1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides a simple and efficient mechanism for performing general
10 // tree-based pattern matches on the LLVM IR. The power of these routines is
11 // that it allows you to write concise patterns that are expressive and easy to
12 // understand. The other major advantage of this is that it allows you to
13 // trivially capture/bind elements in the pattern to variables. For example,
14 // you can do something like this:
15 //
16 // Value *Exp = ...
17 // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18 // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19 // m_And(m_Value(Y), m_ConstantInt(C2))))) {
20 // ... Pattern is matched and variables are bound ...
21 // }
22 //
23 // This is primarily useful to things like the instruction combiner, but can
24 // also be useful for static analysis tools or code generators.
25 //
26 //===----------------------------------------------------------------------===//
27
28 #ifndef LLVM_IR_PATTERNMATCH_H
29 #define LLVM_IR_PATTERNMATCH_H
30
31 #include "llvm/ADT/APFloat.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
44 #include <cstdint>
45
46 namespace llvm {
47 namespace PatternMatch {
48
match(Val * V,const Pattern & P)49 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50 return const_cast<Pattern &>(P).match(V);
51 }
52
match(ArrayRef<int> Mask,const Pattern & P)53 template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54 return const_cast<Pattern &>(P).match(Mask);
55 }
56
57 template <typename SubPattern_t> struct OneUse_match {
58 SubPattern_t SubPattern;
59
OneUse_matchOneUse_match60 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61
matchOneUse_match62 template <typename OpTy> bool match(OpTy *V) {
63 return V->hasOneUse() && SubPattern.match(V);
64 }
65 };
66
m_OneUse(const T & SubPattern)67 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68 return SubPattern;
69 }
70
71 template <typename Class> struct class_match {
matchclass_match72 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
73 };
74
75 /// Match an arbitrary value and ignore it.
m_Value()76 inline class_match<Value> m_Value() { return class_match<Value>(); }
77
78 /// Match an arbitrary unary operation and ignore it.
m_UnOp()79 inline class_match<UnaryOperator> m_UnOp() {
80 return class_match<UnaryOperator>();
81 }
82
83 /// Match an arbitrary binary operation and ignore it.
m_BinOp()84 inline class_match<BinaryOperator> m_BinOp() {
85 return class_match<BinaryOperator>();
86 }
87
88 /// Matches any compare instruction and ignore it.
m_Cmp()89 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
90
91 struct undef_match {
checkundef_match92 static bool check(const Value *V) {
93 if (isa<UndefValue>(V))
94 return true;
95
96 const auto *CA = dyn_cast<ConstantAggregate>(V);
97 if (!CA)
98 return false;
99
100 SmallPtrSet<const ConstantAggregate *, 8> Seen;
101 SmallVector<const ConstantAggregate *, 8> Worklist;
102
103 // Either UndefValue, PoisonValue, or an aggregate that only contains
104 // these is accepted by matcher.
105 // CheckValue returns false if CA cannot satisfy this constraint.
106 auto CheckValue = [&](const ConstantAggregate *CA) {
107 for (const Value *Op : CA->operand_values()) {
108 if (isa<UndefValue>(Op))
109 continue;
110
111 const auto *CA = dyn_cast<ConstantAggregate>(Op);
112 if (!CA)
113 return false;
114 if (Seen.insert(CA).second)
115 Worklist.emplace_back(CA);
116 }
117
118 return true;
119 };
120
121 if (!CheckValue(CA))
122 return false;
123
124 while (!Worklist.empty()) {
125 if (!CheckValue(Worklist.pop_back_val()))
126 return false;
127 }
128 return true;
129 }
matchundef_match130 template <typename ITy> bool match(ITy *V) { return check(V); }
131 };
132
133 /// Match an arbitrary undef constant. This matches poison as well.
134 /// If this is an aggregate and contains a non-aggregate element that is
135 /// neither undef nor poison, the aggregate is not matched.
m_Undef()136 inline auto m_Undef() { return undef_match(); }
137
138 /// Match an arbitrary poison constant.
m_Poison()139 inline class_match<PoisonValue> m_Poison() {
140 return class_match<PoisonValue>();
141 }
142
143 /// Match an arbitrary Constant and ignore it.
m_Constant()144 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
145
146 /// Match an arbitrary ConstantInt and ignore it.
m_ConstantInt()147 inline class_match<ConstantInt> m_ConstantInt() {
148 return class_match<ConstantInt>();
149 }
150
151 /// Match an arbitrary ConstantFP and ignore it.
m_ConstantFP()152 inline class_match<ConstantFP> m_ConstantFP() {
153 return class_match<ConstantFP>();
154 }
155
156 struct constantexpr_match {
matchconstantexpr_match157 template <typename ITy> bool match(ITy *V) {
158 auto *C = dyn_cast<Constant>(V);
159 return C && (isa<ConstantExpr>(C) || C->containsConstantExpression());
160 }
161 };
162
163 /// Match a constant expression or a constant that contains a constant
164 /// expression.
m_ConstantExpr()165 inline constantexpr_match m_ConstantExpr() { return constantexpr_match(); }
166
167 /// Match an arbitrary basic block value and ignore it.
m_BasicBlock()168 inline class_match<BasicBlock> m_BasicBlock() {
169 return class_match<BasicBlock>();
170 }
171
172 /// Inverting matcher
173 template <typename Ty> struct match_unless {
174 Ty M;
175
match_unlessmatch_unless176 match_unless(const Ty &Matcher) : M(Matcher) {}
177
matchmatch_unless178 template <typename ITy> bool match(ITy *V) { return !M.match(V); }
179 };
180
181 /// Match if the inner matcher does *NOT* match.
m_Unless(const Ty & M)182 template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
183 return match_unless<Ty>(M);
184 }
185
186 /// Matching combinators
187 template <typename LTy, typename RTy> struct match_combine_or {
188 LTy L;
189 RTy R;
190
match_combine_ormatch_combine_or191 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
192
matchmatch_combine_or193 template <typename ITy> bool match(ITy *V) {
194 if (L.match(V))
195 return true;
196 if (R.match(V))
197 return true;
198 return false;
199 }
200 };
201
202 template <typename LTy, typename RTy> struct match_combine_and {
203 LTy L;
204 RTy R;
205
match_combine_andmatch_combine_and206 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
207
matchmatch_combine_and208 template <typename ITy> bool match(ITy *V) {
209 if (L.match(V))
210 if (R.match(V))
211 return true;
212 return false;
213 }
214 };
215
216 /// Combine two pattern matchers matching L || R
217 template <typename LTy, typename RTy>
m_CombineOr(const LTy & L,const RTy & R)218 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
219 return match_combine_or<LTy, RTy>(L, R);
220 }
221
222 /// Combine two pattern matchers matching L && R
223 template <typename LTy, typename RTy>
m_CombineAnd(const LTy & L,const RTy & R)224 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
225 return match_combine_and<LTy, RTy>(L, R);
226 }
227
228 struct apint_match {
229 const APInt *&Res;
230 bool AllowUndef;
231
apint_matchapint_match232 apint_match(const APInt *&Res, bool AllowUndef)
233 : Res(Res), AllowUndef(AllowUndef) {}
234
matchapint_match235 template <typename ITy> bool match(ITy *V) {
236 if (auto *CI = dyn_cast<ConstantInt>(V)) {
237 Res = &CI->getValue();
238 return true;
239 }
240 if (V->getType()->isVectorTy())
241 if (const auto *C = dyn_cast<Constant>(V))
242 if (auto *CI =
243 dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndef))) {
244 Res = &CI->getValue();
245 return true;
246 }
247 return false;
248 }
249 };
250 // Either constexpr if or renaming ConstantFP::getValueAPF to
251 // ConstantFP::getValue is needed to do it via single template
252 // function for both apint/apfloat.
253 struct apfloat_match {
254 const APFloat *&Res;
255 bool AllowUndef;
256
apfloat_matchapfloat_match257 apfloat_match(const APFloat *&Res, bool AllowUndef)
258 : Res(Res), AllowUndef(AllowUndef) {}
259
matchapfloat_match260 template <typename ITy> bool match(ITy *V) {
261 if (auto *CI = dyn_cast<ConstantFP>(V)) {
262 Res = &CI->getValueAPF();
263 return true;
264 }
265 if (V->getType()->isVectorTy())
266 if (const auto *C = dyn_cast<Constant>(V))
267 if (auto *CI =
268 dyn_cast_or_null<ConstantFP>(C->getSplatValue(AllowUndef))) {
269 Res = &CI->getValueAPF();
270 return true;
271 }
272 return false;
273 }
274 };
275
276 /// Match a ConstantInt or splatted ConstantVector, binding the
277 /// specified pointer to the contained APInt.
m_APInt(const APInt * & Res)278 inline apint_match m_APInt(const APInt *&Res) {
279 // Forbid undefs by default to maintain previous behavior.
280 return apint_match(Res, /* AllowUndef */ false);
281 }
282
283 /// Match APInt while allowing undefs in splat vector constants.
m_APIntAllowUndef(const APInt * & Res)284 inline apint_match m_APIntAllowUndef(const APInt *&Res) {
285 return apint_match(Res, /* AllowUndef */ true);
286 }
287
288 /// Match APInt while forbidding undefs in splat vector constants.
m_APIntForbidUndef(const APInt * & Res)289 inline apint_match m_APIntForbidUndef(const APInt *&Res) {
290 return apint_match(Res, /* AllowUndef */ false);
291 }
292
293 /// Match a ConstantFP or splatted ConstantVector, binding the
294 /// specified pointer to the contained APFloat.
m_APFloat(const APFloat * & Res)295 inline apfloat_match m_APFloat(const APFloat *&Res) {
296 // Forbid undefs by default to maintain previous behavior.
297 return apfloat_match(Res, /* AllowUndef */ false);
298 }
299
300 /// Match APFloat while allowing undefs in splat vector constants.
m_APFloatAllowUndef(const APFloat * & Res)301 inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
302 return apfloat_match(Res, /* AllowUndef */ true);
303 }
304
305 /// Match APFloat while forbidding undefs in splat vector constants.
m_APFloatForbidUndef(const APFloat * & Res)306 inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
307 return apfloat_match(Res, /* AllowUndef */ false);
308 }
309
310 template <int64_t Val> struct constantint_match {
matchconstantint_match311 template <typename ITy> bool match(ITy *V) {
312 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
313 const APInt &CIV = CI->getValue();
314 if (Val >= 0)
315 return CIV == static_cast<uint64_t>(Val);
316 // If Val is negative, and CI is shorter than it, truncate to the right
317 // number of bits. If it is larger, then we have to sign extend. Just
318 // compare their negated values.
319 return -CIV == -Val;
320 }
321 return false;
322 }
323 };
324
325 /// Match a ConstantInt with a specific value.
m_ConstantInt()326 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
327 return constantint_match<Val>();
328 }
329
330 /// This helper class is used to match constant scalars, vector splats,
331 /// and fixed width vectors that satisfy a specified predicate.
332 /// For fixed width vector constants, undefined elements are ignored.
