xref: /netbsd/lib/libnvmm/libnvmm_x86.c (revision 4b745ed4)
1 /*	$NetBSD: libnvmm_x86.c,v 1.43 2020/12/27 20:56:14 reinoud Exp $	*/
2 
3 /*
4  * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
5  * All rights reserved.
6  *
7  * This code is part of the NVMM hypervisor.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 #include <unistd.h>
37 #include <fcntl.h>
38 #include <errno.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <machine/vmparam.h>
42 #include <machine/pte.h>
43 #include <machine/psl.h>
44 
45 #define MIN(X, Y) (((X) < (Y)) ? (X) : (Y))
46 #define __cacheline_aligned __attribute__((__aligned__(64)))
47 
48 #include <x86/specialreg.h>
49 
50 /* -------------------------------------------------------------------------- */
51 
52 /*
53  * Undocumented debugging function. Helpful.
54  */
55 int
nvmm_vcpu_dump(struct nvmm_machine * mach,struct nvmm_vcpu * vcpu)56 nvmm_vcpu_dump(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
57 {
58 	struct nvmm_x64_state *state = vcpu->state;
59 	uint16_t *attr;
60 	size_t i;
61 	int ret;
62 
63 	const char *segnames[] = {
64 		"ES", "CS", "SS", "DS", "FS", "GS", "GDT", "IDT", "LDT", "TR"
65 	};
66 
67 	ret = nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_ALL);
68 	if (ret == -1)
69 		return -1;
70 
71 	printf("+ VCPU id=%d\n", (int)vcpu->cpuid);
72 	printf("| -> RAX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RAX]);
73 	printf("| -> RCX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RCX]);
74 	printf("| -> RDX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RDX]);
75 	printf("| -> RBX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RBX]);
76 	printf("| -> RSP=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RSP]);
77 	printf("| -> RBP=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RBP]);
78 	printf("| -> RSI=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RSI]);
79 	printf("| -> RDI=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RDI]);
80 	printf("| -> RIP=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RIP]);
81 	printf("| -> RFLAGS=%p\n", (void *)state->gprs[NVMM_X64_GPR_RFLAGS]);
82 	for (i = 0; i < NVMM_X64_NSEG; i++) {
83 		attr = (uint16_t *)&state->segs[i].attrib;
84 		printf("| -> %s: sel=0x%x base=%"PRIx64", limit=%x, "
85 		    "attrib=%x [type=%d,l=%d,def=%d]\n",
86 		    segnames[i],
87 		    state->segs[i].selector,
88 		    state->segs[i].base,
89 		    state->segs[i].limit,
90 		    *attr,
91 		    state->segs[i].attrib.type,
92 		    state->segs[i].attrib.l,
93 		    state->segs[i].attrib.def);
94 	}
95 	printf("| -> MSR_EFER=%"PRIx64"\n", state->msrs[NVMM_X64_MSR_EFER]);
96 	printf("| -> CR0=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR0]);
97 	printf("| -> CR3=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR3]);
98 	printf("| -> CR4=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR4]);
99 	printf("| -> CR8=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR8]);
100 
101 	return 0;
102 }
103 
104 /* -------------------------------------------------------------------------- */
105 
106 #define PTE32_L1_SHIFT	12
107 #define PTE32_L2_SHIFT	22
108 
109 #define PTE32_L2_MASK	0xffc00000
110 #define PTE32_L1_MASK	0x003ff000
111 
112 #define PTE32_L2_FRAME	(PTE32_L2_MASK)
113 #define PTE32_L1_FRAME	(PTE32_L2_FRAME|PTE32_L1_MASK)
114 
115 #define pte32_l1idx(va)	(((va) & PTE32_L1_MASK) >> PTE32_L1_SHIFT)
116 #define pte32_l2idx(va)	(((va) & PTE32_L2_MASK) >> PTE32_L2_SHIFT)
117 
118 #define CR3_FRAME_32BIT	__BITS(31, 12)
119 
120 typedef uint32_t pte_32bit_t;
121 
122 static int
x86_gva_to_gpa_32bit(struct nvmm_machine * mach,uint64_t cr3,gvaddr_t gva,gpaddr_t * gpa,bool has_pse,nvmm_prot_t * prot)123 x86_gva_to_gpa_32bit(struct nvmm_machine *mach, uint64_t cr3,
124     gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
125 {
126 	gpaddr_t L2gpa, L1gpa;
127 	uintptr_t L2hva, L1hva;
128 	pte_32bit_t *pdir, pte;
129 	nvmm_prot_t pageprot;
130 
131 	/* We begin with an RWXU access. */
132 	*prot = NVMM_PROT_ALL;
133 
134 	/* Parse L2. */
135 	L2gpa = (cr3 & CR3_FRAME_32BIT);
136 	if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
137 		return -1;
138 	pdir = (pte_32bit_t *)L2hva;
139 	pte = pdir[pte32_l2idx(gva)];
140 	if ((pte & PTE_P) == 0)
141 		return -1;
142 	if ((pte & PTE_U) == 0)
143 		*prot &= ~NVMM_PROT_USER;
144 	if ((pte & PTE_W) == 0)
145 		*prot &= ~NVMM_PROT_WRITE;
146 	if ((pte & PTE_PS) && !has_pse)
147 		return -1;
148 	if (pte & PTE_PS) {
149 		*gpa = (pte & PTE32_L2_FRAME);
150 		*gpa = *gpa + (gva & PTE32_L1_MASK);
151 		return 0;
152 	}
153 
154 	/* Parse L1. */
155 	L1gpa = (pte & PTE_FRAME);
156 	if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
157 		return -1;
158 	pdir = (pte_32bit_t *)L1hva;
159 	pte = pdir[pte32_l1idx(gva)];
160 	if ((pte & PTE_P) == 0)
161 		return -1;
162 	if ((pte & PTE_U) == 0)
163 		*prot &= ~NVMM_PROT_USER;
164 	if ((pte & PTE_W) == 0)
165 		*prot &= ~NVMM_PROT_WRITE;
166 	if (pte & PTE_PS)
167 		return -1;
168 
169 	*gpa = (pte & PTE_FRAME);
170 	return 0;
171 }
172 
173 /* -------------------------------------------------------------------------- */
174 
175 #define	PTE32_PAE_L1_SHIFT	12
176 #define	PTE32_PAE_L2_SHIFT	21
177 #define	PTE32_PAE_L3_SHIFT	30
178 
179 #define	PTE32_PAE_L3_MASK	0xc0000000
180 #define	PTE32_PAE_L2_MASK	0x3fe00000
181 #define	PTE32_PAE_L1_MASK	0x001ff000
182 
183 #define	PTE32_PAE_L3_FRAME	(PTE32_PAE_L3_MASK)
184 #define	PTE32_PAE_L2_FRAME	(PTE32_PAE_L3_FRAME|PTE32_PAE_L2_MASK)
185 #define	PTE32_PAE_L1_FRAME	(PTE32_PAE_L2_FRAME|PTE32_PAE_L1_MASK)
186 
187 #define pte32_pae_l1idx(va)	(((va) & PTE32_PAE_L1_MASK) >> PTE32_PAE_L1_SHIFT)
188 #define pte32_pae_l2idx(va)	(((va) & PTE32_PAE_L2_MASK) >> PTE32_PAE_L2_SHIFT)
189 #define pte32_pae_l3idx(va)	(((va) & PTE32_PAE_L3_MASK) >> PTE32_PAE_L3_SHIFT)
190 
191 #define CR3_FRAME_32BIT_PAE	__BITS(31, 5)
192 
193 typedef uint64_t pte_32bit_pae_t;
194 
195 static int
x86_gva_to_gpa_32bit_pae(struct nvmm_machine * mach,uint64_t cr3,gvaddr_t gva,gpaddr_t * gpa,nvmm_prot_t * prot)196 x86_gva_to_gpa_32bit_pae(struct nvmm_machine *mach, uint64_t cr3,
197     gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
198 {
199 	gpaddr_t L3gpa, L2gpa, L1gpa;
200 	uintptr_t L3hva, L2hva, L1hva;
201 	pte_32bit_pae_t *pdir, pte;
202 	nvmm_prot_t pageprot;
203 
204 	/* We begin with an RWXU access. */
205 	*prot = NVMM_PROT_ALL;
206 
207 	/* Parse L3. */
208 	L3gpa = (cr3 & CR3_FRAME_32BIT_PAE);
209 	if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva, &pageprot) == -1)
210 		return -1;
211 	pdir = (pte_32bit_pae_t *)L3hva;
212 	pte = pdir[pte32_pae_l3idx(gva)];
213 	if ((pte & PTE_P) == 0)
214 		return -1;
215 	if (pte & PTE_NX)
216 		*prot &= ~NVMM_PROT_EXEC;
217 	if (pte & PTE_PS)
218 		return -1;
219 
220 	/* Parse L2. */
221 	L2gpa = (pte & PTE_FRAME);
222 	if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
223 		return -1;
224 	pdir = (pte_32bit_pae_t *)L2hva;
225 	pte = pdir[pte32_pae_l2idx(gva)];
226 	if ((pte & PTE_P) == 0)
227 		return -1;
228 	if ((pte & PTE_U) == 0)
229 		*prot &= ~NVMM_PROT_USER;
230 	if ((pte & PTE_W) == 0)
231 		*prot &= ~NVMM_PROT_WRITE;
232 	if (pte & PTE_NX)
233 		*prot &= ~NVMM_PROT_EXEC;
234 	if (pte & PTE_PS) {
235 		*gpa = (pte & PTE32_PAE_L2_FRAME);
236 		*gpa = *gpa + (gva & PTE32_PAE_L1_MASK);
237 		return 0;
238 	}
239 
240 	/* Parse L1. */
241 	L1gpa = (pte & PTE_FRAME);
242 	if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
243 		return -1;
244 	pdir = (pte_32bit_pae_t *)L1hva;
245 	pte = pdir[pte32_pae_l1idx(gva)];
246 	if ((pte & PTE_P) == 0)
247 		return -1;
248 	if ((pte & PTE_U) == 0)
249 		*prot &= ~NVMM_PROT_USER;
250 	if ((pte & PTE_W) == 0)
251 		*prot &= ~NVMM_PROT_WRITE;
252 	if (pte & PTE_NX)
253 		*prot &= ~NVMM_PROT_EXEC;
254 	if (pte & PTE_PS)
255 		return -1;
256 
257 	*gpa = (pte & PTE_FRAME);
258 	return 0;
259 }
260 
261 /* -------------------------------------------------------------------------- */
262 
263 #define PTE64_L1_SHIFT	12
264 #define PTE64_L2_SHIFT	21
265 #define PTE64_L3_SHIFT	30
266 #define PTE64_L4_SHIFT	39
267 
268 #define PTE64_L4_MASK	0x0000ff8000000000
269 #define PTE64_L3_MASK	0x0000007fc0000000
270 #define PTE64_L2_MASK	0x000000003fe00000
271 #define PTE64_L1_MASK	0x00000000001ff000
272 
273 #define PTE64_L4_FRAME	PTE64_L4_MASK
274 #define PTE64_L3_FRAME	(PTE64_L4_FRAME|PTE64_L3_MASK)
275 #define PTE64_L2_FRAME	(PTE64_L3_FRAME|PTE64_L2_MASK)
276 #define PTE64_L1_FRAME	(PTE64_L2_FRAME|PTE64_L1_MASK)
277 
278 #define pte64_l1idx(va)	(((va) & PTE64_L1_MASK) >> PTE64_L1_SHIFT)
279 #define pte64_l2idx(va)	(((va) & PTE64_L2_MASK) >> PTE64_L2_SHIFT)
280 #define pte64_l3idx(va)	(((va) & PTE64_L3_MASK) >> PTE64_L3_SHIFT)
281 #define pte64_l4idx(va)	(((va) & PTE64_L4_MASK) >> PTE64_L4_SHIFT)
282 
283 #define CR3_FRAME_64BIT	__BITS(51, 12)
284 
285 typedef uint64_t pte_64bit_t;
286 
287 static inline bool
x86_gva_64bit_canonical(gvaddr_t gva)288 x86_gva_64bit_canonical(gvaddr_t gva)
289 {
290 	/* Bits 63:47 must have the same value. */
291 #define SIGN_EXTEND	0xffff800000000000ULL
292 	return (gva & SIGN_EXTEND) == 0 || (gva & SIGN_EXTEND) == SIGN_EXTEND;
293 }
294 
295 static int
x86_gva_to_gpa_64bit(struct nvmm_machine * mach,uint64_t cr3,gvaddr_t gva,gpaddr_t * gpa,nvmm_prot_t * prot)296 x86_gva_to_gpa_64bit(struct nvmm_machine *mach, uint64_t cr3,
297     gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
298 {
299 	gpaddr_t L4gpa, L3gpa, L2gpa, L1gpa;
300 	uintptr_t L4hva, L3hva, L2hva, L1hva;
301 	pte_64bit_t *pdir, pte;
302 	nvmm_prot_t pageprot;
303 
304 	/* We begin with an RWXU access. */
305 	*prot = NVMM_PROT_ALL;
306 
307 	if (!x86_gva_64bit_canonical(gva))
308 		return -1;
309 
310 	/* Parse L4. */
311 	L4gpa = (cr3 & CR3_FRAME_64BIT);
312 	if (nvmm_gpa_to_hva(mach, L4gpa, &L4hva, &pageprot) == -1)
313 		return -1;
314 	pdir = (pte_64bit_t *)L4hva;
315 	pte = pdir[pte64_l4idx(gva)];
316 	if ((pte & PTE_P) == 0)
317 		return -1;
318 	if ((pte & PTE_U) == 0)
319 		*prot &= ~NVMM_PROT_USER;
320 	if ((pte & PTE_W) == 0)
321 		*prot &= ~NVMM_PROT_WRITE;
322 	if (pte & PTE_NX)
323 		*prot &= ~NVMM_PROT_EXEC;
324 	if (pte & PTE_PS)
325 		return -1;
326 
327 	/* Parse L3. */
328 	L3gpa = (pte & PTE_FRAME);
329 	if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva, &pageprot) == -1)
330 		return -1;
331 	pdir = (pte_64bit_t *)L3hva;
332 	pte = pdir[pte64_l3idx(gva)];
333 	if ((pte & PTE_P) == 0)
334 		return -1;
335 	if ((pte & PTE_U) == 0)
336 		*prot &= ~NVMM_PROT_USER;
337 	if ((pte & PTE_W) == 0)
338 		*prot &= ~NVMM_PROT_WRITE;
339 	if (pte & PTE_NX)
340 		*prot &= ~NVMM_PROT_EXEC;
341 	if (pte & PTE_PS) {
342 		*gpa = (pte & PTE64_L3_FRAME);
343 		*gpa = *gpa + (gva & (PTE64_L2_MASK|PTE64_L1_MASK));
344 		return 0;
345 	}
346 
347 	/* Parse L2. */
348 	L2gpa = (pte & PTE_FRAME);
349 	if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
350 		return -1;
351 	pdir = (pte_64bit_t *)L2hva;
352 	pte = pdir[pte64_l2idx(gva)];
353 	if ((pte & PTE_P) == 0)
354 		return -1;
355 	if ((pte & PTE_U) == 0)
356 		*prot &= ~NVMM_PROT_USER;
357 	if ((pte & PTE_W) == 0)
358 		*prot &= ~NVMM_PROT_WRITE;
359 	if (pte & PTE_NX)
360 		*prot &= ~NVMM_PROT_EXEC;
361 	if (pte & PTE_PS) {
362 		*gpa = (pte & PTE64_L2_FRAME);
363 		*gpa = *gpa + (gva & PTE64_L1_MASK);
364 		return 0;
365 	}
366 
367 	/* Parse L1. */
368 	L1gpa = (pte & PTE_FRAME);
369 	if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
370 		return -1;
371 	pdir = (pte_64bit_t *)L1hva;
372 	pte = pdir[pte64_l1idx(gva)];
373 	if ((pte & PTE_P) == 0)
374 		return -1;
375 	if ((pte & PTE_U) == 0)
376 		*prot &= ~NVMM_PROT_USER;
377 	if ((pte & PTE_W) == 0)
378 		*prot &= ~NVMM_PROT_WRITE;
379 	if (pte & PTE_NX)
380 		*prot &= ~NVMM_PROT_EXEC;
381 	if (pte & PTE_PS)
382 		return -1;
383 
384 	*gpa = (pte & PTE_FRAME);
385 	return 0;
386 }
387 
388 static inline int
x86_gva_to_gpa(struct nvmm_machine * mach,struct nvmm_x64_state * state,gvaddr_t gva,gpaddr_t * gpa,nvmm_prot_t * prot)389 x86_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_x64_state *state,
390     gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
391 {
392 	bool is_pae, is_lng, has_pse;
393 	uint64_t cr3;
394 	size_t off;
395 	int ret;
396 
397 	if ((state->crs[NVMM_X64_CR_CR0] & CR0_PG) == 0) {
398 		/* No paging. */
399 		*prot = NVMM_PROT_ALL;
400 		*gpa = gva;
401 		return 0;
402 	}
403 
404 	off = (gva & PAGE_MASK);
405 	gva &= ~PAGE_MASK;
406 
407 	is_pae = (state->crs[NVMM_X64_CR_CR4] & CR4_PAE) != 0;
408 	is_lng = (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) != 0;
409 	has_pse = (state->crs[NVMM_X64_CR_CR4] & CR4_PSE) != 0;
410 	cr3 = state->crs[NVMM_X64_CR_CR3];
411 
412 	if (is_pae && is_lng) {
413 		/* 64bit */
414 		ret = x86_gva_to_gpa_64bit(mach, cr3, gva, gpa, prot);
415 	} else if (is_pae && !is_lng) {
416 		/* 32bit PAE */
417 		ret = x86_gva_to_gpa_32bit_pae(mach, cr3, gva, gpa, prot);
418 	} else if (!is_pae && !is_lng) {
419 		/* 32bit */
420 		ret = x86_gva_to_gpa_32bit(mach, cr3, gva, gpa, has_pse, prot);
421 	} else {
422 		ret = -1;
423 	}
424 
425 	if (ret == -1) {
426 		errno = EFAULT;
427 	}
428 
429 	*gpa = *gpa + off;
430 
431 	return ret;
432 }
433 
434 int
nvmm_gva_to_gpa(struct nvmm_machine * mach,struct nvmm_vcpu * vcpu,gvaddr_t gva,gpaddr_t * gpa,nvmm_prot_t * prot)435 nvmm_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
436     gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
437 {
438 	struct nvmm_x64_state *state = vcpu->state;
439 	int ret;
440 
441 	ret = nvmm_vcpu_getstate(mach, vcpu,
442 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
443 	if (ret == -1)
444 		return -1;
445 
446 	return x86_gva_to_gpa(mach, state, gva, gpa, prot);
447 }
448 
449 /* -------------------------------------------------------------------------- */
450 
451 #define DISASSEMBLER_BUG()	\
452 	do {			\
453 		errno = EINVAL;	\
454 		return -1;	\
455 	} while (0);
456 
457 static inline bool
is_long_mode(struct nvmm_x64_state * state)458 is_long_mode(struct nvmm_x64_state *state)
459 {
460 	return (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) != 0;
461 }
462 
463 static inline bool
is_64bit(struct nvmm_x64_state * state)464 is_64bit(struct nvmm_x64_state *state)
465 {
466 	return (state->segs[NVMM_X64_SEG_CS].attrib.l != 0);
467 }
468 
469 static inline bool
is_32bit(struct nvmm_x64_state * state)470 is_32bit(struct nvmm_x64_state *state)
471 {
472 	return (state->segs[NVMM_X64_SEG_CS].attrib.l == 0) &&
473 	    (state->segs[NVMM_X64_SEG_CS].attrib.def == 1);
474 }
475 
476 static inline bool
is_16bit(struct nvmm_x64_state * state)477 is_16bit(struct nvmm_x64_state *state)
478 {
479 	return (state->segs[NVMM_X64_SEG_CS].attrib.l == 0) &&
480 	    (state->segs[NVMM_X64_SEG_CS].attrib.def == 0);
481 }
482 
483 static int
segment_check(struct nvmm_x64_state_seg * seg,gvaddr_t gva,size_t size)484 segment_check(struct nvmm_x64_state_seg *seg, gvaddr_t gva, size_t size)
485 {
486 	uint64_t limit;
487 
488 	/*
489 	 * This is incomplete. We should check topdown, etc, really that's
490 	 * tiring.
