xref: /freebsd/sys/kern/uipc_mbuf.c (revision e6a4b572)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 #include "opt_param.h"
34 #include "opt_mbuf_stress_test.h"
35 #include "opt_mbuf_profiling.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mbuf.h>
44 #include <sys/sysctl.h>
45 #include <sys/domain.h>
46 #include <sys/protosw.h>
47 #include <sys/uio.h>
48 #include <sys/vmmeter.h>
49 #include <sys/sbuf.h>
50 #include <sys/sdt.h>
51 #include <vm/vm.h>
52 #include <vm/vm_pageout.h>
53 #include <vm/vm_page.h>
54 
55 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init,
56     "struct mbuf *", "mbufinfo_t *",
57     "uint32_t", "uint32_t",
58     "uint16_t", "uint16_t",
59     "uint32_t", "uint32_t",
60     "uint32_t", "uint32_t");
61 
62 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr_raw,
63     "uint32_t", "uint32_t",
64     "uint16_t", "uint16_t",
65     "struct mbuf *", "mbufinfo_t *");
66 
67 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr,
68     "uint32_t", "uint32_t",
69     "uint16_t", "uint16_t",
70     "struct mbuf *", "mbufinfo_t *");
71 
72 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get_raw,
73     "uint32_t", "uint32_t",
74     "uint16_t", "uint16_t",
75     "struct mbuf *", "mbufinfo_t *");
76 
77 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get,
78     "uint32_t", "uint32_t",
79     "uint16_t", "uint16_t",
80     "struct mbuf *", "mbufinfo_t *");
81 
82 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl,
83     "uint32_t", "uint32_t",
84     "uint16_t", "uint16_t",
85     "uint32_t", "uint32_t",
86     "struct mbuf *", "mbufinfo_t *");
87 
88 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__getjcl,
89     "uint32_t", "uint32_t",
90     "uint16_t", "uint16_t",
91     "uint32_t", "uint32_t",
92     "uint32_t", "uint32_t",
93     "struct mbuf *", "mbufinfo_t *");
94 
95 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget,
96     "struct mbuf *", "mbufinfo_t *",
97     "uint32_t", "uint32_t",
98     "uint32_t", "uint32_t");
99 
100 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget,
101     "struct mbuf *", "mbufinfo_t *",
102     "uint32_t", "uint32_t",
103     "uint32_t", "uint32_t",
104     "void*", "void*");
105 
106 SDT_PROBE_DEFINE(sdt, , , m__cljset);
107 
108 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free,
109         "struct mbuf *", "mbufinfo_t *");
110 
111 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem,
112     "struct mbuf *", "mbufinfo_t *");
113 
114 #include <security/mac/mac_framework.h>
115 
116 /*
117  * Provide minimum possible defaults for link and protocol header space,
118  * assuming IPv4 over Ethernet.  Enabling IPv6, IEEE802.11 or some other
119  * protocol may grow these values.
120  */
121 u_int	max_linkhdr = 16;
122 u_int	max_protohdr = 40;
123 u_int	max_hdr = 16 + 40;
124 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
125 	   &max_linkhdr, 16, "Size of largest link layer header");
126 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
127 	   &max_protohdr, 40, "Size of largest protocol layer header");
128 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
129 	   &max_hdr, 16 + 40, "Size of largest link plus protocol header");
130 
131 static void
max_hdr_grow(void)132 max_hdr_grow(void)
133 {
134 
135 	max_hdr = max_linkhdr + max_protohdr;
136 	MPASS(max_hdr <= MHLEN);
137 }
138 
139 void
max_linkhdr_grow(u_int new)140 max_linkhdr_grow(u_int new)
141 {
142 
143 	if (new > max_linkhdr) {
144 		max_linkhdr = new;
145 		max_hdr_grow();
146 	}
147 }
148 
149 void
max_protohdr_grow(u_int new)150 max_protohdr_grow(u_int new)
151 {
152 
153 	if (new > max_protohdr) {
154 		max_protohdr = new;
155 		max_hdr_grow();
156 	}
157 }
158 
159 #ifdef MBUF_STRESS_TEST
160 int	m_defragpackets;
161 int	m_defragbytes;
162 int	m_defraguseless;
163 int	m_defragfailure;
164 int	m_defragrandomfailures;
165 
166 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
167 	   &m_defragpackets, 0, "");
168 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
169 	   &m_defragbytes, 0, "");
170 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
171 	   &m_defraguseless, 0, "");
172 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
173 	   &m_defragfailure, 0, "");
174 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
175 	   &m_defragrandomfailures, 0, "");
176 #endif
177 
178 /*
179  * Ensure the correct size of various mbuf parameters.  It could be off due
180  * to compiler-induced padding and alignment artifacts.
181  */
182 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
183 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
184 
185 /*
186  * mbuf data storage should be 64-bit aligned regardless of architectural
187  * pointer size; check this is the case with and without a packet header.
188  */
189 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0);
190 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0);
191 
192 /*
193  * While the specific values here don't matter too much (i.e., +/- a few
194  * words), we do want to ensure that changes to these values are carefully
195  * reasoned about and properly documented.  This is especially the case as
196  * network-protocol and device-driver modules encode these layouts, and must
197  * be recompiled if the structures change.  Check these values at compile time
198  * against the ones documented in comments in mbuf.h.
199  *
200  * NB: Possibly they should be documented there via #define's and not just
201  * comments.
202  */
203 #if defined(__LP64__)
204 CTASSERT(offsetof(struct mbuf, m_dat) == 32);
205 CTASSERT(sizeof(struct pkthdr) == 64);
206 CTASSERT(sizeof(struct m_ext) == 160);
207 #else
208 CTASSERT(offsetof(struct mbuf, m_dat) == 24);
209 CTASSERT(sizeof(struct pkthdr) == 56);
210 #if defined(__powerpc__) && defined(BOOKE)
211 /* PowerPC booke has 64-bit physical pointers. */
212 CTASSERT(sizeof(struct m_ext) == 176);
213 #else
214 CTASSERT(sizeof(struct m_ext) == 172);
215 #endif
216 #endif
217 
218 /*
219  * Assert that the queue(3) macros produce code of the same size as an old
220  * plain pointer does.
221  */
222 #ifdef INVARIANTS
223 static struct mbuf __used m_assertbuf;
224 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next));
225 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next));
226 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt));
227 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt));
228 #endif
229 
230 /*
231  * Attach the cluster from *m to *n, set up m_ext in *n
232  * and bump the refcount of the cluster.
233  */
234 void
mb_dupcl(struct mbuf * n,struct mbuf * m)235 mb_dupcl(struct mbuf *n, struct mbuf *m)
236 {
237 	volatile u_int *refcnt;
238 
239 	KASSERT(m->m_flags & (M_EXT | M_EXTPG),
240 	    ("%s: M_EXT | M_EXTPG not set on %p", __func__, m));
241 	KASSERT(!(n->m_flags & (M_EXT | M_EXTPG)),
242 	    ("%s: M_EXT | M_EXTPG set on %p", __func__, n));
243 
244 	/*
245 	 * Cache access optimization.
246 	 *
247 	 * o Regular M_EXT storage doesn't need full copy of m_ext, since
248 	 *   the holder of the 'ext_count' is responsible to carry the free
249 	 *   routine and its arguments.
250 	 * o M_EXTPG data is split between main part of mbuf and m_ext, the
251 	 *   main part is copied in full, the m_ext part is similar to M_EXT.
252 	 * o EXT_EXTREF, where 'ext_cnt' doesn't point into mbuf at all, is
253 	 *   special - it needs full copy of m_ext into each mbuf, since any
254 	 *   copy could end up as the last to free.
255 	 */
256 	if (m->m_flags & M_EXTPG) {
257 		bcopy(&m->m_epg_startcopy, &n->m_epg_startcopy,
258 		    __rangeof(struct mbuf, m_epg_startcopy, m_epg_endcopy));
259 		bcopy(&m->m_ext, &n->m_ext, m_epg_ext_copylen);
260 	} else if (m->m_ext.ext_type == EXT_EXTREF)
261 		bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext));
262 	else
263 		bcopy(&m->m_ext, &n->m_ext, m_ext_copylen);
264 
265 	n->m_flags |= m->m_flags & (M_RDONLY | M_EXT | M_EXTPG);
266 
267 	/* See if this is the mbuf that holds the embedded refcount. */
268 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
269 		refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count;
270 		n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF;
271 	} else {
272 		KASSERT(m->m_ext.ext_cnt != NULL,
273 		    ("%s: no refcounting pointer on %p", __func__, m));
274 		refcnt = m->m_ext.ext_cnt;
275 	}
276 
277 	if (*refcnt == 1)
278 		*refcnt += 1;
279 	else
280 		atomic_add_int(refcnt, 1);
281 }
282 
283 void
m_demote_pkthdr(struct mbuf * m)284 m_demote_pkthdr(struct mbuf *m)
285 {
286 
287 	M_ASSERTPKTHDR(m);
288 	M_ASSERT_NO_SND_TAG(m);
289 
290 	m_tag_delete_chain(m, NULL);
291 	m->m_flags &= ~M_PKTHDR;
292 	bzero(&m->m_pkthdr, sizeof(struct pkthdr));
293 }
294 
295 /*
296  * Clean up mbuf (chain) from any tags and packet headers.
297  * If "all" is set then the first mbuf in the chain will be
298  * cleaned too.
299  */
300 void
m_demote(struct mbuf * m0,int all,int flags)301 m_demote(struct mbuf *m0, int all, int flags)
302 {
303 	struct mbuf *m;
304 
305 	flags |= M_DEMOTEFLAGS;
306 
307 	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
308 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
309 		    __func__, m, m0));
310 		if (m->m_flags & M_PKTHDR)
311 			m_demote_pkthdr(m);
312 		m->m_flags &= flags;
313 	}
314 }
315 
316 /*
317  * Sanity checks on mbuf (chain) for use in KASSERT() and general
318  * debugging.
319  * Returns 0 or panics when bad and 1 on all tests passed.
320  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
321  * blow up later.