333 template <typename Predicate, typename ConstantVal>
334 struct cstval_pred_ty : public Predicate {
matchcstval_pred_ty335 template <typename ITy> bool match(ITy *V) {
336 if (const auto *CV = dyn_cast<ConstantVal>(V))
337 return this->isValue(CV->getValue());
338 if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
339 if (const auto *C = dyn_cast<Constant>(V)) {
340 if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
341 return this->isValue(CV->getValue());
342
343 // Number of elements of a scalable vector unknown at compile time
344 auto *FVTy = dyn_cast<FixedVectorType>(VTy);
345 if (!FVTy)
346 return false;
347
348 // Non-splat vector constant: check each element for a match.
349 unsigned NumElts = FVTy->getNumElements();
350 assert(NumElts != 0 && "Constant vector with no elements?");
351 bool HasNonUndefElements = false;
352 for (unsigned i = 0; i != NumElts; ++i) {
353 Constant *Elt = C->getAggregateElement(i);
354 if (!Elt)
355 return false;
356 if (isa<UndefValue>(Elt))
357 continue;
358 auto *CV = dyn_cast<ConstantVal>(Elt);
359 if (!CV || !this->isValue(CV->getValue()))
360 return false;
361 HasNonUndefElements = true;
362 }
363 return HasNonUndefElements;
364 }
365 }
366 return false;
367 }
368 };
369
370 /// specialization of cstval_pred_ty for ConstantInt
371 template <typename Predicate>
372 using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
373
374 /// specialization of cstval_pred_ty for ConstantFP
375 template <typename Predicate>
376 using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
377
378 /// This helper class is used to match scalar and vector constants that
379 /// satisfy a specified predicate, and bind them to an APInt.
380 template <typename Predicate> struct api_pred_ty : public Predicate {
381 const APInt *&Res;
382
api_pred_tyapi_pred_ty383 api_pred_ty(const APInt *&R) : Res(R) {}
384
matchapi_pred_ty385 template <typename ITy> bool match(ITy *V) {
386 if (const auto *CI = dyn_cast<ConstantInt>(V))
387 if (this->isValue(CI->getValue())) {
388 Res = &CI->getValue();
389 return true;
390 }
391 if (V->getType()->isVectorTy())
392 if (const auto *C = dyn_cast<Constant>(V))
393 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
394 if (this->isValue(CI->getValue())) {
395 Res = &CI->getValue();
396 return true;
397 }
398
399 return false;
400 }
401 };
402
403 /// This helper class is used to match scalar and vector constants that
404 /// satisfy a specified predicate, and bind them to an APFloat.
405 /// Undefs are allowed in splat vector constants.
406 template <typename Predicate> struct apf_pred_ty : public Predicate {
407 const APFloat *&Res;
408
apf_pred_tyapf_pred_ty409 apf_pred_ty(const APFloat *&R) : Res(R) {}
410
matchapf_pred_ty411 template <typename ITy> bool match(ITy *V) {
412 if (const auto *CI = dyn_cast<ConstantFP>(V))
413 if (this->isValue(CI->getValue())) {
414 Res = &CI->getValue();
415 return true;
416 }
417 if (V->getType()->isVectorTy())
418 if (const auto *C = dyn_cast<Constant>(V))
419 if (auto *CI = dyn_cast_or_null<ConstantFP>(
420 C->getSplatValue(/* AllowUndef */ true)))
421 if (this->isValue(CI->getValue())) {
422 Res = &CI->getValue();
423 return true;
424 }
425
426 return false;
427 }
428 };
429
430 ///////////////////////////////////////////////////////////////////////////////
431 //
432 // Encapsulate constant value queries for use in templated predicate matchers.
433 // This allows checking if constants match using compound predicates and works
434 // with vector constants, possibly with relaxed constraints. For example, ignore
435 // undef values.
436 //
437 ///////////////////////////////////////////////////////////////////////////////
438
439 struct is_any_apint {
isValueis_any_apint440 bool isValue(const APInt &C) { return true; }
441 };
442 /// Match an integer or vector with any integral constant.
443 /// For vectors, this includes constants with undefined elements.
m_AnyIntegralConstant()444 inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
445 return cst_pred_ty<is_any_apint>();
446 }
447
448 struct is_all_ones {
isValueis_all_ones449 bool isValue(const APInt &C) { return C.isAllOnes(); }
450 };
451 /// Match an integer or vector with all bits set.
452 /// For vectors, this includes constants with undefined elements.
m_AllOnes()453 inline cst_pred_ty<is_all_ones> m_AllOnes() {
454 return cst_pred_ty<is_all_ones>();
455 }
456
457 struct is_maxsignedvalue {
isValueis_maxsignedvalue458 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
459 };
460 /// Match an integer or vector with values having all bits except for the high
461 /// bit set (0x7f...).
462 /// For vectors, this includes constants with undefined elements.
m_MaxSignedValue()463 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
464 return cst_pred_ty<is_maxsignedvalue>();
465 }
m_MaxSignedValue(const APInt * & V)466 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
467 return V;
468 }
469
470 struct is_negative {
isValueis_negative471 bool isValue(const APInt &C) { return C.isNegative(); }
472 };
473 /// Match an integer or vector of negative values.
474 /// For vectors, this includes constants with undefined elements.
m_Negative()475 inline cst_pred_ty<is_negative> m_Negative() {
476 return cst_pred_ty<is_negative>();
477 }
m_Negative(const APInt * & V)478 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; }
479
480 struct is_nonnegative {
isValueis_nonnegative481 bool isValue(const APInt &C) { return C.isNonNegative(); }
482 };
483 /// Match an integer or vector of non-negative values.
484 /// For vectors, this includes constants with undefined elements.
m_NonNegative()485 inline cst_pred_ty<is_nonnegative> m_NonNegative() {
486 return cst_pred_ty<is_nonnegative>();
487 }
m_NonNegative(const APInt * & V)488 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; }
489
490 struct is_strictlypositive {
isValueis_strictlypositive491 bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
492 };
493 /// Match an integer or vector of strictly positive values.
494 /// For vectors, this includes constants with undefined elements.
m_StrictlyPositive()495 inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
496 return cst_pred_ty<is_strictlypositive>();
497 }
m_StrictlyPositive(const APInt * & V)498 inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
499 return V;
500 }
501
502 struct is_nonpositive {
isValueis_nonpositive503 bool isValue(const APInt &C) { return C.isNonPositive(); }
504 };
505 /// Match an integer or vector of non-positive values.
506 /// For vectors, this includes constants with undefined elements.
m_NonPositive()507 inline cst_pred_ty<is_nonpositive> m_NonPositive() {
508 return cst_pred_ty<is_nonpositive>();
509 }
m_NonPositive(const APInt * & V)510 inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
511
512 struct is_one {
isValueis_one513 bool isValue(const APInt &C) { return C.isOne(); }
514 };
515 /// Match an integer 1 or a vector with all elements equal to 1.
516 /// For vectors, this includes constants with undefined elements.
m_One()517 inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
518
519 struct is_zero_int {
isValueis_zero_int520 bool isValue(const APInt &C) { return C.isZero(); }
521 };
522 /// Match an integer 0 or a vector with all elements equal to 0.
523 /// For vectors, this includes constants with undefined elements.
m_ZeroInt()524 inline cst_pred_ty<is_zero_int> m_ZeroInt() {
525 return cst_pred_ty<is_zero_int>();
526 }
527
528 struct is_zero {
matchis_zero529 template <typename ITy> bool match(ITy *V) {
530 auto *C = dyn_cast<Constant>(V);
531 // FIXME: this should be able to do something for scalable vectors
532 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
533 }
534 };
535 /// Match any null constant or a vector with all elements equal to 0.
536 /// For vectors, this includes constants with undefined elements.
m_Zero()537 inline is_zero m_Zero() { return is_zero(); }
538
539 struct is_power2 {
isValueis_power2540 bool isValue(const APInt &C) { return C.isPowerOf2(); }
541 };
542 /// Match an integer or vector power-of-2.
543 /// For vectors, this includes constants with undefined elements.
m_Power2()544 inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
m_Power2(const APInt * & V)545 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
546
547 struct is_negated_power2 {
isValueis_negated_power2548 bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); }
549 };
550 /// Match a integer or vector negated power-of-2.
551 /// For vectors, this includes constants with undefined elements.
m_NegatedPower2()552 inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
553 return cst_pred_ty<is_negated_power2>();
554 }
m_NegatedPower2(const APInt * & V)555 inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
556 return V;
557 }
558
559 struct is_power2_or_zero {
isValueis_power2_or_zero560 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
561 };
562 /// Match an integer or vector of 0 or power-of-2 values.
563 /// For vectors, this includes constants with undefined elements.
m_Power2OrZero()564 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
565 return cst_pred_ty<is_power2_or_zero>();
566 }
m_Power2OrZero(const APInt * & V)567 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
568 return V;
569 }
570
571 struct is_sign_mask {
isValueis_sign_mask572 bool isValue(const APInt &C) { return C.isSignMask(); }
573 };
574 /// Match an integer or vector with only the sign bit(s) set.
575 /// For vectors, this includes constants with undefined elements.
m_SignMask()576 inline cst_pred_ty<is_sign_mask> m_SignMask() {
577 return cst_pred_ty<is_sign_mask>();
578 }
579
580 struct is_lowbit_mask {
isValueis_lowbit_mask581 bool isValue(const APInt &C) { return C.isMask(); }
582 };
583 /// Match an integer or vector with only the low bit(s) set.
584 /// For vectors, this includes constants with undefined elements.
m_LowBitMask()585 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
586 return cst_pred_ty<is_lowbit_mask>();
587 }
m_LowBitMask(const APInt * & V)588 inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) { return V; }
589
590 struct icmp_pred_with_threshold {
591 ICmpInst::Predicate Pred;
592 const APInt *Thr;
isValueicmp_pred_with_threshold593 bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); }
594 };
595 /// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
596 /// to Threshold. For vectors, this includes constants with undefined elements.
597 inline cst_pred_ty<icmp_pred_with_threshold>
m_SpecificInt_ICMP(ICmpInst::Predicate Predicate,const APInt & Threshold)598 m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
599 cst_pred_ty<icmp_pred_with_threshold> P;
600 P.Pred = Predicate;
601 P.Thr = &Threshold;
602 return P;
603 }
604
605 struct is_nan {
isValueis_nan606 bool isValue(const APFloat &C) { return C.isNaN(); }
607 };
608 /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
609 /// For vectors, this includes constants with undefined elements.
m_NaN()610 inline cstfp_pred_ty<is_nan> m_NaN() { return cstfp_pred_ty<is_nan>(); }
611
612 struct is_nonnan {
isValueis_nonnan613 bool isValue(const APFloat &C) { return !C.isNaN(); }
614 };
615 /// Match a non-NaN FP constant.
616 /// For vectors, this includes constants with undefined elements.
m_NonNaN()617 inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
618 return cstfp_pred_ty<is_nonnan>();
619 }
620
621 struct is_inf {
isValueis_inf622 bool isValue(const APFloat &C) { return C.isInfinity(); }
623 };
624 /// Match a positive or negative infinity FP constant.
625 /// For vectors, this includes constants with undefined elements.
m_Inf()626 inline cstfp_pred_ty<is_inf> m_Inf() { return cstfp_pred_ty<is_inf>(); }
627
628 struct is_noninf {
isValueis_noninf629 bool isValue(const APFloat &C) { return !C.isInfinity(); }
630 };
631 /// Match a non-infinity FP constant, i.e. finite or NaN.
