isdst;	/* used to set tm_isdst */
99 	int		tt_abbrind;	/* abbreviation list index */
100 	int		tt_ttisstd;	/* TRUE if transition is std time */
101 	int		tt_ttisgmt;	/* TRUE if transition is UT */
102 };
103 
104 struct lsinfo {				/* leap second information */
105 	time_t		ls_trans;	/* transition time */
106 	int_fast64_t	ls_corr;	/* correction to apply */
107 };
108 
109 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
110 
111 #ifdef TZNAME_MAX
112 #define MY_TZNAME_MAX	TZNAME_MAX
113 #endif /* defined TZNAME_MAX */
114 #ifndef TZNAME_MAX
115 #define MY_TZNAME_MAX	255
116 #endif /* !defined TZNAME_MAX */
117 
118 struct state {
119 	int		leapcnt;
120 	int		timecnt;
121 	int		typecnt;
122 	int		charcnt;
123 	int		goback;
124 	int		goahead;
125 	time_t		ats[TZ_MAX_TIMES];
126 	unsigned char	types[TZ_MAX_TIMES];
127 	struct ttinfo	ttis[TZ_MAX_TYPES];
128 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
129 				(2 * (MY_TZNAME_MAX + 1)))];
130 	struct lsinfo	lsis[TZ_MAX_LEAPS];
131 	int		defaulttype; /* for early times or if no transitions */
132 };
133 
134 struct rule {
135 	int		r_type;		/* type of rule--see below */
136 	int		r_day;		/* day number of rule */
137 	int		r_week;		/* week number of rule */
138 	int		r_mon;		/* month number of rule */
139 	int_fast32_t	r_time;		/* transition time of rule */
140 };
141 
142 #define JULIAN_DAY		0	/* Jn - Julian day */
143 #define DAY_OF_YEAR		1	/* n - day of year */
144 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
145 
146 /*
147 ** Prototypes for static functions.
148 */
149 
150 static int_fast32_t	detzcode(const char * codep);
151 static int_fast64_t	detzcode64(const char * codep);
152 static int		differ_by_repeat(time_t t1, time_t t0);
153 static const char *	getzname(const char * strp) __pure;
154 static const char *	getqzname(const char * strp, const int delim) __pure;
155 static const char *	getnum(const char * strp, int * nump, int min,
156 				int max);
157 static const char *	getsecs(const char * strp, int_fast32_t * secsp);
158 static const char *	getoffset(const char * strp, int_fast32_t * offsetp);
159 static const char *	getrule(const char * strp, struct rule * rulep);
160 static void		gmtload(struct state * sp);
161 static struct tm *	gmtsub(const time_t * timep, int_fast32_t offset,
162 				struct tm * tmp);
163 static struct tm *	localsub(const time_t * timep, int_fast32_t offset,
164 				struct tm * tmp);
165 static int		increment_overflow(int * number, int delta);
166 static int		leaps_thru_end_of(int y) __pure;
167 static int		increment_overflow32(int_fast32_t * number, int delta);
168 static int		increment_overflow_time(time_t *t, int_fast32_t delta);
169 static int		normalize_overflow32(int_fast32_t * tensptr,
170 				int * unitsptr, int base);
171 static int		normalize_overflow(int * tensptr, int * unitsptr,
172 				int base);
173 static void		settzname(void);
174 static time_t		time1(struct tm * tmp,
175 				struct tm * (*funcp)(const time_t *,
176 				int_fast32_t, struct tm *),
177 				int_fast32_t offset);
178 static time_t		time2(struct tm *tmp,
179 				struct tm * (*funcp)(const time_t *,
180 				int_fast32_t, struct tm*),
181 				int_fast32_t offset, int * okayp);
182 static time_t		time2sub(struct tm *tmp,
183 				struct tm * (*funcp)(const time_t *,
184 				int_fast32_t, struct tm*),
185 				int_fast32_t offset, int * okayp, int do_norm_secs);
186 static struct tm *	timesub(const time_t * timep, int_fast32_t offset,
187 				const struct state * sp, struct tm * tmp);
188 static int		tmcomp(const struct tm * atmp,
189 				const struct tm * btmp);
190 static int_fast32_t	transtime(int year, const struct rule * rulep,
191 				  int_fast32_t offset) __pure;
192 static int		typesequiv(const struct state * sp, int a, int b);
193 static int		tzload(const char * name, struct state * sp,
194 				int doextend);
195 static int		tzparse(const char * name, struct state * sp,
196 				int lastditch);
197 
198 static struct state	lclmem;
199 static struct state	gmtmem;
200 #define lclptr		(&lclmem)
201 #define gmtptr		(&gmtmem)
202 
203 #ifndef TZ_STRLEN_MAX
204 #define TZ_STRLEN_MAX 255
205 #endif /* !defined TZ_STRLEN_MAX */
206 
207 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
208 static int		lcl_is_set;
209 static pthread_once_t	gmt_once = PTHREAD_ONCE_INIT;
210 static pthread_rwlock_t	lcl_rwlock = PTHREAD_RWLOCK_INITIALIZER;
211 static pthread_once_t	gmtime_once = PTHREAD_ONCE_INIT;
212 static pthread_key_t	gmtime_key;
213 static int		gmtime_key_error;
214 static pthread_once_t	localtime_once = PTHREAD_ONCE_INIT;
215 static pthread_key_t	localtime_key;
216 static int		localtime_key_error;
217 
218 char *			tzname[2] = {
219 	wildabbr,
220 	wildabbr
221 };
222 
223 /*
224 ** Section 4.12.3 of X3.159-1989 requires that
225 **	Except for the strftime function, these functions [asctime,
226 **	ctime, gmtime, localtime] return values in one of two static
227 **	objects: a broken-down time structure and an array of char.
228 ** Thanks to Paul Eggert for noting this.
229 */
230 
231 static struct tm	tm;
232 
233 long			timezone = 0;
234 int			daylight = 0;
235 
236 static int_fast32_t
detzcode(const char * const codep)237 detzcode(const char * const codep)
238 {
239 	int_fast32_t	result;
240 	int		i;
241 
242 	result = (codep[0] & 0x80) ? -1 : 0;
243 	for (i = 0; i < 4; ++i)
244 		result = (result << 8) | (codep[i] & 0xff);
245 	return result;
246 }
247 
248 static int_fast64_t
detzcode64(const char * const codep)249 detzcode64(const char * const codep)
250 {
251 	int_fast64_t result;
252 	int	i;
253 
254 	result = (codep[0] & 0x80) ? -1 : 0;
255 	for (i = 0; i < 8; ++i)
256 		result = (result << 8) | (codep[i] & 0xff);
257 	return result;
258 }
259 
260 static void
settzname(void)261 settzname(void)
262 {
263 	struct state * const	sp = lclptr;
264 	int			i;
265 
266 	tzname[0] = wildabbr;
267 	tzname[1] = wildabbr;
268 	daylight = 0;
269 	timezone = 0;
270 
271 	/*
272 	** And to get the latest zone names into tzname. . .
273 	*/
274 	for (i = 0; i < sp->typecnt; ++i) {
275 		const struct ttinfo * const ttisp = &sp->ttis[i];
276 
277 		tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
278 	}
279 	for (i = 0; i < sp->timecnt; ++i) {
280 		const struct ttinfo * const ttisp = &sp->ttis[sp->types[i]];
281 
282 		tzname[ttisp->tt_isdst] =
283 			&sp->chars[ttisp->tt_abbrind];
284 		if (ttisp->tt_isdst)
285 			daylight = 1;
286 		if (!ttisp->tt_isdst)
287 			timezone = -(ttisp->tt_gmtoff);
288 	}
289 	/*
290 	** Finally, scrub the abbreviations.
291 	** First, replace bogus characters.
292 	*/
293 	for (i = 0; i < sp->charcnt; ++i)
294 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
295 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
296 	/*
297 	** Second, truncate long abbreviations.
298 	*/
299 	for (i = 0; i < sp->typecnt; ++i) {
300 		const struct ttinfo * const	ttisp = &sp->ttis[i];
301 		char *				cp = &sp->chars[ttisp->tt_abbrind];
302 
303 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
304 			strcmp(cp, GRANDPARENTED) != 0)
305 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
306 	}
307 }
308 
309 static int
differ_by_repeat(const time_t t1,const time_t t0)310 differ_by_repeat(const time_t t1, const time_t t0)
311 {
312 	if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
313 		return 0;
314 	return t1 - t0 == SECSPERREPEAT;
315 }
316 
317 static int
tzload(const char * name,struct state * const sp,const int doextend)318 tzload(const char *name, struct state * const sp, const int doextend)
319 {
320 	const char *	p;
321 	int		i;
322 	int		fid;
323 	int		stored;
324 	int		nread;
325 	int		res;
326 	typedef union {
327 		struct tzhead	tzhead;
328 		char		buf[2 * sizeof(struct tzhead) +
329 					2 * sizeof *sp +
330 					4 * TZ_MAX_TIMES];
331 	} u_t;
332 	u_t		*u;
333 
334 	u = NULL;
335 	res = -1;
336 	sp->goback = sp->goahead = FALSE;
337 
338 	/* XXX The following is from OpenBSD, and I'm not sure it is correct */
339 	if (name != NULL && issetugid() != 0)
340 		if ((name[0] == ':' && name[1] == '/') ||
341 		    name[0] == '/' || strchr(name, '.'))