491 	 */
492 	if (__predict_false(!seg->attrib.p)) {
493 		goto error;
494 	}
495 
496 	limit = (uint64_t)seg->limit + 1;
497 	if (__predict_true(seg->attrib.g)) {
498 		limit *= PAGE_SIZE;
499 	}
500 
501 	if (__predict_false(gva + size > limit)) {
502 		goto error;
503 	}
504 
505 	return 0;
506 
507 error:
508 	errno = EFAULT;
509 	return -1;
510 }
511 
512 static inline void
segment_apply(struct nvmm_x64_state_seg * seg,gvaddr_t * gva)513 segment_apply(struct nvmm_x64_state_seg *seg, gvaddr_t *gva)
514 {
515 	*gva += seg->base;
516 }
517 
518 static inline uint64_t
size_to_mask(size_t size)519 size_to_mask(size_t size)
520 {
521 	switch (size) {
522 	case 1:
523 		return 0x00000000000000FF;
524 	case 2:
525 		return 0x000000000000FFFF;
526 	case 4:
527 		return 0x00000000FFFFFFFF;
528 	case 8:
529 	default:
530 		return 0xFFFFFFFFFFFFFFFF;
531 	}
532 }
533 
534 static uint64_t
rep_get_cnt(struct nvmm_x64_state * state,size_t adsize)535 rep_get_cnt(struct nvmm_x64_state *state, size_t adsize)
536 {
537 	uint64_t mask, cnt;
538 
539 	mask = size_to_mask(adsize);
540 	cnt = state->gprs[NVMM_X64_GPR_RCX] & mask;
541 
542 	return cnt;
543 }
544 
545 static void
rep_set_cnt(struct nvmm_x64_state * state,size_t adsize,uint64_t cnt)546 rep_set_cnt(struct nvmm_x64_state *state, size_t adsize, uint64_t cnt)
547 {
548 	uint64_t mask;
549 
550 	/* XXX: should we zero-extend? */
551 	mask = size_to_mask(adsize);
552 	state->gprs[NVMM_X64_GPR_RCX] &= ~mask;
553 	state->gprs[NVMM_X64_GPR_RCX] |= cnt;
554 }
555 
556 static int
read_guest_memory(struct nvmm_machine * mach,struct nvmm_vcpu * vcpu,gvaddr_t gva,uint8_t * data,size_t size)557 read_guest_memory(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
558     gvaddr_t gva, uint8_t *data, size_t size)
559 {
560 	struct nvmm_x64_state *state = vcpu->state;
561 	struct nvmm_mem mem;
562 	nvmm_prot_t prot;
563 	gpaddr_t gpa;
564 	uintptr_t hva;
565 	bool is_mmio;
566 	int ret, remain;
567 
568 	ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
569 	if (__predict_false(ret == -1)) {
570 		return -1;
571 	}
572 	if (__predict_false(!(prot & NVMM_PROT_READ))) {
573 		errno = EFAULT;
574 		return -1;
575 	}
576 
577 	if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
578 		remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
579 	} else {
580 		remain = 0;
581 	}
582 	size -= remain;
583 
584 	ret = nvmm_gpa_to_hva(mach, gpa, &hva, &prot);
585 	is_mmio = (ret == -1);
586 
587 	if (is_mmio) {
588 		mem.mach = mach;
589 		mem.vcpu = vcpu;
590 		mem.data = data;
591 		mem.gpa = gpa;
592 		mem.write = false;
593 		mem.size = size;
594 		(*vcpu->cbs.mem)(&mem);
595 	} else {
596 		if (__predict_false(!(prot & NVMM_PROT_READ))) {
597 			errno = EFAULT;
598 			return -1;
599 		}
600 		memcpy(data, (uint8_t *)hva, size);
601 	}
602 
603 	if (remain > 0) {
604 		ret = read_guest_memory(mach, vcpu, gva + size,
605 		    data + size, remain);
606 	} else {
607 		ret = 0;
608 	}
609 
610 	return ret;
611 }
612 
613 static int
write_guest_memory(struct nvmm_machine * mach,struct nvmm_vcpu * vcpu,gvaddr_t gva,uint8_t * data,size_t size)614 write_guest_memory(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
615     gvaddr_t gva, uint8_t *data, size_t size)
616 {
617 	struct nvmm_x64_state *state = vcpu->state;
618 	struct nvmm_mem mem;
619 	nvmm_prot_t prot;
620 	gpaddr_t gpa;
621 	uintptr_t hva;
622 	bool is_mmio;
623 	int ret, remain;
624 
625 	ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
626 	if (__predict_false(ret == -1)) {
627 		return -1;
628 	}
629 	if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
630 		errno = EFAULT;
631 		return -1;
632 	}
633 
634 	if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
635 		remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
636 	} else {
637 		remain = 0;
638 	}
639 	size -= remain;
640 
641 	ret = nvmm_gpa_to_hva(mach, gpa, &hva, &prot);
642 	is_mmio = (ret == -1);
643 
644 	if (is_mmio) {
645 		mem.mach = mach;
646 		mem.vcpu = vcpu;
647 		mem.data = data;
648 		mem.gpa = gpa;
649 		mem.write = true;
650 		mem.size = size;
651 		(*vcpu->cbs.mem)(&mem);
652 	} else {
653 		if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
654 			errno = EFAULT;
655 			return -1;
656 		}
657 		memcpy((uint8_t *)hva, data, size);
658 	}
659 
660 	if (remain > 0) {
661 		ret = write_guest_memory(mach, vcpu, gva + size,
662 		    data + size, remain);
663 	} else {
664 		ret = 0;
665 	}
666 
667 	return ret;
668 }
669 
670 /* -------------------------------------------------------------------------- */
671 
672 static int fetch_segment(struct nvmm_machine *, struct nvmm_vcpu *);
673 
674 #define NVMM_IO_BATCH_SIZE	32
675 
676 static int
assist_io_batch(struct nvmm_machine * mach,struct nvmm_vcpu * vcpu,struct nvmm_io * io,gvaddr_t gva,uint64_t cnt)677 assist_io_batch(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
678     struct nvmm_io *io, gvaddr_t gva, uint64_t cnt)
679 {
680 	uint8_t iobuf[NVMM_IO_BATCH_SIZE];
681 	size_t i, iosize, iocnt;
682 	int ret;
683 
684 	cnt = MIN(cnt, NVMM_IO_BATCH_SIZE);
685 	iosize = MIN(io->size * cnt, NVMM_IO_BATCH_SIZE);
686 	iocnt = iosize / io->size;
687 
688 	io->data = iobuf;
689 
690 	if (!io->in) {
691 		ret = read_guest_memory(mach, vcpu, gva, iobuf, iosize);
692 		if (ret == -1)
693 			return -1;
694 	}
695 
696 	for (i = 0; i < iocnt; i++) {
697 		(*vcpu->cbs.io)(io);
698 		io->data += io->size;
699 	}
700 
701 	if (io->in) {
702 		ret = write_guest_memory(mach, vcpu, gva, iobuf, iosize);
703 		if (ret == -1)
704 			return -1;
705 	}
706 
707 	return iocnt;
708 }
709 
710 int
nvmm_assist_io(struct nvmm_machine * mach,struct nvmm_vcpu * vcpu)711 nvmm_assist_io(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
712 {
713 	struct nvmm_x64_state *state = vcpu->state;
714 	struct nvmm_vcpu_exit *exit = vcpu->exit;
715 	struct nvmm_io io;
716 	uint64_t cnt = 0; /* GCC */
717 	uint8_t iobuf[8];
718 	int iocnt = 1;
719 	gvaddr_t gva = 0; /* GCC */
720 	int reg = 0; /* GCC */
721 	int ret, seg;
722 	bool psld = false;
723 
724 	if (__predict_false(exit->reason != NVMM_VCPU_EXIT_IO)) {
725 		errno = EINVAL;
726 		return -1;
727 	}
728 
729 	io.mach = mach;
730 	io.vcpu = vcpu;
731 	io.port = exit->u.io.port;
732 	io.in = exit->u.io.in;
733 	io.size = exit->u.io.operand_size;
734 	io.data = iobuf;
735 
736 	ret = nvmm_vcpu_getstate(mach, vcpu,
737 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
738 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
739 	if (ret == -1)
740 		return -1;
741 
742 	if (exit->u.io.rep) {
743 		cnt = rep_get_cnt(state, exit->u.io.address_size);
744 		if (__predict_false(cnt == 0)) {
745 			state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
746 			goto out;
747 		}
748 	}
749 
750 	if (__predict_false(state->gprs[NVMM_X64_GPR_RFLAGS] & PSL_D)) {
751 		psld = true;
752 	}
753 
754 	/*
755 	 * Determine GVA.