632 /// For vectors, this includes constants with undefined elements.
m_NonInf()633 inline cstfp_pred_ty<is_noninf> m_NonInf() {
634 return cstfp_pred_ty<is_noninf>();
635 }
636
637 struct is_finite {
isValueis_finite638 bool isValue(const APFloat &C) { return C.isFinite(); }
639 };
640 /// Match a finite FP constant, i.e. not infinity or NaN.
641 /// For vectors, this includes constants with undefined elements.
m_Finite()642 inline cstfp_pred_ty<is_finite> m_Finite() {
643 return cstfp_pred_ty<is_finite>();
644 }
m_Finite(const APFloat * & V)645 inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
646
647 struct is_finitenonzero {
isValueis_finitenonzero648 bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
649 };
650 /// Match a finite non-zero FP constant.
651 /// For vectors, this includes constants with undefined elements.
m_FiniteNonZero()652 inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
653 return cstfp_pred_ty<is_finitenonzero>();
654 }
m_FiniteNonZero(const APFloat * & V)655 inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
656 return V;
657 }
658
659 struct is_any_zero_fp {
isValueis_any_zero_fp660 bool isValue(const APFloat &C) { return C.isZero(); }
661 };
662 /// Match a floating-point negative zero or positive zero.
663 /// For vectors, this includes constants with undefined elements.
m_AnyZeroFP()664 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
665 return cstfp_pred_ty<is_any_zero_fp>();
666 }
667
668 struct is_pos_zero_fp {
isValueis_pos_zero_fp669 bool isValue(const APFloat &C) { return C.isPosZero(); }
670 };
671 /// Match a floating-point positive zero.
672 /// For vectors, this includes constants with undefined elements.
m_PosZeroFP()673 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
674 return cstfp_pred_ty<is_pos_zero_fp>();
675 }
676
677 struct is_neg_zero_fp {
isValueis_neg_zero_fp678 bool isValue(const APFloat &C) { return C.isNegZero(); }
679 };
680 /// Match a floating-point negative zero.
681 /// For vectors, this includes constants with undefined elements.
m_NegZeroFP()682 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
683 return cstfp_pred_ty<is_neg_zero_fp>();
684 }
685
686 struct is_non_zero_fp {
isValueis_non_zero_fp687 bool isValue(const APFloat &C) { return C.isNonZero(); }
688 };
689 /// Match a floating-point non-zero.
690 /// For vectors, this includes constants with undefined elements.
m_NonZeroFP()691 inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
692 return cstfp_pred_ty<is_non_zero_fp>();
693 }
694
695 ///////////////////////////////////////////////////////////////////////////////
696
697 template <typename Class> struct bind_ty {
698 Class *&VR;
699
bind_tybind_ty700 bind_ty(Class *&V) : VR(V) {}
701
matchbind_ty702 template <typename ITy> bool match(ITy *V) {
703 if (auto *CV = dyn_cast<Class>(V)) {
704 VR = CV;
705 return true;
706 }
707 return false;
708 }
709 };
710
711 /// Match a value, capturing it if we match.
m_Value(Value * & V)712 inline bind_ty<Value> m_Value(Value *&V) { return V; }
m_Value(const Value * & V)713 inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
714
715 /// Match an instruction, capturing it if we match.
m_Instruction(Instruction * & I)716 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
717 /// Match a unary operator, capturing it if we match.
m_UnOp(UnaryOperator * & I)718 inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
719 /// Match a binary operator, capturing it if we match.
m_BinOp(BinaryOperator * & I)720 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
721 /// Match a with overflow intrinsic, capturing it if we match.
m_WithOverflowInst(WithOverflowInst * & I)722 inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) {
723 return I;
724 }
725 inline bind_ty<const WithOverflowInst>
m_WithOverflowInst(const WithOverflowInst * & I)726 m_WithOverflowInst(const WithOverflowInst *&I) {
727 return I;
728 }
729
730 /// Match a Constant, capturing the value if we match.
m_Constant(Constant * & C)731 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
732
733 /// Match a ConstantInt, capturing the value if we match.
m_ConstantInt(ConstantInt * & CI)734 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
735
736 /// Match a ConstantFP, capturing the value if we match.
m_ConstantFP(ConstantFP * & C)737 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
738
739 /// Match a ConstantExpr, capturing the value if we match.
m_ConstantExpr(ConstantExpr * & C)740 inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
741
742 /// Match a basic block value, capturing it if we match.
m_BasicBlock(BasicBlock * & V)743 inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
m_BasicBlock(const BasicBlock * & V)744 inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
745 return V;
746 }
747
748 /// Match an arbitrary immediate Constant and ignore it.
749 inline match_combine_and<class_match<Constant>,
750 match_unless<constantexpr_match>>
m_ImmConstant()751 m_ImmConstant() {
752 return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr()));
753 }
754
755 /// Match an immediate Constant, capturing the value if we match.
756 inline match_combine_and<bind_ty<Constant>,
757 match_unless<constantexpr_match>>
m_ImmConstant(Constant * & C)758 m_ImmConstant(Constant *&C) {
759 return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr()));
760 }
761
762 /// Match a specified Value*.
763 struct specificval_ty {
764 const Value *Val;
765
specificval_tyspecificval_ty766 specificval_ty(const Value *V) : Val(V) {}
767
matchspecificval_ty768 template <typename ITy> bool match(ITy *V) { return V == Val; }
769 };
770
771 /// Match if we have a specific specified value.
m_Specific(const Value * V)772 inline specificval_ty m_Specific(const Value *V) { return V; }
773
774 /// Stores a reference to the Value *, not the Value * itself,
775 /// thus can be used in commutative matchers.
776 template <typename Class> struct deferredval_ty {
777 Class *const &Val;
778
deferredval_tydeferredval_ty779 deferredval_ty(Class *const &V) : Val(V) {}
780
matchdeferredval_ty781 template <typename ITy> bool match(ITy *const V) { return V == Val; }
782 };
783
784 /// Like m_Specific(), but works if the specific value to match is determined
785 /// as part of the same match() expression. For example:
786 /// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will
787 /// bind X before the pattern match starts.
788 /// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against
789 /// whichever value m_Value(X) populated.
m_Deferred(Value * const & V)790 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
m_Deferred(const Value * const & V)791 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
792 return V;
793 }
794
795 /// Match a specified floating point value or vector of all elements of
796 /// that value.
797 struct specific_fpval {
798 double Val;
799
specific_fpvalspecific_fpval800 specific_fpval(double V) : Val(V) {}
801
matchspecific_fpval802 template <typename ITy> bool match(ITy *V) {
803 if (const auto *CFP = dyn_cast<ConstantFP>(V))
804 return CFP->isExactlyValue(Val);
805 if (V->getType()->isVectorTy())
806 if (const auto *C = dyn_cast<Constant>(V))
807 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
808 return CFP->isExactlyValue(Val);
809 return false;
810 }
811 };
812
813 /// Match a specific floating point value or vector with all elements
814 /// equal to the value.
m_SpecificFP(double V)815 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
816
817 /// Match a float 1.0 or vector with all elements equal to 1.0.
m_FPOne()818 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
819
820 struct bind_const_intval_ty {
821 uint64_t &VR;
822
bind_const_intval_tybind_const_intval_ty823 bind_const_intval_ty(uint64_t &V) : VR(V) {}
824
matchbind_const_intval_ty825 template <typename ITy> bool match(ITy *V) {
826 if (const auto *CV = dyn_cast<ConstantInt>(V))
827 if (CV->getValue().ule(UINT64_MAX)) {
828 VR = CV->getZExtValue();
829 return true;
830 }
831 return false;
832 }
833 };
834
835 /// Match a specified integer value or vector of all elements of that
836 /// value.
837 template <bool AllowUndefs> struct specific_intval {
838 APInt Val;
839
specific_intvalspecific_intval840 specific_intval(APInt V) : Val(std::move(V)) {}
841
matchspecific_intval842 template <typename ITy> bool match(ITy *V) {
843 const auto *CI = dyn_cast<ConstantInt>(V);
844 if (!CI && V->getType()->isVectorTy())
845 if (const auto *C = dyn_cast<Constant>(V))
846 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs));
847
848 return CI && APInt::isSameValue(CI->getValue(), Val);
849 }
850 };
851
852 /// Match a specific integer value or vector with all elements equal to
853 /// the value.
m_SpecificInt(APInt V)854 inline specific_intval<false> m_SpecificInt(APInt V) {
855 return specific_intval<false>(std::move(V));
856 }
857
m_SpecificInt(uint64_t V)858 inline specific_intval<false> m_SpecificInt(uint64_t V) {
859 return m_SpecificInt(APInt(64, V));
860 }
861
m_SpecificIntAllowUndef(APInt V)862 inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) {
863 return specific_intval<true>(std::move(V));
864 }
865
m_SpecificIntAllowUndef(uint64_t V)866 inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) {
867 return m_SpecificIntAllowUndef(APInt(64, V));
868 }
869
870 /// Match a ConstantInt and bind to its value. This does not match
871 /// ConstantInts wider than 64-bits.
m_ConstantInt(uint64_t & V)872 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
873
874 /// Match a specified basic block value.
875 struct specific_bbval {
876 BasicBlock *Val;
877
specific_bbvalspecific_bbval878 specific_bbval(BasicBlock *Val) : Val(Val) {}
879
matchspecific_bbval880 template <typename ITy> bool match(ITy *V) {
881 const auto *BB = dyn_cast<BasicBlock>(V);
882 return BB && BB == Val;
883 }
884 };
885
886 /// Match a specific basic block value.
m_SpecificBB(BasicBlock * BB)887 inline specific_bbval m_SpecificBB(BasicBlock *BB) {
888 return specific_bbval(BB);
889 }
890
891 /// A commutative-friendly version of m_Specific().
m_Deferred(BasicBlock * const & BB)892 inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
893 return BB;
894 }
895 inline deferredval_ty<const BasicBlock>
m_Deferred(const BasicBlock * const & BB)896 m_Deferred(const BasicBlock *const &BB) {
897 return BB;
898 }
899
900 //===----------------------------------------------------------------------===//
901 // Matcher for any binary operator.
902 //
903 template <typename LHS_t, typename RHS_t, bool Commutable = false>
904 struct AnyBinaryOp_match {
905 LHS_t L;
906 RHS_t R;
907
908 // The evaluation order is always stable, regardless of Commutability.
909 // The LHS is always matched first.
AnyBinaryOp_matchAnyBinaryOp_match910 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
911
matchAnyBinaryOp_match912 template <typename OpTy> bool match(OpTy *V) {
913 if (auto *I = dyn_cast<BinaryOperator>(V))
914 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
915 (Commutable && L.match(I->getOperand(1)) &&
916 R.match(I->getOperand(0)));
917 return false;
918 }
919 };
920
921 template <typename LHS, typename RHS>
m_BinOp(const LHS & L,const RHS & R)922 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
923 return AnyBinaryOp_match<LHS, RHS>(L, R);
924 }
925
926 //===----------------------------------------------------------------------===//
927 // Matcher for any unary operator.
