1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements name lookup for C, C++, Objective-C, and
10 // Objective-C++.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclLookups.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/Basic/Builtins.h"
24 #include "clang/Basic/FileManager.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/Lex/HeaderSearch.h"
27 #include "clang/Lex/ModuleLoader.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/RISCVIntrinsicManager.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/Sema.h"
36 #include "clang/Sema/SemaInternal.h"
37 #include "clang/Sema/TemplateDeduction.h"
38 #include "clang/Sema/TypoCorrection.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/TinyPtrVector.h"
42 #include "llvm/ADT/edit_distance.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include <algorithm>
46 #include <iterator>
47 #include <list>
48 #include <optional>
49 #include <set>
50 #include <utility>
51 #include <vector>
52
53 #include "OpenCLBuiltins.inc"
54
55 using namespace clang;
56 using namespace sema;
57
58 namespace {
59 class UnqualUsingEntry {
60 const DeclContext *Nominated;
61 const DeclContext *CommonAncestor;
62
63 public:
UnqualUsingEntry(const DeclContext * Nominated,const DeclContext * CommonAncestor)64 UnqualUsingEntry(const DeclContext *Nominated,
65 const DeclContext *CommonAncestor)
66 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
67 }
68
getCommonAncestor() const69 const DeclContext *getCommonAncestor() const {
70 return CommonAncestor;
71 }
72
getNominatedNamespace() const73 const DeclContext *getNominatedNamespace() const {
74 return Nominated;
75 }
76
77 // Sort by the pointer value of the common ancestor.
78 struct Comparator {
operator ()__anond322f6bc0111::UnqualUsingEntry::Comparator79 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
80 return L.getCommonAncestor() < R.getCommonAncestor();
81 }
82
operator ()__anond322f6bc0111::UnqualUsingEntry::Comparator83 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
84 return E.getCommonAncestor() < DC;
85 }
86
operator ()__anond322f6bc0111::UnqualUsingEntry::Comparator87 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
88 return DC < E.getCommonAncestor();
89 }
90 };
91 };
92
93 /// A collection of using directives, as used by C++ unqualified
94 /// lookup.
95 class UnqualUsingDirectiveSet {
96 Sema &SemaRef;
97
98 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
99
100 ListTy list;
101 llvm::SmallPtrSet<DeclContext*, 8> visited;
102
103 public:
UnqualUsingDirectiveSet(Sema & SemaRef)104 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
105
visitScopeChain(Scope * S,Scope * InnermostFileScope)106 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
107 // C++ [namespace.udir]p1:
108 // During unqualified name lookup, the names appear as if they
109 // were declared in the nearest enclosing namespace which contains
110 // both the using-directive and the nominated namespace.
111 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
112 assert(InnermostFileDC && InnermostFileDC->isFileContext());
113
114 for (; S; S = S->getParent()) {
115 // C++ [namespace.udir]p1:
116 // A using-directive shall not appear in class scope, but may
117 // appear in namespace scope or in block scope.
118 DeclContext *Ctx = S->getEntity();
119 if (Ctx && Ctx->isFileContext()) {
120 visit(Ctx, Ctx);
121 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
122 for (auto *I : S->using_directives())
123 if (SemaRef.isVisible(I))
124 visit(I, InnermostFileDC);
125 }
126 }
127 }
128
129 // Visits a context and collect all of its using directives
130 // recursively. Treats all using directives as if they were
131 // declared in the context.
132 //
133 // A given context is only every visited once, so it is important
134 // that contexts be visited from the inside out in order to get
135 // the effective DCs right.
visit(DeclContext * DC,DeclContext * EffectiveDC)136 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
137 if (!visited.insert(DC).second)
138 return;
139
140 addUsingDirectives(DC, EffectiveDC);
141 }
142
143 // Visits a using directive and collects all of its using
144 // directives recursively. Treats all using directives as if they
145 // were declared in the effective DC.
visit(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)146 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
147 DeclContext *NS = UD->getNominatedNamespace();
148 if (!visited.insert(NS).second)
149 return;
150
151 addUsingDirective(UD, EffectiveDC);
152 addUsingDirectives(NS, EffectiveDC);
153 }
154
155 // Adds all the using directives in a context (and those nominated
156 // by its using directives, transitively) as if they appeared in
157 // the given effective context.
addUsingDirectives(DeclContext * DC,DeclContext * EffectiveDC)158 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
159 SmallVector<DeclContext*, 4> queue;
160 while (true) {
161 for (auto *UD : DC->using_directives()) {
162 DeclContext *NS = UD->getNominatedNamespace();
163 if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
164 addUsingDirective(UD, EffectiveDC);
165 queue.push_back(NS);
166 }
167 }
168
169 if (queue.empty())
170 return;
171
172 DC = queue.pop_back_val();
173 }
174 }
175
176 // Add a using directive as if it had been declared in the given
177 // context. This helps implement C++ [namespace.udir]p3:
178 // The using-directive is transitive: if a scope contains a
179 // using-directive that nominates a second namespace that itself
180 // contains using-directives, the effect is as if the
181 // using-directives from the second namespace also appeared in
182 // the first.
addUsingDirective(UsingDirectiveDecl * UD,DeclContext * EffectiveDC)183 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
184 // Find the common ancestor between the effective context and
185 // the nominated namespace.
186 DeclContext *Common = UD->getNominatedNamespace();
187 while (!Common->Encloses(EffectiveDC))
188 Common = Common->getParent();
189 Common = Common->getPrimaryContext();
190
191 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
192 }
193
done()194 void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
195
196 typedef ListTy::const_iterator const_iterator;
197
begin() const198 const_iterator begin() const { return list.begin(); }
end() const199 const_iterator end() const { return list.end(); }
200
201 llvm::iterator_range<const_iterator>
getNamespacesFor(DeclContext * DC) const202 getNamespacesFor(DeclContext *DC) const {
203 return llvm::make_range(std::equal_range(begin(), end(),
204 DC->getPrimaryContext(),
205 UnqualUsingEntry::Comparator()));
206 }
207 };
208 } // end anonymous namespace
209
210 // Retrieve the set of identifier namespaces that correspond to a
211 // specific kind of name lookup.
getIDNS(Sema::LookupNameKind NameKind,bool CPlusPlus,bool Redeclaration)212 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
213 bool CPlusPlus,
214 bool Redeclaration) {
215 unsigned IDNS = 0;
216 switch (NameKind) {
217 case Sema::LookupObjCImplicitSelfParam:
218 case Sema::LookupOrdinaryName:
219 case Sema::LookupRedeclarationWithLinkage:
220 case Sema::LookupLocalFriendName:
221 case Sema::LookupDestructorName:
222 IDNS = Decl::IDNS_Ordinary;
223 if (CPlusPlus) {
224 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
225 if (Redeclaration)
226 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
227 }
228 if (Redeclaration)
229 IDNS |= Decl::IDNS_LocalExtern;
230 break;
231
232 case Sema::LookupOperatorName:
233 // Operator lookup is its own crazy thing; it is not the same
234 // as (e.g.) looking up an operator name for redeclaration.
235 assert(!Redeclaration && "cannot do redeclaration operator lookup");
236 IDNS = Decl::IDNS_NonMemberOperator;
237 break;
238
239 case Sema::LookupTagName:
240 if (CPlusPlus) {
241 IDNS = Decl::IDNS_Type;
242
243 // When looking for a redeclaration of a tag name, we add:
244 // 1) TagFriend to find undeclared friend decls
245 // 2) Namespace because they can't "overload" with tag decls.
246 // 3) Tag because it includes class templates, which can't
247 // "overload" with tag decls.
248 if (Redeclaration)
249 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
250 } else {
251 IDNS = Decl::IDNS_Tag;
252 }
253 break;
254
255 case Sema::LookupLabel:
256 IDNS = Decl::IDNS_Label;
257 break;
258
259 case Sema::LookupMemberName:
260 IDNS = Decl::IDNS_Member;
261 if (CPlusPlus)
262 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
263 break;
264
265 case Sema::LookupNestedNameSpecifierName:
266 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
267 break;
268
269 case Sema::LookupNamespaceName:
270 IDNS = Decl::IDNS_Namespace;
271 break;
272
273 case Sema::LookupUsingDeclName:
274 assert(Redeclaration && "should only be used for redecl lookup");
275 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
276 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
277 Decl::IDNS_LocalExtern;
278 break;
279
280 case Sema::LookupObjCProtocolName:
281 IDNS = Decl::IDNS_ObjCProtocol;
282 break;
283
284 case Sema::LookupOMPReductionName:
285 IDNS = Decl::IDNS_OMPReduction;
286 break;
287
288 case Sema::LookupOMPMapperName:
289 IDNS = Decl::IDNS_OMPMapper;
290 break;
291
292 case Sema::LookupAnyName:
293 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
294 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
295 | Decl::IDNS_Type;
296 break;
297 }
298 return IDNS;
299 }
300
configure()301 void LookupResult::configure() {
302 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
303 isForRedeclaration());
304
305 // If we're looking for one of the allocation or deallocation
306 // operators, make sure that the implicitly-declared new and delete
307 // operators can be found.
308 switch (NameInfo.getName().getCXXOverloadedOperator()) {
309 case OO_New:
310 case OO_Delete:
311 case OO_Array_New:
312 case OO_Array_Delete:
313 getSema().DeclareGlobalNewDelete();
314 break;
315
316 default:
317 break;
318 }
319
320 // Compiler builtins are always visible, regardless of where they end
321 // up being declared.
322 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
323 if (unsigned BuiltinID = Id->getBuiltinID()) {
324 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
325 AllowHidden = true;
326 }
327 }
328 }
329
checkDebugAssumptions() const330 bool LookupResult::checkDebugAssumptions() const {
331 // This function is never called by NDEBUG builds.
332 assert(ResultKind != NotFound || Decls.size() == 0);
333 assert(ResultKind != Found || Decls.size() == 1);
334 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
335 (Decls.size() == 1 &&
336 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
337 assert(ResultKind != FoundUnresolvedValue || checkUnresolved());
338 assert(ResultKind != Ambiguous || Decls.size() > 1 ||
339 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
340 Ambiguity == AmbiguousBaseSubobjectTypes)));
341 assert((Paths != nullptr) == (ResultKind == Ambiguous &&
342 (Ambiguity == AmbiguousBaseSubobjectTypes ||
343 Ambiguity == AmbiguousBaseSubobjects)));
344 return true;
345 }
346
347 // Necessary because CXXBasePaths is not complete in Sema.h
deletePaths(CXXBasePaths * Paths)348 void LookupResult::deletePaths(CXXBasePaths *Paths) {
349 delete Paths;
350 }
351
352 /// Get a representative context for a declaration such that two declarations
353 /// will have the same context if they were found within the same scope.
getContextForScopeMatching(Decl * D)354 static DeclContext *getContextForScopeMatching(Decl *D) {
355 // For function-local declarations, use that function as the context. This
356 // doesn't account for scopes within the function; the caller must deal with
357 // those.
358 DeclContext *DC = D->getLexicalDeclContext();
359 if (DC->isFunctionOrMethod())
360 return DC;
361
362 // Otherwise, look at the semantic context of the declaration. The
363 // declaration must have been found there.
364 return D->getDeclContext()->getRedeclContext();
365 }
366
367 /// Determine whether \p D is a better lookup result than \p Existing,
368 /// given that they declare the same entity.
isPreferredLookupResult(Sema & S,Sema::LookupNameKind Kind,NamedDecl * D,NamedDecl * Existing)369 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
370 NamedDecl *D, NamedDecl *Existing) {
371 // When looking up redeclarations of a using declaration, prefer a using
372 // shadow declaration over any other declaration of the same entity.
373 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
374 !isa<UsingShadowDecl>(Existing))
375 return true;
376
377 auto *DUnderlying = D->getUnderlyingDecl();
378 auto *EUnderlying = Existing->getUnderlyingDecl();
379
380 // If they have different underlying declarations, prefer a typedef over the
381 // original type (this happens when two type declarations denote the same
382 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
383 // might carry additional semantic information, such as an alignment override.
384 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
385 // declaration over a typedef. Also prefer a tag over a typedef for
386 // destructor name lookup because in some contexts we only accept a
387 // class-name in a destructor declaration.
388 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
389 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
390 bool HaveTag = isa<TagDecl>(EUnderlying);
391 bool WantTag =
392 Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName;
393 return HaveTag != WantTag;
394 }
395
396 // Pick the function with more default arguments.
397 // FIXME: In the presence of ambiguous default arguments, we should keep both,
398 // so we can diagnose the ambiguity if the default argument is needed.
399 // See C++ [over.match.best]p3.
400 if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
401 auto *EFD = cast<FunctionDecl>(EUnderlying);
402 unsigned DMin = DFD->getMinRequiredArguments();
403 unsigned EMin = EFD->getMinRequiredArguments();
404 // If D has more default arguments, it is preferred.
405 if (DMin != EMin)
406 return DMin < EMin;
407 // FIXME: When we track visibility for default function arguments, check
408 // that we pick the declaration with more visible default arguments.
409 }
410
411 // Pick the template with more default template arguments.
412 if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
413 auto *ETD = cast<TemplateDecl>(EUnderlying);
414 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
415 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
416 // If D has more default arguments, it is preferred. Note that default
417 // arguments (and their visibility) is monotonically increasing across the
418 // redeclaration chain, so this is a quick proxy for "is more recent".
419 if (DMin != EMin)
420 return DMin < EMin;
421 // If D has more *visible* default arguments, it is preferred. Note, an
422 // earlier default argument being visible does not imply that a later
423 // default argument is visible, so we can't just check the first one.
424 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
425 I != N; ++I) {
426 if (!S.hasVisibleDefaultArgument(
427 ETD->getTemplateParameters()->getParam(I)) &&
428 S.hasVisibleDefaultArgument(
429 DTD->getTemplateParameters()->getParam(I)))
430 return true;
431 }
432 }
433
434 // VarDecl can have incomplete array types, prefer the one with more complete
435 // array type.
436 if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
437 VarDecl *EVD = cast<VarDecl>(EUnderlying);
438 if (EVD->getType()->isIncompleteType() &&
439 !DVD->getType()->isIncompleteType()) {
440 // Prefer the decl with a more complete type if visible.
441 return S.isVisible(DVD);
442 }
443 return false; // Avoid picking up a newer decl, just because it was newer.
444 }
445
446 // For most kinds of declaration, it doesn't really matter which one we pick.
447 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
448 // If the existing declaration is hidden, prefer the new one. Otherwise,
449 // keep what we've got.
450 return !S.isVisible(Existing);
451 }
452
453 // Pick the newer declaration; it might have a more precise type.
454 for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
455 Prev = Prev->getPreviousDecl())
456 if (Prev == EUnderlying)
457 return true;
458 return false;
459 }
460
461 /// Determine whether \p D can hide a tag declaration.
canHideTag(NamedDecl * D)462 static bool canHideTag(NamedDecl *D) {
463 // C++ [basic.scope.declarative]p4:
464 // Given a set of declarations in a single declarative region [...]
465 // exactly one declaration shall declare a class name or enumeration name
466 // that is not a typedef name and the other declarations shall all refer to
467 // the same variable, non-static data member, or enumerator, or all refer
468 // to functions and function templates; in this case the class name or
469 // enumeration name is hidden.
470 // C++ [basic.scope.hiding]p2:
471 // A class name or enumeration name can be hidden by the name of a
472 // variable, data member, function, or enumerator declared in the same
473 // scope.
474 // An UnresolvedUsingValueDecl always instantiates to one of these.
475 D = D->getUnderlyingDecl();
476 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
477 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
478 isa<UnresolvedUsingValueDecl>(D);
479 }
480
481 /// Resolves the result kind of this lookup.
resolveKind()482 void LookupResult::resolveKind() {
483 unsigned N = Decls.size();
484
485 // Fast case: no possible ambiguity.
486 if (N == 0) {
487 assert(ResultKind == NotFound ||
488 ResultKind == NotFoundInCurrentInstantiation);
489 return;
490 }
491
492 // If there's a single decl, we need to examine it to decide what
493 // kind of lookup this is.
494 if (N == 1) {
495 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
496 if (isa<FunctionTemplateDecl>(D))
497 ResultKind = FoundOverloaded;
498 else if (isa<UnresolvedUsingValueDecl>(D))
499 ResultKind = FoundUnresolvedValue;
500 return;
501 }
502
503 // Don't do any extra resolution if we've already resolved as ambiguous.
504 if (ResultKind == Ambiguous) return;
505
506 llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
507 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
508
509 bool Ambiguous = false;
510 bool HasTag = false, HasFunction = false;
511 bool HasFunctionTemplate = false, HasUnresolved = false;
512 NamedDecl *HasNonFunction = nullptr;
513
514 llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
515
516 unsigned UniqueTagIndex = 0;
517
518 unsigned I = 0;
519 while (I < N) {
520 NamedDecl *D = Decls[I]->getUnderlyingDecl();
521 D = cast<NamedDecl>(D->getCanonicalDecl());
522
523 // Ignore an invalid declaration unless it's the only one left.
524 // Also ignore HLSLBufferDecl which not have name conflict with other Decls.
525 if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) && !(I == 0 && N == 1)) {
526 Decls[I] = Decls[--N];
527 continue;
528 }
529
530 std::optional<unsigned> ExistingI;
531
532 // Redeclarations of types via typedef can occur both within a scope
533 // and, through using declarations and directives, across scopes. There is
534 // no ambiguity if they all refer to the same type, so unique based on the
535 // canonical type.
536 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
537 QualType T = getSema().Context.getTypeDeclType(TD);
538 auto UniqueResult = UniqueTypes.insert(
539 std::make_pair(getSema().Context.getCanonicalType(T), I));
540 if (!UniqueResult.second) {
541 // The type is not unique.
542 ExistingI = UniqueResult.first->second;
543 }
544 }
545
546 // For non-type declarations, check for a prior lookup result naming this
547 // canonical declaration.
548 if (!ExistingI) {
549 auto UniqueResult = Unique.insert(std::make_pair(D, I));
550 if (!UniqueResult.second) {
551 // We've seen this entity before.
552 ExistingI = UniqueResult.first->second;
553 }
554 }
555
556 if (ExistingI) {
557 // This is not a unique lookup result. Pick one of the results and
558 // discard the other.
559 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
560 Decls[*ExistingI]))
561 Decls[*ExistingI] = Decls[I];
562 Decls[I] = Decls[--N];
563 continue;
564 }
565
566 // Otherwise, do some decl type analysis and then continue.
567
568 if (isa<UnresolvedUsingValueDecl>(D)) {
569 HasUnresolved = true;
570 } else if (isa<TagDecl>(D)) {
571 if (HasTag)
572 Ambiguous = true;
573 UniqueTagIndex = I;
574 HasTag = true;
575 } else if (isa<FunctionTemplateDecl>(D)) {
576 HasFunction = true;
577 HasFunctionTemplate = true;
578 } else if (isa<FunctionDecl>(D)) {
579 HasFunction = true;
580 } else {
581 if (HasNonFunction) {
582 // If we're about to create an ambiguity between two declarations that
583 // are equivalent, but one is an internal linkage declaration from one
584 // module and the other is an internal linkage declaration from another
585 // module, just skip it.
586 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
587 D)) {
588 EquivalentNonFunctions.push_back(D);
589 Decls[I] = Decls[--N];
590 continue;
591 }
592
593 Ambiguous = true;
594 }
595 HasNonFunction = D;
596 }
597 I++;
598 }
599
600 // C++ [basic.scope.hiding]p2:
601 // A class name or enumeration name can be hidden by the name of
602 // an object, function, or enumerator declared in the same
603 // scope. If a class or enumeration name and an object, function,
604 // or enumerator are declared in the same scope (in any order)
605 // with the same name, the class or enumeration name is hidden
606 // wherever the object, function, or enumerator name is visible.
607 // But it's still an error if there are distinct tag types found,
608 // even if they're not visible. (ref?)
609 if (N > 1 && HideTags && HasTag && !Ambiguous &&
610 (HasFunction || HasNonFunction || HasUnresolved)) {
611 NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
612 if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
613 getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
614 getContextForScopeMatching(OtherDecl)) &&
615 canHideTag(OtherDecl))
616 Decls[UniqueTagIndex] = Decls[--N];
617 else
618 Ambiguous = true;
619 }
620
621 // FIXME: This diagnostic should really be delayed until we're done with
622 // the lookup result, in case the ambiguity is resolved by the caller.