756 	 */
757 	if (exit->u.io.str) {
758 		if (io.in) {
759 			reg = NVMM_X64_GPR_RDI;
760 		} else {
761 			reg = NVMM_X64_GPR_RSI;
762 		}
763 
764 		gva = state->gprs[reg];
765 		gva &= size_to_mask(exit->u.io.address_size);
766 
767 		if (exit->u.io.seg != -1) {
768 			seg = exit->u.io.seg;
769 		} else {
770 			if (io.in) {
771 				seg = NVMM_X64_SEG_ES;
772 			} else {
773 				seg = fetch_segment(mach, vcpu);
774 				if (seg == -1)
775 					return -1;
776 			}
777 		}
778 
779 		if (__predict_true(is_long_mode(state))) {
780 			if (seg == NVMM_X64_SEG_GS || seg == NVMM_X64_SEG_FS) {
781 				segment_apply(&state->segs[seg], &gva);
782 			}
783 		} else {
784 			ret = segment_check(&state->segs[seg], gva, io.size);
785 			if (ret == -1)
786 				return -1;
787 			segment_apply(&state->segs[seg], &gva);
788 		}
789 
790 		if (exit->u.io.rep && !psld) {
791 			iocnt = assist_io_batch(mach, vcpu, &io, gva, cnt);
792 			if (iocnt == -1)
793 				return -1;
794 			goto done;
795 		}
796 	}
797 
798 	if (!io.in) {
799 		if (!exit->u.io.str) {
800 			memcpy(io.data, &state->gprs[NVMM_X64_GPR_RAX], io.size);
801 		} else {
802 			ret = read_guest_memory(mach, vcpu, gva, io.data,
803 			    io.size);
804 			if (ret == -1)
805 				return -1;
806 		}
807 	}
808 
809 	(*vcpu->cbs.io)(&io);
810 
811 	if (io.in) {
812 		if (!exit->u.io.str) {
813 			memcpy(&state->gprs[NVMM_X64_GPR_RAX], io.data, io.size);
814 			if (io.size == 4) {
815 				/* Zero-extend to 64 bits. */
816 				state->gprs[NVMM_X64_GPR_RAX] &= size_to_mask(4);
817 			}
818 		} else {
819 			ret = write_guest_memory(mach, vcpu, gva, io.data,
820 			    io.size);
821 			if (ret == -1)
822 				return -1;
823 		}
824 	}
825 
826 done:
827 	if (exit->u.io.str) {
828 		if (__predict_false(psld)) {
829 			state->gprs[reg] -= iocnt * io.size;
830 		} else {
831 			state->gprs[reg] += iocnt * io.size;
832 		}
833 	}
834 
835 	if (exit->u.io.rep) {
836 		cnt -= iocnt;
837 		rep_set_cnt(state, exit->u.io.address_size, cnt);
838 		if (cnt == 0) {
839 			state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
840 		}
841 	} else {
842 		state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
843 	}
844 
845 out:
846 	ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
847 	if (ret == -1)
848 		return -1;
849 
850 	return 0;
851 }
852 
853 /* -------------------------------------------------------------------------- */
854 
855 struct x86_emul {
856 	bool readreg;
857 	bool backprop;
858 	bool notouch;
859 	void (*func)(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
860 };
861 
862 static void x86_func_or(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
863 static void x86_func_and(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
864 static void x86_func_xchg(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
865 static void x86_func_sub(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
866 static void x86_func_xor(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
867 static void x86_func_cmp(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
868 static void x86_func_test(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
869 static void x86_func_mov(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
870 static void x86_func_stos(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
871 static void x86_func_lods(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
872 
873 static const struct x86_emul x86_emul_or = {
874 	.readreg = true,
875 	.func = x86_func_or
876 };
877 
878 static const struct x86_emul x86_emul_and = {
879 	.readreg = true,
880 	.func = x86_func_and
881 };
882 
883 static const struct x86_emul x86_emul_xchg = {
884 	.readreg = true,
885 	.backprop = true,
886 	.func = x86_func_xchg
887 };
888 
889 static const struct x86_emul x86_emul_sub = {
890 	.readreg = true,
891 	.func = x86_func_sub
892 };
893 
894 static const struct x86_emul x86_emul_xor = {
895 	.readreg = true,
896 	.func = x86_func_xor
897 };
898 
899 static const struct x86_emul x86_emul_cmp = {
900 	.notouch = true,
901 	.func = x86_func_cmp
902 };
903 
904 static const struct x86_emul x86_emul_test = {
905 	.notouch = true,
906 	.func = x86_func_test
907 };
908 
909 static const struct x86_emul x86_emul_mov = {
910 	.func = x86_func_mov
911 };
912 
913 static const struct x86_emul x86_emul_stos = {
914 	.func = x86_func_stos
915 };
916 
917 static const struct x86_emul x86_emul_lods = {
918 	.func = x86_func_lods
919 };
920 
921 /* Legacy prefixes. */
922 #define LEG_LOCK	0xF0
923 #define LEG_REPN	0xF2
924 #define LEG_REP		0xF3
925 #define LEG_OVR_CS	0x2E
926 #define LEG_OVR_SS	0x36
927 #define LEG_OVR_DS	0x3E
928 #define LEG_OVR_ES	0x26
929 #define LEG_OVR_FS	0x64
930 #define LEG_OVR_GS	0x65
931 #define LEG_OPR_OVR	0x66
932 #define LEG_ADR_OVR	0x67
933 
934 struct x86_legpref {
935 	bool opr_ovr:1;
936 	bool adr_ovr:1;
937 	bool rep:1;
938 	bool repn:1;
939 	bool repe:1;
940 	int8_t seg;
941 };
942 
943 struct x86_rexpref {
944 	bool b:1;
945 	bool x:1;
946 	bool r:1;
947 	bool w:1;
948 	bool present:1;
949 };
950 
951 struct x86_reg {
952 	int num;	/* NVMM GPR state index */
953 	uint64_t mask;
954 };
955 
956 struct x86_dualreg {
957 	int reg1;
958 	int reg2;
959 };
960 
961 enum x86_disp_type {
962 	DISP_NONE,
963 	DISP_0,
964 	DISP_1,
965 	DISP_2,
966 	DISP_4
967 };
968 
969 struct x86_disp {
970 	enum x86_disp_type type;
971 	uint64_t data; /* 4 bytes, but can be sign-extended */
972 };
973 
974 struct x86_regmodrm {
975 	uint8_t mod:2;
976 	uint8_t reg:3;
977 	uint8_t rm:3;
978 };
979 
980 struct x86_immediate {
981 	uint64_t data;
982 };
983 
984 struct x86_sib {
985 	uint8_t scale;
986 	const struct x86_reg *idx;
987 	const struct x86_reg *bas;
988 };
989 
990 enum x86_store_type {
991 	STORE_NONE,
992 	STORE_REG,
993 	STORE_DUALREG,
994 	STORE_IMM,
995 	STORE_SIB,
996 	STORE_DMO
997 };
998 
999 struct x86_store {
1000 	enum x86_store_type type;
1001 	union {
1002 		const struct x86_reg *reg;
1003 		struct x86_dualreg dualreg;
1004 		struct x86_immediate imm;
1005 		struct x86_sib sib;
1006 		uint64_t dmo;
1007 	} u;
1008 	struct x86_disp disp;
1009 	int hardseg;
1010 };
1011 
1012 struct x86_instr {
1013 	uint8_t len;
1014 	struct x86_legpref legpref;
1015 	struct x86_rexpref rexpref;
1016 	struct x86_regmodrm regmodrm;
1017 	uint8_t operand_size;
1018 	uint8_t address_size;
1019 	uint64_t zeroextend_mask;
1020 
1021 	const struct x86_opcode *opcode;
1022 	const struct x86_emul *emul;
1023 
1024 	struct x86_store src;
1025 	struct x86_store dst;
1026 	struct x86_store *strm;
1027 };
1028 
1029 struct x86_decode_fsm {
1030 	/* vcpu */
1031 	bool is64bit;
1032 	bool is32bit;
1033 	bool is16bit;
1034 
1035 	/* fsm */
1036 	int (*fn)(struct x86_decode_fsm *, struct x86_instr *);
1037 	uint8_t *buf;
1038 	uint8_t *end;
1039 };
1040 
1041 struct x86_opcode {
1042 	bool valid:1;
1043 	bool regmodrm:1;
1044 	bool regtorm:1;
1045 	bool dmo:1;
1046 	bool todmo:1;
1047 	bool movs:1;
1048 	bool cmps:1;
1049 	bool stos:1;
1050 	bool lods:1;
1051 	bool szoverride:1;
1052 	bool group1:1;
1053 	bool group3:1;
1054 	bool group11:1;
1055 	bool immediate:1;
1056 	uint8_t defsize;
1057 	uint8_t flags;
1058 	const struct x86_emul *emul;
1059 };
1060 
1061 struct x86_group_entry {
1062 	const struct x86_emul *emul;
1063 };
1064 
1065 #define OPSIZE_BYTE 0x01
1066 #define OPSIZE_WORD 0x02 /* 2 bytes */
1067 #define OPSIZE_DOUB 0x04 /* 4 bytes */
1068 #define OPSIZE_QUAD 0x08 /* 8 bytes */
1069 
1070 #define FLAG_imm8	0x01
1071 #define FLAG_immz	0x02
1072 #define FLAG_ze		0x04
1073 
1074 static const struct x86_group_entry group1[8] __cacheline_aligned = {
1075 	[1] = { .emul = &x86_emul_or },
1076 	[4] = { .emul = &x86_emul_and },
1077 	[6] = { .emul = &x86_emul_xor },
1078 	[7] = { .emul = &x86_emul_cmp }
1079 };
1080 
1081 static const struct x86_group_entry group3[8] __cacheline_aligned = {
1082 	[0] = { .emul = &x86_emul_test },
1083 	[1] = { .emul = &x86_emul_test }
1084 };
1085 
1086 static const struct x86_group_entry group11[8] __cacheline_aligned = {
1087 	[0] = { .emul = &x86_emul_mov }
1088 };
1089 
1090 static const struct x86_opcode primary_opcode_table[256] __cacheline_aligned = {
1091 	/*
1092 	 * Group1
1093 	 */
1094 	[0x80] = {
1095 		/* Eb, Ib */
1096 		.valid = true,
1097 		.regmodrm = true,
1098 		.regtorm = true,
1099 		.szoverride = false,
1100 		.defsize = OPSIZE_BYTE,
1101 		.group1 = true,
1102 		.immediate = true,
1103 		.emul = NULL /* group1 */
1104 	},
1105 	[0x81] = {
1106 		/* Ev, Iz */
1107 		.valid = true,
1108 		.regmodrm = true,
1109 		.regtorm = true,
1110 		.szoverride = true,
1111 		.defsize = -1,
1112 		.group1 = true,
1113 		.immediate = true,
1114 		.flags = FLAG_immz,
1115 		.emul = NULL /* group1 */
1116 	},
1117 	[0x83] = {
1118 		/* Ev, Ib */
1119 		.valid = true,
1120 		.regmodrm = true,
1121 		.regtorm = true,
1122 		.szoverride = true,
1123 		.defsize = -1,
1124 		.group1 = true,
1125 		.immediate = true,
1126 		.flags = FLAG_imm8,
1127 		.emul = NULL /* group1 */
1128 	},
1129 
1130 	/*
1131 	 * Group3
1132 	 */
1133 	[0xF6] = {
1134 		/* Eb, Ib */
1135 		.valid = true,
1136 		.regmodrm = true,
1137 		.regtorm = true,
1138 		.szoverride = false,
1139 		.defsize = OPSIZE_BYTE,
1140 		.group3 = true,
1141 		.immediate = true,
1142 		.emul = NULL /* group3 */
1143 	},
1144 	[0xF7] = {
1145 		/* Ev, Iz */
1146 		.valid = true,
1147 		.regmodrm = true,
1148 		.regtorm = true,
1149 		.szoverride = true,
1150 		.defsize = -1,
1151 		.group3 = true,
1152 		.immediate = true,
1153 		.flags = FLAG_immz,
1154 		.emul = NULL /* group3 */
1155 	},
1156 
1157 	/*
1158 	 * Group11
1159 	 */
1160 	[0xC6] = {
1161 		/* Eb, Ib */
1162 		.valid = true,
1163 		.regmodrm = true,
1164 		.regtorm = true,
1165 		.szoverride = false,
1166 		.defsize = OPSIZE_BYTE,
1167 		.group11 = true,
1168 		.immediate = true,
1169 		.emul = NULL /* group11 */
1170 	},
1171 	[0xC7] = {
1172 		/* Ev, Iz */
1173 		.valid = true,
1174 		.regmodrm = true,
1175 		.regtorm = true,
1176 		.szoverride = true,
1177 		.defsize = -1,
1178 		.group11 = true,
1179 		.immediate = true,
1180 		.flags = FLAG_immz,
1181 		.emul = NULL /* group11 */
1182 	},
1183 
1184 	/*
1185 	 * OR
1186 	 */
1187 	[0x08] = {
1188 		/* Eb, Gb */
1189 		.valid = true,
1190 		.regmodrm = true,
1191 		.regtorm = true,
1192 		.szoverride = false,
1193 		.defsize = OPSIZE_BYTE,
1194 		.emul = &x86_emul_or
1195 	},
1196 	[0x09] = {
1197 		/* Ev, Gv */
1198 		.valid = true,
1199 		.regmodrm = true,
1200 		.regtorm = true,
1201 		.szoverride = true,
1202 		.defsize = -1,
1203 		.emul = &x86_emul_or
1204 	},
1205 	[0x0A] = {
1206 		/* Gb, Eb */
1207 		.valid = true,
1208 		.regmodrm = true,
1209 		.regtorm = false,
1210 		.szoverride = false,
1211 		.defsize = OPSIZE_BYTE,
1212 		.emul = &x86_emul_or
1213 	},
1214 	[0x0B] = {
1215 		/* Gv, Ev */
1216 		.valid = true,
1217 		.regmodrm = true,
1218 		.regtorm = false,
1219 		.szoverride = true,
1220 		.defsize = -1,
1221 		.emul = &x86_emul_or
1222 	},
1223 
1224 	/*
1225 	 * AND
1226 	 */
1227 	[0x20] = {
1228 		/* Eb, Gb */
1229 		.valid = true,
1230 		.regmodrm = true,
1231 		.regtorm = true,
1232 		.szoverride = false,
1233 		.defsize = OPSIZE_BYTE,
1234 		.emul = &x86_emul_and
1235 	},
1236 	[0x21] = {
1237 		/* Ev, Gv */
1238 		.valid = true,
1239 		.regmodrm = true,
1240 		.regtorm = true,
1241 		.szoverride = true,
1242 		.defsize = -1,
1243 		.emul = &x86_emul_and
1244 	},
1245 	[0x22] = {
1246 		/* Gb, Eb */
1247 		.valid = true,
1248 		.regmodrm = true,
1249 		.regtorm = false,
1250 		.szoverride = false,
1251 		.defsize = OPSIZE_BYTE,
1252 		.emul = &x86_emul_and
1253 	},
1254 	[0x23] = {
1255 		/* Gv, Ev */
1256 		.valid = true,
1257 		.regmodrm = true,
1258 		.regtorm = false,
1259 		.szoverride = true,
1260 		.defsize = -1,
1261 		.emul = &x86_emul_and
1262 	},
1263 
1264 	/*
1265 	 * SUB
1266 	 */
1267 	[0x28] = {
1268 		/* Eb, Gb */
1269 		.valid = true,
1270 		.regmodrm = true,
1271 		.regtorm = true,
1272 		.szoverride = false,
1273 		.defsize = OPSIZE_BYTE,
1274 		.emul = &x86_emul_sub
1275 	},
1276 	[0x29] = {
1277 		/* Ev, Gv */
1278 		.valid = true,
1279 		.regmodrm = true,
1280 		.regtorm = true,
1281 		.szoverride = true,
1282 		.defsize = -1,
1283 		.emul = &x86_emul_sub
1284 	},
1285 	[0x2A] = {
1286 		/* Gb, Eb */
1287 		.valid = true,
1288 		.regmodrm = true,
1289 		.regtorm = false,
1290 		.szoverride = false,
1291 		.defsize = OPSIZE_BYTE,
1292 		.emul = &x86_emul_sub
1293 	},
1294 	[0x2B] = {
1295 		/* Gv, Ev */
1296 		.valid = true,
1297 		.regmodrm = true,
1298 		.regtorm = false,
1299 		.szoverride = true,
1300 		.defsize = -1,
1301 		.emul = &x86_emul_sub
1302 	},
1303 
1304 	/*
1305 	 * XOR
1306 	 */
1307 	[0x30] = {
1308 		/* Eb, Gb */
1309 		.valid = true,
1310 		.regmodrm = true,
1311 		.regtorm = true,
1312 		.szoverride = false,
1313 		.defsize = OPSIZE_BYTE,
1314 		.emul = &x86_emul_xor
1315 	},
1316 	[0x31] = {
1317 		/* Ev, Gv */
1318 		.valid = true,
1319 		.regmodrm = true,
1320 		.regtorm = true,
1321 		.szoverride = true,
1322 		.defsize = -1,
1323 		.emul = &x86_emul_xor
1324 	},
1325 	[0x32] = {
1326 		/* Gb, Eb */
1327 		.valid = true,
1328 		.regmodrm = true,
1329 		.regtorm = false,
1330 		.szoverride = false,
1331 		.defsize = OPSIZE_BYTE,
1332 		.emul = &x86_emul_xor
1333 	},
1334 	[0x33] = {
1335 		/* Gv, Ev */
1336 		.valid = true,
1337 		.regmodrm = true,
1338 		.regtorm = false,
1339 		.szoverride = true,
1340 		.defsize = -1,
1341 		.emul = &x86_emul_xor
1342 	},
1343 
1344 	/*
1345 	 * XCHG
1346 	 */
1347 	[0x86] = {
1348 		/* Eb, Gb */
1349 		.valid = true,
1350 		.regmodrm = true,
1351 		.regtorm = true,
1352 		.szoverride = false,
1353 		.defsize = OPSIZE_BYTE,
1354 		.emul = &x86_emul_xchg
1355 	},
1356 	[0x87] = {
1357 		/* Ev, Gv */
1358 		.valid = true,
1359 		.regmodrm = true,
1360 		.regtorm = true,
1361 		.szoverride = true,
1362 		.defsize = -1,
1363 		.emul = &x86_emul_xchg
1364 	},
1365 
1366 	/*
1367 	 * MOV
1368 	 */
1369 	[0x88] = {
1370 		/* Eb, Gb */
1371 		.valid = true,
1372 		.regmodrm = true,
1373 		.regtorm = true,
1374 		.szoverride = false,
1375 		.defsize = OPSIZE_BYTE,
1376 		.emul = &x86_emul_mov
1377 	},
1378 	[0x89] = {
1379 		/* Ev, Gv */
1380 		.valid = true,
1381 		.regmodrm = true,
1382 		.regtorm = true,
1383 		.szoverride = true,
1384 		.defsize = -1,
1385 		.emul = &x86_emul_mov
1386 	},
1387 	[0x8A] = {
1388 		/* Gb, Eb */
1389 		.valid = true,