928 // TODO fuse unary, binary matcher into n-ary matcher
929 //
930 template <typename OP_t> struct AnyUnaryOp_match {
931 OP_t X;
932
AnyUnaryOp_matchAnyUnaryOp_match933 AnyUnaryOp_match(const OP_t &X) : X(X) {}
934
matchAnyUnaryOp_match935 template <typename OpTy> bool match(OpTy *V) {
936 if (auto *I = dyn_cast<UnaryOperator>(V))
937 return X.match(I->getOperand(0));
938 return false;
939 }
940 };
941
m_UnOp(const OP_t & X)942 template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
943 return AnyUnaryOp_match<OP_t>(X);
944 }
945
946 //===----------------------------------------------------------------------===//
947 // Matchers for specific binary operators.
948 //
949
950 template <typename LHS_t, typename RHS_t, unsigned Opcode,
951 bool Commutable = false>
952 struct BinaryOp_match {
953 LHS_t L;
954 RHS_t R;
955
956 // The evaluation order is always stable, regardless of Commutability.
957 // The LHS is always matched first.
BinaryOp_matchBinaryOp_match958 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
959
matchBinaryOp_match960 template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) {
961 if (V->getValueID() == Value::InstructionVal + Opc) {
962 auto *I = cast<BinaryOperator>(V);
963 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
964 (Commutable && L.match(I->getOperand(1)) &&
965 R.match(I->getOperand(0)));
966 }
967 if (auto *CE = dyn_cast<ConstantExpr>(V))
968 return CE->getOpcode() == Opc &&
969 ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
970 (Commutable && L.match(CE->getOperand(1)) &&
971 R.match(CE->getOperand(0))));
972 return false;
973 }
974
matchBinaryOp_match975 template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); }
976 };
977
978 template <typename LHS, typename RHS>
m_Add(const LHS & L,const RHS & R)979 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
980 const RHS &R) {
981 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
982 }
983
984 template <typename LHS, typename RHS>
m_FAdd(const LHS & L,const RHS & R)985 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
986 const RHS &R) {
987 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
988 }
989
990 template <typename LHS, typename RHS>
m_Sub(const LHS & L,const RHS & R)991 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
992 const RHS &R) {
993 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
994 }
995
996 template <typename LHS, typename RHS>
m_FSub(const LHS & L,const RHS & R)997 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
998 const RHS &R) {
999 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
1000 }
1001
1002 template <typename Op_t> struct FNeg_match {
1003 Op_t X;
1004
FNeg_matchFNeg_match1005 FNeg_match(const Op_t &Op) : X(Op) {}
matchFNeg_match1006 template <typename OpTy> bool match(OpTy *V) {
1007 auto *FPMO = dyn_cast<FPMathOperator>(V);
1008 if (!FPMO)
1009 return false;
1010
1011 if (FPMO->getOpcode() == Instruction::FNeg)
1012 return X.match(FPMO->getOperand(0));
1013
1014 if (FPMO->getOpcode() == Instruction::FSub) {
1015 if (FPMO->hasNoSignedZeros()) {
1016 // With 'nsz', any zero goes.
1017 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
1018 return false;
1019 } else {
1020 // Without 'nsz', we need fsub -0.0, X exactly.
1021 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
1022 return false;
1023 }
1024
1025 return X.match(FPMO->getOperand(1));
1026 }
1027
1028 return false;
1029 }
1030 };
1031
1032 /// Match 'fneg X' as 'fsub -0.0, X'.
m_FNeg(const OpTy & X)1033 template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) {
1034 return FNeg_match<OpTy>(X);
1035 }
1036
1037 /// Match 'fneg X' as 'fsub +-0.0, X'.
1038 template <typename RHS>
1039 inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
m_FNegNSZ(const RHS & X)1040 m_FNegNSZ(const RHS &X) {
1041 return m_FSub(m_AnyZeroFP(), X);
1042 }
1043
1044 template <typename LHS, typename RHS>
m_Mul(const LHS & L,const RHS & R)1045 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
1046 const RHS &R) {
1047 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
1048 }
1049
1050 template <typename LHS, typename RHS>
m_FMul(const LHS & L,const RHS & R)1051 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
1052 const RHS &R) {
1053 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
1054 }
1055
1056 template <typename LHS, typename RHS>
m_UDiv(const LHS & L,const RHS & R)1057 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
1058 const RHS &R) {
1059 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
1060 }
1061
1062 template <typename LHS, typename RHS>
m_SDiv(const LHS & L,const RHS & R)1063 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
1064 const RHS &R) {
1065 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
1066 }
1067
1068 template <typename LHS, typename RHS>
m_FDiv(const LHS & L,const RHS & R)1069 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
1070 const RHS &R) {
1071 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
1072 }
1073
1074 template <typename LHS, typename RHS>
m_URem(const LHS & L,const RHS & R)1075 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
1076 const RHS &R) {
1077 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
1078 }
1079
1080 template <typename LHS, typename RHS>
m_SRem(const LHS & L,const RHS & R)1081 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
1082 const RHS &R) {
1083 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
1084 }
1085
1086 template <typename LHS, typename RHS>
m_FRem(const LHS & L,const RHS & R)1087 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
1088 const RHS &R) {
1089 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
1090 }
1091
1092 template <typename LHS, typename RHS>
m_And(const LHS & L,const RHS & R)1093 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
1094 const RHS &R) {
1095 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
1096 }
1097
1098 template <typename LHS, typename RHS>
m_Or(const LHS & L,const RHS & R)1099 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
1100 const RHS &R) {
1101 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
1102 }
1103
1104 template <typename LHS, typename RHS>
m_Xor(const LHS & L,const RHS & R)1105 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
1106 const RHS &R) {
1107 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
1108 }
1109
1110 template <typename LHS, typename RHS>
m_Shl(const LHS & L,const RHS & R)1111 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
1112 const RHS &R) {
1113 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
1114 }
1115
1116 template <typename LHS, typename RHS>
m_LShr(const LHS & L,const RHS & R)1117 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
1118 const RHS &R) {
1119 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
1120 }
1121
1122 template <typename LHS, typename RHS>
m_AShr(const LHS & L,const RHS & R)1123 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
1124 const RHS &R) {
1125 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
1126 }
1127
1128 template <typename LHS_t, typename RHS_t, unsigned Opcode,
1129 unsigned WrapFlags = 0>
1130 struct OverflowingBinaryOp_match {
1131 LHS_t L;
1132 RHS_t R;
1133
OverflowingBinaryOp_matchOverflowingBinaryOp_match1134 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
1135 : L(LHS), R(RHS) {}
1136
matchOverflowingBinaryOp_match1137 template <typename OpTy> bool match(OpTy *V) {
1138 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
1139 if (Op->getOpcode() != Opcode)
1140 return false;
1141 if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) &&
1142 !Op->hasNoUnsignedWrap())
1143 return false;
1144 if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) &&
1145 !Op->hasNoSignedWrap())
1146 return false;
1147 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
1148 }
1149 return false;
1150 }
1151 };
1152
1153 template <typename LHS, typename RHS>
1154 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1155 OverflowingBinaryOperator::NoSignedWrap>
m_NSWAdd(const LHS & L,const RHS & R)1156 m_NSWAdd(const LHS &L, const RHS &R) {
1157 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1158 OverflowingBinaryOperator::NoSignedWrap>(L,
1159 R);
1160 }
1161 template <typename LHS, typename RHS>
1162 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1163 OverflowingBinaryOperator::NoSignedWrap>
m_NSWSub(const LHS & L,const RHS & R)1164 m_NSWSub(const LHS &L, const RHS &R) {
1165 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1166 OverflowingBinaryOperator::NoSignedWrap>(L,
1167 R);
1168 }
1169 template <typename LHS, typename RHS>
1170 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1171 OverflowingBinaryOperator::NoSignedWrap>
m_NSWMul(const LHS & L,const RHS & R)1172 m_NSWMul(const LHS &L, const RHS &R) {
1173 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1174 OverflowingBinaryOperator::NoSignedWrap>(L,
1175 R);
1176 }
1177 template <typename LHS, typename RHS>
1178 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1179 OverflowingBinaryOperator::NoSignedWrap>
m_NSWShl(const LHS & L,const RHS & R)1180 m_NSWShl(const LHS &L, const RHS &R) {
1181 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1182 OverflowingBinaryOperator::NoSignedWrap>(L,
1183 R);
1184 }
1185
1186 template <typename LHS, typename RHS>
1187 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1188 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWAdd(const LHS & L,const RHS & R)1189 m_NUWAdd(const LHS &L, const RHS &R) {
1190 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1191 OverflowingBinaryOperator::NoUnsignedWrap>(
1192 L, R);
1193 }
1194 template <typename LHS, typename RHS>
1195 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1196 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWSub(const LHS & L,const RHS & R)1197 m_NUWSub(const LHS &L, const RHS &R) {
1198 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1199 OverflowingBinaryOperator::NoUnsignedWrap>(
1200 L, R);
1201 }
1202 template <typename LHS, typename RHS>
1203 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1204 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWMul(const LHS & L,const RHS & R)1205 m_NUWMul(const LHS &L, const RHS &R) {
1206 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1207 OverflowingBinaryOperator::NoUnsignedWrap>(
1208 L, R);
1209 }
1210 template <typename LHS, typename RHS>
1211 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1212 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWShl(const LHS & L,const RHS & R)1213 m_NUWShl(const LHS &L, const RHS &R) {
1214 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1215 OverflowingBinaryOperator::NoUnsignedWrap>(
1216 L, R);
1217 }
1218
1219 template <typename LHS_t, typename RHS_t, bool Commutable = false>
1220 struct SpecificBinaryOp_match
1221 : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> {
1222 unsigned Opcode;
1223
SpecificBinaryOp_matchSpecificBinaryOp_match1224 SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS)
1225 : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {}
1226
matchSpecificBinaryOp_match1227 template <typename OpTy> bool match(OpTy *V) {
1228 return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V);
1229 }
1230 };
1231
1232 /// Matches a specific opcode.
1233 template <typename LHS, typename RHS>
m_BinOp(unsigned Opcode,const LHS & L,const RHS & R)1234 inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L,
1235 const RHS &R) {
1236 return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R);
1237 }
1238
1239 //===----------------------------------------------------------------------===//
1240 // Class that matches a group of binary opcodes.
1241 //
1242 template <typename LHS_t, typename RHS_t, typename Predicate>
1243 struct BinOpPred_match : Predicate {
1244 LHS_t L;
1245 RHS_t R;
1246
BinOpPred_matchBinOpPred_match1247 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1248
matchBinOpPred_match1249 template <typename OpTy> bool match(OpTy *V) {
1250 if (auto *I = dyn_cast<Instruction>(V))
1251 return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
1252 R.match(I->getOperand(1));
1253 if (auto *CE = dyn_cast<ConstantExpr>(V))
1254 return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
1255 R.match(CE->getOperand(1));
1256 return false;
1257 }
1258 };
1259
1260 struct is_shift_op {
isOpTypeis_shift_op1261 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1262 };
1263
1264 struct is_right_shift_op {
isOpTypeis_right_shift_op1265 bool isOpType(unsigned Opcode) {
1266 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1267 }
1268 };
1269
1270 struct is_logical_shift_op {
isOpTypeis_logical_shift_op1271 bool isOpType(unsigned Opcode) {
1272 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1273 }
1274 };
1275
1276 struct is_bitwiselogic_op {
isOpTypeis_bitwiselogic_op1277 bool isOpType(unsigned Opcode) {
1278 return Instruction::isBitwiseLogicOp(Opcode);
1279 }
1280 };
1281
1282 struct is_idiv_op {
isOpTypeis_idiv_op1283 bool isOpType(unsigned Opcode) {
1284 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1285 }
1286 };
1287
1288 struct is_irem_op {
isOpTypeis_irem_op1289 bool isOpType(unsigned Opcode) {
1290 return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1291 }
1292 };
1293
1294 /// Matches shift operations.
