1 /* 2 * cabinet.h 3 * 4 * Copyright 2002 Greg Turner 5 * Copyright 2005 Gerold Jens Wucherpfennig 6 * 7 * This library is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2.1 of the License, or (at your option) any later version. 11 * 12 * This library is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with this library; if not, write to the Free Software 19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA 20 */ 21 #ifndef __WINE_CABINET_H 22 #define __WINE_CABINET_H 23 24 #include <stdarg.h> 25 26 #include "windef.h" 27 #include "winbase.h" 28 #include "winnt.h" 29 #include "fdi.h" 30 #include "fci.h" 31 32 /* from msvcrt/sys/stat.h */ 33 #define _S_IWRITE 0x0080 34 #define _S_IREAD 0x0100 35 36 /* from msvcrt/fcntl.h */ 37 #define _O_RDONLY 0 38 #define _O_WRONLY 1 39 #define _O_RDWR 2 40 #define _O_ACCMODE (_O_RDONLY|_O_WRONLY|_O_RDWR) 41 #define _O_APPEND 0x0008 42 #define _O_RANDOM 0x0010 43 #define _O_SEQUENTIAL 0x0020 44 #define _O_TEMPORARY 0x0040 45 #define _O_NOINHERIT 0x0080 46 #define _O_CREAT 0x0100 47 #define _O_TRUNC 0x0200 48 #define _O_EXCL 0x0400 49 #define _O_SHORT_LIVED 0x1000 50 #define _O_TEXT 0x4000 51 #define _O_BINARY 0x8000 52 53 #define CAB_SPLITMAX (10) 54 55 #define CAB_SEARCH_SIZE (32*1024) 56 57 typedef unsigned char cab_UBYTE; /* 8 bits */ 58 typedef UINT16 cab_UWORD; /* 16 bits */ 59 typedef UINT32 cab_ULONG; /* 32 bits */ 60 typedef INT32 cab_LONG; /* 32 bits */ 61 62 typedef UINT32 cab_off_t; 63 64 /* number of bits in a ULONG */ 65 #define CAB_ULONG_BITS (sizeof(cab_ULONG) * 8) /* CHAR_BIT */ 66 67 /* structure offsets */ 68 #define cfhead_Signature (0x00) 69 #define cfhead_CabinetSize (0x08) 70 #define cfhead_FileOffset (0x10) 71 #define cfhead_MinorVersion (0x18) 72 #define cfhead_MajorVersion (0x19) 73 #define cfhead_NumFolders (0x1A) 74 #define cfhead_NumFiles (0x1C) 75 #define cfhead_Flags (0x1E) 76 #define cfhead_SetID (0x20) 77 #define cfhead_CabinetIndex (0x22) 78 #define cfhead_SIZEOF (0x24) 79 #define cfheadext_HeaderReserved (0x00) 80 #define cfheadext_FolderReserved (0x02) 81 #define cfheadext_DataReserved (0x03) 82 #define cfheadext_SIZEOF (0x04) 83 #define cffold_DataOffset (0x00) 84 #define cffold_NumBlocks (0x04) 85 #define cffold_CompType (0x06) 86 #define cffold_SIZEOF (0x08) 87 #define cffile_UncompressedSize (0x00) 88 #define cffile_FolderOffset (0x04) 89 #define cffile_FolderIndex (0x08) 90 #define cffile_Date (0x0A) 91 #define cffile_Time (0x0C) 92 #define cffile_Attribs (0x0E) 93 #define cffile_SIZEOF (0x10) 94 #define cfdata_CheckSum (0x00) 95 #define cfdata_CompressedSize (0x04) 96 #define cfdata_UncompressedSize (0x06) 97 #define cfdata_SIZEOF (0x08) 98 99 /* flags */ 100 #define cffoldCOMPTYPE_MASK (0x000f) 101 #define cffoldCOMPTYPE_NONE (0x0000) 102 #define cffoldCOMPTYPE_MSZIP (0x0001) 103 #define cffoldCOMPTYPE_QUANTUM (0x0002) 104 #define cffoldCOMPTYPE_LZX (0x0003) 105 #define cfheadPREV_CABINET (0x0001) 106 #define cfheadNEXT_CABINET (0x0002) 107 #define cfheadRESERVE_PRESENT (0x0004) 108 #define cffileCONTINUED_FROM_PREV (0xFFFD) 109 #define cffileCONTINUED_TO_NEXT (0xFFFE) 110 #define cffileCONTINUED_PREV_AND_NEXT (0xFFFF) 111 #define cffile_A_RDONLY (0x01) 112 #define cffile_A_HIDDEN (0x02) 113 #define