1;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;     The data in this file contains enhancments.                    ;;;;;
4;;;                                                                    ;;;;;
5;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
6;;;     All rights reserved                                            ;;;;;
7;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8;;;     (c) copyright 1982 massachusetts institute of technology         ;;;
9;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
10
11(in-package :maxima)
12
13(macsyma-module defint)
14
15;;;          this is the definite integration package.
16;;	defint does definite integration by trying to find an
17;;appropriate method for the integral in question.  the first thing that
18;;is looked at is the endpoints of the problem.
19;;
20;;	i(grand,var,a,b) will be used for integrate(grand,var,a,b)
21
22;; References are to "Evaluation of Definite Integrals by Symbolic
23;; Manipulation", by Paul S. Wang,
24;; (http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-092.pdf)
25;;
26;;	nointegrate is a macsyma level flag which inhibits indefinite
27;;integration.
28;;	abconv is a macsyma level flag which inhibits the absolute
29;;convergence test.
30;;
31;;	$defint is the top level function that takes the user input
32;;and does minor changes to make the integrand ready for the package.
33;;
34;;	next comes defint, which is the function that does the
35;;integration.  it is often called recursively from the bowels of the
36;;package.  defint does some of the easy cases and dispatches to:
37;;
38;;	dintegrate.  this program first sees if the limits of
39;;integration are 0,inf or minf,inf.  if so it sends the problem to
40;;ztoinf or mtoinf, respectively.
41;;	else, dintegrate tries:
42;;
43;;	intsc1 - does integrals of sin's or cos's or exp(%i var)'s
44;;		 when the interval is 0,2 %pi or 0,%pi.
45;;		 method is conversion to rational function and find
46;;		 residues in the unit circle. [wang, pp 107-109]
47;;
48;;	ratfnt - does rational functions over finite interval by
49;;		 doing polynomial part directly, and converting
50;;		 the rational part to an integral on 0,inf and finding
51;;		 the answer by residues.
52;;
53;;	zto1   - i(x^(k-1)*(1-x)^(l-1),x,0,1) = beta(k,l)  or
54;;		 i(log(x)*x^(x-1)*(1-x)^(l-1),x,0,1) = psi...
55;;		 [wang, pp 116,117]
56;;
57;;	dintrad- i(x^m/(a*x^2+b*x+c)^(n+3/2),x,0,inf) [wang, p 74]
58;;
59;;	dintlog- i(log(g(x))*f(x),x,0,inf) = 0 (by symmetry) or
60;;		 tries an integration by parts.  (only routine to
61;;		 try integration by parts) [wang, pp 93-95]
62;;
63;;	dintexp- i(f(exp(k*x)),x,a,inf) = i(f(x+1)/(x+1),x,0,inf)
64;;               or i(f(x)/x,x,0,inf)/k. First case hold for a=0;
65;;               the second for a=minf. [wang 96-97]
66;;
67;;dintegrate also tries indefinite integration based on certain
68;;predicates (such as abconv) and tries breaking up the integrand
69;;over a sum or tries a change of variable.
70;;
71;;	ztoinf is the routine for doing integrals over the range 0,inf.
72;;          it goes over a series of routines and sees if any will work:
73;;
74;;	   scaxn  - sc(b*x^n) (sc stands for sin or cos) [wang, pp 81-83]
75;;
76;;	   ssp    - a*sc^n(r*x)/x^m  [wang, pp 86,87]
77;;
78;;	   zmtorat- rational function. done by multiplication by plog(-x)
79;;		    and finding the residues over the keyhole contour
80;;		    [wang, pp 59-61]
81;;
82;;	   log*rat- r(x)*log^n(x) [wang, pp 89-92]
83;;
84;;	   logquad0 log(x)/(a*x^2+b*x+c) uses formula
85;;		    i(log(x)/(x^2+2*x*a*cos(t)+a^2),x,0,inf) =
86;;		    t*log(a)/sin(t).  a better formula might be
87;;		    i(log(x)/(x+b)/(x+c),x,0,inf) =
88;;		    (log^2(b)-log^2(c))/(2*(b-c))
89;;
90;;	   batapp - x^(p-1)/(b*x^n+a)^m uses formula related to the beta
91;;		    function [wang, p 71]
92;;		    there is also a special case when m=1 and a*b<0
93;;		    see [wang, p 65]
94;;
95;;          sinnu  - x^-a*n(x)/d(x) [wang, pp 69-70]
96;;
97;;	   ggr    - x^r*exp(a*x^n+b)
98;;
99;;	   dintexp- see dintegrate
100;;
101;;     ztoinf also tries 1/2*mtoinf if the integrand is an even function
102;;
103;; mtoinf is the routine for doing integrals on minf,inf.
104;;        it too tries a series of routines and sees if any succeed.
105;;
106;;	 scaxn  - when the integrand is an even function, see ztoinf
107;;
108;;	 mtosc  - exp(%i*m*x)*r(x) by residues on either the upper half
109;;		  plane or the lower half plane, depending on whether
110;;		  m is positive or negative.
111;;
112;;	 zmtorat- does rational function by finding residues in upper
113;;	          half plane
114;;
115;;	 dintexp- see dintegrate
116;;
117;;	 rectzto%pi2 - poly(x)*rat(exp(x)) by finding residues in
118;;		       rectangle [wang, pp98-100]
119;;
120;;	 ggrm   - x^r*exp((x+a)^n+b)
121;;
122;;   mtoinf also tries 2*ztoinf if the integrand is an even function.
123
124(load-macsyma-macros rzmac)
125
126(declare-top (special *def2* pcprntd *mtoinf* rsn*
127		      sn* sd* leadcoef checkfactors
128		      *nodiverg exp1
129		      *ul1* *ll1* *dflag bptu bptd plm* zn
130		      *updn ul ll exp pe* pl* rl* pl*1 rl*1
131		      loopstop* var nn* nd* dn* p*
132		      factors rlm*
133		      $trigexpandplus $trigexpandtimes
134		      plogabs *scflag*
135		      *sin-cos-recur* *rad-poly-recur* *dintlog-recur*
136		      *dintexp-recur* defintdebug *defint-assumptions*
137		      *current-assumptions*
138		      *global-defint-assumptions*)
139;;;rsn* is in comdenom. does a ratsimp of numerator.
140					;expvar
141	     (special $intanalysis $abconvtest $noprincipal $nointegrate)
142					;impvar
143	     (special $solveradcan $solvetrigwarn *roots *failures
144		      $logabs $tlimswitch $maxposex $maxnegex
145		      $trigsign $savefactors $radexpand $breakup $%emode
146		      $float $exptsubst dosimp context rp-polylogp
147		      %p%i half%pi %pi2 half%pi3 varlist genvar
148		      $domain $m1pbranch errorsw
149		      limitp $algebraic
150		      ;;LIMITP T Causes $ASKSIGN to do special things
151		      ;;For DEFINT like eliminate epsilon look for prin-inf
152		      ;;take realpart and imagpart.
153		      integer-info
154		      ;;If LIMITP is non-null ask-integer conses
155		      ;;its assumptions onto this list.
156		      generate-atan2))
157					;If this switch is () then RPART returns ATAN's
158					;instead of ATAN2's
159
160(declare-top (special infinities real-infinities infinitesimals))
161
162;;These are really defined in LIMIT but DEFINT uses them also.
163(cond ((not (boundp 'infinities))
164       (setq infinities '($inf $minf $infinity))
165       (setq real-infinities '($inf $minf))
166       (setq infinitesimals '($zeroa $zerob))))
167
168(defmvar $intanalysis t
169  "When @code{true}, definite integration tries to find poles in the integrand
170in the interval of integration.")
171
172(defmvar defintdebug () "If true Defint prints out debugging information")
173
174(defmvar integerl nil
175  "An integer-list for non-atoms found out to be `integer's")
176
177(defmvar nonintegerl nil
178  "A non-integer-list for non-atoms found out to be `noninteger's")
179
180;; Not really sure what this is meant to do, but it's used by MTORAT,
181;; KEYHOLE, and POLELIST.
182(defvar *semirat* nil)
183
184(defmfun $defint (exp var ll ul)
185
186  ;; Distribute $defint over equations, lists, and matrices.
187  (cond ((mbagp exp)
188         (return-from $defint
189           (simplify
190             (cons (car exp)
191                   (mapcar #'(lambda (e)
192                               (simplify ($defint e var ll ul)))
193                           (cdr exp)))))))
194
195  (let ((*global-defint-assumptions* ())
196	(integer-info ()) (integerl integerl) (nonintegerl nonintegerl))
197    (with-new-context (context)
198      (unwind-protect
199	   (let ((*defint-assumptions* ())  (*def2* ())  (*rad-poly-recur* ())
200		 (*sin-cos-recur* ())  (*dintexp-recur* ())  (*dintlog-recur* 0.)
201		 (ans nil)  (orig-exp exp)  (orig-var var)
202		 (orig-ll ll)  (orig-ul ul)
203		 (pcprntd nil)  (*nodiverg nil)  ($logabs t)  ; (limitp t)
204		 (rp-polylogp ())
205                 ($%edispflag nil) ; to get internal representation
206		 ($m1pbranch ())) ;Try this out.
207
208	     (make-global-assumptions) ;sets *global-defint-assumptions*
209	     (setq exp (ratdisrep exp))
210	     (setq var (ratdisrep var))
211	     (setq ll (ratdisrep ll))
212	     (setq ul (ratdisrep ul))
213	     (cond (($constantp var)
214		    (merror (intl:gettext "defint: variable of integration cannot be a constant; found ~M") var))
215		   (($subvarp var)  (setq var (gensym))
216		    (setq exp ($substitute var orig-var exp))))
217	     (cond ((not (atom var))
218		    (merror (intl:gettext "defint: variable of integration must be a simple or subscripted variable.~%defint: found ~M") var))
219		   ((or (among var ul)
220			(among var ll))
221		    (setq var (gensym))
222		    (setq exp ($substitute var orig-var exp))))
223             (unless (lenient-extended-realp ll)
224               (merror (intl:gettext "defint: lower limit of integration must be real; found ~M") ll))
225             (unless (lenient-extended-realp ul)
226               (merror (intl:gettext "defint: upper limit of integration must be real; found ~M") ul))
227
228	     (cond ((setq ans (defint exp var ll ul))
229		    (setq ans (subst orig-var var ans))
230		    (cond ((atom ans)  ans)
231			  ((and (free ans '%limit)
232				(free ans '%integrate)
233				(or (not (free ans '$inf))
234				    (not (free ans '$minf))
235				    (not (free ans '$infinity))))
236			   (diverg))
237			  ((not (free ans '$und))
238			   `((%integrate) ,orig-exp ,orig-var ,orig-ll ,orig-ul))
239			  (t ans)))
240		   (t `((%integrate) ,orig-exp ,orig-var ,orig-ll ,orig-ul))))
241	(forget-global-assumptions)))))
242
243(defun eezz (exp ll ul)
244  (cond ((or (polyinx exp var nil)
245	     (catch 'pin%ex (pin%ex exp)))
246	 (setq exp (antideriv exp))
247	 ;; If antideriv can't do it, returns nil
248	 ;; use limit to evaluate every answer returned by antideriv.
249	 (cond ((null exp) nil)
250	       (t (intsubs exp ll ul))))))
251;;;Hack the expression up for exponentials.
252
253(defun sinintp (expr var)
254  ;; Is this expr a candidate for SININT ?
255  (let ((expr (factor expr))
256	(numer nil)
257	(denom nil))
258    (setq numer ($num expr))
259    (setq denom ($denom expr))
260    (cond ((polyinx numer var nil)
261	   (cond ((and (polyinx denom var nil)
262		       (deg-lessp denom var 2))
263		  t)))
264	  ;;ERF type things go here.
265	  ((let ((exponent (%einvolve numer)))
266	     (and (polyinx exponent var nil)
267		  (deg-lessp exponent var 2)))
268	   (cond ((free denom var)
269		  t))))))
270
271(defun deg-lessp (expr var power)
272  (cond  ((or (atom expr)
273	      (mnump expr)) t)
274	 ((or (mtimesp expr)
275	      (mplusp expr))
276	  (do ((ops (cdr expr) (cdr ops)))
277	      ((null ops) t)
278	    (cond ((not (deg-lessp (car ops) var power))
279		   (return ())))))
280	 ((mexptp expr)
281	  (and (or (not (alike1 (cadr expr) var))
282		   (and (numberp (caddr expr))
283			(not (eq (asksign (m+ power (m- (caddr expr))))
284				 '$negative))))
285	       (deg-lessp (cadr expr) var power)))
286	 ((and (consp expr)
287	       (member 'array (car expr))
288	       (not (eq var (caar expr))))
289	  ;; We have some subscripted variable that's not our variable
290	  ;; (I think), so it's deg-lessp.
291	  ;;
292	  ;; FIXME: Is this the best way to handle this?  Are there
293	  ;; other cases we're mising here?
294	  t)))
295
296(defun antideriv (a)
297  (let ((limitp ())
298	(ans ())
299	(generate-atan2 ()))
300    (setq ans (sinint a var))
301    (cond ((among '%integrate ans)  nil)
302	  (t (simplify ans)))))
303
304;; This routine tries to take a limit a couple of ways.
305(defun get-limit (exp var val &optional (dir '$plus dir?))
306  (let ((ans (if dir?
307		 (funcall #'limit-no-err exp var val dir)
308		 (funcall #'limit-no-err exp var val))))
309    (if (and ans (not (among '%limit ans)))
310	ans
311	(when (member val '($inf $minf) :test #'eq)
312	  (setq ans (limit-no-err (maxima-substitute (m^t var -1) var exp)
313				  var
314				  0
315				  (if (eq val '$inf) '$plus '$minus)))
316	  (if (among '%limit ans) nil ans)))))
317
318(defun limit-no-err (&rest argvec)
319  (declare (special errorsw))
320  (let ((errorsw t) (ans nil))
321    (setq ans (catch 'errorsw (apply #'$limit argvec)))
322    (if (eq ans t) nil ans)))
323
324;; test whether fun2 is inverse of fun1 at val
325(defun test-inverse (fun1 var1 fun2 var2 val)
326  (let* ((out1 (let ((var var1))
327		 (no-err-sub val fun1)))
328	 (out2 (let ((var var2))
329		 (no-err-sub out1 fun2))))
330    (alike1 val out2)))
331
332;; integration change of variable
333(defun intcv (nv flag)
334  (let ((d (bx**n+a nv))
335	(*roots ())  (*failures ())  ($breakup ()))
336    (cond ((and (eq ul '$inf)
337		(equal ll 0)
338		(equal (cadr d) 1)) ())
339	  ((eq var 'yx)		; new var cannot be same as old var
340	   ())
341	  (t
342	   ;; This is a hack!  If nv is of the form b*x^n+a, we can
343	   ;; solve the equation manually instead of using solve.
344	   ;; Why?  Because solve asks us for the sign of yx and
345	   ;; that's bogus.
346	   (cond (d
347		  ;; Solve yx = b*x^n+a, for x.  Any root will do.  So we
348		  ;; have x = ((yx-a)/b)^(1/n).
349		  (destructuring-bind (a n b)
350		      d
351		    (let ((root (power* (div (sub 'yx a) b) (inv n))))
352		      (cond (t
353			     (setq d root)
354			     (cond (flag (intcv2 d nv))
355				   (t (intcv1 d nv))))
356			    ))))
357		 (t
358		  (putprop 'yx t 'internal);; keep var from appearing in questions to user
359		  (solve (m+t 'yx (m*t -1 nv)) var 1.)
360		  (cond ((setq d	;; look for root that is inverse of nv
361			       (do* ((roots *roots (cddr roots))
362				     (root (caddar roots) (caddar roots)))
363				    ((null root) nil)
364				    (if (and (or (real-infinityp ll)
365						 (test-inverse nv var root 'yx ll))
366					     (or (real-infinityp ul)
367						 (test-inverse nv var root 'yx ul)))
368					(return root))))
369			 (cond (flag (intcv2 d nv))
370			       (t (intcv1 d nv))))
371			(t ()))))))))
372
373;; d: original variable (var) as a function of 'yx
374;; ind: boolean flag
375;; nv: new variable ('yx) as a function of original variable (var)
376(defun intcv1 (d nv)
377  (cond ((and (intcv2 d nv)
378	      (equal ($imagpart *ll1*) 0)
379	      (equal ($imagpart *ul1*) 0)
380	      (not (alike1 *ll1* *ul1*)))
381	 (let ((*def2* t))
382	   (defint exp1 'yx *ll1* *ul1*)))))
383
384;; converts limits of integration to values for new variable 'yx
385(defun intcv2 (d nv)
386  (intcv3 d nv)
387  (and (cond ((and (zerop1 (m+ ll ul))
388		   (evenfn nv var))
389	      (setq exp1 (m* 2 exp1)
390		    *ll1* (limcp nv var 0 '$plus)))
391	     (t (setq *ll1* (limcp nv var ll '$plus))))
392       (setq *ul1* (limcp nv var ul '$minus))))
393
394;; wrapper around limit, returns nil if
395;; limit not found (nounform returned), or undefined ($und or $ind)
396(defun limcp (a b c d)
397  (let ((ans ($limit a b c d)))
398    (cond ((not (or (null ans)
399		    (among '%limit ans)
400		    (among '$ind ans)
401		    (among '$und ans)))
402	   ans))))
403
404;; rewrites exp, the integrand in terms of var,
405;; into exp1, the integrand in terms of 'yx.
406(defun intcv3 (d nv)
407  (setq exp1 (m* (sdiff d 'yx)
408		 (subst d var (subst 'yx nv exp))))
409  (setq exp1 (sratsimp exp1)))
410
411(defun integrand-changevar (d newvar exp var)
412  (m* (sdiff d newvar)
413      (subst d var exp)))
414
415(defun defint (exp var ll ul)
416  (let ((old-assumptions *defint-assumptions*)
417        (*current-assumptions* ())
418        (limitp t))
419    (unwind-protect
420	 (prog ()
421	    (setq *current-assumptions* (make-defint-assumptions 'noask))
422	    (let ((exp (resimplify exp))
423		  (var (resimplify var))
424		  ($exptsubst t)
425		  (loopstop* 0)
426		  ;; D (not used? -- cwh)
427		  ans nn* dn* nd* $noprincipal)
428	      (cond ((setq ans (defint-list exp var ll ul))
429		     (return ans))
430		    ((or (zerop1 exp)
431			 (alike1 ul ll))
432		     (return 0.))
433		    ((not (among var exp))
434		     (cond ((or (member ul '($inf $minf) :test #'eq)
435				(member ll '($inf $minf) :test #'eq))
436			    (diverg))
437			   (t (setq ans (m* exp (m+ ul (m- ll))))
438			      (return ans))))
439                    ;; Look for integrals which involve log and exp functions.
440                    ;; Maxima has a special algorithm to get general results.
441                    ((and (setq ans (defint-log-exp exp var ll ul)))
442                     (return ans)))
443	      (let* ((exp (rmconst1 exp))
444		     (c (car exp))
445		     (exp (%i-out-of-denom (cdr exp))))
446		(cond ((and (not $nointegrate)
447			    (not (atom exp))
448			    (or (among 'mqapply exp)
449				(not (member (caar exp)
450					   '(mexpt mplus mtimes %sin %cos
451					     %tan %sinh %cosh %tanh
452					     %log %asin %acos %atan
453					     %cot %acot %sec
454					     %asec %csc %acsc
455					     %derivative) :test #'eq))))
456		       (cond ((setq ans (antideriv exp))
457			      (setq ans (intsubs ans ll ul))
458			      (return (cond (ans (m* c ans)) (t nil))))
459			     (t (return nil)))))
460		(setq exp (tansc exp))
461		(cond ((setq  ans (initial-analysis exp var ll ul))
462		       (return (m* c ans))))
463		(return nil))))
464      (restore-defint-assumptions old-assumptions *current-assumptions*))))
465
466(defun defint-list (exp var ll ul)
467  (cond ((mbagp exp)
468	 (let ((ans (cons (car exp)
469			  (mapcar
470			   #'(lambda (sub-exp)
471			       (defint sub-exp var ll ul))
472			   (cdr exp)))))
473	   (cond (ans (simplify ans))
474		 (t nil))))
475	(t nil)))
476
477(defun initial-analysis (exp var ll ul)
478  (let ((pole (cond ((not $intanalysis)
479		     '$no)		;don't do any checking.