342 			name = NULL;
343 	if (name == NULL && (name = TZDEFAULT) == NULL)
344 		goto out;
345 	{
346 		int	doaccess;
347 		struct stat	stab;
348 		/*
349 		** Section 4.9.1 of the C standard says that
350 		** "FILENAME_MAX expands to an integral constant expression
351 		** that is the size needed for an array of char large enough
352 		** to hold the longest file name string that the implementation
353 		** guarantees can be opened."
354 		*/
355 		char		*fullname;
356 
357 		fullname = malloc(FILENAME_MAX + 1);
358 		if (fullname == NULL)
359 			goto out;
360 
361 		if (name[0] == ':')
362 			++name;
363 		doaccess = name[0] == '/';
364 		if (!doaccess) {
365 			if ((p = TZDIR) == NULL) {
366 				free(fullname);
367 				goto out;
368 			}
369 			if (strlen(p) + 1 + strlen(name) >= FILENAME_MAX) {
370 				free(fullname);
371 				goto out;
372 			}
373 			strcpy(fullname, p);
374 			strcat(fullname, "/");
375 			strcat(fullname, name);
376 			/*
377 			** Set doaccess if '.' (as in "../") shows up in name.
378 			*/
379 			if (strchr(name, '.') != NULL)
380 				doaccess = TRUE;
381 			name = fullname;
382 		}
383 		if (doaccess && access(name, R_OK) != 0) {
384 			free(fullname);
385 			goto out;
386 		}
387 		if ((fid = _open(name, O_RDONLY)) == -1) {
388 			free(fullname);
389 			goto out;
390 		}
391 		if ((_fstat(fid, &stab) < 0) || !S_ISREG(stab.st_mode)) {
392 			free(fullname);
393 			_close(fid);
394 			goto out;
395 		}
396 		free(fullname);
397 	}
398 	u = malloc(sizeof(*u));
399 	if (u == NULL)
400 		goto out;
401 	nread = _read(fid, u->buf, sizeof u->buf);
402 	if (_close(fid) < 0 || nread <= 0)
403 		goto out;
404 	for (stored = 4; stored <= 8; stored *= 2) {
405 		int		ttisstdcnt;
406 		int		ttisgmtcnt;
407 		int		timecnt;
408 
409 		ttisstdcnt = (int) detzcode(u->tzhead.tzh_ttisstdcnt);
410 		ttisgmtcnt = (int) detzcode(u->tzhead.tzh_ttisgmtcnt);
411 		sp->leapcnt = (int) detzcode(u->tzhead.tzh_leapcnt);
412 		sp->timecnt = (int) detzcode(u->tzhead.tzh_timecnt);
413 		sp->typecnt = (int) detzcode(u->tzhead.tzh_typecnt);
414 		sp->charcnt = (int) detzcode(u->tzhead.tzh_charcnt);
415 		p = u->tzhead.tzh_charcnt + sizeof u->tzhead.tzh_charcnt;
416 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
417 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
418 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
419 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
420 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
421 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
422 				goto out;
423 		if (nread - (p - u->buf) <
424 			sp->timecnt * stored +		/* ats */
425 			sp->timecnt +			/* types */
426 			sp->typecnt * 6 +		/* ttinfos */
427 			sp->charcnt +			/* chars */
428 			sp->leapcnt * (stored + 4) +	/* lsinfos */
429 			ttisstdcnt +			/* ttisstds */
430 			ttisgmtcnt)			/* ttisgmts */
431 				goto out;
432 		timecnt = 0;
433 		for (i = 0; i < sp->timecnt; ++i) {
434 			int_fast64_t at
435 			  = stored == 4 ? detzcode(p) : detzcode64(p);
436 			sp->types[i] = ((TYPE_SIGNED(time_t)
437 					 ? time_t_min <= at
438 					 : 0 <= at)
439 					&& at <= time_t_max);
440 			if (sp->types[i]) {
441 				if (i && !timecnt && at != time_t_min) {
442 					/*
443 					** Keep the earlier record, but tweak
444 					** it so that it starts with the
445 					** minimum time_t value.
446 					*/
447 					sp->types[i - 1] = 1;
448 					sp->ats[timecnt++] = time_t_min;
449 				}
450 				sp->ats[timecnt++] = at;
451 			}
452 			p += stored;
453 		}
454 		timecnt = 0;
455 		for (i = 0; i < sp->timecnt; ++i) {
456 			unsigned char typ = *p++;
457 			if (sp->typecnt <= typ)
458 				goto out;
459 			if (sp->types[i])
460 				sp->types[timecnt++] = typ;
461 		}
462 		sp->timecnt = timecnt;
463 		for (i = 0; i < sp->typecnt; ++i) {
464 			struct ttinfo *	ttisp;
465 
466 			ttisp = &sp->ttis[i];
467 			ttisp->tt_gmtoff = detzcode(p);
468 			p += 4;
469 			ttisp->tt_isdst = (unsigned char) *p++;
470 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
471 				goto out;
472 			ttisp->tt_abbrind = (unsigned char) *p++;
473 			if (ttisp->tt_abbrind < 0 ||
474 				ttisp->tt_abbrind > sp->charcnt)
475 					goto out;
476 		}
477 		for (i = 0; i < sp->charcnt; ++i)
478 			sp->chars[i] = *p++;
479 		sp->chars[i] = '\0';	/* ensure '\0' at end */
480 		for (i = 0; i < sp->leapcnt; ++i) {
481 			struct lsinfo *	lsisp;
482 
483 			lsisp = &sp->lsis[i];
484 			lsisp->ls_trans = (stored == 4) ?
485 				detzcode(p) : detzcode64(p);
486 			p += stored;
487 			lsisp->ls_corr = detzcode(p);
488 			p += 4;
489 		}
490 		for (i = 0; i < sp->typecnt; ++i) {
491 			struct ttinfo *	ttisp;
492 
493 			ttisp = &sp->ttis[i];
494 			if (ttisstdcnt == 0)
495 				ttisp->tt_ttisstd = FALSE;
496 			else {
497 				ttisp->tt_ttisstd = *p++;
498 				if (ttisp->tt_ttisstd != TRUE &&
499 					ttisp->tt_ttisstd != FALSE)
500 						goto out;
501 			}
502 		}
503 		for (i = 0; i < sp->typecnt; ++i) {
504 			struct ttinfo *	ttisp;
505 
506 			ttisp = &sp->ttis[i];
507 			if (ttisgmtcnt == 0)
508 				ttisp->tt_ttisgmt = FALSE;
509 			else {
510 				ttisp->tt_ttisgmt = *p++;
511 				if (ttisp->tt_ttisgmt != TRUE &&
512 					ttisp->tt_ttisgmt != FALSE)
513 						goto out;
514 			}
515 		}
516 		/*
517 		** If this is an old file, we're done.
518 		*/
519 		if (u->tzhead.tzh_version[0] == '\0')
520 			break;
521 		nread -= p - u->buf;
522 		for (i = 0; i < nread; ++i)
523 			u->buf[i] = p[i];
524 		/*
525 		** If this is a signed narrow time_t system, we're done.
526 		*/
527 		if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t))
528 			break;
529 	}
530 	if (doextend && nread > 2 &&
531 		u->buf[0] == '\n' && u->buf[nread - 1] == '\n' &&
532 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
533 			struct state	*ts;
534 			int		result;
535 
536 			ts = malloc(sizeof(*ts));
537 			if (ts == NULL)
538 				goto out;
539 			u->buf[nread - 1] = '\0';
540 			result = tzparse(&u->buf[1], ts, FALSE);
541 			if (result == 0 && ts->typecnt == 2 &&
542 				sp->charcnt + ts->charcnt <= TZ_MAX_CHARS) {
543 					for (i = 0; i < 2; ++i)
544 						ts->ttis[i].tt_abbrind +=
545 							sp->charcnt;
546 					for (i = 0; i < ts->charcnt; ++i)
547 						sp->chars[sp->charcnt++] =
548 							ts->chars[i];
549 					i = 0;
550 					while (i < ts->timecnt &&
551 						ts->ats[i] <=
552 						sp->ats[sp->timecnt - 1])
553 							++i;
554 					while (i < ts->timecnt &&
555 					    sp->timecnt < TZ_MAX_TIMES) {
556 						sp->ats[sp->timecnt] =
557 							ts->ats[i];
558 						sp->types[sp->timecnt] =
559 							sp->typecnt +
560 							ts->types[i];
561 						++sp->timecnt;
562 						++i;
563 					}
564 					sp->ttis[sp->typecnt++] = ts->ttis[0];
565 					sp->ttis[sp->typecnt++] = ts->ttis[1];
566 			}
567 			free(ts);
568 	}
569 	if (sp->timecnt > 1) {
570 		for (i = 1; i < sp->timecnt; ++i)
571 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
572 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
573 					sp->goback = TRUE;
574 					break;
575 				}
576 		for (i = sp->timecnt - 2; i >= 0; --i)
577 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
578 				sp->types[i]) &&
579 				differ_by_repeat(sp->ats[sp->timecnt - 1],
580 				sp->ats[i])) {
581 					sp->goahead = TRUE;
582 					break;
583 		}
584 	}
585 	/*
586 	** If type 0 is is unused in transitions,
587 	** it's the type to use for early times.