623 if (!EquivalentNonFunctions.empty() && !Ambiguous)
624 getSema().diagnoseEquivalentInternalLinkageDeclarations(
625 getNameLoc(), HasNonFunction, EquivalentNonFunctions);
626
627 Decls.truncate(N);
628
629 if (HasNonFunction && (HasFunction || HasUnresolved))
630 Ambiguous = true;
631
632 if (Ambiguous)
633 setAmbiguous(LookupResult::AmbiguousReference);
634 else if (HasUnresolved)
635 ResultKind = LookupResult::FoundUnresolvedValue;
636 else if (N > 1 || HasFunctionTemplate)
637 ResultKind = LookupResult::FoundOverloaded;
638 else
639 ResultKind = LookupResult::Found;
640 }
641
addDeclsFromBasePaths(const CXXBasePaths & P)642 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
643 CXXBasePaths::const_paths_iterator I, E;
644 for (I = P.begin(), E = P.end(); I != E; ++I)
645 for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE;
646 ++DI)
647 addDecl(*DI);
648 }
649
setAmbiguousBaseSubobjects(CXXBasePaths & P)650 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
651 Paths = new CXXBasePaths;
652 Paths->swap(P);
653 addDeclsFromBasePaths(*Paths);
654 resolveKind();
655 setAmbiguous(AmbiguousBaseSubobjects);
656 }
657
setAmbiguousBaseSubobjectTypes(CXXBasePaths & P)658 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
659 Paths = new CXXBasePaths;
660 Paths->swap(P);
661 addDeclsFromBasePaths(*Paths);
662 resolveKind();
663 setAmbiguous(AmbiguousBaseSubobjectTypes);
664 }
665
print(raw_ostream & Out)666 void LookupResult::print(raw_ostream &Out) {
667 Out << Decls.size() << " result(s)";
668 if (isAmbiguous()) Out << ", ambiguous";
669 if (Paths) Out << ", base paths present";
670
671 for (iterator I = begin(), E = end(); I != E; ++I) {
672 Out << "\n";
673 (*I)->print(Out, 2);
674 }
675 }
676
dump()677 LLVM_DUMP_METHOD void LookupResult::dump() {
678 llvm::errs() << "lookup results for " << getLookupName().getAsString()
679 << ":\n";
680 for (NamedDecl *D : *this)
681 D->dump();
682 }
683
684 /// Diagnose a missing builtin type.
diagOpenCLBuiltinTypeError(Sema & S,llvm::StringRef TypeClass,llvm::StringRef Name)685 static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass,
686 llvm::StringRef Name) {
687 S.Diag(SourceLocation(), diag::err_opencl_type_not_found)
688 << TypeClass << Name;
689 return S.Context.VoidTy;
690 }
691
692 /// Lookup an OpenCL enum type.
getOpenCLEnumType(Sema & S,llvm::StringRef Name)693 static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) {
694 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
695 Sema::LookupTagName);
696 S.LookupName(Result, S.TUScope);
697 if (Result.empty())
698 return diagOpenCLBuiltinTypeError(S, "enum", Name);
699 EnumDecl *Decl = Result.getAsSingle<EnumDecl>();
700 if (!Decl)
701 return diagOpenCLBuiltinTypeError(S, "enum", Name);
702 return S.Context.getEnumType(Decl);
703 }
704
705 /// Lookup an OpenCL typedef type.
getOpenCLTypedefType(Sema & S,llvm::StringRef Name)706 static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) {
707 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
708 Sema::LookupOrdinaryName);
709 S.LookupName(Result, S.TUScope);
710 if (Result.empty())
711 return diagOpenCLBuiltinTypeError(S, "typedef", Name);
712 TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>();
713 if (!Decl)
714 return diagOpenCLBuiltinTypeError(S, "typedef", Name);
715 return S.Context.getTypedefType(Decl);
716 }
717
718 /// Get the QualType instances of the return type and arguments for an OpenCL
719 /// builtin function signature.
720 /// \param S (in) The Sema instance.
721 /// \param OpenCLBuiltin (in) The signature currently handled.
722 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
723 /// type used as return type or as argument.
724 /// Only meaningful for generic types, otherwise equals 1.
725 /// \param RetTypes (out) List of the possible return types.
726 /// \param ArgTypes (out) List of the possible argument types. For each
727 /// argument, ArgTypes contains QualTypes for the Cartesian product
728 /// of (vector sizes) x (types) .
GetQualTypesForOpenCLBuiltin(Sema & S,const OpenCLBuiltinStruct & OpenCLBuiltin,unsigned & GenTypeMaxCnt,SmallVector<QualType,1> & RetTypes,SmallVector<SmallVector<QualType,1>,5> & ArgTypes)729 static void GetQualTypesForOpenCLBuiltin(
730 Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt,
731 SmallVector<QualType, 1> &RetTypes,
732 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
733 // Get the QualType instances of the return types.
734 unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
735 OCL2Qual(S, TypeTable[Sig], RetTypes);
736 GenTypeMaxCnt = RetTypes.size();
737
738 // Get the QualType instances of the arguments.
739 // First type is the return type, skip it.
740 for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
741 SmallVector<QualType, 1> Ty;
742 OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]],
743 Ty);
744 GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
745 ArgTypes.push_back(std::move(Ty));
746 }
747 }
748
749 /// Create a list of the candidate function overloads for an OpenCL builtin
750 /// function.
751 /// \param Context (in) The ASTContext instance.
752 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
753 /// type used as return type or as argument.
754 /// Only meaningful for generic types, otherwise equals 1.
755 /// \param FunctionList (out) List of FunctionTypes.
756 /// \param RetTypes (in) List of the possible return types.
757 /// \param ArgTypes (in) List of the possible types for the arguments.
GetOpenCLBuiltinFctOverloads(ASTContext & Context,unsigned GenTypeMaxCnt,std::vector<QualType> & FunctionList,SmallVector<QualType,1> & RetTypes,SmallVector<SmallVector<QualType,1>,5> & ArgTypes)758 static void GetOpenCLBuiltinFctOverloads(
759 ASTContext &Context, unsigned GenTypeMaxCnt,
760 std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
761 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
762 FunctionProtoType::ExtProtoInfo PI(
763 Context.getDefaultCallingConvention(false, false, true));
764 PI.Variadic = false;
765
766 // Do not attempt to create any FunctionTypes if there are no return types,
767 // which happens when a type belongs to a disabled extension.
768 if (RetTypes.size() == 0)
769 return;
770
771 // Create FunctionTypes for each (gen)type.
772 for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
773 SmallVector<QualType, 5> ArgList;
774
775 for (unsigned A = 0; A < ArgTypes.size(); A++) {
776 // Bail out if there is an argument that has no available types.
777 if (ArgTypes[A].size() == 0)
778 return;
779
780 // Builtins such as "max" have an "sgentype" argument that represents
781 // the corresponding scalar type of a gentype. The number of gentypes
782 // must be a multiple of the number of sgentypes.
783 assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
784 "argument type count not compatible with gentype type count");
785 unsigned Idx = IGenType % ArgTypes[A].size();
786 ArgList.push_back(ArgTypes[A][Idx]);
787 }
788
789 FunctionList.push_back(Context.getFunctionType(
790 RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
791 }
792 }
793
794 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a
795 /// non-null <Index, Len> pair, then the name is referencing an OpenCL
796 /// builtin function. Add all candidate signatures to the LookUpResult.
797 ///
798 /// \param S (in) The Sema instance.
799 /// \param LR (inout) The LookupResult instance.
800 /// \param II (in) The identifier being resolved.
801 /// \param FctIndex (in) Starting index in the BuiltinTable.
802 /// \param Len (in) The signature list has Len elements.
InsertOCLBuiltinDeclarationsFromTable(Sema & S,LookupResult & LR,IdentifierInfo * II,const unsigned FctIndex,const unsigned Len)803 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
804 IdentifierInfo *II,
805 const unsigned FctIndex,
806 const unsigned Len) {
807 // The builtin function declaration uses generic types (gentype).
808 bool HasGenType = false;
809
810 // Maximum number of types contained in a generic type used as return type or
811 // as argument. Only meaningful for generic types, otherwise equals 1.
812 unsigned GenTypeMaxCnt;
813
814 ASTContext &Context = S.Context;
815
816 for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
817 const OpenCLBuiltinStruct &OpenCLBuiltin =
818 BuiltinTable[FctIndex + SignatureIndex];
819
820 // Ignore this builtin function if it is not available in the currently
821 // selected language version.
822 if (!isOpenCLVersionContainedInMask(Context.getLangOpts(),
823 OpenCLBuiltin.Versions))
824 continue;
825
826 // Ignore this builtin function if it carries an extension macro that is
827 // not defined. This indicates that the extension is not supported by the
828 // target, so the builtin function should not be available.
829 StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension];
830 if (!Extensions.empty()) {
831 SmallVector<StringRef, 2> ExtVec;
832 Extensions.split(ExtVec, " ");
833 bool AllExtensionsDefined = true;
834 for (StringRef Ext : ExtVec) {
835 if (!S.getPreprocessor().isMacroDefined(Ext)) {
836 AllExtensionsDefined = false;
837 break;
838 }
839 }
840 if (!AllExtensionsDefined)
841 continue;
842 }
843
844 SmallVector<QualType, 1> RetTypes;
845 SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
846
847 // Obtain QualType lists for the function signature.
848 GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes,
849 ArgTypes);
850 if (GenTypeMaxCnt > 1) {
851 HasGenType = true;
852 }
853
854 // Create function overload for each type combination.
855 std::vector<QualType> FunctionList;
856 GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
857 ArgTypes);
858
859 SourceLocation Loc = LR.getNameLoc();
860 DeclContext *Parent = Context.getTranslationUnitDecl();
861 FunctionDecl *NewOpenCLBuiltin;
862
863 for (const auto &FTy : FunctionList) {
864 NewOpenCLBuiltin = FunctionDecl::Create(
865 Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern,
866 S.getCurFPFeatures().isFPConstrained(), false,
867 FTy->isFunctionProtoType());
868 NewOpenCLBuiltin->setImplicit();
869
870 // Create Decl objects for each parameter, adding them to the
871 // FunctionDecl.
872 const auto *FP = cast<FunctionProtoType>(FTy);
873 SmallVector<ParmVarDecl *, 4> ParmList;
874 for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
875 ParmVarDecl *Parm = ParmVarDecl::Create(
876 Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
877 nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr);
878 Parm->setScopeInfo(0, IParm);
879 ParmList.push_back(Parm);
880 }
881 NewOpenCLBuiltin->setParams(ParmList);
882
883 // Add function attributes.
884 if (OpenCLBuiltin.IsPure)
885 NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
886 if (OpenCLBuiltin.IsConst)
887 NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
888 if (OpenCLBuiltin.IsConv)
889 NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
890
891 if (!S.getLangOpts().OpenCLCPlusPlus)
892 NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
893
894 LR.addDecl(NewOpenCLBuiltin);
895 }
896 }
897
898 // If we added overloads, need to resolve the lookup result.
899 if (Len > 1 || HasGenType)
900 LR.resolveKind();
901 }
902
903 /// Lookup a builtin function, when name lookup would otherwise
904 /// fail.
LookupBuiltin(LookupResult & R)905 bool Sema::LookupBuiltin(LookupResult &R) {
906 Sema::LookupNameKind NameKind = R.getLookupKind();
907
908 // If we didn't find a use of this identifier, and if the identifier
909 // corresponds to a compiler builtin, create the decl object for the builtin
910 // now, injecting it into translation unit scope, and return it.
911 if (NameKind == Sema::LookupOrdinaryName ||
912 NameKind == Sema::LookupRedeclarationWithLinkage) {
913 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
914 if (II) {
915 if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
916 if (II == getASTContext().getMakeIntegerSeqName()) {
917 R.addDecl(getASTContext().getMakeIntegerSeqDecl());
918 return true;
919 } else if (II == getASTContext().getTypePackElementName()) {
920 R.addDecl(getASTContext().getTypePackElementDecl());
921 return true;
922 }
923 }
924
925 // Check if this is an OpenCL Builtin, and if so, insert its overloads.
926 if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
927 auto Index = isOpenCLBuiltin(II->getName());
928 if (Index.first) {
929 InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
930 Index.second);
931 return true;
932 }
933 }
934
935 if (DeclareRISCVVBuiltins) {
936 if (!RVIntrinsicManager)
937 RVIntrinsicManager = CreateRISCVIntrinsicManager(*this);
938
939 if (RVIntrinsicManager->CreateIntrinsicIfFound(R, II, PP))
940 return true;
941 }
942
943 // If this is a builtin on this (or all) targets, create the decl.
944 if (unsigned BuiltinID = II->getBuiltinID()) {
945 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
946 // library functions like 'malloc'. Instead, we'll just error.
947 if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
948 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
949 return false;
950
951 if (NamedDecl *D =
952 LazilyCreateBuiltin(II, BuiltinID, TUScope,
953 R.isForRedeclaration(), R.getNameLoc())) {
954 R.addDecl(D);
955 return true;
956 }
957 }
958 }
959 }
960
961 return false;
962 }
963
964 /// Looks up the declaration of "struct objc_super" and
965 /// saves it for later use in building builtin declaration of
966 /// objc_msgSendSuper and objc_msgSendSuper_stret.
LookupPredefedObjCSuperType(Sema & Sema,Scope * S)967 static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) {
968 ASTContext &Context = Sema.Context;
969 LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(),
970 Sema::LookupTagName);
971 Sema.LookupName(Result, S);
972 if (Result.getResultKind() == LookupResult::Found)
973 if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
974 Context.setObjCSuperType(Context.getTagDeclType(TD));
975 }
976
LookupNecessaryTypesForBuiltin(Scope * S,unsigned ID)977 void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) {
978 if (ID == Builtin::BIobjc_msgSendSuper)
979 LookupPredefedObjCSuperType(*this, S);
980 }
981
982 /// Determine whether we can declare a special member function within
983 /// the class at this point.
CanDeclareSpecialMemberFunction(const CXXRecordDecl * Class)984 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
985 // We need to have a definition for the class.
986 if (!Class->getDefinition() || Class->isDependentContext())
987 return false;
988
989 // We can't be in the middle of defining the class.
990 return !Class->isBeingDefined();
991 }
992
ForceDeclarationOfImplicitMembers(CXXRecordDecl * Class)993 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
994 if (!CanDeclareSpecialMemberFunction(Class))
995 return;
996
997 // If the default constructor has not yet been declared, do so now.
998 if (Class->needsImplicitDefaultConstructor())
999 DeclareImplicitDefaultConstructor(Class);
1000
1001 // If the copy constructor has not yet been declared, do so now.
1002 if (Class->needsImplicitCopyConstructor())
1003 DeclareImplicitCopyConstructor(Class);
1004
1005 // If the copy assignment operator has not yet been declared, do so now.
1006 if (Class->needsImplicitCopyAssignment())
1007 DeclareImplicitCopyAssignment(Class);
1008
1009 if (getLangOpts().CPlusPlus11) {
1010 // If the move constructor has not yet been declared, do so now.
1011 if (Class->needsImplicitMoveConstructor())
1012 DeclareImplicitMoveConstructor(Class);
1013
1014 // If the move assignment operator has not yet been declared, do so now.
1015 if (Class->needsImplicitMoveAssignment())
1016 DeclareImplicitMoveAssignment(Class);
1017 }
1018
1019 // If the destructor has not yet been declared, do so now.
1020 if (Class->needsImplicitDestructor())
1021 DeclareImplicitDestructor(Class);
1022 }
1023
1024 /// Determine whether this is the name of an implicitly-declared
1025 /// special member function.
isImplicitlyDeclaredMemberFunctionName(DeclarationName Name)1026 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
1027 switch (Name.getNameKind()) {
1028 case DeclarationName::CXXConstructorName:
1029 case DeclarationName::CXXDestructorName:
1030 return true;
1031
1032 case DeclarationName::CXXOperatorName:
1033 return Name.getCXXOverloadedOperator() == OO_Equal;
1034
1035 default:
1036 break;
1037 }
1038
1039 return false;
1040 }
1041
1042 /// If there are any implicit member functions with the given name
1043 /// that need to be declared in the given declaration context, do so.
DeclareImplicitMemberFunctionsWithName(Sema & S,DeclarationName Name,SourceLocation Loc,const DeclContext * DC)1044 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
1045 DeclarationName Name,
1046 SourceLocation Loc,
1047 const DeclContext *DC) {
1048 if (!DC)
1049 return;
1050
1051 switch (Name.getNameKind()) {
1052 case DeclarationName::CXXConstructorName:
1053 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1054 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1055 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1056 if (Record->needsImplicitDefaultConstructor())
1057 S.DeclareImplicitDefaultConstructor(Class);
1058 if (Record->needsImplicitCopyConstructor())
1059 S.DeclareImplicitCopyConstructor(Class);
1060 if (S.getLangOpts().CPlusPlus11 &&
1061 Record->needsImplicitMoveConstructor())
1062 S.DeclareImplicitMoveConstructor(Class);
1063 }
1064 break;
1065
1066 case DeclarationName::CXXDestructorName:
1067 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1068 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
1069 CanDeclareSpecialMemberFunction(Record))
1070 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
1071 break;
1072
1073 case DeclarationName::CXXOperatorName:
1074 if (Name.getCXXOverloadedOperator() != OO_Equal)
1075 break;
1076
1077 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1078 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1079 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1080 if (Record->needsImplicitCopyAssignment())
1081 S.DeclareImplicitCopyAssignment(Class);
1082 if (S.getLangOpts().CPlusPlus11 &&
1083 Record->needsImplicitMoveAssignment())
1084 S.DeclareImplicitMoveAssignment(Class);
1085 }
1086 }
1087 break;
1088
1089 case DeclarationName::CXXDeductionGuideName:
1090 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1091 break;
1092
1093 default:
1094 break;
1095 }
1096 }
1097
1098 // Adds all qualifying matches for a name within a decl context to the
1099 // given lookup result. Returns true if any matches were found.
LookupDirect(Sema & S,LookupResult & R,const DeclContext * DC)1100 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1101 bool Found = false;
1102
1103 // Lazily declare C++ special member functions.
1104 if (S.getLangOpts().CPlusPlus)
1105 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1106 DC);
1107
1108 // Perform lookup into this declaration context.
1109 DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1110 for (NamedDecl *D : DR) {
1111 if ((D = R.getAcceptableDecl(D))) {
1112 R.addDecl(D);
1113 Found = true;
1114 }
1115 }
1116
1117 if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1118 return true;
1119
1120 if (R.getLookupName().getNameKind()
1121 != DeclarationName::CXXConversionFunctionName ||
1122 R.getLookupName().getCXXNameType()->isDependentType() ||
1123 !isa<CXXRecordDecl>(DC))
1124 return Found;
1125
1126 // C++ [temp.mem]p6:
1127 // A specialization of a conversion function template is not found by
1128 // name lookup. Instead, any conversion function templates visible in the
1129 // context of the use are considered. [...]
1130 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1131 if (!Record->isCompleteDefinition())
1132 return Found;
1133
1134 // For conversion operators, 'operator auto' should only match
1135 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
1136 // as a candidate for template substitution.
1137 auto *ContainedDeducedType =
1138 R.getLookupName().getCXXNameType()->getContainedDeducedType();
1139 if (R.getLookupName().getNameKind() ==
1140 DeclarationName::CXXConversionFunctionName &&
1141 ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1142 return Found;
1143
1144 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1145 UEnd = Record->conversion_end(); U != UEnd; ++U) {
1146 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1147 if (!ConvTemplate)
1148 continue;
1149
1150 // When we're performing lookup for the purposes of redeclaration, just
1151 // add the conversion function template. When we deduce template
1152 // arguments for specializations, we'll end up unifying the return
1153 // type of the new declaration with the type of the function template.
1154 if (R.isForRedeclaration()) {
1155 R.addDecl(ConvTemplate);
1156 Found = true;
1157 continue;
1158 }
1159
1160 // C++ [temp.mem]p6:
1161 // [...] For each such operator, if argument deduction succeeds
1162 // (14.9.2.3), the resulting specialization is used as if found by
1163 // name lookup.
1164 //
1165 // When referencing a conversion function for any purpose other than
1166 // a redeclaration (such that we'll be building an expression with the
1167 // result), perform template argument deduction and place the
1168 // specialization into the result set. We do this to avoid forcing all
1169 // callers to perform special deduction for conversion functions.