480		    (t (poles-in-interval exp var ll ul)))))
481    (cond ((eq pole '$no)
482	   (cond ((and (oddfn exp var)
483		       (or (and (eq ll '$minf)
484				(eq ul '$inf))
485			   (eq ($sign (m+ ll ul))
486			       '$zero)))  0)
487		 (t (parse-integrand exp var ll ul))))
488	  ((eq pole '$unknown)  ())
489	  (t (principal-value-integral exp var ll ul pole)))))
490
491(defun parse-integrand (exp var ll ul)
492  (let (ans)
493    (cond ((setq ans (eezz exp ll ul))  ans)
494	  ((and (ratp exp var)
495		(setq ans (method-by-limits exp var ll ul)))  ans)
496	  ((and (mplusp exp)
497		(setq ans (intbyterm exp t)))  ans)
498	  ((setq ans (method-by-limits exp var ll ul))  ans)
499	  (t ()))))
500
501(defun rmconst1 (e)
502  (cond ((not (freeof var e))
503	 (partition e var 1))
504	(t (cons e 1))))
505
506
507(defun method-by-limits (exp var ll ul)
508  (let ((old-assumptions *defint-assumptions*))
509    (setq *current-assumptions* (make-defint-assumptions 'noask))
510    ;;Should be a PROG inside of unwind-protect, but Multics has a compiler
511    ;;bug wrt. and I want to test this code now.
512    (unwind-protect
513	 (cond ((and (and (eq ul '$inf)
514			  (eq ll '$minf))
515		     (mtoinf exp var)))
516	       ((and (and (eq ul '$inf)
517			  (equal ll 0.))
518		     (ztoinf exp var)))
519;;;This seems((and (and (eq ul '$inf)
520;;;fairly losing	(setq exp (subin (m+ ll var) exp))
521;;;			(setq ll 0.))
522;;;		   (ztoinf exp var)))
523	       ((and (equal ll 0.)
524		     (freeof var ul)
525		     (eq ($asksign ul) '$pos)
526		     (zto1 exp)))
527	       ;;	     ((and (and (equal ul 1.)
528	       ;;			(equal ll 0.))  (zto1 exp)))
529	       (t (dintegrate exp var ll ul)))
530      (restore-defint-assumptions old-assumptions *defint-assumptions*))))
531
532
533(defun dintegrate (exp var ll ul)
534  (let ((ans nil) (arg nil) (*scflag* nil)
535	(*dflag nil) ($%emode t))
536;;;NOT COMPLETE for sin's and cos's.
537    (cond ((and (not *sin-cos-recur*)
538		(oscip exp)
539		(setq *scflag* t)
540		(intsc1 ll ul exp)))
541	  ((and (not *rad-poly-recur*)
542		(notinvolve exp '(%log))
543		(not (%einvolve exp))
544		(method-radical-poly exp var ll ul)))
545	  ((and (not (equal *dintlog-recur* 2.))
546		(setq arg (involve exp '(%log)))
547		(dintlog exp arg)))
548	  ((and (not *dintexp-recur*)
549		(setq arg (%einvolve exp))
550		(dintexp exp var)))
551	  ((and (not (ratp exp var))
552		(setq ans (let (($trigexpandtimes nil)
553				($trigexpandplus t))
554			    ($trigexpand exp)))
555		(setq ans ($expand ans))
556		(not (alike1 ans exp))
557		(intbyterm ans t)))
558	  ((setq ans (antideriv exp))
559	   (intsubs ans ll ul))
560	  (t nil))))
561
562(defun method-radical-poly (exp var ll ul)
563;;;Recursion stopper
564  (let ((*rad-poly-recur* t)		;recursion stopper
565	(result ()))
566    (cond ((and (sinintp exp var)
567		(setq result (antideriv exp))
568		(intsubs result ll ul)))
569	  ((and (ratp exp var)
570		(setq result (ratfnt exp))))
571	  ((and (not *scflag*)
572		(not (eq ul '$inf))
573		(radicalp exp var)
574		(kindp34)
575		(setq result (cv exp))))
576	  (t ()))))
577
578(defun principal-value-integral (exp var ll ul poles)
579  (let ((anti-deriv ()))
580    (cond ((not (null (setq anti-deriv (antideriv exp))))
581	   (cond ((not (null poles))
582		  (order-limits 'ask)
583		  (cond ((take-principal anti-deriv ll ul poles))
584			(t ()))))))))
585
586;; adds up integrals of ranges between each pair of poles.
587;; checks if whole thing is divergent as limits of integration approach poles.
588(defun take-principal (anti-deriv ll ul poles &aux ans merged-list)
589  ;;; calling $logcontract causes antiderivative of 1/(1-x^5) to blow up
590  ;;  (setq anti-deriv (cond ((involve anti-deriv '(%log))
591  ;;			  ($logcontract anti-deriv))
592  ;;			 (t anti-deriv)))
593  (setq ans 0.)
594  (setq merged-list (interval-list poles ll ul))
595  (do ((current-pole (cdr merged-list) (cdr current-pole))
596       (previous-pole merged-list (cdr previous-pole)))
597      ((null current-pole)  t)
598    (setq ans (m+ ans
599		  (intsubs anti-deriv (m+ (caar previous-pole) 'epsilon)
600			   (m+ (caar current-pole) (m- 'epsilon))))))
601
602  (setq ans (get-limit (get-limit ans 'epsilon 0 '$plus) 'prin-inf '$inf))
603  ;;Return section.
604  (cond ((or (null ans)
605	     (not (free ans '$infinity))
606	     (not (free ans '$ind)))  ())
607	((or (among '$minf ans)
608	     (among '$inf ans)
609	     (among '$und ans))
610	 (diverg))
611	(t (principal) ans)))
612
613(defun interval-list (pole-list ll ul)
614  (let ((first (car (first pole-list)))
615	(last (caar (last pole-list))))
616    (cond ((eq ul last)
617	   (if (eq ul '$inf)
618	       (setq pole-list (subst 'prin-inf '$inf pole-list))))
619	  (t (if (eq ul '$inf)
620		 (setq ul 'prin-inf))
621	     (setq pole-list (append pole-list (list (cons ul 'ignored))))))
622    (cond ((eq ll first)
623	   (if (eq ll '$minf)
624	       (setq pole-list (subst (m- 'prin-inf) '$minf pole-list))))
625	  (t (if (eq ll '$minf)
626		 (setq ll (m- 'prin-inf)))
627	     (setq pole-list (append (list (cons ll 'ignored)) pole-list)))))
628  pole-list)
629
630;; Assumes EXP is a rational expression with no polynomial part and
631;; converts the finite integration to integration over a half-infinite
632;; interval.  The substitution y = (x-a)/(b-x) is used.  Equivalently,
633;; x = (b*y+a)/(y+1).
634;;
635;; (I'm guessing CV means Change Variable here.)
636(defun cv (exp)
637  (if (not (or (real-infinityp ll) (real-infinityp ul)))
638      ;; FIXME!  This is a hack.  We apply the transformation with
639      ;; symbolic limits and then substitute the actual limits later.
640      ;; That way method-by-limits (usually?) sees a simpler
641      ;; integrand.
642      ;;
643      ;; See Bugs 938235 and 941457.  These fail because $FACTOR is
644      ;; unable to factor the transformed result.  This needs more
645      ;; work (in other places).
646      (let ((trans (integrand-changevar (m// (m+t 'll (m*t 'ul 'yx))
647					     (m+t 1. 'yx))
648					'yx exp var)))
649	;; If the limit is a number, use $substitute so we simplify
650	;; the result.  Do we really want to do this?
651	(setf trans (if (mnump ll)
652			($substitute ll 'll trans)
653			(subst ll 'll trans)))
654	(setf trans (if (mnump ul)
655			($substitute ul 'ul trans)
656			(subst ul 'ul trans)))
657	(method-by-limits trans 'yx 0. '$inf))
658      ()))
659
660;; Integrate rational functions over a finite interval by doing the
661;; polynomial part directly, and converting the rational part to an
662;; integral from 0 to inf.  This is evaluated via residues.
663(defun ratfnt (exp)
664  (let ((e (pqr exp)))
665    ;; PQR divides the rational expression and returns the quotient
666    ;; and remainder
667    (flet ((try-antideriv (e lo hi)
668	     (let ((ans (antideriv e)))
669	       (when ans
670		 (intsubs ans lo hi)))))
671
672      (cond ((equal 0. (car e))
673	     ;; No polynomial part
674	     (let ((ans (try-antideriv exp ll ul)))
675	       (if ans
676		   ans
677		   (cv exp))))
678	    ((equal 0. (cdr e))
679	     ;; Only polynomial part
680	     (eezz (car e) ll ul))
681	    (t
682	     ;; A non-zero quotient and remainder.  Combine the results
683	     ;; together.
684	     (let ((ans (try-antideriv (m// (cdr e) dn*) ll ul)))
685	       (cond (ans
686		      (m+t (eezz (car e) ll ul)
687			   ans))
688		     (t
689		      (m+t (eezz (car e) ll ul)
690			   (cv (m// (cdr e) dn*)))))))))))
691
692;; I think this takes a rational expression E, and finds the
693;; polynomial part.  A cons is returned.  The car is the quotient and
694;; the cdr is the remainder.
695(defun pqr (e)
696  (let ((varlist (list var)))
697    (newvar e)
698    (setq e (cdr (ratrep* e)))
699    (setq dn* (pdis (ratdenominator e)))
700    (setq e (pdivide (ratnumerator e) (ratdenominator e)))
701    (cons (simplify (rdis (car e))) (simplify (rdis (cadr e))))))
702
703
704(defun intbyterm (exp *nodiverg)
705  (let ((saved-exp exp))
706    (cond ((mplusp exp)
707	   (let ((ans (catch 'divergent
708			(andmapcar #'(lambda (new-exp)
709				       (let ((*def2* t))
710					 (defint new-exp var ll ul)))
711				   (cdr exp)))))
712	     (cond ((null ans) nil)
713		   ((eq ans 'divergent)
714		    (let ((*nodiverg nil))
715		      (cond ((setq ans (antideriv saved-exp))
716			     (intsubs ans ll ul))
717			    (t nil))))
718		   (t (sratsimp (m+l ans))))))
719;;;If leadop isn't plus don't do anything.
720	  (t nil))))
721
722(defun kindp34 nil
723  (numden exp)
724  (let* ((d dn*)
725	 (a (cond ((and (zerop1 ($limit d var ll '$plus))
726			(eq (limit-pole (m+ exp (m+ (m- ll) var))
727					var ll '$plus)
728			    '$yes))
729		   t)
730		  (t nil)))
731	 (b (cond ((and (zerop1 ($limit d var ul '$minus))
732			(eq (limit-pole (m+ exp (m+ ul (m- var)))
733					var ul '$minus)
734			    '$yes))
735		   t)
736		  (t nil))))
737    (or a b)))
738
739(defun diverg nil
740  (cond (*nodiverg (throw 'divergent 'divergent))
741	(t (merror (intl:gettext "defint: integral is divergent.")))))
742
743(defun make-defint-assumptions (ask-or-not)
744  (cond ((null (order-limits ask-or-not))  ())
745	(t (mapc 'forget *defint-assumptions*)
746	   (setq *defint-assumptions* ())
747	   (let ((sign-ll (cond ((eq ll '$inf)  '$pos)
748				((eq ll '$minf) '$neg)
749				(t ($sign ($limit ll)))))
750		 (sign-ul (cond ((eq ul '$inf)  '$pos)
751				((eq ul '$minf)  '$neg)
752				(t ($sign ($limit ul)))))
753		 (sign-ul-ll (cond ((and (eq ul '$inf)
754					 (not (eq ll '$inf)))  '$pos)
755				   ((and (eq ul '$minf)
756					 (not (eq ll '$minf)))  '$neg)
757				   (t ($sign ($limit (m+ ul (m- ll))))))))
758	     (cond ((eq sign-ul-ll '$pos)
759		    (setq *defint-assumptions*
760			  `(,(assume `((mgreaterp) ,var ,ll))
761			    ,(assume `((mgreaterp) ,ul ,var)))))
762		   ((eq sign-ul-ll '$neg)
763		    (setq *defint-assumptions*
764			  `(,(assume `((mgreaterp) ,var ,ul))
765			    ,(assume `((mgreaterp) ,ll ,var))))))
766	     (cond ((and (eq sign-ll '$pos)
767			 (eq sign-ul '$pos))
768		    (setq *defint-assumptions*
769			  `(,(assume `((mgreaterp) ,var 0))
770			    ,@*defint-assumptions*)))
771		   ((and (eq sign-ll '$neg)
772			 (eq sign-ul '$neg))
773		    (setq *defint-assumptions*
774			  `(,(assume `((mgreaterp) 0 ,var))
775			    ,@*defint-assumptions*)))
776		   (t *defint-assumptions*))))))
777
778(defun restore-defint-assumptions (old-assumptions assumptions)
779  (do ((llist assumptions (cdr llist)))
780      ((null llist) t)
781    (forget (car llist)))
782  (do ((llist old-assumptions (cdr llist)))
783      ((null llist) t)
784    (assume (car llist))))
785
786(defun make-global-assumptions ()
787  (setq *global-defint-assumptions*
788	(cons (assume '((mgreaterp) *z* 0.))
789	      *global-defint-assumptions*))
790  ;; *Z* is a "zero parameter" for this package.
791  ;; Its also used to transform.
792  ;;  limit(exp,var,val,dir) -- limit(exp,tvar,0,dir)
793  (setq *global-defint-assumptions*
794	(cons (assume '((mgreaterp) epsilon 0.))
795	      *global-defint-assumptions*))
796  (setq *global-defint-assumptions*
797	(cons (assume '((mlessp) epsilon 1.0e-8))
798	      *global-defint-assumptions*))
799  ;; EPSILON is used in principal value code to denote the familiar
800  ;; mathematical entity.
801  (setq *global-defint-assumptions*
802	(cons (assume '((mgreaterp) prin-inf 1.0e+8))
803	      *global-defint-assumptions*)))
804
805;;; PRIN-INF Is a special symbol in the principal value code used to
806;;; denote an end-point which is proceeding to infinity.
807
808(defun forget-global-assumptions ()
809  (do ((llist *global-defint-assumptions* (cdr llist)))
810      ((null llist) t)
811    (forget (car llist)))
812  (cond ((not (null integer-info))
813	 (do ((llist integer-info (cdr llist)))
814	     ((null llist) t)
815	   (i-$remove `(,(cadar llist) ,(caddar llist)))))))
816
817(defun order-limits (ask-or-not)
818  (cond ((or (not (equal ($imagpart ll) 0))
819	     (not (equal ($imagpart ul) 0)))  ())
820	(t (cond ((alike1 ll (m*t -1 '$inf))
821		  (setq ll '$minf)))
822	   (cond ((alike1 ul (m*t -1 '$inf))
823		  (setq ul '$minf)))
824	   (cond ((alike1 ll (m*t -1 '$minf))
825		  (setq ll '$inf)))
826	   (cond ((alike1 ul (m*t -1 '$minf))
827		  (setq ul '$inf)))
828	   (cond ((eq ll ul)
829		  ; We have minf <= ll = ul <= inf
830		  )
831		 ((eq ul '$inf)
832		  ; We have minf <= ll < ul = inf
833		  )
834		 ((eq ll '$minf)
835		  ; We have minf = ll < ul < inf
836		  ;
837		  ; Now substitute
838		  ;
839		  ;   var -> -var
840		  ;   ll  -> -ul
841		  ;   ul  -> inf
842		  ;
843		  ; so that minf < ll < ul = inf
844		  (setq exp (subin (m- var) exp))
845		  (setq ll (m- ul))
846		  (setq ul '$inf))
847		 ((or (eq ll '$inf)
848		      (equal (complm ask-or-not) -1))
849		  ; We have minf <= ul < ll
850		  ;
851		  ; Now substitute
852		  ;
853		  ;   exp  -> -exp
854		  ;   ll  <-> ul
855		  ;
856		  ; so that minf <= ll < ul
857		  (setq exp (m- exp))
858		  (rotatef ll ul)))
859	   t)))
860
861(defun complm (ask-or-not)
862  (let ((askflag (cond ((eq ask-or-not 'ask)  t)
863		       (t nil)))
864	(a ()))
865    (cond ((alike1 ul ll)  0.)
866	  ((eq (setq a (cond (askflag ($asksign ($limit (m+t ul (m- ll)))))
867			     (t ($sign ($limit (m+t ul (m- ll)))))))
868	       '$pos)
869	   1.)
870	  ((eq a '$neg)  -1)
871	  (t 1.))))
872
873;; Substitute a and b into integral e
874;;
875;; Looks for discontinuties in integral, and works around them.
876;; For example, in
877;;
878;; integrate(x^(2*n)*exp(-(x)^2),x)    ==>
879;; -gamma_incomplete((2*n+1)/2,x^2)*x^(2*n+1)*abs(x)^(-2*n-1)/2
880;;
881;; the integral has a discontinuity at x=0.
882;;
883(defun intsubs (e a b)
884  (let ((edges (cond ((not $intanalysis)
885		      '$no)		;don't do any checking.
886		    (t (discontinuities-in-interval
887			(let (($algebraic t))
888			  (sratsimp e))
889			var a b)))))
890
891    (cond ((or (eq edges '$no)
892	       (eq edges '$unknown))
893	   (whole-intsubs e a b))
894	  (t
895	   (do* ((l edges (cdr l))
896		 (total nil)
897		 (a1 (car l) (car l))
898		 (b1 (cadr l) (cadr l)))
899		((null (cdr l)) (if (every (lambda (x) x) total)
900				    (m+l total)))
901		(push
902		 (whole-intsubs e a1 b1)
903		 total))))))
904
905;; look for terms with a negative exponent
906;;
907;; recursively traverses exp in order to find discontinuities such as
908;;  erfc(1/x-x) at x=0
909(defun discontinuities-denom (exp)
910  (cond ((atom exp) 1)
911	((and (eq (caar exp) 'mexpt)
912	      (not (freeof var (cadr exp)))
913	      (not (member ($sign (caddr exp)) '($pos $pz))))
914	 (m^ (cadr exp) (m- (caddr exp))))
915	(t
916	 (m*l (mapcar #'discontinuities-denom (cdr exp))))))
917
918;; returns list of places where exp might be discontinuous in var.
919;; list begins with ll and ends with ul, and include any values between
920;; ll and ul.
921;; return '$no or '$unknown if no discontinuities found.
922(defun discontinuities-in-interval (exp var ll ul)
923  (let* ((denom (discontinuities-denom exp))
924	 (roots (real-roots denom var)))
925    (cond ((eq roots '$failure)
926	   '$unknown)
927	  ((eq roots '$no)
928	   '$no)
929	  (t (do ((dummy roots (cdr dummy))
930		  (pole-list nil))
931		 ((null dummy)
932		  (cond (pole-list
933			 (append (list ll)
934				 (sortgreat pole-list)
935				 (list ul)))
936			(t '$no)))
937		 (let ((soltn (caar dummy)))
938		   ;; (multiplicity (cdar dummy)) ;; not used
939		   (if (strictly-in-interval soltn ll ul)
940		       (push soltn pole-list))))))))
941
942
943;; Carefully substitute the integration limits A and B into the
944;; expression E.
945(defun whole-intsubs (e a b)
946  (cond ((easy-subs e a b))
947	(t (setq *current-assumptions*
948		 (make-defint-assumptions 'ask)) ;get forceful!
949	   (let (($algebraic t))
950	     (setq e (sratsimp e))
951	     (cond ((limit-subs e a b))
952		   (t (same-sheet-subs e a b)))))))
953
954;; Try easy substitutions.  Return NIL if we can't.
955(defun easy-subs (e ll ul)
956  (cond ((or (infinityp ll) (infinityp ul))
957	 ;; Infinite limits aren't easy
958	 nil)
959	(t
960	 (cond ((or (polyinx e var ())
961		    (and (not (involve e '(%log %asin %acos %atan %asinh %acosh %atanh %atan2
962						%gamma_incomplete %expintegral_ei)))
963			 (free ($denom e) var)))
964		;; It's easy if we have a polynomial.  I (rtoy) think
965		;; it's also easy if the denominator is free of the
966		;; integration variable and also if the expression
967		;; doesn't involve inverse functions.
968		;;
969		;; gamma_incomplete and expintegral_ie
970		;; included because of discontinuity in
971		;; gamma_incomplete(0, exp(%i*x)) and
972		;; expintegral_ei(exp(%i*x))
973		;;
974		;; XXX:  Are there other cases we've forgotten about?
975		;;
976		;; So just try to substitute the limits into the
977		;; expression.  If no errors are produced, we're done.
978		(let ((ll-val (no-err-sub ll e))
979		      (ul-val (no-err-sub ul e)))
980		  (cond ((or (eq ll-val t)
981                             (eq ul-val t))
982                         ;; no-err-sub has returned T. An error was catched.