1295 template <typename LHS, typename RHS>
m_Shift(const LHS & L,const RHS & R)1296 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1297 const RHS &R) {
1298 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1299 }
1300
1301 /// Matches logical shift operations.
1302 template <typename LHS, typename RHS>
m_Shr(const LHS & L,const RHS & R)1303 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1304 const RHS &R) {
1305 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1306 }
1307
1308 /// Matches logical shift operations.
1309 template <typename LHS, typename RHS>
1310 inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
m_LogicalShift(const LHS & L,const RHS & R)1311 m_LogicalShift(const LHS &L, const RHS &R) {
1312 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1313 }
1314
1315 /// Matches bitwise logic operations.
1316 template <typename LHS, typename RHS>
1317 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
m_BitwiseLogic(const LHS & L,const RHS & R)1318 m_BitwiseLogic(const LHS &L, const RHS &R) {
1319 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1320 }
1321
1322 /// Matches integer division operations.
1323 template <typename LHS, typename RHS>
m_IDiv(const LHS & L,const RHS & R)1324 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1325 const RHS &R) {
1326 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1327 }
1328
1329 /// Matches integer remainder operations.
1330 template <typename LHS, typename RHS>
m_IRem(const LHS & L,const RHS & R)1331 inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1332 const RHS &R) {
1333 return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1334 }
1335
1336 //===----------------------------------------------------------------------===//
1337 // Class that matches exact binary ops.
1338 //
1339 template <typename SubPattern_t> struct Exact_match {
1340 SubPattern_t SubPattern;
1341
Exact_matchExact_match1342 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1343
matchExact_match1344 template <typename OpTy> bool match(OpTy *V) {
1345 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1346 return PEO->isExact() && SubPattern.match(V);
1347 return false;
1348 }
1349 };
1350
m_Exact(const T & SubPattern)1351 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1352 return SubPattern;
1353 }
1354
1355 //===----------------------------------------------------------------------===//
1356 // Matchers for CmpInst classes
1357 //
1358
1359 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1360 bool Commutable = false>
1361 struct CmpClass_match {
1362 PredicateTy &Predicate;
1363 LHS_t L;
1364 RHS_t R;
1365
1366 // The evaluation order is always stable, regardless of Commutability.
1367 // The LHS is always matched first.
CmpClass_matchCmpClass_match1368 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1369 : Predicate(Pred), L(LHS), R(RHS) {}
1370
matchCmpClass_match1371 template <typename OpTy> bool match(OpTy *V) {
1372 if (auto *I = dyn_cast<Class>(V)) {
1373 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1374 Predicate = I->getPredicate();
1375 return true;
1376 } else if (Commutable && L.match(I->getOperand(1)) &&
1377 R.match(I->getOperand(0))) {
1378 Predicate = I->getSwappedPredicate();
1379 return true;
1380 }
1381 }
1382 return false;
1383 }
1384 };
1385
1386 template <typename LHS, typename RHS>
1387 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
m_Cmp(CmpInst::Predicate & Pred,const LHS & L,const RHS & R)1388 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1389 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1390 }
1391
1392 template <typename LHS, typename RHS>
1393 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
m_ICmp(ICmpInst::Predicate & Pred,const LHS & L,const RHS & R)1394 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1395 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1396 }
1397
1398 template <typename LHS, typename RHS>
1399 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
m_FCmp(FCmpInst::Predicate & Pred,const LHS & L,const RHS & R)1400 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1401 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1402 }
1403
1404 //===----------------------------------------------------------------------===//
1405 // Matchers for instructions with a given opcode and number of operands.
1406 //
1407
1408 /// Matches instructions with Opcode and three operands.
1409 template <typename T0, unsigned Opcode> struct OneOps_match {
1410 T0 Op1;
1411
OneOps_matchOneOps_match1412 OneOps_match(const T0 &Op1) : Op1(Op1) {}
1413
matchOneOps_match1414 template <typename OpTy> bool match(OpTy *V) {
1415 if (V->getValueID() == Value::InstructionVal + Opcode) {
1416 auto *I = cast<Instruction>(V);
1417 return Op1.match(I->getOperand(0));
1418 }
1419 return false;
1420 }
1421 };
1422
1423 /// Matches instructions with Opcode and three operands.
1424 template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1425 T0 Op1;
1426 T1 Op2;
1427
TwoOps_matchTwoOps_match1428 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1429
matchTwoOps_match1430 template <typename OpTy> bool match(OpTy *V) {
1431 if (V->getValueID() == Value::InstructionVal + Opcode) {
1432 auto *I = cast<Instruction>(V);
1433 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1434 }
1435 return false;
1436 }
1437 };
1438
1439 /// Matches instructions with Opcode and three operands.
1440 template <typename T0, typename T1, typename T2, unsigned Opcode>
1441 struct ThreeOps_match {
1442 T0 Op1;
1443 T1 Op2;
1444 T2 Op3;
1445
ThreeOps_matchThreeOps_match1446 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1447 : Op1(Op1), Op2(Op2), Op3(Op3) {}
1448
matchThreeOps_match1449 template <typename OpTy> bool match(OpTy *V) {
1450 if (V->getValueID() == Value::InstructionVal + Opcode) {
1451 auto *I = cast<Instruction>(V);
1452 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1453 Op3.match(I->getOperand(2));
1454 }
1455 return false;
1456 }
1457 };
1458
1459 /// Matches SelectInst.
1460 template <typename Cond, typename LHS, typename RHS>
1461 inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
m_Select(const Cond & C,const LHS & L,const RHS & R)1462 m_Select(const Cond &C, const LHS &L, const RHS &R) {
1463 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1464 }
1465
1466 /// This matches a select of two constants, e.g.:
1467 /// m_SelectCst<-1, 0>(m_Value(V))
1468 template <int64_t L, int64_t R, typename Cond>
1469 inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1470 Instruction::Select>
m_SelectCst(const Cond & C)1471 m_SelectCst(const Cond &C) {
1472 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1473 }
1474
1475 /// Matches FreezeInst.
1476 template <typename OpTy>
m_Freeze(const OpTy & Op)1477 inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
1478 return OneOps_match<OpTy, Instruction::Freeze>(Op);
1479 }
1480
1481 /// Matches InsertElementInst.
1482 template <typename Val_t, typename Elt_t, typename Idx_t>
1483 inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
m_InsertElt(const Val_t & Val,const Elt_t & Elt,const Idx_t & Idx)1484 m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1485 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1486 Val, Elt, Idx);
1487 }
1488
1489 /// Matches ExtractElementInst.
1490 template <typename Val_t, typename Idx_t>
1491 inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
m_ExtractElt(const Val_t & Val,const Idx_t & Idx)1492 m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
1493 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1494 }
1495
1496 /// Matches shuffle.
1497 template <typename T0, typename T1, typename T2> struct Shuffle_match {
1498 T0 Op1;
1499 T1 Op2;
1500 T2 Mask;
1501
Shuffle_matchShuffle_match1502 Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
1503 : Op1(Op1), Op2(Op2), Mask(Mask) {}
1504
matchShuffle_match1505 template <typename OpTy> bool match(OpTy *V) {
1506 if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
1507 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1508 Mask.match(I->getShuffleMask());
1509 }
1510 return false;
1511 }
1512 };
1513
1514 struct m_Mask {
1515 ArrayRef<int> &MaskRef;
m_Maskm_Mask1516 m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
matchm_Mask1517 bool match(ArrayRef<int> Mask) {
1518 MaskRef = Mask;
1519 return true;
1520 }
1521 };
1522
1523 struct m_ZeroMask {
matchm_ZeroMask1524 bool match(ArrayRef<int> Mask) {
1525 return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
1526 }
1527 };
1528
1529 struct m_SpecificMask {
1530 ArrayRef<int> &MaskRef;
m_SpecificMaskm_SpecificMask1531 m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
matchm_SpecificMask1532 bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
1533 };
1534
1535 struct m_SplatOrUndefMask {
1536 int &SplatIndex;
m_SplatOrUndefMaskm_SplatOrUndefMask1537 m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
matchm_SplatOrUndefMask1538 bool match(ArrayRef<int> Mask) {
1539 auto First = find_if(Mask, [](int Elem) { return Elem != -1; });
1540 if (First == Mask.end())
1541 return false;
1542 SplatIndex = *First;
1543 return all_of(Mask,
1544 [First](int Elem) { return Elem == *First || Elem == -1; });
1545 }
1546 };
1547
1548 /// Matches ShuffleVectorInst independently of mask value.
1549 template <typename V1_t, typename V2_t>
1550 inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
m_Shuffle(const V1_t & v1,const V2_t & v2)1551 m_Shuffle(const V1_t &v1, const V2_t &v2) {
1552 return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
1553 }
1554
1555 template <typename V1_t, typename V2_t, typename Mask_t>
1556 inline Shuffle_match<V1_t, V2_t, Mask_t>
m_Shuffle(const V1_t & v1,const V2_t & v2,const Mask_t & mask)1557 m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
1558 return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
1559 }
1560
1561 /// Matches LoadInst.
1562 template <typename OpTy>
m_Load(const OpTy & Op)1563 inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1564 return OneOps_match<OpTy, Instruction::Load>(Op);
1565 }
1566
1567 /// Matches StoreInst.
1568 template <typename ValueOpTy, typename PointerOpTy>
1569 inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
m_Store(const ValueOpTy & ValueOp,const PointerOpTy & PointerOp)1570 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1571 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1572 PointerOp);
1573 }
1574
1575 //===----------------------------------------------------------------------===//
1576 // Matchers for CastInst classes
1577 //
1578
1579 template <typename Op_t, unsigned Opcode> struct CastClass_match {
1580 Op_t Op;
1581
CastClass_matchCastClass_match1582 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1583
matchCastClass_match1584 template <typename OpTy> bool match(OpTy *V) {
1585 if (auto *O = dyn_cast<Operator>(V))
1586 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1587 return false;
1588 }
1589 };
1590
1591 /// Matches BitCast.
1592 template <typename OpTy>
m_BitCast(const OpTy & Op)1593 inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1594 return CastClass_match<OpTy, Instruction::BitCast>(Op);
1595 }
1596
1597 /// Matches PtrToInt.
1598 template <typename OpTy>
m_PtrToInt(const OpTy & Op)1599 inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1600 return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1601 }
1602
1603 /// Matches IntToPtr.
1604 template <typename OpTy>
m_IntToPtr(const OpTy & Op)1605 inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) {
1606 return CastClass_match<OpTy, Instruction::IntToPtr>(Op);
1607 }
1608
1609 /// Matches Trunc.