1390 		.regmodrm = true,
1391 		.regtorm = false,
1392 		.szoverride = false,
1393 		.defsize = OPSIZE_BYTE,
1394 		.emul = &x86_emul_mov
1395 	},
1396 	[0x8B] = {
1397 		/* Gv, Ev */
1398 		.valid = true,
1399 		.regmodrm = true,
1400 		.regtorm = false,
1401 		.szoverride = true,
1402 		.defsize = -1,
1403 		.emul = &x86_emul_mov
1404 	},
1405 	[0xA0] = {
1406 		/* AL, Ob */
1407 		.valid = true,
1408 		.dmo = true,
1409 		.todmo = false,
1410 		.szoverride = false,
1411 		.defsize = OPSIZE_BYTE,
1412 		.emul = &x86_emul_mov
1413 	},
1414 	[0xA1] = {
1415 		/* rAX, Ov */
1416 		.valid = true,
1417 		.dmo = true,
1418 		.todmo = false,
1419 		.szoverride = true,
1420 		.defsize = -1,
1421 		.emul = &x86_emul_mov
1422 	},
1423 	[0xA2] = {
1424 		/* Ob, AL */
1425 		.valid = true,
1426 		.dmo = true,
1427 		.todmo = true,
1428 		.szoverride = false,
1429 		.defsize = OPSIZE_BYTE,
1430 		.emul = &x86_emul_mov
1431 	},
1432 	[0xA3] = {
1433 		/* Ov, rAX */
1434 		.valid = true,
1435 		.dmo = true,
1436 		.todmo = true,
1437 		.szoverride = true,
1438 		.defsize = -1,
1439 		.emul = &x86_emul_mov
1440 	},
1441 
1442 	/*
1443 	 * MOVS
1444 	 */
1445 	[0xA4] = {
1446 		/* Yb, Xb */
1447 		.valid = true,
1448 		.movs = true,
1449 		.szoverride = false,
1450 		.defsize = OPSIZE_BYTE,
1451 		.emul = NULL
1452 	},
1453 	[0xA5] = {
1454 		/* Yv, Xv */
1455 		.valid = true,
1456 		.movs = true,
1457 		.szoverride = true,
1458 		.defsize = -1,
1459 		.emul = NULL
1460 	},
1461 
1462 	/*
1463 	 * CMPS
1464 	 */
1465 	[0xA6] = {
1466 		/* Yb, Xb */
1467 		.valid = true,
1468 		.cmps = true,
1469 		.szoverride = false,
1470 		.defsize = OPSIZE_BYTE,
1471 		.emul = NULL
1472 	},
1473 	[0xA7] = {
1474 		/* Yv, Xv */
1475 		.valid = true,
1476 		.cmps = true,
1477 		.szoverride = true,
1478 		.defsize = -1,
1479 		.emul = NULL
1480 	},
1481 
1482 	/*
1483 	 * STOS
1484 	 */
1485 	[0xAA] = {
1486 		/* Yb, AL */
1487 		.valid = true,
1488 		.stos = true,
1489 		.szoverride = false,
1490 		.defsize = OPSIZE_BYTE,
1491 		.emul = &x86_emul_stos
1492 	},
1493 	[0xAB] = {
1494 		/* Yv, rAX */
1495 		.valid = true,
1496 		.stos = true,
1497 		.szoverride = true,
1498 		.defsize = -1,
1499 		.emul = &x86_emul_stos
1500 	},
1501 
1502 	/*
1503 	 * LODS
1504 	 */
1505 	[0xAC] = {
1506 		/* AL, Xb */
1507 		.valid = true,
1508 		.lods = true,
1509 		.szoverride = false,
1510 		.defsize = OPSIZE_BYTE,
1511 		.emul = &x86_emul_lods
1512 	},
1513 	[0xAD] = {
1514 		/* rAX, Xv */
1515 		.valid = true,
1516 		.lods = true,
1517 		.szoverride = true,
1518 		.defsize = -1,
1519 		.emul = &x86_emul_lods
1520 	},
1521 };
1522 
1523 static const struct x86_opcode secondary_opcode_table[256] __cacheline_aligned = {
1524 	/*
1525 	 * MOVZX
1526 	 */
1527 	[0xB6] = {
1528 		/* Gv, Eb */
1529 		.valid = true,
1530 		.regmodrm = true,
1531 		.regtorm = false,
1532 		.szoverride = true,
1533 		.defsize = OPSIZE_BYTE,
1534 		.flags = FLAG_ze,
1535 		.emul = &x86_emul_mov
1536 	},
1537 	[0xB7] = {
1538 		/* Gv, Ew */
1539 		.valid = true,
1540 		.regmodrm = true,
1541 		.regtorm = false,
1542 		.szoverride = true,
1543 		.defsize = OPSIZE_WORD,
1544 		.flags = FLAG_ze,
1545 		.emul = &x86_emul_mov
1546 	},
1547 };
1548 
1549 static const struct x86_reg gpr_map__rip = { NVMM_X64_GPR_RIP, 0xFFFFFFFFFFFFFFFF };
1550 
1551 /* [REX-present][enc][opsize] */
1552 static const struct x86_reg gpr_map__special[2][4][8] __cacheline_aligned = {
1553 	[false] = {
1554 		/* No REX prefix. */
1555 		[0b00] = {
1556 			[0] = { NVMM_X64_GPR_RAX, 0x000000000000FF00 }, /* AH */
1557 			[1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1558 			[2] = { -1, 0 },
1559 			[3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1560 			[4] = { -1, 0 },
1561 			[5] = { -1, 0 },
1562 			[6] = { -1, 0 },
1563 			[7] = { -1, 0 },
1564 		},
1565 		[0b01] = {
1566 			[0] = { NVMM_X64_GPR_RCX, 0x000000000000FF00 }, /* CH */
1567 			[1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1568 			[2] = { -1, 0 },
1569 			[3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF },	/* EBP */
1570 			[4] = { -1, 0 },
1571 			[5] = { -1, 0 },
1572 			[6] = { -1, 0 },
1573 			[7] = { -1, 0 },
1574 		},
1575 		[0b10] = {
1576 			[0] = { NVMM_X64_GPR_RDX, 0x000000000000FF00 }, /* DH */
1577 			[1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1578 			[2] = { -1, 0 },
1579 			[3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1580 			[4] = { -1, 0 },
1581 			[5] = { -1, 0 },
1582 			[6] = { -1, 0 },
1583 			[7] = { -1, 0 },
1584 		},
1585 		[0b11] = {
1586 			[0] = { NVMM_X64_GPR_RBX, 0x000000000000FF00 }, /* BH */
1587 			[1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1588 			[2] = { -1, 0 },
1589 			[3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1590 			[4] = { -1, 0 },
1591 			[5] = { -1, 0 },
1592 			[6] = { -1, 0 },
1593 			[7] = { -1, 0 },
1594 		}
1595 	},
1596 	[true] = {
1597 		/* Has REX prefix. */
1598 		[0b00] = {
1599 			[0] = { NVMM_X64_GPR_RSP, 0x00000000000000FF }, /* SPL */
1600 			[1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1601 			[2] = { -1, 0 },
1602 			[3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1603 			[4] = { -1, 0 },
1604 			[5] = { -1, 0 },
1605 			[6] = { -1, 0 },
1606 			[7] = { NVMM_X64_GPR_RSP, 0xFFFFFFFFFFFFFFFF }, /* RSP */
1607 		},
1608 		[0b01] = {
1609 			[0] = { NVMM_X64_GPR_RBP, 0x00000000000000FF }, /* BPL */
1610 			[1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1611 			[2] = { -1, 0 },
1612 			[3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1613 			[4] = { -1, 0 },
1614 			[5] = { -1, 0 },
1615 			[6] = { -1, 0 },
1616 			[7] = { NVMM_X64_GPR_RBP, 0xFFFFFFFFFFFFFFFF }, /* RBP */
1617 		},
1618 		[0b10] = {
1619 			[0] = { NVMM_X64_GPR_RSI, 0x00000000000000FF }, /* SIL */
1620 			[1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1621 			[2] = { -1, 0 },
1622 			[3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1623 			[4] = { -1, 0 },
1624 			[5] = { -1, 0 },
1625 			[6] = { -1, 0 },
1626 			[7] = { NVMM_X64_GPR_RSI, 0xFFFFFFFFFFFFFFFF }, /* RSI */
1627 		},
1628 		[0b11] = {
1629 			[0] = { NVMM_X64_GPR_RDI, 0x00000000000000FF }, /* DIL */
1630 			[1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1631 			[2] = { -1, 0 },
1632 			[3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1633 			[4] = { -1, 0 },
1634 			[5] = { -1, 0 },
1635 			[6] = { -1, 0 },
1636 			[7] = { NVMM_X64_GPR_RDI, 0xFFFFFFFFFFFFFFFF }, /* RDI */
1637 		}
1638 	}
1639 };
1640 
1641 /* [depends][enc][size] */
1642 static const struct x86_reg gpr_map[2][8][8] __cacheline_aligned = {
1643 	[false] = {
1644 		/* Not extended. */
1645 		[0b000] = {
1646 			[0] = { NVMM_X64_GPR_RAX, 0x00000000000000FF }, /* AL */
1647 			[1] = { NVMM_X64_GPR_RAX, 0x000000000000FFFF }, /* AX */
1648 			[2] = { -1, 0 },
1649 			[3] = { NVMM_X64_GPR_RAX, 0x00000000FFFFFFFF }, /* EAX */
1650 			[4] = { -1, 0 },
1651 			[5] = { -1, 0 },
1652 			[6] = { -1, 0 },
1653 			[7] = { NVMM_X64_GPR_RAX, 0xFFFFFFFFFFFFFFFF }, /* RAX */
1654 		},
1655 		[0b001] = {
1656 			[0] = { NVMM_X64_GPR_RCX, 0x00000000000000FF }, /* CL */
1657 			[1] = { NVMM_X64_GPR_RCX, 0x000000000000FFFF }, /* CX */
1658 			[2] = { -1, 0 },
1659 			[3] = { NVMM_X64_GPR_RCX, 0x00000000FFFFFFFF }, /* ECX */
1660 			[4] = { -1, 0 },
1661 			[5] = { -1, 0 },
1662 			[6] = { -1, 0 },
1663 			[7] = { NVMM_X64_GPR_RCX, 0xFFFFFFFFFFFFFFFF }, /* RCX */
1664 		},
1665 		[0b010] = {
1666 			[0] = { NVMM_X64_GPR_RDX, 0x00000000000000FF }, /* DL */
1667 			[1] = { NVMM_X64_GPR_RDX, 0x000000000000FFFF }, /* DX */
1668 			[2] = { -1, 0 },
1669 			[3] = { NVMM_X64_GPR_RDX, 0x00000000FFFFFFFF }, /* EDX */
1670 			[4] = { -1, 0 },
1671 			[5] = { -1, 0 },
1672 			[6] = { -1, 0 },
1673 			[7] = { NVMM_X64_GPR_RDX, 0xFFFFFFFFFFFFFFFF }, /* RDX */
1674 		},
1675 		[0b011] = {
1676 			[0] = { NVMM_X64_GPR_RBX, 0x00000000000000FF }, /* BL */
1677 			[1] = { NVMM_X64_GPR_RBX, 0x000000000000FFFF }, /* BX */
1678 			[2] = { -1, 0 },
1679 			[3] = { NVMM_X64_GPR_RBX, 0x00000000FFFFFFFF }, /* EBX */
1680 			[4] = { -1, 0 },
1681 			[5] = { -1, 0 },
1682 			[6] = { -1, 0 },
1683 			[7] = { NVMM_X64_GPR_RBX, 0xFFFFFFFFFFFFFFFF }, /* RBX */
1684 		},
1685 		[0b100] = {
1686 			[0] = { -1, 0 }, /* SPECIAL */
1687 			[1] = { -1, 0 }, /* SPECIAL */
1688 			[2] = { -1, 0 },
1689 			[3] = { -1, 0 }, /* SPECIAL */
1690 			[4] = { -1, 0 },
1691 			[5] = { -1, 0 },
1692 			[6] = { -1, 0 },
1693 			[7] = { -1, 0 }, /* SPECIAL */
1694 		},
1695 		[0b101] = {
1696 			[0] = { -1, 0 }, /* SPECIAL */
1697 			[1] = { -1, 0 }, /* SPECIAL */
1698 			[2] = { -1, 0 },
1699 			[3] = { -1, 0 }, /* SPECIAL */
1700 			[4] = { -1, 0 },
1701 			[5] = { -1, 0 },
1702 			[6] = { -1, 0 },
1703 			[7] = { -1, 0 }, /* SPECIAL */
1704 		},
1705 		[0b110] = {
1706 			[0] = { -1, 0 }, /* SPECIAL */
1707 			[1] = { -1, 0 }, /* SPECIAL */
1708 			[2] = { -1, 0 },
1709 			[3] = { -1, 0 }, /* SPECIAL */
1710 			[4] = { -1, 0 },
1711 			[5] = { -1, 0 },
1712 			[6] = { -1, 0 },
1713 			[7] = { -1, 0 }, /* SPECIAL */
1714 		},
1715 		[0b111] = {
1716 			[0] = { -1, 0 }, /* SPECIAL */
1717 			[1] = { -1, 0 }, /* SPECIAL */
1718 			[2] = { -1, 0 },
1719 			[3] = { -1, 0 }, /* SPECIAL */
1720 			[4] = { -1, 0 },
1721 			[5] = { -1, 0 },
1722 			[6] = { -1, 0 },
1723 			[7] = { -1, 0 }, /* SPECIAL */
1724 		},
1725 	},
1726 	[true] = {
1727 		/* Extended. */
1728 		[0b000] = {
1729 			[0] = { NVMM_X64_GPR_R8, 0x00000000000000FF }, /* R8B */
1730 			[1] = { NVMM_X64_GPR_R8, 0x000000000000FFFF }, /* R8W */
1731 			[2] = { -1, 0 },
1732 			[3] = { NVMM_X64_GPR_R8, 0x00000000FFFFFFFF }, /* R8D */
1733 			[4] = { -1, 0 },
1734 			[5] = { -1, 0 },
1735 			[6] = { -1, 0 },
1736 			[7] = { NVMM_X64_GPR_R8, 0xFFFFFFFFFFFFFFFF }, /* R8 */
1737 		},
1738 		[0b001] = {
1739 			[0] = { NVMM_X64_GPR_R9, 0x00000000000000FF }, /* R9B */
1740 			[1] = { NVMM_X64_GPR_R9, 0x000000000000FFFF }, /* R9W */
1741 			[2] = { -1, 0 },
1742 			[3] = { NVMM_X64_GPR_R9, 0x00000000FFFFFFFF }, /* R9D */
1743 			[4] = { -1, 0 },
1744 			[5] = { -1, 0 },
1745 			[6] = { -1, 0 },
1746 			[7] = { NVMM_X64_GPR_R9, 0xFFFFFFFFFFFFFFFF }, /* R9 */
1747 		},
1748 		[0b010] = {
1749 			[0] = { NVMM_X64_GPR_R10, 0x00000000000000FF }, /* R10B */
1750 			[1] = { NVMM_X64_GPR_R10, 0x000000000000FFFF }, /* R10W */
1751 			[2] = { -1, 0 },
1752 			[3] = { NVMM_X64_GPR_R10, 0x00000000FFFFFFFF }, /* R10D */
1753 			[4] = { -1, 0 },
1754 			[5] = { -1, 0 },
1755 			[6] = { -1, 0 },
1756 			[7] = { NVMM_X64_GPR_R10, 0xFFFFFFFFFFFFFFFF }, /* R10 */
1757 		},
1758 		[0b011] = {
1759 			[0] = { NVMM_X64_GPR_R11, 0x00000000000000FF }, /* R11B */
1760 			[1] = { NVMM_X64_GPR_R11, 0x000000000000FFFF }, /* R11W */
1761 			[2] = { -1, 0 },
1762 			[3] = { NVMM_X64_GPR_R11, 0x00000000FFFFFFFF }, /* R11D */
1763 			[4] = { -1, 0 },
1764 			[5] = { -1, 0 },
1765 			[6] = { -1, 0 },
1766 			[7] = { NVMM_X64_GPR_R11, 0xFFFFFFFFFFFFFFFF }, /* R11 */
1767 		},
1768 		[0b100] = {
1769 			[0] = { NVMM_X64_GPR_R12, 0x00000000000000FF }, /* R12B */
1770 			[1] = { NVMM_X64_GPR_R12, 0x000000000000FFFF }, /* R12W */
1771 			[2] = { -1, 0 },
1772 			[3] = { NVMM_X64_GPR_R12, 0x00000000FFFFFFFF }, /* R12D */
1773 			[4] = { -1, 0 },
1774 			[5] = { -1, 0 },
1775 			[6] = { -1, 0 },
1776 			[7] = { NVMM_X64_GPR_R12, 0xFFFFFFFFFFFFFFFF }, /* R12 */
1777 		},
1778 		[0b101] = {
1779 			[0] = { NVMM_X64_GPR_R13, 0x00000000000000FF }, /* R13B */
1780 			[1] = { NVMM_X64_GPR_R13, 0x000000000000FFFF }, /* R13W */
1781 			[2] = { -1, 0 },
1782 			[3] = { NVMM_X64_GPR_R13, 0x00000000FFFFFFFF }, /* R13D */
1783 			[4] = { -1, 0 },
1784 			[5] = { -1, 0 },
1785 			[6] = { -1, 0 },
1786 			[7] = { NVMM_X64_GPR_R13, 0xFFFFFFFFFFFFFFFF }, /* R13 */
1787 		},
1788 		[0b110] = {
1789 			[0] = { NVMM_X64_GPR_R14, 0x00000000000000FF }, /* R14B */
1790 			[1] = { NVMM_X64_GPR_R14, 0x000000000000FFFF }, /* R14W */
1791 			[2] = { -1, 0 },
1792 			[3] = { NVMM_X64_GPR_R14, 0x00000000FFFFFFFF }, /* R14D */
1793 			[4] = { -1, 0 },
1794 			[5] = { -1, 0 },
1795 			[6] = { -1, 0 },
1796 			[7] = { NVMM_X64_GPR_R14, 0xFFFFFFFFFFFFFFFF }, /* R14 */
1797 		},
1798 		[0b111] = {
1799 			[0] = { NVMM_X64_GPR_R15, 0x00000000000000FF }, /* R15B */
1800 			[1] = { NVMM_X64_GPR_R15, 0x000000000000FFFF }, /* R15W */
1801 			[2] = { -1, 0 },
1802 			[3] = { NVMM_X64_GPR_R15, 0x00000000FFFFFFFF }, /* R15D */
1803 			[4] = { -1, 0 },
1804 			[5] = { -1, 0 },
1805 			[6] = { -1, 0 },
1806 			[7] = { NVMM_X64_GPR_R15, 0xFFFFFFFFFFFFFFFF }, /* R15 */
1807 		},
1808 	}
1809 };
1810 
1811 /* [enc] */
1812 static const int gpr_dual_reg1_rm[8] __cacheline_aligned = {
1813 	[0b000] = NVMM_X64_GPR_RBX, /* BX (+SI) */
1814 	[0b001] = NVMM_X64_GPR_RBX, /* BX (+DI) */
1815 	[0b010] = NVMM_X64_GPR_RBP, /* BP (+SI) */
1816 	[0b011] = NVMM_X64_GPR_RBP, /* BP (+DI) */
1817 	[0b100] = NVMM_X64_GPR_RSI, /* SI */
1818 	[0b101] = NVMM_X64_GPR_RDI, /* DI */
1819 	[0b110] = NVMM_X64_GPR_RBP, /* BP */
1820 	[0b111] = NVMM_X64_GPR_RBX, /* BX */
1821 };
1822 
1823 static int
node_overflow(struct x86_decode_fsm * fsm,struct x86_instr * instr)1824 node_overflow(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1825 {
1826 	fsm->fn = NULL;
1827 	return -1;
1828 }
1829 
1830 static int
fsm_read(struct x86_decode_fsm * fsm,uint8_t * bytes,size_t n)1831 fsm_read(struct x86_decode_fsm *fsm, uint8_t *bytes, size_t n)
1832 {
1833 	if (fsm->buf + n > fsm->end) {
1834 		return -1;
1835 	}
1836 	memcpy(bytes, fsm->buf, n);
1837 	return 0;
1838 }
1839 
1840 static inline void
fsm_advance(struct x86_decode_fsm * fsm,size_t n,int (* fn)(struct x86_decode_fsm *,struct x86_instr *))1841 fsm_advance(struct x86_decode_fsm *fsm, size_t n,
1842     int (*fn)(struct x86_decode_fsm *, struct x86_instr *))
1843 {
1844 	fsm->buf += n;
1845 	if (fsm->buf > fsm->end) {
1846 		fsm->fn = node_overflow;
1847 	} else {
1848 		fsm->fn = fn;
1849 	}
1850 }
1851 
1852 static const struct x86_reg *
resolve_special_register(struct x86_instr * instr,uint8_t enc,size_t regsize)1853 resolve_special_register(struct x86_instr *instr, uint8_t enc, size_t regsize)
1854 {
1855 	enc &= 0b11;
1856 	if (regsize == 8) {
1857 		/* May be 64bit without REX */
1858 		return &gpr_map__special[1][enc][regsize-1];
1859 	}
1860 	return &gpr_map__special[instr->rexpref.present][enc][regsize-1];
1861 }
1862 
1863 /*
1864  * Special node, for MOVS. Fake two displacements of zero on the source and
1865  * destination registers.