1170 TemplateDeductionInfo Info(R.getNameLoc());
1171 FunctionDecl *Specialization = nullptr;
1172
1173 const FunctionProtoType *ConvProto
1174 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1175 assert(ConvProto && "Nonsensical conversion function template type");
1176
1177 // Compute the type of the function that we would expect the conversion
1178 // function to have, if it were to match the name given.
1179 // FIXME: Calling convention!
1180 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1181 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1182 EPI.ExceptionSpec = EST_None;
1183 QualType ExpectedType = R.getSema().Context.getFunctionType(
1184 R.getLookupName().getCXXNameType(), std::nullopt, EPI);
1185
1186 // Perform template argument deduction against the type that we would
1187 // expect the function to have.
1188 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1189 Specialization, Info)
1190 == Sema::TDK_Success) {
1191 R.addDecl(Specialization);
1192 Found = true;
1193 }
1194 }
1195
1196 return Found;
1197 }
1198
1199 // Performs C++ unqualified lookup into the given file context.
1200 static bool
CppNamespaceLookup(Sema & S,LookupResult & R,ASTContext & Context,DeclContext * NS,UnqualUsingDirectiveSet & UDirs)1201 CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1202 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
1203
1204 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
1205
1206 // Perform direct name lookup into the LookupCtx.
1207 bool Found = LookupDirect(S, R, NS);
1208
1209 // Perform direct name lookup into the namespaces nominated by the
1210 // using directives whose common ancestor is this namespace.
1211 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1212 if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1213 Found = true;
1214
1215 R.resolveKind();
1216
1217 return Found;
1218 }
1219
isNamespaceOrTranslationUnitScope(Scope * S)1220 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1221 if (DeclContext *Ctx = S->getEntity())
1222 return Ctx->isFileContext();
1223 return false;
1224 }
1225
1226 /// Find the outer declaration context from this scope. This indicates the
1227 /// context that we should search up to (exclusive) before considering the
1228 /// parent of the specified scope.
findOuterContext(Scope * S)1229 static DeclContext *findOuterContext(Scope *S) {
1230 for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent())
1231 if (DeclContext *DC = OuterS->getLookupEntity())
1232 return DC;
1233 return nullptr;
1234 }
1235
1236 namespace {
1237 /// An RAII object to specify that we want to find block scope extern
1238 /// declarations.
1239 struct FindLocalExternScope {
FindLocalExternScope__anond322f6bc0211::FindLocalExternScope1240 FindLocalExternScope(LookupResult &R)
1241 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1242 Decl::IDNS_LocalExtern) {
1243 R.setFindLocalExtern(R.getIdentifierNamespace() &
1244 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1245 }
restore__anond322f6bc0211::FindLocalExternScope1246 void restore() {
1247 R.setFindLocalExtern(OldFindLocalExtern);
1248 }
~FindLocalExternScope__anond322f6bc0211::FindLocalExternScope1249 ~FindLocalExternScope() {
1250 restore();
1251 }
1252 LookupResult &R;
1253 bool OldFindLocalExtern;
1254 };
1255 } // end anonymous namespace
1256
CppLookupName(LookupResult & R,Scope * S)1257 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1258 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1259
1260 DeclarationName Name = R.getLookupName();
1261 Sema::LookupNameKind NameKind = R.getLookupKind();
1262
1263 // If this is the name of an implicitly-declared special member function,
1264 // go through the scope stack to implicitly declare
1265 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1266 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1267 if (DeclContext *DC = PreS->getEntity())
1268 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1269 }
1270
1271 // Implicitly declare member functions with the name we're looking for, if in
1272 // fact we are in a scope where it matters.
1273
1274 Scope *Initial = S;
1275 IdentifierResolver::iterator
1276 I = IdResolver.begin(Name),
1277 IEnd = IdResolver.end();
1278
1279 // First we lookup local scope.
1280 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1281 // ...During unqualified name lookup (3.4.1), the names appear as if
1282 // they were declared in the nearest enclosing namespace which contains
1283 // both the using-directive and the nominated namespace.
1284 // [Note: in this context, "contains" means "contains directly or
1285 // indirectly".
1286 //
1287 // For example:
1288 // namespace A { int i; }
1289 // void foo() {
1290 // int i;
1291 // {
1292 // using namespace A;
1293 // ++i; // finds local 'i', A::i appears at global scope
1294 // }
1295 // }
1296 //
1297 UnqualUsingDirectiveSet UDirs(*this);
1298 bool VisitedUsingDirectives = false;
1299 bool LeftStartingScope = false;
1300
1301 // When performing a scope lookup, we want to find local extern decls.
1302 FindLocalExternScope FindLocals(R);
1303
1304 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1305 bool SearchNamespaceScope = true;
1306 // Check whether the IdResolver has anything in this scope.
1307 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1308 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1309 if (NameKind == LookupRedeclarationWithLinkage &&
1310 !(*I)->isTemplateParameter()) {
1311 // If it's a template parameter, we still find it, so we can diagnose
1312 // the invalid redeclaration.
1313
1314 // Determine whether this (or a previous) declaration is
1315 // out-of-scope.
1316 if (!LeftStartingScope && !Initial->isDeclScope(*I))
1317 LeftStartingScope = true;
1318
1319 // If we found something outside of our starting scope that
1320 // does not have linkage, skip it.
1321 if (LeftStartingScope && !((*I)->hasLinkage())) {
1322 R.setShadowed();
1323 continue;
1324 }
1325 } else {
1326 // We found something in this scope, we should not look at the
1327 // namespace scope
1328 SearchNamespaceScope = false;
1329 }
1330 R.addDecl(ND);
1331 }
1332 }
1333 if (!SearchNamespaceScope) {
1334 R.resolveKind();
1335 if (S->isClassScope())
1336 if (CXXRecordDecl *Record =
1337 dyn_cast_or_null<CXXRecordDecl>(S->getEntity()))
1338 R.setNamingClass(Record);
1339 return true;
1340 }
1341
1342 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1343 // C++11 [class.friend]p11:
1344 // If a friend declaration appears in a local class and the name
1345 // specified is an unqualified name, a prior declaration is
1346 // looked up without considering scopes that are outside the
1347 // innermost enclosing non-class scope.
1348 return false;
1349 }
1350
1351 if (DeclContext *Ctx = S->getLookupEntity()) {
1352 DeclContext *OuterCtx = findOuterContext(S);
1353 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1354 // We do not directly look into transparent contexts, since
1355 // those entities will be found in the nearest enclosing
1356 // non-transparent context.
1357 if (Ctx->isTransparentContext())
1358 continue;
1359
1360 // We do not look directly into function or method contexts,
1361 // since all of the local variables and parameters of the
1362 // function/method are present within the Scope.
1363 if (Ctx->isFunctionOrMethod()) {
1364 // If we have an Objective-C instance method, look for ivars
1365 // in the corresponding interface.
1366 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1367 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1368 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1369 ObjCInterfaceDecl *ClassDeclared;
1370 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1371 Name.getAsIdentifierInfo(),
1372 ClassDeclared)) {
1373 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1374 R.addDecl(ND);
1375 R.resolveKind();
1376 return true;
1377 }
1378 }
1379 }
1380 }
1381
1382 continue;
1383 }
1384
1385 // If this is a file context, we need to perform unqualified name
1386 // lookup considering using directives.
1387 if (Ctx->isFileContext()) {
1388 // If we haven't handled using directives yet, do so now.
1389 if (!VisitedUsingDirectives) {
1390 // Add using directives from this context up to the top level.
1391 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1392 if (UCtx->isTransparentContext())
1393 continue;
1394
1395 UDirs.visit(UCtx, UCtx);
1396 }
1397
1398 // Find the innermost file scope, so we can add using directives
1399 // from local scopes.
1400 Scope *InnermostFileScope = S;
1401 while (InnermostFileScope &&
1402 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1403 InnermostFileScope = InnermostFileScope->getParent();
1404 UDirs.visitScopeChain(Initial, InnermostFileScope);
1405
1406 UDirs.done();
1407
1408 VisitedUsingDirectives = true;
1409 }
1410
1411 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1412 R.resolveKind();
1413 return true;
1414 }
1415
1416 continue;
1417 }
1418
1419 // Perform qualified name lookup into this context.
1420 // FIXME: In some cases, we know that every name that could be found by
1421 // this qualified name lookup will also be on the identifier chain. For
1422 // example, inside a class without any base classes, we never need to
1423 // perform qualified lookup because all of the members are on top of the
1424 // identifier chain.
1425 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1426 return true;
1427 }
1428 }
1429 }
1430
1431 // Stop if we ran out of scopes.
1432 // FIXME: This really, really shouldn't be happening.
1433 if (!S) return false;
1434
1435 // If we are looking for members, no need to look into global/namespace scope.
1436 if (NameKind == LookupMemberName)
1437 return false;
1438
1439 // Collect UsingDirectiveDecls in all scopes, and recursively all
1440 // nominated namespaces by those using-directives.
1441 //
1442 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1443 // don't build it for each lookup!
1444 if (!VisitedUsingDirectives) {
1445 UDirs.visitScopeChain(Initial, S);
1446 UDirs.done();
1447 }
1448
1449 // If we're not performing redeclaration lookup, do not look for local
1450 // extern declarations outside of a function scope.
1451 if (!R.isForRedeclaration())
1452 FindLocals.restore();
1453
1454 // Lookup namespace scope, and global scope.
1455 // Unqualified name lookup in C++ requires looking into scopes
1456 // that aren't strictly lexical, and therefore we walk through the
1457 // context as well as walking through the scopes.
1458 for (; S; S = S->getParent()) {
1459 // Check whether the IdResolver has anything in this scope.
1460 bool Found = false;
1461 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1462 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1463 // We found something. Look for anything else in our scope
1464 // with this same name and in an acceptable identifier
1465 // namespace, so that we can construct an overload set if we
1466 // need to.
1467 Found = true;
1468 R.addDecl(ND);
1469 }
1470 }
1471
1472 if (Found && S->isTemplateParamScope()) {
1473 R.resolveKind();
1474 return true;
1475 }
1476
1477 DeclContext *Ctx = S->getLookupEntity();
1478 if (Ctx) {
1479 DeclContext *OuterCtx = findOuterContext(S);
1480 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1481 // We do not directly look into transparent contexts, since
1482 // those entities will be found in the nearest enclosing
1483 // non-transparent context.
1484 if (Ctx->isTransparentContext())
1485 continue;
1486
1487 // If we have a context, and it's not a context stashed in the
1488 // template parameter scope for an out-of-line definition, also
1489 // look into that context.
1490 if (!(Found && S->isTemplateParamScope())) {
1491 assert(Ctx->isFileContext() &&
1492 "We should have been looking only at file context here already.");
1493
1494 // Look into context considering using-directives.
1495 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1496 Found = true;
1497 }
1498
1499 if (Found) {
1500 R.resolveKind();
1501 return true;
1502 }
1503
1504 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1505 return false;
1506 }
1507 }
1508
1509 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1510 return false;
1511 }
1512
1513 return !R.empty();
1514 }
1515
makeMergedDefinitionVisible(NamedDecl * ND)1516 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1517 if (auto *M = getCurrentModule())
1518 Context.mergeDefinitionIntoModule(ND, M);
1519 else
1520 // We're not building a module; just make the definition visible.
1521 ND->setVisibleDespiteOwningModule();
1522
1523 // If ND is a template declaration, make the template parameters
1524 // visible too. They're not (necessarily) within a mergeable DeclContext.
1525 if (auto *TD = dyn_cast<TemplateDecl>(ND))
1526 for (auto *Param : *TD->getTemplateParameters())
1527 makeMergedDefinitionVisible(Param);
1528 }
1529
1530 /// Find the module in which the given declaration was defined.
getDefiningModule(Sema & S,Decl * Entity)1531 static Module *getDefiningModule(Sema &S, Decl *Entity) {
1532 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1533 // If this function was instantiated from a template, the defining module is
1534 // the module containing the pattern.
1535 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1536 Entity = Pattern;
1537 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1538 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1539 Entity = Pattern;
1540 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1541 if (auto *Pattern = ED->getTemplateInstantiationPattern())
1542 Entity = Pattern;
1543 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1544 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1545 Entity = Pattern;
1546 }
1547
1548 // Walk up to the containing context. That might also have been instantiated
1549 // from a template.
1550 DeclContext *Context = Entity->getLexicalDeclContext();
1551 if (Context->isFileContext())
1552 return S.getOwningModule(Entity);
1553 return getDefiningModule(S, cast<Decl>(Context));
1554 }
1555
getLookupModules()1556 llvm::DenseSet<Module*> &Sema::getLookupModules() {
1557 unsigned N = CodeSynthesisContexts.size();
1558 for (unsigned I = CodeSynthesisContextLookupModules.size();
1559 I != N; ++I) {
1560 Module *M = CodeSynthesisContexts[I].Entity ?
1561 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1562 nullptr;
1563 if (M && !LookupModulesCache.insert(M).second)
1564 M = nullptr;
1565 CodeSynthesisContextLookupModules.push_back(M);
1566 }
1567 return LookupModulesCache;
1568 }
1569
1570 /// Determine if we could use all the declarations in the module.
isUsableModule(const Module * M)1571 bool Sema::isUsableModule(const Module *M) {
1572 assert(M && "We shouldn't check nullness for module here");
1573 // Return quickly if we cached the result.
1574 if (UsableModuleUnitsCache.count(M))
1575 return true;
1576
1577 // If M is the global module fragment of the current translation unit. So it
1578 // should be usable.
1579 // [module.global.frag]p1:
1580 // The global module fragment can be used to provide declarations that are
1581 // attached to the global module and usable within the module unit.
1582 if (M == GlobalModuleFragment ||
1583 // If M is the module we're parsing, it should be usable. This covers the
1584 // private module fragment. The private module fragment is usable only if
1585 // it is within the current module unit. And it must be the current
1586 // parsing module unit if it is within the current module unit according
1587 // to the grammar of the private module fragment. NOTE: This is covered by
1588 // the following condition. The intention of the check is to avoid string
1589 // comparison as much as possible.
1590 M == getCurrentModule() ||
1591 // The module unit which is in the same module with the current module
1592 // unit is usable.
1593 //
1594 // FIXME: Here we judge if they are in the same module by comparing the
1595 // string. Is there any better solution?
1596 M->getPrimaryModuleInterfaceName() ==
1597 llvm::StringRef(getLangOpts().CurrentModule).split(':').first) {
1598 UsableModuleUnitsCache.insert(M);
1599 return true;
1600 }
1601
1602 return false;
1603 }
1604
hasVisibleMergedDefinition(NamedDecl * Def)1605 bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1606 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1607 if (isModuleVisible(Merged))
1608 return true;
1609 return false;
1610 }
1611
hasMergedDefinitionInCurrentModule(NamedDecl * Def)1612 bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
1613 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1614 if (isUsableModule(Merged))
1615 return true;
1616 return false;
1617 }
1618
1619 template <typename ParmDecl>
1620 static bool
hasAcceptableDefaultArgument(Sema & S,const ParmDecl * D,llvm::SmallVectorImpl<Module * > * Modules,Sema::AcceptableKind Kind)1621 hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D,
1622 llvm::SmallVectorImpl<Module *> *Modules,
1623 Sema::AcceptableKind Kind) {
1624 if (!D->hasDefaultArgument())
1625 return false;
1626
1627 llvm::SmallPtrSet<const ParmDecl *, 4> Visited;
1628 while (D && Visited.insert(D).second) {
1629 auto &DefaultArg = D->getDefaultArgStorage();
1630 if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind))
1631 return true;
1632
1633 if (!DefaultArg.isInherited() && Modules) {
1634 auto *NonConstD = const_cast<ParmDecl*>(D);
1635 Modules->push_back(S.getOwningModule(NonConstD));
1636 }
1637
1638 // If there was a previous default argument, maybe its parameter is
1639 // acceptable.
1640 D = DefaultArg.getInheritedFrom();
1641 }
1642 return false;
1643 }
1644
hasAcceptableDefaultArgument(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules,Sema::AcceptableKind Kind)1645 bool Sema::hasAcceptableDefaultArgument(
1646 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules,
1647 Sema::AcceptableKind Kind) {
1648 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1649 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1650
1651 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1652 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1653
1654 return ::hasAcceptableDefaultArgument(
1655 *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind);
1656 }
1657
hasVisibleDefaultArgument(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)1658 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1659 llvm::SmallVectorImpl<Module *> *Modules) {
1660 return hasAcceptableDefaultArgument(D, Modules,
1661 Sema::AcceptableKind::Visible);
1662 }
1663
hasReachableDefaultArgument(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)1664 bool Sema::hasReachableDefaultArgument(
1665 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1666 return hasAcceptableDefaultArgument(D, Modules,
1667 Sema::AcceptableKind::Reachable);
1668 }
1669
1670 template <typename Filter>
1671 static bool
hasAcceptableDeclarationImpl(Sema & S,const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules,Filter F,Sema::AcceptableKind Kind)1672 hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D,
1673 llvm::SmallVectorImpl<Module *> *Modules, Filter F,
1674 Sema::AcceptableKind Kind) {
1675 bool HasFilteredRedecls = false;
1676
1677 for (auto *Redecl : D->redecls()) {
1678 auto *R = cast<NamedDecl>(Redecl);
1679 if (!F(R))
1680 continue;
1681
1682 if (S.isAcceptable(R, Kind))
1683 return true;
1684
1685 HasFilteredRedecls = true;
1686
1687 if (Modules)
1688 Modules->push_back(R->getOwningModule());
1689 }
1690
1691 // Only return false if there is at least one redecl that is not filtered out.
1692 if (HasFilteredRedecls)
1693 return false;
1694
1695 return true;
1696 }
1697
1698 static bool
hasAcceptableExplicitSpecialization(Sema & S,const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules,Sema::AcceptableKind Kind)1699 hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D,
1700 llvm::SmallVectorImpl<Module *> *Modules,
1701 Sema::AcceptableKind Kind) {
1702 return hasAcceptableDeclarationImpl(
1703 S, D, Modules,
1704 [](const NamedDecl *D) {
1705 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1706 return RD->getTemplateSpecializationKind() ==
1707 TSK_ExplicitSpecialization;
1708 if (auto *FD = dyn_cast<FunctionDecl>(D))
1709 return FD->getTemplateSpecializationKind() ==
1710 TSK_ExplicitSpecialization;
1711 if (auto *VD = dyn_cast<VarDecl>(D))
1712 return VD->getTemplateSpecializationKind() ==
1713 TSK_ExplicitSpecialization;
1714 llvm_unreachable("unknown explicit specialization kind");
1715 },
1716 Kind);
1717 }
1718
hasVisibleExplicitSpecialization(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)1719 bool Sema::hasVisibleExplicitSpecialization(
1720 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1721 return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1722 Sema::AcceptableKind::Visible);
1723 }
1724
hasReachableExplicitSpecialization(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)1725 bool Sema::hasReachableExplicitSpecialization(
1726 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1727 return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1728 Sema::AcceptableKind::Reachable);
1729 }
1730
1731 static bool
hasAcceptableMemberSpecialization(Sema & S,const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules,Sema::AcceptableKind Kind)1732 hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D,
1733 llvm::SmallVectorImpl<Module *> *Modules,
1734 Sema::AcceptableKind Kind) {
1735 assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1736 "not a member specialization");
1737 return hasAcceptableDeclarationImpl(
1738 S, D, Modules,
1739 [](const NamedDecl *D) {
1740 // If the specialization is declared at namespace scope, then it's a
1741 // member specialization declaration. If it's lexically inside the class
1742 // definition then it was instantiated.
1743 //
1744 // FIXME: This is a hack. There should be a better way to determine
1745 // this.
1746 // FIXME: What about MS-style explicit specializations declared within a
1747 // class definition?
1748 return D->getLexicalDeclContext()->isFileContext();
1749 },
1750 Kind);
1751 }
1752
hasVisibleMemberSpecialization(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)1753 bool Sema::hasVisibleMemberSpecialization(
1754 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1755 return hasAcceptableMemberSpecialization(*this, D, Modules,
1756 Sema::AcceptableKind::Visible);
1757 }
1758
hasReachableMemberSpecialization(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)1759 bool Sema::hasReachableMemberSpecialization(
1760 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1761 return hasAcceptableMemberSpecialization(*this, D, Modules,
1762 Sema::AcceptableKind::Reachable);
1763 }
1764
1765 /// Determine whether a declaration is acceptable to name lookup.