588 	*/
589 	for (i = 0; i < sp->typecnt; ++i)
590 		if (sp->types[i] == 0)
591 			break;
592 	i = (i >= sp->typecnt) ? 0 : -1;
593 	/*
594 	** Absent the above,
595 	** if there are transition times
596 	** and the first transition is to a daylight time
597 	** find the standard type less than and closest to
598 	** the type of the first transition.
599 	*/
600 	if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
601 		i = sp->types[0];
602 		while (--i >= 0)
603 			if (!sp->ttis[i].tt_isdst)
604 				break;
605 	}
606 	/*
607 	** If no result yet, find the first standard type.
608 	** If there is none, punt to type zero.
609 	*/
610 	if (i < 0) {
611 		i = 0;
612 		while (sp->ttis[i].tt_isdst)
613 			if (++i >= sp->typecnt) {
614 				i = 0;
615 				break;
616 			}
617 	}
618 	sp->defaulttype = i;
619 	res = 0;
620 out:
621 	if (u != NULL)
622 		free(u);
623 	return (res);
624 }
625 
626 static int
typesequiv(const struct state * const sp,const int a,const int b)627 typesequiv(const struct state * const sp, const int a, const int b)
628 {
629 	int	result;
630 
631 	if (sp == NULL ||
632 		a < 0 || a >= sp->typecnt ||
633 		b < 0 || b >= sp->typecnt)
634 			result = FALSE;
635 	else {
636 		const struct ttinfo *	ap = &sp->ttis[a];
637 		const struct ttinfo *	bp = &sp->ttis[b];
638 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
639 			ap->tt_isdst == bp->tt_isdst &&
640 			ap->tt_ttisstd == bp->tt_ttisstd &&
641 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
642 			strcmp(&sp->chars[ap->tt_abbrind],
643 			&sp->chars[bp->tt_abbrind]) == 0;
644 	}
645 	return result;
646 }
647 
648 static const int	mon_lengths[2][MONSPERYEAR] = {
649 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
650 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
651 };
652 
653 static const int	year_lengths[2] = {
654 	DAYSPERNYEAR, DAYSPERLYEAR
655 };
656 
657 /*
658 ** Given a pointer into a time zone string, scan until a character that is not
659 ** a valid character in a zone name is found. Return a pointer to that
660 ** character.
661 */
662 
663 static const char *
getzname(const char * strp)664 getzname(const char *strp)
665 {
666 	char	c;
667 
668 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
669 		c != '+')
670 			++strp;
671 	return strp;
672 }
673 
674 /*
675 ** Given a pointer into an extended time zone string, scan until the ending
676 ** delimiter of the zone name is located. Return a pointer to the delimiter.
677 **
678 ** As with getzname above, the legal character set is actually quite
679 ** restricted, with other characters producing undefined results.
680 ** We don't do any checking here; checking is done later in common-case code.
681 */
682 
683 static const char *
getqzname(const char * strp,const int delim)684 getqzname(const char *strp, const int delim)
685 {
686 	int	c;
687 
688 	while ((c = *strp) != '\0' && c != delim)
689 		++strp;
690 	return strp;
691 }
692 
693 /*
694 ** Given a pointer into a time zone string, extract a number from that string.
695 ** Check that the number is within a specified range; if it is not, return
696 ** NULL.
697 ** Otherwise, return a pointer to the first character not part of the number.
698 */
699 
700 static const char *
getnum(const char * strp,int * const nump,const int min,const int max)701 getnum(const char *strp, int * const nump, const int min, const int max)
702 {
703 	char	c;
704 	int	num;
705 
706 	if (strp == NULL || !is_digit(c = *strp))
707 		return NULL;
708 	num = 0;
709 	do {
710 		num = num * 10 + (c - '0');
711 		if (num > max)
712 			return NULL;	/* illegal value */
713 		c = *++strp;
714 	} while (is_digit(c));
715 	if (num < min)
716 		return NULL;		/* illegal value */
717 	*nump = num;
718 	return strp;
719 }
720 
721 /*
722 ** Given a pointer into a time zone string, extract a number of seconds,
723 ** in hh[:mm[:ss]] form, from the string.
724 ** If any error occurs, return NULL.
725 ** Otherwise, return a pointer to the first character not part of the number
726 ** of seconds.
727 */
728 
729 static const char *
getsecs(const char * strp,int_fast32_t * const secsp)730 getsecs(const char *strp, int_fast32_t * const secsp)
731 {
732 	int	num;
733 
734 	/*
735 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
736 	** "M10.4.6/26", which does not conform to Posix,
737 	** but which specifies the equivalent of
738 	** ``02:00 on the first Sunday on or after 23 Oct''.
739 	*/
740 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
741 	if (strp == NULL)
742 		return NULL;
743 	*secsp = num * (int_fast32_t) SECSPERHOUR;
744 	if (*strp == ':') {
745 		++strp;
746 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
747 		if (strp == NULL)
748 			return NULL;
749 		*secsp += num * SECSPERMIN;
750 		if (*strp == ':') {
751 			++strp;
752 			/* `SECSPERMIN' allows for leap seconds. */
753 			strp = getnum(strp, &num, 0, SECSPERMIN);
754 			if (strp == NULL)
755 				return NULL;
756 			*secsp += num;
757 		}
758 	}
759 	return strp;
760 }
761 
762 /*
763 ** Given a pointer into a time zone string, extract an offset, in
764 ** [+-]hh[:mm[:ss]] form, from the string.
765 ** If any error occurs, return NULL.
766 ** Otherwise, return a pointer to the first character not part of the time.
767 */
768 
769 static const char *
getoffset(const char * strp,int_fast32_t * const offsetp)770 getoffset(const char *strp, int_fast32_t * const offsetp)
771 {
772 	int	neg = 0;
773 
774 	if (*strp == '-') {
775 		neg = 1;
776 		++strp;
777 	} else if (*strp == '+')
778 		++strp;
779 	strp = getsecs(strp, offsetp);
780 	if (strp == NULL)
781 		return NULL;		/* illegal time */
782 	if (neg)
783 		*offsetp = -*offsetp;
784 	return strp;
785 }
786 
787 /*
788 ** Given a pointer into a time zone string, extract a rule in the form
789 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
790 ** If a valid rule is not found, return NULL.
791 ** Otherwise, return a pointer to the first character not part of the rule.
792 */
793 
794 static const char *
getrule(const char * strp,struct rule * const rulep)795 getrule(const char *strp, struct rule * const rulep)
796 {
797 	if (*strp == 'J') {
798 		/*
799 		** Julian day.
800 		*/
801 		rulep->r_type = JULIAN_DAY;
802 		++strp;
803 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
804 	} else if (*strp == 'M') {
805 		/*
806 		** Month, week, day.
807 		*/
808 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
809 		++strp;
810 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
811 		if (strp == NULL)
812 			return NULL;
813 		if (*strp++ != '.')
814 			return NULL;
815 		strp = getnum(strp, &rulep->r_week, 1, 5);
816 		if (strp == NULL)
817 			return NULL;
818 		if (*strp++ != '.')
819 			return NULL;
820 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
821 	} else if (is_digit(*strp)) {
822 		/*
823 		** Day of year.
824 		*/
825 		rulep->r_type = DAY_OF_YEAR;
826 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
827 	} else	return NULL;		/* invalid format */
828 	if (strp == NULL)
829 		return NULL;
830 	if (*strp == '/') {
831 		/*
832 		** Time specified.
833 		*/
834 		++strp;
835 		strp = getoffset(strp, &rulep->r_time);
836 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
837 	return strp;
838 }
839 
840 /*
841 ** Given a year, a rule, and the offset from UT at the time that rule takes
842 ** effect, calculate the year-relative time that rule takes effect.
843 */
844 
845 static int_fast32_t
transtime(const int year,const struct rule * const rulep,const int_fast32_t offset)846 transtime(const int year, const struct rule * const rulep,
847 	  const int_fast32_t offset)
848 {
849 	int	leapyear;
850 	int_fast32_t value;
851 	int	i;
852 	int		d, m1, yy0, yy1, yy2, dow;
853 
854 	INITIALIZE(value);
855 	leapyear = isleap(year);
856 	switch (rulep->r_type) {
857 
858 	case JULIAN_DAY:
859 		/*
860 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
861 		** years.