322  */
323 int
m_sanity(struct mbuf * m0,int sanitize)324 m_sanity(struct mbuf *m0, int sanitize)
325 {
326 	struct mbuf *m;
327 	caddr_t a, b;
328 	int pktlen = 0;
329 
330 #ifdef INVARIANTS
331 #define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
332 #else
333 #define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
334 #endif
335 
336 	for (m = m0; m != NULL; m = m->m_next) {
337 		/*
338 		 * Basic pointer checks.  If any of these fails then some
339 		 * unrelated kernel memory before or after us is trashed.
340 		 * No way to recover from that.
341 		 */
342 		a = M_START(m);
343 		b = a + M_SIZE(m);
344 		if ((caddr_t)m->m_data < a)
345 			M_SANITY_ACTION("m_data outside mbuf data range left");
346 		if ((caddr_t)m->m_data > b)
347 			M_SANITY_ACTION("m_data outside mbuf data range right");
348 		if ((caddr_t)m->m_data + m->m_len > b)
349 			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
350 
351 		/* m->m_nextpkt may only be set on first mbuf in chain. */
352 		if (m != m0 && m->m_nextpkt != NULL) {
353 			if (sanitize) {
354 				m_freem(m->m_nextpkt);
355 				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
356 			} else
357 				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
358 		}
359 
360 		/* packet length (not mbuf length!) calculation */
361 		if (m0->m_flags & M_PKTHDR)
362 			pktlen += m->m_len;
363 
364 		/* m_tags may only be attached to first mbuf in chain. */
365 		if (m != m0 && m->m_flags & M_PKTHDR &&
366 		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
367 			if (sanitize) {
368 				m_tag_delete_chain(m, NULL);
369 				/* put in 0xDEADC0DE perhaps? */
370 			} else
371 				M_SANITY_ACTION("m_tags on in-chain mbuf");
372 		}
373 
374 		/* M_PKTHDR may only be set on first mbuf in chain */
375 		if (m != m0 && m->m_flags & M_PKTHDR) {
376 			if (sanitize) {
377 				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
378 				m->m_flags &= ~M_PKTHDR;
379 				/* put in 0xDEADCODE and leave hdr flag in */
380 			} else
381 				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
382 		}
383 	}
384 	m = m0;
385 	if (pktlen && pktlen != m->m_pkthdr.len) {
386 		if (sanitize)
387 			m->m_pkthdr.len = 0;
388 		else
389 			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
390 	}
391 	return 1;
392 
393 #undef	M_SANITY_ACTION
394 }
395 
396 /*
397  * Non-inlined part of m_init().
398  */
399 int
m_pkthdr_init(struct mbuf * m,int how)400 m_pkthdr_init(struct mbuf *m, int how)
401 {
402 #ifdef MAC
403 	int error;
404 #endif
405 	m->m_data = m->m_pktdat;
406 	bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
407 #ifdef NUMA
408 	m->m_pkthdr.numa_domain = M_NODOM;
409 #endif
410 #ifdef MAC
411 	/* If the label init fails, fail the alloc */
412 	error = mac_mbuf_init(m, how);
413 	if (error)
414 		return (error);
415 #endif
416 
417 	return (0);
418 }
419 
420 /*
421  * "Move" mbuf pkthdr from "from" to "to".
422  * "from" must have M_PKTHDR set, and "to" must be empty.
423  */
424 void
m_move_pkthdr(struct mbuf * to,struct mbuf * from)425 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
426 {
427 
428 #if 0
429 	/* see below for why these are not enabled */
430 	M_ASSERTPKTHDR(to);
431 	/* Note: with MAC, this may not be a good assertion. */
432 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
433 	    ("m_move_pkthdr: to has tags"));
434 #endif
435 #ifdef MAC
436 	/*
437 	 * XXXMAC: It could be this should also occur for non-MAC?
438 	 */
439 	if (to->m_flags & M_PKTHDR)
440 		m_tag_delete_chain(to, NULL);
441 #endif
442 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
443 	    (to->m_flags & (M_EXT | M_EXTPG));
444 	if ((to->m_flags & M_EXT) == 0)
445 		to->m_data = to->m_pktdat;
446 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
447 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
448 	from->m_flags &= ~M_PKTHDR;
449 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) {
450 		from->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
451 		from->m_pkthdr.snd_tag = NULL;
452 	}
453 }
454 
455 /*
456  * Duplicate "from"'s mbuf pkthdr in "to".
457  * "from" must have M_PKTHDR set, and "to" must be empty.
458  * In particular, this does a deep copy of the packet tags.
459  */
460 int
m_dup_pkthdr(struct mbuf * to,const struct mbuf * from,int how)461 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
462 {
463 
464 #if 0
465 	/*
466 	 * The mbuf allocator only initializes the pkthdr
467 	 * when the mbuf is allocated with m_gethdr(). Many users
468 	 * (e.g. m_copy*, m_prepend) use m_get() and then
469 	 * smash the pkthdr as needed causing these
470 	 * assertions to trip.  For now just disable them.
471 	 */
472 	M_ASSERTPKTHDR(to);
473 	/* Note: with MAC, this may not be a good assertion. */
474 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
475 #endif
476 	MBUF_CHECKSLEEP(how);
477 #ifdef MAC
478 	if (to->m_flags & M_PKTHDR)
479 		m_tag_delete_chain(to, NULL);
480 #endif
481 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
482 	    (to->m_flags & (M_EXT | M_EXTPG));
483 	if ((to->m_flags & M_EXT) == 0)
484 		to->m_data = to->m_pktdat;
485 	to->m_pkthdr = from->m_pkthdr;
486 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG)
487 		m_snd_tag_ref(from->m_pkthdr.snd_tag);
488 	SLIST_INIT(&to->m_pkthdr.tags);
489 	return (m_tag_copy_chain(to, from, how));
490 }
491 
492 /*
493  * Lesser-used path for M_PREPEND:
494  * allocate new mbuf to prepend to chain,
495  * copy junk along.
496  */
497 struct mbuf *
m_prepend(struct mbuf * m,int len,int how)498 m_prepend(struct mbuf *m, int len, int how)
499 {
500 	struct mbuf *mn;
501 
502 	if (m->m_flags & M_PKTHDR)
503 		mn = m_gethdr(how, m->m_type);
504 	else
505 		mn = m_get(how, m->m_type);
506 	if (mn == NULL) {
507 		m_freem(m);
508 		return (NULL);
509 	}
510 	if (m->m_flags & M_PKTHDR)
511 		m_move_pkthdr(mn, m);
512 	mn->m_next = m;
513 	m = mn;
514 	if (len < M_SIZE(m))
515 		M_ALIGN(m, len);
516 	m->m_len = len;
517 	return (m);
518 }
519 
520 /*
521  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
522  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
523  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
524  * Note that the copy is read-only, because clusters are not copied,
525  * only their reference counts are incremented.
526  */
527 struct mbuf *
m_copym(struct mbuf * m,int off0,int len,int wait)528 m_copym(struct mbuf *m, int off0, int len, int wait)
529 {
530 	struct mbuf *n, **np;
531 	int off = off0;
532 	struct mbuf *top;
533 	int copyhdr = 0;
534 
535 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
536 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
537 	MBUF_CHECKSLEEP(wait);
538 	if (off == 0 && m->m_flags & M_PKTHDR)
539 		copyhdr = 1;
540 	while (off > 0) {
541 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
542 		if (off < m->m_len)
543 			break;
544 		off -= m->m_len;
545 		m = m->m_next;
546 	}
547 	np = &top;
548 	top = NULL;
549 	while (len > 0) {
550 		if (m == NULL) {
551 			KASSERT(len == M_COPYALL,
552 			    ("m_copym, length > size of mbuf chain"));
553 			break;
554 		}
555 		if (copyhdr)
556 			n = m_gethdr(wait, m->m_type);
557 		else
558 			n = m_get(wait, m->m_type);
559 		*np = n;
560 		if (n == NULL)
561 			goto nospace;
562 		if (copyhdr) {
563 			if (!m_dup_pkthdr(n, m, wait))
564 				goto nospace;
565 			if (len == M_COPYALL)
566 				n->m_pkthdr.len -= off0;
567 			else
568 				n->m_pkthdr.len = len;
569 			copyhdr = 0;
570 		}
571 		n->m_len = min(len, m->m_len - off);
572 		if (m->m_flags & (M_EXT | M_EXTPG)) {
573 			n->m_data = m->m_data + off;
574 			mb_dupcl(n, m);
575 		} else
576 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
577 			    (u_int)n->m_len);
578 		if (len != M_COPYALL)
579 			len -= n->m_len;
580 		off = 0;
581 		m = m->m_next;
582 		np = &n->m_next;
583 	}
584 
585 	return (top);
586 nospace:
587 	m_freem(top);
588 	return (NULL);
589 }
590 
591 /*
592  * Copy an entire packet, including header (which must be present).
593  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
594  * Note that the copy is read-only, because clusters are not copied,
595  * only their reference counts are incremented.
596  * Preserve alignment of the first mbuf so if the creator has left
597  * some room at the beginning (e.g. for inserting protocol headers)
598  * the copies still have the room available.
599  */
600 struct mbuf *
m_copypacket(struct mbuf * m,int how)601 m_copypacket(struct mbuf *m, int how)
602 {
603 	struct mbuf *top, *n, *o;
604 
605 	MBUF_CHECKSLEEP(how);
606 	n = m_get(how, m->m_type);
607 	top = n;
608 	if (n == NULL)
609 		goto nospace;
610 
611 	if (!m_dup_pkthdr(n, m, how))
612 		goto nospace;
613 	n->m_len = m->m_len;
614 	if (m->m_flags & (M_EXT | M_EXTPG)) {
615 		n->m_data = m->m_data;
616 		mb_dupcl(n, m);
617 	} else {
618 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
619 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
620 	}
621 
622 	m = m->m_next;
623 	while (m) {
624 		o = m_get(how, m->m_type);
625 		if (o == NULL)
626 			goto nospace;
627 
628 		n->m_next = o;
629 		n = n->m_next;
630 
631 		n->m_len = m->m_len;
632 		if (m->m_flags & (M_EXT | M_EXTPG)) {
633 			n->m_data = m->m_data;
634 			mb_dupcl(n, m);
635 		} else {
636 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
637 		}
638 
639 		m = m->m_next;
640 	}
641 	return top;
642 nospace:
643 	m_freem(top);
644 	return (NULL);
645 }
646 
647 static void
m_copyfromunmapped(const struct mbuf * m,int off,int len,caddr_t cp)648 m_copyfromunmapped(const struct mbuf *m, int off, int len, caddr_t cp)
649 {
650 	struct iovec iov;
651 	struct uio uio;
652 	int error __diagused;
653 
654 	KASSERT(off >= 0, ("m_copyfromunmapped: negative off %d", off));
655 	KASSERT(len >= 0, ("m_copyfromunmapped: negative len %d", len));
656 	KASSERT(off < m->m_len,
657 	    ("m_copyfromunmapped: len exceeds mbuf length"));
658 	iov.iov_base = cp;
659 	iov.iov_len = len;
660 	uio.uio_resid = len;
661 	uio.uio_iov = &iov;
662 	uio.uio_segflg = UIO_SYSSPACE;
663 	uio.uio_iovcnt = 1;
664 	uio.uio_offset = 0;
665 	uio.uio_rw = UIO_READ;
666 	error = m_unmapped_uiomove(m, off, &uio, len);
667 	KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off,
668 	   len));
669 }
670 
671 /*
672  * Copy data from an mbuf chain starting "off" bytes from the beginning,
673  * continuing for "len" bytes, into the indicated buffer.