1766 ///
1767 /// This routine determines whether the declaration D is acceptable in the
1768 /// current lookup context, taking into account the current template
1769 /// instantiation stack. During template instantiation, a declaration is
1770 /// acceptable if it is acceptable from a module containing any entity on the
1771 /// template instantiation path (by instantiating a template, you allow it to
1772 /// see the declarations that your module can see, including those later on in
1773 /// your module).
isAcceptableSlow(Sema & SemaRef,NamedDecl * D,Sema::AcceptableKind Kind)1774 bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D,
1775 Sema::AcceptableKind Kind) {
1776 assert(!D->isUnconditionallyVisible() &&
1777 "should not call this: not in slow case");
1778
1779 Module *DeclModule = SemaRef.getOwningModule(D);
1780 assert(DeclModule && "hidden decl has no owning module");
1781
1782 // If the owning module is visible, the decl is acceptable.
1783 if (SemaRef.isModuleVisible(DeclModule,
1784 D->isInvisibleOutsideTheOwningModule()))
1785 return true;
1786
1787 // Determine whether a decl context is a file context for the purpose of
1788 // visibility/reachability. This looks through some (export and linkage spec)
1789 // transparent contexts, but not others (enums).
1790 auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1791 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1792 isa<ExportDecl>(DC);
1793 };
1794
1795 // If this declaration is not at namespace scope
1796 // then it is acceptable if its lexical parent has a acceptable definition.
1797 DeclContext *DC = D->getLexicalDeclContext();
1798 if (DC && !IsEffectivelyFileContext(DC)) {
1799 // For a parameter, check whether our current template declaration's
1800 // lexical context is acceptable, not whether there's some other acceptable
1801 // definition of it, because parameters aren't "within" the definition.
1802 //
1803 // In C++ we need to check for a acceptable definition due to ODR merging,
1804 // and in C we must not because each declaration of a function gets its own
1805 // set of declarations for tags in prototype scope.
1806 bool AcceptableWithinParent;
1807 if (D->isTemplateParameter()) {
1808 bool SearchDefinitions = true;
1809 if (const auto *DCD = dyn_cast<Decl>(DC)) {
1810 if (const auto *TD = DCD->getDescribedTemplate()) {
1811 TemplateParameterList *TPL = TD->getTemplateParameters();
1812 auto Index = getDepthAndIndex(D).second;
1813 SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1814 }
1815 }
1816 if (SearchDefinitions)
1817 AcceptableWithinParent =
1818 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1819 else
1820 AcceptableWithinParent =
1821 isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1822 } else if (isa<ParmVarDecl>(D) ||
1823 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1824 AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1825 else if (D->isModulePrivate()) {
1826 // A module-private declaration is only acceptable if an enclosing lexical
1827 // parent was merged with another definition in the current module.
1828 AcceptableWithinParent = false;
1829 do {
1830 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1831 AcceptableWithinParent = true;
1832 break;
1833 }
1834 DC = DC->getLexicalParent();
1835 } while (!IsEffectivelyFileContext(DC));
1836 } else {
1837 AcceptableWithinParent =
1838 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1839 }
1840
1841 if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1842 Kind == Sema::AcceptableKind::Visible &&
1843 // FIXME: Do something better in this case.
1844 !SemaRef.getLangOpts().ModulesLocalVisibility) {
1845 // Cache the fact that this declaration is implicitly visible because
1846 // its parent has a visible definition.
1847 D->setVisibleDespiteOwningModule();
1848 }
1849 return AcceptableWithinParent;
1850 }
1851
1852 if (Kind == Sema::AcceptableKind::Visible)
1853 return false;
1854
1855 assert(Kind == Sema::AcceptableKind::Reachable &&
1856 "Additional Sema::AcceptableKind?");
1857 return isReachableSlow(SemaRef, D);
1858 }
1859
isModuleVisible(const Module * M,bool ModulePrivate)1860 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1861 // [module.global.frag]p2:
1862 // A global-module-fragment specifies the contents of the global module
1863 // fragment for a module unit. The global module fragment can be used to
1864 // provide declarations that are attached to the global module and usable
1865 // within the module unit.
1866 //
1867 // Global module fragment is special. Global Module fragment is only usable
1868 // within the module unit it got defined [module.global.frag]p2. So here we
1869 // check if the Module is the global module fragment in current translation
1870 // unit.
1871 if (M->isGlobalModule() && M != this->GlobalModuleFragment)
1872 return false;
1873
1874 // The module might be ordinarily visible. For a module-private query, that
1875 // means it is part of the current module.
1876 if (ModulePrivate && isUsableModule(M))
1877 return true;
1878
1879 // For a query which is not module-private, that means it is in our visible
1880 // module set.
1881 if (!ModulePrivate && VisibleModules.isVisible(M))
1882 return true;
1883
1884 // Otherwise, it might be visible by virtue of the query being within a
1885 // template instantiation or similar that is permitted to look inside M.
1886
1887 // Find the extra places where we need to look.
1888 const auto &LookupModules = getLookupModules();
1889 if (LookupModules.empty())
1890 return false;
1891
1892 // If our lookup set contains the module, it's visible.
1893 if (LookupModules.count(M))
1894 return true;
1895
1896 // For a module-private query, that's everywhere we get to look.
1897 if (ModulePrivate)
1898 return false;
1899
1900 // Check whether M is transitively exported to an import of the lookup set.
1901 return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1902 return LookupM->isModuleVisible(M);
1903 });
1904 }
1905
1906 // FIXME: Return false directly if we don't have an interface dependency on the
1907 // translation unit containing D.
isReachableSlow(Sema & SemaRef,NamedDecl * D)1908 bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) {
1909 assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n");
1910
1911 Module *DeclModule = SemaRef.getOwningModule(D);
1912 assert(DeclModule && "hidden decl has no owning module");
1913
1914 // Entities in module map modules are reachable only if they're visible.
1915 if (DeclModule->isModuleMapModule())
1916 return false;
1917
1918 // If D comes from a module and SemaRef doesn't own a module, it implies D
1919 // comes from another TU. In case SemaRef owns a module, we could judge if D
1920 // comes from another TU by comparing the module unit.
1921 if (SemaRef.isModuleUnitOfCurrentTU(DeclModule))
1922 return true;
1923
1924 // [module.reach]/p3:
1925 // A declaration D is reachable from a point P if:
1926 // ...
1927 // - D is not discarded ([module.global.frag]), appears in a translation unit
1928 // that is reachable from P, and does not appear within a private module
1929 // fragment.
1930 //
1931 // A declaration that's discarded in the GMF should be module-private.
1932 if (D->isModulePrivate())
1933 return false;
1934
1935 // [module.reach]/p1
1936 // A translation unit U is necessarily reachable from a point P if U is a
1937 // module interface unit on which the translation unit containing P has an
1938 // interface dependency, or the translation unit containing P imports U, in
1939 // either case prior to P ([module.import]).
1940 //
1941 // [module.import]/p10
1942 // A translation unit has an interface dependency on a translation unit U if
1943 // it contains a declaration (possibly a module-declaration) that imports U
1944 // or if it has an interface dependency on a translation unit that has an
1945 // interface dependency on U.
1946 //
1947 // So we could conclude the module unit U is necessarily reachable if:
1948 // (1) The module unit U is module interface unit.
1949 // (2) The current unit has an interface dependency on the module unit U.
1950 //
1951 // Here we only check for the first condition. Since we couldn't see
1952 // DeclModule if it isn't (transitively) imported.
1953 if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit())
1954 return true;
1955
1956 // [module.reach]/p2
1957 // Additional translation units on
1958 // which the point within the program has an interface dependency may be
1959 // considered reachable, but it is unspecified which are and under what
1960 // circumstances.
1961 //
1962 // The decision here is to treat all additional tranditional units as
1963 // unreachable.
1964 return false;
1965 }
1966
isAcceptableSlow(const NamedDecl * D,Sema::AcceptableKind Kind)1967 bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) {
1968 return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind);
1969 }
1970
shouldLinkPossiblyHiddenDecl(LookupResult & R,const NamedDecl * New)1971 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1972 // FIXME: If there are both visible and hidden declarations, we need to take
1973 // into account whether redeclaration is possible. Example:
1974 //
1975 // Non-imported module:
1976 // int f(T); // #1
1977 // Some TU:
1978 // static int f(U); // #2, not a redeclaration of #1
1979 // int f(T); // #3, finds both, should link with #1 if T != U, but
1980 // // with #2 if T == U; neither should be ambiguous.
1981 for (auto *D : R) {
1982 if (isVisible(D))
1983 return true;
1984 assert(D->isExternallyDeclarable() &&
1985 "should not have hidden, non-externally-declarable result here");
1986 }
1987
1988 // This function is called once "New" is essentially complete, but before a
1989 // previous declaration is attached. We can't query the linkage of "New" in
1990 // general, because attaching the previous declaration can change the
1991 // linkage of New to match the previous declaration.
1992 //
1993 // However, because we've just determined that there is no *visible* prior
1994 // declaration, we can compute the linkage here. There are two possibilities:
1995 //
1996 // * This is not a redeclaration; it's safe to compute the linkage now.
1997 //
1998 // * This is a redeclaration of a prior declaration that is externally
1999 // redeclarable. In that case, the linkage of the declaration is not
2000 // changed by attaching the prior declaration, because both are externally
2001 // declarable (and thus ExternalLinkage or VisibleNoLinkage).
2002 //
2003 // FIXME: This is subtle and fragile.
2004 return New->isExternallyDeclarable();
2005 }
2006
2007 /// Retrieve the visible declaration corresponding to D, if any.
2008 ///
2009 /// This routine determines whether the declaration D is visible in the current
2010 /// module, with the current imports. If not, it checks whether any
2011 /// redeclaration of D is visible, and if so, returns that declaration.
2012 ///
2013 /// \returns D, or a visible previous declaration of D, whichever is more recent
2014 /// and visible. If no declaration of D is visible, returns null.
findAcceptableDecl(Sema & SemaRef,NamedDecl * D,unsigned IDNS)2015 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
2016 unsigned IDNS) {
2017 assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case");
2018
2019 for (auto *RD : D->redecls()) {
2020 // Don't bother with extra checks if we already know this one isn't visible.
2021 if (RD == D)
2022 continue;
2023
2024 auto ND = cast<NamedDecl>(RD);
2025 // FIXME: This is wrong in the case where the previous declaration is not
2026 // visible in the same scope as D. This needs to be done much more
2027 // carefully.
2028 if (ND->isInIdentifierNamespace(IDNS) &&
2029 LookupResult::isAvailableForLookup(SemaRef, ND))
2030 return ND;
2031 }
2032
2033 return nullptr;
2034 }
2035
hasVisibleDeclarationSlow(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)2036 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
2037 llvm::SmallVectorImpl<Module *> *Modules) {
2038 assert(!isVisible(D) && "not in slow case");
2039 return hasAcceptableDeclarationImpl(
2040 *this, D, Modules, [](const NamedDecl *) { return true; },
2041 Sema::AcceptableKind::Visible);
2042 }
2043
hasReachableDeclarationSlow(const NamedDecl * D,llvm::SmallVectorImpl<Module * > * Modules)2044 bool Sema::hasReachableDeclarationSlow(
2045 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
2046 assert(!isReachable(D) && "not in slow case");
2047 return hasAcceptableDeclarationImpl(
2048 *this, D, Modules, [](const NamedDecl *) { return true; },
2049 Sema::AcceptableKind::Reachable);
2050 }
2051
getAcceptableDeclSlow(NamedDecl * D) const2052 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
2053 if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
2054 // Namespaces are a bit of a special case: we expect there to be a lot of
2055 // redeclarations of some namespaces, all declarations of a namespace are
2056 // essentially interchangeable, all declarations are found by name lookup
2057 // if any is, and namespaces are never looked up during template
2058 // instantiation. So we benefit from caching the check in this case, and
2059 // it is correct to do so.
2060 auto *Key = ND->getCanonicalDecl();
2061 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
2062 return Acceptable;
2063 auto *Acceptable = isVisible(getSema(), Key)
2064 ? Key
2065 : findAcceptableDecl(getSema(), Key, IDNS);
2066 if (Acceptable)
2067 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
2068 return Acceptable;
2069 }
2070
2071 return findAcceptableDecl(getSema(), D, IDNS);
2072 }
2073
isVisible(Sema & SemaRef,NamedDecl * D)2074 bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) {
2075 // If this declaration is already visible, return it directly.
2076 if (D->isUnconditionallyVisible())
2077 return true;
2078
2079 // During template instantiation, we can refer to hidden declarations, if
2080 // they were visible in any module along the path of instantiation.
2081 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible);
2082 }
2083
isReachable(Sema & SemaRef,NamedDecl * D)2084 bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) {
2085 if (D->isUnconditionallyVisible())
2086 return true;
2087
2088 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable);
2089 }
2090
isAvailableForLookup(Sema & SemaRef,NamedDecl * ND)2091 bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) {
2092 // We should check the visibility at the callsite already.
2093 if (isVisible(SemaRef, ND))
2094 return true;
2095
2096 // Deduction guide lives in namespace scope generally, but it is just a
2097 // hint to the compilers. What we actually lookup for is the generated member
2098 // of the corresponding template. So it is sufficient to check the
2099 // reachability of the template decl.
2100 if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate())
2101 return SemaRef.hasReachableDefinition(DeductionGuide);
2102
2103 // FIXME: The lookup for allocation function is a standalone process.
2104 // (We can find the logics in Sema::FindAllocationFunctions)
2105 //
2106 // Such structure makes it a problem when we instantiate a template
2107 // declaration using placement allocation function if the placement
2108 // allocation function is invisible.
2109 // (See https://github.com/llvm/llvm-project/issues/59601)
2110 //
2111 // Here we workaround it by making the placement allocation functions
2112 // always acceptable. The downside is that we can't diagnose the direct
2113 // use of the invisible placement allocation functions. (Although such uses
2114 // should be rare).
2115 if (auto *FD = dyn_cast<FunctionDecl>(ND);
2116 FD && FD->isReservedGlobalPlacementOperator())
2117 return true;
2118
2119 auto *DC = ND->getDeclContext();
2120 // If ND is not visible and it is at namespace scope, it shouldn't be found
2121 // by name lookup.
2122 if (DC->isFileContext())
2123 return false;
2124
2125 // [module.interface]p7
2126 // Class and enumeration member names can be found by name lookup in any
2127 // context in which a definition of the type is reachable.
2128 //
2129 // FIXME: The current implementation didn't consider about scope. For example,
2130 // ```
2131 // // m.cppm
2132 // export module m;
2133 // enum E1 { e1 };
2134 // // Use.cpp
2135 // import m;
2136 // void test() {
2137 // auto a = E1::e1; // Error as expected.
2138 // auto b = e1; // Should be error. namespace-scope name e1 is not visible
2139 // }
2140 // ```
2141 // For the above example, the current implementation would emit error for `a`
2142 // correctly. However, the implementation wouldn't diagnose about `b` now.
2143 // Since we only check the reachability for the parent only.
2144 // See clang/test/CXX/module/module.interface/p7.cpp for example.
2145 if (auto *TD = dyn_cast<TagDecl>(DC))
2146 return SemaRef.hasReachableDefinition(TD);
2147
2148 return false;
2149 }
2150
2151 /// Perform unqualified name lookup starting from a given
2152 /// scope.
2153 ///
2154 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
2155 /// used to find names within the current scope. For example, 'x' in
2156 /// @code
2157 /// int x;
2158 /// int f() {
2159 /// return x; // unqualified name look finds 'x' in the global scope
2160 /// }
2161 /// @endcode
2162 ///
2163 /// Different lookup criteria can find different names. For example, a
2164 /// particular scope can have both a struct and a function of the same
2165 /// name, and each can be found by certain lookup criteria. For more
2166 /// information about lookup criteria, see the documentation for the
2167 /// class LookupCriteria.
2168 ///
2169 /// @param S The scope from which unqualified name lookup will
2170 /// begin. If the lookup criteria permits, name lookup may also search
2171 /// in the parent scopes.
2172 ///
2173 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
2174 /// look up and the lookup kind), and is updated with the results of lookup
2175 /// including zero or more declarations and possibly additional information
2176 /// used to diagnose ambiguities.
2177 ///
2178 /// @returns \c true if lookup succeeded and false otherwise.
LookupName(LookupResult & R,Scope * S,bool AllowBuiltinCreation,bool ForceNoCPlusPlus)2179 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation,
2180 bool ForceNoCPlusPlus) {
2181 DeclarationName Name = R.getLookupName();
2182 if (!Name) return false;
2183
2184 LookupNameKind NameKind = R.getLookupKind();
2185
2186 if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) {
2187 // Unqualified name lookup in C/Objective-C is purely lexical, so
2188 // search in the declarations attached to the name.
2189 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
2190 // Find the nearest non-transparent declaration scope.
2191 while (!(S->getFlags() & Scope::DeclScope) ||
2192 (S->getEntity() && S->getEntity()->isTransparentContext()))
2193 S = S->getParent();
2194 }
2195
2196 // When performing a scope lookup, we want to find local extern decls.
2197 FindLocalExternScope FindLocals(R);
2198
2199 // Scan up the scope chain looking for a decl that matches this
2200 // identifier that is in the appropriate namespace. This search
2201 // should not take long, as shadowing of names is uncommon, and
2202 // deep shadowing is extremely uncommon.
2203 bool LeftStartingScope = false;
2204
2205 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
2206 IEnd = IdResolver.end();
2207 I != IEnd; ++I)
2208 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
2209 if (NameKind == LookupRedeclarationWithLinkage) {
2210 // Determine whether this (or a previous) declaration is
2211 // out-of-scope.
2212 if (!LeftStartingScope && !S->isDeclScope(*I))
2213 LeftStartingScope = true;
2214
2215 // If we found something outside of our starting scope that
2216 // does not have linkage, skip it.
2217 if (LeftStartingScope && !((*I)->hasLinkage())) {
2218 R.setShadowed();
2219 continue;
2220 }
2221 }
2222 else if (NameKind == LookupObjCImplicitSelfParam &&
2223 !isa<ImplicitParamDecl>(*I))
2224 continue;
2225
2226 R.addDecl(D);
2227
2228 // Check whether there are any other declarations with the same name
2229 // and in the same scope.
2230 if (I != IEnd) {
2231 // Find the scope in which this declaration was declared (if it
2232 // actually exists in a Scope).
2233 while (S && !S->isDeclScope(D))
2234 S = S->getParent();
2235
2236 // If the scope containing the declaration is the translation unit,
2237 // then we'll need to perform our checks based on the matching
2238 // DeclContexts rather than matching scopes.
2239 if (S && isNamespaceOrTranslationUnitScope(S))
2240 S = nullptr;
2241
2242 // Compute the DeclContext, if we need it.
2243 DeclContext *DC = nullptr;
2244 if (!S)
2245 DC = (*I)->getDeclContext()->getRedeclContext();
2246
2247 IdentifierResolver::iterator LastI = I;
2248 for (++LastI; LastI != IEnd; ++LastI) {
2249 if (S) {
2250 // Match based on scope.
2251 if (!S->isDeclScope(*LastI))
2252 break;
2253 } else {
2254 // Match based on DeclContext.
2255 DeclContext *LastDC
2256 = (*LastI)->getDeclContext()->getRedeclContext();
2257 if (!LastDC->Equals(DC))
2258 break;
2259 }
2260
2261 // If the declaration is in the right namespace and visible, add it.
2262 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
2263 R.addDecl(LastD);
2264 }
2265
2266 R.resolveKind();
2267 }
2268
2269 return true;
2270 }
2271 } else {
2272 // Perform C++ unqualified name lookup.
2273 if (CppLookupName(R, S))
2274 return true;
2275 }
2276
2277 // If we didn't find a use of this identifier, and if the identifier
2278 // corresponds to a compiler builtin, create the decl object for the builtin
2279 // now, injecting it into translation unit scope, and return it.
2280 if (AllowBuiltinCreation && LookupBuiltin(R))
2281 return true;
2282
2283 // If we didn't find a use of this identifier, the ExternalSource
2284 // may be able to handle the situation.
2285 // Note: some lookup failures are expected!
2286 // See e.g. R.isForRedeclaration().
2287 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2288 }
2289
2290 /// Perform qualified name lookup in the namespaces nominated by
2291 /// using directives by the given context.