983                         nil)
984                        ((and ll-val ul-val)
985			 (m- ul-val ll-val))
986			(t nil))))
987	       (t nil)))))
988
989(defun limit-subs (e ll ul)
990  (cond ((involve e '(%atan %gamma_incomplete %expintegral_ei))
991	 ())	; functions with discontinuities
992	(t (setq e ($multthru e))
993	   (let ((a1 ($limit e var ll '$plus))
994		 (a2 ($limit e var ul '$minus)))
995	     (combine-ll-ans-ul-ans a1 a2)))))
996
997;; check for divergent integral
998(defun combine-ll-ans-ul-ans (a1 a2)
999  (cond ((member a1 '($inf $minf $infinity ) :test #'eq)
1000	 (cond ((member a2 '($inf $minf $infinity) :test #'eq)
1001		(cond ((eq a2 a1)  ())
1002		      (t (diverg))))
1003	       (t (diverg))))
1004	((member a2 '($inf $minf $infinity) :test #'eq)  (diverg))
1005	((or (member a1 '($und $ind) :test #'eq)
1006	     (member a2 '($und $ind) :test #'eq))  ())
1007	(t (m- a2 a1))))
1008
1009;;;This function works only on things with ATAN's in them now.
1010(defun same-sheet-subs (exp ll ul &aux ll-ans ul-ans)
1011  ;; POLES-IN-INTERVAL doesn't know about the poles of tan(x).  Call
1012  ;; trigsimp to convert tan into sin/cos, which POLES-IN-INTERVAL
1013  ;; knows how to handle.
1014  ;;
1015  ;; XXX Should we fix POLES-IN-INTERVAL instead?
1016  ;;
1017  ;; XXX Is calling trigsimp too much?  Should we just only try to
1018  ;; substitute sin/cos for tan?
1019  ;;
1020  ;; XXX Should the result try to convert sin/cos back into tan?  (A
1021  ;; call to trigreduce would do it, among other things.)
1022  (let* ((exp (mfuncall '$trigsimp exp))
1023	 (poles (atan-poles exp ll ul)))
1024    ;;POLES -> ((mlist) ((mequal) ((%atan) foo) replacement) ......)
1025    ;;We can then use $SUBSTITUTE
1026    (setq ll-ans (limcp exp var ll '$plus))
1027    (setq exp (sratsimp ($substitute poles exp)))
1028    (setq ul-ans (limcp exp var ul '$minus))
1029    (if (and ll-ans
1030	     ul-ans)
1031	(combine-ll-ans-ul-ans ll-ans ul-ans)
1032      nil)))
1033
1034(defun atan-poles (exp ll ul)
1035  `((mlist) ,@(atan-pole1 exp ll ul)))
1036
1037(defun atan-pole1 (exp ll ul &aux ipart)
1038  (cond
1039    ((mapatom exp)  ())
1040    ((matanp exp)	 ;neglect multiplicity and '$unknowns for now.
1041     (desetq (exp . ipart) (trisplit exp))
1042     (cond
1043       ((not (equal (sratsimp ipart) 0))  ())
1044       (t (let ((pole (poles-in-interval (let (($algebraic t))
1045					   (sratsimp (cadr exp)))
1046					 var ll ul)))
1047	    (cond ((and pole (not (or (eq pole '$unknown)
1048				      (eq pole '$no))))
1049		   (do ((l pole (cdr l)) (llist ()))
1050		       ((null l)  llist)
1051		     (cond
1052		       ((zerop1 (m- (caar l) ll)) t)  ; don't worry about discontinuity
1053 		       ((zerop1 (m- (caar l) ul)) t)  ;  at boundary of integration
1054		       (t (let ((low-lim ($limit (cadr exp) var (caar l) '$minus))
1055				(up-lim ($limit (cadr exp) var (caar l) '$plus)))
1056			    (cond ((and (not (eq low-lim up-lim))
1057					(real-infinityp low-lim)
1058					(real-infinityp up-lim))
1059				   (let ((change (if (eq low-lim '$minf)
1060						     (m- '$%pi)
1061						     '$%pi)))
1062				     (setq llist (cons `((mequal simp) ,exp  ,(m+ exp change))
1063						       llist)))))))))))))))
1064    (t (do ((l (cdr exp) (cdr l))
1065	    (llist ()))
1066	   ((null l)  llist)
1067	 (setq llist (append llist (atan-pole1 (car l) ll ul)))))))
1068
1069(defun difapply (n d s fn1)
1070  (prog (k m r $noprincipal)
1071     (cond ((eq ($asksign (m+ (deg d) (m- s) (m- 2.)))  '$neg)
1072	    (return nil)))
1073     (setq $noprincipal t)
1074     (cond ((or (not (mexptp d))
1075		(not (numberp (setq r (caddr d)))))
1076	    (return nil))
1077	   ((and (equal n 1.)
1078		 (eq fn1 'mtorat)
1079		 (equal 1. (deg (cadr d))))
1080	    (return 0.)))
1081     (setq m (deg (setq d (cadr d))))
1082     (setq k (m// (m+ s 2.) m))
1083     (cond ((eq (ask-integer (m// (m+ s 2.) m) '$any)  '$yes)
1084	    nil)
1085	   (t (setq k (m+ 1 k))))
1086     (cond ((eq ($sign (m+ r (m- k))) '$pos)
1087	    (return (diffhk fn1 n d k (m+ r (m- k))))))))
1088
1089(defun diffhk (fn1 n d r m)
1090  (prog (d1 *dflag)
1091     (setq *dflag t)
1092     (setq d1 (funcall fn1 n
1093		       (m^ (m+t '*z* d) r)
1094		       (m* r (deg d))))
1095     (cond (d1 (return (difap1 d1 r '*z* m 0.))))))
1096
1097(defun principal nil
1098  (cond ($noprincipal (diverg))
1099	((not pcprntd)
1100	 (format t "Principal Value~%")
1101	 (setq pcprntd t))))
1102
1103;; e is of form poly(x)*exp(m*%i*x)
1104;; s is degree of denominator
1105;; adds e to bptu or bptd according to sign of m
1106(defun rib (e s)
1107  (let (*updn c)
1108    (cond ((or (mnump e) (constant e))
1109	   (setq bptu (cons e bptu)))
1110	  (t (setq e (rmconst1 e))
1111	     (setq c (car e))
1112	     (setq nn* (cdr e))
1113	     (setq nd* s)
1114	     (setq e (catch 'ptimes%e (ptimes%e nn* nd*)))
1115	     (cond ((null e) nil)
1116		   (t (setq e (m* c e))
1117		      (cond (*updn (setq bptu (cons e bptu)))
1118			    (t (setq bptd (cons e bptd))))))))))
1119
1120;; check term is of form poly(x)*exp(m*%i*x)
1121;; n is degree of denominator
1122(defun ptimes%e (term n)
1123  (cond ((and (mexptp term)
1124	      (eq (cadr term) '$%e)
1125	      (polyinx (caddr term) var nil)
1126	      (eq ($sign (m+ (deg ($realpart (caddr term))) -1))
1127		  '$neg)
1128	      (eq ($sign (m+ (deg (setq nn* ($imagpart (caddr term))))
1129			     -2.))
1130		  '$neg))
1131	 (cond ((eq ($asksign (ratdisrep (ratcoef nn* var))) '$pos)
1132		(setq *updn t))
1133	       (t (setq *updn nil)))
1134	 term)
1135	((and (mtimesp term)
1136	      (setq nn* (polfactors term))
1137	      (or (null (car nn*))
1138		  (eq ($sign (m+ n (m- (deg (car nn*)))))
1139		      '$pos))
1140          (not (alike1 (cadr nn*) term))
1141	      (ptimes%e (cadr nn*) n)
1142	      term))
1143	(t (throw 'ptimes%e nil))))
1144
1145(defun csemidown (n d var)
1146  (let ((pcprntd t)) ;Not sure what to do about PRINCIPAL values here.
1147    (princip (res n d #'lowerhalf #'(lambda (x)
1148				      (cond ((equal ($imagpart x) 0)  t)
1149					    (t ())))))))
1150
1151(defun lowerhalf (j)
1152  (eq ($asksign ($imagpart j)) '$neg))
1153
1154(defun upperhalf (j)
1155  (eq ($asksign ($imagpart j)) '$pos))
1156
1157
1158(defun csemiup (n d var)
1159  (let ((pcprntd t)) ;I'm not sure what to do about PRINCIPAL values here.
1160    (princip (res n d #'upperhalf #'(lambda (x)
1161				      (cond ((equal ($imagpart x) 0)  t)
1162					    (t ())))))))
1163
1164(defun princip (n)
1165  (cond ((null n) nil)
1166	(t (m*t '$%i ($rectform (m+ (cond ((car n)
1167					   (m*t 2. (car n)))
1168					  (t 0.))
1169				    (cond ((cadr n)
1170					   (principal)
1171					   (cadr n))
1172					  (t 0.))))))))
1173
1174;; exponentialize sin and cos
1175(defun sconvert (e)
1176  (cond ((atom e) e)
1177	((polyinx e var nil) e)
1178	((eq (caar e) '%sin)
1179	 (m* '((rat) -1 2)
1180	     '$%i
1181	     (m+t (m^t '$%e (m*t '$%i (cadr e)))
1182		  (m- (m^t '$%e (m*t (m- '$%i) (cadr e)))))))
1183	((eq (caar e) '%cos)
1184	 (mul* '((rat) 1. 2.)
1185	       (m+t (m^t '$%e (m*t '$%i (cadr e)))
1186		    (m^t '$%e (m*t (m- '$%i) (cadr e))))))
1187	(t (simplify
1188	    (cons (list (caar e)) (mapcar #'sconvert (cdr e)))))))
1189
1190(defun polfactors (exp)
1191  (let (poly rest)
1192    (cond ((mplusp exp)  nil)
1193	  (t (cond ((mtimesp exp)
1194		    (setq exp (reverse (cdr exp))))
1195		   (t (setq exp (list exp))))
1196	     (mapc #'(lambda (term)
1197		       (cond ((polyinx term var nil)
1198			      (push term poly))
1199			     (t (push term rest))))
1200		   exp)
1201	     (list (m*l poly) (m*l rest))))))
1202
1203(defun esap (e)
1204  (prog (d)
1205     (cond ((atom e) (return e))
1206	   ((not (among '$%e e)) (return e))
1207	   ((and (mexptp e)
1208		 (eq (cadr e) '$%e))
1209	    (setq d ($imagpart (caddr e)))
1210	    (return (m* (m^t '$%e ($realpart (caddr e)))
1211			(m+ `((%cos) ,d)
1212			    (m*t '$%i `((%sin) ,d))))))
1213	   (t (return (simplify (cons (list (caar e))
1214				      (mapcar #'esap (cdr e)))))))))
1215
1216;; computes integral from minf to inf for expressions of the form
1217;; exp(%i*m*x)*r(x) by residues on either the upper half
1218;;		  plane or the lower half plane, depending on whether
1219;;		  m is positive or negative.  [wang p. 77]
1220;;
1221;; exponentializes sin and cos before applying residue method.
1222;; can handle some expressions with poles on real line, such as
1223;; sin(x)*cos(x)/x.
1224(defun mtosc (grand)
1225  (numden grand)
1226  (let ((n nn*)
1227	(d dn*)
1228	ratterms ratans
1229	plf bptu bptd s upans downans)
1230    (cond ((not (or (polyinx d var nil)
1231		    (and (setq grand (%einvolve d))
1232			 (among '$%i grand)
1233			 (polyinx (setq d (sratsimp (m// d (m^t '$%e grand))))
1234				  var
1235				  nil)
1236			 (setq n (m// n (m^t '$%e grand))))))  nil)
1237	  ((equal (setq s (deg d)) 0)  nil)
1238;;;Above tests for applicability of this method.
1239	  ((and (or (setq plf (polfactors n))  t)
1240		(setq n ($expand (cond ((car plf)
1241					(m*t 'x* (sconvert (cadr plf))))
1242				       (t (sconvert n)))))
1243		(cond ((mplusp n)  (setq n (cdr n)))
1244		      (t (setq n (list n))))
1245		(dolist (term n t)
1246		  (cond ((polyinx term var nil)
1247			 ;; call to $expand can create rational terms
1248			 ;; with no exp(m*%i*x)
1249			 (setq ratterms (cons term ratterms)))
1250			((rib term s))
1251			(t (return nil))))
1252;;;Function RIB sets up the values of BPTU and BPTD
1253		(cond ((car plf)
1254		       (setq bptu (subst (car plf) 'x* bptu))
1255		       (setq bptd (subst (car plf) 'x* bptd))
1256		       (setq ratterms (subst (car plf) 'x* ratterms))
1257		       t)	 ;CROCK, CROCK. This is TERRIBLE code.
1258		      (t t))
1259;;;If there is BPTU then CSEMIUP must succeed.
1260;;;Likewise for BPTD.
1261		(setq ratans
1262		      (if ratterms
1263			  (let (($intanalysis nil))
1264			    ;; The original integrand was already
1265			    ;; determined to have no poles by initial-analysis.
1266			    ;; If individual terms of the expansion have poles, the poles
1267			    ;; must cancel each other out, so we can ignore them.
1268			    (try-defint (m// (m+l ratterms) d) var '$minf '$inf))
1269			0))
1270		;; if integral of ratterms is divergent, ratans is nil,
1271		;; and mtosc returns nil
1272
1273		(cond (bptu (setq upans (csemiup (m+l bptu) d var)))
1274		      (t (setq upans 0)))
1275		(cond (bptd (setq downans (csemidown (m+l bptd) d var)))
1276		      (t (setq downans 0))))
1277
1278	   (sratsimp (m+ ratans
1279			 (m* '$%pi (m+ upans (m- downans)))))))))
1280
1281
1282(defun evenfn (e var)
1283  (let ((temp (m+ (m- e)
1284		  (cond ((atom var)
1285			 ($substitute (m- var) var e))
1286			(t ($ratsubst (m- var) var e))))))
1287    (cond ((zerop1 temp)
1288	   t)
1289	  ((zerop1 (sratsimp temp))
1290	   t)
1291	  (t nil))))
1292
1293(defun oddfn (e var)
1294  (let ((temp (m+ e (cond ((atom var)
1295			   ($substitute (m- var) var e))
1296			  (t ($ratsubst (m- var) var e))))))
1297    (cond ((zerop1 temp)
1298	   t)
1299	  ((zerop1 (sratsimp temp))
1300	   t)
1301	  (t nil))))
1302
1303(defun ztoinf (grand var)
1304  (prog (n d sn* sd* varlist
1305	 s nc dc
1306	 ans r $savefactors checkfactors temp test-var)
1307     (setq $savefactors t sn* (setq sd* (list 1.)))
1308     (cond ((eq ($sign (m+ loopstop* -1))
1309		'$pos)
1310	    (return nil))
1311	   ((setq temp (or (scaxn grand)
1312			   (ssp grand)))
1313	    (return temp))
1314	   ((involve grand '(%sin %cos %tan))
1315	    (setq grand (sconvert grand))
1316	    (go on)))
1317
1318     (cond ((polyinx grand var nil)
1319	    (diverg))
1320	   ((and (ratp grand var)
1321		 (mtimesp grand)
1322		 (andmapcar #'snumden (cdr grand)))
1323	    (setq nn* (m*l sn*)
1324		  sn* nil)
1325	    (setq dn* (m*l sd*)
1326		  sd* nil))
1327	   (t (numden grand)))
1328;;;
1329;;;New section.
1330     (setq n (rmconst1 nn*))
1331     (setq d (rmconst1 dn*))
1332     (setq nc (car n))
1333     (setq n (cdr n))
1334     (setq dc (car d))
1335     (setq d (cdr d))
1336     (cond ((polyinx d var nil)
1337	    (setq s (deg d)))
1338	   (t (go findout)))
1339     (cond ((and (setq r (findp n))
1340		 (eq (ask-integer r '$integer) '$yes)
1341		 (setq test-var (bxm d s))
1342		 (setq ans (apply 'fan (cons (m+ 1. r) test-var))))
1343	    (return (m* (m// nc dc) (sratsimp ans))))
1344	   ((and (ratp grand var)
1345		 (setq ans (zmtorat n (cond ((mtimesp d) d)
1346					    (t ($sqfr d)))
1347				    s #'ztorat)))
1348		   (return (m* (m// nc dc) ans)))
1349	   ((and (evenfn d var)
1350		 (setq nn* (p*lognxp n s)))
1351	    (setq ans (log*rat (car nn*) d (cadr nn*)))
1352	    (return (m* (m// nc dc) ans)))
1353	   ((involve grand '(%log))
1354	    (cond ((setq ans (logquad0 grand))
1355		   (return (m* (m// nc dc) ans)))
1356		  (t (return nil)))))
1357     findout
1358     (cond ((setq temp (batapp grand))
1359	    (return temp))
1360	   (t nil))
1361     on
1362     (cond ((let ((*mtoinf* nil))
1363	      (setq temp (ggr grand t)))
1364	    (return temp))
1365	   ((mplusp grand)
1366	    (cond ((let ((*nodiverg t))
1367		     (setq ans (catch 'divergent
1368				 (andmapcar #'(lambda (g)
1369						(ztoinf g var))
1370					    (cdr grand)))))
1371		   (cond ((eq ans 'divergent) nil)
1372			 (t (return (sratsimp (m+l ans)))))))))
1373
1374     (cond ((and (evenfn grand var)
1375		 (setq loopstop* (m+ 1 loopstop*))
1376		 (setq ans (method-by-limits grand var '$minf '$inf)))
1377	    (return (m*t '((rat) 1. 2.) ans)))
1378	   (t (return nil)))))
1379
1380(defun ztorat (n d s)
1381  (cond ((and (null *dflag)
1382	      (setq s (difapply n d s #'ztorat)))
1383	 s)
1384	((setq n (let ((plogabs ()))
1385		   (keyhole (m* `((%plog) ,(m- var)) n) d var)))
1386	 (m- n))
1387	(t
1388	 ;; Let's not signal an error here.  Return nil so that we
1389	 ;; eventually return a noun form if no other algorithm gives
1390	 ;; a result.
1391	 #+(or)
1392	 (merror (intl:gettext "defint: keyhole integration failed.~%"))
1393	 nil)))
1394
1395(setq *dflag nil)
1396
1397(defun logquad0 (exp)
1398  (let ((a ()) (b ())  (c ()))
1399    (cond ((setq exp (logquad exp))
1400	   (setq a (car exp) b (cadr exp) c (caddr exp))
1401	   ($asksign b)	  ;let the data base know about the sign of B.
1402	   (cond ((eq ($asksign c) '$pos)
1403		  (setq c (m^ (m// c a) '((rat) 1. 2.)))
1404		  (setq b (simplify
1405			   `((%acos) ,(add* 'epsilon (m// b (mul* 2. a c))))))
1406		  (setq a (m// (m* b `((%log) ,c))
1407			       (mul* a (simplify `((%sin) ,b)) c)))
1408		  (get-limit a 'epsilon 0 '$plus))))
1409	  (t ()))))
1410
1411(defun logquad (exp)
1412  (let ((varlist (list var)))
1413    (newvar exp)
1414    (setq exp (cdr (ratrep* exp)))
1415    (cond ((and (alike1 (pdis (car exp))
1416			`((%log) ,var))
1417		(not (atom (cdr exp)))
1418		(equal (cadr (cdr exp)) 2.)
1419		(not (equal (ptterm (cddr exp) 0.) 0.)))
1420	   (setq exp (mapcar 'pdis (cdr (oddelm (cdr exp)))))))))
1421
1422(defun mtoinf (grand var)
1423  (prog (ans ans1 sd* sn* p* pe* n d s nc dc $savefactors checkfactors temp)
1424     (setq $savefactors t)
1425     (setq sn* (setq sd* (list 1.)))
1426     (cond ((eq ($sign (m+ loopstop* -1)) '$pos)
1427	    (return nil))
1428	   ((involve grand '(%sin %cos))
1429	    (cond ((and (evenfn grand var)
1430			(or (setq temp (scaxn grand))
1431			    (setq temp (ssp grand))))
1432		   (return (m*t 2. temp)))
1433		  ((setq temp (mtosc grand))
1434		   (return temp))
1435		  (t (go en))))
1436	   ((among '$%i (%einvolve grand))
1437	    (cond ((setq temp (mtosc grand))
1438		   (return temp))
1439		  (t (go en)))))
1440     (setq grand ($exponentialize grand))	; exponentializing before numden
1441     (cond ((polyinx grand var nil)		;  avoids losing multiplicities [ 1309432 ]
1442	    (diverg))
1443	   ((and (ratp grand var)
1444		 (mtimesp grand)
1445		 (andmapcar #'snumden (cdr grand)))
1446	    (setq nn* (m*l sn*) sn* nil)
1447	    (setq dn* (m*l sd*) sd* nil))
1448	   (t (numden grand)))
1449     (setq n (rmconst1 nn*))
1450     (setq d (rmconst1 dn*))
1451     (setq nc (car n))
1452     (setq n (cdr n))
1453     (setq dc (car d))
1454     (setq d (cdr d))
1455     (cond ((polyinx d var nil)
1456	    (setq s (deg d))))
1457     (cond ((and (not (%einvolve grand))
1458		 (notinvolve exp '(%sinh %cosh %tanh))
1459		 (setq p* (findp n))
1460		 (eq (ask-integer p* '$integer) '$yes)
1461		 (setq pe* (bxm d s)))
1462	    (cond ((and (eq (ask-integer (caddr pe*) '$even) '$yes)
1463			(eq (ask-integer p* '$even) '$yes))
1464		   (cond ((setq ans (apply 'fan (cons (m+ 1. p*) pe*)))
1465			  (setq ans (m*t 2. ans))
1466			  (return (m* (m// nc dc) ans)))))
1467		  ((equal (car pe*) 1.)