1610 template <typename OpTy>
m_Trunc(const OpTy & Op)1611 inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1612 return CastClass_match<OpTy, Instruction::Trunc>(Op);
1613 }
1614
1615 template <typename OpTy>
1616 inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
m_TruncOrSelf(const OpTy & Op)1617 m_TruncOrSelf(const OpTy &Op) {
1618 return m_CombineOr(m_Trunc(Op), Op);
1619 }
1620
1621 /// Matches SExt.
1622 template <typename OpTy>
m_SExt(const OpTy & Op)1623 inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1624 return CastClass_match<OpTy, Instruction::SExt>(Op);
1625 }
1626
1627 /// Matches ZExt.
1628 template <typename OpTy>
m_ZExt(const OpTy & Op)1629 inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1630 return CastClass_match<OpTy, Instruction::ZExt>(Op);
1631 }
1632
1633 template <typename OpTy>
1634 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
m_ZExtOrSelf(const OpTy & Op)1635 m_ZExtOrSelf(const OpTy &Op) {
1636 return m_CombineOr(m_ZExt(Op), Op);
1637 }
1638
1639 template <typename OpTy>
1640 inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy>
m_SExtOrSelf(const OpTy & Op)1641 m_SExtOrSelf(const OpTy &Op) {
1642 return m_CombineOr(m_SExt(Op), Op);
1643 }
1644
1645 template <typename OpTy>
1646 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1647 CastClass_match<OpTy, Instruction::SExt>>
m_ZExtOrSExt(const OpTy & Op)1648 m_ZExtOrSExt(const OpTy &Op) {
1649 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1650 }
1651
1652 template <typename OpTy>
1653 inline match_combine_or<
1654 match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1655 CastClass_match<OpTy, Instruction::SExt>>,
1656 OpTy>
m_ZExtOrSExtOrSelf(const OpTy & Op)1657 m_ZExtOrSExtOrSelf(const OpTy &Op) {
1658 return m_CombineOr(m_ZExtOrSExt(Op), Op);
1659 }
1660
1661 template <typename OpTy>
m_UIToFP(const OpTy & Op)1662 inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1663 return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1664 }
1665
1666 template <typename OpTy>
m_SIToFP(const OpTy & Op)1667 inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1668 return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1669 }
1670
1671 template <typename OpTy>
m_FPToUI(const OpTy & Op)1672 inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) {
1673 return CastClass_match<OpTy, Instruction::FPToUI>(Op);
1674 }
1675
1676 template <typename OpTy>
m_FPToSI(const OpTy & Op)1677 inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) {
1678 return CastClass_match<OpTy, Instruction::FPToSI>(Op);
1679 }
1680
1681 template <typename OpTy>
m_FPTrunc(const OpTy & Op)1682 inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1683 return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1684 }
1685
1686 template <typename OpTy>
m_FPExt(const OpTy & Op)1687 inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1688 return CastClass_match<OpTy, Instruction::FPExt>(Op);
1689 }
1690
1691 //===----------------------------------------------------------------------===//
1692 // Matchers for control flow.
1693 //
1694
1695 struct br_match {
1696 BasicBlock *&Succ;
1697
br_matchbr_match1698 br_match(BasicBlock *&Succ) : Succ(Succ) {}
1699
matchbr_match1700 template <typename OpTy> bool match(OpTy *V) {
1701 if (auto *BI = dyn_cast<BranchInst>(V))
1702 if (BI->isUnconditional()) {
1703 Succ = BI->getSuccessor(0);
1704 return true;
1705 }
1706 return false;
1707 }
1708 };
1709
m_UnconditionalBr(BasicBlock * & Succ)1710 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1711
1712 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1713 struct brc_match {
1714 Cond_t Cond;
1715 TrueBlock_t T;
1716 FalseBlock_t F;
1717
brc_matchbrc_match1718 brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
1719 : Cond(C), T(t), F(f) {}
1720
matchbrc_match1721 template <typename OpTy> bool match(OpTy *V) {
1722 if (auto *BI = dyn_cast<BranchInst>(V))
1723 if (BI->isConditional() && Cond.match(BI->getCondition()))
1724 return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
1725 return false;
1726 }
1727 };
1728
1729 template <typename Cond_t>
1730 inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
m_Br(const Cond_t & C,BasicBlock * & T,BasicBlock * & F)1731 m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1732 return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
1733 C, m_BasicBlock(T), m_BasicBlock(F));
1734 }
1735
1736 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1737 inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
m_Br(const Cond_t & C,const TrueBlock_t & T,const FalseBlock_t & F)1738 m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
1739 return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
1740 }
1741
1742 //===----------------------------------------------------------------------===//
1743 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1744 //
1745
1746 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1747 bool Commutable = false>
1748 struct MaxMin_match {
1749 using PredType = Pred_t;
1750 LHS_t L;
1751 RHS_t R;
1752
1753 // The evaluation order is always stable, regardless of Commutability.
1754 // The LHS is always matched first.
MaxMin_matchMaxMin_match1755 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1756
matchMaxMin_match1757 template <typename OpTy> bool match(OpTy *V) {
1758 if (auto *II = dyn_cast<IntrinsicInst>(V)) {
1759 Intrinsic::ID IID = II->getIntrinsicID();
1760 if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
1761 (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
1762 (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
1763 (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
1764 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1765 return (L.match(LHS) && R.match(RHS)) ||
1766 (Commutable && L.match(RHS) && R.match(LHS));
1767 }
1768 }
1769 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1770 auto *SI = dyn_cast<SelectInst>(V);
1771 if (!SI)
1772 return false;
1773 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1774 if (!Cmp)
1775 return false;
1776 // At this point we have a select conditioned on a comparison. Check that
1777 // it is the values returned by the select that are being compared.
1778 auto *TrueVal = SI->getTrueValue();
1779 auto *FalseVal = SI->getFalseValue();
1780 auto *LHS = Cmp->getOperand(0);
1781 auto *RHS = Cmp->getOperand(1);
1782 if ((TrueVal != LHS || FalseVal != RHS) &&
1783 (TrueVal != RHS || FalseVal != LHS))
1784 return false;
1785 typename CmpInst_t::Predicate Pred =
1786 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1787 // Does "(x pred y) ? x : y" represent the desired max/min operation?
1788 if (!Pred_t::match(Pred))
1789 return false;
1790 // It does! Bind the operands.
1791 return (L.match(LHS) && R.match(RHS)) ||
1792 (Commutable && L.match(RHS) && R.match(LHS));
1793 }
1794 };
1795
1796 /// Helper class for identifying signed max predicates.
1797 struct smax_pred_ty {
matchsmax_pred_ty1798 static bool match(ICmpInst::Predicate Pred) {
1799 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1800 }
1801 };
1802
1803 /// Helper class for identifying signed min predicates.
1804 struct smin_pred_ty {
matchsmin_pred_ty1805 static bool match(ICmpInst::Predicate Pred) {
1806 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1807 }
1808 };
1809
1810 /// Helper class for identifying unsigned max predicates.
1811 struct umax_pred_ty {
matchumax_pred_ty1812 static bool match(ICmpInst::Predicate Pred) {
1813 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1814 }
1815 };
1816
1817 /// Helper class for identifying unsigned min predicates.
1818 struct umin_pred_ty {
matchumin_pred_ty1819 static bool match(ICmpInst::Predicate Pred) {
1820 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1821 }
1822 };
1823
1824 /// Helper class for identifying ordered max predicates.
1825 struct ofmax_pred_ty {
matchofmax_pred_ty1826 static bool match(FCmpInst::Predicate Pred) {
1827 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1828 }
1829 };
1830
1831 /// Helper class for identifying ordered min predicates.
1832 struct ofmin_pred_ty {
matchofmin_pred_ty1833 static bool match(FCmpInst::Predicate Pred) {
1834 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1835 }
1836 };
1837
1838 /// Helper class for identifying unordered max predicates.
1839 struct ufmax_pred_ty {
matchufmax_pred_ty1840 static bool match(FCmpInst::Predicate Pred) {
1841 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1842 }
1843 };
1844
1845 /// Helper class for identifying unordered min predicates.
1846 struct ufmin_pred_ty {
matchufmin_pred_ty1847 static bool match(FCmpInst::Predicate Pred) {
1848 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1849 }
1850 };
1851
1852 template <typename LHS, typename RHS>
m_SMax(const LHS & L,const RHS & R)1853 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1854 const RHS &R) {
1855 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1856 }
1857
1858 template <typename LHS, typename RHS>
m_SMin(const LHS & L,const RHS & R)1859 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1860 const RHS &R) {
1861 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1862 }
1863
1864 template <typename LHS, typename RHS>
m_UMax(const LHS & L,const RHS & R)1865 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1866 const RHS &R) {
1867 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1868 }
1869
1870 template <typename LHS, typename RHS>
m_UMin(const LHS & L,const RHS & R)1871 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1872 const RHS &R) {
1873 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1874 }
1875
1876 template <typename LHS, typename RHS>
1877 inline match_combine_or<
1878 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
1879 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
1880 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
1881 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
m_MaxOrMin(const LHS & L,const RHS & R)1882 m_MaxOrMin(const LHS &L, const RHS &R) {
1883 return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
1884 m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
1885 }
1886
1887 /// Match an 'ordered' floating point maximum function.
1888 /// Floating point has one special value 'NaN'. Therefore, there is no total
1889 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1890 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1891 /// semantics. In the presence of 'NaN' we have to preserve the original
1892 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1893 ///
1894 /// max(L, R) iff L and R are not NaN
1895 /// m_OrdFMax(L, R) = R iff L or R are NaN
1896 template <typename LHS, typename RHS>
m_OrdFMax(const LHS & L,const RHS & R)1897 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1898 const RHS &R) {
1899 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1900 }
1901
1902 /// Match an 'ordered' floating point minimum function.
1903 /// Floating point has one special value 'NaN'. Therefore, there is no total
1904 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1905 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1906 /// semantics. In the presence of 'NaN' we have to preserve the original
1907 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1908 ///
1909 /// min(L, R) iff L and R are not NaN
1910 /// m_OrdFMin(L, R) = R iff L or R are NaN
1911 template <typename LHS, typename RHS>
m_OrdFMin(const LHS & L,const RHS & R)1912 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1913 const RHS &R) {
1914 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1915 }
1916
1917 /// Match an 'unordered' floating point maximum function.
1918 /// Floating point has one special value 'NaN'. Therefore, there is no total
1919 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1920 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1921 /// semantics. In the presence of 'NaN' we have to preserve the original
1922 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1923 ///
1924 /// max(L, R) iff L and R are not NaN
1925 /// m_UnordFMax(L, R) = L iff L or R are NaN
1926 template <typename LHS, typename RHS>
1927 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
m_UnordFMax(const LHS & L,const RHS & R)1928 m_UnordFMax(const LHS &L, const RHS &R) {
1929 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1930 }
1931
1932 /// Match an 'unordered' floating point minimum function.