cffile_A_SYSTEM (0x04) 114 #define cffile_A_ARCH (0x20) 115 #define cffile_A_EXEC (0x40) 116 #define cffile_A_NAME_IS_UTF (0x80) 117 118 /****************************************************************************/ 119 /* our archiver information / state */ 120 121 /* MSZIP stuff */ 122 #define ZIPWSIZE 0x8000 /* window size */ 123 #define ZIPLBITS 9 /* bits in base literal/length lookup table */ 124 #define ZIPDBITS 6 /* bits in base distance lookup table */ 125 #define ZIPBMAX 16 /* maximum bit length of any code */ 126 #define ZIPN_MAX 288 /* maximum number of codes in any set */ 127 128 struct Ziphuft { 129 cab_UBYTE e; /* number of extra bits or operation */ 130 cab_UBYTE b; /* number of bits in this code or subcode */ 131 union { 132 cab_UWORD n; /* literal, length base, or distance base */ 133 struct Ziphuft *t; /* pointer to next level of table */ 134 } v; 135 }; 136 137 struct ZIPstate { 138 cab_ULONG window_posn; /* current offset within the window */ 139 cab_ULONG bb; /* bit buffer */ 140 cab_ULONG bk; /* bits in bit buffer */ 141 cab_ULONG ll[288+32]; /* literal/length and distance code lengths */ 142 cab_ULONG c[ZIPBMAX+1]; /* bit length count table */ 143 cab_LONG lx[ZIPBMAX+1]; /* memory for l[-1..ZIPBMAX-1] */ 144 struct Ziphuft *u[ZIPBMAX]; /* table stack */ 145 cab_ULONG v[ZIPN_MAX]; /* values in order of bit length */ 146 cab_ULONG x[ZIPBMAX+1]; /* bit offsets, then code stack */ 147 cab_UBYTE *inpos; 148 }; 149 150 /* Quantum stuff */ 151 152 struct QTMmodelsym { 153 cab_UWORD sym, cumfreq; 154 }; 155 156 struct QTMmodel { 157 int shiftsleft, entries; 158 struct QTMmodelsym *syms; 159 cab_UWORD tabloc[256]; 160 }; 161 162 struct QTMstate { 163 cab_UBYTE *window; /* the actual decoding window */ 164 cab_ULONG window_size; /* window size (1Kb through 2Mb) */ 165 cab_ULONG actual_size; /* window size when it was first allocated */ 166 cab_ULONG window_posn; /* current offset within the window */ 167 168 struct QTMmodel model7; 169 struct QTMmodelsym m7sym[7+1]; 170 171 struct QTMmodel model4, model5, model6pos, model6len; 172 struct QTMmodelsym m4sym[0x18 + 1]; 173 struct QTMmodelsym m5sym[0x24 + 1]; 174 struct QTMmodelsym m6psym[0x2a + 1], m6lsym[0x1b + 1]; 175 176 struct QTMmodel model00, model40, model80, modelC0; 177 struct QTMmodelsym m00sym[0x40 + 1], m40sym[0x40 + 1]; 178 struct QTMmodelsym m80sym[0x40 + 1], mC0sym[0x40 + 1]; 179 }; 180 181 /* LZX stuff */ 182 183 /* some constants defined by the LZX specification */ 184 #define LZX_MIN_MATCH (2) 185 #define LZX_MAX_MATCH (257) 186 #define LZX_NUM_CHARS (256) 187 #define LZX_BLOCKTYPE_INVALID (0) /* also blocktypes 4-7 invalid */ 188 #define LZX_BLOCKTYPE_VERBATIM (1) 189 #define LZX_BLOCKTYPE_ALIGNED (2) 190 #define LZX_BLOCKTYPE_UNCOMPRESSED (3) 191 #define LZX_PRETREE_NUM_ELEMENTS (20) 192 #define LZX_ALIGNED_NUM_ELEMENTS (8) /* aligned offset tree #elements */ 193 #define LZX_NUM_PRIMARY_LENGTHS (7) /* this one missing from spec! */ 194 #define LZX_NUM_SECONDARY_LENGTHS (249) /* length tree #elements */ 195 196 /* LZX huffman defines: tweak tablebits as desired */ 197 #define LZX_PRETREE_MAXSYMBOLS (LZX_PRETREE_NUM_ELEMENTS) 198 #define LZX_PRETREE_TABLEBITS (6) 199 #define LZX_MAINTREE_MAXSYMBOLS (LZX_NUM_CHARS + 50*8) 200 #define LZX_MAINTREE_TABLEBITS (12) 201 #define LZX_LENGTH_MAXSYMBOLS (LZX_NUM_SECONDARY_LENGTHS+1) 202 #define LZX_LENGTH_TABLEBITS (12) 203 #define LZX_ALIGNED_MAXSYMBOLS (LZX_ALIGNED_NUM_ELEMENTS) 204 #define LZX_ALIGNED_TABLEBITS (7) 205 206 #define LZX_LENTABLE_SAFETY (64) /* we allow length table decoding overruns */ 207 208 #define LZX_DECLARE_TABLE(tbl) \ 209 cab_UWORD tbl##_table[(1<<LZX_##tbl##_TABLEBITS) + (LZX_##tbl##_MAXSYMBOLS<<1)];\ 210 cab_UBYTE tbl##_len [LZX_##tbl##_MAXSYMBOLS + LZX_LENTABLE_SAFETY] 211 212 struct LZXstate { 213 cab_UBYTE *window; /* the actual decoding window */ 214 cab_ULONG window_size; /* window size (32Kb through 2Mb) */ 215 cab_ULONG actual_size; /* window size when it was first allocated */ 216 cab_ULONG window_posn; /* current offset within the window */ 217 cab_ULONG R0, R1, R2; /* for the LRU offset system */ 218 cab_UWORD main_elements; /* number of main tree elements */ 219 int header_read; /* have we started decoding at all yet? */ 220 cab_UWORD block_type; /* type of this block */ 221 cab_ULONG block_length; /* uncompressed length of this block */ 222 cab_ULONG block_remaining; /* uncompressed bytes still left to decode */ 223 cab_ULONG frames_read; /* the number of CFDATA blocks processed */ 224 cab_LONG intel_filesize; /* magic header value used for transform */ 225 cab_LONG intel_curpos; /* current offset in transform space */ 226 int intel_started; /* have we seen any translatable data yet? */ 227 228 LZX_DECLARE_TABLE(PRETREE); 229 LZX_DECLARE_TABLE(MAINTREE); 230 LZX_DECLARE_TABLE(LENGTH); 231 LZX_DECLARE_TABLE(ALIGNED); 232 }; 233 234 struct lzx_bits { 235 cab_ULONG bb; 236 int bl; 237 cab_UBYTE *ip; 238 }; 239 240 /* CAB data blocks are <= 32768 bytes in uncompressed form. Uncompressed 241 * blocks have zero growth. MSZIP guarantees that it won't grow above 242 * uncompressed size by more than 12 bytes. LZX guarantees it won't grow 243 * more than 6144 bytes. 244 */ 245 #define CAB_BLOCKMAX (32768) 246 #define CAB_INPUTMAX (CAB_BLOCKMAX+6144) 247 248 struct cab_file { 249 struct cab_file *next; /* next file in sequence */ 250 struct cab_folder *folder; /* folder that contains this file */ 251 LPCSTR filename; /* output name of file */ 252 HANDLE fh; /* open file handle or NULL */ 253 cab_ULONG length; /* uncompressed length of file */ 254 cab_ULONG offset; /* uncompressed offset in folder */ 255 cab_UWORD index; /* magic index number of folder */ 256 cab_UWORD time, date, attribs; /* MS-DOS time/date/attributes */ 257 }; 258 259 260 struct cab_folder { 261 struct cab_folder *next; 262 struct cabinet *cab[CAB_SPLITMAX]; /* cabinet(s) this folder spans */ 263 cab_off_t offset[CAB_SPLITMAX]; /* offset to data blocks */ 264 cab_UWORD comp_type; /* compression format/window size */ 265 cab_ULONG comp_size; /* compressed size of folder */ 266 cab_UBYTE num_splits; /* number of split blocks + 1 */ 267 cab_UWORD num_blocks; /* total number of blocks */ 268 struct cab_file *contfile; /* the first split file */ 269 }; 270 271 struct cabinet { 272 struct cabinet *next; /* for making a list of cabinets */ 273 LPCSTR filename; /* input name of cabinet */ 274 HANDLE *fh; /* open file handle or NULL */ 275 cab_off_t