1468		   (cond ((and (setq ans (apply 'fan (cons (m+ 1. p*) pe*)))
1469			       (setq nn* (fan (m+ 1. p*)
1470					      (car pe*)
1471					      (m* -1 (cadr pe*))
1472					      (caddr pe*)
1473					      (cadddr pe*))))
1474			  (setq ans (m+ ans (m*t (m^ -1 p*) nn*)))
1475			  (return (m* (m// nc dc) ans))))))))
1476	  (cond
1477	    ((and (ratp grand var)
1478	          (setq ans1 (zmtorat n (cond ((mtimesp d) d) (t ($sqfr d))) s #'mtorat)))
1479	    (setq ans (m*t '$%pi ans1))
1480	    (return (m* (m// nc dc) ans)))
1481	   ((and (or (%einvolve grand)
1482		     (involve grand '(%sinh %cosh %tanh)))
1483		 (p*pin%ex n)	      ;setq's P* and PE*...Barf again.
1484		 (setq ans (catch 'pin%ex (pin%ex d))))
1485	    ;; We have an integral of the form p(x)*F(exp(x)), where
1486	    ;; p(x) is a polynomial.
1487	    (cond ((null p*)
1488		   ;; No polynomial
1489		   (return (dintexp grand var)))
1490		  ((not (and (zerop1 (get-limit grand var '$inf))
1491			     (zerop1 (get-limit grand var '$minf))))
1492		   ;; These limits must exist for the integral to converge.
1493		   (diverg))
1494		  ((setq ans (rectzto%pi2 (m*l p*) (m*l pe*) d))
1495		   ;; This only handles the case when the F(z) is a
1496		   ;; rational function.
1497		   (return (m* (m// nc dc) ans)))
1498		  ((setq ans (log-transform (m*l p*) (m*l pe*) d))
1499		   ;; If we get here, F(z) is not a rational function.
1500		   ;; We transform it using the substitution x=log(y)
1501		   ;; which gives us an integral of the form
1502		   ;; p(log(y))*F(y)/y, which maxima should be able to
1503		   ;; handle.
1504		   (return (m* (m// nc dc) ans)))
1505		  (t
1506		   ;; Give up.  We don't know how to handle this.
1507		   (return nil)))))
1508     en
1509     (cond ((setq ans (ggrm grand))
1510	    (return ans))
1511	   ((and (evenfn grand var)
1512		 (setq loopstop* (m+ 1 loopstop*))
1513		 (setq ans (method-by-limits grand var 0 '$inf)))
1514	    (return (m*t 2. ans)))
1515	   (t (return nil)))))
1516
1517(defun linpower0 (exp var)
1518  (cond ((and (setq exp (linpower exp var))
1519	      (eq (ask-integer (caddr exp) '$even)
1520		  '$yes)
1521	      (ratgreaterp 0. (car exp)))
1522	 exp)))
1523
1524;;; given (b*x+a)^n+c returns  (a b n c)
1525(defun linpower (exp var)
1526  (let (linpart deg lc c varlist)
1527    (cond ((not (polyp exp))   nil)
1528	  (t (let ((varlist (list var)))
1529	       (newvar exp)
1530	       (setq linpart (cadr (ratrep* exp)))
1531	       (cond ((atom linpart)
1532		      nil)
1533		     (t (setq deg (cadr linpart))
1534;;;get high degree of poly
1535			(setq linpart ($diff exp var (m+ deg -1)))
1536;;;diff down to linear.
1537			(setq lc (sdiff linpart var))
1538;;;all the way to constant.
1539			(setq linpart (sratsimp (m// linpart lc)))
1540			(setq lc (sratsimp (m// lc `((mfactorial) ,deg))))
1541;;;get rid of factorial from differentiation.
1542			(setq c (sratsimp (m+ exp (m* (m- lc)
1543						      (m^ linpart deg)))))))
1544;;;Sees if can be expressed as (a*x+b)^n + part freeof x.
1545	       (cond ((not (among var c))
1546		      `(,lc ,linpart ,deg ,c))
1547		     (t nil)))))))
1548
1549(defun mtorat (n d s)
1550  (let ((*semirat* t))
1551    (cond ((and (null *dflag)
1552		(setq s (difapply n d s #'mtorat)))
1553	   s)
1554	  (t (csemiup n d var)))))
1555
1556(defun zmtorat (n d s fn1)
1557  (prog (c)
1558     (cond ((eq ($sign (m+ s (m+ 1 (setq nn* (deg n)))))
1559		'$neg)
1560	    (diverg))
1561	   ((eq ($sign (m+ s -4))
1562		'$neg)
1563	    (go on)))
1564     (setq d ($factor d))
1565     (setq c (rmconst1 d))
1566     (setq d (cdr c))
1567     (setq c (car c))
1568     (cond
1569       ((mtimesp d)
1570	(setq d (cdr d))
1571	(setq n (partnum n d))
1572	(let ((rsn* t))
1573	  (setq n ($xthru (m+l
1574			   (mapcar #'(lambda (a b)
1575				       (let ((foo (funcall fn1 (car a) b (deg b))))
1576					 (if foo (m// foo (cadr a))
1577						 (return-from zmtorat nil))))
1578				   n
1579				   d)))))
1580	(return (cond (c (m// n c))
1581		      (t n)))))
1582     on
1583
1584     (setq n (funcall fn1 n d s))
1585     (return (when n (sratsimp (cond (c  (m// n c))
1586				     (t n)))))))
1587
1588(defun pfrnum (f g n n2 var)
1589  (let ((varlist (list var))  genvar)
1590    (setq f (polyform f)
1591	  g (polyform g)
1592	  n (polyform n)
1593	  n2 (polyform n2))
1594    (setq var (caadr (ratrep* var)))
1595    (setq f (resprog0 f g n n2))
1596    (list (list (pdis (cadr f)) (pdis (cddr f)))
1597	  (list (pdis (caar f)) (pdis (cdar f))))))
1598
1599(defun polyform (e)
1600  (prog (f d)
1601     (newvar e)
1602     (setq f (ratrep* e))
1603     (and (equal (cddr f) 1)
1604	  (return (cadr f)))
1605     (and (equal (length (setq d (cddr f))) 3)
1606	  (not (among (car d)
1607		      (cadr f)))
1608	  (return (list (car d)
1609			(- (cadr d))
1610			(ptimes (cadr f) (caddr d)))))
1611     (merror "defint: bug from PFRNUM in RESIDU.")))
1612
1613(defun partnum (n dl)
1614  (let ((n2 1)  ans nl)
1615    (do ((dl dl (cdr dl)))
1616	((null (cdr dl))
1617	 (nconc ans (ncons (list n n2))))
1618      (setq nl (pfrnum (car dl) (m*l (cdr dl)) n n2 var))
1619      (setq ans (nconc ans (ncons (car nl))))
1620      (setq n2 (cadadr nl) n (caadr nl) nl nil))))
1621
1622(defun ggrm (e)
1623  (prog (poly expo *mtoinf* mb  varlist  genvar l c gvar)
1624     (setq varlist (list var))
1625     (setq *mtoinf* t)
1626     (cond ((and (setq expo (%einvolve e))
1627		 (polyp (setq poly (sratsimp (m// e (m^t '$%e expo)))))
1628		 (setq l (catch 'ggrm (ggr (m^t '$%e expo) nil))))
1629	    (setq *mtoinf* nil)
1630	    (setq mb (m- (subin 0. (cadr l))))
1631	    (setq poly (m+ (subin (m+t mb var) poly)
1632			   (subin (m+t mb (m*t -1 var)) poly))))
1633	   (t (return nil)))
1634     (setq expo (caddr l)
1635	   c (cadddr l)
1636	   l (m* -1 (car l))
1637	   e nil)
1638     (newvar poly)
1639     (setq poly (cdr (ratrep* poly)))
1640     (setq mb (m^ (pdis (cdr poly)) -1)
1641	   poly (car poly))
1642     (setq gvar (caadr (ratrep* var)))
1643     (cond ((or (atom poly)
1644		(pointergp gvar (car poly)))
1645	    (setq poly (list 0. poly)))
1646	   (t (setq poly (cdr poly))))
1647     (return (do ((poly poly (cddr poly)))
1648		 ((null poly)
1649		  (mul* (m^t '$%e c) (m^t expo -1) mb (m+l e)))
1650	       (setq e (cons (ggrm1 (car poly) (pdis (cadr poly)) l expo)
1651			     e))))))
1652
1653(defun ggrm1 (d k a b)
1654  (setq b (m// (m+t 1. d) b))
1655  (m* k `((%gamma) ,b) (m^ a (m- b))))
1656
1657;; Compute the integral(n/d,x,0,inf) by computing the negative of the
1658;; sum of residues of log(-x)*n/d over the poles of n/d inside the
1659;; keyhole contour.  This contour is basically an disk with a slit
1660;; along the positive real axis.  n/d must be a rational function.
1661(defun keyhole (n d var)
1662  (let* ((*semirat* ())
1663	 (res (res n d
1664		   #'(lambda (j)
1665		       ;; Ok if not on the positive real axis.
1666		       (or (not (equal ($imagpart j) 0))
1667			   (eq ($asksign j) '$neg)))
1668		   #'(lambda (j)
1669		       (cond ((eq ($asksign j) '$pos)
1670			      t)
1671			     (t (diverg)))))))
1672    (when res
1673      (let ((rsn* t))
1674	($rectform ($multthru (m+ (cond ((car res)
1675					 (car res))
1676					(t 0.))
1677				  (cond ((cadr res)
1678					 (cadr res))
1679					(t 0.)))))))))
1680
1681;; Look at an expression e of the form sin(r*x)^k, where k is an
1682;; integer.  Return the list (1 r k).  (Not sure if the first element
1683;; of the list is always 1 because I'm not sure what partition is
1684;; trying to do here.)
1685(defun skr (e)
1686  (prog (m r k)
1687     (cond ((atom e) (return nil)))
1688     (setq e (partition e var 1))
1689     (setq m (car e))
1690     (setq e (cdr e))
1691     (cond ((setq r (sinrx e))
1692	    (return (list m r 1)))
1693	   ((and (mexptp e)
1694		 (eq (ask-integer (setq k (caddr e)) '$integer) '$yes)
1695		 (setq r (sinrx (cadr e))))
1696	    (return (list m r k))))))
1697
1698;; Look at an expression e of the form sin(r*x) and return r.
1699(defun sinrx (e)
1700  (cond ((and (consp e) (eq (caar e) '%sin))
1701	 (cond ((eq (cadr e) var)
1702		1.)
1703	       ((and (setq e (partition (cadr e) var 1))
1704		     (eq (cdr e) var))
1705		(car e))))))
1706
1707
1708
1709;; integrate(a*sc(r*x)^k/x^n,x,0,inf).
1710(defun ssp (exp)
1711  (prog (u n c arg)
1712     ;; Get the argument of the involved trig function.
1713     (when (null (setq arg (involve exp '(%sin %cos))))
1714       (return nil))
1715     ;; I don't think this needs to be special.
1716     #+nil
1717     (declare (special n))
1718     ;; Replace (1-cos(arg)^2) with sin(arg)^2.
1719     (setq exp ($substitute ;(m^t `((%sin) ,var) 2.)
1720                            ;(m+t 1. (m- (m^t `((%cos) ,var) 2.)))
1721                            ;; The code from above generates expressions with
1722                            ;; a missing simp flag. Furthermore, the
1723                            ;; substitution has to be done for the complete
1724                            ;; argument of the trig function. (DK 02/2010)
1725                            `((mexpt simp) ((%sin simp) ,arg) 2)
1726                            `((mplus) 1 ((mtimes) -1 ((mexpt) ((%cos) ,arg) 2)))
1727                            exp))
1728     (numden exp)
1729     (setq u nn*)
1730     (cond ((and (setq n (findp dn*))
1731		 (eq (ask-integer n '$integer) '$yes))
1732	    ;; n is the power of the denominator.
1733	    (cond ((setq c (skr u))
1734		   ;; The simple case.
1735		   (return (scmp c n)))
1736		  ((and (mplusp u)
1737			(setq c (andmapcar #'skr (cdr u))))
1738		   ;; Do this for a sum of such terms.
1739		   (return (m+l (mapcar #'(lambda (j) (scmp j n))
1740					c)))))))))
1741
1742;; We have an integral of the form sin(r*x)^k/x^n.  C is the list (1 r k).
1743;;
1744;; The substitution y=r*x converts this integral to
1745;;
1746;;   r^(n-1)*integral(sin(y)^k/y^n,y,0,inf)
1747;;
1748;; (If r is negative, we need to negate the result.)
1749;;
1750;; The recursion Wang gives on p. 87 has a typo.  The second term
1751;; should be subtracted from the first.  This formula is given in G&R,
1752;; 3.82, formula 12.
1753;;
1754;; integrate(sin(x)^r/x^s,x) =
1755;;    r*(r-1)/(s-1)/(s-2)*integrate(sin(x)^(r-2)/x^(s-2),x)
1756;;    - r^2/(s-1)/(s-2)*integrate(sin(x)^r/x^(s-2),x)
1757;;
1758;; (Limits are assumed to be 0 to inf.)
1759;;
1760;; This recursion ends up with integrals with s = 1 or 2 and
1761;;
1762;; integrate(sin(x)^p/x,x,0,inf) = integrate(sin(x)^(p-1),x,0,%pi/2)
1763;;
1764;; with p > 0 and odd.  This latter integral is known to maxima, and
1765;; it's value is beta(p/2,1/2)/2.
1766;;
1767;; integrate(sin(x)^2/x^2,x,0,inf) = %pi/2*binomial(q-3/2,q-1)
1768;;
1769;; where q >= 2.
1770;;
1771(defun scmp (c n)
1772  ;; Compute sign(r)*r^(n-1)*integrate(sin(y)^k/y^n,y,0,inf)
1773  (destructuring-bind (mult r k)
1774      c
1775    (let ((recursion (sinsp k n)))
1776      (if recursion
1777	  (m* mult
1778	      (m^ r (m+ n -1))
1779	      `((%signum) ,r)
1780	      recursion)
1781          ;; Recursion failed.  Return the integrand
1782          ;; The following code generates expressions with a missing simp flag
1783          ;; for the sin function. Use better simplifying code. (DK 02/2010)
1784;	  (let ((integrand (div (pow `((%sin) ,(m* r var))
1785;				     k)
1786;				(pow var n))))
1787          (let ((integrand (div (power (take '(%sin) (mul r var))
1788                                       k)
1789                                (power var n))))
1790	    (m* mult
1791		`((%integrate) ,integrand ,var ,ll ,ul)))))))
1792
1793;; integrate(sin(x)^n/x^2,x,0,inf) = pi/2*binomial(n-3/2,n-1).
1794;; Express in terms of Gamma functions, though.
1795(defun sevn (n)
1796  (m* half%pi ($makegamma `((%binomial) ,(m+t (m+ n -1) '((rat) -1 2))
1797			    ,(m+ n -1)))))
1798
1799
1800;; integrate(sin(x)^n/x,x,0,inf) = beta((n+1)/2,1/2)/2, for n odd and
1801;; n > 0.
1802(defun sforx (n)
1803  (cond ((equal n 1.)
1804	 half%pi)
1805	(t (bygamma (m+ n -1) 0.))))
1806
1807;; This implements the recursion for computing
1808;; integrate(sin(y)^l/y^k,y,0,inf).  (Note the change in notation from
1809;; the above!)
1810(defun sinsp (l k)
1811  (let ((i ())
1812	(j ()))
1813    (cond ((eq ($sign (m+ l (m- (m+ k -1))))
1814	       '$neg)
1815	   ;; Integral diverges if l-(k-1) < 0.
1816	   (diverg))
1817	  ((not (even1 (m+ l k)))
1818	   ;; If l + k is not even, return NIL.  (Is this the right
1819	   ;; thing to do?)
1820	   nil)
1821	  ((equal k 2.)
1822	   ;; We have integrate(sin(y)^l/y^2).  Use sevn to evaluate.
1823	   (sevn (m// l 2.)))
1824	  ((equal k 1.)
1825	   ;; We have integrate(sin(y)^l/y,y)
1826	   (sforx l))
1827	  ((eq ($sign  (m+ k -2.))
1828	       '$pos)
1829	   (setq i (m* (m+ k -1)
1830		       (setq j (m+ k -2.))))
1831	   ;; j = k-2, i = (k-1)*(k-2)
1832	   ;;
1833	   ;;
1834	   ;; The main recursion:
1835	   ;;
1836	   ;; i(sin(y)^l/y^k)
1837	   ;;    = l*(l-1)/(k-1)/(k-2)*i(sin(y)^(l-2)/y^k)
1838	   ;;      - l^2/(k-1)/(k-1)*i(sin(y)^l/y^(k-2))
1839	   (m+ (m* l (m+ l -1)
1840		   (m^t i -1)
1841		   (sinsp (m+ l -2.) j))
1842	       (m* (m- (m^ l 2))
1843		   (m^t i -1)
1844		   (sinsp l j)))))))
1845
1846;; Returns the fractional part of a?
1847(defun fpart (a)
1848  (cond ((null a) 0.)
1849	((numberp a)
1850	 ;; Why do we return 0 if a is a number?  Perhaps we really
1851	 ;; mean integer?
1852	 0.)
1853	((mnump a)
1854	 ;; If we're here, this basically assumes a is a rational.
1855	 ;; Compute the remainder and return the result.
1856	 (list (car a) (rem (cadr a) (caddr a)) (caddr a)))
1857	((and (atom a) (abless1 a)) a)
1858	((and (mplusp a)
1859	      (null (cdddr a))
1860	      (abless1 (caddr a)))
1861	 (caddr a))))
1862
1863(defun thrad (e)
1864  (cond ((polyinx e var nil) 0.)
1865	((and (mexptp e)
1866	      (eq (cadr e) var)
1867	      (mnump (caddr e)))
1868	 (fpart (caddr e)))
1869	((mtimesp e)
1870	 (m+l (mapcar #'thrad e)))))
1871
1872
1873;;; THE FOLLOWING FUNCTION IS FOR TRIG FUNCTIONS OF THE FOLLOWING TYPE:
1874;;; LOWER LIMIT=0 B A MULTIPLE OF %PI SCA FUNCTION OF SIN (X) COS (X)
1875;;; B<=%PI2
1876
1877(defun period (p e var)
1878  (and (alike1 (no-err-sub var e) (setq e (no-err-sub (m+ p var) e)))
1879       ;; means there was no error
1880       (not (eq e t))))
1881
1882; returns cons of (integer_part . fractional_part) of a
1883(defun infr (a)
1884  ;; I think we really want to compute how many full periods are in a
1885  ;; and the remainder.
1886  (let* ((q (igprt (div a (mul 2 '$%pi))))
1887	 (r (add a (mul -1 (mul q 2 '$%pi)))))
1888    (cons q r)))
1889
1890; returns cons of (integer_part . fractional_part) of a
1891(defun lower-infr (a)
1892  ;; I think we really want to compute how many full periods are in a
1893  ;; and the remainder.
1894  (let* (;(q (igprt (div a (mul 2 '$%pi))))
1895	 (q (mfuncall '$ceiling (div a (mul 2 '$%pi))))
1896	 (r (add a (mul -1 (mul q 2 '$%pi)))))
1897    (cons q r)))
1898
1899
1900;; Return the integer part of r.
1901(defun igprt (r)
1902  ;; r - fpart(r)
1903  (mfuncall '$floor r))
1904
1905
1906;;;Try making exp(%i*var) --> yy, if result is rational then do integral
1907;;;around unit circle. Make corrections for limits of integration if possible.
1908(defun scrat (sc b)
1909  (let* ((exp-form (sconvert sc))	;Exponentialize
1910	 (rat-form (maxima-substitute 'yy (m^t '$%e (m*t '$%i var))
1911				      exp-form))) ;Try to make Rational fun.
1912    (cond ((and (ratp rat-form 'yy)
1913		(not (among var rat-form)))
1914	   (cond ((alike1 b %pi2)
1915		  (let ((ans (zto%pi2 rat-form 'yy)))
1916		    (cond (ans ans)
1917			  (t nil))))
1918		 ((and (eq b '$%pi)
1919		       (evenfn exp-form var))
1920		  (let ((ans (zto%pi2 rat-form 'yy)))
1921		    (cond (ans (m*t '((rat) 1. 2.) ans))
1922			  (t nil))))
1923		 ((and (alike1 b half%pi)
1924		       (evenfn exp-form var)
1925		       (alike1 rat-form
1926			       (no-err-sub (m+t '$%pi (m*t -1 var))
1927					   rat-form)))
1928		  (let ((ans (zto%pi2 rat-form 'yy)))
1929		    (cond (ans (m*t '((rat) 1. 4.) ans))
1930			  (t nil)))))))))
1931
1932;;; Do integrals of sin and cos. this routine makes sure lower limit
1933;;; is zero.