674  */
675 void
m_copydata(const struct mbuf * m,int off,int len,caddr_t cp)676 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
677 {
678 	u_int count;
679 
680 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
681 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
682 	while (off > 0) {
683 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
684 		if (off < m->m_len)
685 			break;
686 		off -= m->m_len;
687 		m = m->m_next;
688 	}
689 	while (len > 0) {
690 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
691 		count = min(m->m_len - off, len);
692 		if ((m->m_flags & M_EXTPG) != 0)
693 			m_copyfromunmapped(m, off, count, cp);
694 		else
695 			bcopy(mtod(m, caddr_t) + off, cp, count);
696 		len -= count;
697 		cp += count;
698 		off = 0;
699 		m = m->m_next;
700 	}
701 }
702 
703 /*
704  * Copy a packet header mbuf chain into a completely new chain, including
705  * copying any mbuf clusters.  Use this instead of m_copypacket() when
706  * you need a writable copy of an mbuf chain.
707  */
708 struct mbuf *
m_dup(const struct mbuf * m,int how)709 m_dup(const struct mbuf *m, int how)
710 {
711 	struct mbuf **p, *top = NULL;
712 	int remain, moff, nsize;
713 
714 	MBUF_CHECKSLEEP(how);
715 	/* Sanity check */
716 	if (m == NULL)
717 		return (NULL);
718 	M_ASSERTPKTHDR(m);
719 
720 	/* While there's more data, get a new mbuf, tack it on, and fill it */
721 	remain = m->m_pkthdr.len;
722 	moff = 0;
723 	p = &top;
724 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
725 		struct mbuf *n;
726 
727 		/* Get the next new mbuf */
728 		if (remain >= MINCLSIZE) {
729 			n = m_getcl(how, m->m_type, 0);
730 			nsize = MCLBYTES;
731 		} else {
732 			n = m_get(how, m->m_type);
733 			nsize = MLEN;
734 		}
735 		if (n == NULL)
736 			goto nospace;
737 
738 		if (top == NULL) {		/* First one, must be PKTHDR */
739 			if (!m_dup_pkthdr(n, m, how)) {
740 				m_free(n);
741 				goto nospace;
742 			}
743 			if ((n->m_flags & M_EXT) == 0)
744 				nsize = MHLEN;
745 			n->m_flags &= ~M_RDONLY;
746 		}
747 		n->m_len = 0;
748 
749 		/* Link it into the new chain */
750 		*p = n;
751 		p = &n->m_next;
752 
753 		/* Copy data from original mbuf(s) into new mbuf */
754 		while (n->m_len < nsize && m != NULL) {
755 			int chunk = min(nsize - n->m_len, m->m_len - moff);
756 
757 			m_copydata(m, moff, chunk, n->m_data + n->m_len);
758 			moff += chunk;
759 			n->m_len += chunk;
760 			remain -= chunk;
761 			if (moff == m->m_len) {
762 				m = m->m_next;
763 				moff = 0;
764 			}
765 		}
766 
767 		/* Check correct total mbuf length */
768 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
769 		    	("%s: bogus m_pkthdr.len", __func__));
770 	}
771 	return (top);
772 
773 nospace:
774 	m_freem(top);
775 	return (NULL);
776 }
777 
778 /*
779  * Concatenate mbuf chain n to m.
780  * Both chains must be of the same type (e.g. MT_DATA).
781  * Any m_pkthdr is not updated.
782  */
783 void
m_cat(struct mbuf * m,struct mbuf * n)784 m_cat(struct mbuf *m, struct mbuf *n)
785 {
786 	while (m->m_next)
787 		m = m->m_next;
788 	while (n) {
789 		if (!M_WRITABLE(m) ||
790 		    (n->m_flags & M_EXTPG) != 0 ||
791 		    M_TRAILINGSPACE(m) < n->m_len) {
792 			/* just join the two chains */
793 			m->m_next = n;
794 			return;
795 		}
796 		/* splat the data from one into the other */
797 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
798 		    (u_int)n->m_len);
799 		m->m_len += n->m_len;
800 		n = m_free(n);
801 	}
802 }
803 
804 /*
805  * Concatenate two pkthdr mbuf chains.
806  */
807 void
m_catpkt(struct mbuf * m,struct mbuf * n)808 m_catpkt(struct mbuf *m, struct mbuf *n)
809 {
810 
811 	M_ASSERTPKTHDR(m);
812 	M_ASSERTPKTHDR(n);
813 
814 	m->m_pkthdr.len += n->m_pkthdr.len;
815 	m_demote(n, 1, 0);
816 
817 	m_cat(m, n);
818 }
819 
820 void
m_adj(struct mbuf * mp,int req_len)821 m_adj(struct mbuf *mp, int req_len)
822 {
823 	int len = req_len;
824 	struct mbuf *m;
825 	int count;
826 
827 	if ((m = mp) == NULL)
828 		return;
829 	if (len >= 0) {
830 		/*
831 		 * Trim from head.
832 		 */
833 		while (m != NULL && len > 0) {
834 			if (m->m_len <= len) {
835 				len -= m->m_len;
836 				m->m_len = 0;
837 				m = m->m_next;
838 			} else {
839 				m->m_len -= len;
840 				m->m_data += len;
841 				len = 0;
842 			}
843 		}
844 		if (mp->m_flags & M_PKTHDR)
845 			mp->m_pkthdr.len -= (req_len - len);
846 	} else {
847 		/*
848 		 * Trim from tail.  Scan the mbuf chain,
849 		 * calculating its length and finding the last mbuf.
850 		 * If the adjustment only affects this mbuf, then just
851 		 * adjust and return.  Otherwise, rescan and truncate
852 		 * after the remaining size.
853 		 */
854 		len = -len;
855 		count = 0;
856 		for (;;) {
857 			count += m->m_len;
858 			if (m->m_next == (struct mbuf *)0)
859 				break;
860 			m = m->m_next;
861 		}
862 		if (m->m_len >= len) {
863 			m->m_len -= len;
864 			if (mp->m_flags & M_PKTHDR)
865 				mp->m_pkthdr.len -= len;
866 			return;
867 		}
868 		count -= len;
869 		if (count < 0)
870 			count = 0;
871 		/*
872 		 * Correct length for chain is "count".
873 		 * Find the mbuf with last data, adjust its length,
874 		 * and toss data from remaining mbufs on chain.
875 		 */
876 		m = mp;
877 		if (m->m_flags & M_PKTHDR)
878 			m->m_pkthdr.len = count;
879 		for (; m; m = m->m_next) {
880 			if (m->m_len >= count) {
881 				m->m_len = count;
882 				if (m->m_next != NULL) {
883 					m_freem(m->m_next);
884 					m->m_next = NULL;
885 				}
886 				break;
887 			}
888 			count -= m->m_len;
889 		}
890 	}
891 }
892 
893 void
m_adj_decap(struct mbuf * mp,int len)894 m_adj_decap(struct mbuf *mp, int len)
895 {
896 	uint8_t rsstype;
897 
898 	m_adj(mp, len);
899 	if ((mp->m_flags & M_PKTHDR) != 0) {
900 		/*
901 		 * If flowid was calculated by card from the inner
902 		 * headers, move flowid to the decapsulated mbuf
903 		 * chain, otherwise clear.  This depends on the
904 		 * internals of m_adj, which keeps pkthdr as is, in
905 		 * particular not changing rsstype and flowid.
906 		 */
907 		rsstype = mp->m_pkthdr.rsstype;
908 		if ((rsstype & M_HASHTYPE_INNER) != 0) {
909 			M_HASHTYPE_SET(mp, rsstype & ~M_HASHTYPE_INNER);
910 		} else {
911 			M_HASHTYPE_CLEAR(mp);
912 		}
913 	}
914 }
915 
916 /*
917  * Rearange an mbuf chain so that len bytes are contiguous
918  * and in the data area of an mbuf (so that mtod will work
919  * for a structure of size len).  Returns the resulting
920  * mbuf chain on success, frees it and returns null on failure.
921  * If there is room, it will add up to max_protohdr-len extra bytes to the
922  * contiguous region in an attempt to avoid being called next time.
923  */
924 struct mbuf *
m_pullup(struct mbuf * n,int len)925 m_pullup(struct mbuf *n, int len)
926 {
927 	struct mbuf *m;
928 	int count;
929 	int space;
930 
931 	KASSERT((n->m_flags & M_EXTPG) == 0,
932 	    ("%s: unmapped mbuf %p", __func__, n));
933 
934 	/*
935 	 * If first mbuf has no cluster, and has room for len bytes
936 	 * without shifting current data, pullup into it,
937 	 * otherwise allocate a new mbuf to prepend to the chain.