filelen; /* length of cabinet file */ 276 cab_off_t blocks_off; /* offset to data blocks in file */ 277 struct cabinet *prevcab, *nextcab; /* multipart cabinet chains */ 278 char *prevname, *nextname; /* and their filenames */ 279 char *previnfo, *nextinfo; /* and their visible names */ 280 struct cab_folder *folders; /* first folder in this cabinet */ 281 struct cab_file *files; /* first file in this cabinet */ 282 cab_UBYTE block_resv; /* reserved space in datablocks */ 283 cab_UBYTE flags; /* header flags */ 284 }; 285 286 typedef struct cds_forward { 287 struct cab_folder *current; /* current folder we're extracting from */ 288 cab_ULONG offset; /* uncompressed offset within folder */ 289 cab_UBYTE *outpos; /* (high level) start of data to use up */ 290 cab_UWORD outlen; /* (high level) amount of data to use up */ 291 cab_UWORD split; /* at which split in current folder? */ 292 int (*decompress)(int, int, struct cds_forward *); /* chosen compress fn */ 293 cab_UBYTE inbuf[CAB_INPUTMAX+2]; /* +2 for lzx bitbuffer overflows! */ 294 cab_UBYTE outbuf[CAB_BLOCKMAX]; 295 cab_UBYTE q_length_base[27], q_length_extra[27], q_extra_bits[42]; 296 cab_ULONG q_position_base[42]; 297 cab_ULONG lzx_position_base[51]; 298 cab_UBYTE extra_bits[51]; 299 union { 300 struct ZIPstate zip; 301 struct QTMstate qtm; 302 struct LZXstate lzx; 303 } methods; 304 } cab_decomp_state; 305 306 /* 307 * the rest of these are somewhat kludgy macros which are shared between fdi.c 308 * and cabextract.c. 309 */ 310 311 /* Bitstream reading macros (Quantum / normal byte order) 312 * 313 * Q_INIT_BITSTREAM should be used first to set up the system 314 * Q_READ_BITS(var,n) takes N bits from the buffer and puts them in var. 315 * unlike LZX, this can loop several times to get the 316 * requisite number of bits. 317 * Q_FILL_BUFFER adds more data to the bit buffer, if there is room 318 * for another 16 bits. 319 * Q_PEEK_BITS(n) extracts (without removing) N bits from the bit 320 * buffer 321 * Q_REMOVE_BITS(n) removes N bits from the bit buffer 322 * 323 * These bit access routines work by using the area beyond the MSB and the 324 * LSB as a free source of zeroes. This avoids having to mask any bits. 325 * So we have to know the bit width of the bitbuffer variable. This is 326 * defined as ULONG_BITS. 327 * 328 * ULONG_BITS should be at least 16 bits. Unlike LZX's Huffman decoding, 329 * Quantum's arithmetic decoding only needs 1 bit at a time, it doesn't 330 * need an assured number. Retrieving larger bitstrings can be done with 331 * multiple reads and fills of the bitbuffer. The code should work fine 332 * for machines where ULONG >= 32 bits. 333 * 334 * Also note that Quantum reads bytes in normal order; LZX is in 335 * little-endian order. 336 */ 337 338 #define Q_INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0) 339 340 #define Q_FILL_BUFFER do { \ 341 if (bitsleft <= (CAB_ULONG_BITS - 16)) { \ 342 bitbuf |= ((inpos[0]<<8)|inpos[1]) << (CAB_ULONG_BITS-16 - bitsleft); \ 343 bitsleft += 16; inpos += 2; \ 344 } \ 345 } while (0) 346 347 #define Q_PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n))) 348 #define Q_REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n))) 349 350 #define Q_READ_BITS(v,n) do { \ 351 (v) = 0; \ 352 for (bitsneed = (n); bitsneed; bitsneed -= bitrun) { \ 353 Q_FILL_BUFFER; \ 354 bitrun = (bitsneed > bitsleft) ? bitsleft : bitsneed; \ 355 (v) = ((v) << bitrun) | Q_PEEK_BITS(bitrun); \ 356 Q_REMOVE_BITS(bitrun); \ 357 } \ 358 } while (0) 359 360 #define Q_MENTRIES(model) (QTM(model).entries) 361 #define Q_MSYM(model,symidx) (QTM(model).syms[(symidx)].sym) 362 #define Q_MSYMFREQ(model,symidx) (QTM(model).syms[(symidx)].cumfreq) 363 364 /* GET_SYMBOL(model, var) fetches the next symbol from the stated model 365 * and puts it in var. it may need to read the bitstream to do this. 366 */ 367 #define GET_SYMBOL(m, var) do { \ 368 range = ((H - L) & 0xFFFF) + 1; \ 369 symf = ((((C - L + 1) * Q_MSYMFREQ(m,0)) - 1) / range) & 0xFFFF; \ 370 \ 371 for (i=1; i < Q_MENTRIES(m); i++) { \ 372 if (Q_MSYMFREQ(m,i) <= symf) break; \ 373 } \ 374 (var) = Q_MSYM(m,i-1); \ 375 \ 376 range = (H - L) + 1; \ 377 H = L + ((Q_MSYMFREQ(m,i-1) * range) / Q_MSYMFREQ(m,0)) - 1; \ 378 L = L + ((Q_MSYMFREQ(m,i) * range) / Q_MSYMFREQ(m,0)); \ 379 while (1) { \ 380 if ((L & 0x8000) != (H & 0x8000)) { \ 381 if ((L & 0x4000) && !(H & 0x4000)) { \ 382 /* underflow case */ \ 383 C ^= 0x4000; L &= 0x3FFF; H |= 0x4000; \ 384 } \ 385 else break; \ 386 } \ 387 L <<= 1; H = (H << 1) | 1; \ 388 Q_FILL_BUFFER; \ 389 C = (C << 1) | Q_PEEK_BITS(1); \ 390 Q_REMOVE_BITS(1); \ 391 } \ 392 \ 393 QTMupdatemodel(&(QTM(m)), i); \ 394 } while (0) 395 396 /* Bitstream reading macros (LZX / intel little-endian byte order) 397 * 398 * INIT_BITSTREAM should be used first to set up the system 399 * READ_BITS(var,n) takes N bits from the buffer and puts them in var 400 * 401 * ENSURE_BITS(n) ensures there are at least N bits in the bit buffer. 402 * it can guarantee up to 17 bits (i.e. it can read in 403 * 16 new bits when there is down to 1 bit in the buffer, 404 * and it can read 32 bits when there are 0 bits in the 405 * buffer). 406 * PEEK_BITS(n) extracts (without removing) N bits from the bit buffer 407 * REMOVE_BITS(n) removes N bits from the bit buffer 408 * 409 * These bit access routines work by using the area beyond the MSB and the 410 * LSB as a free source of zeroes. This avoids having to mask any bits. 411 * So we have to know the bit width of the bitbuffer variable. 412 */ 413 414 #define INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0) 415 416 /* Quantum reads bytes in normal order; LZX is little-endian order */ 417 #define ENSURE_BITS(n) \ 418 while (bitsleft < (n)) { \ 419 bitbuf |= ((inpos[1]<<8)|inpos[0]) << (CAB_ULONG_BITS-16 - bitsleft); \ 420 bitsleft += 16; inpos+=2; \ 421 } 422 423 #define PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n))) 424 #define REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n))) 425 426 #define READ_BITS(v,n) do { \ 427 if (n) { \ 428 ENSURE_BITS(n); \ 429 (v) = PEEK_BITS(n); \ 430 REMOVE_BITS(n); \ 431 } \ 432 else { \ 433 (v) = 0; \ 434 } \ 435 } while (0) 436 437 /* Huffman macros */ 438 439 #define TABLEBITS(tbl) (LZX_##tbl##_TABLEBITS) 440 #define MAXSYMBOLS(tbl) (LZX_##tbl##_MAXSYMBOLS) 441 #define SYMTABLE(tbl) (LZX(tbl##_table)) 442 #define LENTABLE(tbl) (LZX(tbl##_len)) 443 444 /* BUILD_TABLE(tablename) builds a huffman lookup table from code lengths. 