1934(defun intsc1 (a b e)
1935  ;; integrate(e,var,a,b)
1936  (let ((trigarg (find-first-trigarg e))
1937	(var var)
1938	($%emode t)
1939	($trigsign t)
1940	(*sin-cos-recur* t))		;recursion stopper
1941    (prog (ans d nzp2 l int-zero-to-d int-nzp2 int-zero-to-c limit-diff)
1942       (let* ((arg (simple-trig-arg trigarg))	;; pattern match sin(cc*x + bb)
1943	      (cc (cdras 'c arg))
1944	      (bb (cdras 'b arg))
1945	      (new-var (gensym "NEW-VAR-")))
1946	 (when (or (not arg)
1947		   (not (every-trigarg-alike e trigarg)))
1948	   (return nil))
1949	 (when (not (and (equal cc 1) (equal bb 0)))
1950	   (setq e (div (maxima-substitute (div (sub new-var bb) cc)
1951					   var e)
1952			cc))
1953	   (setq var new-var)	;; change of variables to get sin(new-var)
1954	   (setq a (add bb (mul a cc)))
1955	   (setq b (add bb (mul b cc)))))
1956       (setq limit-diff (m+ b (m* -1 a)))
1957       (when (or (not (period %pi2 e var))
1958		 (not (and ($constantp a)
1959			   ($constantp b))))
1960	 ;; Exit if b or a is not a constant or if the integrand
1961	 ;; doesn't appear to have a period of 2 pi.
1962	 (return nil))
1963
1964       ;; Multiples of 2*%pi in limits.
1965       (cond ((integerp (setq d (let (($float nil))
1966				 (m// limit-diff %pi2))))
1967	      (cond ((setq ans (intsc e %pi2 var))
1968		     (return (m* d ans)))
1969		    (t (return nil)))))
1970
1971       ;; The integral is not over a full period (2*%pi) or multiple
1972       ;; of a full period.
1973
1974       ;; Wang p. 111: The integral integrate(f(x),x,a,b) can be
1975       ;; written as:
1976       ;;
1977       ;;   n * integrate(f,x,0,2*%pi) + integrate(f,x,0,c)
1978       ;;     - integrate(f,x,0,d)
1979       ;;
1980       ;; for some integer n and d >= 0, c < 2*%pi because there exist
1981       ;; integers p and q such that a = 2 * p *%pi + d and b = 2 * q
1982       ;; * %pi + c.  Then n = q - p.
1983
1984       ;; Compute q and c for the upper limit b.
1985       (setq b (infr b))
1986       (setq l a)
1987       (cond ((null l)
1988	      (setq nzp2 (car b))
1989	      (setq int-zero-to-d 0.)
1990	      (go out)))
1991       ;; Compute p and d for the lower limit a.
1992       (setq l (infr l))
1993       ;; avoid an extra trip around the circle - helps skip principal values
1994       (if (ratgreaterp (car b) (car l))		; if q > p
1995	   (setq l (cons (add 1 (car l))		;   p += 1
1996			 (add (mul -1 %pi2) (cdr l))))) ;   d -= 2*%pi
1997
1998       ;; Compute -integrate(f,x,0,d)
1999       (setq int-zero-to-d
2000	     (cond ((setq ans (try-intsc e (cdr l) var))
2001		    (m*t -1 ans))
2002		   (t  nil)))
2003       ;; Compute n = q - p (stored in nzp2)
2004       (setq nzp2 (m+ (car b) (m- (car l))))
2005       out
2006       ;; Compute n*integrate(f,x,0,2*%pi)
2007       (setq int-nzp2 (cond ((zerop1 nzp2)
2008			      ;; n = 0
2009			      0.)
2010			     ((setq ans (try-intsc e %pi2 var))
2011			      ;; n is not zero, so compute
2012			      ;; integrate(f,x,0,2*%pi)
2013			      (m*t nzp2 ans))
2014			     ;; Unable to compute integrate(f,x,0,2*%pi)
2015			     (t nil)))
2016       ;; Compute integrate(f,x,0,c)
2017       (setq int-zero-to-c (try-intsc e (cdr b) var))
2018
2019       (return (cond ((and int-zero-to-d int-nzp2 int-zero-to-c)
2020		      ;; All three pieces succeeded.
2021		      (add* int-zero-to-d int-nzp2 int-zero-to-c))
2022		     ((ratgreaterp %pi2 limit-diff)
2023		      ;; Less than 1 full period, so intsc can integrate it.
2024		      ;; Apply the substitution to make the lower limit 0.
2025		      ;; This is last resort because substitution often causes intsc to fail.
2026		      (intsc (maxima-substitute (m+ a var) var e)
2027			     limit-diff var))
2028		     ;; nothing worked
2029		     (t nil))))))
2030
2031;; integrate(sc, var, 0, b), where sc is f(sin(x), cos(x)).
2032;; calls intsc with a wrapper to just return nil if integral is divergent,
2033;;  rather than generating an error.
2034(defun try-intsc (sc b var)
2035  (let* ((*nodiverg t)
2036	 (ans (catch 'divergent (intsc sc b var))))
2037    (if (eq ans 'divergent)
2038	nil
2039      ans)))
2040
2041;; integrate(sc, var, 0, b), where sc is f(sin(x), cos(x)).  I (rtoy)
2042;; think this expects b to be less than 2*%pi.
2043(defun intsc (sc b var)
2044  (if (zerop1 b)
2045      0
2046      (multiple-value-bind (b sc)
2047	  (cond ((eq ($sign b) '$neg)
2048		 (values (m*t -1 b)
2049			 (m* -1 (subin (m*t -1 var) sc))))
2050		(t
2051		 (values b sc)))
2052	;; Partition the integrand SC into the factors that do not
2053	;; contain VAR (the car part) and the parts that do (the cdr
2054	;; part).
2055	(setq sc (partition sc var 1))
2056	(cond ((setq b (intsc0 (cdr sc) b var))
2057	       (m* (resimplify (car sc)) b))))))
2058
2059;; integrate(sc, var, 0, b), where sc is f(sin(x), cos(x)).
2060(defun intsc0 (sc b var)
2061  ;; Determine if sc is a product of sin's and cos's.
2062  (let ((nn* (scprod sc))
2063	(dn* ()))
2064    (cond (nn*
2065	   ;; We have a product of sin's and cos's.  We handle some
2066	   ;; special cases here.
2067	   (cond ((alike1 b half%pi)
2068		  ;; Wang p. 110, formula (1):
2069		  ;; integrate(sin(x)^m*cos(x)^n, x, 0, %pi/2) =
2070		  ;;   gamma((m+1)/2)*gamma((n+1)/2)/2/gamma((n+m+2)/2)
2071		  (bygamma (car nn*) (cadr nn*)))
2072		 ((eq b '$%pi)
2073		  ;; Wang p. 110, near the bottom, says
2074		  ;;
2075		  ;; int(f(sin(x),cos(x)), x, 0, %pi) =
2076		  ;;   int(f(sin(x),cos(x)) + f(sin(x),-cos(x)),x,0,%pi/2)
2077		  (cond ((eq (real-branch (cadr nn*) -1) '$yes)
2078			 (m* (m+ 1. (m^ -1 (cadr nn*)))
2079			     (bygamma (car nn*) (cadr nn*))))))
2080		 ((alike1 b %pi2)
2081		  (cond ((or (and (eq (ask-integer (car nn*) '$even)
2082				      '$yes)
2083				  (eq (ask-integer (cadr nn*) '$even)
2084				      '$yes))
2085			     (and (ratnump (car nn*))
2086				  (eq (real-branch (car nn*) -1)
2087				      '$yes)
2088				  (ratnump (cadr nn*))
2089				  (eq (real-branch (cadr nn*) -1)
2090				      '$yes)))
2091			 (m* 4.	(bygamma (car nn*) (cadr nn*))))
2092			((or (eq (ask-integer (car nn*) '$odd) '$yes)
2093			     (eq (ask-integer (cadr nn*) '$odd) '$yes))
2094			 0.)
2095			(t nil)))
2096		 ((alike1 b half%pi3)
2097		  ;; Wang, p. 111 says
2098		  ;;
2099		  ;; int(f(sin(x),cos(x)),x,0,3*%pi/2) =
2100		  ;;   int(f(sin(x),cos(x)),x,0,%pi)
2101		  ;;   + int(f(-sin(x),-cos(x)),x,0,%pi/2)
2102		  (m* (m+ 1. (m^ -1 (cadr nn*)) (m^ -1 (m+l nn*)))
2103		      (bygamma (car nn*) (cadr nn*))))))
2104	  (t
2105	   ;; We don't have a product of sin's and cos's.
2106	   (cond ((and (or (eq b '$%pi)
2107			   (alike1 b %pi2)
2108			   (alike1 b half%pi))
2109		       (setq dn* (scrat sc b)))
2110		  dn*)
2111		 ((setq nn* (antideriv sc))
2112		  (sin-cos-intsubs nn* var 0. b))
2113		 (t ()))))))
2114
2115;;;Is careful about substitution of limits where the denominator may be zero
2116;;;because of various assumptions made.
2117(defun sin-cos-intsubs (exp var ll ul)
2118  (cond ((mplusp exp)
2119	 (let ((l (mapcar #'sin-cos-intsubs1 (cdr exp))))
2120	   (if (not (some #'null l))
2121	       (m+l l))))
2122	(t (sin-cos-intsubs1 exp))))
2123
2124(defun sin-cos-intsubs1 (exp)
2125  (let* ((rat-exp ($rat exp))
2126	 (denom (pdis (cddr rat-exp))))
2127    (cond ((equal ($csign denom) '$zero)
2128	   '$und)
2129	  (t (try-intsubs exp ll ul)))))
2130
2131(defun try-intsubs (exp ll ul)
2132  (let* ((*nodiverg t)
2133	 (ans (catch 'divergent (intsubs exp ll ul))))
2134    (if (eq ans 'divergent)
2135	nil
2136      ans)))
2137
2138(defun try-defint (exp var ll ul)
2139  (let* ((*nodiverg t)
2140	 (ans (catch 'divergent (defint exp var ll ul))))
2141    (if (eq ans 'divergent)
2142	nil
2143      ans)))
2144
2145;; Determine whether E is of the form sin(x)^m*cos(x)^n and return the
2146;; list (m n).
2147(defun scprod (e)
2148  (let ((great-minus-1 #'(lambda (temp)
2149			   (ratgreaterp temp -1)))
2150	m n)
2151    (cond
2152      ((setq m (powerofx e `((%sin) ,var) great-minus-1 var))
2153       (list m 0.))
2154      ((setq n (powerofx e `((%cos) ,var) great-minus-1 var))
2155       (setq m 0.)
2156       (list 0. n))
2157      ((and (mtimesp e)
2158	    (or (setq m (powerofx (cadr e) `((%sin) ,var) great-minus-1 var))
2159		(setq n (powerofx (cadr e) `((%cos) ,var) great-minus-1 var)))
2160	    (cond
2161	      ((null m)
2162	       (setq m (powerofx (caddr e) `((%sin) ,var) great-minus-1 var)))
2163	      (t (setq n (powerofx (caddr e) `((%cos) ,var) great-minus-1 var))))
2164	    (null (cdddr e)))
2165       (list m n))
2166      (t ()))))
2167
2168(defun real-branch (exponent value)
2169  ;; Says wether (m^t value exponent) has at least one real branch.
2170  ;; Only works for values of 1 and -1 now.  Returns $yes $no
2171  ;; $unknown.
2172  (cond ((equal value 1.)
2173	 '$yes)
2174	((eq (ask-integer exponent '$integer) '$yes)
2175	 '$yes)
2176	((ratnump exponent)
2177	 (cond ((eq ($oddp (caddr exponent)) t)
2178		'$yes)
2179	       (t '$no)))
2180	(t '$unknown)))
2181
2182;; Compute beta((m+1)/2,(n+1)/2)/2.
2183(defun bygamma (m n)
2184  (let ((one-half (m//t 1. 2.)))
2185    (m* one-half `(($beta) ,(m* one-half (m+t 1. m))
2186		   ,(m* one-half (m+t 1. n))))))
2187
2188;;Seems like Guys who call this don't agree on what it should return.
2189(defun powerofx (e x p var)
2190  (setq e (cond ((not (among var e)) nil)
2191		((alike1 e x) 1.)
2192		((atom e) nil)
2193		((and (mexptp e)
2194		      (alike1 (cadr e) x)
2195		      (not (among var (caddr e))))
2196		 (caddr e))))
2197  (cond ((null e) nil)
2198	((funcall p e) e)))
2199
2200
2201;; Check e for an expression of the form x^kk*(b*x^n+a)^l.  If it
2202;; matches, Return the two values kk and (list l a n b).
2203(defun bata0 (e)
2204  (let (k c)
2205    (cond ((atom e) nil)
2206	  ((mexptp e)
2207	   ;; We have f(x)^y.  Look to see if f(x) has the desired
2208	   ;; form.  Then f(x)^y has the desired form too, with
2209	   ;; suitably modified values.
2210	   ;;
2211	   ;; XXX: Should we ask for the sign of f(x) if y is not an
2212	   ;; integer?  This transformation we're going to do requires
2213	   ;; that f(x)^y be real.
2214	   (destructuring-bind (mexp base power)
2215	       e
2216	     (declare (ignore mexp))
2217	     (multiple-value-bind (kk cc)
2218		 (bata0 base)
2219	       (when kk
2220		 ;; Got a match.  Adjust kk and cc appropriately.
2221		 (destructuring-bind (l a n b)
2222		     cc
2223		   (values (mul kk power)
2224			   (list (mul l power) a n b)))))))
2225	  ((and (mtimesp e)
2226		(null (cdddr e))
2227		(or (and (setq k (findp (cadr e)))
2228			 (setq c (bxm (caddr e) (polyinx (caddr e) var nil))))
2229		    (and (setq k (findp (caddr e)))
2230			 (setq c (bxm (cadr e) (polyinx (cadr e) var nil))))))
2231	   (values k c))
2232	  ((setq c (bxm e (polyinx e var nil)))
2233	   (setq k 0.)
2234	   (values k c)))))
2235
2236
2237;;(DEFUN BATAP (E)
2238;;  (PROG (K C L)
2239;;    (COND ((NOT (BATA0 E)) (RETURN NIL))
2240;;	  ((AND (EQUAL -1. (CADDDR C))
2241;;		(EQ ($askSIGN (SETQ K (m+ 1. K)))
2242;;		    '$pos)
2243;;		(EQ ($askSIGN (SETQ L (m+ 1. (CAR C))))
2244;;		    '$pos)
2245;;		(ALIKE1 (CADR C)
2246;;			(m^ UL (CADDR C)))
2247;;		(SETQ E (CADR C))
2248;;		(EQ ($askSIGN (SETQ C (CADDR C))) '$pos))
2249;;	   (RETURN (M// (m* (m^ UL (m+t K (m* C (m+t -1. L))))
2250;;			    `(($BETA) ,(SETQ NN* (M// K C))
2251;;				      ,(SETQ DN* L)))
2252;;			C))))))
2253
2254
2255;; Integrals of the form i(log(x)^m*x^k*(a+b*x^n)^l,x,0,ul).  There
2256;; are two cases to consider: One case has ul>0, b<0, a=-b*ul^n, k>-1,
2257;; l>-1, n>0, m a nonnegative integer.  The second case has ul=inf, l < 0.
2258;;
2259;; These integrals are essentially partial derivatives of the Beta
2260;; function (i.e. the Eulerian integral of the first kind).  Note
2261;; that, currently, with the default setting intanalysis:true, this
2262;; function might not even be called for some of these integrals.
2263;; However, this can be palliated by setting intanalysis:false.
2264
2265(defun zto1 (e)
2266  (when (or (mtimesp e) (mexptp e))
2267    (let ((m 0)
2268	  (log (list '(%log) var)))
2269      (flet ((set-m (p)
2270	       (setq m p)))
2271	(find-if #'(lambda (fac)
2272		     (powerofx fac log #'set-m var))
2273		 (cdr e)))
2274      (when (and (freeof var m)
2275		 (eq (ask-integer m '$integer) '$yes)
2276		 (not (eq ($asksign m) '$neg)))
2277	(setq e (m//t e (list '(mexpt) log m)))
2278	(cond
2279	  ((eq ul '$inf)
2280	   (multiple-value-bind (kk s d r cc)
2281	       (batap-inf e)
2282	     ;; We have i(x^kk/(d+cc*x^r)^s,x,0,inf) =
2283	     ;; beta(aa,bb)/(cc^aa*d^bb*r).  Compute this, and then
2284	     ;; differentiate it m times to get the log term
2285	     ;; incorporated.
2286	     (when kk
2287	       (let* ((aa (div (add 1 var) r))
2288		      (bb (sub s aa))
2289		      (m (if (eq ($asksign m) '$zero)
2290			     0
2291			     m)))
2292	       (let ((res (div `(($beta) ,aa ,bb)
2293			       (mul (m^t cc aa)
2294				    (m^t d bb)
2295				    r))))
2296		 ($at ($diff res var m)
2297		      (list '(mequal) var kk)))))))
2298	  (t
2299	   (multiple-value-bind
2300		 (k/n l n b) (batap-new e)
2301	     (when k/n
2302	       (let ((beta (simplify (list '($beta) k/n l)))
2303		     (m (if (eq ($asksign m) '$zero) 0 m)))
2304		 ;; The result looks like B(k/n,l) ( ... ).
2305		 ;; Perhaps, we should just $factor, instead of
2306		 ;; pulling out beta like this.
2307		 (m*t
2308		  beta
2309		  ($fullratsimp
2310		   (m//t
2311		    (m*t
2312		     (m^t (m-t b) (m1-t l))
2313		     (m^t ul (m*t n (m1-t l)))
2314		     (m^t n (m-t (m1+t m)))
2315		     ($at ($diff (m*t (m^t ul (m*t n var))
2316				      (list '($beta) var l))
2317				 var m)
2318			  (list '(mequal) var k/n)))
2319		    beta))))))))))))
2320
2321
2322;;; If e is of the form given below, make the obvious change
2323;;; of variables (substituting ul*x^(1/n) for x) in order to reduce
2324;;; e to the usual form of the integrand in the Eulerian
2325;;; integral of the first kind.
2326;;; N. B: The old version of ZTO1 completely ignored this
2327;;; substitution; the log(x)s were just thrown in, which,
2328;;; of course would give wrong results.
2329
2330(defun batap-new (e)
2331  ;; Parse e
2332  (multiple-value-bind (k c)
2333      (bata0 e)
2334    (when k
2335      ;; e=x^k*(a+b*x^n)^l
2336      (destructuring-bind (l a n b)
2337	  c
2338	(when (and (freeof var k)
2339		   (freeof var n)
2340		   (freeof var l)
2341		   (alike1 a (m-t (m*t b (m^t ul n))))
2342		   (eq ($asksign b) '$neg)
2343		   (eq ($asksign (setq k (m1+t k))) '$pos)
2344		   (eq ($asksign (setq l (m1+t l))) '$pos)
2345		   (eq ($asksign n) '$pos))
2346	  (values (m//t k n) l n b))))))
2347
2348
2349;; Wang p. 71 gives the following formula for a beta function:
2350;;
2351;; integrate(x^(k-1)/(c*x^r+d)^s,x,0,inf)
2352;;   = beta(a,b)/(c^a*d^b*r)
2353;;
2354;; where a = k/r > 0, b = s - a > 0, s > k > 0, r > 0, c*d > 0.
2355;;
2356;; This function matches this and returns k-1, d, r, c, a, b.  And
2357;; also checks that all the conditions hold.  If not, NIL is returned.
2358;;
2359(defun batap-inf (e)
2360  (multiple-value-bind (k c)
2361      (bata0 e)
2362    (when k
2363      (destructuring-bind (l d r cc)
2364	  c
2365	(let* ((s (mul -1 l))
2366	       (kk (add k 1))
2367	       (a (div kk r))
2368	       (b (sub s a)))
2369	  (when (and (freeof var k)
2370		     (freeof var r)
2371		     (freeof var l)
2372		     (eq ($asksign kk) '$pos)
2373		     (eq ($asksign a) '$pos)
2374		     (eq ($asksign b) '$pos)
2375		     (eq ($asksign (sub s k)) '$pos)
2376		     (eq ($asksign r) '$pos)
2377		     (eq ($asksign (mul cc d)) '$pos))
2378	    (values k s d r cc)))))))
2379
2380
2381;; Handles beta integrals.