2292 ///
2293 /// C++98 [namespace.qual]p2:
2294 /// Given X::m (where X is a user-declared namespace), or given \::m
2295 /// (where X is the global namespace), let S be the set of all
2296 /// declarations of m in X and in the transitive closure of all
2297 /// namespaces nominated by using-directives in X and its used
2298 /// namespaces, except that using-directives are ignored in any
2299 /// namespace, including X, directly containing one or more
2300 /// declarations of m. No namespace is searched more than once in
2301 /// the lookup of a name. If S is the empty set, the program is
2302 /// ill-formed. Otherwise, if S has exactly one member, or if the
2303 /// context of the reference is a using-declaration
2304 /// (namespace.udecl), S is the required set of declarations of
2305 /// m. Otherwise if the use of m is not one that allows a unique
2306 /// declaration to be chosen from S, the program is ill-formed.
2307 ///
2308 /// C++98 [namespace.qual]p5:
2309 /// During the lookup of a qualified namespace member name, if the
2310 /// lookup finds more than one declaration of the member, and if one
2311 /// declaration introduces a class name or enumeration name and the
2312 /// other declarations either introduce the same object, the same
2313 /// enumerator or a set of functions, the non-type name hides the
2314 /// class or enumeration name if and only if the declarations are
2315 /// from the same namespace; otherwise (the declarations are from
2316 /// different namespaces), the program is ill-formed.
LookupQualifiedNameInUsingDirectives(Sema & S,LookupResult & R,DeclContext * StartDC)2317 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
2318 DeclContext *StartDC) {
2319 assert(StartDC->isFileContext() && "start context is not a file context");
2320
2321 // We have not yet looked into these namespaces, much less added
2322 // their "using-children" to the queue.
2323 SmallVector<NamespaceDecl*, 8> Queue;
2324
2325 // We have at least added all these contexts to the queue.
2326 llvm::SmallPtrSet<DeclContext*, 8> Visited;
2327 Visited.insert(StartDC);
2328
2329 // We have already looked into the initial namespace; seed the queue
2330 // with its using-children.
2331 for (auto *I : StartDC->using_directives()) {
2332 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
2333 if (S.isVisible(I) && Visited.insert(ND).second)
2334 Queue.push_back(ND);
2335 }
2336
2337 // The easiest way to implement the restriction in [namespace.qual]p5
2338 // is to check whether any of the individual results found a tag
2339 // and, if so, to declare an ambiguity if the final result is not
2340 // a tag.
2341 bool FoundTag = false;
2342 bool FoundNonTag = false;
2343
2344 LookupResult LocalR(LookupResult::Temporary, R);
2345
2346 bool Found = false;
2347 while (!Queue.empty()) {
2348 NamespaceDecl *ND = Queue.pop_back_val();
2349
2350 // We go through some convolutions here to avoid copying results
2351 // between LookupResults.
2352 bool UseLocal = !R.empty();
2353 LookupResult &DirectR = UseLocal ? LocalR : R;
2354 bool FoundDirect = LookupDirect(S, DirectR, ND);
2355
2356 if (FoundDirect) {
2357 // First do any local hiding.
2358 DirectR.resolveKind();
2359
2360 // If the local result is a tag, remember that.
2361 if (DirectR.isSingleTagDecl())
2362 FoundTag = true;
2363 else
2364 FoundNonTag = true;
2365
2366 // Append the local results to the total results if necessary.
2367 if (UseLocal) {
2368 R.addAllDecls(LocalR);
2369 LocalR.clear();
2370 }
2371 }
2372
2373 // If we find names in this namespace, ignore its using directives.
2374 if (FoundDirect) {
2375 Found = true;
2376 continue;
2377 }
2378
2379 for (auto *I : ND->using_directives()) {
2380 NamespaceDecl *Nom = I->getNominatedNamespace();
2381 if (S.isVisible(I) && Visited.insert(Nom).second)
2382 Queue.push_back(Nom);
2383 }
2384 }
2385
2386 if (Found) {
2387 if (FoundTag && FoundNonTag)
2388 R.setAmbiguousQualifiedTagHiding();
2389 else
2390 R.resolveKind();
2391 }
2392
2393 return Found;
2394 }
2395
2396 /// Perform qualified name lookup into a given context.
2397 ///
2398 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2399 /// names when the context of those names is explicit specified, e.g.,
2400 /// "std::vector" or "x->member", or as part of unqualified name lookup.
2401 ///
2402 /// Different lookup criteria can find different names. For example, a
2403 /// particular scope can have both a struct and a function of the same
2404 /// name, and each can be found by certain lookup criteria. For more
2405 /// information about lookup criteria, see the documentation for the
2406 /// class LookupCriteria.
2407 ///
2408 /// \param R captures both the lookup criteria and any lookup results found.
2409 ///
2410 /// \param LookupCtx The context in which qualified name lookup will
2411 /// search. If the lookup criteria permits, name lookup may also search
2412 /// in the parent contexts or (for C++ classes) base classes.
2413 ///
2414 /// \param InUnqualifiedLookup true if this is qualified name lookup that
2415 /// occurs as part of unqualified name lookup.
2416 ///
2417 /// \returns true if lookup succeeded, false if it failed.
LookupQualifiedName(LookupResult & R,DeclContext * LookupCtx,bool InUnqualifiedLookup)2418 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2419 bool InUnqualifiedLookup) {
2420 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2421
2422 if (!R.getLookupName())
2423 return false;
2424
2425 // Make sure that the declaration context is complete.
2426 assert((!isa<TagDecl>(LookupCtx) ||
2427 LookupCtx->isDependentContext() ||
2428 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2429 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2430 "Declaration context must already be complete!");
2431
2432 struct QualifiedLookupInScope {
2433 bool oldVal;
2434 DeclContext *Context;
2435 // Set flag in DeclContext informing debugger that we're looking for qualified name
2436 QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2437 oldVal = ctx->setUseQualifiedLookup();
2438 }
2439 ~QualifiedLookupInScope() {
2440 Context->setUseQualifiedLookup(oldVal);
2441 }
2442 } QL(LookupCtx);
2443
2444 if (LookupDirect(*this, R, LookupCtx)) {
2445 R.resolveKind();
2446 if (isa<CXXRecordDecl>(LookupCtx))
2447 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2448 return true;
2449 }
2450
2451 // Don't descend into implied contexts for redeclarations.
2452 // C++98 [namespace.qual]p6:
2453 // In a declaration for a namespace member in which the
2454 // declarator-id is a qualified-id, given that the qualified-id
2455 // for the namespace member has the form
2456 // nested-name-specifier unqualified-id
2457 // the unqualified-id shall name a member of the namespace
2458 // designated by the nested-name-specifier.
2459 // See also [class.mfct]p5 and [class.static.data]p2.
2460 if (R.isForRedeclaration())
2461 return false;
2462
2463 // If this is a namespace, look it up in the implied namespaces.
2464 if (LookupCtx->isFileContext())
2465 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2466
2467 // If this isn't a C++ class, we aren't allowed to look into base
2468 // classes, we're done.
2469 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2470 if (!LookupRec || !LookupRec->getDefinition())
2471 return false;
2472
2473 // We're done for lookups that can never succeed for C++ classes.
2474 if (R.getLookupKind() == LookupOperatorName ||
2475 R.getLookupKind() == LookupNamespaceName ||
2476 R.getLookupKind() == LookupObjCProtocolName ||
2477 R.getLookupKind() == LookupLabel)
2478 return false;
2479
2480 // If we're performing qualified name lookup into a dependent class,
2481 // then we are actually looking into a current instantiation. If we have any
2482 // dependent base classes, then we either have to delay lookup until
2483 // template instantiation time (at which point all bases will be available)
2484 // or we have to fail.
2485 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2486 LookupRec->hasAnyDependentBases()) {
2487 R.setNotFoundInCurrentInstantiation();
2488 return false;
2489 }
2490
2491 // Perform lookup into our base classes.
2492
2493 DeclarationName Name = R.getLookupName();
2494 unsigned IDNS = R.getIdentifierNamespace();
2495
2496 // Look for this member in our base classes.
2497 auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier,
2498 CXXBasePath &Path) -> bool {
2499 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
2500 // Drop leading non-matching lookup results from the declaration list so
2501 // we don't need to consider them again below.
2502 for (Path.Decls = BaseRecord->lookup(Name).begin();
2503 Path.Decls != Path.Decls.end(); ++Path.Decls) {
2504 if ((*Path.Decls)->isInIdentifierNamespace(IDNS))
2505 return true;
2506 }
2507 return false;
2508 };
2509
2510 CXXBasePaths Paths;
2511 Paths.setOrigin(LookupRec);
2512 if (!LookupRec->lookupInBases(BaseCallback, Paths))
2513 return false;
2514
2515 R.setNamingClass(LookupRec);
2516
2517 // C++ [class.member.lookup]p2:
2518 // [...] If the resulting set of declarations are not all from
2519 // sub-objects of the same type, or the set has a nonstatic member
2520 // and includes members from distinct sub-objects, there is an
2521 // ambiguity and the program is ill-formed. Otherwise that set is
2522 // the result of the lookup.
2523 QualType SubobjectType;
2524 int SubobjectNumber = 0;
2525 AccessSpecifier SubobjectAccess = AS_none;
2526
2527 // Check whether the given lookup result contains only static members.
2528 auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) {
2529 for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I)
2530 if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember())
2531 return false;
2532 return true;
2533 };
2534
2535 bool TemplateNameLookup = R.isTemplateNameLookup();
2536
2537 // Determine whether two sets of members contain the same members, as
2538 // required by C++ [class.member.lookup]p6.
2539 auto HasSameDeclarations = [&](DeclContext::lookup_iterator A,
2540 DeclContext::lookup_iterator B) {
2541 using Iterator = DeclContextLookupResult::iterator;
2542 using Result = const void *;
2543
2544 auto Next = [&](Iterator &It, Iterator End) -> Result {
2545 while (It != End) {
2546 NamedDecl *ND = *It++;
2547 if (!ND->isInIdentifierNamespace(IDNS))
2548 continue;
2549
2550 // C++ [temp.local]p3:
2551 // A lookup that finds an injected-class-name (10.2) can result in
2552 // an ambiguity in certain cases (for example, if it is found in
2553 // more than one base class). If all of the injected-class-names
2554 // that are found refer to specializations of the same class
2555 // template, and if the name is used as a template-name, the
2556 // reference refers to the class template itself and not a
2557 // specialization thereof, and is not ambiguous.
2558 if (TemplateNameLookup)
2559 if (auto *TD = getAsTemplateNameDecl(ND))
2560 ND = TD;
2561
2562 // C++ [class.member.lookup]p3:
2563 // type declarations (including injected-class-names) are replaced by
2564 // the types they designate
2565 if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) {
2566 QualType T = Context.getTypeDeclType(TD);
2567 return T.getCanonicalType().getAsOpaquePtr();
2568 }
2569
2570 return ND->getUnderlyingDecl()->getCanonicalDecl();
2571 }
2572 return nullptr;
2573 };
2574
2575 // We'll often find the declarations are in the same order. Handle this
2576 // case (and the special case of only one declaration) efficiently.
2577 Iterator AIt = A, BIt = B, AEnd, BEnd;
2578 while (true) {
2579 Result AResult = Next(AIt, AEnd);
2580 Result BResult = Next(BIt, BEnd);
2581 if (!AResult && !BResult)
2582 return true;
2583 if (!AResult || !BResult)
2584 return false;
2585 if (AResult != BResult) {
2586 // Found a mismatch; carefully check both lists, accounting for the
2587 // possibility of declarations appearing more than once.
2588 llvm::SmallDenseMap<Result, bool, 32> AResults;
2589 for (; AResult; AResult = Next(AIt, AEnd))
2590 AResults.insert({AResult, /*FoundInB*/false});
2591 unsigned Found = 0;
2592 for (; BResult; BResult = Next(BIt, BEnd)) {
2593 auto It = AResults.find(BResult);
2594 if (It == AResults.end())
2595 return false;
2596 if (!It->second) {
2597 It->second = true;
2598 ++Found;
2599 }
2600 }
2601 return AResults.size() == Found;
2602 }
2603 }
2604 };
2605
2606 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2607 Path != PathEnd; ++Path) {
2608 const CXXBasePathElement &PathElement = Path->back();
2609
2610 // Pick the best (i.e. most permissive i.e. numerically lowest) access
2611 // across all paths.
2612 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2613
2614 // Determine whether we're looking at a distinct sub-object or not.
2615 if (SubobjectType.isNull()) {
2616 // This is the first subobject we've looked at. Record its type.
2617 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2618 SubobjectNumber = PathElement.SubobjectNumber;
2619 continue;
2620 }
2621
2622 if (SubobjectType !=
2623 Context.getCanonicalType(PathElement.Base->getType())) {
2624 // We found members of the given name in two subobjects of
2625 // different types. If the declaration sets aren't the same, this
2626 // lookup is ambiguous.
2627 //
2628 // FIXME: The language rule says that this applies irrespective of
2629 // whether the sets contain only static members.
2630 if (HasOnlyStaticMembers(Path->Decls) &&
2631 HasSameDeclarations(Paths.begin()->Decls, Path->Decls))
2632 continue;
2633
2634 R.setAmbiguousBaseSubobjectTypes(Paths);
2635 return true;
2636 }
2637
2638 // FIXME: This language rule no longer exists. Checking for ambiguous base
2639 // subobjects should be done as part of formation of a class member access
2640 // expression (when converting the object parameter to the member's type).
2641 if (SubobjectNumber != PathElement.SubobjectNumber) {
2642 // We have a different subobject of the same type.
2643
2644 // C++ [class.member.lookup]p5:
2645 // A static member, a nested type or an enumerator defined in
2646 // a base class T can unambiguously be found even if an object
2647 // has more than one base class subobject of type T.
2648 if (HasOnlyStaticMembers(Path->Decls))
2649 continue;
2650
2651 // We have found a nonstatic member name in multiple, distinct
2652 // subobjects. Name lookup is ambiguous.
2653 R.setAmbiguousBaseSubobjects(Paths);
2654 return true;
2655 }
2656 }
2657
2658 // Lookup in a base class succeeded; return these results.
2659
2660 for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
2661 I != E; ++I) {
2662 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2663 (*I)->getAccess());
2664 if (NamedDecl *ND = R.getAcceptableDecl(*I))
2665 R.addDecl(ND, AS);
2666 }
2667 R.resolveKind();
2668 return true;
2669 }
2670
2671 /// Performs qualified name lookup or special type of lookup for
2672 /// "__super::" scope specifier.
2673 ///
2674 /// This routine is a convenience overload meant to be called from contexts
2675 /// that need to perform a qualified name lookup with an optional C++ scope
2676 /// specifier that might require special kind of lookup.
2677 ///
2678 /// \param R captures both the lookup criteria and any lookup results found.
2679 ///
2680 /// \param LookupCtx The context in which qualified name lookup will
2681 /// search.
2682 ///
2683 /// \param SS An optional C++ scope-specifier.
2684 ///
2685 /// \returns true if lookup succeeded, false if it failed.
LookupQualifiedName(LookupResult & R,DeclContext * LookupCtx,CXXScopeSpec & SS)2686 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2687 CXXScopeSpec &SS) {
2688 auto *NNS = SS.getScopeRep();
2689 if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2690 return LookupInSuper(R, NNS->getAsRecordDecl());
2691 else
2692
2693 return LookupQualifiedName(R, LookupCtx);
2694 }
2695
2696 /// Performs name lookup for a name that was parsed in the
2697 /// source code, and may contain a C++ scope specifier.
2698 ///
2699 /// This routine is a convenience routine meant to be called from
2700 /// contexts that receive a name and an optional C++ scope specifier
2701 /// (e.g., "N::M::x"). It will then perform either qualified or
2702 /// unqualified name lookup (with LookupQualifiedName or LookupName,
2703 /// respectively) on the given name and return those results. It will
2704 /// perform a special type of lookup for "__super::" scope specifier.
2705 ///
2706 /// @param S The scope from which unqualified name lookup will
2707 /// begin.
2708 ///
2709 /// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2710 ///
2711 /// @param EnteringContext Indicates whether we are going to enter the
2712 /// context of the scope-specifier SS (if present).
2713 ///
2714 /// @returns True if any decls were found (but possibly ambiguous)
LookupParsedName(LookupResult & R,Scope * S,CXXScopeSpec * SS,bool AllowBuiltinCreation,bool EnteringContext)2715 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2716 bool AllowBuiltinCreation, bool EnteringContext) {
2717 if (SS && SS->isInvalid()) {
2718 // When the scope specifier is invalid, don't even look for
2719 // anything.
2720 return false;
2721 }
2722
2723 if (SS && SS->isSet()) {
2724 NestedNameSpecifier *NNS = SS->getScopeRep();
2725 if (NNS->getKind() == NestedNameSpecifier::Super)
2726 return LookupInSuper(R, NNS->getAsRecordDecl());
2727
2728 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2729 // We have resolved the scope specifier to a particular declaration
2730 // contex, and will perform name lookup in that context.
2731 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2732 return false;
2733
2734 R.setContextRange(SS->getRange());
2735 return LookupQualifiedName(R, DC);
2736 }
2737
2738 // We could not resolve the scope specified to a specific declaration
2739 // context, which means that SS refers to an unknown specialization.
2740 // Name lookup can't find anything in this case.
2741 R.setNotFoundInCurrentInstantiation();
2742 R.setContextRange(SS->getRange());
2743 return false;
2744 }
2745
2746 // Perform unqualified name lookup starting in the given scope.
2747 return LookupName(R, S, AllowBuiltinCreation);
2748 }
2749
2750 /// Perform qualified name lookup into all base classes of the given
2751 /// class.
2752 ///
2753 /// \param R captures both the lookup criteria and any lookup results found.
2754 ///
2755 /// \param Class The context in which qualified name lookup will
2756 /// search. Name lookup will search in all base classes merging the results.
2757 ///
2758 /// @returns True if any decls were found (but possibly ambiguous)
LookupInSuper(LookupResult & R,CXXRecordDecl * Class)2759 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2760 // The access-control rules we use here are essentially the rules for
2761 // doing a lookup in Class that just magically skipped the direct
2762 // members of Class itself. That is, the naming class is Class, and the
2763 // access includes the access of the base.
2764 for (const auto &BaseSpec : Class->bases()) {
2765 CXXRecordDecl *RD = cast<CXXRecordDecl>(
2766 BaseSpec.getType()->castAs<RecordType>()->getDecl());
2767 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2768 Result.setBaseObjectType(Context.getRecordType(Class));
2769 LookupQualifiedName(Result, RD);
2770
2771 // Copy the lookup results into the target, merging the base's access into
2772 // the path access.
2773 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2774 R.addDecl(I.getDecl(),
2775 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2776 I.getAccess()));
2777 }
2778
2779 Result.suppressDiagnostics();
2780 }
2781
2782 R.resolveKind();
2783 R.setNamingClass(Class);
2784
2785 return !R.empty();
2786 }
2787
2788 /// Produce a diagnostic describing the ambiguity that resulted
2789 /// from name lookup.
2790 ///
2791 /// \param Result The result of the ambiguous lookup to be diagnosed.
DiagnoseAmbiguousLookup(LookupResult & Result)2792 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2793 assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2794
2795 DeclarationName Name = Result.getLookupName();
2796 SourceLocation NameLoc = Result.getNameLoc();
2797 SourceRange LookupRange = Result.getContextRange();
2798
2799 switch (Result.getAmbiguityKind()) {
2800 case LookupResult::AmbiguousBaseSubobjects: {
2801 CXXBasePaths *Paths = Result.getBasePaths();
2802 QualType SubobjectType = Paths->front().back().Base->getType();
2803 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2804 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2805 << LookupRange;
2806
2807 DeclContext::lookup_iterator Found = Paths->front().Decls;
2808 while (isa<CXXMethodDecl>(*Found) &&
2809 cast<CXXMethodDecl>(*Found)->isStatic())
2810 ++Found;
2811
2812 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2813 break;
2814 }
2815
2816 case LookupResult::AmbiguousBaseSubobjectTypes: {
2817 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2818 << Name << LookupRange;
2819
2820 CXXBasePaths *Paths = Result.getBasePaths();
2821 std::set<const NamedDecl *> DeclsPrinted;
2822 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2823 PathEnd = Paths->end();
2824 Path != PathEnd; ++Path) {
2825 const NamedDecl *D = *Path->Decls;
2826 if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace()))
2827 continue;
2828 if (DeclsPrinted.insert(D).second) {
2829 if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl()))
2830 Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2831 << TD->getUnderlyingType();
2832 else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
2833 Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2834 << Context.getTypeDeclType(TD);
2835 else
2836 Diag(D->getLocation(), diag::note_ambiguous_member_found);
2837 }
2838 }
2839 break;
2840 }
2841
2842 case LookupResult::AmbiguousTagHiding: {
2843 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2844
2845 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2846
2847 for (auto *D : Result)
2848 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2849 TagDecls.insert(TD);
2850 Diag(TD->getLocation(), diag::note_hidden_tag);
2851 }
2852
2853 for (auto *D : Result)
2854 if (!isa<TagDecl>(D))
2855 Diag(D->getLocation(), diag::note_hiding_object);
2856
2857 // For recovery purposes, go ahead and implement the hiding.