1866  */
1867 static int
node_movs(struct x86_decode_fsm * fsm,struct x86_instr * instr)1868 node_movs(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1869 {
1870 	size_t adrsize;
1871 
1872 	adrsize = instr->address_size;
1873 
1874 	/* DS:RSI */
1875 	instr->src.type = STORE_REG;
1876 	instr->src.u.reg = &gpr_map__special[1][2][adrsize-1];
1877 	instr->src.disp.type = DISP_0;
1878 
1879 	/* ES:RDI, force ES */
1880 	instr->dst.type = STORE_REG;
1881 	instr->dst.u.reg = &gpr_map__special[1][3][adrsize-1];
1882 	instr->dst.disp.type = DISP_0;
1883 	instr->dst.hardseg = NVMM_X64_SEG_ES;
1884 
1885 	fsm_advance(fsm, 0, NULL);
1886 
1887 	return 0;
1888 }
1889 
1890 /*
1891  * Special node, for CMPS. Fake two displacements of zero on the source and
1892  * destination registers.
1893  * XXX coded as clone of movs as its similar in register usage
1894  * XXX might be merged with node_movs()
1895  */
1896 static int
node_cmps(struct x86_decode_fsm * fsm,struct x86_instr * instr)1897 node_cmps(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1898 {
1899 	size_t adrsize;
1900 
1901 	adrsize = instr->address_size;
1902 
1903 	/* DS:RSI */
1904 	instr->src.type = STORE_REG;
1905 	instr->src.u.reg = &gpr_map__special[1][2][adrsize-1];
1906 	instr->src.disp.type = DISP_0;
1907 
1908 	/* ES:RDI, force ES */
1909 	instr->dst.type = STORE_REG;
1910 	instr->dst.u.reg = &gpr_map__special[1][3][adrsize-1];
1911 	instr->dst.disp.type = DISP_0;
1912 	instr->dst.hardseg = NVMM_X64_SEG_ES;
1913 
1914 	fsm_advance(fsm, 0, NULL);
1915 
1916 	return 0;
1917 }
1918 
1919 /*
1920  * Special node, for STOS and LODS. Fake a displacement of zero on the
1921  * destination register.
1922  */
1923 static int
node_stlo(struct x86_decode_fsm * fsm,struct x86_instr * instr)1924 node_stlo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1925 {
1926 	const struct x86_opcode *opcode = instr->opcode;
1927 	struct x86_store *stlo, *streg;
1928 	size_t adrsize, regsize;
1929 
1930 	adrsize = instr->address_size;
1931 	regsize = instr->operand_size;
1932 
1933 	if (opcode->stos) {
1934 		streg = &instr->src;
1935 		stlo = &instr->dst;
1936 	} else {
1937 		streg = &instr->dst;
1938 		stlo = &instr->src;
1939 	}
1940 
1941 	streg->type = STORE_REG;
1942 	streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1943 
1944 	stlo->type = STORE_REG;
1945 	if (opcode->stos) {
1946 		/* ES:RDI, force ES */
1947 		stlo->u.reg = &gpr_map__special[1][3][adrsize-1];
1948 		stlo->hardseg = NVMM_X64_SEG_ES;
1949 	} else {
1950 		/* DS:RSI */
1951 		stlo->u.reg = &gpr_map__special[1][2][adrsize-1];
1952 	}
1953 	stlo->disp.type = DISP_0;
1954 
1955 	fsm_advance(fsm, 0, NULL);
1956 
1957 	return 0;
1958 }
1959 
1960 static int
node_dmo(struct x86_decode_fsm * fsm,struct x86_instr * instr)1961 node_dmo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1962 {
1963 	const struct x86_opcode *opcode = instr->opcode;
1964 	struct x86_store *stdmo, *streg;
1965 	size_t adrsize, regsize;
1966 
1967 	adrsize = instr->address_size;
1968 	regsize = instr->operand_size;
1969 
1970 	if (opcode->todmo) {
1971 		streg = &instr->src;
1972 		stdmo = &instr->dst;
1973 	} else {
1974 		streg = &instr->dst;
1975 		stdmo = &instr->src;
1976 	}
1977 
1978 	streg->type = STORE_REG;
1979 	streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1980 
1981 	stdmo->type = STORE_DMO;
1982 	if (fsm_read(fsm, (uint8_t *)&stdmo->u.dmo, adrsize) == -1) {
1983 		return -1;
1984 	}
1985 	fsm_advance(fsm, adrsize, NULL);
1986 
1987 	return 0;
1988 }
1989 
1990 static inline uint64_t
sign_extend(uint64_t val,int size)1991 sign_extend(uint64_t val, int size)
1992 {
1993 	if (size == 1) {
1994 		if (val & __BIT(7))
1995 			val |= 0xFFFFFFFFFFFFFF00;
1996 	} else if (size == 2) {
1997 		if (val & __BIT(15))
1998 			val |= 0xFFFFFFFFFFFF0000;
1999 	} else if (size == 4) {
2000 		if (val & __BIT(31))
2001 			val |= 0xFFFFFFFF00000000;
2002 	}
2003 	return val;
2004 }
2005 
2006 static int
node_immediate(struct x86_decode_fsm * fsm,struct x86_instr * instr)2007 node_immediate(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2008 {
2009 	const struct x86_opcode *opcode = instr->opcode;
2010 	struct x86_store *store;
2011 	uint8_t immsize;
2012 	size_t sesize = 0;
2013 
2014 	/* The immediate is the source */
2015 	store = &instr->src;
2016 	immsize = instr->operand_size;
2017 
2018 	if (opcode->flags & FLAG_imm8) {
2019 		sesize = immsize;
2020 		immsize = 1;
2021 	} else if ((opcode->flags & FLAG_immz) && (immsize == 8)) {
2022 		sesize = immsize;
2023 		immsize = 4;
2024 	}
2025 
2026 	store->type = STORE_IMM;
2027 	if (fsm_read(fsm, (uint8_t *)&store->u.imm.data, immsize) == -1) {
2028 		return -1;
2029 	}
2030 	fsm_advance(fsm, immsize, NULL);
2031 
2032 	if (sesize != 0) {
2033 		store->u.imm.data = sign_extend(store->u.imm.data, sesize);
2034 	}
2035 
2036 	return 0;
2037 }
2038 
2039 static int
node_disp(struct x86_decode_fsm * fsm,struct x86_instr * instr)2040 node_disp(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2041 {
2042 	const struct x86_opcode *opcode = instr->opcode;
2043 	uint64_t data = 0;
2044 	size_t n;
2045 
2046 	if (instr->strm->disp.type == DISP_1) {
2047 		n = 1;
2048 	} else if (instr->strm->disp.type == DISP_2) {
2049 		n = 2;
2050 	} else if (instr->strm->disp.type == DISP_4) {
2051 		n = 4;
2052 	} else {
2053 		DISASSEMBLER_BUG();
2054 	}
2055 
2056 	if (fsm_read(fsm, (uint8_t *)&data, n) == -1) {
2057 		return -1;
2058 	}
2059 
2060 	if (__predict_true(fsm->is64bit)) {
2061 		data = sign_extend(data, n);
2062 	}
2063 
2064 	instr->strm->disp.data = data;
2065 
2066 	if (opcode->immediate) {
2067 		fsm_advance(fsm, n, node_immediate);
2068 	} else {
2069 		fsm_advance(fsm, n, NULL);
2070 	}
2071 
2072 	return 0;
2073 }
2074 
2075 /*
2076  * Special node to handle 16bit addressing encoding, which can reference two
2077  * registers at once.