938 	 */
939 	if ((n->m_flags & M_EXT) == 0 &&
940 	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
941 		if (n->m_len >= len)
942 			return (n);
943 		m = n;
944 		n = n->m_next;
945 		len -= m->m_len;
946 	} else {
947 		if (len > MHLEN)
948 			goto bad;
949 		m = m_get(M_NOWAIT, n->m_type);
950 		if (m == NULL)
951 			goto bad;
952 		if (n->m_flags & M_PKTHDR)
953 			m_move_pkthdr(m, n);
954 	}
955 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
956 	do {
957 		count = min(min(max(len, max_protohdr), space), n->m_len);
958 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
959 		  (u_int)count);
960 		len -= count;
961 		m->m_len += count;
962 		n->m_len -= count;
963 		space -= count;
964 		if (n->m_len)
965 			n->m_data += count;
966 		else
967 			n = m_free(n);
968 	} while (len > 0 && n);
969 	if (len > 0) {
970 		(void) m_free(m);
971 		goto bad;
972 	}
973 	m->m_next = n;
974 	return (m);
975 bad:
976 	m_freem(n);
977 	return (NULL);
978 }
979 
980 /*
981  * Like m_pullup(), except a new mbuf is always allocated, and we allow
982  * the amount of empty space before the data in the new mbuf to be specified
983  * (in the event that the caller expects to prepend later).
984  */
985 struct mbuf *
m_copyup(struct mbuf * n,int len,int dstoff)986 m_copyup(struct mbuf *n, int len, int dstoff)
987 {
988 	struct mbuf *m;
989 	int count, space;
990 
991 	if (len > (MHLEN - dstoff))
992 		goto bad;
993 	m = m_get(M_NOWAIT, n->m_type);
994 	if (m == NULL)
995 		goto bad;
996 	if (n->m_flags & M_PKTHDR)
997 		m_move_pkthdr(m, n);
998 	m->m_data += dstoff;
999 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1000 	do {
1001 		count = min(min(max(len, max_protohdr), space), n->m_len);
1002 		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1003 		    (unsigned)count);
1004 		len -= count;
1005 		m->m_len += count;
1006 		n->m_len -= count;
1007 		space -= count;
1008 		if (n->m_len)
1009 			n->m_data += count;
1010 		else
1011 			n = m_free(n);
1012 	} while (len > 0 && n);
1013 	if (len > 0) {
1014 		(void) m_free(m);
1015 		goto bad;
1016 	}
1017 	m->m_next = n;
1018 	return (m);
1019  bad:
1020 	m_freem(n);
1021 	return (NULL);
1022 }
1023 
1024 /*
1025  * Partition an mbuf chain in two pieces, returning the tail --
1026  * all but the first len0 bytes.  In case of failure, it returns NULL and
1027  * attempts to restore the chain to its original state.
1028  *
1029  * Note that the resulting mbufs might be read-only, because the new
1030  * mbuf can end up sharing an mbuf cluster with the original mbuf if
1031  * the "breaking point" happens to lie within a cluster mbuf. Use the
1032  * M_WRITABLE() macro to check for this case.
1033  */
1034 struct mbuf *
m_split(struct mbuf * m0,int len0,int wait)1035 m_split(struct mbuf *m0, int len0, int wait)
1036 {
1037 	struct mbuf *m, *n;
1038 	u_int len = len0, remain;
1039 
1040 	MBUF_CHECKSLEEP(wait);
1041 	for (m = m0; m && len > m->m_len; m = m->m_next)
1042 		len -= m->m_len;
1043 	if (m == NULL)
1044 		return (NULL);
1045 	remain = m->m_len - len;
1046 	if (m0->m_flags & M_PKTHDR && remain == 0) {
1047 		n = m_gethdr(wait, m0->m_type);
1048 		if (n == NULL)
1049 			return (NULL);
1050 		n->m_next = m->m_next;
1051 		m->m_next = NULL;
1052 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1053 			n->m_pkthdr.snd_tag =
1054 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
1055 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
1056 		} else
1057 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1058 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1059 		m0->m_pkthdr.len = len0;
1060 		return (n);
1061 	} else if (m0->m_flags & M_PKTHDR) {
1062 		n = m_gethdr(wait, m0->m_type);
1063 		if (n == NULL)
1064 			return (NULL);
1065 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1066 			n->m_pkthdr.snd_tag =
1067 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
1068 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
1069 		} else
1070 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1071 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1072 		m0->m_pkthdr.len = len0;
1073 		if (m->m_flags & (M_EXT | M_EXTPG))
1074 			goto extpacket;
1075 		if (remain > MHLEN) {
1076 			/* m can't be the lead packet */
1077 			M_ALIGN(n, 0);
1078 			n->m_next = m_split(m, len, wait);
1079 			if (n->m_next == NULL) {
1080 				(void) m_free(n);
1081 				return (NULL);
1082 			} else {
1083 				n->m_len = 0;
1084 				return (n);
1085 			}
1086 		} else
1087 			M_ALIGN(n, remain);
1088 	} else if (remain == 0) {
1089 		n = m->m_next;
1090 		m->m_next = NULL;
1091 		return (n);
1092 	} else {
1093 		n = m_get(wait, m->m_type);
1094 		if (n == NULL)
1095 			return (NULL);
1096 		M_ALIGN(n, remain);
1097 	}
1098 extpacket:
1099 	if (m->m_flags & (M_EXT | M_EXTPG)) {
1100 		n->m_data = m->m_data + len;
1101 		mb_dupcl(n, m);
1102 	} else {
1103 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1104 	}
1105 	n->m_len = remain;
1106 	m->m_len = len;
1107 	n->m_next = m->m_next;
1108 	m->m_next = NULL;
1109 	return (n);
1110 }
1111 
1112 /*
1113  * Partition mchain in two pieces, keeping len0 bytes in head and transferring
1114  * remainder to tail.  In case of failure, both chains to be left untouched.
1115  * M_EOR is observed correctly.
1116  * Resulting mbufs might be read-only.
1117  */
1118 int
mc_split(struct mchain * head,struct mchain * tail,u_int len0,int wait)1119 mc_split(struct mchain *head, struct mchain *tail, u_int len0, int wait)
1120 {
1121 	struct mbuf *m, *n;
1122 	u_int len, mlen, remain;
1123 
1124 	MPASS(!(mc_first(head)->m_flags & M_PKTHDR));
1125 	MBUF_CHECKSLEEP(wait);
1126 
1127 	mlen = 0;
1128 	len = len0;
1129 	STAILQ_FOREACH(m, &head->mc_q, m_stailq) {
1130 		mlen += MSIZE;
1131 		if (m->m_flags & M_EXT)
1132 			mlen += m->m_ext.ext_size;
1133 		if (len > m->m_len)
1134 			len -= m->m_len;
1135 		else
1136 			break;
1137 	}
1138 	if (__predict_false(m == NULL)) {
1139 		*tail = MCHAIN_INITIALIZER(tail);
1140 		return (0);
1141 	}
1142 	remain = m->m_len - len;
1143 	if (remain > 0) {
1144 		if (__predict_false((n = m_get(wait, m->m_type)) == NULL))
1145 			return (ENOMEM);
1146 		m_align(n, remain);
1147 		if (m->m_flags & M_EXT) {
1148 			n->m_data = m->m_data + len;
1149 			mb_dupcl(n, m);
1150 		} else
1151 			bcopy(mtod(m, char *) + len, mtod(n, char *), remain);
1152 	}
1153 
1154 	/* XXXGL: need STAILQ_SPLIT */
1155 	STAILQ_FIRST(&tail->mc_q) = STAILQ_NEXT(m, m_stailq);
1156 	tail->mc_q.stqh_last = head->mc_q.stqh_last;
1157 	tail->mc_len = head->mc_len - len0;
1158 	tail->mc_mlen = head->mc_mlen - mlen;
1159 	if (remain > 0) {
1160 		MPASS(n->m_len == 0);
1161 		mc_prepend(tail, n);
1162 		n->m_len = remain;
1163 		m->m_len -= remain;
1164 		if (m->m_flags & M_EOR) {
1165 			m->m_flags &= ~M_EOR;
1166 			n->m_flags |= M_EOR;
1167 		}
1168 	}
1169 	head->mc_q.stqh_last = &STAILQ_NEXT(m, m_stailq);
1170 	STAILQ_NEXT(m, m_stailq) = NULL;
1171 	head->mc_len = len0;
1172 	head->mc_mlen = mlen;
1173 
1174 	return (0);
1175 }
1176 
1177 /*
1178  * Routine to copy from device local memory into mbufs.
1179  * Note that `off' argument is offset into first mbuf of target chain from
1180  * which to begin copying the data to.
1181  */
1182 struct mbuf *
m_devget(char * buf,int totlen,int off,struct ifnet * ifp,void (* copy)(char * from,caddr_t to,u_int len))1183 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1184     void (*copy)(char *from, caddr_t to, u_int len))
1185 {
1186 	struct mbuf *m;
1187 	struct mbuf *top = NULL, **mp = &top;
1188 	int len;
1189 
1190 	if (off < 0 || off > MHLEN)
1191 		return (NULL);
1192 
1193 	while (totlen > 0) {
1194 		if (top == NULL) {	/* First one, must be PKTHDR */
1195 			if (totlen + off >= MINCLSIZE) {
1196 				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1197 				len = MCLBYTES;
1198 			} else {
1199 				m = m_gethdr(M_NOWAIT, MT_DATA);
1200 				len = MHLEN;
1201 
1202 				/* Place initial small packet/header at end of mbuf */
1203 				if (m && totlen + off + max_linkhdr <= MHLEN) {
1204 					m->m_data += max_linkhdr;
1205 					len -= max_linkhdr;
1206 				}
1207 			}
1208 			if (m == NULL)
1209 				return NULL;
1210 			m->m_pkthdr.rcvif = ifp;
1211 			m->m_pkthdr.len = totlen;
1212 		} else {
1213 			if (totlen + off >= MINCLSIZE) {
1214 				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1215 				len = MCLBYTES;
1216 			} else {
1217 				m = m_get(M_NOWAIT, MT_DATA);
1218 				len = MLEN;
1219 			}
1220 			if (m == NULL) {
1221 				m_freem(top);
1222 				return NULL;
1223 			}
1224 		}
1225 		if (off) {
1226 			m->m_data += off;
1227 			len -= off;
1228 			off = 0;
1229 		}
1230 		m->m_len = len = min(totlen, len);
1231 		if (copy)
1232 			copy(buf, mtod(m, caddr_t), (u_int)len);
1233 		else
1234 			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1235 		buf += len;
1236 		*mp = m;
1237 		mp = &m->m_next;
1238 		totlen -= len;
1239 	}
1240 	return (top);
1241 }
1242 
1243 static void
m_copytounmapped(const struct mbuf * m,int off,int len,c_caddr_t cp)1244 m_copytounmapped(const struct mbuf *m, int off, int len, c_caddr_t cp)
1245 {
1246 	struct iovec iov;
1247 	struct uio uio;
1248 	int error __diagused;
1249 
1250 	KASSERT(off >= 0, ("m_copytounmapped: negative off %d", off));
1251 	KASSERT(len >= 0, ("m_copytounmapped: negative len %d", len));
1252 	KASSERT(off < m->m_len, ("m_copytounmapped: len exceeds mbuf length"));
1253 	iov.iov_base = __DECONST(caddr_t, cp);
1254 	iov.iov_len = len;
1255 	uio.uio_resid = len;
1256 	uio.uio_iov = &iov;
1257 	uio.uio_segflg = UIO_SYSSPACE;
1258 	uio.uio_iovcnt = 1;
1259 	uio.uio_offset = 0;
1260 	uio.uio_rw = UIO_WRITE;
1261 	error = m_unmapped_uiomove(m, off, &uio, len);
1262 	KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off,
1263 	   len));
1264 }
1265 
1266 /*
1267  * Copy data from a buffer back into the indicated mbuf chain,
1268  * starting "off" bytes from the beginning, extending the mbuf
1269  * chain if necessary.