2858 LookupResult::Filter F = Result.makeFilter();
2859 while (F.hasNext()) {
2860 if (TagDecls.count(F.next()))
2861 F.erase();
2862 }
2863 F.done();
2864 break;
2865 }
2866
2867 case LookupResult::AmbiguousReference: {
2868 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2869
2870 for (auto *D : Result)
2871 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2872 break;
2873 }
2874 }
2875 }
2876
2877 namespace {
2878 struct AssociatedLookup {
AssociatedLookup__anond322f6bc0d11::AssociatedLookup2879 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2880 Sema::AssociatedNamespaceSet &Namespaces,
2881 Sema::AssociatedClassSet &Classes)
2882 : S(S), Namespaces(Namespaces), Classes(Classes),
2883 InstantiationLoc(InstantiationLoc) {
2884 }
2885
addClassTransitive__anond322f6bc0d11::AssociatedLookup2886 bool addClassTransitive(CXXRecordDecl *RD) {
2887 Classes.insert(RD);
2888 return ClassesTransitive.insert(RD);
2889 }
2890
2891 Sema &S;
2892 Sema::AssociatedNamespaceSet &Namespaces;
2893 Sema::AssociatedClassSet &Classes;
2894 SourceLocation InstantiationLoc;
2895
2896 private:
2897 Sema::AssociatedClassSet ClassesTransitive;
2898 };
2899 } // end anonymous namespace
2900
2901 static void
2902 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2903
2904 // Given the declaration context \param Ctx of a class, class template or
2905 // enumeration, add the associated namespaces to \param Namespaces as described
2906 // in [basic.lookup.argdep]p2.
CollectEnclosingNamespace(Sema::AssociatedNamespaceSet & Namespaces,DeclContext * Ctx)2907 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2908 DeclContext *Ctx) {
2909 // The exact wording has been changed in C++14 as a result of
2910 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2911 // to all language versions since it is possible to return a local type
2912 // from a lambda in C++11.
2913 //
2914 // C++14 [basic.lookup.argdep]p2:
2915 // If T is a class type [...]. Its associated namespaces are the innermost
2916 // enclosing namespaces of its associated classes. [...]
2917 //
2918 // If T is an enumeration type, its associated namespace is the innermost
2919 // enclosing namespace of its declaration. [...]
2920
2921 // We additionally skip inline namespaces. The innermost non-inline namespace
2922 // contains all names of all its nested inline namespaces anyway, so we can
2923 // replace the entire inline namespace tree with its root.
2924 while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2925 Ctx = Ctx->getParent();
2926
2927 Namespaces.insert(Ctx->getPrimaryContext());
2928 }
2929
2930 // Add the associated classes and namespaces for argument-dependent
2931 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2932 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,const TemplateArgument & Arg)2933 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2934 const TemplateArgument &Arg) {
2935 // C++ [basic.lookup.argdep]p2, last bullet:
2936 // -- [...] ;
2937 switch (Arg.getKind()) {
2938 case TemplateArgument::Null:
2939 break;
2940
2941 case TemplateArgument::Type:
2942 // [...] the namespaces and classes associated with the types of the
2943 // template arguments provided for template type parameters (excluding
2944 // template template parameters)
2945 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2946 break;
2947
2948 case TemplateArgument::Template:
2949 case TemplateArgument::TemplateExpansion: {
2950 // [...] the namespaces in which any template template arguments are
2951 // defined; and the classes in which any member templates used as
2952 // template template arguments are defined.
2953 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2954 if (ClassTemplateDecl *ClassTemplate
2955 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2956 DeclContext *Ctx = ClassTemplate->getDeclContext();
2957 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2958 Result.Classes.insert(EnclosingClass);
2959 // Add the associated namespace for this class.
2960 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2961 }
2962 break;
2963 }
2964
2965 case TemplateArgument::Declaration:
2966 case TemplateArgument::Integral:
2967 case TemplateArgument::Expression:
2968 case TemplateArgument::NullPtr:
2969 // [Note: non-type template arguments do not contribute to the set of
2970 // associated namespaces. ]
2971 break;
2972
2973 case TemplateArgument::Pack:
2974 for (const auto &P : Arg.pack_elements())
2975 addAssociatedClassesAndNamespaces(Result, P);
2976 break;
2977 }
2978 }
2979
2980 // Add the associated classes and namespaces for argument-dependent lookup
2981 // with an argument of class type (C++ [basic.lookup.argdep]p2).
2982 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,CXXRecordDecl * Class)2983 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2984 CXXRecordDecl *Class) {
2985
2986 // Just silently ignore anything whose name is __va_list_tag.
2987 if (Class->getDeclName() == Result.S.VAListTagName)
2988 return;
2989
2990 // C++ [basic.lookup.argdep]p2:
2991 // [...]
2992 // -- If T is a class type (including unions), its associated
2993 // classes are: the class itself; the class of which it is a
2994 // member, if any; and its direct and indirect base classes.
2995 // Its associated namespaces are the innermost enclosing
2996 // namespaces of its associated classes.
2997
2998 // Add the class of which it is a member, if any.
2999 DeclContext *Ctx = Class->getDeclContext();
3000 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3001 Result.Classes.insert(EnclosingClass);
3002
3003 // Add the associated namespace for this class.
3004 CollectEnclosingNamespace(Result.Namespaces, Ctx);
3005
3006 // -- If T is a template-id, its associated namespaces and classes are
3007 // the namespace in which the template is defined; for member
3008 // templates, the member template's class; the namespaces and classes
3009 // associated with the types of the template arguments provided for
3010 // template type parameters (excluding template template parameters); the
3011 // namespaces in which any template template arguments are defined; and
3012 // the classes in which any member templates used as template template
3013 // arguments are defined. [Note: non-type template arguments do not
3014 // contribute to the set of associated namespaces. ]
3015 if (ClassTemplateSpecializationDecl *Spec
3016 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
3017 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
3018 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3019 Result.Classes.insert(EnclosingClass);
3020 // Add the associated namespace for this class.
3021 CollectEnclosingNamespace(Result.Namespaces, Ctx);
3022
3023 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3024 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3025 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
3026 }
3027
3028 // Add the class itself. If we've already transitively visited this class,
3029 // we don't need to visit base classes.
3030 if (!Result.addClassTransitive(Class))
3031 return;
3032
3033 // Only recurse into base classes for complete types.
3034 if (!Result.S.isCompleteType(Result.InstantiationLoc,
3035 Result.S.Context.getRecordType(Class)))
3036 return;
3037
3038 // Add direct and indirect base classes along with their associated
3039 // namespaces.
3040 SmallVector<CXXRecordDecl *, 32> Bases;
3041 Bases.push_back(Class);
3042 while (!Bases.empty()) {
3043 // Pop this class off the stack.
3044 Class = Bases.pop_back_val();
3045
3046 // Visit the base classes.
3047 for (const auto &Base : Class->bases()) {
3048 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
3049 // In dependent contexts, we do ADL twice, and the first time around,
3050 // the base type might be a dependent TemplateSpecializationType, or a
3051 // TemplateTypeParmType. If that happens, simply ignore it.
3052 // FIXME: If we want to support export, we probably need to add the
3053 // namespace of the template in a TemplateSpecializationType, or even
3054 // the classes and namespaces of known non-dependent arguments.
3055 if (!BaseType)
3056 continue;
3057 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3058 if (Result.addClassTransitive(BaseDecl)) {
3059 // Find the associated namespace for this base class.
3060 DeclContext *BaseCtx = BaseDecl->getDeclContext();
3061 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
3062
3063 // Make sure we visit the bases of this base class.
3064 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
3065 Bases.push_back(BaseDecl);
3066 }
3067 }
3068 }
3069 }
3070
3071 // Add the associated classes and namespaces for
3072 // argument-dependent lookup with an argument of type T
3073 // (C++ [basic.lookup.koenig]p2).
3074 static void
addAssociatedClassesAndNamespaces(AssociatedLookup & Result,QualType Ty)3075 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
3076 // C++ [basic.lookup.koenig]p2:
3077 //
3078 // For each argument type T in the function call, there is a set
3079 // of zero or more associated namespaces and a set of zero or more
3080 // associated classes to be considered. The sets of namespaces and
3081 // classes is determined entirely by the types of the function
3082 // arguments (and the namespace of any template template
3083 // argument). Typedef names and using-declarations used to specify
3084 // the types do not contribute to this set. The sets of namespaces
3085 // and classes are determined in the following way:
3086
3087 SmallVector<const Type *, 16> Queue;
3088 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
3089
3090 while (true) {
3091 switch (T->getTypeClass()) {
3092
3093 #define TYPE(Class, Base)
3094 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
3095 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3096 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
3097 #define ABSTRACT_TYPE(Class, Base)
3098 #include "clang/AST/TypeNodes.inc"
3099 // T is canonical. We can also ignore dependent types because
3100 // we don't need to do ADL at the definition point, but if we
3101 // wanted to implement template export (or if we find some other
3102 // use for associated classes and namespaces...) this would be
3103 // wrong.
3104 break;
3105
3106 // -- If T is a pointer to U or an array of U, its associated
3107 // namespaces and classes are those associated with U.
3108 case Type::Pointer:
3109 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
3110 continue;
3111 case Type::ConstantArray:
3112 case Type::IncompleteArray:
3113 case Type::VariableArray:
3114 T = cast<ArrayType>(T)->getElementType().getTypePtr();
3115 continue;
3116
3117 // -- If T is a fundamental type, its associated sets of
3118 // namespaces and classes are both empty.
3119 case Type::Builtin:
3120 break;
3121
3122 // -- If T is a class type (including unions), its associated
3123 // classes are: the class itself; the class of which it is
3124 // a member, if any; and its direct and indirect base classes.
3125 // Its associated namespaces are the innermost enclosing
3126 // namespaces of its associated classes.
3127 case Type::Record: {
3128 CXXRecordDecl *Class =
3129 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
3130 addAssociatedClassesAndNamespaces(Result, Class);
3131 break;
3132 }
3133
3134 // -- If T is an enumeration type, its associated namespace
3135 // is the innermost enclosing namespace of its declaration.
3136 // If it is a class member, its associated class is the
3137 // member’s class; else it has no associated class.
3138 case Type::Enum: {
3139 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
3140
3141 DeclContext *Ctx = Enum->getDeclContext();
3142 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3143 Result.Classes.insert(EnclosingClass);
3144
3145 // Add the associated namespace for this enumeration.
3146 CollectEnclosingNamespace(Result.Namespaces, Ctx);
3147
3148 break;
3149 }
3150
3151 // -- If T is a function type, its associated namespaces and
3152 // classes are those associated with the function parameter
3153 // types and those associated with the return type.
3154 case Type::FunctionProto: {
3155 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
3156 for (const auto &Arg : Proto->param_types())
3157 Queue.push_back(Arg.getTypePtr());
3158 // fallthrough
3159 [[fallthrough]];
3160 }
3161 case Type::FunctionNoProto: {
3162 const FunctionType *FnType = cast<FunctionType>(T);
3163 T = FnType->getReturnType().getTypePtr();
3164 continue;
3165 }
3166
3167 // -- If T is a pointer to a member function of a class X, its
3168 // associated namespaces and classes are those associated
3169 // with the function parameter types and return type,
3170 // together with those associated with X.
3171 //
3172 // -- If T is a pointer to a data member of class X, its
3173 // associated namespaces and classes are those associated
3174 // with the member type together with those associated with
3175 // X.
3176 case Type::MemberPointer: {
3177 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
3178
3179 // Queue up the class type into which this points.
3180 Queue.push_back(MemberPtr->getClass());
3181
3182 // And directly continue with the pointee type.
3183 T = MemberPtr->getPointeeType().getTypePtr();
3184 continue;
3185 }
3186
3187 // As an extension, treat this like a normal pointer.
3188 case Type::BlockPointer:
3189 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
3190 continue;
3191
3192 // References aren't covered by the standard, but that's such an
3193 // obvious defect that we cover them anyway.
3194 case Type::LValueReference:
3195 case Type::RValueReference:
3196 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
3197 continue;
3198
3199 // These are fundamental types.
3200 case Type::Vector:
3201 case Type::ExtVector:
3202 case Type::ConstantMatrix:
3203 case Type::Complex:
3204 case Type::BitInt:
3205 break;
3206
3207 // Non-deduced auto types only get here for error cases.
3208 case Type::Auto:
3209 case Type::DeducedTemplateSpecialization:
3210 break;
3211
3212 // If T is an Objective-C object or interface type, or a pointer to an
3213 // object or interface type, the associated namespace is the global
3214 // namespace.
3215 case Type::ObjCObject:
3216 case Type::ObjCInterface:
3217 case Type::ObjCObjectPointer:
3218 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
3219 break;
3220
3221 // Atomic types are just wrappers; use the associations of the
3222 // contained type.
3223 case Type::Atomic:
3224 T = cast<AtomicType>(T)->getValueType().getTypePtr();
3225 continue;
3226 case Type::Pipe:
3227 T = cast<PipeType>(T)->getElementType().getTypePtr();
3228 continue;
3229 }
3230
3231 if (Queue.empty())
3232 break;
3233 T = Queue.pop_back_val();
3234 }
3235 }
3236
3237 /// Find the associated classes and namespaces for
3238 /// argument-dependent lookup for a call with the given set of
3239 /// arguments.
3240 ///
3241 /// This routine computes the sets of associated classes and associated
3242 /// namespaces searched by argument-dependent lookup
3243 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,ArrayRef<Expr * > Args,AssociatedNamespaceSet & AssociatedNamespaces,AssociatedClassSet & AssociatedClasses)3244 void Sema::FindAssociatedClassesAndNamespaces(
3245 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
3246 AssociatedNamespaceSet &AssociatedNamespaces,
3247 AssociatedClassSet &AssociatedClasses) {
3248 AssociatedNamespaces.clear();
3249 AssociatedClasses.clear();
3250
3251 AssociatedLookup Result(*this, InstantiationLoc,
3252 AssociatedNamespaces, AssociatedClasses);
3253
3254 // C++ [basic.lookup.koenig]p2:
3255 // For each argument type T in the function call, there is a set
3256 // of zero or more associated namespaces and a set of zero or more
3257 // associated classes to be considered. The sets of namespaces and
3258 // classes is determined entirely by the types of the function
3259 // arguments (and the namespace of any template template
3260 // argument).
3261 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
3262 Expr *Arg = Args[ArgIdx];
3263
3264 if (Arg->getType() != Context.OverloadTy) {
3265 addAssociatedClassesAndNamespaces(Result, Arg->getType());
3266 continue;
3267 }
3268
3269 // [...] In addition, if the argument is the name or address of a
3270 // set of overloaded functions and/or function templates, its
3271 // associated classes and namespaces are the union of those
3272 // associated with each of the members of the set: the namespace
3273 // in which the function or function template is defined and the
3274 // classes and namespaces associated with its (non-dependent)
3275 // parameter types and return type.
3276 OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
3277
3278 for (const NamedDecl *D : OE->decls()) {
3279 // Look through any using declarations to find the underlying function.
3280 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3281
3282 // Add the classes and namespaces associated with the parameter
3283 // types and return type of this function.
3284 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
3285 }
3286 }
3287 }
3288
LookupSingleName(Scope * S,DeclarationName Name,SourceLocation Loc,LookupNameKind NameKind,RedeclarationKind Redecl)3289 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
3290 SourceLocation Loc,
3291 LookupNameKind NameKind,
3292 RedeclarationKind Redecl) {
3293 LookupResult R(*this, Name, Loc, NameKind, Redecl);
3294 LookupName(R, S);
3295 return R.getAsSingle<NamedDecl>();
3296 }
3297
3298 /// Find the protocol with the given name, if any.
LookupProtocol(IdentifierInfo * II,SourceLocation IdLoc,RedeclarationKind Redecl)3299 ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
3300 SourceLocation IdLoc,
3301 RedeclarationKind Redecl) {
3302 Decl *D = LookupSingleName(TUScope, II, IdLoc,
3303 LookupObjCProtocolName, Redecl);
3304 return cast_or_null<ObjCProtocolDecl>(D);
3305 }
3306
LookupOverloadedOperatorName(OverloadedOperatorKind Op,Scope * S,UnresolvedSetImpl & Functions)3307 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
3308 UnresolvedSetImpl &Functions) {
3309 // C++ [over.match.oper]p3:
3310 // -- The set of non-member candidates is the result of the
3311 // unqualified lookup of operator@ in the context of the
3312 // expression according to the usual rules for name lookup in
3313 // unqualified function calls (3.4.2) except that all member
3314 // functions are ignored.
3315 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3316 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3317 LookupName(Operators, S);
3318
3319 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
3320 Functions.append(Operators.begin(), Operators.end());
3321 }
3322
LookupSpecialMember(CXXRecordDecl * RD,CXXSpecialMember SM,bool ConstArg,bool VolatileArg,bool RValueThis,bool ConstThis,bool VolatileThis)3323 Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
3324 CXXSpecialMember SM,
3325 bool ConstArg,
3326 bool VolatileArg,
3327 bool RValueThis,
3328 bool ConstThis,
3329 bool VolatileThis) {
3330 assert(CanDeclareSpecialMemberFunction(RD) &&
3331 "doing special member lookup into record that isn't fully complete");
3332 RD = RD->getDefinition();
3333 if (RValueThis || ConstThis || VolatileThis)
3334 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
3335 "constructors and destructors always have unqualified lvalue this");
3336 if (ConstArg || VolatileArg)
3337 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
3338 "parameter-less special members can't have qualified arguments");
3339
3340 // FIXME: Get the caller to pass in a location for the lookup.
3341 SourceLocation LookupLoc = RD->getLocation();
3342
3343 llvm::FoldingSetNodeID ID;
3344 ID.AddPointer(RD);
3345 ID.AddInteger(SM);
3346 ID.AddInteger(ConstArg);
3347 ID.AddInteger(VolatileArg);
3348 ID.AddInteger(RValueThis);
3349 ID.AddInteger(ConstThis);
3350 ID.AddInteger(VolatileThis);
3351
3352 void *InsertPoint;
3353 SpecialMemberOverloadResultEntry *Result =
3354 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3355
3356 // This was already cached
3357 if (Result)
3358 return *Result;
3359
3360 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3361 Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3362 SpecialMemberCache.InsertNode(Result, InsertPoint);
3363
3364 if (SM == CXXDestructor) {
3365 if (RD->needsImplicitDestructor()) {
3366 runWithSufficientStackSpace(RD->getLocation(), [&] {
3367 DeclareImplicitDestructor(RD);
3368 });
3369 }
3370 CXXDestructorDecl *DD = RD->getDestructor();
3371 Result->setMethod(DD);
3372 Result->setKind(DD && !DD->isDeleted()
3373 ? SpecialMemberOverloadResult::Success
3374 : SpecialMemberOverloadResult::NoMemberOrDeleted);
3375 return *Result;
3376 }
3377
3378 // Prepare for overload resolution. Here we construct a synthetic argument
3379 // if necessary and make sure that implicit functions are declared.
3380 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3381 DeclarationName Name;
3382 Expr *Arg = nullptr;
3383 unsigned NumArgs;
3384
3385 QualType ArgType = CanTy;
3386 ExprValueKind VK = VK_LValue;
3387
3388 if (SM == CXXDefaultConstructor) {
3389 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3390 NumArgs = 0;
3391 if (RD->needsImplicitDefaultConstructor()) {
3392 runWithSufficientStackSpace(RD->getLocation(), [&] {
3393 DeclareImplicitDefaultConstructor(RD);
3394 });
3395 }
3396 } else {
3397 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
3398 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3399 if (RD->needsImplicitCopyConstructor()) {
3400 runWithSufficientStackSpace(RD->getLocation(), [&] {
3401 DeclareImplicitCopyConstructor(RD);
3402 });
3403 }
3404 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3405 runWithSufficientStackSpace(RD->getLocation(), [&] {
3406 DeclareImplicitMoveConstructor(RD);
3407 });
3408 }
3409 } else {
3410 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3411 if (RD->needsImplicitCopyAssignment()) {
3412 runWithSufficientStackSpace(RD->getLocation(), [&] {
3413 DeclareImplicitCopyAssignment(RD);
3414 });
3415 }
3416 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3417 runWithSufficientStackSpace(RD->getLocation(), [&] {
3418 DeclareImplicitMoveAssignment(RD);
3419 });
3420 }
3421 }
3422
3423 if (ConstArg)
3424 ArgType.addConst();
3425 if (VolatileArg)
3426 ArgType.addVolatile();
3427
3428 // This isn't /really/ specified by the standard, but it's implied
3429 // we should be working from a PRValue in the case of move to ensure
3430 // that we prefer to bind to rvalue references, and an LValue in the
3431 // case of copy to ensure we don't bind to rvalue references.