2382(defun batapp (e)
2383  (cond ((not (or (equal ll 0)
2384		  (eq ll '$minf)))
2385	 (setq e (subin (m+ ll var) e))))
2386  (multiple-value-bind (k c)
2387      (bata0 e)
2388    (cond ((null k)
2389	   nil)
2390	  (t
2391	   (destructuring-bind (l d al c)
2392	       c
2393	     ;; e = x^k*(d+c*x^al)^l.
2394	     (let ((new-k (m// (m+ 1 k) al)))
2395	       (when (and (ratgreaterp al 0.)
2396			  (eq ($asksign new-k) '$pos)
2397			  (ratgreaterp (setq l (m* -1 l))
2398				       new-k)
2399			  (eq ($asksign (m* d c))
2400			      '$pos))
2401		 (setq l (m+ l (m*t -1 new-k)))
2402		 (m// `(($beta) ,new-k ,l)
2403		      (mul* al (m^ c new-k) (m^ d l))))))))))
2404
2405
2406;; Compute exp(d)*gamma((c+1)/b)/b/a^((c+1)/b).  In essence, this is
2407;; the value of integrate(x^c*exp(d-a*x^b),x,0,inf).
2408(defun gamma1 (c a b d)
2409  (m* (m^t '$%e d)
2410      (m^ (m* b (m^ a (setq c (m// (m+t c 1) b)))) -1)
2411      `((%gamma) ,c)))
2412
2413(defun zto%pi2 (grand var)
2414  (let ((result (unitcir (sratsimp (m// grand var)) var)))
2415    (cond (result (sratsimp (m* (m- '$%i) result)))
2416	  (t nil))))
2417
2418;; Evaluates the contour integral of GRAND around the unit circle
2419;; using residues.
2420(defun unitcir (grand var)
2421  (numden grand)
2422  (let* ((sgn nil)
2423	 (result (princip (res nn* dn*
2424			       #'(lambda (pt)
2425				   ;; Is pt stricly inside the unit circle?
2426				   (setq sgn (let ((limitp nil))
2427					       ($asksign (m+ -1 (cabs pt)))))
2428				   (eq sgn '$neg))
2429			       #'(lambda (pt)
2430				   (declare (ignore pt))
2431				   ;; Is pt on the unit circle?  (Use
2432				   ;; the cached value computed
2433				   ;; above.)
2434				   (prog1
2435				       (eq sgn '$zero)
2436				       (setq sgn nil)))))))
2437    (when result
2438      (m* '$%pi result))))
2439
2440
2441(defun logx1 (exp ll ul)
2442  (let ((arg nil))
2443    (cond
2444      ((and (notinvolve exp '(%sin %cos %tan %atan %asin %acos))
2445	    (setq arg (involve exp '(%log))))
2446       (cond ((eq arg var)
2447	      (cond ((ratgreaterp 1. ll)
2448		     (cond ((not (eq ul '$inf))
2449			    (intcv1 (m^t '$%e (m- 'yx)) (m- `((%log) ,var))))
2450			   (t (intcv1 (m^t '$%e 'yx) `((%log) ,var)))))))
2451	     (t (intcv arg nil)))))))
2452
2453
2454;; Wang 81-83.  Unfortunately, the pdf version has page 82 as all
2455;; black, so here is, as best as I can tell, what Wang is doing.
2456;; Fortunately, p. 81 has the necessary hints.
2457;;
2458;; First consider integrate(exp(%i*k*x^n),x) around the closed contour
2459;; consisting of the real axis from 0 to R, the arc from the angle 0
2460;; to %pi/(2*n) and the ray from the arc back to the origin.
2461;;
2462;; There are no poles in this region, so the integral must be zero.
2463;; But consider the integral on the three parts.  The real axis is the
2464;; integral we want.  The return ray is
2465;;
2466;;   exp(%i*%pi/2/n) * integrate(exp(%i*k*(t*exp(%i*%pi/2/n))^n),t,R,0)
2467;;     = exp(%i*%pi/2/n) * integrate(exp(%i*k*t^n*exp(%i*%pi/2)),t,R,0)
2468;;     = -exp(%i*%pi/2/n) * integrate(exp(-k*t^n),t,0,R)
2469;;
2470;; As R -> infinity, this last integral is gamma(1/n)/k^(1/n)/n.
2471;;
2472;; We assume the integral on the circular arc approaches 0 as R ->
2473;; infinity.  (Need to prove this.)
2474;;
2475;; Thus, we have
2476;;
2477;;   integrate(exp(%i*k*t^n),t,0,inf)
2478;;     = exp(%i*%pi/2/n) * gamma(1/n)/k^(1/n)/n.
2479;;
2480;; Equating real and imaginary parts gives us the desired results:
2481;;
2482;; integrate(cos(k*t^n),t,0,inf) = G * cos(%pi/2/n)
2483;; integrate(sin(k*t^n),t,0,inf) = G * sin(%pi/2/n)
2484;;
2485;; where G = gamma(1/n)/k^(1/n)/n.
2486;;
2487(defun scaxn (e)
2488  (let (ind s g)
2489    (cond ((atom e)  nil)
2490	  ((and (or (eq (caar e) '%sin)
2491		    (eq (caar e) '%cos))
2492		(setq ind (caar e))
2493		(setq e (bx**n (cadr e))))
2494	   ;; Ok, we have cos(b*x^n) or sin(b*x^n), and we set e = (n
2495	   ;; b)
2496	   (cond ((equal (car e) 1.)
2497		  ;; n = 1.  Give up.  (Why not divergent?)
2498		  nil)
2499		 ((zerop (setq s (let ((sign ($asksign (cadr e))))
2500				   (cond ((eq sign '$pos) 1)
2501					 ((eq sign '$neg) -1)
2502					 ((eq sign '$zero) 0)))))
2503		  ;; s is the sign of b.  Give up if it's zero.
2504		  nil)
2505		 ((not (eq ($asksign (m+ -1 (car e)))  '$pos))
2506		  ;; Give up if n-1 <= 0.  (Why give up?  Isn't the
2507		  ;; integral divergent?)
2508		  nil)
2509		 (t
2510		  ;; We can apply our formula now.  g = gamma(1/n)/n/b^(1/n)
2511		  (setq g (gamma1 0. (m* s (cadr e)) (car e) 0.))
2512		  (setq e (m* g `((,ind) ,(m// half%pi (car e)))))
2513		  (m* (cond ((and (eq ind '%sin)
2514				  (equal s -1))
2515			     -1)
2516			    (t 1))
2517		      e)))))))
2518
2519
2520;; this is the second part of the definite integral package
2521
2522(declare-top(special var plm* pl* rl* pl*1 rl*1))
2523
2524(defun p*lognxp (a s)
2525  (let (b)
2526    (cond ((not (among '%log a))
2527	   ())
2528	  ((and (polyinx (setq b (maxima-substitute 1. `((%log) ,var) a))
2529			 var t)
2530		(eq ($sign (m+ s (m+ 1 (deg b))))
2531		    '$pos)
2532		(evenfn b var)
2533		(setq a (lognxp (sratsimp (m// a b)))))
2534	   (list b a)))))
2535
2536(defun lognxp (a)
2537  (cond ((atom a) nil)
2538	((and (eq (caar a) '%log)
2539	      (eq (cadr a) var)) 1.)
2540	((and (mexptp a)
2541	      (numberp (caddr a))
2542	      (lognxp (cadr a)))
2543	 (caddr a))))
2544
2545(defun logcpi0 (n d)
2546  (prog (pl dp)
2547     (setq pl (polelist d #'upperhalf #'(lambda (j)
2548					  (cond ((zerop1 j) nil)
2549						((equal ($imagpart j) 0)
2550						 t)))))
2551     (cond ((null pl)
2552	    (return nil)))
2553     (setq factors (car pl)
2554	   pl (cdr pl))
2555     (cond ((or (cadr pl)
2556		(caddr pl))
2557	    (setq dp (sdiff d var))))
2558     (cond ((setq plm* (car pl))
2559	    (setq rlm* (residue n (cond (leadcoef factors)
2560					(t d))
2561				plm*))))
2562     (cond ((setq pl* (cadr pl))
2563	    (setq rl* (res1 n dp pl*))))
2564     (cond ((setq pl*1 (caddr pl))
2565	    (setq rl*1 (res1 n dp pl*1))))
2566     (return (m*t (m//t 1. 2.)
2567		  (m*t '$%pi
2568		       (princip
2569			(list (cond ((setq nn* (append rl* rlm*))
2570				     (m+l nn*)))
2571			      (cond (rl*1 (m+l rl*1))))))))))
2572
2573(defun lognx2 (nn dn pl rl)
2574  (do ((pl pl (cdr pl))
2575       (rl rl (cdr rl))
2576       (ans ()))
2577      ((or (null pl)
2578	   (null rl))  ans)
2579    (setq ans (cons (m* dn (car rl) (m^ `((%plog) ,(car pl)) nn))
2580		    ans))))
2581
2582(defun logcpj (n d i)
2583  (setq n (append
2584	   (if plm*
2585	       (list (mul* (m*t '$%i %pi2)
2586			   (m+l
2587			    (residue (m* (m^ `((%plog) ,var) i)	 n)
2588				     d
2589				     plm*)))))
2590	   (lognx2 i (m*t '$%i %pi2) pl* rl*)
2591	   (lognx2 i %p%i pl*1 rl*1)))
2592  (if (null n)
2593      0
2594      (simplify (m+l n))))
2595
2596;; Handle integral(n(x)/d(x)*log(x)^m,x,0,inf).  n and d are
2597;; polynomials.
2598(defun log*rat (n d m)
2599  (declare (special *i* *j*))
2600  (setq *i* (make-array (1+ m)))
2601  (setq *j* (make-array (1+ m)))
2602  (setf (aref *j* 0) 0)
2603  (prog (leadcoef factors plm* pl* rl* pl*1 rl*1 rlm*)
2604     (dotimes (c m (return (logcpi n d m)))
2605       (setf (aref *i* c) (logcpi n d c))
2606       (setf (aref *j* c) (logcpj n factors c)))))
2607
2608(defun logcpi (n d c)
2609  (declare (special *j*))
2610  (if (zerop c)
2611      (logcpi0 n d)
2612      (m* '((rat) 1 2) (m+ (aref *j* c) (m* -1 (sumi c))))))
2613
2614(defun sumi (c)
2615  (declare (special *i*))
2616  (do ((k 1 (1+ k))
2617       (ans ()))
2618      ((= k c)
2619       (m+l ans))
2620    (push (mul* ($makegamma `((%binomial) ,c ,k))
2621		(m^t '$%pi k)
2622		(m^t '$%i k)
2623		(aref *i* (- c k)))
2624	  ans)))
2625
2626(defun fan (p m a n b)
2627  (let ((povern (m// p n))
2628	(ab (m// a b)))
2629    (cond
2630      ((or (eq (ask-integer povern '$integer) '$yes)
2631	   (not (equal ($imagpart ab) 0)))  ())
2632      (t (let ((ind ($asksign ab)))
2633	   (cond ((eq ind '$zero) nil)
2634		 ((eq ind '$neg) nil)
2635		 ((not (ratgreaterp m povern)) nil)
2636		 (t (m// (m* '$%pi
2637			     ($makegamma `((%binomial) ,(m+ -1 m (m- povern))
2638					   ,(m+t -1 m)))
2639			     `((mabs) ,(m^ a (m+ povern (m- m)))))
2640			 (m* (m^ b povern)
2641			     n
2642			     `((%sin) ,(m*t '$%pi povern)))))))))))
2643
2644
2645;;Makes a new poly such that np(x)-np(x+2*%i*%pi)=p(x).
2646;;Constructs general POLY of degree one higher than P with
2647;;arbitrary coeff. and then solves for coeffs by equating like powers
2648;;of the varibale of integration.
2649;;Can probably be made simpler now.
2650
2651(defun makpoly (p)
2652  (let ((n (deg p))  (ans ())  (varlist ())  (gp ())  (cl ())  (zz ()))
2653    (setq ans (genpoly (m+ 1 n))) ;Make poly with gensyms of 1 higher deg.
2654    (setq cl (cdr ans))			;Coefficient list
2655    (setq varlist (append cl (list var))) ;Make VAR most important.
2656    (setq gp (car ans))		 ;This is the poly with gensym coeffs.
2657;;;Now, poly(x)-poly(x+2*%i*%pi)=p(x), P is the original poly.
2658    (setq ans (m+ gp (subin (m+t (m*t '$%i %pi2) var) (m- gp)) (m- p)))
2659    (newvar ans)
2660    (setq ans (ratrep* ans))	       ;Rational rep with VAR leading.
2661    (setq zz (coefsolve n cl (cond ((not (eq (caadr ans) ;What is Lead Var.
2662					     (genfind (car ans) var)))
2663				    (list 0 (cadr ans))) ;No VAR in ans.
2664				   ((cdadr ans))))) ;The real Poly.
2665    (if (or (null zz) (null gp))
2666	-1
2667	($substitute zz gp))))	       ;Substitute Values for gensyms.
2668
2669(defun coefsolve (n cl e)
2670  (do (($breakup)
2671       (eql (ncons (pdis (ptterm e n))) (cons (pdis (ptterm e m)) eql))
2672       (m (m+ n -1) (m+ m -1)))
2673      ((signp l m) (solvex eql cl nil nil))))
2674
2675;; Integrate(p(x)*f(exp(x))/g(exp(x)),x,minf,inf) by applying the
2676;; transformation y = exp(x) to get
2677;; integrate(p(log(y))*f(y)/g(y)/y,y,0,inf).  This should be handled
2678;; by dintlog.
2679(defun log-transform (p pe d)
2680  (let ((new-p (subst (list '(%log) var) var p))
2681	(new-pe (subst var 'z* (catch 'pin%ex (pin%ex pe))))
2682	(new-d (subst var 'z* (catch 'pin%ex (pin%ex d)))))
2683    (defint (div (div (mul new-p new-pe) new-d) var) var 0 ul)))
2684
2685;; This implements Wang's algorithm in Chapter 5.2, pp. 98-100.
2686;;
2687;; This is a very brief description of the algorithm.  Basically, we
2688;; have integrate(R(exp(x))*p(x),x,minf,inf), where R(x) is a rational
2689;; function and p(x) is a polynomial.
2690;;
2691;; We find a polynomial q(x) such that q(x) - q(x+2*%i*%pi) = p(x).
2692;; Then consider a contour integral of R(exp(z))*q(z) over a
2693;; rectangular contour.  Opposite corners of the rectangle are (-R,
2694;; 2*%i*%pi) and (R, 0).
2695;;
2696;; Wang shows that this contour integral, in the limit, is the
2697;; integral of R(exp(x))*q(x)-R(exp(x))*q(x+2*%i*%pi), which is
2698;; exactly the integral we're looking for.
2699;;
2700;; Thus, to find the value of the contour integral, we just need the
2701;; residues of R(exp(z))*q(z).  The only tricky part is that we want
2702;; the log function to have an imaginary part between 0 and 2*%pi
2703;; instead of -%pi to %pi.
2704(defun rectzto%pi2 (p pe d)
2705  ;; We have R(exp(x))*p(x) represented as p(x)*pe(exp(x))/d(exp(x)).
2706  (prog (dp n pl a b c denom-exponential)
2707     (if (not (and (setq denom-exponential (catch 'pin%ex (pin%ex d)))
2708		   (%e-integer-coeff pe)
2709		   (%e-integer-coeff d)))
2710	 (return ()))
2711     ;; At this point denom-exponential has converted d(exp(x)) to the
2712     ;; polynomial d(z), where z = exp(x).
2713     (setq n (m* (cond ((null p) -1)
2714		       (t ($expand (m*t '$%i %pi2 (makpoly p)))))
2715		 pe))
2716     (let ((var 'z*)
2717	   (leadcoef ()))
2718       ;; Find the poles of the denominator.  denom-exponential is the
2719       ;; denominator of R(x).
2720       ;;
2721       ;; It seems as if polelist returns a list of several items.
2722       ;; The first element is a list consisting of the pole and (z -
2723       ;; pole).  We don't care about this, so we take the rest of the
2724       ;; result.
2725       (setq pl (cdr (polelist denom-exponential
2726			       #'(lambda (j)
2727				   ;; The imaginary part is nonzero,
2728				   ;; or the realpart is negative.
2729				   (or (not (equal ($imagpart j) 0))
2730				       (eq ($asksign ($realpart j)) '$neg)))
2731			       #'(lambda (j)
2732				   ;; The realpart is not zero.
2733				   (not (eq ($asksign ($realpart j)) '$zero)))))))
2734     ;; Not sure what this does.
2735     (cond ((null pl)
2736	    ;; No roots at all, so return
2737	    (return nil))
2738	   ((or (cadr pl)
2739		(caddr pl))
2740	    ;; We have simple roots or roots in REGION1
2741	    (setq dp (sdiff d var))))
2742     (cond ((cadr pl)
2743	    ;; The cadr of pl is the list of the simple poles of
2744	    ;; denom-exponential.  Take the log of them to find the
2745	    ;; poles of the original expression.  Then compute the
2746	    ;; residues at each of these poles and sum them up and put
2747	    ;; the result in B.  (If no simple poles set B to 0.)
2748	    (setq b (mapcar #'log-imag-0-2%pi (cadr pl)))
2749	    (setq b (res1 n dp b))
2750	    (setq b (m+l b)))
2751	   (t (setq b 0.)))
2752     (cond ((caddr pl)
2753	    ;; I think this handles the case of poles outside the
2754	    ;; regions.  The sum of these residues are placed in C.
2755	    (let ((temp (mapcar #'log-imag-0-2%pi (caddr pl))))
2756	      (setq c (append temp (mapcar #'(lambda (j)
2757					       (m+ (m*t '$%i %pi2) j))
2758					   temp)))
2759	      (setq c (res1 n dp c))
2760	      (setq c (m+l c))))
2761	   (t (setq c 0.)))
2762     (cond ((car pl)
2763	    ;; We have the repeated poles of deonom-exponential, so we
2764	    ;; need to convert them to the actual pole values for
2765	    ;; R(exp(x)), by taking the log of the value of poles.
2766	    (let ((poles (mapcar #'(lambda (p)
2767				     (log-imag-0-2%pi (car p)))
2768				 (car pl)))
2769		  (exp (m// n (subst (m^t '$%e var) 'z* denom-exponential))))
2770	      ;; Compute the residues at all of these poles and sum
2771	      ;; them up.
2772	      (setq a (mapcar #'(lambda (j)
2773				  ($residue exp var j))
2774			      poles))
2775	      (setq a (m+l a))))
2776	   (t (setq a 0.)))
2777     (return (sratsimp (m+ a b (m* '((rat) 1. 2.) c))))))
2778
2779(defun genpoly (i)
2780  (do ((i i (m+ i -1))
2781       (c (gensym) (gensym))
2782       (cl ())
2783       (ans ()))
2784      ((zerop i)
2785       (cons (m+l ans) cl))
2786    (setq ans (cons (m* c (m^t var i)) ans))
2787    (setq cl (cons c cl))))
2788
2789;; Check to see if each term in exp that is of the form exp(k*x) has
2790;; an integer value for k.
2791(defun %e-integer-coeff (exp)
2792  (cond ((mapatom exp) t)
2793	((and (mexptp exp)
2794	      (eq (cadr exp) '$%e))
2795	 (eq (ask-integer ($coeff (caddr exp) var) '$integer)
2796	     '$yes))
2797	(t (every '%e-integer-coeff (cdr exp)))))
2798
2799(defun wlinearpoly (e var)
2800  (cond ((and (setq e (polyinx e var t))
2801	      (equal (deg e) 1))
2802	 (subin 1 e))))
2803
2804;; Test to see if exp is of the form f(exp(x)), and if so, replace
2805;; exp(x) with 'z*.  That is, basically return f(z*).
2806(defun pin%ex (exp)
2807  (declare (special $exponentialize))
2808  (pin%ex0 (cond ((notinvolve exp '(%sinh %cosh %tanh))
2809		  exp)
2810		 (t
2811		  (let (($exponentialize t))
2812		    (setq exp ($expand exp)))))))
2813
2814(defun pin%ex0 (e)
2815  ;; Does e really need to be special here?  Seems to be ok without
2816  ;; it; testsuite works.
2817  #+nil
2818  (declare (special e))
2819  (cond ((not (among var e))
2820	 e)
2821	((atom e)
2822	 (throw 'pin%ex nil))
2823	((and (mexptp e)
2824	      (eq (cadr e)  '$%e))
2825	 (cond ((eq (caddr e) var)
2826		'z*)
2827	       ((let ((linterm (wlinearpoly (caddr e) var)))
2828		  (and linterm
2829		       (m* (subin 0 e) (m^t 'z* linterm)))))
2830	       (t
2831		(throw 'pin%ex nil))))
2832	((mtimesp e)
2833	 (m*l (mapcar #'pin%ex0 (cdr e))))
2834	((mplusp e)
2835	 (m+l (mapcar #'pin%ex0 (cdr e))))
2836	(t
2837	 (throw 'pin%ex nil))))
2838
2839;; Test to see if exp is of the form p(x)*f(exp(x)).  If so, set p* to
2840;; be p(x) and set pe* to f(exp(x)).