862 		** In non-leap years, or if the day number is 59 or less, just
863 		** add SECSPERDAY times the day number-1 to the time of
864 		** January 1, midnight, to get the day.
865 		*/
866 		value = (rulep->r_day - 1) * SECSPERDAY;
867 		if (leapyear && rulep->r_day >= 60)
868 			value += SECSPERDAY;
869 		break;
870 
871 	case DAY_OF_YEAR:
872 		/*
873 		** n - day of year.
874 		** Just add SECSPERDAY times the day number to the time of
875 		** January 1, midnight, to get the day.
876 		*/
877 		value = rulep->r_day * SECSPERDAY;
878 		break;
879 
880 	case MONTH_NTH_DAY_OF_WEEK:
881 		/*
882 		** Mm.n.d - nth "dth day" of month m.
883 		*/
884 
885 		/*
886 		** Use Zeller's Congruence to get day-of-week of first day of
887 		** month.
888 		*/
889 		m1 = (rulep->r_mon + 9) % 12 + 1;
890 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
891 		yy1 = yy0 / 100;
892 		yy2 = yy0 % 100;
893 		dow = ((26 * m1 - 2) / 10 +
894 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
895 		if (dow < 0)
896 			dow += DAYSPERWEEK;
897 
898 		/*
899 		** "dow" is the day-of-week of the first day of the month. Get
900 		** the day-of-month (zero-origin) of the first "dow" day of the
901 		** month.
902 		*/
903 		d = rulep->r_day - dow;
904 		if (d < 0)
905 			d += DAYSPERWEEK;
906 		for (i = 1; i < rulep->r_week; ++i) {
907 			if (d + DAYSPERWEEK >=
908 				mon_lengths[leapyear][rulep->r_mon - 1])
909 					break;
910 			d += DAYSPERWEEK;
911 		}
912 
913 		/*
914 		** "d" is the day-of-month (zero-origin) of the day we want.
915 		*/
916 		value = d * SECSPERDAY;
917 		for (i = 0; i < rulep->r_mon - 1; ++i)
918 			value += mon_lengths[leapyear][i] * SECSPERDAY;
919 		break;
920 	}
921 
922 	/*
923 	** "value" is the year-relative time of 00:00:00 UT on the day in
924 	** question. To get the year-relative time of the specified local
925 	** time on that day, add the transition time and the current offset
926 	** from UT.
927 	*/
928 	return value + rulep->r_time + offset;
929 }
930 
931 /*
932 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
933 ** appropriate.
934 */
935 
936 static int
tzparse(const char * name,struct state * const sp,const int lastditch)937 tzparse(const char *name, struct state * const sp, const int lastditch)
938 {
939 	const char *			stdname;
940 	const char *			dstname;
941 	size_t				stdlen;
942 	size_t				dstlen;
943 	int_fast32_t			stdoffset;
944 	int_fast32_t			dstoffset;
945 	char *				cp;
946 	int				load_result;
947 	static struct ttinfo		zttinfo;
948 
949 	INITIALIZE(dstname);
950 	stdname = name;
951 	if (lastditch) {
952 		stdlen = strlen(name);	/* length of standard zone name */
953 		name += stdlen;
954 		if (stdlen >= sizeof sp->chars)
955 			stdlen = (sizeof sp->chars) - 1;
956 		stdoffset = 0;
957 	} else {
958 		if (*name == '<') {
959 			name++;
960 			stdname = name;
961 			name = getqzname(name, '>');
962 			if (*name != '>')
963 				return (-1);
964 			stdlen = name - stdname;
965 			name++;
966 		} else {
967 			name = getzname(name);
968 			stdlen = name - stdname;
969 		}
970 		if (*name == '\0')
971 			return -1;
972 		name = getoffset(name, &stdoffset);
973 		if (name == NULL)
974 			return -1;
975 	}
976 	load_result = tzload(TZDEFRULES, sp, FALSE);
977 	if (load_result != 0)
978 		sp->leapcnt = 0;		/* so, we're off a little */
979 	if (*name != '\0') {
980 		if (*name == '<') {
981 			dstname = ++name;
982 			name = getqzname(name, '>');
983 			if (*name != '>')
984 				return -1;
985 			dstlen = name - dstname;
986 			name++;
987 		} else {
988 			dstname = name;
989 			name = getzname(name);
990 			dstlen = name - dstname; /* length of DST zone name */
991 		}
992 		if (*name != '\0' && *name != ',' && *name != ';') {
993 			name = getoffset(name, &dstoffset);
994 			if (name == NULL)
995 				return -1;
996 		} else	dstoffset = stdoffset - SECSPERHOUR;
997 		if (*name == '\0' && load_result != 0)
998 			name = TZDEFRULESTRING;
999 		if (*name == ',' || *name == ';') {
1000 			struct rule	start;
1001 			struct rule	end;
1002 			int		year;
1003 			int		yearlim;
1004 			int		timecnt;
1005 			time_t		janfirst;
1006 
1007 			++name;
1008 			if ((name = getrule(name, &start)) == NULL)
1009 				return -1;
1010 			if (*name++ != ',')
1011 				return -1;
1012 			if ((name = getrule(name, &end)) == NULL)
1013 				return -1;
1014 			if (*name != '\0')
1015 				return -1;
1016 			sp->typecnt = 2;	/* standard time and DST */
1017 			/*
1018 			** Two transitions per year, from EPOCH_YEAR forward.
1019 			*/
1020 			sp->ttis[0] = sp->ttis[1] = zttinfo;
1021 			sp->ttis[0].tt_gmtoff = -dstoffset;
1022 			sp->ttis[0].tt_isdst = 1;
1023 			sp->ttis[0].tt_abbrind = stdlen + 1;
1024 			sp->ttis[1].tt_gmtoff = -stdoffset;
1025 			sp->ttis[1].tt_isdst = 0;
1026 			sp->ttis[1].tt_abbrind = 0;
1027 			timecnt = 0;
1028 			janfirst = 0;
1029 			yearlim = EPOCH_YEAR + YEARSPERREPEAT;
1030 			for (year = EPOCH_YEAR; year < yearlim; year++) {
1031 				int_fast32_t
1032 				  starttime = transtime(year, &start, stdoffset),
1033 				  endtime = transtime(year, &end, dstoffset);
1034 				int_fast32_t
1035 				  yearsecs = (year_lengths[isleap(year)]
1036 					      * SECSPERDAY);
1037 				int reversed = endtime < starttime;
1038 				if (reversed) {
1039 					int_fast32_t swap = starttime;
1040 					starttime = endtime;
1041 					endtime = swap;
1042 				}
1043 				if (reversed
1044 				    || (starttime < endtime
1045 					&& (endtime - starttime
1046 					    < (yearsecs
1047 					       + (stdoffset - dstoffset))))) {
1048 					if (TZ_MAX_TIMES - 2 < timecnt)
1049 						break;
1050 					yearlim = year + YEARSPERREPEAT + 1;
1051 					sp->ats[timecnt] = janfirst;
1052 					if (increment_overflow_time
1053 					    (&sp->ats[timecnt], starttime))
1054 						break;
1055 					sp->types[timecnt++] = reversed;
1056 					sp->ats[timecnt] = janfirst;
1057 					if (increment_overflow_time
1058 					    (&sp->ats[timecnt], endtime))
1059 						break;
1060 					sp->types[timecnt++] = !reversed;
1061 				}
1062 				if (increment_overflow_time(&janfirst, yearsecs))
1063 					break;
1064 			}
1065 			sp->timecnt = timecnt;
1066 			if (!timecnt)
1067 				sp->typecnt = 1;	/* Perpetual DST.  */
1068 		} else {
1069 			int_fast32_t	theirstdoffset;
1070 			int_fast32_t	theirdstoffset;
1071 			int_fast32_t	theiroffset;
1072 			int		isdst;
1073 			int		i;
1074 			int		j;
1075 
1076 			if (*name != '\0')
1077 				return -1;
1078 			/*
1079 			** Initial values of theirstdoffset and theirdstoffset.
1080 			*/
1081 			theirstdoffset = 0;
1082 			for (i = 0; i < sp->timecnt; ++i) {
1083 				j = sp->types[i];
1084 				if (!sp->ttis[j].tt_isdst) {
1085 					theirstdoffset =
1086 						-sp->ttis[j].tt_gmtoff;
1087 					break;
1088 				}
1089 			}
1090 			theirdstoffset = 0;
1091 			for (i = 0; i < sp->timecnt; ++i) {
1092 				j = sp->types[i];
1093 				if (sp->ttis[j].tt_isdst) {
1094 					theirdstoffset =
1095 						-sp->ttis[j].tt_gmtoff;
1096 					break;
1097 				}
1098 			}
1099 			/*
1100 			** Initially we're assumed to be in standard time.
1101 			*/
1102 			isdst = FALSE;
1103 			theiroffset = theirstdoffset;
1104 			/*
1105 			** Now juggle transition times and types
1106 			** tracking offsets as you do.