1270  */
1271 void
m_copyback(struct mbuf * m0,int off,int len,c_caddr_t cp)1272 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1273 {
1274 	int mlen;
1275 	struct mbuf *m = m0, *n;
1276 	int totlen = 0;
1277 
1278 	if (m0 == NULL)
1279 		return;
1280 	while (off > (mlen = m->m_len)) {
1281 		off -= mlen;
1282 		totlen += mlen;
1283 		if (m->m_next == NULL) {
1284 			n = m_get(M_NOWAIT, m->m_type);
1285 			if (n == NULL)
1286 				goto out;
1287 			bzero(mtod(n, caddr_t), MLEN);
1288 			n->m_len = min(MLEN, len + off);
1289 			m->m_next = n;
1290 		}
1291 		m = m->m_next;
1292 	}
1293 	while (len > 0) {
1294 		if (m->m_next == NULL && (len > m->m_len - off)) {
1295 			m->m_len += min(len - (m->m_len - off),
1296 			    M_TRAILINGSPACE(m));
1297 		}
1298 		mlen = min (m->m_len - off, len);
1299 		if ((m->m_flags & M_EXTPG) != 0)
1300 			m_copytounmapped(m, off, mlen, cp);
1301 		else
1302 			bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1303 		cp += mlen;
1304 		len -= mlen;
1305 		mlen += off;
1306 		off = 0;
1307 		totlen += mlen;
1308 		if (len == 0)
1309 			break;
1310 		if (m->m_next == NULL) {
1311 			n = m_get(M_NOWAIT, m->m_type);
1312 			if (n == NULL)
1313 				break;
1314 			n->m_len = min(MLEN, len);
1315 			m->m_next = n;
1316 		}
1317 		m = m->m_next;
1318 	}
1319 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1320 		m->m_pkthdr.len = totlen;
1321 }
1322 
1323 /*
1324  * Append the specified data to the indicated mbuf chain,
1325  * Extend the mbuf chain if the new data does not fit in
1326  * existing space.
1327  *
1328  * Return 1 if able to complete the job; otherwise 0.
1329  */
1330 int
m_append(struct mbuf * m0,int len,c_caddr_t cp)1331 m_append(struct mbuf *m0, int len, c_caddr_t cp)
1332 {
1333 	struct mbuf *m, *n;
1334 	int remainder, space;
1335 
1336 	for (m = m0; m->m_next != NULL; m = m->m_next)
1337 		;
1338 	remainder = len;
1339 	space = M_TRAILINGSPACE(m);
1340 	if (space > 0) {
1341 		/*
1342 		 * Copy into available space.
1343 		 */
1344 		if (space > remainder)
1345 			space = remainder;
1346 		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1347 		m->m_len += space;
1348 		cp += space, remainder -= space;
1349 	}
1350 	while (remainder > 0) {
1351 		/*
1352 		 * Allocate a new mbuf; could check space
1353 		 * and allocate a cluster instead.
1354 		 */
1355 		n = m_get(M_NOWAIT, m->m_type);
1356 		if (n == NULL)
1357 			break;
1358 		n->m_len = min(MLEN, remainder);
1359 		bcopy(cp, mtod(n, caddr_t), n->m_len);
1360 		cp += n->m_len, remainder -= n->m_len;
1361 		m->m_next = n;
1362 		m = n;
1363 	}
1364 	if (m0->m_flags & M_PKTHDR)
1365 		m0->m_pkthdr.len += len - remainder;
1366 	return (remainder == 0);
1367 }
1368 
1369 static int
m_apply_extpg_one(struct mbuf * m,int off,int len,int (* f)(void *,void *,u_int),void * arg)1370 m_apply_extpg_one(struct mbuf *m, int off, int len,
1371     int (*f)(void *, void *, u_int), void *arg)
1372 {
1373 	void *p;
1374 	u_int i, count, pgoff, pglen;
1375 	int rval;
1376 
1377 	KASSERT(PMAP_HAS_DMAP,
1378 	    ("m_apply_extpg_one does not support unmapped mbufs"));
1379 	off += mtod(m, vm_offset_t);
1380 	if (off < m->m_epg_hdrlen) {
1381 		count = min(m->m_epg_hdrlen - off, len);
1382 		rval = f(arg, m->m_epg_hdr + off, count);
1383 		if (rval)
1384 			return (rval);
1385 		len -= count;
1386 		off = 0;
1387 	} else
1388 		off -= m->m_epg_hdrlen;
1389 	pgoff = m->m_epg_1st_off;
1390 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
1391 		pglen = m_epg_pagelen(m, i, pgoff);
1392 		if (off < pglen) {
1393 			count = min(pglen - off, len);
1394 			p = (void *)PHYS_TO_DMAP(m->m_epg_pa[i] + pgoff + off);
1395 			rval = f(arg, p, count);
1396 			if (rval)
1397 				return (rval);
1398 			len -= count;
1399 			off = 0;
1400 		} else
1401 			off -= pglen;
1402 		pgoff = 0;
1403 	}
1404 	if (len > 0) {
1405 		KASSERT(off < m->m_epg_trllen,
1406 		    ("m_apply_extpg_one: offset beyond trailer"));
1407 		KASSERT(len <= m->m_epg_trllen - off,
1408 		    ("m_apply_extpg_one: length beyond trailer"));
1409 		return (f(arg, m->m_epg_trail + off, len));
1410 	}
1411 	return (0);
1412 }
1413 
1414 /* Apply function f to the data in a single mbuf. */
1415 static int
m_apply_one(struct mbuf * m,int off,int len,int (* f)(void *,void *,u_int),void * arg)1416 m_apply_one(struct mbuf *m, int off, int len,
1417     int (*f)(void *, void *, u_int), void *arg)
1418 {
1419 	if ((m->m_flags & M_EXTPG) != 0)
1420 		return (m_apply_extpg_one(m, off, len, f, arg));
1421 	else
1422 		return (f(arg, mtod(m, caddr_t) + off, len));
1423 }
1424 
1425 /*
1426  * Apply function f to the data in an mbuf chain starting "off" bytes from
1427  * the beginning, continuing for "len" bytes.
1428  */
1429 int
m_apply(struct mbuf * m,int off,int len,int (* f)(void *,void *,u_int),void * arg)1430 m_apply(struct mbuf *m, int off, int len,
1431     int (*f)(void *, void *, u_int), void *arg)
1432 {
1433 	u_int count;
1434 	int rval;
1435 
1436 	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1437 	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1438 	while (off > 0) {
1439 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1440 		if (off < m->m_len)
1441 			break;
1442 		off -= m->m_len;
1443 		m = m->m_next;
1444 	}
1445 	while (len > 0) {
1446 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1447 		count = min(m->m_len - off, len);
1448 		rval = m_apply_one(m, off, count, f, arg);
1449 		if (rval)
1450 			return (rval);
1451 		len -= count;
1452 		off = 0;
1453 		m = m->m_next;
1454 	}
1455 	return (0);
1456 }
1457 
1458 /*
1459  * Return a pointer to mbuf/offset of location in mbuf chain.
1460  */
1461 struct mbuf *
m_getptr(struct mbuf * m,int loc,int * off)1462 m_getptr(struct mbuf *m, int loc, int *off)
1463 {
1464 
1465 	while (loc >= 0) {
1466 		/* Normal end of search. */
1467 		if (m->m_len > loc) {
1468 			*off = loc;
1469 			return (m);
1470 		} else {
1471 			loc -= m->m_len;
1472 			if (m->m_next == NULL) {
1473 				if (loc == 0) {
1474 					/* Point at the end of valid data. */
1475 					*off = m->m_len;
1476 					return (m);
1477 				}
1478 				return (NULL);
1479 			}
1480 			m = m->m_next;
1481 		}
1482 	}
1483 	return (NULL);
1484 }
1485 
1486 void
m_print(const struct mbuf * m,int maxlen)1487 m_print(const struct mbuf *m, int maxlen)
1488 {
1489 	int len;
1490 	int pdata;
1491 	const struct mbuf *m2;
1492 
1493 	if (m == NULL) {
1494 		printf("mbuf: %p\n", m);
1495 		return;
1496 	}
1497 
1498 	if (m->m_flags & M_PKTHDR)
1499 		len = m->m_pkthdr.len;
1500 	else
1501 		len = -1;
1502 	m2 = m;
1503 	while (m2 != NULL && (len == -1 || len)) {
1504 		pdata = m2->m_len;
1505 		if (maxlen != -1 && pdata > maxlen)
1506 			pdata = maxlen;
1507 		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1508 		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1509 		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1510 		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1511 		if (pdata)
1512 			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1513 		if (len != -1)
1514 			len -= m2->m_len;
1515 		m2 = m2->m_next;
1516 	}
1517 	if (len > 0)
1518 		printf("%d bytes unaccounted for.\n", len);
1519 	return;
1520 }
1521 
1522 u_int
m_fixhdr(struct mbuf * m0)1523 m_fixhdr(struct mbuf *m0)
1524 {
1525 	u_int len;
1526 
1527 	len = m_length(m0, NULL);
1528 	m0->m_pkthdr.len = len;
1529 	return (len);
1530 }
1531 
1532 u_int
m_length(struct mbuf * m0,struct mbuf ** last)1533 m_length(struct mbuf *m0, struct mbuf **last)
1534 {
1535 	struct mbuf *m;
1536 	u_int len;
1537 
1538 	len = 0;
1539 	for (m = m0; m != NULL; m = m->m_next) {
1540 		len += m->m_len;
1541 		if (m->m_next == NULL)
1542 			break;
1543 	}
1544 	if (last != NULL)
1545 		*last = m;
1546 	return (len);
1547 }
1548 
1549 /*
1550  * Defragment a mbuf chain, returning the shortest possible
1551  * chain of mbufs and clusters.  If allocation fails and
1552  * this cannot be completed, NULL will be returned, but
1553  * the passed in chain will be unchanged.  Upon success,
1554  * the original chain will be freed, and the new chain
1555  * will be returned.