2841(defun p*pin%ex (nd*)
2842  (setq nd* ($factor nd*))
2843  (cond ((polyinx nd* var nil)
2844	 (setq p* (cons nd* p*)) t)
2845	((catch 'pin%ex (pin%ex nd*))
2846	 (setq pe* (cons nd* pe*)) t)
2847	((mtimesp nd*)
2848	 (andmapcar #'p*pin%ex (cdr nd*)))))
2849
2850(defun findsub (p)
2851  (cond ((findp p) nil)
2852	((setq nd* (bx**n p))
2853	 (m^t var (car nd*)))
2854	((setq p (bx**n+a p))
2855	 (m* (caddr p) (m^t var (cadr p))))))
2856
2857;; I think this is looking at f(exp(x)) and tries to find some
2858;; rational function R and some number k such that f(exp(x)) =
2859;; R(exp(k*x)).
2860(defun funclogor%e (e)
2861  (prog (ans arg nvar r)
2862     (cond ((or (ratp e var)
2863		(involve e '(%sin %cos %tan))
2864		(not (setq arg (xor (and (setq arg (involve e '(%log)))
2865					 (setq r '%log))
2866				    (%einvolve e)))))
2867	    (return nil)))
2868     ag (setq nvar (cond ((eq r '%log) `((%log) ,arg))
2869			 (t (m^t '$%e arg))))
2870     (setq ans (maxima-substitute (m^t 'yx -1) (m^t nvar -1) (maxima-substitute 'yx nvar e)))
2871     (cond ((not (among var ans))  (return (list (subst var 'yx ans) nvar)))
2872	   ((and (null r)
2873		 (setq arg (findsub arg)))
2874	    (go ag)))))
2875
2876;; Integration by parts.
2877;;
2878;; integrate(u(x)*diff(v(x),x),x,a,b)
2879;;              |b
2880;;   = u(x)*v(x)| - integrate(v(x)*diff(u(x),x))
2881;;              |a
2882;;
2883(defun dintbypart (u v a b)
2884;;;SINCE ONLY CALLED FROM DINTLOG TO get RID OF LOGS - IF LOG REMAINS, QUIT
2885  (let ((ad (antideriv v)))
2886    (cond ((or (null ad)
2887	       (involve ad '(%log)))
2888	   nil)
2889	  (t (let ((p1 (m* u ad))
2890		   (p2 (m* ad (sdiff u var))))
2891	       (let ((p1-part1 (get-limit p1 var b '$minus))
2892		     (p1-part2 (get-limit p1 var a '$plus)))
2893		 (cond ((or (null p1-part1)
2894			    (null p1-part2))
2895			nil)
2896		       (t (let ((p2 (let ((*def2* t))
2897				      (defint p2 var a b))))
2898			    (cond (p2 (add* p1-part1
2899					    (m- p1-part2)
2900					    (m- p2)))
2901				  (t nil)))))))))))
2902
2903;; integrate(f(exp(k*x)),x,a,b), where f(z) is rational.
2904;;
2905;; See Wang p. 96-97.
2906;;
2907;; If the limits are minf to inf, we use the substitution y=exp(k*x)
2908;; to get integrate(f(y)/y,y,0,inf)/k.  If the limits are 0 to inf,
2909;; use the substitution s+1=exp(k*x) to get
2910;; integrate(f(s+1)/(s+1),s,0,inf).
2911(defun dintexp (exp ignored &aux ans)
2912  (declare (ignore ignored))
2913  (let ((*dintexp-recur* t))		;recursion stopper
2914    (cond ((and (sinintp exp var)     ;To be moved higher in the code.
2915		(setq ans (antideriv exp))
2916		(setq ans (intsubs ans ll ul)))
2917	   ;; If we can integrate it directly, do so and take the
2918	   ;; appropriate limits.
2919	   )
2920	  ((setq ans (funclogor%e exp))
2921	   ;; ans is the list (f(x) exp(k*x)).
2922	   (cond ((and (equal ll 0.)
2923		       (eq ul '$inf))
2924		  ;; Use the substitution s + 1 = exp(k*x).  The
2925		  ;; integral becomes integrate(f(s+1)/(s+1),s,0,inf)
2926		  (setq ans (m+t -1 (cadr ans))))
2927		 (t
2928		  ;; Use the substitution y=exp(k*x) because the
2929		  ;; limits are minf to inf.
2930		  (setq ans (cadr ans))))
2931	   ;; Apply the substitution and integrate it.
2932	   (intcv ans nil)))))
2933
2934;; integrate(log(g(x))*f(x),x,0,inf)
2935(defun dintlog (exp arg)
2936  (let ((*dintlog-recur* (1+ *dintlog-recur*))) ;recursion stopper
2937    (prog (ans d)
2938       (cond ((and (eq ul '$inf)
2939		   (equal ll 0.)
2940		   (eq arg var)
2941		   (equal 1 (sratsimp (m// exp (m* (m- (subin (m^t var -1)
2942							       exp))
2943						    (m^t var -2))))))
2944	      ;; Make the substitution y=1/x.  If the integrand has
2945	      ;; exactly the same form, the answer has to be 0.
2946	      (return 0.))
2947             ((and (setq ans (let (($gamma_expand t)) (logx1 exp ll ul)))
2948		   (free ans '%limit))
2949	      (return ans))
2950	     ((setq ans (antideriv exp))
2951	      ;; It's easy if we have the antiderivative.
2952	      ;; but intsubs sometimes gives results containing %limit
2953	      (return (intsubs ans ll ul))))
2954       ;; Ok, the easy cases didn't work.  We now try integration by
2955       ;; parts.  Set ANS to f(x).
2956       (setq ans (m// exp `((%log) ,arg)))
2957       (cond ((involve ans '(%log))
2958	      ;; Bad. f(x) contains a log term, so we give up.
2959	      (return nil))
2960	     ((and (eq arg var)
2961		   (equal 0. (no-err-sub 0. ans))
2962		   (setq d (let ((*def2* t))
2963			     (defint (m* ans (m^t var '*z*))
2964				 var ll ul))))
2965	      ;; The arg of the log function is the same as the
2966	      ;; integration variable.  We can do something a little
2967	      ;; simpler than integration by parts.  We have something
2968	      ;; like f(x)*log(x).  Consider f(x)*x^z.  If we
2969	      ;; differentiate this wrt to z, the integrand becomes
2970	      ;; f(x)*log(x)*x^z.  When we evaluate this at z = 0, we
2971	      ;; get the desired integrand.
2972	      ;;
2973	      ;; So we need f(0) to be 0 at 0.  If we can integrate
2974	      ;; f(x)*x^z, then we differentiate the result and
2975	      ;; evaluate it at z = 0.
2976	      (return (derivat '*z* 1. d 0.)))
2977	     ((setq ans (dintbypart `((%log) ,arg) ans ll ul))
2978	      ;; Try integration by parts.
2979	      (return ans))))))
2980
2981;; Compute diff(e,var,n) at the point pt.
2982(defun derivat (var n e pt)
2983  (subin pt (apply '$diff (list e var n))))
2984
2985;;; GGR and friends
2986
2987;; MAYBPC returns (COEF EXPO CONST)
2988;;
2989;; This basically picks off b*x^n+a and returns the list
2990;; (b n a).  It may also set the global *zd*.
2991(defun maybpc (e var)
2992  (declare (special *zd*))
2993  (cond (*mtoinf* (throw 'ggrm (linpower0 e var)))
2994	((and (not *mtoinf*)
2995	      (null (setq e (bx**n+a e)))) ;bx**n+a --> (a n b) or nil.
2996	 nil)				;with var being x.
2997	;; At this point, e is of the form (a n b)
2998	((and (among '$%i (caddr e))
2999	      (zerop1 ($realpart (caddr e)))
3000	      (setq zn ($imagpart (caddr e)))
3001	      (eq ($asksign (cadr e)) '$pos))
3002	 ;; If we're here, b is complex, and n > 0.  zn = imagpart(b).
3003	 ;;
3004	 ;; Set var to the same sign as zn.
3005	 (cond ((eq ($asksign zn) '$neg)
3006		(setq var -1)
3007		(setq zn (m- zn)))
3008	       (t (setq var 1)))
3009	 ;; zd = exp(var*%i*%pi*(1+nd)/(2*n). (ZD is special!)
3010	 (setq *zd* (m^t '$%e (m// (mul* var '$%i '$%pi (m+t 1 nd*))
3011				   (m*t 2 (cadr e)))))
3012	 ;; Return zn, n, a.
3013	 `(,(caddr e) ,(cadr e) ,(car e)))
3014	((and (or (eq (setq var ($asksign ($realpart (caddr e)))) '$neg)
3015		  (equal var '$zero))
3016	      (equal ($imagpart (cadr e)) 0)
3017	      (ratgreaterp (cadr e) 0.))
3018	 ;; We're here if realpart(b) <= 0, and n >= 0.  Then return -b, n, a.
3019	 `(,(caddr e) ,(cadr e) ,(car e)))))
3020
3021;; Integrate x^m*exp(b*x^n+a), with realpart(m) > -1.
3022;;
3023;; See Wang, pp. 84-85.
3024;;
3025;; I believe the formula Wang gives is incorrect.  The derivation is
3026;; correct except for the last step.
3027;;
3028;; Let J = integrate(x^m*exp(%i*k*x^n),x,0,inf), with real k.
3029;;
3030;; Consider the case for k < 0.  Take a sector of a circle bounded by
3031;; the real line and the angle -%pi/(2*n), and by the radii, r and R.
3032;; Since there are no poles inside this contour, the integral
3033;;
3034;; integrate(z^m*exp(%i*k*z^n),z) = 0
3035;;
3036;; Then J = exp(-%pi*%i*(m+1)/(2*n))*integrate(R^m*exp(k*R^n),R,0,inf)
3037;;
3038;; because the integral along the boundary is zero except for the part
3039;; on the real axis.  (Proof?)
3040;;
3041;; Wang seems to say this last integral is gamma(s/n/(-k)^s) where s =
3042;; (m+1)/n.  But that seems wrong.  If we use the substitution R =
3043;; (y/(-k))^(1/n), we end up with the result:
3044;;
3045;;   integrate(y^((m+1)/n-1)*exp(-y),y,0,inf)/(n*k^((m+1)/n).
3046;;
3047;; or gamma((m+1)/n)/k^((m+1)/n)/n.
3048;;
3049;; Note that this also handles the case of
3050;;
3051;;   integrate(x^m*exp(-k*x^n),x,0,inf);
3052;;
3053;; where k is positive real number.  A simple change of variables,
3054;; y=k*x^n, gives
3055;;
3056;;   integrate(y^((m+1)/n-1)*exp(-y),y,0,inf)/(n*k^((m+1)/n))
3057;;
3058;; which is the same form above.
3059(defun ggr (e ind)
3060  (prog (c *zd* zn nn* dn* nd* dosimp $%emode)
3061     (declare (special *zd*))
3062     (setq nd* 0.)
3063     (cond (ind (setq e ($expand e))
3064		(cond ((and (mplusp e)
3065			    (let ((*nodiverg t))
3066			      (setq e (catch 'divergent
3067					(andmapcar
3068					 #'(lambda (j)
3069					     (ggr j nil))
3070					 (cdr e))))))
3071		       (cond ((eq e 'divergent) nil)
3072			     (t (return (sratsimp (cons '(mplus) e)))))))))
3073     (setq e (rmconst1 e))
3074     (setq c (car e))
3075     (setq e (cdr e))
3076     (cond ((setq e (ggr1 e var))
3077	    ;; e = (m b n a).  That is, the integral is of the form
3078	    ;; x^m*exp(b*x^n+a).  I think we want to compute
3079	    ;; gamma((m+1)/n)/b^((m+1)/n)/n.
3080	    ;;
3081	    ;; FIXME: If n > m + 1, the integral converges.  We need
3082	    ;; to check for this.
3083	    (destructuring-bind (m b n a)
3084		e
3085	      (when (and (not (zerop1 ($realpart b)))
3086			 (not (zerop1 ($imagpart b))))
3087		;; The derivation only holds if b is purely real or
3088		;; purely imaginary.  Give up if it's not.
3089		(return nil))
3090	      ;; Check for convergence.  If b is complex, we need n -
3091	      ;; m > 1.  If b is real, we need b < 0.
3092	      (when (and (zerop1 ($imagpart b))
3093			 (not (eq ($asksign b) '$neg)))
3094		(diverg))
3095	      (when (and (not (zerop1 ($imagpart b)))
3096			 (not (eq ($asksign (sub n (add m 1))) '$pos)))
3097		(diverg))
3098
3099	      (setq e (gamma1 m (cond ((zerop1 ($imagpart b))
3100				       ;; If we're here, b must be negative.
3101				       (neg b))
3102				      (t
3103				       ;; Complex b.  Take the imaginary part
3104				       `((mabs) ,($imagpart b))))
3105			      n a))
3106	      ;; NOTE: *zd* (Ick!) is special and might be set by maybpc.
3107	      (when *zd*
3108		;; FIXME: Why do we set %emode here?  Shouldn't we just
3109		;; bind it?  And why do we want it bound to T anyway?
3110		;; Shouldn't the user control that?  The same goes for
3111		;; dosimp.
3112		;;(setq $%emode t)
3113		(setq dosimp t)
3114		(setq e (m* *zd* e))))))
3115     (cond (e (return (m* c e))))))
3116
3117
3118;; Match x^m*exp(b*x^n+a).  If it does, return (list m b n a).
3119(defun ggr1 (e var)
3120  (cond ((atom e) nil)
3121	((and (mexptp e)
3122	      (eq (cadr e) '$%e))
3123	 ;; We're looking at something like exp(f(var)).  See if it's
3124	 ;; of the form b*x^n+a, and return (list 0 b n a).  (The 0 is
3125	 ;; so we can graft something onto it if needed.)
3126	 (cond ((setq e (maybpc (caddr e) var))
3127		(cons 0. e))))
3128	((and (mtimesp e)
3129	      ;; E should be the product of exactly 2 terms
3130	      (null (cdddr e))
3131	      ;; Check to see if one of the terms is of the form
3132	      ;; var^p.  If so, make sure the realpart of p > -1.  If
3133	      ;; so, check the other term has the right form via
3134	      ;; another call to ggr1.
3135	      (or (and (setq dn* (xtorterm (cadr e) var))
3136		       (ratgreaterp (setq nd* ($realpart dn*))
3137				    -1.)
3138		       (setq nn* (ggr1 (caddr e) var)))
3139		  (and (setq dn* (xtorterm (caddr e) var))
3140		       (ratgreaterp (setq nd* ($realpart dn*))
3141				    -1.)
3142		       (setq nn* (ggr1 (cadr e) var)))))
3143	 ;; Both terms have the right form and nn* contains the arg of
3144	 ;; the exponential term.  Put dn* as the car of nn*.  The
3145	 ;; result is something like (m b n a) when we have the
3146	 ;; expression x^m*exp(b*x^n+a).
3147	 (rplaca nn* dn*))))
3148
3149
3150;; Match b*x^n+a.  If a match is found, return the list (a n b).
3151;; Otherwise, return NIL
3152(defun bx**n+a (e)
3153  (cond ((eq e var)
3154	 (list 0 1 1))
3155	((or (atom e)
3156	     (mnump e)) ())
3157	(t (let ((a (no-err-sub 0. e)))
3158	     (cond ((null a)  ())
3159		   (t (setq e (m+ e (m*t -1 a)))
3160		      (cond ((setq e (bx**n e))
3161			     (cons a e))
3162			    (t ()))))))))
3163
3164;; Match b*x^n.  Return the list (n b) if found or NIL if not.
3165(defun bx**n (e)
3166  (let ((n ()))
3167    (and (setq n (xexponget e var))
3168	 (not (among var
3169		     (setq e (let (($maxposex 1)
3170				   ($maxnegex 1))
3171			       ($expand (m// e (m^t var n)))))))
3172	 (list n e))))
3173
3174(defun xexponget (e nn*)
3175  (cond ((atom e) (cond ((eq e var) 1.)))
3176	((mnump e) nil)
3177	((and (mexptp e)
3178	      (eq (cadr e) nn*)
3179	      (not (among nn* (caddr e))))
3180	 (caddr e))
3181	(t (some #'(lambda (j) (xexponget j nn*)) (cdr e)))))
3182
3183
3184;;; given (b*x^n+a)^m returns (m a n b)
3185(defun bxm (e ind)
3186  (let (m r)
3187    (cond ((or (atom e)
3188	       (mnump e)
3189	       (involve e '(%log %sin %cos %tan))
3190	       (%einvolve e))  nil)
3191	  ((mtimesp e)  nil)
3192	  ((mexptp e)  (cond ((among var (caddr e))  nil)
3193			     ((setq r (bx**n+a (cadr e)))
3194			      (cons (caddr e) r))))
3195	  ((setq r (bx**n+a e))  (cons 1. r))
3196	  ((not (null ind))
3197;;;Catches Unfactored forms.
3198	   (setq m (m// (sdiff e var) e))
3199	   (numden m)
3200	   (setq m nn*)
3201	   (setq r dn*)
3202	   (cond
3203	     ((and (setq r (bx**n+a (sratsimp r)))
3204		   (not (among var (setq m (m// m (m* (cadr r) (caddr r)
3205						      (m^t var (m+t -1 (cadr r))))))))
3206		   (setq e (m// (subin 0. e) (m^t (car r) m))))
3207	      (cond ((equal e 1.)
3208		     (cons m r))
3209		    (t (setq e (m^ e (m// 1. m)))
3210		       (list m (m* e (car r)) (cadr r)
3211			     (m* e (caddr r))))))))
3212	  (t ()))))
3213
3214;;;Is E = VAR raised to some power? If so return power or 0.
3215(defun findp (e)
3216  (cond ((not (among var e)) 0.)
3217	(t (xtorterm e var))))
3218
3219(defun xtorterm (e var1)
3220;;;Is E = VAR1 raised to some power? If so return power.
3221  (cond ((alike1 e var1) 1.)
3222	((atom e) nil)
3223	((and (mexptp e)
3224	      (alike1 (cadr e) var1)
3225	      (not (among var (caddr e))))
3226	 (caddr e))))
3227
3228(defun tbf (l)
3229  (m^ (m* (m^ (caddr l) '((rat) 1 2))
3230	  (m+ (cadr l) (m^ (m* (car l) (caddr l))
3231			   '((rat) 1 2))))
3232      -1))
3233
3234(defun radbyterm (d l)
3235  (do ((l l (cdr l))
3236       (ans ()))
3237      ((null l)
3238       (m+l ans))
3239    (destructuring-let (((const . integrand) (rmconst1 (car l))))
3240      (setq ans (cons (m* const (dintrad0 integrand d))
3241		      ans)))))
3242
3243(defun sqdtc (e ind)
3244  (prog (a b c varlist)
3245     (setq varlist (list var))
3246     (newvar e)
3247     (setq e (cdadr (ratrep* e)))
3248     (setq c (pdis (ptterm e 0)))
3249     (setq b (m*t (m//t 1 2) (pdis (ptterm e 1))))
3250     (setq a (pdis (ptterm e 2)))
3251     (cond ((and (eq ($asksign (m+ b (m^ (m* a c)
3252					 '((rat) 1 2))))
3253		     '$pos)
3254		 (or (and ind
3255			  (not (eq ($asksign a) '$neg))
3256			  (eq ($asksign c) '$pos))
3257		     (and (eq ($asksign a) '$pos)
3258			  (not (eq ($asksign c) '$neg)))))
3259	    (return (list a b c))))))
3260
3261(defun difap1 (e pwr var m pt)
3262  (m// (mul* (cond ((eq (ask-integer m '$even) '$yes)
3263		    1)
3264		   (t -1))
3265	     `((%gamma) ,pwr)
3266	     (derivat var m e pt))
3267       `((%gamma) ,(m+ pwr m))))
3268
3269(defun sqrtinvolve (e)
3270  (cond ((atom e) nil)
3271	((mnump e) nil)
3272	((and (mexptp e)
3273	      (and (mnump (caddr e))
3274		   (not (numberp (caddr e)))
3275		   (equal (caddr (caddr e)) 2.))
3276	      (among var (cadr e)))
3277	 (cadr e))
3278	(t (some #'sqrtinvolve (cdr e)))))
3279
3280(defun bydif (r s d)
3281  (let ((b 1)  p)
3282    (setq d (m+ (m*t '*z* var) d))
3283    (cond ((or (zerop1 (setq p (m+ s (m*t -1 r))))
3284	       (and (zerop1 (m+ 1 p))
3285		    (setq b var)))
3286	   (difap1 (dintrad0 b (m^ d '((rat) 3 2)))
3287		   '((rat) 3 2) '*z* r 0))
3288	  ((eq ($asksign p) '$pos)
3289	   (difap1 (difap1 (dintrad0 1 (m^ (m+t 'z** d)
3290					    '((rat) 3 2)))
3291			   '((rat) 3 2) '*z* r 0)
3292		   '((rat) 3 2) 'z** p 0)))))
3293
3294(defun dintrad0 (n d)
3295  (let (l r s)
3296    (cond ((and (mexptp d)
3297		(equal (deg (cadr d)) 2.))