445 * In reality, it just calls make_decode_table() with the appropriate 446 * values - they're all fixed by some #defines anyway, so there's no point 447 * writing each call out in full by hand. 448 */ 449 #define BUILD_TABLE(tbl) \ 450 if (make_decode_table( \ 451 MAXSYMBOLS(tbl), TABLEBITS(tbl), LENTABLE(tbl), SYMTABLE(tbl) \ 452 )) { return DECR_ILLEGALDATA; } 453 454 /* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the 455 * bitstream using the stated table and puts it in var. 456 */ 457 #define READ_HUFFSYM(tbl,var) do { \ 458 ENSURE_BITS(16); \ 459 hufftbl = SYMTABLE(tbl); \ 460 if ((i = hufftbl[PEEK_BITS(TABLEBITS(tbl))]) >= MAXSYMBOLS(tbl)) { \ 461 j = 1 << (CAB_ULONG_BITS - TABLEBITS(tbl)); \ 462 do { \ 463 j >>= 1; i <<= 1; i |= (bitbuf & j) ? 1 : 0; \ 464 if (!j) { return DECR_ILLEGALDATA; } \ 465 } while ((i = hufftbl[i]) >= MAXSYMBOLS(tbl)); \ 466 } \ 467 j = LENTABLE(tbl)[(var) = i]; \ 468 REMOVE_BITS(j); \ 469 } while (0) 470 471 /* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols 472 * first to last in the given table. The code lengths are stored in their 473 * own special LZX way. 474 */ 475 #define READ_LENGTHS(tbl,first,last,fn) do { \ 476 lb.bb = bitbuf; lb.bl = bitsleft; lb.ip = inpos; \ 477 if (fn(LENTABLE(tbl),(first),(last),&lb,decomp_state)) { \ 478 return DECR_ILLEGALDATA; \ 479 } \ 480 bitbuf = lb.bb; bitsleft = lb.bl; inpos = lb.ip; \ 481 } while (0) 482 483 /* Tables for deflate from PKZIP's appnote.txt. */ 484 485 #define THOSE_ZIP_CONSTS \ 486 static const cab_UBYTE Zipborder[] = /* Order of the bit length code lengths */ \ 487 { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; \ 488 static const cab_UWORD Zipcplens[] = /* Copy lengths for literal codes 257..285 */ \ 489 { 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, \ 490 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; \ 491 static const cab_UWORD Zipcplext[] = /* Extra bits for literal codes 257..285 */ \ 492 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, \ 493 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ \ 494 static const cab_UWORD Zipcpdist[] = /* Copy offsets for distance codes 0..29 */ \ 495 { 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, \ 496 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577}; \ 497 static const cab_UWORD Zipcpdext[] = /* Extra bits for distance codes */ \ 498 { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, \ 499 10, 11, 11, 12, 12, 13, 13}; \ 500 /* And'ing with Zipmask[n] masks the lower n bits */ \ 501 static const cab_UWORD Zipmask[17] = { \ 502 0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, \ 503 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff \ 504 } 505 506 /* SESSION Operation */ 507 #define EXTRACT_FILLFILELIST 0x00000001 508 #define EXTRACT_EXTRACTFILES 0x00000002 509 510 struct FILELIST{ 511 LPSTR FileName; 512 struct FILELIST *next; 513 BOOL DoExtract; 514 }; 515 516 typedef struct { 517 INT FileSize; 518 ERF Error; 519 struct FILELIST *FileList; 520 INT FileCount; 521 INT Operation; 522 CHAR Destination[MAX_PATH]; 523 CHAR CurrentFile[MAX_PATH]; 524 CHAR Reserved[MAX_PATH]; 525 struct FILELIST *FilterList; 526 } SESSION; 527 528 #endif /* __WINE_CABINET_H */ 529