2078  */
2079 static int
node_dual(struct x86_decode_fsm * fsm,struct x86_instr * instr)2080 node_dual(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2081 {
2082 	int reg1, reg2;
2083 
2084 	reg1 = gpr_dual_reg1_rm[instr->regmodrm.rm];
2085 
2086 	if (instr->regmodrm.rm == 0b000 ||
2087 	    instr->regmodrm.rm == 0b010) {
2088 		reg2 = NVMM_X64_GPR_RSI;
2089 	} else if (instr->regmodrm.rm == 0b001 ||
2090 	    instr->regmodrm.rm == 0b011) {
2091 		reg2 = NVMM_X64_GPR_RDI;
2092 	} else {
2093 		DISASSEMBLER_BUG();
2094 	}
2095 
2096 	instr->strm->type = STORE_DUALREG;
2097 	instr->strm->u.dualreg.reg1 = reg1;
2098 	instr->strm->u.dualreg.reg2 = reg2;
2099 
2100 	if (instr->strm->disp.type == DISP_NONE) {
2101 		DISASSEMBLER_BUG();
2102 	} else if (instr->strm->disp.type == DISP_0) {
2103 		/* Indirect register addressing mode */
2104 		if (instr->opcode->immediate) {
2105 			fsm_advance(fsm, 1, node_immediate);
2106 		} else {
2107 			fsm_advance(fsm, 1, NULL);
2108 		}
2109 	} else {
2110 		fsm_advance(fsm, 1, node_disp);
2111 	}
2112 
2113 	return 0;
2114 }
2115 
2116 static const struct x86_reg *
get_register_idx(struct x86_instr * instr,uint8_t index)2117 get_register_idx(struct x86_instr *instr, uint8_t index)
2118 {
2119 	uint8_t enc = index;
2120 	const struct x86_reg *reg;
2121 	size_t regsize;
2122 
2123 	regsize = instr->address_size;
2124 	reg = &gpr_map[instr->rexpref.x][enc][regsize-1];
2125 
2126 	if (reg->num == -1) {
2127 		reg = resolve_special_register(instr, enc, regsize);
2128 	}
2129 
2130 	return reg;
2131 }
2132 
2133 static const struct x86_reg *
get_register_bas(struct x86_instr * instr,uint8_t base)2134 get_register_bas(struct x86_instr *instr, uint8_t base)
2135 {
2136 	uint8_t enc = base;
2137 	const struct x86_reg *reg;
2138 	size_t regsize;
2139 
2140 	regsize = instr->address_size;
2141 	reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
2142 	if (reg->num == -1) {
2143 		reg = resolve_special_register(instr, enc, regsize);
2144 	}
2145 
2146 	return reg;
2147 }
2148 
2149 static int
node_sib(struct x86_decode_fsm * fsm,struct x86_instr * instr)2150 node_sib(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2151 {
2152 	const struct x86_opcode *opcode;
2153 	uint8_t scale, index, base;
2154 	bool noindex, nobase;
2155 	uint8_t byte;
2156 
2157 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2158 		return -1;
2159 	}
2160 
2161 	scale = ((byte & 0b11000000) >> 6);
2162 	index = ((byte & 0b00111000) >> 3);
2163 	base  = ((byte & 0b00000111) >> 0);
2164 
2165 	opcode = instr->opcode;
2166 
2167 	noindex = false;
2168 	nobase = false;
2169 
2170 	if (index == 0b100 && !instr->rexpref.x) {
2171 		/* Special case: the index is null */
2172 		noindex = true;
2173 	}
2174 
2175 	if (instr->regmodrm.mod == 0b00 && base == 0b101) {
2176 		/* Special case: the base is null + disp32 */
2177 		instr->strm->disp.type = DISP_4;
2178 		nobase = true;
2179 	}
2180 
2181 	instr->strm->type = STORE_SIB;
2182 	instr->strm->u.sib.scale = (1 << scale);
2183 	if (!noindex)
2184 		instr->strm->u.sib.idx = get_register_idx(instr, index);
2185 	if (!nobase)
2186 		instr->strm->u.sib.bas = get_register_bas(instr, base);
2187 
2188 	/* May have a displacement, or an immediate */
2189 	if (instr->strm->disp.type == DISP_1 ||
2190 	    instr->strm->disp.type == DISP_2 ||
2191 	    instr->strm->disp.type == DISP_4) {
2192 		fsm_advance(fsm, 1, node_disp);
2193 	} else if (opcode->immediate) {
2194 		fsm_advance(fsm, 1, node_immediate);
2195 	} else {
2196 		fsm_advance(fsm, 1, NULL);
2197 	}
2198 
2199 	return 0;
2200 }
2201 
2202 static const struct x86_reg *
get_register_reg(struct x86_instr * instr,const struct x86_opcode * opcode)2203 get_register_reg(struct x86_instr *instr, const struct x86_opcode *opcode)
2204 {
2205 	uint8_t enc = instr->regmodrm.reg;
2206 	const struct x86_reg *reg;
2207 	size_t regsize;
2208 
2209 	regsize = instr->operand_size;
2210 
2211 	reg = &gpr_map[instr->rexpref.r][enc][regsize-1];
2212 	if (reg->num == -1) {
2213 		reg = resolve_special_register(instr, enc, regsize);
2214 	}
2215 
2216 	return reg;
2217 }
2218 
2219 static const struct x86_reg *
get_register_rm(struct x86_instr * instr,const struct x86_opcode * opcode)2220 get_register_rm(struct x86_instr *instr, const struct x86_opcode *opcode)
2221 {
2222 	uint8_t enc = instr->regmodrm.rm;
2223 	const struct x86_reg *reg;
2224 	size_t regsize;
2225 
2226 	if (instr->strm->disp.type == DISP_NONE) {
2227 		regsize = instr->operand_size;
2228 	} else {
2229 		/* Indirect access, the size is that of the address. */
2230 		regsize = instr->address_size;
2231 	}
2232 
2233 	reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
2234 	if (reg->num == -1) {
2235 		reg = resolve_special_register(instr, enc, regsize);
2236 	}
2237 
2238 	return reg;
2239 }
2240 
2241 static inline bool
has_sib(struct x86_instr * instr)2242 has_sib(struct x86_instr *instr)
2243 {
2244 	return (instr->address_size != 2 && /* no SIB in 16bit addressing */
2245 	    instr->regmodrm.mod != 0b11 &&
2246 	    instr->regmodrm.rm == 0b100);
2247 }
2248 
2249 static inline bool
is_rip_relative(struct x86_decode_fsm * fsm,struct x86_instr * instr)2250 is_rip_relative(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2251 {
2252 	return (fsm->is64bit && /* RIP-relative only in 64bit mode */
2253 	    instr->regmodrm.mod == 0b00 &&
2254 	    instr->regmodrm.rm == 0b101);
2255 }
2256 
2257 static inline bool
is_disp32_only(struct x86_decode_fsm * fsm,struct x86_instr * instr)2258 is_disp32_only(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2259 {
2260 	return (!fsm->is64bit && /* no disp32-only in 64bit mode */
2261 	    instr->address_size != 2 && /* no disp32-only in 16bit addressing */
2262 	    instr->regmodrm.mod == 0b00 &&
2263 	    instr->regmodrm.rm == 0b101);
2264 }
2265 
2266 static inline bool
is_disp16_only(struct x86_decode_fsm * fsm,struct x86_instr * instr)2267 is_disp16_only(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2268 {
2269 	return (instr->address_size == 2 && /* disp16-only only in 16bit addr */
2270 	    instr->regmodrm.mod == 0b00 &&
2271 	    instr->regmodrm.rm == 0b110);
2272 }
2273 
2274 static inline bool
is_dual(struct x86_decode_fsm * fsm,struct x86_instr * instr)2275 is_dual(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2276 {
2277 	return (instr->address_size == 2 &&
2278 	    instr->regmodrm.mod != 0b11 &&
2279 	    instr->regmodrm.rm <= 0b011);
2280 }
2281 
2282 static enum x86_disp_type
get_disp_type(struct x86_instr * instr)2283 get_disp_type(struct x86_instr *instr)
2284 {
2285 	switch (instr->regmodrm.mod) {
2286 	case 0b00:	/* indirect */
2287 		return DISP_0;
2288 	case 0b01:	/* indirect+1 */
2289 		return DISP_1;
2290 	case 0b10:	/* indirect+{2,4} */
2291 		if (__predict_false(instr->address_size == 2)) {
2292 			return DISP_2;
2293 		}
2294 		return DISP_4;
2295 	case 0b11:	/* direct */
2296 	default:	/* llvm */
2297 		return DISP_NONE;
2298 	}
2299 	__unreachable();
2300 }
2301 
2302 static int
node_regmodrm(struct x86_decode_fsm * fsm,struct x86_instr * instr)2303 node_regmodrm(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2304 {
2305 	struct x86_store *strg, *strm;
2306 	const struct x86_opcode *opcode;
2307 	const struct x86_reg *reg;
2308 	uint8_t byte;
2309 
2310 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2311 		return -1;
2312 	}
2313 
2314 	opcode = instr->opcode;
2315 
2316 	instr->regmodrm.rm  = ((byte & 0b00000111) >> 0);
2317 	instr->regmodrm.reg = ((byte & 0b00111000) >> 3);
2318 	instr->regmodrm.mod = ((byte & 0b11000000) >> 6);
2319 
2320 	if (opcode->regtorm) {
2321 		strg = &instr->src;
2322 		strm = &instr->dst;
2323 	} else { /* RM to REG */
2324 		strm = &instr->src;
2325 		strg = &instr->dst;
2326 	}
2327 
2328 	/* Save for later use. */
2329 	instr->strm = strm;
2330 
2331 	/*
2332 	 * Special cases: Groups. The REG field of REGMODRM is the index in
2333 	 * the group. op1 gets overwritten in the Immediate node, if any.
2334 	 */
2335 	if (opcode->group1) {
2336 		if (group1[instr->regmodrm.reg].emul == NULL) {
2337 			return -1;
2338 		}
2339 		instr->emul = group1[instr->regmodrm.reg].emul;
2340 	} else if (opcode->group3) {
2341 		if (group3[instr->regmodrm.reg].emul == NULL) {
2342 			return -1;
2343 		}
2344 		instr->emul = group3[instr->regmodrm.reg].emul;
2345 	} else if (opcode->group11) {
2346 		if (group11[instr->regmodrm.reg].emul == NULL) {
2347 			return -1;
2348 		}
2349 		instr->emul = group11[instr->regmodrm.reg].emul;
2350 	}
2351 
2352 	if (!opcode->immediate) {
2353 		reg = get_register_reg(instr, opcode);
2354 		if (reg == NULL) {
2355 			return -1;
2356 		}
2357 		strg->type = STORE_REG;
2358 		strg->u.reg = reg;
2359 	}
2360 
2361 	/* The displacement applies to RM. */
2362 	strm->disp.type = get_disp_type(instr);
2363 
2364 	if (has_sib(instr)) {
2365 		/* Overwrites RM */
2366 		fsm_advance(fsm, 1, node_sib);
2367 		return 0;
2368 	}
2369 
2370 	if (is_rip_relative(fsm, instr)) {
2371 		/* Overwrites RM */
2372 		strm->type = STORE_REG;
2373 		strm->u.reg = &gpr_map__rip;
2374 		strm->disp.type = DISP_4;
2375 		fsm_advance(fsm, 1, node_disp);
2376 		return 0;
2377 	}
2378 
2379 	if (is_disp32_only(fsm, instr)) {
2380 		/* Overwrites RM */
2381 		strm->type = STORE_REG;
2382 		strm->u.reg = NULL;
2383 		strm->disp.type = DISP_4;
2384 		fsm_advance(fsm, 1, node_disp);
2385 		return 0;
2386 	}
2387 
2388 	if (__predict_false(is_disp16_only(fsm, instr))) {
2389 		/* Overwrites RM */
2390 		strm->type = STORE_REG;
2391 		strm->u.reg = NULL;
2392 		strm->disp.type = DISP_2;
2393 		fsm_advance(fsm, 1, node_disp);
2394 		return 0;
2395 	}
2396 
2397 	if (__predict_false(is_dual(fsm, instr))) {
2398 		/* Overwrites RM */
2399 		fsm_advance(fsm, 0, node_dual);
2400 		return 0;
2401 	}
2402 
2403 	reg = get_register_rm(instr, opcode);
2404 	if (reg == NULL) {
2405 		return -1;
2406 	}
2407 	strm->type = STORE_REG;
2408 	strm->u.reg = reg;
2409 
2410 	if (strm->disp.type == DISP_NONE) {
2411 		/* Direct register addressing mode */
2412 		if (opcode->immediate) {
2413 			fsm_advance(fsm, 1, node_immediate);
2414 		} else {
2415 			fsm_advance(fsm, 1, NULL);
2416 		}
2417 	} else if (strm->disp.type == DISP_0) {
2418 		/* Indirect register addressing mode */
2419 		if (opcode->immediate) {
2420 			fsm_advance(fsm, 1, node_immediate);
2421 		} else {
2422 			fsm_advance(fsm, 1, NULL);
2423 		}
2424 	} else {
2425 		fsm_advance(fsm, 1, node_disp);
2426 	}
2427 
2428 	return 0;
2429 }
2430 
2431 static size_t
get_operand_size(struct x86_decode_fsm * fsm,struct x86_instr * instr)2432 get_operand_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2433 {
2434 	const struct x86_opcode *opcode = instr->opcode;
2435 	int opsize;
2436 
2437 	/* Get the opsize */
2438 	if (!opcode->szoverride) {
2439 		opsize = opcode->defsize;
2440 	} else if (instr->rexpref.present && instr->rexpref.w) {
2441 		opsize = 8;
2442 	} else {
2443 		if (!fsm->is16bit) {
2444 			if (instr->legpref.opr_ovr) {
2445 				opsize = 2;
2446 			} else {
2447 				opsize = 4;
2448 			}
2449 		} else { /* 16bit */
2450 			if (instr->legpref.opr_ovr) {
2451 				opsize = 4;
2452 			} else {
2453 				opsize = 2;
2454 			}
2455 		}
2456 	}
2457 
2458 	return opsize;
2459 }
2460 
2461 static size_t
get_address_size(struct x86_decode_fsm * fsm,struct x86_instr * instr)2462 get_address_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2463 {
2464 	if (fsm->is64bit) {
2465 		if (__predict_false(instr->legpref.adr_ovr)) {
2466 			return 4;
2467 		}
2468 		return 8;
2469 	}
2470 
2471 	if (fsm->is32bit) {
2472 		if (__predict_false(instr->legpref.adr_ovr)) {
2473 			return 2;
2474 		}
2475 		return 4;
2476 	}
2477 
2478 	/* 16bit. */
2479 	if (__predict_false(instr->legpref.adr_ovr)) {
2480 		return 4;
2481 	}
2482 	return 2;
2483 }
2484 
2485 static int
node_primary_opcode(struct x86_decode_fsm * fsm,struct x86_instr * instr)2486 node_primary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2487 {
2488 	const struct x86_opcode *opcode;
2489 	uint8_t byte;
2490 
2491 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2492 		return -1;
2493 	}
2494 
2495 	opcode = &primary_opcode_table[byte];
2496 	if (__predict_false(!opcode->valid)) {
2497 		return -1;
2498 	}
2499 
2500 	instr->opcode = opcode;
2501 	instr->emul = opcode->emul;
2502 	instr->operand_size = get_operand_size(fsm, instr);
2503 	instr->address_size = get_address_size(fsm, instr);
2504 
2505 	if (fsm->is64bit && (instr->operand_size == 4)) {
2506 		/* Zero-extend to 64 bits. */
2507 		instr->zeroextend_mask = ~size_to_mask(4);
2508 	}
2509 
2510 	if (opcode->regmodrm) {
2511 		fsm_advance(fsm, 1, node_regmodrm);
2512 	} else if (opcode->dmo) {
2513 		/* Direct-Memory Offsets */
2514 		fsm_advance(fsm, 1, node_dmo);
2515 	} else if (opcode->stos || opcode->lods) {
2516 		fsm_advance(fsm, 1, node_stlo);
2517 	} else if (opcode->movs) {
2518 		fsm_advance(fsm, 1, node_movs);
2519 	} else if (opcode->cmps) {
2520 		fsm_advance(fsm, 1, node_cmps);
2521 	} else {
2522 		return -1;
2523 	}
2524 
2525 	return 0;
2526 }
2527 
2528 static int
node_secondary_opcode(struct x86_decode_fsm * fsm,struct x86_instr * instr)2529 node_secondary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2530 {
2531 	const struct x86_opcode *opcode;
2532 	uint8_t byte;
2533 
2534 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2535 		return -1;
2536 	}
2537 
2538 	opcode = &secondary_opcode_table[byte];
2539 	if (__predict_false(!opcode->valid)) {
2540 		return -1;
2541 	}
2542 
2543 	instr->opcode = opcode;
2544 	instr->emul = opcode->emul;
2545 	instr->operand_size = get_operand_size(fsm, instr);
2546 	instr->address_size = get_address_size(fsm, instr);
2547 
2548 	if (fsm->is64bit && (instr->operand_size == 4)) {
2549 		/* Zero-extend to 64 bits. */
2550 		instr->zeroextend_mask = ~size_to_mask(4);
2551 	}
2552 
2553 	if (opcode->flags & FLAG_ze) {
2554 		/*
2555 		 * Compute the mask for zero-extend. Update the operand size,
2556 		 * we move fewer bytes.
2557 		 */
2558 		instr->zeroextend_mask |= size_to_mask(instr->operand_size);
2559 		instr->zeroextend_mask &= ~size_to_mask(opcode->defsize);
2560 		instr->operand_size = opcode->defsize;
2561 	}
2562 
2563 	if (opcode->regmodrm) {
2564 		fsm_advance(fsm, 1, node_regmodrm);
2565 	} else {
2566 		return -1;
2567 	}
2568 
2569 	return 0;
2570 }
2571 
2572 static int
node_main(struct x86_decode_fsm * fsm,struct x86_instr * instr)2573 node_main(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2574 {
2575 	uint8_t byte;
2576 
2577 #define ESCAPE	0x0F
2578 #define VEX_1	0xC5
2579 #define VEX_2	0xC4
2580 #define XOP	0x8F
2581 
2582 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2583 		return -1;
2584 	}
2585 
2586 	/*
2587 	 * We don't take XOP. It is AMD-specific, and it was removed shortly
2588 	 * after being introduced.