3298	   (cond ((alike1 (caddr d) '((rat) 3. 2.))
3299		  (cond ((and (equal n 1.)
3300			      (setq l (sqdtc (cadr d) t)))
3301			 (tbf l))
3302			((and (eq n var)
3303			      (setq l (sqdtc (cadr d) nil)))
3304			 (tbf (reverse l)))))
3305		 ((and (setq r (findp n))
3306		       (or (eq ($asksign (m+ -1. (m-  r) (m*t 2.
3307							      (caddr d))))
3308			       '$pos)
3309			   (diverg))
3310		       (setq s (m+ '((rat) -3. 2.) (caddr d)))
3311		       (eq ($asksign s) '$pos)
3312		       (eq (ask-integer s '$integer) '$yes))
3313		  (bydif r s (cadr d)))
3314		 ((polyinx n var nil)
3315		  (radbyterm d (cdr n))))))))
3316
3317
3318;;;Looks at the IMAGINARY part of a log and puts it in the interval 0 2*%pi.
3319(defun log-imag-0-2%pi (x)
3320  (let ((plog (simplify ($rectform `((%plog) ,x)))))
3321    ;; We take the $rectform above to make sure that the log is
3322    ;; expanded out for the situations where simplifying plog itself
3323    ;; doesn't do it.  This should probably be considered a bug in the
3324    ;; plog simplifier and should be fixed there.
3325    (cond ((not (free plog '%plog))
3326	   (subst '%log '%plog plog))
3327	  (t
3328	   (destructuring-let (((real . imag) (trisplit plog)))
3329	     (cond ((eq ($asksign imag) '$neg)
3330		    (setq imag (m+ imag %pi2)))
3331		   ((eq ($asksign (m- imag %pi2)) '$pos)
3332		    (setq imag (m- imag %pi2)))
3333		   (t t))
3334	     (m+ real (m* '$%i imag)))))))
3335
3336
3337;;; Temporary fix for a lacking in taylor, which loses with %i in denom.
3338;;; Besides doesn't seem like a bad thing to do in general.
3339(defun %i-out-of-denom (exp)
3340  (let ((denom ($denom exp)))
3341    (cond ((among '$%i denom)
3342	   ;; Multiply the denominator by it's conjugate to get rid of
3343	   ;; %i.
3344	   (let* ((den-conj (maxima-substitute (m- '$%i) '$%i denom))
3345		  (num ($num exp))
3346		  (new-denom (sratsimp (m* denom den-conj))))
3347	     ;; If the new denominator still contains %i, just give
3348	     ;; up.  Otherwise, multiply the numerator by the
3349	     ;; conjugate and divide by the new denominator.
3350	     (if (among '$%i new-denom)
3351		 exp
3352		 (setq exp (m// (m* num den-conj) new-denom)))))
3353	  (t exp))))
3354
3355;;; LL and UL must be real otherwise this routine return $UNKNOWN.
3356;;; Returns $no $unknown or a list of poles in the interval (ll ul)
3357;;; for exp w.r.t. var.
3358;;; Form of list ((pole . multiplicity) (pole1 . multiplicity) ....)
3359(defun poles-in-interval (exp var ll ul)
3360  (let* ((denom (cond ((mplusp exp)
3361		       ($denom (sratsimp exp)))
3362		      ((and (mexptp exp)
3363			    (free (caddr exp) var)
3364			    (eq ($asksign (caddr exp)) '$neg))
3365		       (m^ (cadr exp) (m- (caddr exp))))
3366		      (t ($denom exp))))
3367	 (roots (real-roots denom var))
3368	 (ll-pole (limit-pole exp var ll '$plus))
3369	 (ul-pole (limit-pole exp var ul '$minus)))
3370    (cond ((or (eq roots '$failure)
3371	       (null ll-pole)
3372	       (null ul-pole))   '$unknown)
3373	  ((and (or (eq roots '$no)
3374		    (member ($csign denom) '($pos $neg $pn)))
3375		    ;; this clause handles cases where we can't find the exact roots,
3376		    ;; but we know that they occur outside the interval of integration.
3377		    ;;  example: integrate ((1+exp(t))/sqrt(t+exp(t)), t, 0, 1);
3378		(eq ll-pole '$no)
3379		(eq ul-pole '$no))  '$no)
3380	  (t (cond ((equal roots '$no)
3381		    (setq roots ())))
3382	     (do ((dummy roots (cdr dummy))
3383		  (pole-list (cond ((not (eq ll-pole '$no))
3384				    `((,ll . 1)))
3385				   (t nil))))
3386		 ((null dummy)
3387		  (cond ((not (eq ul-pole '$no))
3388			 (sort-poles (push `(,ul . 1) pole-list)))
3389			((not (null pole-list))
3390			 (sort-poles pole-list))
3391			(t '$no)))
3392	       (let* ((soltn (caar dummy))
3393		      ;; (multiplicity (cdar dummy)) (not used? -- cwh)
3394		      (root-in-ll-ul (in-interval soltn ll ul)))
3395		 (cond ((eq root-in-ll-ul '$no) '$no)
3396		       ((eq root-in-ll-ul '$yes)
3397			(let ((lim-ans (is-a-pole exp soltn)))
3398			  (cond ((null lim-ans)
3399				 (return '$unknown))
3400				((equal lim-ans 0)
3401				 '$no)
3402				(t (push (car dummy)
3403					 pole-list))))))))))))
3404
3405
3406;;;Returns $YES if there is no pole and $NO if there is one.
3407(defun limit-pole (exp var limit direction)
3408  (let ((ans (cond ((member limit '($minf $inf) :test #'eq)
3409		    (cond ((eq (special-convergent-formp exp limit) '$yes)
3410			   '$no)
3411			  (t (get-limit (m* exp var) var limit direction))))
3412		   (t '$no))))
3413    (cond ((eq ans '$no)   '$no)
3414	  ((null ans)   nil)
3415	  ((eq ans '$und) '$no)
3416	  ((equal ans 0.)   '$no)
3417	  (t '$yes))))
3418
3419;;;Takes care of forms that the ratio test fails on.
3420(defun special-convergent-formp (exp limit)
3421  (cond ((not (oscip exp))  '$no)
3422	((or (eq (sc-converg-form exp limit) '$yes)
3423	     (eq (exp-converg-form exp limit) '$yes))
3424	 '$yes)
3425	(t  '$no)))
3426
3427(defun exp-converg-form (exp limit)
3428  (let (exparg)
3429    (setq exparg (%einvolve exp))
3430    (cond ((or (null exparg)
3431	       (freeof '$%i exparg))
3432	   '$no)
3433	  (t (cond
3434	       ((and (freeof '$%i
3435			     (%einvolve
3436			      (setq exp
3437				    (sratsimp (m// exp (m^t '$%e exparg))))))
3438		     (equal (get-limit exp var limit)  0))
3439		'$yes)
3440	       (t '$no))))))
3441
3442(defun sc-converg-form (exp limit)
3443  (prog (scarg trigpow)
3444     (setq exp ($expand exp))
3445     (setq scarg (involve (sin-sq-cos-sq-sub exp) '(%sin %cos)))
3446     (cond ((null scarg) (return '$no))
3447	   ((and (polyinx scarg var ())
3448		 (eq ($asksign (m- ($hipow scarg var) 1)) '$pos)) (return '$yes))
3449	   ((not (freeof var (sdiff scarg var)))
3450	    (return '$no))
3451	   ((and (setq trigpow ($hipow exp `((%sin) ,scarg)))
3452		 (eq (ask-integer trigpow '$odd) '$yes)
3453		 (equal (get-limit (m// exp `((%sin) ,scarg)) var limit)
3454			0))
3455	    (return '$yes))
3456	   ((and (setq trigpow ($hipow exp `((%cos) ,scarg)))
3457		 (eq (ask-integer trigpow '$odd) '$yes)
3458		 (equal (get-limit (m// exp `((%cos) ,scarg)) var limit)
3459			0))
3460	    (return '$yes))
3461	   (t (return '$no)))))
3462
3463(defun is-a-pole (exp soltn)
3464  (get-limit ($radcan
3465	      (m* (maxima-substitute (m+ 'epsilon soltn) var exp)
3466		  'epsilon))
3467	     'epsilon 0 '$plus))
3468
3469(defun in-interval (place ll ul)
3470  ;; real values for ll and ul; place can be imaginary.
3471  (let ((order (ask-greateq ul ll)))
3472    (cond ((eq order '$yes))
3473	  ((eq order '$no) (let ((temp ul)) (setq ul ll ll temp)))
3474	  (t (merror (intl:gettext "defint: failed to order limits of integration:~%~M")
3475		     (list '(mlist simp) ll ul)))))
3476  (if (not (equal ($imagpart place) 0))
3477      '$no
3478      (let ((lesseq-ul (ask-greateq ul place))
3479	    (greateq-ll (ask-greateq place ll)))
3480	(if (and (eq lesseq-ul '$yes) (eq greateq-ll '$yes)) '$yes '$no))))
3481
3482;; returns true or nil
3483(defun strictly-in-interval (place ll ul)
3484  ;; real values for ll and ul; place can be imaginary.
3485  (and (equal ($imagpart place) 0)
3486       (or (eq ul '$inf)
3487	   (eq ($asksign (m+ ul (m- place))) '$pos))
3488       (or (eq ll '$minf)
3489	   (eq ($asksign (m+ place (m- ll))) '$pos))))
3490
3491(defun real-roots (exp var)
3492  (let (($solvetrigwarn (cond (defintdebug t) ;Rest of the code for
3493			      (t ())))	;TRIGS in denom needed.
3494	($solveradcan (cond ((or (among '$%i exp)
3495				 (among '$%e exp)) t)
3496			    (t nil)))
3497	*roots *failures)		;special vars for solve.
3498    (cond ((not (among var exp))   '$no)
3499	  (t (solve exp var 1)
3500	     ;; If *failures is set, we may have missed some roots.
3501	     ;; We still return the roots that we have found.
3502	     (do ((dummy *roots (cddr dummy))
3503		  (rootlist))
3504		 ((null dummy)
3505		  (cond ((not (null rootlist))
3506			 rootlist)
3507			(t '$no)))
3508	       (cond ((equal ($imagpart (caddar dummy)) 0)
3509		      (setq rootlist
3510			    (cons (cons
3511				   ($rectform (caddar dummy))
3512				   (cadr dummy))
3513				  rootlist)))))))))
3514
3515(defun ask-greateq (x y)
3516;;; Is x > y. X or Y can be $MINF or $INF, zeroA or zeroB.
3517  (let ((x (cond ((among 'zeroa x)
3518		  (subst 0 'zeroa x))
3519		 ((among 'zerob x)
3520		  (subst 0 'zerob x))
3521		 ((among 'epsilon x)
3522		  (subst 0 'epsilon x))
3523		 ((or (among '$inf x)
3524		      (among '$minf x))
3525		  ($limit x))
3526		 (t x)))
3527	(y (cond ((among 'zeroa y)
3528		  (subst 0 'zeroa y))
3529		 ((among 'zerob y)
3530		  (subst 0 'zerob y))
3531		 ((among 'epsilon y)
3532		  (subst 0 'epsilon y))
3533		 ((or (among '$inf y)
3534		      (among '$minf y))
3535		  ($limit y))
3536		 (t y))))
3537    (cond ((eq x '$inf)
3538	   '$yes)
3539	  ((eq x '$minf)
3540	   '$no)
3541	  ((eq y '$inf)
3542	   '$no)
3543	  ((eq y '$minf)
3544	   '$yes)
3545	  (t (let ((ans ($asksign (m+ x (m- y)))))
3546	       (cond ((member ans '($zero $pos) :test #'eq)
3547		      '$yes)
3548		     ((eq ans '$neg)
3549		      '$no)
3550		     (t '$unknown)))))))
3551
3552(defun sort-poles (pole-list)
3553  (sort pole-list #'(lambda (x y)
3554		      (cond ((eq (ask-greateq (car x) (car y))
3555				 '$yes)
3556			     nil)
3557			    (t t)))))
3558
3559;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3560;;;
3561;;;  Integrate Definite Integrals involving log and exp functions. The algorithm
3562;;;  are taken from the paper "Evaluation of CLasses of Definite Integrals ..."
3563;;;  by K.O.Geddes et. al.
3564;;;
3565;;;  1. CASE: Integrals generated by the Gamma function.
3566;;;
3567;;;    inf
3568;;;   /
3569;;;   [     w    m            s        - m - 1
3570;;;   I    t  log (t) expt(- t ) dt = s        signum(s)
3571;;;   ]
3572;;;   /
3573;;;    0
3574;;;                                                                 !
3575;;;                                                    m            !
3576;;;                                                   d             !
3577;;;                                                  (--- (gamma(z))!         )
3578;;;                                                     m           !
3579;;;                                                   dz            !    w + 1
3580;;;                                                                 !z = -----
3581;;;                                                                        s
3582;;;
3583;;;  The integral converges for:
3584;;;  s # 0, m = 0, 1, 2, ... and realpart((w+1)/s) > 0.
3585;;;
3586;;;  2. CASE: Integrals generated by the Incomplete Gamma function.
3587;;;
3588;;;    inf                                                         !
3589;;;   /                                m                           !
3590;;;   [     w    m           s        d                         s  !
3591;;;   I    t  log (t) exp(- t ) dt = (--- (gamma_incomplete(a, x ))!         )
3592;;;   ]                                 m                          !
3593;;;   /                               da                           !    w + 1
3594;;;    x                                                           !z = -----
3595;;;                                                                       s
3596;;;                                                           - m - 1
3597;;;                                                          s        signum(s)
3598;;;
3599;;;  The integral converges for:
3600;;;  s # 0, m = 0, 1, 2, ... and realpart((w+1)/s) > 0.
3601;;;  The shown solution is valid for s>0. For s<0 gamma_incomplete has to be
3602;;;  replaced by gamma(a) - gamma_incomplete(a,x^s).
3603;;;
3604;;;  3. CASE: Integrals generated by the beta function.
3605;;;
3606;;;    1
3607;;;   /
3608;;;   [     m               s  r    n
3609;;;   I  log (1 - t) (1 - t)  t  log (t) dt =
3610;;;   ]
3611;;;   /
3612;;;    0
3613;;;                                                                  !
3614;;;                                                       !          !
3615;;;                                   n    m              !          !
3616;;;                                  d    d               !          !
3617;;;                                  --- (--- (beta(z, w))!         )!
3618;;;                                    n    m             !          !
3619;;;                                  dz   dw              !          !
3620;;;                                                       !w = s + 1 !
3621;;;                                                                  !z = r + 1
3622;;;
3623;;;  The integral converges for:
3624;;;  n, m = 0, 1, 2, ..., s > -1 and r > -1.
3625;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3626
3627(defvar *debug-defint-log* nil)
3628
3629;;; Recognize c*z^w*log(z)^m*exp(-t^s)
3630
3631(defun m2-log-exp-1 (expr)
3632  (when *debug-defint-log*
3633    (format t "~&M2-LOG-EXP-1 with ~A~%" expr))
3634  (m2 expr
3635    '((mtimes)
3636        (c freevar)
3637        ((mexpt) (z varp) (w freevar))
3638        ((mexpt) $%e ((mtimes) -1 ((mexpt) (z varp) (s freevar0))))
3639        ((mexpt) ((%log) (z varp)) (m freevar)))))
3640
3641;;; Recognize c*z^r*log(z)^n*(1-z)^s*log(1-z)^m
3642
3643(defun m2-log-exp-2 (expr)
3644  (when *debug-defint-log*
3645    (format t "~&M2-LOG-EXP-2 with ~A~%" expr))
3646  (m2 expr
3647    '((mtimes)
3648        (c freevar)
3649        ((mexpt) (z varp) (r freevar))
3650        ((mexpt) ((%log) (z varp)) (n freevar))
3651        ((mexpt) ((mplus) 1 ((mtimes) -1 (z varp))) (s freevar))
3652        ((mexpt) ((%log) ((mplus) 1 ((mtimes)-1 (z varp)))) (m freevar)))))
3653
3654;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3655
3656(defun defint-log-exp (expr var ll ul)
3657  (let ((x nil)
3658        (result nil)
3659        (var1 (gensym)))
3660
3661    ;; var1 is used as a parameter for differentiation. Add var1>0 to the
3662    ;; database, to get the desired simplification of the differentiation of
3663    ;; the gamma_incomplete function.
3664    (setq *global-defint-assumptions*
3665          (cons (assume `((mgreaterp) ,var1 0))
3666                *global-defint-assumptions*))
3667
3668    (cond
3669      ((and (eq ul '$inf)
3670            (setq x (m2-log-exp-1 expr)))
3671       ;; The integrand matches the cases 1 and 2.
3672       (let ((c (cdras 'c x))
3673             (w (cdras 'w x))
3674             (m (cdras 'm x))
3675             (s (cdras 's x))
3676             ($gamma_expand nil)) ; No expansion of Gamma functions.
3677
3678         (when *debug-defint-log*
3679           (format t "~&DEFINT-LOG-EXP-1:~%")
3680           (format t "~&   : c = ~A~%" c)
3681           (format t "~&   : w = ~A~%" w)
3682           (format t "~&   : m = ~A~%" m)
3683           (format t "~&   : s = ~A~%" s))
3684
3685         (cond ((and (zerop1 ll)
3686                     (integerp m)
3687                     (>= m 0)
3688                     (not (eq ($sign s) '$zero))
3689                     (eq ($sign (div (add w 1) s)) '$pos))
3690                ;; Case 1: Generated by the Gamma function.
3691                (setq result
3692                     (mul c
3693                          (simplify (list '(%signum) s))
3694                          (power s (mul -1 (add m 1)))
3695                          ($at ($diff (list '(%gamma) var1) var1 m)
3696                               (list '(mequal)
3697                                     var1
3698                                     (div (add w 1) s))))))
3699             ((and (member ($sign ll) '($pos $pz))
3700                   (integerp m)
3701                   (or (= m 0) (= m 1))	; Exclude m>1, because Maxima can not
3702                                        ; derivate the involved hypergeometric
3703                                        ; functions.
3704                   (or (and (eq ($sign s) '$neg)
3705                            (eq ($sign (div (add 1 w) s)) '$pos))
3706                       (and (eq ($sign s) '$pos)
3707                            (eq ($sign (div (add 1 w) s)) '$pos))))
3708              ;; Case 2: Generated by the Incomplete Gamma function.
3709	      (let ((f (if (eq ($sign s) '$pos)
3710			   (list '(%gamma_incomplete) var1 (power ll s))
3711			   (sub (list '(%gamma) var1)
3712				(list '(%gamma_incomplete) var1 (power ll s))))))
3713		(setq result
3714		      (mul c
3715			   (simplify (list '(%signum) s))
3716			   (power s (mul -1 (add m 1)))
3717			   ($at ($diff f var1 m)
3718				(list '(mequal) var1 (div (add 1 w) s)))))))
3719               (t
3720                (setq result nil)))))
3721      ((and (zerop1 ll)
3722            (onep1 ul)
3723            (setq x (m2-log-exp-2 expr)))
3724       ;; Case 3: Generated by the Beta function.
3725       (let ((c (cdras 'c x))
3726             (r (cdras 'r x))
3727             (n (cdras 'n x))
3728             (s (cdras 's x))
3729             (m (cdras 'm x))
3730             (var1 (gensym))
3731             (var2 (gensym)))
3732
3733         (when *debug-defint-log*
3734           (format t "~&DEFINT-LOG-EXP-2:~%")
3735           (format t "~&   : c = ~A~%" c)
3736           (format t "~&   : r = ~A~%" r)
3737           (format t "~&   : n = ~A~%" n)
3738           (format t "~&   : s = ~A~%" s)
3739           (format t "~&   : m = ~A~%" m))
3740
3741         (cond ((and (integerp m)
3742                     (>= m 0)
3743                     (integerp n)
3744                     (>= n 0)
3745                     (eq ($sign (add 1 r)) '$pos)
3746                     (eq ($sign (add 1 s)) '$pos))
3747                (setq result
3748                      (mul c
3749                           ($at ($diff ($at ($diff (list '($beta) var1 var2)
3750                                                   var2 m)
3751                                            (list '(mequal) var2 (add 1 s)))
3752                                       var1 n)
3753                                (list '(mequal) var1 (add 1 r))))))
3754              (t
3755               (setq result nil)))))
3756      (t
3757       (setq result nil)))
3758    ;; Simplify result and set $gamma_expand to global value
3759    (let (($gamma_expand $gamma_expand)) (sratsimp result))))
3760
3761;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3762