3432 // Possibly an XValue is actually correct in the case of move, but
3433 // there is no semantic difference for class types in this restricted
3434 // case.
3435 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
3436 VK = VK_LValue;
3437 else
3438 VK = VK_PRValue;
3439 }
3440
3441 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3442
3443 if (SM != CXXDefaultConstructor) {
3444 NumArgs = 1;
3445 Arg = &FakeArg;
3446 }
3447
3448 // Create the object argument
3449 QualType ThisTy = CanTy;
3450 if (ConstThis)
3451 ThisTy.addConst();
3452 if (VolatileThis)
3453 ThisTy.addVolatile();
3454 Expr::Classification Classification =
3455 OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue)
3456 .Classify(Context);
3457
3458 // Now we perform lookup on the name we computed earlier and do overload
3459 // resolution. Lookup is only performed directly into the class since there
3460 // will always be a (possibly implicit) declaration to shadow any others.
3461 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3462 DeclContext::lookup_result R = RD->lookup(Name);
3463
3464 if (R.empty()) {
3465 // We might have no default constructor because we have a lambda's closure
3466 // type, rather than because there's some other declared constructor.
3467 // Every class has a copy/move constructor, copy/move assignment, and
3468 // destructor.
3469 assert(SM == CXXDefaultConstructor &&
3470 "lookup for a constructor or assignment operator was empty");
3471 Result->setMethod(nullptr);
3472 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3473 return *Result;
3474 }
3475
3476 // Copy the candidates as our processing of them may load new declarations
3477 // from an external source and invalidate lookup_result.
3478 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3479
3480 for (NamedDecl *CandDecl : Candidates) {
3481 if (CandDecl->isInvalidDecl())
3482 continue;
3483
3484 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3485 auto CtorInfo = getConstructorInfo(Cand);
3486 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3487 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3488 AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3489 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3490 else if (CtorInfo)
3491 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3492 llvm::ArrayRef(&Arg, NumArgs), OCS,
3493 /*SuppressUserConversions*/ true);
3494 else
3495 AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS,
3496 /*SuppressUserConversions*/ true);
3497 } else if (FunctionTemplateDecl *Tmpl =
3498 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3499 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
3500 AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy,
3501 Classification,
3502 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3503 else if (CtorInfo)
3504 AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl,
3505 CtorInfo.FoundDecl, nullptr,
3506 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3507 else
3508 AddTemplateOverloadCandidate(Tmpl, Cand, nullptr,
3509 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3510 } else {
3511 assert(isa<UsingDecl>(Cand.getDecl()) &&
3512 "illegal Kind of operator = Decl");
3513 }
3514 }
3515
3516 OverloadCandidateSet::iterator Best;
3517 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3518 case OR_Success:
3519 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3520 Result->setKind(SpecialMemberOverloadResult::Success);
3521 break;
3522
3523 case OR_Deleted:
3524 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3525 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3526 break;
3527
3528 case OR_Ambiguous:
3529 Result->setMethod(nullptr);
3530 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3531 break;
3532
3533 case OR_No_Viable_Function:
3534 Result->setMethod(nullptr);
3535 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3536 break;
3537 }
3538
3539 return *Result;
3540 }
3541
3542 /// Look up the default constructor for the given class.
LookupDefaultConstructor(CXXRecordDecl * Class)3543 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3544 SpecialMemberOverloadResult Result =
3545 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3546 false, false);
3547
3548 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3549 }
3550
3551 /// Look up the copying constructor for the given class.
LookupCopyingConstructor(CXXRecordDecl * Class,unsigned Quals)3552 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3553 unsigned Quals) {
3554 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3555 "non-const, non-volatile qualifiers for copy ctor arg");
3556 SpecialMemberOverloadResult Result =
3557 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3558 Quals & Qualifiers::Volatile, false, false, false);
3559
3560 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3561 }
3562
3563 /// Look up the moving constructor for the given class.
LookupMovingConstructor(CXXRecordDecl * Class,unsigned Quals)3564 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3565 unsigned Quals) {
3566 SpecialMemberOverloadResult Result =
3567 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3568 Quals & Qualifiers::Volatile, false, false, false);
3569
3570 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3571 }
3572
3573 /// Look up the constructors for the given class.
LookupConstructors(CXXRecordDecl * Class)3574 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3575 // If the implicit constructors have not yet been declared, do so now.
3576 if (CanDeclareSpecialMemberFunction(Class)) {
3577 runWithSufficientStackSpace(Class->getLocation(), [&] {
3578 if (Class->needsImplicitDefaultConstructor())
3579 DeclareImplicitDefaultConstructor(Class);
3580 if (Class->needsImplicitCopyConstructor())
3581 DeclareImplicitCopyConstructor(Class);
3582 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3583 DeclareImplicitMoveConstructor(Class);
3584 });
3585 }
3586
3587 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3588 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3589 return Class->lookup(Name);
3590 }
3591
3592 /// Look up the copying assignment operator for the given class.
LookupCopyingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)3593 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3594 unsigned Quals, bool RValueThis,
3595 unsigned ThisQuals) {
3596 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3597 "non-const, non-volatile qualifiers for copy assignment arg");
3598 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3599 "non-const, non-volatile qualifiers for copy assignment this");
3600 SpecialMemberOverloadResult Result =
3601 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3602 Quals & Qualifiers::Volatile, RValueThis,
3603 ThisQuals & Qualifiers::Const,
3604 ThisQuals & Qualifiers::Volatile);
3605
3606 return Result.getMethod();
3607 }
3608
3609 /// Look up the moving assignment operator for the given class.
LookupMovingAssignment(CXXRecordDecl * Class,unsigned Quals,bool RValueThis,unsigned ThisQuals)3610 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3611 unsigned Quals,
3612 bool RValueThis,
3613 unsigned ThisQuals) {
3614 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3615 "non-const, non-volatile qualifiers for copy assignment this");
3616 SpecialMemberOverloadResult Result =
3617 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3618 Quals & Qualifiers::Volatile, RValueThis,
3619 ThisQuals & Qualifiers::Const,
3620 ThisQuals & Qualifiers::Volatile);
3621
3622 return Result.getMethod();
3623 }
3624
3625 /// Look for the destructor of the given class.
3626 ///
3627 /// During semantic analysis, this routine should be used in lieu of
3628 /// CXXRecordDecl::getDestructor().
3629 ///
3630 /// \returns The destructor for this class.
LookupDestructor(CXXRecordDecl * Class)3631 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3632 return cast_or_null<CXXDestructorDecl>(
3633 LookupSpecialMember(Class, CXXDestructor, false, false, false, false,
3634 false)
3635 .getMethod());
3636 }
3637
3638 /// LookupLiteralOperator - Determine which literal operator should be used for
3639 /// a user-defined literal, per C++11 [lex.ext].
3640 ///
3641 /// Normal overload resolution is not used to select which literal operator to
3642 /// call for a user-defined literal. Look up the provided literal operator name,
3643 /// and filter the results to the appropriate set for the given argument types.
3644 Sema::LiteralOperatorLookupResult
LookupLiteralOperator(Scope * S,LookupResult & R,ArrayRef<QualType> ArgTys,bool AllowRaw,bool AllowTemplate,bool AllowStringTemplatePack,bool DiagnoseMissing,StringLiteral * StringLit)3645 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3646 ArrayRef<QualType> ArgTys, bool AllowRaw,
3647 bool AllowTemplate, bool AllowStringTemplatePack,
3648 bool DiagnoseMissing, StringLiteral *StringLit) {
3649 LookupName(R, S);
3650 assert(R.getResultKind() != LookupResult::Ambiguous &&
3651 "literal operator lookup can't be ambiguous");
3652
3653 // Filter the lookup results appropriately.
3654 LookupResult::Filter F = R.makeFilter();
3655
3656 bool AllowCooked = true;
3657 bool FoundRaw = false;
3658 bool FoundTemplate = false;
3659 bool FoundStringTemplatePack = false;
3660 bool FoundCooked = false;
3661
3662 while (F.hasNext()) {
3663 Decl *D = F.next();
3664 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3665 D = USD->getTargetDecl();
3666
3667 // If the declaration we found is invalid, skip it.
3668 if (D->isInvalidDecl()) {
3669 F.erase();
3670 continue;
3671 }
3672
3673 bool IsRaw = false;
3674 bool IsTemplate = false;
3675 bool IsStringTemplatePack = false;
3676 bool IsCooked = false;
3677
3678 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3679 if (FD->getNumParams() == 1 &&
3680 FD->getParamDecl(0)->getType()->getAs<PointerType>())
3681 IsRaw = true;
3682 else if (FD->getNumParams() == ArgTys.size()) {
3683 IsCooked = true;
3684 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3685 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3686 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3687 IsCooked = false;
3688 break;
3689 }
3690 }
3691 }
3692 }
3693 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3694 TemplateParameterList *Params = FD->getTemplateParameters();
3695 if (Params->size() == 1) {
3696 IsTemplate = true;
3697 if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) {
3698 // Implied but not stated: user-defined integer and floating literals
3699 // only ever use numeric literal operator templates, not templates
3700 // taking a parameter of class type.
3701 F.erase();
3702 continue;
3703 }
3704
3705 // A string literal template is only considered if the string literal
3706 // is a well-formed template argument for the template parameter.
3707 if (StringLit) {
3708 SFINAETrap Trap(*this);
3709 SmallVector<TemplateArgument, 1> SugaredChecked, CanonicalChecked;
3710 TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit);
3711 if (CheckTemplateArgument(
3712 Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(),
3713 0, SugaredChecked, CanonicalChecked, CTAK_Specified) ||
3714 Trap.hasErrorOccurred())
3715 IsTemplate = false;
3716 }
3717 } else {
3718 IsStringTemplatePack = true;
3719 }
3720 }
3721
3722 if (AllowTemplate && StringLit && IsTemplate) {
3723 FoundTemplate = true;
3724 AllowRaw = false;
3725 AllowCooked = false;
3726 AllowStringTemplatePack = false;
3727 if (FoundRaw || FoundCooked || FoundStringTemplatePack) {
3728 F.restart();
3729 FoundRaw = FoundCooked = FoundStringTemplatePack = false;
3730 }
3731 } else if (AllowCooked && IsCooked) {
3732 FoundCooked = true;
3733 AllowRaw = false;
3734 AllowTemplate = StringLit;
3735 AllowStringTemplatePack = false;
3736 if (FoundRaw || FoundTemplate || FoundStringTemplatePack) {
3737 // Go through again and remove the raw and template decls we've
3738 // already found.
3739 F.restart();
3740 FoundRaw = FoundTemplate = FoundStringTemplatePack = false;
3741 }
3742 } else if (AllowRaw && IsRaw) {
3743 FoundRaw = true;
3744 } else if (AllowTemplate && IsTemplate) {
3745 FoundTemplate = true;
3746 } else if (AllowStringTemplatePack && IsStringTemplatePack) {
3747 FoundStringTemplatePack = true;
3748 } else {
3749 F.erase();
3750 }
3751 }
3752
3753 F.done();
3754
3755 // Per C++20 [lex.ext]p5, we prefer the template form over the non-template
3756 // form for string literal operator templates.
3757 if (StringLit && FoundTemplate)
3758 return LOLR_Template;
3759
3760 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3761 // parameter type, that is used in preference to a raw literal operator
3762 // or literal operator template.
3763 if (FoundCooked)
3764 return LOLR_Cooked;
3765
3766 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3767 // operator template, but not both.
3768 if (FoundRaw && FoundTemplate) {
3769 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3770 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3771 NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3772 return LOLR_Error;
3773 }
3774
3775 if (FoundRaw)
3776 return LOLR_Raw;
3777
3778 if (FoundTemplate)
3779 return LOLR_Template;
3780
3781 if (FoundStringTemplatePack)
3782 return LOLR_StringTemplatePack;
3783
3784 // Didn't find anything we could use.
3785 if (DiagnoseMissing) {
3786 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3787 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3788 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3789 << (AllowTemplate || AllowStringTemplatePack);
3790 return LOLR_Error;
3791 }
3792
3793 return LOLR_ErrorNoDiagnostic;
3794 }
3795
insert(NamedDecl * New)3796 void ADLResult::insert(NamedDecl *New) {
3797 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3798
3799 // If we haven't yet seen a decl for this key, or the last decl
3800 // was exactly this one, we're done.
3801 if (Old == nullptr || Old == New) {
3802 Old = New;
3803 return;
3804 }
3805
3806 // Otherwise, decide which is a more recent redeclaration.
3807 FunctionDecl *OldFD = Old->getAsFunction();
3808 FunctionDecl *NewFD = New->getAsFunction();
3809
3810 FunctionDecl *Cursor = NewFD;
3811 while (true) {
3812 Cursor = Cursor->getPreviousDecl();
3813
3814 // If we got to the end without finding OldFD, OldFD is the newer
3815 // declaration; leave things as they are.
3816 if (!Cursor) return;
3817
3818 // If we do find OldFD, then NewFD is newer.
3819 if (Cursor == OldFD) break;
3820
3821 // Otherwise, keep looking.
3822 }
3823
3824 Old = New;
3825 }
3826
ArgumentDependentLookup(DeclarationName Name,SourceLocation Loc,ArrayRef<Expr * > Args,ADLResult & Result)3827 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3828 ArrayRef<Expr *> Args, ADLResult &Result) {
3829 // Find all of the associated namespaces and classes based on the
3830 // arguments we have.
3831 AssociatedNamespaceSet AssociatedNamespaces;
3832 AssociatedClassSet AssociatedClasses;
3833 FindAssociatedClassesAndNamespaces(Loc, Args,
3834 AssociatedNamespaces,
3835 AssociatedClasses);
3836
3837 // C++ [basic.lookup.argdep]p3:
3838 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3839 // and let Y be the lookup set produced by argument dependent
3840 // lookup (defined as follows). If X contains [...] then Y is
3841 // empty. Otherwise Y is the set of declarations found in the
3842 // namespaces associated with the argument types as described
3843 // below. The set of declarations found by the lookup of the name
3844 // is the union of X and Y.
3845 //
3846 // Here, we compute Y and add its members to the overloaded
3847 // candidate set.
3848 for (auto *NS : AssociatedNamespaces) {
3849 // When considering an associated namespace, the lookup is the
3850 // same as the lookup performed when the associated namespace is
3851 // used as a qualifier (3.4.3.2) except that:
3852 //
3853 // -- Any using-directives in the associated namespace are
3854 // ignored.
3855 //
3856 // -- Any namespace-scope friend functions declared in
3857 // associated classes are visible within their respective
3858 // namespaces even if they are not visible during an ordinary
3859 // lookup (11.4).
3860 //
3861 // C++20 [basic.lookup.argdep] p4.3
3862 // -- are exported, are attached to a named module M, do not appear
3863 // in the translation unit containing the point of the lookup, and
3864 // have the same innermost enclosing non-inline namespace scope as
3865 // a declaration of an associated entity attached to M.
3866 DeclContext::lookup_result R = NS->lookup(Name);
3867 for (auto *D : R) {
3868 auto *Underlying = D;
3869 if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3870 Underlying = USD->getTargetDecl();
3871
3872 if (!isa<FunctionDecl>(Underlying) &&
3873 !isa<FunctionTemplateDecl>(Underlying))
3874 continue;
3875
3876 // The declaration is visible to argument-dependent lookup if either
3877 // it's ordinarily visible or declared as a friend in an associated
3878 // class.
3879 bool Visible = false;
3880 for (D = D->getMostRecentDecl(); D;
3881 D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3882 if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3883 if (isVisible(D)) {
3884 Visible = true;
3885 break;
3886 } else if (getLangOpts().CPlusPlusModules &&
3887 D->isInExportDeclContext()) {
3888 // C++20 [basic.lookup.argdep] p4.3 .. are exported ...
3889 Module *FM = D->getOwningModule();
3890 // exports are only valid in module purview and outside of any
3891 // PMF (although a PMF should not even be present in a module
3892 // with an import).
3893 assert(FM && FM->isModulePurview() && !FM->isPrivateModule() &&
3894 "bad export context");
3895 // .. are attached to a named module M, do not appear in the
3896 // translation unit containing the point of the lookup..
3897 if (!isModuleUnitOfCurrentTU(FM) &&
3898 llvm::any_of(AssociatedClasses, [&](auto *E) {
3899 // ... and have the same innermost enclosing non-inline
3900 // namespace scope as a declaration of an associated entity
3901 // attached to M
3902 if (!E->hasOwningModule() ||
3903 E->getOwningModule()->getTopLevelModuleName() !=
3904 FM->getTopLevelModuleName())
3905 return false;
3906 // TODO: maybe this could be cached when generating the
3907 // associated namespaces / entities.
3908 DeclContext *Ctx = E->getDeclContext();
3909 while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
3910 Ctx = Ctx->getParent();
3911 return Ctx == NS;
3912 })) {
3913 Visible = true;
3914 break;
3915 }
3916 }
3917 } else if (D->getFriendObjectKind()) {
3918 auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3919 // [basic.lookup.argdep]p4:
3920 // Argument-dependent lookup finds all declarations of functions and
3921 // function templates that
3922 // - ...
3923 // - are declared as a friend ([class.friend]) of any class with a
3924 // reachable definition in the set of associated entities,
3925 //
3926 // FIXME: If there's a merged definition of D that is reachable, then
3927 // the friend declaration should be considered.
3928 if (AssociatedClasses.count(RD) && isReachable(D)) {
3929 Visible = true;
3930 break;
3931 }
3932 }
3933 }
3934
3935 // FIXME: Preserve D as the FoundDecl.
3936 if (Visible)
3937 Result.insert(Underlying);
3938 }
3939 }
3940 }
3941
3942 //----------------------------------------------------------------------------
3943 // Search for all visible declarations.
3944 //----------------------------------------------------------------------------
~VisibleDeclConsumer()3945 VisibleDeclConsumer::~VisibleDeclConsumer() { }
3946
includeHiddenDecls() const3947 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3948
3949 namespace {
3950
3951 class ShadowContextRAII;
3952
3953 class VisibleDeclsRecord {
3954 public:
3955 /// An entry in the shadow map, which is optimized to store a
3956 /// single declaration (the common case) but can also store a list
3957 /// of declarations.
3958 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3959
3960 private:
3961 /// A mapping from declaration names to the declarations that have
3962 /// this name within a particular scope.
3963 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3964
3965 /// A list of shadow maps, which is used to model name hiding.
3966 std::list<ShadowMap> ShadowMaps;
3967
3968 /// The declaration contexts we have already visited.
3969 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3970
3971 friend class ShadowContextRAII;
3972
3973 public:
3974 /// Determine whether we have already visited this context
3975 /// (and, if not, note that we are going to visit that context now).
visitedContext(DeclContext * Ctx)3976 bool visitedContext(DeclContext *Ctx) {
3977 return !VisitedContexts.insert(Ctx).second;
3978 }
3979
alreadyVisitedContext(DeclContext * Ctx)3980 bool alreadyVisitedContext(DeclContext *Ctx) {
3981 return VisitedContexts.count(Ctx);
3982 }
3983
3984 /// Determine whether the given declaration is hidden in the
3985 /// current scope.
3986 ///
3987 /// \returns the declaration that hides the given declaration, or
3988 /// NULL if no such declaration exists.
3989 NamedDecl *checkHidden(NamedDecl *ND);
3990
3991 /// Add a declaration to the current shadow map.
add(NamedDecl * ND)3992 void add(NamedDecl *ND) {
3993 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3994 }
3995 };
3996
3997 /// RAII object that records when we've entered a shadow context.