1933 /// Floating point has one special value 'NaN'. Therefore, there is no total
1934 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1935 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1936 /// semantics. In the presence of 'NaN' we have to preserve the original
1937 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1938 ///
1939 /// min(L, R) iff L and R are not NaN
1940 /// m_UnordFMin(L, R) = L iff L or R are NaN
1941 template <typename LHS, typename RHS>
1942 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
m_UnordFMin(const LHS & L,const RHS & R)1943 m_UnordFMin(const LHS &L, const RHS &R) {
1944 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1945 }
1946
1947 //===----------------------------------------------------------------------===//
1948 // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
1949 // Note that S might be matched to other instructions than AddInst.
1950 //
1951
1952 template <typename LHS_t, typename RHS_t, typename Sum_t>
1953 struct UAddWithOverflow_match {
1954 LHS_t L;
1955 RHS_t R;
1956 Sum_t S;
1957
UAddWithOverflow_matchUAddWithOverflow_match1958 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1959 : L(L), R(R), S(S) {}
1960
matchUAddWithOverflow_match1961 template <typename OpTy> bool match(OpTy *V) {
1962 Value *ICmpLHS, *ICmpRHS;
1963 ICmpInst::Predicate Pred;
1964 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1965 return false;
1966
1967 Value *AddLHS, *AddRHS;
1968 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1969
1970 // (a + b) u< a, (a + b) u< b
1971 if (Pred == ICmpInst::ICMP_ULT)
1972 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1973 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1974
1975 // a >u (a + b), b >u (a + b)
1976 if (Pred == ICmpInst::ICMP_UGT)
1977 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1978 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1979
1980 Value *Op1;
1981 auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
1982 // (a ^ -1) <u b
1983 if (Pred == ICmpInst::ICMP_ULT) {
1984 if (XorExpr.match(ICmpLHS))
1985 return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
1986 }
1987 // b > u (a ^ -1)
1988 if (Pred == ICmpInst::ICMP_UGT) {
1989 if (XorExpr.match(ICmpRHS))
1990 return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
1991 }
1992
1993 // Match special-case for increment-by-1.
1994 if (Pred == ICmpInst::ICMP_EQ) {
1995 // (a + 1) == 0
1996 // (1 + a) == 0
1997 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
1998 (m_One().match(AddLHS) || m_One().match(AddRHS)))
1999 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2000 // 0 == (a + 1)
2001 // 0 == (1 + a)
2002 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
2003 (m_One().match(AddLHS) || m_One().match(AddRHS)))
2004 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2005 }
2006
2007 return false;
2008 }
2009 };
2010
2011 /// Match an icmp instruction checking for unsigned overflow on addition.
2012 ///
2013 /// S is matched to the addition whose result is being checked for overflow, and
2014 /// L and R are matched to the LHS and RHS of S.
2015 template <typename LHS_t, typename RHS_t, typename Sum_t>
2016 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
m_UAddWithOverflow(const LHS_t & L,const RHS_t & R,const Sum_t & S)2017 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
2018 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
2019 }
2020
2021 template <typename Opnd_t> struct Argument_match {
2022 unsigned OpI;
2023 Opnd_t Val;
2024
Argument_matchArgument_match2025 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
2026
matchArgument_match2027 template <typename OpTy> bool match(OpTy *V) {
2028 // FIXME: Should likely be switched to use `CallBase`.
2029 if (const auto *CI = dyn_cast<CallInst>(V))
2030 return Val.match(CI->getArgOperand(OpI));
2031 return false;
2032 }
2033 };
2034
2035 /// Match an argument.
2036 template <unsigned OpI, typename Opnd_t>
m_Argument(const Opnd_t & Op)2037 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
2038 return Argument_match<Opnd_t>(OpI, Op);
2039 }
2040
2041 /// Intrinsic matchers.
2042 struct IntrinsicID_match {
2043 unsigned ID;
2044
IntrinsicID_matchIntrinsicID_match2045 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
2046
matchIntrinsicID_match2047 template <typename OpTy> bool match(OpTy *V) {
2048 if (const auto *CI = dyn_cast<CallInst>(V))
2049 if (const auto *F = CI->getCalledFunction())
2050 return F->getIntrinsicID() == ID;
2051 return false;
2052 }
2053 };
2054
2055 /// Intrinsic matches are combinations of ID matchers, and argument
2056 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
2057 /// them with lower arity matchers. Here's some convenient typedefs for up to
2058 /// several arguments, and more can be added as needed
2059 template <typename T0 = void, typename T1 = void, typename T2 = void,
2060 typename T3 = void, typename T4 = void, typename T5 = void,
2061 typename T6 = void, typename T7 = void, typename T8 = void,
2062 typename T9 = void, typename T10 = void>
2063 struct m_Intrinsic_Ty;
2064 template <typename T0> struct m_Intrinsic_Ty<T0> {
2065 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
2066 };
2067 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
2068 using Ty =
2069 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
2070 };
2071 template <typename T0, typename T1, typename T2>
2072 struct m_Intrinsic_Ty<T0, T1, T2> {
2073 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
2074 Argument_match<T2>>;
2075 };
2076 template <typename T0, typename T1, typename T2, typename T3>
2077 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
2078 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
2079 Argument_match<T3>>;
2080 };
2081
2082 template <typename T0, typename T1, typename T2, typename T3, typename T4>
2083 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
2084 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
2085 Argument_match<T4>>;
2086 };
2087
2088 template <typename T0, typename T1, typename T2, typename T3, typename T4,
2089 typename T5>
2090 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
2091 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
2092 Argument_match<T5>>;
2093 };
2094
2095 /// Match intrinsic calls like this:
2096 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
2097 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
2098 return IntrinsicID_match(IntrID);
2099 }
2100
2101 /// Matches MaskedLoad Intrinsic.
2102 template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2103 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2104 m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2105 const Opnd3 &Op3) {
2106 return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3);
2107 }
2108
2109 /// Matches MaskedGather Intrinsic.
2110 template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2111 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2112 m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2113 const Opnd3 &Op3) {
2114 return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3);
2115 }
2116
2117 template <Intrinsic::ID IntrID, typename T0>
2118 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
2119 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
2120 }
2121
2122 template <Intrinsic::ID IntrID, typename T0, typename T1>
2123 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
2124 const T1 &Op1) {
2125 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
2126 }
2127
2128 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
2129 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
2130 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
2131 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
2132 }
2133
2134 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2135 typename T3>
2136 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
2137 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
2138 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
2139 }
2140
2141 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2142 typename T3, typename T4>
2143 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
2144 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2145 const T4 &Op4) {
2146 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
2147 m_Argument<4>(Op4));
2148 }
2149
2150 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2151 typename T3, typename T4, typename T5>
2152 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
2153 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2154 const T4 &Op4, const T5 &Op5) {
2155 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
2156 m_Argument<5>(Op5));
2157 }
2158
2159 // Helper intrinsic matching specializations.
2160 template <typename Opnd0>
2161 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
2162 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
2163 }
2164
2165 template <typename Opnd0>
2166 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
2167 return m_Intrinsic<Intrinsic::bswap>(Op0);
2168 }
2169
2170 template <typename Opnd0>
2171 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
2172 return m_Intrinsic<Intrinsic::fabs>(Op0);
2173 }
2174
2175 template <typename Opnd0>
2176 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
2177 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
2178 }
2179
2180 template <typename Opnd0, typename Opnd1>
2181 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
2182 const Opnd1 &Op1) {
2183 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
2184 }
2185
2186 template <typename Opnd0, typename Opnd1>
2187 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
2188 const Opnd1 &Op1) {
2189 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
2190 }
2191
2192 template <typename Opnd0, typename Opnd1, typename Opnd2>
2193 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2194 m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2195 return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
2196 }
2197
2198 template <typename Opnd0, typename Opnd1, typename Opnd2>
2199 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2200 m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2201 return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
2202 }
2203
2204 template <typename Opnd0>
2205 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_Sqrt(const Opnd0 &Op0) {
2206 return m_Intrinsic<Intrinsic::sqrt>(Op0);
2207 }
2208
2209 template <typename Opnd0, typename Opnd1>
2210 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_CopySign(const Opnd0 &Op0,
2211 const Opnd1 &Op1) {
2212 return m_Intrinsic<Intrinsic::copysign>(Op0, Op1);
2213 }
2214
2215 template <typename Opnd0>
2216 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_VecReverse(const Opnd0 &Op0) {
2217 return m_Intrinsic<Intrinsic::experimental_vector_reverse>(Op0);
2218 }
2219
2220 //===----------------------------------------------------------------------===//
2221 // Matchers for two-operands operators with the operators in either order
2222 //
2223
2224 /// Matches a BinaryOperator with LHS and RHS in either order.
2225 template <typename LHS, typename RHS>
2226 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
2227 return AnyBinaryOp_match<LHS, RHS, true>(L, R);
2228 }
2229
2230 /// Matches an ICmp with a predicate over LHS and RHS in either order.
2231 /// Swaps the predicate if operands are commuted.
2232 template <typename LHS, typename RHS>
2233 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
2234 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
2235 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
2236 R);
2237 }
2238
2239 /// Matches a specific opcode with LHS and RHS in either order.
2240 template <typename LHS, typename RHS>
2241 inline SpecificBinaryOp_match<LHS, RHS, true>
2242 m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) {
2243 return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R);
2244 }
2245
2246 /// Matches a Add with LHS and RHS in either order.
2247 template <typename LHS, typename RHS>
2248 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
2249 const RHS &R) {
2250 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
2251 }
2252
2253 /// Matches a Mul with LHS and RHS in either order.
2254 template <typename LHS, typename RHS>
2255 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
2256 const RHS &R) {
2257 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
2258 }
2259
2260 /// Matches an And with LHS and RHS in either order.
2261 template <typename LHS, typename RHS>
2262 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
2263 const RHS &R) {
2264 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
2265 }
2266
2267 /// Matches an Or with LHS and RHS in either order.
2268 template <typename LHS, typename RHS>
2269 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
2270 const RHS &R) {
2271 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2272 }
2273
2274 /// Matches an Xor with LHS and RHS in either order.
2275 template <typename LHS, typename RHS>
2276 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
2277 const RHS &R) {
2278 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
2279 }
2280
2281 /// Matches a 'Neg' as 'sub 0, V'.
2282 template <typename ValTy>
2283 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
2284 m_Neg(const ValTy &V) {
2285 return m_Sub(m_ZeroInt(), V);
2286 }
2287
2288 /// Matches a 'Neg' as 'sub nsw 0, V'.
2289 template <typename ValTy>
2290 inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
2291 Instruction::Sub,
2292 OverflowingBinaryOperator::NoSignedWrap>
2293 m_NSWNeg(const ValTy &V) {
2294 return m_NSWSub(m_ZeroInt(), V);
2295 }
2296
2297 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
2298 /// NOTE: we first match the 'Not' (by matching '-1'),
2299 /// and only then match the inner matcher!
2300 template <typename ValTy>
2301 inline BinaryOp_match<cst_pred_ty<is_all_ones>, ValTy, Instruction::Xor, true>
2302 m_Not(const ValTy &V) {
2303 return m_c_Xor(m_AllOnes(), V);
2304 }
2305
2306 template <typename ValTy> struct NotForbidUndef_match {
2307 ValTy Val;
2308 NotForbidUndef_match(const ValTy &V) : Val(V) {}
2309
2310 template <typename OpTy> bool match(OpTy *V) {
2311 // We do not use m_c_Xor because that could match an arbitrary APInt that is
2312 // not -1 as C and then fail to match the other operand if it is -1.