2589 	 */
2590 	if (byte == ESCAPE) {
2591 		fsm_advance(fsm, 1, node_secondary_opcode);
2592 	} else if (!instr->rexpref.present) {
2593 		if (byte == VEX_1) {
2594 			return -1;
2595 		} else if (byte == VEX_2) {
2596 			return -1;
2597 		} else {
2598 			fsm->fn = node_primary_opcode;
2599 		}
2600 	} else {
2601 		fsm->fn = node_primary_opcode;
2602 	}
2603 
2604 	return 0;
2605 }
2606 
2607 static int
node_rex_prefix(struct x86_decode_fsm * fsm,struct x86_instr * instr)2608 node_rex_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2609 {
2610 	struct x86_rexpref *rexpref = &instr->rexpref;
2611 	uint8_t byte;
2612 	size_t n = 0;
2613 
2614 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2615 		return -1;
2616 	}
2617 
2618 	if (byte >= 0x40 && byte <= 0x4F) {
2619 		if (__predict_false(!fsm->is64bit)) {
2620 			return -1;
2621 		}
2622 		rexpref->b = ((byte & 0x1) != 0);
2623 		rexpref->x = ((byte & 0x2) != 0);
2624 		rexpref->r = ((byte & 0x4) != 0);
2625 		rexpref->w = ((byte & 0x8) != 0);
2626 		rexpref->present = true;
2627 		n = 1;
2628 	}
2629 
2630 	fsm_advance(fsm, n, node_main);
2631 	return 0;
2632 }
2633 
2634 static int
node_legacy_prefix(struct x86_decode_fsm * fsm,struct x86_instr * instr)2635 node_legacy_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2636 {
2637 	uint8_t byte;
2638 
2639 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2640 		return -1;
2641 	}
2642 
2643 	if (byte == LEG_OPR_OVR) {
2644 		instr->legpref.opr_ovr = 1;
2645 	} else if (byte == LEG_OVR_DS) {
2646 		instr->legpref.seg = NVMM_X64_SEG_DS;
2647 	} else if (byte == LEG_OVR_ES) {
2648 		instr->legpref.seg = NVMM_X64_SEG_ES;
2649 	} else if (byte == LEG_REP) {
2650 		instr->legpref.rep = 1;
2651 	} else if (byte == LEG_OVR_GS) {
2652 		instr->legpref.seg = NVMM_X64_SEG_GS;
2653 	} else if (byte == LEG_OVR_FS) {
2654 		instr->legpref.seg = NVMM_X64_SEG_FS;
2655 	} else if (byte == LEG_ADR_OVR) {
2656 		instr->legpref.adr_ovr = 1;
2657 	} else if (byte == LEG_OVR_CS) {
2658 		instr->legpref.seg = NVMM_X64_SEG_CS;
2659 	} else if (byte == LEG_OVR_SS) {
2660 		instr->legpref.seg = NVMM_X64_SEG_SS;
2661 	} else if (byte == LEG_REPN) {
2662 		instr->legpref.repn = 1;
2663 	} else if (byte == LEG_LOCK) {
2664 		/* ignore */
2665 	} else {
2666 		/* not a legacy prefix */
2667 		fsm_advance(fsm, 0, node_rex_prefix);
2668 		return 0;
2669 	}
2670 
2671 	fsm_advance(fsm, 1, node_legacy_prefix);
2672 	return 0;
2673 }
2674 
2675 static int
x86_decode(uint8_t * inst_bytes,size_t inst_len,struct x86_instr * instr,struct nvmm_x64_state * state)2676 x86_decode(uint8_t *inst_bytes, size_t inst_len, struct x86_instr *instr,
2677     struct nvmm_x64_state *state)
2678 {
2679 	struct x86_decode_fsm fsm;
2680 	int ret;
2681 
2682 	memset(instr, 0, sizeof(*instr));
2683 	instr->legpref.seg = -1;
2684 	instr->src.hardseg = -1;
2685 	instr->dst.hardseg = -1;
2686 
2687 	fsm.is64bit = is_64bit(state);
2688 	fsm.is32bit = is_32bit(state);
2689 	fsm.is16bit = is_16bit(state);
2690 
2691 	fsm.fn = node_legacy_prefix;
2692 	fsm.buf = inst_bytes;
2693 	fsm.end = inst_bytes + inst_len;
2694 
2695 	while (fsm.fn != NULL) {
2696 		ret = (*fsm.fn)(&fsm, instr);
2697 		if (ret == -1) {
2698 #ifdef NVMM_DEBUG
2699 			printf("\n%s debug: unrecognized instruction found " \
2700 			       "with max length %ld : [ ", __func__, inst_len);
2701 			for (uint i = 0; i < inst_len; i++)
2702 			      printf("%02x ", inst_bytes[i]);
2703 			printf("]\n");
2704 			fflush(stdout);
2705 #endif
2706 			return -1;
2707 		}
2708 	}
2709 
2710 	instr->len = fsm.buf - inst_bytes;
2711 
2712 	return 0;
2713 }
2714 
2715 /* -------------------------------------------------------------------------- */
2716 
2717 #define EXEC_INSTR(sz, instr)						\
2718 static uint##sz##_t							\
2719 exec_##instr##sz(uint##sz##_t op1, uint##sz##_t op2, uint64_t *rflags)	\
2720 {									\
2721 	uint##sz##_t res;						\
2722 	__asm __volatile (						\
2723 		#instr"	%2, %3;"					\
2724 		"mov	%3, %1;"					\
2725 		"pushfq;"						\
2726 		"popq	%0"						\
2727 	    : "=r" (*rflags), "=r" (res)				\
2728 	    : "r" (op1), "r" (op2));					\
2729 	return res;							\
2730 }
2731 
2732 #define EXEC_DISPATCHER(instr)						\
2733 static uint64_t								\
2734 exec_##instr(uint64_t op1, uint64_t op2, uint64_t *rflags, size_t opsize) \
2735 {									\
2736 	switch (opsize) {						\
2737 	case 1:								\
2738 		return exec_##instr##8(op1, op2, rflags);		\
2739 	case 2:								\
2740 		return exec_##instr##16(op1, op2, rflags);		\
2741 	case 4:								\
2742 		return exec_##instr##32(op1, op2, rflags);		\
2743 	default:							\
2744 		return exec_##instr##64(op1, op2, rflags);		\
2745 	}								\
2746 }
2747 
2748 /* SUB: ret = op1 - op2 */
2749 #define PSL_SUB_MASK	(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF|PSL_AF)
2750 EXEC_INSTR(8, sub)
2751 EXEC_INSTR(16, sub)
2752 EXEC_INSTR(32, sub)
2753 EXEC_INSTR(64, sub)
EXEC_DISPATCHER(sub)2754 EXEC_DISPATCHER(sub)
2755 
2756 /* OR:  ret = op1 | op2 */
2757 #define PSL_OR_MASK	(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2758 EXEC_INSTR(8, or)
2759 EXEC_INSTR(16, or)
2760 EXEC_INSTR(32, or)
2761 EXEC_INSTR(64, or)
2762 EXEC_DISPATCHER(or)
2763 
2764 /* AND: ret = op1 & op2 */
2765 #define PSL_AND_MASK	(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2766 EXEC_INSTR(8, and)
2767 EXEC_INSTR(16, and)
2768 EXEC_INSTR(32, and)
2769 EXEC_INSTR(64, and)
2770 EXEC_DISPATCHER(and)
2771 
2772 /* XOR: ret = op1 ^ op2 */
2773 #define PSL_XOR_MASK	(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2774 EXEC_INSTR(8, xor)
2775 EXEC_INSTR(16, xor)
2776 EXEC_INSTR(32, xor)
2777 EXEC_INSTR(64, xor)
2778 EXEC_DISPATCHER(xor)
2779 
2780 /* -------------------------------------------------------------------------- */
2781 
2782 /*
2783  * Emulation functions. We don't care about the order of the operands, except
2784  * for SUB, CMP and TEST. For these ones we look at mem->write to determine who
2785  * is op1 and who is op2.
2786  */
2787 
2788 static void
2789 x86_func_or(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2790 {
2791 	uint64_t *retval = (uint64_t *)mem->data;
2792 	const bool write = mem->write;
2793 	uint64_t *op1, op2, fl, ret;
2794 
2795 	op1 = (uint64_t *)mem->data;
2796 	op2 = 0;
2797 
2798 	/* Fetch the value to be OR'ed (op2). */
2799 	mem->data = (uint8_t *)&op2;
2800 	mem->write = false;
2801 	(*vcpu->cbs.mem)(mem);
2802 
2803 	/* Perform the OR. */
2804 	ret = exec_or(*op1, op2, &fl, mem->size);
2805 
2806 	if (write) {
2807 		/* Write back the result. */
2808 		mem->data = (uint8_t *)&ret;
2809 		mem->write = true;
2810 		(*vcpu->cbs.mem)(mem);
2811 	} else {
2812 		/* Return data to the caller. */
2813 		*retval = ret;
2814 	}
2815 
2816 	gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_OR_MASK;
2817 	gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_OR_MASK);
2818 }
2819 
2820 static void
x86_func_and(struct nvmm_vcpu * vcpu,struct nvmm_mem * mem,uint64_t * gprs)2821 x86_func_and(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2822 {
2823 	uint64_t *retval = (uint64_t *)mem->data;
2824 	const bool write = mem->write;
2825 	uint64_t *op1, op2, fl, ret;
2826 
2827 	op1 = (uint64_t *)mem->data;
2828 	op2 = 0;
2829 
2830 	/* Fetch the value to be AND'ed (op2). */
2831 	mem->data = (uint8_t *)&op2;
2832 	mem->write = false;
2833 	(*vcpu->cbs.mem)(mem);
2834 
2835 	/* Perform the AND. */
2836 	ret = exec_and(*op1, op2, &fl, mem->size);
2837 
2838 	if (write) {
2839 		/* Write back the result. */
2840 		mem->data = (uint8_t *)&ret;
2841 		mem->write = true;
2842 		(*vcpu->cbs.mem)(mem);
2843 	} else {
2844 		/* Return data to the caller. */
2845 		*retval = ret;
2846 	}
2847 
2848 	gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_AND_MASK;
2849 	gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_AND_MASK);
2850 }
2851 
2852 static void
x86_func_xchg(struct nvmm_vcpu * vcpu,struct nvmm_mem * mem,uint64_t * gprs)2853 x86_func_xchg(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2854 {
2855 	uint64_t *op1, op2;
2856 
2857 	op1 = (uint64_t *)mem->data;
2858 	op2 = 0;
2859 
2860 	/* Fetch op2. */
2861 	mem->data = (uint8_t *)&op2;
2862 	mem->write = false;
2863 	(*vcpu->cbs.mem)(mem);
2864 
2865 	/* Write op1 in op2. */
2866 	mem->data = (uint8_t *)op1;
2867 	mem->write = true;
2868 	(*vcpu->cbs.mem)(mem);
2869 
2870 	/* Write op2 in op1. */
2871 	*op1 = op2;
2872 }
2873 
2874 static void
x86_func_sub(struct nvmm_vcpu * vcpu,struct nvmm_mem * mem,uint64_t * gprs)2875 x86_func_sub(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2876 {
2877 	uint64_t *retval = (uint64_t *)mem->data;
2878 	const bool write = mem->write;
2879 	uint64_t *op1, *op2, fl, ret;
2880 	uint64_t tmp;
2881 	bool memop1;
2882 
2883 	memop1 = !mem->write;
2884 	op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2885 	op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2886 
2887 	/* Fetch the value to be SUB'ed (op1 or op2). */
2888 	mem->data = (uint8_t *)&tmp;
2889 	mem->write = false;
2890 	(*vcpu->cbs.mem)(mem);
2891 
2892 	/* Perform the SUB. */
2893 	ret = exec_sub(*op1, *op2, &fl, mem->size);
2894 
2895 	if (write) {
2896 		/* Write back the result. */
2897 		mem->data = (uint8_t *)&ret;
2898 		mem->write = true;
2899 		(*vcpu->cbs.mem)(mem);
2900 	} else {
2901 		/* Return data to the caller. */
2902 		*retval = ret;
2903 	}
2904 
2905 	gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_SUB_MASK;
2906 	gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_SUB_MASK);
2907 }
2908 
2909 static void
x86_func_xor(struct nvmm_vcpu * vcpu,struct nvmm_mem * mem,uint64_t * gprs)2910 x86_func_xor(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2911 {
2912 	uint64_t *retval = (uint64_t *)mem->data;
2913 	const bool write = mem->write;
2914 	uint64_t *op1, op2, fl, ret;
2915 
2916 	op1 = (uint64_t *)mem->data;
2917 	op2 = 0;
2918 
2919 	/* Fetch the value to be XOR'ed (op2). */
2920 	mem->data = (uint8_t *)&op2;
2921 	mem->write = false;
2922 	(*vcpu->cbs.mem)(mem);
2923 
2924 	/* Perform the XOR. */
2925 	ret = exec_xor(*op1, op2, &fl, mem->size);
2926 
2927 	if (write) {
2928 		/* Write back the result. */
2929 		mem->data = (uint8_t *)&ret;
2930 		mem->write = true;
2931 		(*vcpu->cbs.mem)(mem);
2932 	} else {
2933 		/* Return data to the caller. */
2934 		*retval = ret;
2935 	}
2936 
2937 	gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_XOR_MASK;
2938 	gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_XOR_MASK);
2939 }
2940 
2941 static void
x86_func_cmp(struct nvmm_vcpu * vcpu,struct nvmm_mem * mem,uint64_t * gprs)2942 x86_func_cmp(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2943 {
2944 	uint64_t *op1, *op2, fl;
2945 	uint64_t tmp;
2946 	bool memop1;
2947 
2948 	memop1 = !mem->write;
2949 	op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2950 	op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2951 
2952 	/* Fetch the value to be CMP'ed (op1 or op2). */
2953 	mem->data = (uint8_t *)&tmp;
2954 	mem->write = false;
2955 	(*vcpu->cbs.mem)(mem);
2956 
2957 	/* Perform the CMP. */
2958 	exec_sub(*op1, *op2, &fl, mem->size);
2959 
2960 	gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_SUB_MASK;
2961 	gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_SUB_MASK);
2962 }
2963 
2964 static void
x86_func_test(struct nvmm_vcpu * vcpu,struct nvmm_mem * mem,uint64_t * gprs)2965 x86_func_test(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2966 {
2967 	uint64_t *op1, *op2, fl;
2968 	uint64_t tmp;
2969 	bool memop1;
2970 
2971 	memop1 = !mem->write;
2972 	op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2973 	op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2974 
2975 	/* Fetch the value to be TEST'ed (op1 or op2). */
2976 	mem->data = (uint8_t *)&tmp;
2977 	mem->write = false;
2978 	(*vcpu->cbs.mem)(mem);
2979 
2980 	/* Perform the TEST. */
2981 	exec_and(*op1, *op2, &fl, mem->size);
2982 
2983 	gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_AND_MASK;
2984 	gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_AND_MASK);
2985 }
2986 
2987 static void
x86_func_mov(struct nvmm_vcpu * vcpu,struct nvmm_mem * mem,uint64_t * gprs)2988 x86_func_mov(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2989 {
2990 	/*
2991 	 * Nothing special, just move without emulation.
2992 	 */
2993 	(*vcpu->cbs.mem)(mem);
2994 }
2995 
2996 static void
x86_func_stos(struct nvmm_vcpu * vcpu,struct nvmm_mem * mem,uint64_t * gprs)2997 x86_func_stos(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2998 {
2999 	/*
3000 	 * Just move, and update RDI.
3001 	 */
3002 	(*vcpu->cbs.mem)(mem);
3003 
3004 	if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
3005 		gprs[NVMM_X64_GPR_RDI] -= mem->size;
3006 	} else {
3007 		gprs[NVMM_X64_GPR_RDI] += mem->size;
3008 	}
3009 }
3010 
3011 static void
x86_func_lods(struct nvmm_vcpu * vcpu,struct nvmm_mem * mem,uint64_t * gprs)3012 x86_func_lods(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
3013 {
3014 	/*
3015 	 * Just move, and update RSI.
