1 // The libMesh Finite Element Library.
2 // Copyright (C) 2002-2020 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
3 
4 // This library is free software; you can redistribute it and/or
5 // modify it under the terms of the GNU Lesser General Public
6 // License as published by the Free Software Foundation; either
7 // version 2.1 of the License, or (at your option) any later version.
8 
9 // This library is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12 // Lesser General Public License for more details.
13 
14 // You should have received a copy of the GNU Lesser General Public
15 // License along with this library; if not, write to the Free Software
16 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
17 
18 
19 
20 #ifndef LIBMESH_OPTIMIZATION_SOLVER_H
21 #define LIBMESH_OPTIMIZATION_SOLVER_H
22 
23 // Local includes
24 #include "libmesh/libmesh_common.h"
25 #include "libmesh/reference_counted_object.h"
26 #include "libmesh/libmesh.h"
27 #include "libmesh/parallel_object.h"
28 #include "libmesh/optimization_system.h"
29 
30 #ifdef LIBMESH_FORWARD_DECLARE_ENUMS
31 namespace libMesh
32 {
33 enum SolverPackage : int;
34 }
35 #else
36 #include "libmesh/enum_solver_package.h"
37 #endif
38 
39 // C++ includes
40 #include <cstddef>
41 #include <memory>
42 
43 namespace libMesh
44 {
45 
46 // forward declarations
47 template <typename T> class SparseMatrix;
48 template <typename T> class NumericVector;
49 template <typename T> class Preconditioner;
50 
51 /**
52  * This base class can be inherited from to provide interfaces to
53  * optimization solvers from different packages like PETSc/TAO and
54  * nlopt.
55  *
56  * \author David Knezevic
57  * \date 2015
58  */
59 template <typename T>
60 class OptimizationSolver : public ReferenceCountedObject<OptimizationSolver<T>>,
61                            public ParallelObject
62 {
63 public:
64   /**
65    * The type of system
66    */
67   typedef OptimizationSystem sys_type;
68 
69   /**
70    *  Constructor. Initializes Solver data structures
71    */
72   explicit
73   OptimizationSolver (sys_type & s);
74 
75   /**
76    * Destructor.
77    */
78   virtual ~OptimizationSolver ();
79 
80   /**
81    * Builds an \p OptimizationSolver using the package specified by
82    * \p solver_package
83    */
84   static std::unique_ptr<OptimizationSolver<T>> build(sys_type & s,
85                                                       const SolverPackage solver_package = libMesh::default_solver_package());
86 
87   /**
88    * \returns \p true if the data structures are
89    * initialized, false otherwise.
90    */
initialized()91   bool initialized () const { return _is_initialized; }
92 
93   /**
94    * Release all memory and clear data structures.
95    */
clear()96   virtual void clear () {}
97 
98   /**
99    * Initialize data structures if not done so already.
100    */
101   virtual void init () = 0;
102 
103   /**
104    * Solves the optimization problem.
105    */
106   virtual void solve () = 0;
107 
108   /**
109    * Get the current values of dual variables associated with
110    * inequality and equality constraints. The variables will
111    * be stored in _system.lambda_eq and _system.lambda_ineq.
112    */
get_dual_variables()113   virtual void get_dual_variables()
114   { libmesh_not_implemented(); }
115 
116   /**
117    * Prints a useful message about why the latest optimization solve
118    * con(di)verged.
119    */
print_converged_reason()120   virtual void print_converged_reason() { libmesh_not_implemented(); }
121 
122   /**
123    * \returns 0, but derived classes should override this to return an
124    * appropriate integer convergence status value.
125    *
126    * Most optimization solver packages return an integer status
127    * result of some kind.  This interface assumes they can be coerced
128    * into an "int" type, which is usually safe since they are based on
129    * enumerations.
130    */
get_converged_reason()131   virtual int get_converged_reason() { return 0; }
132 
133   /**
134    * Object that computes the objective function f(X)
135    * at the input iterate X.
136    */
137   OptimizationSystem::ComputeObjective * objective_object;
138 
139   /**
140    * Object that computes the gradient grad_f(X) of the objective function
141    * at the input iterate X.
142    */
143   OptimizationSystem::ComputeGradient * gradient_object;
144 
145   /**
146    * Object that computes the Hessian H_f(X) of the objective function
147    * at the input iterate X.
148    */
149   OptimizationSystem::ComputeHessian * hessian_object;
150 
151   /**
152    * Object that computes the equality constraints vector C_eq(X).
153    * This will lead to the constraints C_eq(X) = 0 being imposed.
154    */
155   OptimizationSystem::ComputeEqualityConstraints * equality_constraints_object;
156 
157   /**
158    * Object that computes the Jacobian of C_eq(X).
159    */
160   OptimizationSystem::ComputeEqualityConstraintsJacobian * equality_constraints_jacobian_object;
161 
162   /**
163    * Object that computes the inequality constraints vector C_ineq(X).
164    * This will lead to the constraints C_ineq(X) >= 0 being imposed.
165    */
166   OptimizationSystem::ComputeInequalityConstraints * inequality_constraints_object;
167 
168   /**
169    * Object that computes the Jacobian of C_ineq(X).
170    */
171   OptimizationSystem::ComputeInequalityConstraintsJacobian * inequality_constraints_jacobian_object;
172 
173   /**
174    * Object that computes the lower and upper bounds vectors.
175    */
176   OptimizationSystem::ComputeLowerAndUpperBounds * lower_and_upper_bounds_object;
177 
178   /**
179    * \returns A constant reference to the system we are using to
180    * define the optimization problem.
181    */
system()182   const sys_type & system () const { return _system; }
183 
184   /**
185    * \returns A writable reference to the system we are using to
186    * define the optimization problem.
187    */
system()188   sys_type & system () { return _system; }
189 
190   /**
191    * Maximum number of objective function evaluations allowed.
192    */
193   unsigned int max_objective_function_evaluations;
194 
195   /**
196    * Required change in objective function which signals convergence.
197    */
198   double objective_function_relative_tolerance;
199 
200   /**
201    * Control how much is output from the OptimizationSolver as it's running.
202    */
203   bool verbose;
204 
205 protected:
206 
207   /**
208    * A reference to the system we are solving.
209    */
210   sys_type & _system;
211 
212   /**
213    * Flag indicating if the data structures have been initialized.
214    */
215   bool _is_initialized;
216 
217 };
218 
219 } // namespace libMesh
220 
221 
222 #endif // LIBMESH_OPTIMIZATION_SOLVER_H
223