2313 // This code should still work even when both operands are constants.
2314 Value *X;
2315 const APInt *C;
2316 if (m_Xor(m_Value(X), m_APIntForbidUndef(C)).match(V) && C->isAllOnes())
2317 return Val.match(X);
2318 if (m_Xor(m_APIntForbidUndef(C), m_Value(X)).match(V) && C->isAllOnes())
2319 return Val.match(X);
2320 return false;
2321 }
2322 };
2323
2324 /// Matches a bitwise 'not' as 'xor V, -1' or 'xor -1, V'. For vectors, the
2325 /// constant value must be composed of only -1 scalar elements.
2326 template <typename ValTy>
2327 inline NotForbidUndef_match<ValTy> m_NotForbidUndef(const ValTy &V) {
2328 return NotForbidUndef_match<ValTy>(V);
2329 }
2330
2331 /// Matches an SMin with LHS and RHS in either order.
2332 template <typename LHS, typename RHS>
2333 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
2334 m_c_SMin(const LHS &L, const RHS &R) {
2335 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
2336 }
2337 /// Matches an SMax with LHS and RHS in either order.
2338 template <typename LHS, typename RHS>
2339 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
2340 m_c_SMax(const LHS &L, const RHS &R) {
2341 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
2342 }
2343 /// Matches a UMin with LHS and RHS in either order.
2344 template <typename LHS, typename RHS>
2345 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
2346 m_c_UMin(const LHS &L, const RHS &R) {
2347 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
2348 }
2349 /// Matches a UMax with LHS and RHS in either order.
2350 template <typename LHS, typename RHS>
2351 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
2352 m_c_UMax(const LHS &L, const RHS &R) {
2353 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
2354 }
2355
2356 template <typename LHS, typename RHS>
2357 inline match_combine_or<
2358 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
2359 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
2360 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
2361 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
2362 m_c_MaxOrMin(const LHS &L, const RHS &R) {
2363 return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
2364 m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
2365 }
2366
2367 /// Matches FAdd with LHS and RHS in either order.
2368 template <typename LHS, typename RHS>
2369 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
2370 m_c_FAdd(const LHS &L, const RHS &R) {
2371 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
2372 }
2373
2374 /// Matches FMul with LHS and RHS in either order.
2375 template <typename LHS, typename RHS>
2376 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
2377 m_c_FMul(const LHS &L, const RHS &R) {
2378 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
2379 }
2380
2381 template <typename Opnd_t> struct Signum_match {
2382 Opnd_t Val;
2383 Signum_match(const Opnd_t &V) : Val(V) {}
2384
2385 template <typename OpTy> bool match(OpTy *V) {
2386 unsigned TypeSize = V->getType()->getScalarSizeInBits();
2387 if (TypeSize == 0)
2388 return false;
2389
2390 unsigned ShiftWidth = TypeSize - 1;
2391 Value *OpL = nullptr, *OpR = nullptr;
2392
2393 // This is the representation of signum we match:
2394 //
2395 // signum(x) == (x >> 63) | (-x >>u 63)
2396 //
2397 // An i1 value is its own signum, so it's correct to match
2398 //
2399 // signum(x) == (x >> 0) | (-x >>u 0)
2400 //
2401 // for i1 values.
2402
2403 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
2404 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
2405 auto Signum = m_Or(LHS, RHS);
2406
2407 return Signum.match(V) && OpL == OpR && Val.match(OpL);
2408 }
2409 };
2410
2411 /// Matches a signum pattern.
2412 ///
2413 /// signum(x) =
2414 /// x > 0 -> 1
2415 /// x == 0 -> 0
2416 /// x < 0 -> -1
2417 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2418 return Signum_match<Val_t>(V);
2419 }
2420
2421 template <int Ind, typename Opnd_t> struct ExtractValue_match {
2422 Opnd_t Val;
2423 ExtractValue_match(const Opnd_t &V) : Val(V) {}
2424
2425 template <typename OpTy> bool match(OpTy *V) {
2426 if (auto *I = dyn_cast<ExtractValueInst>(V)) {
2427 // If Ind is -1, don't inspect indices
2428 if (Ind != -1 &&
2429 !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind))
2430 return false;
2431 return Val.match(I->getAggregateOperand());
2432 }
2433 return false;
2434 }
2435 };
2436
2437 /// Match a single index ExtractValue instruction.
2438 /// For example m_ExtractValue<1>(...)
2439 template <int Ind, typename Val_t>
2440 inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
2441 return ExtractValue_match<Ind, Val_t>(V);
2442 }
2443
2444 /// Match an ExtractValue instruction with any index.
2445 /// For example m_ExtractValue(...)
2446 template <typename Val_t>
2447 inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) {
2448 return ExtractValue_match<-1, Val_t>(V);
2449 }
2450
2451 /// Matcher for a single index InsertValue instruction.
2452 template <int Ind, typename T0, typename T1> struct InsertValue_match {
2453 T0 Op0;
2454 T1 Op1;
2455
2456 InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
2457
2458 template <typename OpTy> bool match(OpTy *V) {
2459 if (auto *I = dyn_cast<InsertValueInst>(V)) {
2460 return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
2461 I->getNumIndices() == 1 && Ind == I->getIndices()[0];
2462 }
2463 return false;
2464 }
2465 };
2466
2467 /// Matches a single index InsertValue instruction.
2468 template <int Ind, typename Val_t, typename Elt_t>
2469 inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
2470 const Elt_t &Elt) {
2471 return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
2472 }
2473
2474 /// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2475 /// the constant expression
2476 /// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2477 /// under the right conditions determined by DataLayout.
2478 struct VScaleVal_match {
2479 const DataLayout &DL;
2480 VScaleVal_match(const DataLayout &DL) : DL(DL) {}
2481
2482 template <typename ITy> bool match(ITy *V) {
2483 if (m_Intrinsic<Intrinsic::vscale>().match(V))
2484 return true;
2485
2486 Value *Ptr;
2487 if (m_PtrToInt(m_Value(Ptr)).match(V)) {
2488 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
2489 auto *DerefTy = GEP->getSourceElementType();
2490 if (GEP->getNumIndices() == 1 && isa<ScalableVectorType>(DerefTy) &&
2491 m_Zero().match(GEP->getPointerOperand()) &&
2492 m_SpecificInt(1).match(GEP->idx_begin()->get()) &&
2493 DL.getTypeAllocSizeInBits(DerefTy).getKnownMinValue() == 8)
2494 return true;
2495 }
2496 }
2497
2498 return false;
2499 }
2500 };
2501
2502 inline VScaleVal_match m_VScale(const DataLayout &DL) {
2503 return VScaleVal_match(DL);
2504 }
2505
2506 template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false>
2507 struct LogicalOp_match {
2508 LHS L;
2509 RHS R;
2510
2511 LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
2512
2513 template <typename T> bool match(T *V) {
2514 auto *I = dyn_cast<Instruction>(V);
2515 if (!I || !I->getType()->isIntOrIntVectorTy(1))
2516 return false;
2517
2518 if (I->getOpcode() == Opcode) {
2519 auto *Op0 = I->getOperand(0);
2520 auto *Op1 = I->getOperand(1);
2521 return (L.match(Op0) && R.match(Op1)) ||
2522 (Commutable && L.match(Op1) && R.match(Op0));
2523 }
2524
2525 if (auto *Select = dyn_cast<SelectInst>(I)) {
2526 auto *Cond = Select->getCondition();
2527 auto *TVal = Select->getTrueValue();
2528 auto *FVal = Select->getFalseValue();
2529
2530 // Don't match a scalar select of bool vectors.
2531 // Transforms expect a single type for operands if this matches.
2532 if (Cond->getType() != Select->getType())
2533 return false;
2534
2535 if (Opcode == Instruction::And) {
2536 auto *C = dyn_cast<Constant>(FVal);
2537 if (C && C->isNullValue())
2538 return (L.match(Cond) && R.match(TVal)) ||
2539 (Commutable && L.match(TVal) && R.match(Cond));
2540 } else {
2541 assert(Opcode == Instruction::Or);
2542 auto *C = dyn_cast<Constant>(TVal);
2543 if (C && C->isOneValue())
2544 return (L.match(Cond) && R.match(FVal)) ||
2545 (Commutable && L.match(FVal) && R.match(Cond));
2546 }
2547 }
2548
2549 return false;
2550 }
2551 };
2552
2553 /// Matches L && R either in the form of L & R or L ? R : false.
2554 /// Note that the latter form is poison-blocking.
2555 template <typename LHS, typename RHS>
2556 inline LogicalOp_match<LHS, RHS, Instruction::And> m_LogicalAnd(const LHS &L,
2557 const RHS &R) {
2558 return LogicalOp_match<LHS, RHS, Instruction::And>(L, R);
2559 }
2560
2561 /// Matches L && R where L and R are arbitrary values.
2562 inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); }
2563
2564 /// Matches L && R with LHS and RHS in either order.
2565 template <typename LHS, typename RHS>
2566 inline LogicalOp_match<LHS, RHS, Instruction::And, true>
2567 m_c_LogicalAnd(const LHS &L, const RHS &R) {
2568 return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R);
2569 }
2570
2571 /// Matches L || R either in the form of L | R or L ? true : R.
2572 /// Note that the latter form is poison-blocking.
2573 template <typename LHS, typename RHS>
2574 inline LogicalOp_match<LHS, RHS, Instruction::Or> m_LogicalOr(const LHS &L,
2575 const RHS &R) {
2576 return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R);
2577 }
2578
2579 /// Matches L || R where L and R are arbitrary values.
2580 inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); }
2581
2582 /// Matches L || R with LHS and RHS in either order.
2583 template <typename LHS, typename RHS>
2584 inline LogicalOp_match<LHS, RHS, Instruction::Or, true>
2585 m_c_LogicalOr(const LHS &L, const RHS &R) {
2586 return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2587 }
2588
2589 /// Matches either L && R or L || R,
2590 /// either one being in the either binary or logical form.
2591 /// Note that the latter form is poison-blocking.
2592 template <typename LHS, typename RHS, bool Commutable = false>
2593 inline auto m_LogicalOp(const LHS &L, const RHS &R) {
2594 return m_CombineOr(
2595 LogicalOp_match<LHS, RHS, Instruction::And, Commutable>(L, R),
2596 LogicalOp_match<LHS, RHS, Instruction::Or, Commutable>(L, R));
2597 }
2598
2599 /// Matches either L && R or L || R where L and R are arbitrary values.
2600 inline auto m_LogicalOp() { return m_LogicalOp(m_Value(), m_Value()); }
2601
2602 /// Matches either L && R or L || R with LHS and RHS in either order.
2603 template <typename LHS, typename RHS>
2604 inline auto m_c_LogicalOp(const LHS &L, const RHS &R) {
2605 return m_LogicalOp<LHS, RHS, /*Commutable=*/true>(L, R);
2606 }
2607
2608 } // end namespace PatternMatch
2609 } // end namespace llvm
2610
2611 #endif // LLVM_IR_PATTERNMATCH_H
2612