1107 			*/
1108 			for (i = 0; i < sp->timecnt; ++i) {
1109 				j = sp->types[i];
1110 				sp->types[i] = sp->ttis[j].tt_isdst;
1111 				if (sp->ttis[j].tt_ttisgmt) {
1112 					/* No adjustment to transition time */
1113 				} else {
1114 					/*
1115 					** If summer time is in effect, and the
1116 					** transition time was not specified as
1117 					** standard time, add the summer time
1118 					** offset to the transition time;
1119 					** otherwise, add the standard time
1120 					** offset to the transition time.
1121 					*/
1122 					/*
1123 					** Transitions from DST to DDST
1124 					** will effectively disappear since
1125 					** POSIX provides for only one DST
1126 					** offset.
1127 					*/
1128 					if (isdst && !sp->ttis[j].tt_ttisstd) {
1129 						sp->ats[i] += dstoffset -
1130 							theirdstoffset;
1131 					} else {
1132 						sp->ats[i] += stdoffset -
1133 							theirstdoffset;
1134 					}
1135 				}
1136 				theiroffset = -sp->ttis[j].tt_gmtoff;
1137 				if (sp->ttis[j].tt_isdst)
1138 					theirdstoffset = theiroffset;
1139 				else	theirstdoffset = theiroffset;
1140 			}
1141 			/*
1142 			** Finally, fill in ttis.
1143 			*/
1144 			sp->ttis[0] = sp->ttis[1] = zttinfo;
1145 			sp->ttis[0].tt_gmtoff = -stdoffset;
1146 			sp->ttis[0].tt_isdst = FALSE;
1147 			sp->ttis[0].tt_abbrind = 0;
1148 			sp->ttis[1].tt_gmtoff = -dstoffset;
1149 			sp->ttis[1].tt_isdst = TRUE;
1150 			sp->ttis[1].tt_abbrind = stdlen + 1;
1151 			sp->typecnt = 2;
1152 		}
1153 	} else {
1154 		dstlen = 0;
1155 		sp->typecnt = 1;		/* only standard time */
1156 		sp->timecnt = 0;
1157 		sp->ttis[0] = zttinfo;
1158 		sp->ttis[0].tt_gmtoff = -stdoffset;
1159 		sp->ttis[0].tt_isdst = 0;
1160 		sp->ttis[0].tt_abbrind = 0;
1161 	}
1162 	sp->charcnt = stdlen + 1;
1163 	if (dstlen != 0)
1164 		sp->charcnt += dstlen + 1;
1165 	if ((size_t) sp->charcnt > sizeof sp->chars)
1166 		return -1;
1167 	cp = sp->chars;
1168 	strncpy(cp, stdname, stdlen);
1169 	cp += stdlen;
1170 	*cp++ = '\0';
1171 	if (dstlen != 0) {
1172 		strncpy(cp, dstname, dstlen);
1173 		*(cp + dstlen) = '\0';
1174 	}
1175 	return 0;
1176 }
1177 
1178 static void
gmtload(struct state * const sp)1179 gmtload(struct state * const sp)
1180 {
1181 	if (tzload(gmt, sp, TRUE) != 0)
1182 		tzparse(gmt, sp, TRUE);
1183 }
1184 
1185 static void
tzsetwall_basic(int rdlocked)1186 tzsetwall_basic(int rdlocked)
1187 {
1188 	if (!rdlocked)
1189 		_RWLOCK_RDLOCK(&lcl_rwlock);
1190 	if (lcl_is_set < 0) {
1191 		if (!rdlocked)
1192 			_RWLOCK_UNLOCK(&lcl_rwlock);
1193 		return;
1194 	}
1195 	_RWLOCK_UNLOCK(&lcl_rwlock);
1196 
1197 	_RWLOCK_WRLOCK(&lcl_rwlock);
1198 	lcl_is_set = -1;
1199 
1200 	if (tzload(NULL, lclptr, TRUE) != 0)
1201 		gmtload(lclptr);
1202 	settzname();
1203 	_RWLOCK_UNLOCK(&lcl_rwlock);
1204 
1205 	if (rdlocked)
1206 		_RWLOCK_RDLOCK(&lcl_rwlock);
1207 }
1208 
1209 void
tzsetwall(void)1210 tzsetwall(void)
1211 {
1212 	tzsetwall_basic(0);
1213 }
1214 
1215 static void
tzset_basic(int rdlocked)1216 tzset_basic(int rdlocked)
1217 {
1218 	const char *	name;
1219 
1220 	name = getenv("TZ");
1221 	if (name == NULL) {
1222 		tzsetwall_basic(rdlocked);
1223 		return;
1224 	}
1225 
1226 	if (!rdlocked)
1227 		_RWLOCK_RDLOCK(&lcl_rwlock);
1228 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) {
1229 		if (!rdlocked)
1230 			_RWLOCK_UNLOCK(&lcl_rwlock);
1231 		return;
1232 	}
1233 	_RWLOCK_UNLOCK(&lcl_rwlock);
1234 
1235 	_RWLOCK_WRLOCK(&lcl_rwlock);
1236 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
1237 	if (lcl_is_set)
1238 		strcpy(lcl_TZname, name);
1239 
1240 	if (*name == '\0') {
1241 		/*
1242 		** User wants it fast rather than right.
1243 		*/
1244 		lclptr->leapcnt = 0;		/* so, we're off a little */
1245 		lclptr->timecnt = 0;
1246 		lclptr->typecnt = 0;
1247 		lclptr->ttis[0].tt_isdst = 0;
1248 		lclptr->ttis[0].tt_gmtoff = 0;
1249 		lclptr->ttis[0].tt_abbrind = 0;
1250 		strcpy(lclptr->chars, gmt);
1251 	} else if (tzload(name, lclptr, TRUE) != 0)
1252 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1253 			gmtload(lclptr);
1254 	settzname();
1255 	_RWLOCK_UNLOCK(&lcl_rwlock);
1256 
1257 	if (rdlocked)
1258 		_RWLOCK_RDLOCK(&lcl_rwlock);
1259 }
1260 
1261 void
tzset(void)1262 tzset(void)
1263 {
1264 	tzset_basic(0);
1265 }
1266 
1267 /*
1268 ** The easy way to behave "as if no library function calls" localtime
1269 ** is to not call it--so we drop its guts into "localsub", which can be
1270 ** freely called. (And no, the PANS doesn't require the above behavior--
1271 ** but it *is* desirable.)
1272 **
1273 ** The unused offset argument is for the benefit of mktime variants.
1274 */
1275 
1276 /*ARGSUSED*/
1277 static struct tm *
localsub(const time_t * const timep,const int_fast32_t offset __unused,struct tm * const tmp)1278 localsub(const time_t * const timep, const int_fast32_t offset __unused,
1279 	 struct tm * const tmp)
1280 {
1281 	struct state *		sp;
1282 	const struct ttinfo *	ttisp;
1283 	int			i;
1284 	struct tm *		result;
1285 	const time_t		t = *timep;
1286 
1287 	sp = lclptr;
1288 
1289 	if ((sp->goback && t < sp->ats[0]) ||
1290 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1291 			time_t		newt = t;
1292 			time_t		seconds;
1293 			time_t		years;
1294 
1295 			if (t < sp->ats[0])
1296 				seconds = sp->ats[0] - t;
1297 			else	seconds = t - sp->ats[sp->timecnt - 1];
1298 			--seconds;
1299 			years = (seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT;
1300 			seconds = years * AVGSECSPERYEAR;
1301 			if (t < sp->ats[0])
1302 				newt += seconds;
1303 			else	newt -= seconds;
1304 			if (newt < sp->ats[0] ||
1305 				newt > sp->ats[sp->timecnt - 1])
1306 					return NULL;	/* "cannot happen" */
1307 			result = localsub(&newt, offset, tmp);
1308 			if (result == tmp) {
1309 				time_t	newy;
1310 
1311 				newy = tmp->tm_year;
1312 				if (t < sp->ats[0])
1313 					newy -= years;
1314 				else	newy += years;
1315 				tmp->tm_year = newy;
1316 				if (tmp->tm_year != newy)
1317 					return NULL;
1318 			}
1319 			return result;
1320 	}
1321 	if (sp->timecnt == 0 || t < sp->ats[0]) {
1322 		i = sp->defaulttype;
1323 	} else {
1324 		int	lo = 1;
1325 		int	hi = sp->timecnt;
1326 
1327 		while (lo < hi) {
1328 			int	mid = (lo + hi) >> 1;
1329 
1330 			if (t < sp->ats[mid])
1331 				hi = mid;
1332 			else	lo = mid + 1;
1333 		}
1334 		i = (int) sp->types[lo - 1];
1335 	}
1336 	ttisp = &sp->ttis[i];
1337 	/*
1338 	** To get (wrong) behavior that's compatible with System V Release 2.0
1339 	** you'd replace the statement below with
1340 	**	t += ttisp->tt_gmtoff;
1341 	**	timesub(&t, 0L, sp, tmp);
1342 	*/
1343 	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1344 	tmp->tm_isdst = ttisp->tt_isdst;
1345 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1346 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1347 	return result;
1348 }
1349 
1350 static void
localtime_key_init(void)1351 localtime_key_init(void)
1352 {
1353 
1354 	localtime_key_error = _pthread_key_create(&localtime_key, free);
1355 }
1356 
1357 struct tm *
localtime(const time_t * const timep)1358 localtime(const time_t * const timep)
1359 {
1360 	struct tm *p_tm;
1361 
1362 	if (__isthreaded != 0) {
1363 		_pthread_once(&localtime_once, localtime_key_init);
1364 		if (localtime_key_error != 0) {
1365 			errno = localtime_key_error;
1366 			return(NULL);
1367 		}
1368 		p_tm = _pthread_getspecific(localtime_key);
1369 		if (p_tm == NULL) {
1370 			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1371 			    == NULL)
1372 				return(NULL);
1373 			_pthread_setspecific(localtime_key, p_tm);
1374 		}
1375 		_RWLOCK_RDLOCK(&lcl_rwlock);
1376 		tzset_basic(1);
1377 		localsub(timep, 0L, p_tm);
1378 		_RWLOCK_UNLOCK(&lcl_rwlock);
1379 		return(p_tm);
1380 	} else {
1381 		tzset_basic(0);
1382 		localsub(timep, 0L, &tm);
1383 		return(&tm);
1384 	}
1385 }
1386 
1387 /*
1388 ** Re-entrant version of localtime.