1556  *
1557  * If a non-packet header is passed in, the original
1558  * mbuf (chain?) will be returned unharmed.
1559  */
1560 struct mbuf *
m_defrag(struct mbuf * m0,int how)1561 m_defrag(struct mbuf *m0, int how)
1562 {
1563 	struct mbuf *m_new = NULL, *m_final = NULL;
1564 	int progress = 0, length;
1565 
1566 	MBUF_CHECKSLEEP(how);
1567 	if (!(m0->m_flags & M_PKTHDR))
1568 		return (m0);
1569 
1570 	m_fixhdr(m0); /* Needed sanity check */
1571 
1572 #ifdef MBUF_STRESS_TEST
1573 	if (m_defragrandomfailures) {
1574 		int temp = arc4random() & 0xff;
1575 		if (temp == 0xba)
1576 			goto nospace;
1577 	}
1578 #endif
1579 
1580 	if (m0->m_pkthdr.len > MHLEN)
1581 		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1582 	else
1583 		m_final = m_gethdr(how, MT_DATA);
1584 
1585 	if (m_final == NULL)
1586 		goto nospace;
1587 
1588 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1589 		goto nospace;
1590 
1591 	m_new = m_final;
1592 
1593 	while (progress < m0->m_pkthdr.len) {
1594 		length = m0->m_pkthdr.len - progress;
1595 		if (length > MCLBYTES)
1596 			length = MCLBYTES;
1597 
1598 		if (m_new == NULL) {
1599 			if (length > MLEN)
1600 				m_new = m_getcl(how, MT_DATA, 0);
1601 			else
1602 				m_new = m_get(how, MT_DATA);
1603 			if (m_new == NULL)
1604 				goto nospace;
1605 		}
1606 
1607 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1608 		progress += length;
1609 		m_new->m_len = length;
1610 		if (m_new != m_final)
1611 			m_cat(m_final, m_new);
1612 		m_new = NULL;
1613 	}
1614 #ifdef MBUF_STRESS_TEST
1615 	if (m0->m_next == NULL)
1616 		m_defraguseless++;
1617 #endif
1618 	m_freem(m0);
1619 	m0 = m_final;
1620 #ifdef MBUF_STRESS_TEST
1621 	m_defragpackets++;
1622 	m_defragbytes += m0->m_pkthdr.len;
1623 #endif
1624 	return (m0);
1625 nospace:
1626 #ifdef MBUF_STRESS_TEST
1627 	m_defragfailure++;
1628 #endif
1629 	if (m_final)
1630 		m_freem(m_final);
1631 	return (NULL);
1632 }
1633 
1634 /*
1635  * Return the number of fragments an mbuf will use.  This is usually
1636  * used as a proxy for the number of scatter/gather elements needed by
1637  * a DMA engine to access an mbuf.  In general mapped mbufs are
1638  * assumed to be backed by physically contiguous buffers that only
1639  * need a single fragment.  Unmapped mbufs, on the other hand, can
1640  * span disjoint physical pages.
1641  */
1642 static int
frags_per_mbuf(struct mbuf * m)1643 frags_per_mbuf(struct mbuf *m)
1644 {
1645 	int frags;
1646 
1647 	if ((m->m_flags & M_EXTPG) == 0)
1648 		return (1);
1649 
1650 	/*
1651 	 * The header and trailer are counted as a single fragment
1652 	 * each when present.
1653 	 *
1654 	 * XXX: This overestimates the number of fragments by assuming
1655 	 * all the backing physical pages are disjoint.
1656 	 */
1657 	frags = 0;
1658 	if (m->m_epg_hdrlen != 0)
1659 		frags++;
1660 	frags += m->m_epg_npgs;
1661 	if (m->m_epg_trllen != 0)
1662 		frags++;
1663 
1664 	return (frags);
1665 }
1666 
1667 /*
1668  * Defragment an mbuf chain, returning at most maxfrags separate
1669  * mbufs+clusters.  If this is not possible NULL is returned and
1670  * the original mbuf chain is left in its present (potentially
1671  * modified) state.  We use two techniques: collapsing consecutive
1672  * mbufs and replacing consecutive mbufs by a cluster.
1673  *
1674  * NB: this should really be named m_defrag but that name is taken
1675  */
1676 struct mbuf *
m_collapse(struct mbuf * m0,int how,int maxfrags)1677 m_collapse(struct mbuf *m0, int how, int maxfrags)
1678 {
1679 	struct mbuf *m, *n, *n2, **prev;
1680 	u_int curfrags;
1681 
1682 	/*
1683 	 * Calculate the current number of frags.
1684 	 */
1685 	curfrags = 0;
1686 	for (m = m0; m != NULL; m = m->m_next)
1687 		curfrags += frags_per_mbuf(m);
1688 	/*
1689 	 * First, try to collapse mbufs.  Note that we always collapse
1690 	 * towards the front so we don't need to deal with moving the
1691 	 * pkthdr.  This may be suboptimal if the first mbuf has much
1692 	 * less data than the following.
1693 	 */
1694 	m = m0;
1695 again:
1696 	for (;;) {
1697 		n = m->m_next;
1698 		if (n == NULL)
1699 			break;
1700 		if (M_WRITABLE(m) &&
1701 		    n->m_len < M_TRAILINGSPACE(m)) {
1702 			m_copydata(n, 0, n->m_len,
1703 			    mtod(m, char *) + m->m_len);
1704 			m->m_len += n->m_len;
1705 			m->m_next = n->m_next;
1706 			curfrags -= frags_per_mbuf(n);
1707 			m_free(n);
1708 			if (curfrags <= maxfrags)
1709 				return m0;
1710 		} else
1711 			m = n;
1712 	}
1713 	KASSERT(maxfrags > 1,
1714 		("maxfrags %u, but normal collapse failed", maxfrags));
1715 	/*
1716 	 * Collapse consecutive mbufs to a cluster.
1717 	 */
1718 	prev = &m0->m_next;		/* NB: not the first mbuf */
1719 	while ((n = *prev) != NULL) {
1720 		if ((n2 = n->m_next) != NULL &&
1721 		    n->m_len + n2->m_len < MCLBYTES) {
1722 			m = m_getcl(how, MT_DATA, 0);
1723 			if (m == NULL)
1724 				goto bad;
1725 			m_copydata(n, 0,  n->m_len, mtod(m, char *));
1726 			m_copydata(n2, 0,  n2->m_len,
1727 			    mtod(m, char *) + n->m_len);
1728 			m->m_len = n->m_len + n2->m_len;
1729 			m->m_next = n2->m_next;
1730 			*prev = m;
1731 			curfrags += 1;  /* For the new cluster */
1732 			curfrags -= frags_per_mbuf(n);
1733 			curfrags -= frags_per_mbuf(n2);
1734 			m_free(n);
1735 			m_free(n2);
1736 			if (curfrags <= maxfrags)
1737 				return m0;
1738 			/*
1739 			 * Still not there, try the normal collapse
1740 			 * again before we allocate another cluster.
1741 			 */
1742 			goto again;
1743 		}
1744 		prev = &n->m_next;
1745 	}
1746 	/*
1747 	 * No place where we can collapse to a cluster; punt.
1748 	 * This can occur if, for example, you request 2 frags
1749 	 * but the packet requires that both be clusters (we
1750 	 * never reallocate the first mbuf to avoid moving the
1751 	 * packet header).
1752 	 */
1753 bad:
1754 	return NULL;
1755 }
1756 
1757 #ifdef MBUF_STRESS_TEST
1758 
1759 /*
1760  * Fragment an mbuf chain.  There's no reason you'd ever want to do
1761  * this in normal usage, but it's great for stress testing various
1762  * mbuf consumers.
1763  *
1764  * If fragmentation is not possible, the original chain will be
1765  * returned.
1766  *
1767  * Possible length values:
1768  * 0	 no fragmentation will occur
1769  * > 0	each fragment will be of the specified length
1770  * -1	each fragment will be the same random value in length
1771  * -2	each fragment's length will be entirely random
1772  * (Random values range from 1 to 256)
1773  */
1774 struct mbuf *
m_fragment(struct mbuf * m0,int how,int length)1775 m_fragment(struct mbuf *m0, int how, int length)
1776 {
1777 	struct mbuf *m_first, *m_last;
1778 	int divisor = 255, progress = 0, fraglen;
1779 
1780 	if (!(m0->m_flags & M_PKTHDR))
1781 		return (m0);
1782 
1783 	if (length == 0 || length < -2)
1784 		return (m0);
1785 	if (length > MCLBYTES)
1786 		length = MCLBYTES;
1787 	if (length < 0 && divisor > MCLBYTES)
1788 		divisor = MCLBYTES;
1789 	if (length == -1)
1790 		length = 1 + (arc4random() % divisor);
1791 	if (length > 0)
1792 		fraglen = length;
1793 
1794 	m_fixhdr(m0); /* Needed sanity check */
1795 
1796 	m_first = m_getcl(how, MT_DATA, M_PKTHDR);
1797 	if (m_first == NULL)
1798 		goto nospace;
1799 
1800 	if (m_dup_pkthdr(m_first, m0, how) == 0)
1801 		goto nospace;
1802 
1803 	m_last = m_first;
1804 
1805 	while (progress < m0->m_pkthdr.len) {
1806 		if (length == -2)
1807 			fraglen = 1 + (arc4random() % divisor);
1808 		if (fraglen > m0->m_pkthdr.len - progress)
1809 			fraglen = m0->m_pkthdr.len - progress;
1810 
1811 		if (progress != 0) {
1812 			struct mbuf *m_new = m_getcl(how, MT_DATA, 0);
1813 			if (m_new == NULL)
1814 				goto nospace;
1815 
1816 			m_last->m_next = m_new;
1817 			m_last = m_new;
1818 		}
1819 
1820 		m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t));
1821 		progress += fraglen;
1822 		m_last->m_len = fraglen;
1823 	}
1824 	m_freem(m0);
1825 	m0 = m_first;
1826 	return (m0);
1827 nospace:
1828 	if (m_first)
1829 		m_freem(m_first);
1830 	/* Return the original chain on failure */
1831 	return (m0);
1832 }
1833 
1834 #endif
1835 
1836 /*
1837  * Free pages from mbuf_ext_pgs, assuming they were allocated via
1838  * vm_page_alloc() and aren't associated with any object.  Complement
1839  * to allocator from m_uiotombuf_nomap().