3016 	 */
3017 	(*vcpu->cbs.mem)(mem);
3018 
3019 	if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
3020 		gprs[NVMM_X64_GPR_RSI] -= mem->size;
3021 	} else {
3022 		gprs[NVMM_X64_GPR_RSI] += mem->size;
3023 	}
3024 }
3025 
3026 /* -------------------------------------------------------------------------- */
3027 
3028 static inline uint64_t
gpr_read_address(struct x86_instr * instr,struct nvmm_x64_state * state,int gpr)3029 gpr_read_address(struct x86_instr *instr, struct nvmm_x64_state *state, int gpr)
3030 {
3031 	uint64_t val;
3032 
3033 	val = state->gprs[gpr];
3034 	val &= size_to_mask(instr->address_size);
3035 
3036 	return val;
3037 }
3038 
3039 static int
store_to_gva(struct nvmm_x64_state * state,struct x86_instr * instr,struct x86_store * store,gvaddr_t * gvap,size_t size)3040 store_to_gva(struct nvmm_x64_state *state, struct x86_instr *instr,
3041     struct x86_store *store, gvaddr_t *gvap, size_t size)
3042 {
3043 	struct x86_sib *sib;
3044 	gvaddr_t gva = 0;
3045 	uint64_t reg;
3046 	int ret, seg;
3047 
3048 	if (store->type == STORE_SIB) {
3049 		sib = &store->u.sib;
3050 		if (sib->bas != NULL)
3051 			gva += gpr_read_address(instr, state, sib->bas->num);
3052 		if (sib->idx != NULL) {
3053 			reg = gpr_read_address(instr, state, sib->idx->num);
3054 			gva += sib->scale * reg;
3055 		}
3056 	} else if (store->type == STORE_REG) {
3057 		if (store->u.reg == NULL) {
3058 			/* The base is null. Happens with disp32-only and
3059 			 * disp16-only. */
3060 		} else {
3061 			gva = gpr_read_address(instr, state, store->u.reg->num);
3062 		}
3063 	} else if (store->type == STORE_DUALREG) {
3064 		gva = gpr_read_address(instr, state, store->u.dualreg.reg1) +
3065 		    gpr_read_address(instr, state, store->u.dualreg.reg2);
3066 	} else {
3067 		gva = store->u.dmo;
3068 	}
3069 
3070 	if (store->disp.type != DISP_NONE) {
3071 		gva += store->disp.data;
3072 	}
3073 
3074 	if (store->hardseg != -1) {
3075 		seg = store->hardseg;
3076 	} else {
3077 		if (__predict_false(instr->legpref.seg != -1)) {
3078 			seg = instr->legpref.seg;
3079 		} else {
3080 			seg = NVMM_X64_SEG_DS;
3081 		}
3082 	}
3083 
3084 	if (__predict_true(is_long_mode(state))) {
3085 		if (seg == NVMM_X64_SEG_GS || seg == NVMM_X64_SEG_FS) {
3086 			segment_apply(&state->segs[seg], &gva);
3087 		}
3088 	} else {
3089 		ret = segment_check(&state->segs[seg], gva, size);
3090 		if (ret == -1)
3091 			return -1;
3092 		segment_apply(&state->segs[seg], &gva);
3093 	}
3094 
3095 	*gvap = gva;
3096 	return 0;
3097 }
3098 
3099 static int
fetch_segment(struct nvmm_machine * mach,struct nvmm_vcpu * vcpu)3100 fetch_segment(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
3101 {
3102 	struct nvmm_x64_state *state = vcpu->state;
3103 	uint8_t inst_bytes[5], byte;
3104 	size_t i, fetchsize;
3105 	gvaddr_t gva;
3106 	int ret, seg;
3107 
3108 	fetchsize = sizeof(inst_bytes);
3109 
3110 	gva = state->gprs[NVMM_X64_GPR_RIP];
3111 	if (__predict_false(!is_long_mode(state))) {
3112 		ret = segment_check(&state->segs[NVMM_X64_SEG_CS], gva,
3113 		    fetchsize);
3114 		if (ret == -1)
3115 			return -1;
3116 		segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva);
3117 	}
3118 
3119 	ret = read_guest_memory(mach, vcpu, gva, inst_bytes, fetchsize);
3120 	if (ret == -1)
3121 		return -1;
3122 
3123 	seg = NVMM_X64_SEG_DS;
3124 	for (i = 0; i < fetchsize; i++) {
3125 		byte = inst_bytes[i];
3126 
3127 		if (byte == LEG_OVR_DS) {
3128 			seg = NVMM_X64_SEG_DS;
3129 		} else if (byte == LEG_OVR_ES) {
3130 			seg = NVMM_X64_SEG_ES;
3131 		} else if (byte == LEG_OVR_GS) {
3132 			seg = NVMM_X64_SEG_GS;
3133 		} else if (byte == LEG_OVR_FS) {
3134 			seg = NVMM_X64_SEG_FS;
3135 		} else if (byte == LEG_OVR_CS) {
3136 			seg = NVMM_X64_SEG_CS;
3137 		} else if (byte == LEG_OVR_SS) {
3138 			seg = NVMM_X64_SEG_SS;
3139 		} else if (byte == LEG_OPR_OVR) {
3140 			/* nothing */
3141 		} else if (byte == LEG_ADR_OVR) {
3142 			/* nothing */
3143 		} else if (byte == LEG_REP) {
3144 			/* nothing */
3145 		} else if (byte == LEG_REPN) {
3146 			/* nothing */
3147 		} else if (byte == LEG_LOCK) {
3148 			/* nothing */
3149 		} else {
3150 			return seg;
3151 		}
3152 	}
3153 
3154 	return seg;
3155 }
3156 
3157 static int
fetch_instruction(struct nvmm_machine * mach,struct nvmm_vcpu * vcpu,struct nvmm_vcpu_exit * exit)3158 fetch_instruction(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
3159     struct nvmm_vcpu_exit *exit)
3160 {
3161 	struct nvmm_x64_state *state = vcpu->state;
3162 	size_t fetchsize;
3163 	gvaddr_t gva;
3164 	int ret;
3165 
3166 	fetchsize = sizeof(exit->u.mem.inst_bytes);
3167 
3168 	gva = state->gprs[NVMM_X64_GPR_RIP];
3169 	if (__predict_false(!is_long_mode(state))) {
3170 		ret = segment_check(&state->segs[NVMM_X64_SEG_CS], gva,
3171 		    fetchsize);
3172 		if (ret == -1)
3173 			return -1;
3174 		segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva);
3175 	}
3176 
3177 	ret = read_guest_memory(mach, vcpu, gva, exit->u.mem.inst_bytes,
3178 	    fetchsize);
3179 	if (ret == -1)
3180 		return -1;
3181 
3182 	exit->u.mem.inst_len = fetchsize;
3183 
3184 	return 0;
3185 }
3186 
3187 static int
assist_mem_movs(struct nvmm_machine * mach,struct nvmm_vcpu * vcpu,struct x86_instr * instr)3188 assist_mem_movs(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
3189     struct x86_instr *instr)
3190 {
3191 	struct nvmm_x64_state *state = vcpu->state;
3192 	uint64_t *gprs;
3193 	uint8_t data[8];
3194 	gvaddr_t gva;
3195 	size_t size;
3196 	int ret;
3197 
3198 	size = instr->operand_size;
3199 	gprs = state->gprs;
3200 
3201 	/* Source. */
3202 	ret = store_to_gva(state, instr, &instr->src, &gva, size);
3203 	if (ret == -1)
3204 		return -1;
3205 	ret = read_guest_memory(mach, vcpu, gva, data, size);
3206 	if (ret == -1)
3207 		return -1;
3208 
3209 	/* Destination. */
3210 	ret = store_to_gva(state, instr, &instr->dst, &gva, size);
3211 	if (ret == -1)
3212 		return -1;
3213 	ret = write_guest_memory(mach, vcpu, gva, data, size);
3214 	if (ret == -1)
3215 		return -1;
3216 
3217 	/*
3218 	 * Inlined x86_func_movs() call
3219 	 * 	(*instr->emul->func)(vcpu, &mem, state->gprs);
3220 	 */
3221 
3222 	if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
3223 		gprs[NVMM_X64_GPR_RSI] -= size;
3224 		gprs[NVMM_X64_GPR_RDI] -= size;
3225 	} else {
3226 		gprs[NVMM_X64_GPR_RSI] += size;
3227 		gprs[NVMM_X64_GPR_RDI] += size;
3228 	}
3229 
3230 	return 0;
3231 }
3232 
3233 static int
assist_mem_cmps(struct nvmm_machine * mach,struct nvmm_vcpu * vcpu,struct x86_instr * instr)3234 assist_mem_cmps(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
3235     struct x86_instr *instr)
3236 {
3237 	struct nvmm_x64_state *state = vcpu->state;
3238 	uint64_t *gprs, op1, op2, fl;
3239 	uint8_t data1[8], data2[8];
3240 	gvaddr_t gva;
3241 	size_t size;
3242 	int ret;
3243 
3244 	size = instr->operand_size;
3245 	gprs = state->gprs;
3246 
3247 	/* Source 1. */
3248 	ret = store_to_gva(state, instr, &instr->src, &gva, size);
3249 	if (ret == -1)
3250 		return -1;
3251 	ret = read_guest_memory(mach, vcpu, gva, data1, size);
3252 	if (ret == -1)
3253 		return -1;
3254 
3255 	/* Source 2. */
3256 	ret = store_to_gva(state, instr, &instr->dst, &gva, size);
3257 	if (ret == -1)
3258 		return -1;
3259 	ret = read_guest_memory(mach, vcpu, gva, data2, size);
3260 	if (ret == -1)
3261 		return -1;
3262 
3263 	/*
3264 	 * Inlined x86_func_cmps() call
3265 	 * 	(*instr->emul->func)(vcpu, &mem, state->gprs);
3266 	 */
3267 
3268 	/* Perform the CMP. */
3269 	op1 = *((uint64_t *) data1);
3270 	op2 = *((uint64_t *) data2);
3271 	exec_sub(op1, op2, &fl, size);
3272 
3273 	gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_SUB_MASK;
3274 	gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_SUB_MASK);
3275 
3276 	if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
3277 		gprs[NVMM_X64_GPR_RSI] -= size;
3278 		gprs[NVMM_X64_GPR_RDI] -= size;
3279 	} else {
3280 		gprs[NVMM_X64_GPR_RSI] += size;
3281 		gprs[NVMM_X64_GPR_RDI] += size;
3282 	}
3283 
3284 	return 0;
3285 }
3286 
3287 static int
assist_mem_single(struct nvmm_machine * mach,struct nvmm_vcpu * vcpu,struct x86_instr * instr)3288 assist_mem_single(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
3289     struct x86_instr *instr)
3290 {
3291 	struct nvmm_x64_state *state = vcpu->state;
3292 	struct nvmm_vcpu_exit *exit = vcpu->exit;
3293 	struct nvmm_mem mem;
3294 	uint8_t membuf[8];
3295 	uint64_t val;
3296 
3297 	memset(membuf, 0, sizeof(membuf));
3298 
3299 	mem.mach = mach;
3300 	mem.vcpu = vcpu;
3301 	mem.gpa = exit->u.mem.gpa;
3302 	mem.size = instr->operand_size;
3303 	mem.data = membuf;
3304 
3305 	/* Determine the direction. */
3306 	switch (instr->src.type) {
3307 	case STORE_REG:
3308 		if (instr->src.disp.type != DISP_NONE) {
3309 			/* Indirect access. */
3310 			mem.write = false;
3311 		} else {
3312 			/* Direct access. */
3313 			mem.write = true;
3314 		}
3315 		break;
3316 	case STORE_DUALREG:
3317 		if (instr->src.disp.type == DISP_NONE) {
3318 			DISASSEMBLER_BUG();
3319 		}
3320 		mem.write = false;
3321 		break;
3322 	case STORE_IMM:
3323 		mem.write = true;
3324 		break;
3325 	case STORE_SIB:
3326 		mem.write = false;
3327 		break;
3328 	case STORE_DMO:
3329 		mem.write = false;
3330 		break;
3331 	default:
3332 		DISASSEMBLER_BUG();
3333 	}
3334 
3335 	if (mem.write) {
3336 		switch (instr->src.type) {
3337 		case STORE_REG:
3338 			/* The instruction was "reg -> mem". Fetch the register
3339 			 * in membuf. */
3340 			if (__predict_false(instr->src.disp.type != DISP_NONE)) {
3341 				DISASSEMBLER_BUG();
3342 			}
3343 			val = state->gprs[instr->src.u.reg->num];
3344 			val = __SHIFTOUT(val, instr->src.u.reg->mask);
3345 			memcpy(mem.data, &val, mem.size);
3346 			break;
3347 		case STORE_IMM:
3348 			/* The instruction was "imm -> mem". Fetch the immediate
3349 			 * in membuf. */
3350 			memcpy(mem.data, &instr->src.u.imm.data, mem.size);
3351 			break;
3352 		default:
3353 			DISASSEMBLER_BUG();
3354 		}
3355 	} else if (instr->emul->readreg) {
3356 		/* The instruction was "mem -> reg", but the value of the
3357 		 * register matters for the emul func. Fetch it in membuf. */
3358 		if (__predict_false(instr->dst.type != STORE_REG)) {
3359 			DISASSEMBLER_BUG();
3360 		}
3361 		if (__predict_false(instr->dst.disp.type != DISP_NONE)) {
3362 			DISASSEMBLER_BUG();
3363 		}
3364 		val = state->gprs[instr->dst.u.reg->num];
3365 		val = __SHIFTOUT(val, instr->dst.u.reg->mask);
3366 		memcpy(mem.data, &val, mem.size);
3367 	}
3368 
3369 	(*instr->emul->func)(vcpu, &mem, state->gprs);
3370 
3371 	if (instr->emul->notouch) {
3372 		/* We're done. */
3373 		return 0;
3374 	}
3375 
3376 	if (!mem.write) {
3377 		/* The instruction was "mem -> reg". The emul func has filled
3378 		 * membuf with the memory content. Install membuf in the
3379 		 * register. */
3380 		if (__predict_false(instr->dst.type != STORE_REG)) {
3381 			DISASSEMBLER_BUG();
3382 		}
3383 		if (__predict_false(instr->dst.disp.type != DISP_NONE)) {
3384 			DISASSEMBLER_BUG();
3385 		}
3386 		memcpy(&val, membuf, sizeof(uint64_t));
3387 		val = __SHIFTIN(val, instr->dst.u.reg->mask);
3388 		state->gprs[instr->dst.u.reg->num] &= ~instr->dst.u.reg->mask;
3389 		state->gprs[instr->dst.u.reg->num] |= val;
3390 		state->gprs[instr->dst.u.reg->num] &= ~instr->zeroextend_mask;
3391 	} else if (instr->emul->backprop) {
3392 		/* The instruction was "reg -> mem", but the memory must be
3393 		 * back-propagated to the register. Install membuf in the
3394 		 * register. */
3395 		if (__predict_false(instr->src.type != STORE_REG)) {
3396 			DISASSEMBLER_BUG();
3397 		}
3398 		if (__predict_false(instr->src.disp.type != DISP_NONE)) {
3399 			DISASSEMBLER_BUG();
3400 		}
3401 		memcpy(&val, membuf, sizeof(uint64_t));
3402 		val = __SHIFTIN(val, instr->src.u.reg->mask);
3403 		state->gprs[instr->src.u.reg->num] &= ~instr->src.u.reg->mask;
3404 		state->gprs[instr->src.u.reg->num] |= val;
3405 		state->gprs[instr->src.u.reg->num] &= ~instr->zeroextend_mask;
3406 	}
3407 
3408 	return 0;
3409 }
3410 
3411 int
nvmm_assist_mem(struct nvmm_machine * mach,struct nvmm_vcpu * vcpu)3412 nvmm_assist_mem(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
3413 {
3414 	struct nvmm_x64_state *state = vcpu->state;
3415 	struct nvmm_vcpu_exit *exit = vcpu->exit;
3416 	struct x86_instr instr;
3417 	uint64_t cnt = 0; /* GCC */
3418 	int ret;
3419 
3420 	if (__predict_false(exit->reason != NVMM_VCPU_EXIT_MEMORY)) {
3421 		errno = EINVAL;
3422 		return -1;
3423 	}
3424 
3425 	ret = nvmm_vcpu_getstate(mach, vcpu,
3426 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
3427 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
3428 	if (ret == -1)
3429 		return -1;
3430 
3431 	if (exit->u.mem.inst_len == 0) {
3432 		/*
3433 		 * The instruction was not fetched from the kernel. Fetch
3434 		 * it ourselves.
3435 		 */
3436 		ret = fetch_instruction(mach, vcpu, exit);
3437 		if (ret == -1)
3438 			return -1;
3439 	}
3440 
3441 	ret = x86_decode(exit->u.mem.inst_bytes, exit->u.mem.inst_len,
3442 	    &instr, state);
3443 	if (ret == -1) {
3444 		errno = ENODEV;
3445 		return -1;
3446 	}
3447 
3448 	if (instr.legpref.rep || instr.legpref.repn) {
3449 		cnt = rep_get_cnt(state, instr.address_size);
3450 		if (__predict_false(cnt == 0)) {
3451 			state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3452 			goto out;
3453 		}
3454 	}
3455 
3456 	if (instr.opcode->movs) {
3457 		ret = assist_mem_movs(mach, vcpu, &instr);
3458 	} else if (instr.opcode->cmps) {
3459 		instr.legpref.repe = !instr.legpref.repn;
3460 		ret = assist_mem_cmps(mach, vcpu, &instr);
3461 	} else {
3462 		ret = assist_mem_single(mach, vcpu, &instr);
3463 	}
3464 	if (ret == -1) {
3465 		errno = ENODEV;
3466 		return -1;
3467 	}
3468 
3469 	if (instr.legpref.rep || instr.legpref.repn) {
3470 		cnt -= 1;
3471 		rep_set_cnt(state, instr.address_size, cnt);
3472 		if (cnt == 0) {
3473 			state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3474 		} else if (__predict_false(instr.legpref.repn)) {
3475 			/* repn */
3476 			if (state->gprs[NVMM_X64_GPR_RFLAGS] & PSL_Z) {
3477 				state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3478 			}
3479 		} else if (__predict_false(instr.legpref.repe)) {
3480 			/* repe */
3481 			if ((state->gprs[NVMM_X64_GPR_RFLAGS] & PSL_Z) == 0) {
3482 				state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3483 			}
3484 		}
3485 	} else {
3486 		state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3487 	}
3488 
3489 out:
3490 	ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
3491 	if (ret == -1)
3492 		return -1;
3493 
3494 	return 0;
3495 }
3496