1389 */
1390 
1391 struct tm *
localtime_r(const time_t * __restrict const timep,struct tm * __restrict tmp)1392 localtime_r(const time_t * __restrict const timep, struct tm * __restrict tmp)
1393 {
1394 	_RWLOCK_RDLOCK(&lcl_rwlock);
1395 	tzset_basic(1);
1396 	localsub(timep, 0L, tmp);
1397 	_RWLOCK_UNLOCK(&lcl_rwlock);
1398 	return tmp;
1399 }
1400 
1401 static void
gmt_init(void)1402 gmt_init(void)
1403 {
1404 	gmtload(gmtptr);
1405 }
1406 
1407 /*
1408 ** gmtsub is to gmtime as localsub is to localtime.
1409 */
1410 
1411 static struct tm *
gmtsub(const time_t * const timep,const int_fast32_t offset,struct tm * const tmp)1412 gmtsub(const time_t * const timep, const int_fast32_t offset,
1413        struct tm * const tmp)
1414 {
1415 	struct tm *	result;
1416 
1417 	_once(&gmt_once, gmt_init);
1418 	result = timesub(timep, offset, gmtptr, tmp);
1419 	/*
1420 	** Could get fancy here and deliver something such as
1421 	** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
1422 	** but this is no time for a treasure hunt.
1423 	*/
1424 	if (offset != 0)
1425 		tmp->TM_ZONE = wildabbr;
1426 	else
1427 		tmp->TM_ZONE = gmtptr->chars;
1428 	return result;
1429 }
1430 
1431 static void
gmtime_key_init(void)1432 gmtime_key_init(void)
1433 {
1434 	gmtime_key_error = _pthread_key_create(&gmtime_key, free);
1435 }
1436 
1437 struct tm *
gmtime(const time_t * const timep)1438 gmtime(const time_t * const timep)
1439 {
1440 	struct tm *p_tm;
1441 
1442 	if (__isthreaded != 0) {
1443 		_pthread_once(&gmtime_once, gmtime_key_init);
1444 		if (gmtime_key_error != 0) {
1445 			errno = gmtime_key_error;
1446 			return(NULL);
1447 		}
1448 		/*
1449 		 * Changed to follow POSIX.1 threads standard, which
1450 		 * is what BSD currently has.
1451 		 */
1452 		if ((p_tm = _pthread_getspecific(gmtime_key)) == NULL) {
1453 			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1454 			    == NULL) {
1455 				return(NULL);
1456 			}
1457 			_pthread_setspecific(gmtime_key, p_tm);
1458 		}
1459 		return gmtsub(timep, 0L, p_tm);
1460 	} else {
1461 		return gmtsub(timep, 0L, &tm);
1462 	}
1463 }
1464 
1465 /*
1466  * Re-entrant version of gmtime.
1467  */
1468 
1469 struct tm *
gmtime_r(const time_t * __restrict timep,struct tm * __restrict tmp)1470 gmtime_r(const time_t * __restrict timep, struct tm * __restrict tmp)
1471 {
1472 	return gmtsub(timep, 0L, tmp);
1473 }
1474 
1475 struct tm *
offtime(const time_t * const timep,const long offset)1476 offtime(const time_t * const timep, const long offset)
1477 {
1478 	return gmtsub(timep, offset, &tm);
1479 }
1480 
1481 /*
1482 ** Return the number of leap years through the end of the given year
1483 ** where, to make the math easy, the answer for year zero is defined as zero.
1484 */
1485 
1486 static int
leaps_thru_end_of(const int y)1487 leaps_thru_end_of(const int y)
1488 {
1489 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1490 		-(leaps_thru_end_of(-(y + 1)) + 1);
1491 }
1492 
1493 static struct tm *
timesub(const time_t * const timep,const int_fast32_t offset,const struct state * const sp,struct tm * const tmp)1494 timesub(const time_t * const timep, const int_fast32_t offset,
1495 	const struct state * const sp, struct tm * const tmp)
1496 {
1497 	const struct lsinfo *	lp;
1498 	time_t			tdays;
1499 	int			idays;	/* unsigned would be so 2003 */
1500 	int_fast64_t		rem;
1501 	int			y;
1502 	const int *		ip;
1503 	int_fast64_t		corr;
1504 	int			hit;
1505 	int			i;
1506 
1507 	corr = 0;
1508 	hit = 0;
1509 	i = sp->leapcnt;
1510 
1511 	while (--i >= 0) {
1512 		lp = &sp->lsis[i];
1513 		if (*timep >= lp->ls_trans) {
1514 			if (*timep == lp->ls_trans) {
1515 				hit = ((i == 0 && lp->ls_corr > 0) ||
1516 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1517 				if (hit)
1518 					while (i > 0 &&
1519 						sp->lsis[i].ls_trans ==
1520 						sp->lsis[i - 1].ls_trans + 1 &&
1521 						sp->lsis[i].ls_corr ==
1522 						sp->lsis[i - 1].ls_corr + 1) {
1523 							++hit;
1524 							--i;
1525 					}
1526 			}
1527 			corr = lp->ls_corr;
1528 			break;
1529 		}
1530 	}
1531 	y = EPOCH_YEAR;
1532 	tdays = *timep / SECSPERDAY;
1533 	rem = *timep - tdays * SECSPERDAY;
1534 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1535 		int	newy;
1536 		time_t	tdelta;
1537 		int	idelta;
1538 		int	leapdays;
1539 
1540 		tdelta = tdays / DAYSPERLYEAR;
1541 		if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
1542 		       && tdelta <= INT_MAX))
1543 			goto out_of_range;
1544 		idelta = tdelta;
1545 		if (idelta == 0)
1546 			idelta = (tdays < 0) ? -1 : 1;
1547 		newy = y;
1548 		if (increment_overflow(&newy, idelta))
1549 			goto out_of_range;
1550 		leapdays = leaps_thru_end_of(newy - 1) -
1551 			leaps_thru_end_of(y - 1);
1552 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1553 		tdays -= leapdays;
1554 		y = newy;
1555 	}
1556 	{
1557 		int_fast32_t	seconds;
1558 
1559 		seconds = tdays * SECSPERDAY;
1560 		tdays = seconds / SECSPERDAY;
1561 		rem += seconds - tdays * SECSPERDAY;
1562 	}
1563 	/*
1564 	** Given the range, we can now fearlessly cast...
1565 	*/
1566 	idays = tdays;
1567 	rem += offset - corr;
1568 	while (rem < 0) {
1569 		rem += SECSPERDAY;
1570 		--idays;
1571 	}
1572 	while (rem >= SECSPERDAY) {
1573 		rem -= SECSPERDAY;
1574 		++idays;
1575 	}
1576 	while (idays < 0) {
1577 		if (increment_overflow(&y, -1))
1578 			goto out_of_range;
1579 		idays += year_lengths[isleap(y)];
1580 	}
1581 	while (idays >= year_lengths[isleap(y)]) {
1582 		idays -= year_lengths[isleap(y)];
1583 		if (increment_overflow(&y, 1))
1584 			goto out_of_range;
1585 	}
1586 	tmp->tm_year = y;
1587 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1588 		goto out_of_range;
1589 	tmp->tm_yday = idays;
1590 	/*
1591 	** The "extra" mods below avoid overflow problems.