1840  */
1841 void
mb_free_mext_pgs(struct mbuf * m)1842 mb_free_mext_pgs(struct mbuf *m)
1843 {
1844 	vm_page_t pg;
1845 
1846 	M_ASSERTEXTPG(m);
1847 	for (int i = 0; i < m->m_epg_npgs; i++) {
1848 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
1849 		vm_page_unwire_noq(pg);
1850 		vm_page_free(pg);
1851 	}
1852 }
1853 
1854 static struct mbuf *
m_uiotombuf_nomap(struct uio * uio,int how,int len,int maxseg,int flags)1855 m_uiotombuf_nomap(struct uio *uio, int how, int len, int maxseg, int flags)
1856 {
1857 	struct mbuf *m, *mb, *prev;
1858 	vm_page_t pg_array[MBUF_PEXT_MAX_PGS];
1859 	int error, length, i, needed;
1860 	ssize_t total;
1861 	int pflags = malloc2vm_flags(how) | VM_ALLOC_NODUMP | VM_ALLOC_WIRED;
1862 
1863 	MPASS((flags & M_PKTHDR) == 0);
1864 	MPASS((how & M_ZERO) == 0);
1865 
1866 	/*
1867 	 * len can be zero or an arbitrary large value bound by
1868 	 * the total data supplied by the uio.
1869 	 */
1870 	if (len > 0)
1871 		total = MIN(uio->uio_resid, len);
1872 	else
1873 		total = uio->uio_resid;
1874 
1875 	if (maxseg == 0)
1876 		maxseg = MBUF_PEXT_MAX_PGS * PAGE_SIZE;
1877 
1878 	/*
1879 	 * If total is zero, return an empty mbuf.  This can occur
1880 	 * for TLS 1.0 connections which send empty fragments as
1881 	 * a countermeasure against the known-IV weakness in CBC
1882 	 * ciphersuites.
1883 	 */
1884 	if (__predict_false(total == 0)) {
1885 		mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
1886 		if (mb == NULL)
1887 			return (NULL);
1888 		mb->m_epg_flags = EPG_FLAG_ANON;
1889 		return (mb);
1890 	}
1891 
1892 	/*
1893 	 * Allocate the pages
1894 	 */
1895 	m = NULL;
1896 	while (total > 0) {
1897 		mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
1898 		if (mb == NULL)
1899 			goto failed;
1900 		if (m == NULL)
1901 			m = mb;
1902 		else
1903 			prev->m_next = mb;
1904 		prev = mb;
1905 		mb->m_epg_flags = EPG_FLAG_ANON;
1906 		needed = length = MIN(maxseg, total);
1907 		for (i = 0; needed > 0; i++, needed -= PAGE_SIZE) {
1908 retry_page:
1909 			pg_array[i] = vm_page_alloc_noobj(pflags);
1910 			if (pg_array[i] == NULL) {
1911 				if (how & M_NOWAIT) {
1912 					goto failed;
1913 				} else {
1914 					vm_wait(NULL);
1915 					goto retry_page;
1916 				}
1917 			}
1918 			mb->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg_array[i]);
1919 			mb->m_epg_npgs++;
1920 		}
1921 		mb->m_epg_last_len = length - PAGE_SIZE * (mb->m_epg_npgs - 1);
1922 		MBUF_EXT_PGS_ASSERT_SANITY(mb);
1923 		total -= length;
1924 		error = uiomove_fromphys(pg_array, 0, length, uio);
1925 		if (error != 0)
1926 			goto failed;
1927 		mb->m_len = length;
1928 		mb->m_ext.ext_size += PAGE_SIZE * mb->m_epg_npgs;
1929 		if (flags & M_PKTHDR)
1930 			m->m_pkthdr.len += length;
1931 	}
1932 	return (m);
1933 
1934 failed:
1935 	m_freem(m);
1936 	return (NULL);
1937 }
1938 
1939 /*
1940  * Copy the contents of uio into a properly sized mbuf chain.
1941  * A compat KPI.  Users are recommended to use direct calls to backing
1942  * functions.
1943  */
1944 struct mbuf *
m_uiotombuf(struct uio * uio,int how,int len,int lspace,int flags)1945 m_uiotombuf(struct uio *uio, int how, int len, int lspace, int flags)
1946 {
1947 
1948 	if (flags & M_EXTPG) {
1949 		/* XXX: 'lspace' magically becomes maxseg! */
1950 		return (m_uiotombuf_nomap(uio, how, len, lspace, flags));
1951 	} else if (__predict_false(uio->uio_resid == 0)) {
1952 		struct mbuf *m;
1953 
1954 		/*
1955 		 * m_uiotombuf() is known to return zero length buffer, keep
1956 		 * this compatibility. mc_uiotomc() won't do that.
1957 		 */
1958 		if (flags & M_PKTHDR) {
1959 			m = m_gethdr(how, MT_DATA);
1960 			m->m_pkthdr.memlen = MSIZE;
1961 		} else
1962 			m = m_get(how, MT_DATA);
1963 		if (m != NULL)
1964 			m->m_data += lspace;
1965 		return (m);
1966 	} else {
1967 		struct mchain mc;
1968 		int error;
1969 
1970 		error = mc_uiotomc(&mc, uio, len, lspace, how, flags);
1971 		if (__predict_true(error == 0)) {
1972 			if (flags & M_PKTHDR) {
1973 				mc_first(&mc)->m_pkthdr.len = mc.mc_len;
1974 				mc_first(&mc)->m_pkthdr.memlen = mc.mc_mlen;
1975 			}
1976 			return (mc_first(&mc));
1977 		} else
1978 			return (NULL);
1979 	}
1980 }
1981 
1982 /*
1983  * Copy the contents of uio into a properly sized mbuf chain.
1984  * In case of failure state of mchain is inconsistent.
1985  * @param length Limit copyout length.  If 0 entire uio_resid is copied.
1986  * @param lspace Provide leading space in the first mbuf in the chain.
1987  */
1988 int
mc_uiotomc(struct mchain * mc,struct uio * uio,u_int length,u_int lspace,int how,int flags)1989 mc_uiotomc(struct mchain *mc, struct uio *uio, u_int length, u_int lspace,
1990     int how, int flags)
1991 {
1992 	struct mbuf *mb;
1993 	u_int total;
1994 	int error;
1995 
1996 	MPASS(lspace < MHLEN);
1997 	MPASS(UINT_MAX - lspace >= length);
1998 	MPASS(uio->uio_rw == UIO_WRITE);
1999 	MPASS(uio->uio_resid >= 0);
2000 
2001 	if (length > 0) {
2002 		if (uio->uio_resid > length) {
2003 			total = length;
2004 			flags &= ~M_EOR;
2005 		} else
2006 			total = uio->uio_resid;
2007 	} else if (__predict_false(uio->uio_resid + lspace > UINT_MAX))
2008 		return (EOVERFLOW);
2009 	else
2010 		total = uio->uio_resid;
2011 
2012 	if (__predict_false(total + lspace == 0)) {
2013 		*mc = MCHAIN_INITIALIZER(mc);
2014 		return (0);
2015 	}
2016 
2017 	error = mc_get(mc, total + lspace, how, MT_DATA, flags);
2018 	if (__predict_false(error))
2019 		return (error);
2020 	mc_first(mc)->m_data += lspace;
2021 
2022 	/* Fill all mbufs with uio data and update header information. */
2023 	STAILQ_FOREACH(mb, &mc->mc_q, m_stailq) {
2024 		u_int mlen;
2025 
2026 		mlen = min(M_TRAILINGSPACE(mb), total - mc->mc_len);
2027 		error = uiomove(mtod(mb, void *), mlen, uio);
2028 		if (__predict_false(error)) {
2029 			mc_freem(mc);
2030 			return (error);
2031 		}
2032 		mb->m_len = mlen;
2033 		mc->mc_len += mlen;
2034 	}
2035 	MPASS(mc->mc_len == total);
2036 
2037 	return (0);
2038 }
2039 
2040 /*
2041  * Copy data to/from an unmapped mbuf into a uio limited by len if set.
2042  */
2043 int
m_unmapped_uiomove(const struct mbuf * m,int m_off,struct uio * uio,int len)2044 m_unmapped_uiomove(const struct mbuf *m, int m_off, struct uio *uio, int len)
2045 {
2046 	vm_page_t pg;
2047 	int error, i, off, pglen, pgoff, seglen, segoff;
2048 
2049 	M_ASSERTEXTPG(m);
2050 	error = 0;
2051 
2052 	/* Skip over any data removed from the front. */
2053 	off = mtod(m, vm_offset_t);
2054 
2055 	off += m_off;
2056 	if (m->m_epg_hdrlen != 0) {
2057 		if (off >= m->m_epg_hdrlen) {
2058 			off -= m->m_epg_hdrlen;
2059 		} else {
2060 			seglen = m->m_epg_hdrlen - off;
2061 			segoff = off;
2062 			seglen = min(seglen, len);
2063 			off = 0;
2064 			len -= seglen;
2065 			error = uiomove(__DECONST(void *,
2066 			    &m->m_epg_hdr[segoff]), seglen, uio);
2067 		}
2068 	}
2069 	pgoff = m->m_epg_1st_off;
2070 	for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) {
2071 		pglen = m_epg_pagelen(m, i, pgoff);
2072 		if (off >= pglen) {
2073 			off -= pglen;
2074 			pgoff = 0;
2075 			continue;
2076 		}
2077 		seglen = pglen - off;
2078 		segoff = pgoff + off;
2079 		off = 0;
2080 		seglen = min(seglen, len);
2081 		len -= seglen;
2082 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
2083 		error = uiomove_fromphys(&pg, segoff, seglen, uio);
2084 		pgoff = 0;
2085 	};
2086 	if (len != 0 && error == 0) {
2087 		KASSERT((off + len) <= m->m_epg_trllen,
2088 		    ("off + len > trail (%d + %d > %d, m_off = %d)", off, len,
2089 		    m->m_epg_trllen, m_off));
2090 		error = uiomove(__DECONST(void *, &m->m_epg_trail[off]),
2091 		    len, uio);
2092 	}
2093 	return (error);
2094 }
2095 
2096 /*
2097  * Copy an mbuf chain into a uio limited by len if set.
2098  */
2099 int
m_mbuftouio(struct uio * uio,const struct mbuf * m,int len)2100 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len)
2101 {
2102 	int error, length, total;
2103 	int progress = 0;
2104 
2105 	if (len > 0)
2106 		total = min(uio->uio_resid, len);
2107 	else
2108 		total = uio->uio_resid;
2109 
2110 	/* Fill the uio with data from the mbufs. */
2111 	for (; m != NULL; m = m->m_next) {
2112 		length = min(m->m_len, total - progress);
2113 
2114 		if ((m->m_flags & M_EXTPG) != 0)
2115 			error = m_unmapped_uiomove(m, 0, uio, length);
2116 		else
2117 			error = uiomove(mtod(m, void *), length, uio);
2118 		if (error)
2119 			return (error);
2120 
2121 		progress += length;
2122 	}
2123 
2124 	return (0);
2125 }
2126 
2127 /*
2128  * Create a writable copy of the mbuf chain.  While doing this
2129  * we compact the chain with a goal of producing a chain with
2130  * at most two mbufs.  The second mbuf in this chain is likely
2131  * to be a cluster.  The primary purpose of this work is to create
2132  * a writable packet for encryption, compression, etc.  The
2133  * secondary goal is to linearize the data so the data can be
2134  * passed to crypto hardware in the most efficient manner possible.
2135  */
2136 struct mbuf *
m_unshare(struct mbuf * m0,int how)2137 m_unshare(struct mbuf *m0, int how)
2138 {
2139 	struct mbuf *m, *mprev;
2140 	struct mbuf *n, *mfirst, *mlast;
2141 	int len, off;
2142 
2143 	mprev = NULL;
2144 	for (m = m0; m != NULL; m = mprev->m_next) {
2145 		/*
2146 		 * Regular mbufs are ignored unless there's a cluster
2147 		 * in front of it that we can use to coalesce.  We do
2148 		 * the latter mainly so later clusters can be coalesced
2149 		 * also w/o having to handle them specially (i.e. convert
2150 		 * mbuf+cluster -> cluster).  This optimization is heavily
2151 		 * influenced by the assumption that we're running over
2152 		 * Ethernet where MCLBYTES is large enough that the max
2153 		 * packet size will permit lots of coalescing into a
2154 		 * single cluster.  This in turn permits efficient
2155 		 * crypto operations, especially when using hardware.
2156 		 */
2157 		if ((m->m_flags & M_EXT) == 0) {
2158 			if (mprev && (mprev->m_flags & M_EXT) &&
2159 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
2160 				/* XXX: this ignores mbuf types */
2161 				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
2162 				    mtod(m, caddr_t), m->m_len);
2163 				mprev->m_len += m->m_len;
2164 				mprev->m_next = m->m_next;	/* unlink from chain */
2165 				m_free(m);			/* reclaim mbuf */
2166 			} else {
2167 				mprev = m;
2168 			}
2169 			continue;
2170 		}
2171 		/*
2172 		 * Writable mbufs are left alone (for now).
2173 		 */
2174 		if (M_WRITABLE(m)) {
2175 			mprev = m;
2176 			continue;
2177 		}
2178 
2179 		/*
2180 		 * Not writable, replace with a copy or coalesce with
2181 		 * the previous mbuf if possible (since we have to copy
2182 		 * it anyway, we try to reduce the number of mbufs and
2183 		 * clusters so that future work is easier).
2184 		 */
2185 		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
2186 		/* NB: we only coalesce into a cluster or larger */
2187 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
2188 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
2189 			/* XXX: this ignores mbuf types */
2190 			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
2191 			    mtod(m, caddr_t), m->m_len);
2192 			mprev->m_len += m->m_len;
2193 			mprev->m_next = m->m_next;	/* unlink from chain */
2194 			m_free(m);			/* reclaim mbuf */
2195 			continue;
2196 		}
2197 
2198 		/*
2199 		 * Allocate new space to hold the copy and copy the data.
2200 		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
2201 		 * splitting them into clusters.  We could just malloc a
2202 		 * buffer and make it external but too many device drivers
2203 		 * don't know how to break up the non-contiguous memory when
2204 		 * doing DMA.
2205 		 */
2206 		n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
2207 		if (n == NULL) {
2208 			m_freem(m0);
2209 			return (NULL);
2210 		}
2211 		if (m->m_flags & M_PKTHDR) {
2212 			KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
2213 			    __func__, m0, m));
2214 			m_move_pkthdr(n, m);
2215 		}
2216 		len = m->m_len;
2217 		off = 0;
2218 		mfirst = n;
2219 		mlast = NULL;
2220 		for (;;) {
2221 			int cc = min(len, MCLBYTES);
2222 			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
2223 			n->m_len = cc;
2224 			if (mlast != NULL)
2225 				mlast->m_next = n;
2226 			mlast = n;
2227 #if 0
2228 			newipsecstat.ips_clcopied++;
2229 #endif
2230 
2231 			len -= cc;
2232 			if (len <= 0)
2233 				break;
2234 			off += cc;
2235 
2236 			n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
2237 			if (n == NULL) {
2238 				m_freem(mfirst);
2239 				m_freem(m0);
2240 				return (NULL);
2241 			}
2242 		}
2243 		n->m_next = m->m_next;
2244 		if (mprev == NULL)
2245 			m0 = mfirst;		/* new head of chain */
2246 		else
2247 			mprev->m_next = mfirst;	/* replace old mbuf */
2248 		m_free(m);			/* release old mbuf */
2249 		mprev = mfirst;
2250 	}
2251 	return (m0);
2252 }
2253 
2254 #ifdef MBUF_PROFILING
2255 
2256 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
2257 struct mbufprofile {
2258 	uintmax_t wasted[MP_BUCKETS];
2259 	uintmax_t used[MP_BUCKETS];
2260 	uintmax_t segments[MP_BUCKETS];
2261 } mbprof;
2262 
2263 void
m_profile(struct mbuf * m)2264 m_profile(struct mbuf *m)
2265 {
2266 	int segments = 0;
2267 	int used = 0;
2268 	int wasted = 0;
2269 
2270 	while (m) {
2271 		segments++;
2272 		used += m->m_len;
2273 		if (m->m_flags & M_EXT) {
2274 			wasted += MHLEN - sizeof(m->m_ext) +
2275 			    m->m_ext.ext_size - m->m_len;
2276 		} else {
2277 			if (m->m_flags & M_PKTHDR)
2278 				wasted += MHLEN - m->m_len;
2279 			else
2280 				wasted += MLEN - m->m_len;
2281 		}
2282 		m = m->m_next;
2283 	}
2284 	/* be paranoid.. it helps */
2285 	if (segments > MP_BUCKETS - 1)
2286 		segments = MP_BUCKETS - 1;
2287 	if (used > 100000)
2288 		used = 100000;
2289 	if (wasted > 100000)
2290 		wasted = 100000;
2291 	/* store in the appropriate bucket */
2292 	/* don't bother locking. if it's slightly off, so what? */
2293 	mbprof.segments[segments]++;
2294 	mbprof.used[fls(used)]++;
2295 	mbprof.wasted[fls(wasted)]++;
2296 }
2297 
2298 static int
mbprof_handler(SYSCTL_HANDLER_ARGS)2299 mbprof_handler(SYSCTL_HANDLER_ARGS)
2300 {
2301 	char buf[256];
2302 	struct sbuf sb;
2303 	int error;
2304 	uint64_t *p;
2305 
2306 	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
2307 
2308 	p = &mbprof.wasted[0];
2309 	sbuf_printf(&sb,
2310 	    "wasted:\n"
2311 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2312 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2313 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2314 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2315 #ifdef BIG_ARRAY
2316 	p = &mbprof.wasted[16];
2317 	sbuf_printf(&sb,
2318 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2319 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2320 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2321 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2322 #endif
2323 	p = &mbprof.used[0];
2324 	sbuf_printf(&sb,
2325 	    "used:\n"
2326 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2327 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2328 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2329 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2330 #ifdef BIG_ARRAY
2331 	p = &mbprof.used[16];
2332 	sbuf_printf(&sb,
2333 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2334 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2335 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2336 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2337 #endif
2338 	p = &mbprof.segments[0];
2339 	sbuf_printf(&sb,
2340 	    "segments:\n"
2341 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2342 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2343 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2344 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2345 #ifdef BIG_ARRAY
2346 	p = &mbprof.segments[16];
2347 	sbuf_printf(&sb,
2348 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2349 	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2350 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2351 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2352 #endif
2353 
2354 	error = sbuf_finish(&sb);
2355 	sbuf_delete(&sb);
2356 	return (error);
2357 }
2358 
2359 static int
mbprof_clr_handler(SYSCTL_HANDLER_ARGS)2360 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2361 {
2362 	int clear, error;
2363 
2364 	clear = 0;
2365 	error = sysctl_handle_int(oidp, &clear, 0, req);
2366 	if (error || !req->newptr)
2367 		return (error);
2368 
2369 	if (clear) {
2370 		bzero(&mbprof, sizeof(mbprof));
2371 	}
2372 
2373 	return (error);
2374 }
2375 
2376 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile,
2377     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
2378     mbprof_handler, "A",
2379     "mbuf profiling statistics");
2380 
2381 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr,
2382     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
2383     mbprof_clr_handler, "I",
2384     "clear mbuf profiling statistics");
2385 #endif
2386