1592 	*/
1593 	tmp->tm_wday = EPOCH_WDAY +
1594 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
1595 		(DAYSPERNYEAR % DAYSPERWEEK) +
1596 		leaps_thru_end_of(y - 1) -
1597 		leaps_thru_end_of(EPOCH_YEAR - 1) +
1598 		idays;
1599 	tmp->tm_wday %= DAYSPERWEEK;
1600 	if (tmp->tm_wday < 0)
1601 		tmp->tm_wday += DAYSPERWEEK;
1602 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1603 	rem %= SECSPERHOUR;
1604 	tmp->tm_min = (int) (rem / SECSPERMIN);
1605 	/*
1606 	** A positive leap second requires a special
1607 	** representation. This uses "... ??:59:60" et seq.
1608 	*/
1609 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1610 	ip = mon_lengths[isleap(y)];
1611 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1612 		idays -= ip[tmp->tm_mon];
1613 	tmp->tm_mday = (int) (idays + 1);
1614 	tmp->tm_isdst = 0;
1615 	tmp->TM_GMTOFF = offset;
1616 	return tmp;
1617 
1618 out_of_range:
1619 	errno = EOVERFLOW;
1620 	return NULL;
1621 }
1622 
1623 char *
ctime(const time_t * const timep)1624 ctime(const time_t * const timep)
1625 {
1626 /*
1627 ** Section 4.12.3.2 of X3.159-1989 requires that
1628 **	The ctime function converts the calendar time pointed to by timer
1629 **	to local time in the form of a string. It is equivalent to
1630 **		asctime(localtime(timer))
1631 */
1632 	struct tm *tmp = localtime(timep);
1633 
1634 	return tmp ? asctime(tmp) : NULL;
1635 }
1636 
1637 char *
ctime_r(const time_t * const timep,char * buf)1638 ctime_r(const time_t * const timep, char *buf)
1639 {
1640 	struct tm	mytm;
1641 	struct tm *tmp = localtime_r(timep, &mytm);
1642 
1643 	return tmp ? asctime_r(tmp, buf) : NULL;
1644 }
1645 
1646 /*
1647 ** Adapted from code provided by Robert Elz, who writes:
1648 **	The "best" way to do mktime I think is based on an idea of Bob
1649 **	Kridle's (so its said...) from a long time ago.
1650 **	It does a binary search of the time_t space. Since time_t's are
1651 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
1652 **	would still be very reasonable).
1653 */
1654 
1655 #ifndef WRONG
1656 #define WRONG	(-1)
1657 #endif /* !defined WRONG */
1658 
1659 /*
1660 ** Normalize logic courtesy Paul Eggert.
1661 */
1662 
1663 static int
increment_overflow(int * const ip,int j)1664 increment_overflow(int * const ip, int j)
1665 {
1666 	int const	i = *ip;
1667 
1668 	/*
1669 	** If i >= 0 there can only be overflow if i + j > INT_MAX
1670 	** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1671 	** If i < 0 there can only be overflow if i + j < INT_MIN
1672 	** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1673 	*/
1674 	if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1675 		return TRUE;
1676 	*ip += j;
1677 	return FALSE;
1678 }
1679 
1680 static int
increment_overflow32(int_fast32_t * const lp,int const m)1681 increment_overflow32(int_fast32_t * const lp, int const m)
1682 {
1683 	int_fast32_t const	l = *lp;
1684 
1685 	if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
1686 		return TRUE;
1687 	*lp += m;
1688 	return FALSE;
1689 }
1690 
1691 static int
increment_overflow_time(time_t * tp,int_fast32_t j)1692 increment_overflow_time(time_t *tp, int_fast32_t j)
1693 {
1694 	/*
1695 	** This is like
1696 	** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
1697 	** except that it does the right thing even if *tp + j would overflow.
1698 	*/
1699 	if (! (j < 0
1700 	       ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
1701 	       : *tp <= time_t_max - j))
1702 		return TRUE;
1703 	*tp += j;
1704 	return FALSE;
1705 }
1706 
1707 static int
normalize_overflow(int * const tensptr,int * const unitsptr,const int base)1708 normalize_overflow(int * const tensptr, int * const unitsptr, const int base)
1709 {
1710 	int	tensdelta;
1711 
1712 	tensdelta = (*unitsptr >= 0) ?
1713 		(*unitsptr / base) :
1714 		(-1 - (-1 - *unitsptr) / base);
1715 	*unitsptr -= tensdelta * base;
1716 	return increment_overflow(tensptr, tensdelta);
1717 }
1718 
1719 static int
normalize_overflow32(int_fast32_t * const tensptr,int * const unitsptr,const int base)1720 normalize_overflow32(int_fast32_t * const tensptr, int * const unitsptr,
1721 		     const int base)
1722 {
1723 	int	tensdelta;
1724 
1725 	tensdelta = (*unitsptr >= 0) ?
1726 		(*unitsptr / base) :
1727 		(-1 - (-1 - *unitsptr) / base);
1728 	*unitsptr -= tensdelta * base;
1729 	return increment_overflow32(tensptr, tensdelta);
1730 }
1731 
1732 static int
tmcomp(const struct tm * const atmp,const struct tm * const btmp)1733 tmcomp(const struct tm * const atmp, const struct tm * const btmp)
1734 {
1735 	int	result;
1736 
1737 	if (atmp->tm_year != btmp->tm_year)
1738 		return atmp->tm_year < btmp->tm_year ? -1 : 1;
1739 	if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1740 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1741 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1742 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1743 			result = atmp->tm_sec - btmp->tm_sec;
1744 	return result;
1745 }
1746 
1747 static time_t
time2sub(struct tm * const tmp,struct tm * (* const funcp)(const time_t *,int_fast32_t,struct tm *),const int_fast32_t offset,int * const okayp,const int do_norm_secs)1748 time2sub(struct tm * const tmp,
1749       struct tm * (* const funcp)(const time_t *, int_fast32_t, struct tm *),
1750       const int_fast32_t offset, int * const okayp, const int do_norm_secs)
1751 {
1752 	const struct state *	sp;
1753 	int			dir;
1754 	int			i, j;
1755 	int			saved_seconds;
1756 	int_fast32_t		li;
1757 	time_t			lo;
1758 	time_t			hi;
1759 	int_fast32_t		y;
1760 	time_t			newt;
1761 	time_t			t;
1762 	struct tm		yourtm, mytm;
1763 
1764 	*okayp = FALSE;
1765 	yourtm = *tmp;
1766 	if (do_norm_secs) {
1767 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1768 			SECSPERMIN))
1769 				return WRONG;
1770 	}
1771 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1772 		return WRONG;
1773 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1774 		return WRONG;
1775 	y = yourtm.tm_year;
1776 	if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
1777 		return WRONG;
1778 	/*
1779 	** Turn y into an actual year number for now.
1780 	** It is converted back to an offset from TM_YEAR_BASE later.
1781 	*/
1782 	if (increment_overflow32(&y, TM_YEAR_BASE))
1783 		return WRONG;
1784 	while (yourtm.tm_mday <= 0) {
1785 		if (increment_overflow32(&y, -1))
1786 			return WRONG;
1787 		li = y + (1 < yourtm.tm_mon);
1788 		yourtm.tm_mday += year_lengths[isleap(li)];
1789 	}
1790 	while (yourtm.tm_mday > DAYSPERLYEAR) {
1791 		li = y + (1 < yourtm.tm_mon);
1792 		yourtm.tm_mday -= year_lengths[isleap(li)];
1793 		if (increment_overflow32(&y, 1))
1794 			return WRONG;
1795 	}
1796 	for ( ; ; ) {
1797 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
1798 		if (yourtm.tm_mday <= i)
1799 			break;
1800 		yourtm.tm_mday -= i;
1801 		if (++yourtm.tm_mon >= MONSPERYEAR) {
1802 			yourtm.tm_mon = 0;
1803 			if (increment_overflow32(&y, 1))
1804 				return WRONG;
1805 		}
1806 	}
1807 	if (increment_overflow32(&y, -TM_YEAR_BASE))
1808 		return WRONG;
1809 	yourtm.tm_year = y;
1810 	if (yourtm.tm_year != y)
1811 		return WRONG;
1812 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1813 		saved_seconds = 0;
1814 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1815 		/*
1816 		** We can't set tm_sec to 0, because that might push the
1817 		** time below the minimum representable time.
1818 		** Set tm_sec to 59 instead.
1819 		** This assumes that the minimum representable time is
1820 		** not in the same minute that a leap second was deleted from,
1821 		** which is a safer assumption than using 58 would be.
1822 		*/
1823 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1824 			return WRONG;
1825 		saved_seconds = yourtm.tm_sec;
1826 		yourtm.tm_sec = SECSPERMIN - 1;
1827 	} else {
1828 		saved_seconds = yourtm.tm_sec;
1829 		yourtm.tm_sec = 0;
1830 	}
1831 	/*
1832 	** Do a binary search (this works whatever time_t's type is).
1833 	*/
1834 	lo = time_t_min;
1835 	hi = time_t_max;
1836 	for ( ; ; ) {
1837 		t = lo / 2 + hi / 2;
1838 		if (t < lo)
1839 			t = lo;
1840 		else if (t > hi)
1841 			t = hi;
1842 		if ((*funcp)(&t, offset, &mytm) == NULL) {
1843 			/*
1844 			** Assume that t is too extreme to be represented in
1845 			** a struct tm; arrange things so that it is less
1846 			** extreme on the next pass.
1847 			*/
1848 			dir = (t > 0) ? 1 : -1;
1849 		} else	dir = tmcomp(&mytm, &yourtm);
1850 		if (dir != 0) {
1851 			if (t == lo) {
1852 				if (t == time_t_max)
1853 					return WRONG;
1854 				++t;
1855 				++lo;
1856 			} else if (t == hi) {
1857 				if (t == time_t_min)
1858 					return WRONG;
1859 				--t;
1860 				--hi;
1861 			}
1862 			if (lo > hi)
1863 				return WRONG;
1864 			if (dir > 0)
1865 				hi = t;
1866 			else	lo = t;
1867 			continue;
1868 		}
1869 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1870 			break;
1871 		/*
1872 		** Right time, wrong type.
1873 		** Hunt for right time, right type.
1874 		** It's okay to guess wrong since the guess
1875 		** gets checked.
1876 		*/
1877 		sp = (const struct state *)
1878 			((funcp == localsub) ? lclptr : gmtptr);
1879 
1880 		for (i = sp->typecnt - 1; i >= 0; --i) {
1881 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1882 				continue;
1883 			for (j = sp->typecnt - 1; j >= 0; --j) {
1884 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1885 					continue;
1886 				newt = t + sp->ttis[j].tt_gmtoff -
1887 					sp->ttis[i].tt_gmtoff;
1888 				if ((*funcp)(&newt, offset, &mytm) == NULL)
1889 					continue;
1890 				if (tmcomp(&mytm, &yourtm) != 0)
1891 					continue;
1892 				if (mytm.tm_isdst != yourtm.tm_isdst)
1893 					continue;
1894 				/*
1895 				** We have a match.
1896 				*/
1897 				t = newt;
1898 				goto label;
1899 			}
1900 		}
1901 		return WRONG;
1902 	}
1903 label:
1904 	newt = t + saved_seconds;
1905 	if ((newt < t) != (saved_seconds < 0))
1906 		return WRONG;
1907 	t = newt;
1908 	if ((*funcp)(&t, offset, tmp))
1909 		*okayp = TRUE;
1910 	return t;
1911 }
1912 
1913 static time_t
time2(struct tm * const tmp,struct tm * (* const funcp)(const time_t *,int_fast32_t,struct tm *),const int_fast32_t offset,int * const okayp)1914 time2(struct tm * const tmp,
1915       struct tm * (* const funcp)(const time_t *, int_fast32_t, struct tm *),
1916       const int_fast32_t offset, int * const okayp)
1917 {
1918 	time_t	t;
1919 
1920 	/*
1921 	** First try without normalization of seconds
1922 	** (in case tm_sec contains a value associated with a leap second).
1923 	** If that fails, try with normalization of seconds.
1924 	*/
1925 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
1926 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1927 }
1928 
1929 static time_t
time1(struct tm * const tmp,struct tm * (* const funcp)(const time_t *,int_fast32_t,struct tm *),const int_fast32_t offset)1930 time1(struct tm * const tmp,
1931       struct tm * (* const funcp)(const time_t *, int_fast32_t, struct tm *),
1932       const int_fast32_t offset)
1933 {
1934 	time_t			t;
1935 	const struct state *	sp;
1936 	int			samei, otheri;
1937 	int			sameind, otherind;
1938 	int			i;
1939 	int			nseen;
1940 	int			seen[TZ_MAX_TYPES];
1941 	int			types[TZ_MAX_TYPES];
1942 	int			okay;
1943 
1944 	if (tmp == NULL) {
1945 		errno = EINVAL;
1946 		return WRONG;
1947 	}
1948 	if (tmp->tm_isdst > 1)
1949 		tmp->tm_isdst = 1;
1950 	t = time2(tmp, funcp, offset, &okay);
1951 
1952 	/*
1953 	** PCTS code courtesy Grant Sullivan.
1954 	*/
1955 	if (okay)
1956 		return t;
1957 	if (tmp->tm_isdst < 0)
1958 		tmp->tm_isdst = 0;	/* reset to std and try again */
1959 
1960 	/*
1961 	** We're supposed to assume that somebody took a time of one type
1962 	** and did some math on it that yielded a "struct tm" that's bad.
1963 	** We try to divine the type they started from and adjust to the
1964 	** type they need.
1965 	*/
1966 	sp = (const struct state *) ((funcp == localsub) ?  lclptr : gmtptr);
1967 
1968 	for (i = 0; i < sp->typecnt; ++i)
1969 		seen[i] = FALSE;
1970 	nseen = 0;
1971 	for (i = sp->timecnt - 1; i >= 0; --i)
1972 		if (!seen[sp->types[i]]) {
1973 			seen[sp->types[i]] = TRUE;
1974 			types[nseen++] = sp->types[i];
1975 		}
1976 	for (sameind = 0; sameind < nseen; ++sameind) {
1977 		samei = types[sameind];
1978 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1979 			continue;
1980 		for (otherind = 0; otherind < nseen; ++otherind) {
1981 			otheri = types[otherind];
1982 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1983 				continue;
1984 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1985 					sp->ttis[samei].tt_gmtoff;
1986 			tmp->tm_isdst = !tmp->tm_isdst;
1987 			t = time2(tmp, funcp, offset, &okay);
1988 			if (okay)
1989 				return t;
1990 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1991 					sp->ttis[samei].tt_gmtoff;
1992 			tmp->tm_isdst = !tmp->tm_isdst;
1993 		}
1994 	}
1995 	return WRONG;
1996 }
1997 
1998 time_t
mktime(struct tm * const tmp)1999 mktime(struct tm * const tmp)
2000 {
2001 	time_t mktime_return_value;
2002 	_RWLOCK_RDLOCK(&lcl_rwlock);
2003 	tzset_basic(1);
2004 	mktime_return_value = time1(tmp, localsub, 0L);
2005 	_RWLOCK_UNLOCK(&lcl_rwlock);
2006 	return(mktime_return_value);
2007 }
2008 
2009 time_t
timelocal(struct tm * const tmp)2010 timelocal(struct tm * const tmp)
2011 {
2012 	if (tmp != NULL)
2013 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
2014 	return mktime(tmp);
2015 }
2016 
2017 time_t
timegm(struct tm * const tmp)2018 timegm(struct tm * const tmp)
2019 {
2020 	if (tmp != NULL)
2021 		tmp->tm_isdst = 0;
2022 	return time1(tmp, gmtsub, 0L);
2023 }
2024 
2025 time_t
timeoff(struct tm * const tmp,const long offset)2026 timeoff(struct tm * const tmp, const long offset)
2027 {
2028 	if (tmp != NULL)
2029 		tmp->tm_isdst = 0;
2030 	return time1(tmp, gmtsub, offset);
2031 }
2032 
2033 /*
2034 ** XXX--is the below the right way to conditionalize??
2035 */
2036 
2037 /*
2038 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2039 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2040 ** is not the case if we are accounting for leap seconds.
2041 ** So, we provide the following conversion routines for use
2042 ** when exchanging timestamps with POSIX conforming systems.
2043 */
2044 
2045 static int_fast64_t
leapcorr(time_t * timep)2046 leapcorr(time_t *timep)
2047 {
2048 	struct state *		sp;
2049 	struct lsinfo *	lp;
2050 	int			i;
2051 
2052 	sp = lclptr;
2053 	i = sp->leapcnt;
2054 	while (--i >= 0) {
2055 		lp = &sp->lsis[i];
2056 		if (*timep >= lp->ls_trans)
2057 			return lp->ls_corr;
2058 	}
2059 	return 0;
2060 }
2061 
2062 time_t
time2posix(time_t t)2063 time2posix(time_t t)
2064 {
2065 	tzset();
2066 	return t - leapcorr(&t);
2067 }
2068 
2069 time_t
posix2time(time_t t)2070 posix2time(time_t t)
2071 {
2072 	time_t	x;
2073 	time_t	y;
2074 
2075 	tzset();
2076 	/*
2077 	** For a positive leap second hit, the result
2078 	** is not unique. For a negative leap second
2079 	** hit, the corresponding time doesn't exist,
2080 	** so we return an adjacent second.
2081 	*/
2082 	x = t + leapcorr(&t);
2083 	y = x - leapcorr(&x);
2084 	if (y < t) {
2085 		do {
2086 			x++;
2087 			y = x - leapcorr(&x);
2088 		} while (y < t);
2089 		if (t != y)
2090 			return x - 1;
2091 	} else if (y > t) {
2092 		do {
2093 			--x;
2094 			y = x - leapcorr(&x);
2095 		} while (y > t);
2096 		if (t != y)
2097 			return x + 1;
2098 	}
2099 	return x;
2100 }
2101