3998 class ShadowContextRAII {
3999 VisibleDeclsRecord &Visible;
4000
4001 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
4002
4003 public:
ShadowContextRAII(VisibleDeclsRecord & Visible)4004 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
4005 Visible.ShadowMaps.emplace_back();
4006 }
4007
~ShadowContextRAII()4008 ~ShadowContextRAII() {
4009 Visible.ShadowMaps.pop_back();
4010 }
4011 };
4012
4013 } // end anonymous namespace
4014
checkHidden(NamedDecl * ND)4015 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
4016 unsigned IDNS = ND->getIdentifierNamespace();
4017 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
4018 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
4019 SM != SMEnd; ++SM) {
4020 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
4021 if (Pos == SM->end())
4022 continue;
4023
4024 for (auto *D : Pos->second) {
4025 // A tag declaration does not hide a non-tag declaration.
4026 if (D->hasTagIdentifierNamespace() &&
4027 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
4028 Decl::IDNS_ObjCProtocol)))
4029 continue;
4030
4031 // Protocols are in distinct namespaces from everything else.
4032 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
4033 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
4034 D->getIdentifierNamespace() != IDNS)
4035 continue;
4036
4037 // Functions and function templates in the same scope overload
4038 // rather than hide. FIXME: Look for hiding based on function
4039 // signatures!
4040 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4041 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4042 SM == ShadowMaps.rbegin())
4043 continue;
4044
4045 // A shadow declaration that's created by a resolved using declaration
4046 // is not hidden by the same using declaration.
4047 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
4048 cast<UsingShadowDecl>(ND)->getIntroducer() == D)
4049 continue;
4050
4051 // We've found a declaration that hides this one.
4052 return D;
4053 }
4054 }
4055
4056 return nullptr;
4057 }
4058
4059 namespace {
4060 class LookupVisibleHelper {
4061 public:
LookupVisibleHelper(VisibleDeclConsumer & Consumer,bool IncludeDependentBases,bool LoadExternal)4062 LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
4063 bool LoadExternal)
4064 : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
4065 LoadExternal(LoadExternal) {}
4066
lookupVisibleDecls(Sema & SemaRef,Scope * S,Sema::LookupNameKind Kind,bool IncludeGlobalScope)4067 void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
4068 bool IncludeGlobalScope) {
4069 // Determine the set of using directives available during
4070 // unqualified name lookup.
4071 Scope *Initial = S;
4072 UnqualUsingDirectiveSet UDirs(SemaRef);
4073 if (SemaRef.getLangOpts().CPlusPlus) {
4074 // Find the first namespace or translation-unit scope.
4075 while (S && !isNamespaceOrTranslationUnitScope(S))
4076 S = S->getParent();
4077
4078 UDirs.visitScopeChain(Initial, S);
4079 }
4080 UDirs.done();
4081
4082 // Look for visible declarations.
4083 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4084 Result.setAllowHidden(Consumer.includeHiddenDecls());
4085 if (!IncludeGlobalScope)
4086 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4087 ShadowContextRAII Shadow(Visited);
4088 lookupInScope(Initial, Result, UDirs);
4089 }
4090
lookupVisibleDecls(Sema & SemaRef,DeclContext * Ctx,Sema::LookupNameKind Kind,bool IncludeGlobalScope)4091 void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
4092 Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
4093 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4094 Result.setAllowHidden(Consumer.includeHiddenDecls());
4095 if (!IncludeGlobalScope)
4096 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4097
4098 ShadowContextRAII Shadow(Visited);
4099 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
4100 /*InBaseClass=*/false);
4101 }
4102
4103 private:
lookupInDeclContext(DeclContext * Ctx,LookupResult & Result,bool QualifiedNameLookup,bool InBaseClass)4104 void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
4105 bool QualifiedNameLookup, bool InBaseClass) {
4106 if (!Ctx)
4107 return;
4108
4109 // Make sure we don't visit the same context twice.
4110 if (Visited.visitedContext(Ctx->getPrimaryContext()))
4111 return;
4112
4113 Consumer.EnteredContext(Ctx);
4114
4115 // Outside C++, lookup results for the TU live on identifiers.
4116 if (isa<TranslationUnitDecl>(Ctx) &&
4117 !Result.getSema().getLangOpts().CPlusPlus) {
4118 auto &S = Result.getSema();
4119 auto &Idents = S.Context.Idents;
4120
4121 // Ensure all external identifiers are in the identifier table.
4122 if (LoadExternal)
4123 if (IdentifierInfoLookup *External =
4124 Idents.getExternalIdentifierLookup()) {
4125 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4126 for (StringRef Name = Iter->Next(); !Name.empty();
4127 Name = Iter->Next())
4128 Idents.get(Name);
4129 }
4130
4131 // Walk all lookup results in the TU for each identifier.
4132 for (const auto &Ident : Idents) {
4133 for (auto I = S.IdResolver.begin(Ident.getValue()),
4134 E = S.IdResolver.end();
4135 I != E; ++I) {
4136 if (S.IdResolver.isDeclInScope(*I, Ctx)) {
4137 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
4138 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4139 Visited.add(ND);
4140 }
4141 }
4142 }
4143 }
4144
4145 return;
4146 }
4147
4148 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
4149 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
4150
4151 llvm::SmallVector<NamedDecl *, 4> DeclsToVisit;
4152 // We sometimes skip loading namespace-level results (they tend to be huge).
4153 bool Load = LoadExternal ||
4154 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
4155 // Enumerate all of the results in this context.
4156 for (DeclContextLookupResult R :
4157 Load ? Ctx->lookups()
4158 : Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
4159 for (auto *D : R) {
4160 if (auto *ND = Result.getAcceptableDecl(D)) {
4161 // Rather than visit immediately, we put ND into a vector and visit
4162 // all decls, in order, outside of this loop. The reason is that
4163 // Consumer.FoundDecl() may invalidate the iterators used in the two
4164 // loops above.
4165 DeclsToVisit.push_back(ND);
4166 }
4167 }
4168 }
4169
4170 for (auto *ND : DeclsToVisit) {
4171 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4172 Visited.add(ND);
4173 }
4174 DeclsToVisit.clear();
4175
4176 // Traverse using directives for qualified name lookup.
4177 if (QualifiedNameLookup) {
4178 ShadowContextRAII Shadow(Visited);
4179 for (auto *I : Ctx->using_directives()) {
4180 if (!Result.getSema().isVisible(I))
4181 continue;
4182 lookupInDeclContext(I->getNominatedNamespace(), Result,
4183 QualifiedNameLookup, InBaseClass);
4184 }
4185 }
4186
4187 // Traverse the contexts of inherited C++ classes.
4188 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
4189 if (!Record->hasDefinition())
4190 return;
4191
4192 for (const auto &B : Record->bases()) {
4193 QualType BaseType = B.getType();
4194
4195 RecordDecl *RD;
4196 if (BaseType->isDependentType()) {
4197 if (!IncludeDependentBases) {
4198 // Don't look into dependent bases, because name lookup can't look
4199 // there anyway.
4200 continue;
4201 }
4202 const auto *TST = BaseType->getAs<TemplateSpecializationType>();
4203 if (!TST)
4204 continue;
4205 TemplateName TN = TST->getTemplateName();
4206 const auto *TD =
4207 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
4208 if (!TD)
4209 continue;
4210 RD = TD->getTemplatedDecl();
4211 } else {
4212 const auto *Record = BaseType->getAs<RecordType>();
4213 if (!Record)
4214 continue;
4215 RD = Record->getDecl();
4216 }
4217
4218 // FIXME: It would be nice to be able to determine whether referencing
4219 // a particular member would be ambiguous. For example, given
4220 //
4221 // struct A { int member; };
4222 // struct B { int member; };
4223 // struct C : A, B { };
4224 //
4225 // void f(C *c) { c->### }
4226 //
4227 // accessing 'member' would result in an ambiguity. However, we
4228 // could be smart enough to qualify the member with the base
4229 // class, e.g.,
4230 //
4231 // c->B::member
4232 //
4233 // or
4234 //
4235 // c->A::member
4236
4237 // Find results in this base class (and its bases).
4238 ShadowContextRAII Shadow(Visited);
4239 lookupInDeclContext(RD, Result, QualifiedNameLookup,
4240 /*InBaseClass=*/true);
4241 }
4242 }
4243
4244 // Traverse the contexts of Objective-C classes.
4245 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
4246 // Traverse categories.
4247 for (auto *Cat : IFace->visible_categories()) {
4248 ShadowContextRAII Shadow(Visited);
4249 lookupInDeclContext(Cat, Result, QualifiedNameLookup,
4250 /*InBaseClass=*/false);
4251 }
4252
4253 // Traverse protocols.
4254 for (auto *I : IFace->all_referenced_protocols()) {
4255 ShadowContextRAII Shadow(Visited);
4256 lookupInDeclContext(I, Result, QualifiedNameLookup,
4257 /*InBaseClass=*/false);
4258 }
4259
4260 // Traverse the superclass.
4261 if (IFace->getSuperClass()) {
4262 ShadowContextRAII Shadow(Visited);
4263 lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
4264 /*InBaseClass=*/true);
4265 }
4266
4267 // If there is an implementation, traverse it. We do this to find
4268 // synthesized ivars.
4269 if (IFace->getImplementation()) {
4270 ShadowContextRAII Shadow(Visited);
4271 lookupInDeclContext(IFace->getImplementation(), Result,
4272 QualifiedNameLookup, InBaseClass);
4273 }
4274 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
4275 for (auto *I : Protocol->protocols()) {
4276 ShadowContextRAII Shadow(Visited);
4277 lookupInDeclContext(I, Result, QualifiedNameLookup,
4278 /*InBaseClass=*/false);
4279 }
4280 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
4281 for (auto *I : Category->protocols()) {
4282 ShadowContextRAII Shadow(Visited);
4283 lookupInDeclContext(I, Result, QualifiedNameLookup,
4284 /*InBaseClass=*/false);
4285 }
4286
4287 // If there is an implementation, traverse it.
4288 if (Category->getImplementation()) {
4289 ShadowContextRAII Shadow(Visited);
4290 lookupInDeclContext(Category->getImplementation(), Result,
4291 QualifiedNameLookup, /*InBaseClass=*/true);
4292 }
4293 }
4294 }
4295
lookupInScope(Scope * S,LookupResult & Result,UnqualUsingDirectiveSet & UDirs)4296 void lookupInScope(Scope *S, LookupResult &Result,
4297 UnqualUsingDirectiveSet &UDirs) {
4298 // No clients run in this mode and it's not supported. Please add tests and
4299 // remove the assertion if you start relying on it.
4300 assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
4301
4302 if (!S)
4303 return;
4304
4305 if (!S->getEntity() ||
4306 (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
4307 (S->getEntity())->isFunctionOrMethod()) {
4308 FindLocalExternScope FindLocals(Result);
4309 // Walk through the declarations in this Scope. The consumer might add new
4310 // decls to the scope as part of deserialization, so make a copy first.
4311 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
4312 for (Decl *D : ScopeDecls) {
4313 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
4314 if ((ND = Result.getAcceptableDecl(ND))) {
4315 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
4316 Visited.add(ND);
4317 }
4318 }
4319 }
4320
4321 DeclContext *Entity = S->getLookupEntity();
4322 if (Entity) {
4323 // Look into this scope's declaration context, along with any of its
4324 // parent lookup contexts (e.g., enclosing classes), up to the point
4325 // where we hit the context stored in the next outer scope.
4326 DeclContext *OuterCtx = findOuterContext(S);
4327
4328 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
4329 Ctx = Ctx->getLookupParent()) {
4330 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
4331 if (Method->isInstanceMethod()) {
4332 // For instance methods, look for ivars in the method's interface.
4333 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
4334 Result.getNameLoc(),
4335 Sema::LookupMemberName);
4336 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
4337 lookupInDeclContext(IFace, IvarResult,
4338 /*QualifiedNameLookup=*/false,
4339 /*InBaseClass=*/false);
4340 }
4341 }
4342
4343 // We've already performed all of the name lookup that we need
4344 // to for Objective-C methods; the next context will be the
4345 // outer scope.
4346 break;
4347 }
4348
4349 if (Ctx->isFunctionOrMethod())
4350 continue;
4351
4352 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
4353 /*InBaseClass=*/false);
4354 }
4355 } else if (!S->getParent()) {
4356 // Look into the translation unit scope. We walk through the translation
4357 // unit's declaration context, because the Scope itself won't have all of
4358 // the declarations if we loaded a precompiled header.
4359 // FIXME: We would like the translation unit's Scope object to point to
4360 // the translation unit, so we don't need this special "if" branch.
4361 // However, doing so would force the normal C++ name-lookup code to look
4362 // into the translation unit decl when the IdentifierInfo chains would
4363 // suffice. Once we fix that problem (which is part of a more general
4364 // "don't look in DeclContexts unless we have to" optimization), we can
4365 // eliminate this.
4366 Entity = Result.getSema().Context.getTranslationUnitDecl();
4367 lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4368 /*InBaseClass=*/false);
4369 }
4370
4371 if (Entity) {
4372 // Lookup visible declarations in any namespaces found by using
4373 // directives.
4374 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4375 lookupInDeclContext(
4376 const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4377 /*QualifiedNameLookup=*/false,
4378 /*InBaseClass=*/false);
4379 }
4380
4381 // Lookup names in the parent scope.
4382 ShadowContextRAII Shadow(Visited);
4383 lookupInScope(S->getParent(), Result, UDirs);
4384 }
4385
4386 private:
4387 VisibleDeclsRecord Visited;
4388 VisibleDeclConsumer &Consumer;
4389 bool IncludeDependentBases;
4390 bool LoadExternal;
4391 };
4392 } // namespace
4393
LookupVisibleDecls(Scope * S,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope,bool LoadExternal)4394 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4395 VisibleDeclConsumer &Consumer,
4396 bool IncludeGlobalScope, bool LoadExternal) {
4397 LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4398 LoadExternal);
4399 H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
4400 }
4401
LookupVisibleDecls(DeclContext * Ctx,LookupNameKind Kind,VisibleDeclConsumer & Consumer,bool IncludeGlobalScope,bool IncludeDependentBases,bool LoadExternal)4402 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4403 VisibleDeclConsumer &Consumer,
4404 bool IncludeGlobalScope,
4405 bool IncludeDependentBases, bool LoadExternal) {
4406 LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4407 H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4408 }
4409
4410 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
4411 /// If GnuLabelLoc is a valid source location, then this is a definition
4412 /// of an __label__ label name, otherwise it is a normal label definition
4413 /// or use.
LookupOrCreateLabel(IdentifierInfo * II,SourceLocation Loc,SourceLocation GnuLabelLoc)4414 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
4415 SourceLocation GnuLabelLoc) {
4416 // Do a lookup to see if we have a label with this name already.
4417 NamedDecl *Res = nullptr;
4418
4419 if (GnuLabelLoc.isValid()) {
4420 // Local label definitions always shadow existing labels.
4421 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4422 Scope *S = CurScope;
4423 PushOnScopeChains(Res, S, true);
4424 return cast<LabelDecl>(Res);
4425 }
4426
4427 // Not a GNU local label.
4428 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
4429 // If we found a label, check to see if it is in the same context as us.
4430 // When in a Block, we don't want to reuse a label in an enclosing function.
4431 if (Res && Res->getDeclContext() != CurContext)
4432 Res = nullptr;
4433 if (!Res) {
4434 // If not forward referenced or defined already, create the backing decl.
4435 Res = LabelDecl::Create(Context, CurContext, Loc, II);
4436 Scope *S = CurScope->getFnParent();
4437 assert(S && "Not in a function?");
4438 PushOnScopeChains(Res, S, true);
4439 }
4440 return cast<LabelDecl>(Res);
4441 }
4442
4443 //===----------------------------------------------------------------------===//
4444 // Typo correction
4445 //===----------------------------------------------------------------------===//
4446
isCandidateViable(CorrectionCandidateCallback & CCC,TypoCorrection & Candidate)4447 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4448 TypoCorrection &Candidate) {
4449 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4450 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4451 }
4452
4453 static void LookupPotentialTypoResult(Sema &SemaRef,
4454 LookupResult &Res,
4455 IdentifierInfo *Name,
4456 Scope *S, CXXScopeSpec *SS,
4457 DeclContext *MemberContext,
4458 bool EnteringContext,
4459 bool isObjCIvarLookup,
4460 bool FindHidden);
4461
4462 /// Check whether the declarations found for a typo correction are
4463 /// visible. Set the correction's RequiresImport flag to true if none of the
4464 /// declarations are visible, false otherwise.
checkCorrectionVisibility(Sema & SemaRef,TypoCorrection & TC)4465 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4466 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4467
4468 for (/**/; DI != DE; ++DI)
4469 if (!LookupResult::isVisible(SemaRef, *DI))
4470 break;
4471 // No filtering needed if all decls are visible.
4472 if (DI == DE) {
4473 TC.setRequiresImport(false);
4474 return;
4475 }
4476
4477 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4478 bool AnyVisibleDecls = !NewDecls.empty();
4479
4480 for (/**/; DI != DE; ++DI) {
4481 if (LookupResult::isVisible(SemaRef, *DI)) {
4482 if (!AnyVisibleDecls) {
4483 // Found a visible decl, discard all hidden ones.
4484 AnyVisibleDecls = true;
4485 NewDecls.clear();
4486 }
4487 NewDecls.push_back(*DI);
4488 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4489 NewDecls.push_back(*DI);
4490 }
4491
4492 if (NewDecls.empty())
4493 TC = TypoCorrection();
4494 else {
4495 TC.setCorrectionDecls(NewDecls);
4496 TC.setRequiresImport(!AnyVisibleDecls);
4497 }
4498 }
4499
4500 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
4501 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4502 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
getNestedNameSpecifierIdentifiers(NestedNameSpecifier * NNS,SmallVectorImpl<const IdentifierInfo * > & Identifiers)4503 static void getNestedNameSpecifierIdentifiers(
4504 NestedNameSpecifier *NNS,
4505 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4506 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4507 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4508 else
4509 Identifiers.clear();
4510
4511 const IdentifierInfo *II = nullptr;
4512
4513 switch (NNS->getKind()) {
4514 case NestedNameSpecifier::Identifier:
4515 II = NNS->getAsIdentifier();
4516 break;
4517
4518 case NestedNameSpecifier::Namespace:
4519 if (NNS->getAsNamespace()->isAnonymousNamespace())
4520 return;
4521 II = NNS->getAsNamespace()->getIdentifier();
4522 break;
4523
4524 case NestedNameSpecifier::NamespaceAlias:
4525 II = NNS->getAsNamespaceAlias()->getIdentifier();
4526 break;
4527
4528 case NestedNameSpecifier::TypeSpecWithTemplate:
4529 case NestedNameSpecifier::TypeSpec:
4530 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4531 break;
4532
4533 case NestedNameSpecifier::Global:
4534 case NestedNameSpecifier::Super:
4535 return;
4536 }
4537
4538 if (II)
4539 Identifiers.push_back(II);
4540 }
4541
FoundDecl(NamedDecl * ND,NamedDecl * Hiding,DeclContext * Ctx,bool InBaseClass)4542 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4543 DeclContext *Ctx, bool InBaseClass) {
4544 // Don't consider hidden names for typo correction.
4545 if (Hiding)
4546 return;
4547
4548 // Only consider entities with identifiers for names, ignoring
4549 // special names (constructors, overloaded operators, selectors,
4550 // etc.).
4551 IdentifierInfo *Name = ND->getIdentifier();
4552 if (!Name)
4553 return;
4554
4555 // Only consider visible declarations and declarations from modules with
4556 // names that exactly match.
4557 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4558 return;
4559
4560 FoundName(Name->getName());
4561 }
4562
FoundName(StringRef Name)4563 void TypoCorrectionConsumer::FoundName(StringRef Name) {
4564 // Compute the edit distance between the typo and the name of this
4565 // entity, and add the identifier to the list of results.
4566 addName(Name, nullptr);
4567 }
4568
addKeywordResult(StringRef Keyword)4569 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4570 // Compute the edit distance between the typo and this keyword,
4571 // and add the keyword to the list of results.
4572 addName(Keyword, nullptr, nullptr, true);
4573 }
4574
addName(StringRef Name,NamedDecl * ND,NestedNameSpecifier * NNS,bool isKeyword)4575 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4576 NestedNameSpecifier *NNS, bool isKeyword) {
4577 // Use a simple length-based heuristic to determine the minimum possible
4578 // edit distance. If the minimum isn't good enough, bail out early.
4579 StringRef TypoStr = Typo->getName();
4580 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4581 if (MinED && TypoStr.size() / MinED < 3)
4582 return;
4583
4584 // Compute an upper bound on the allowable edit distance, so that the
4585 // edit-distance algorithm can short-circuit.
4586 unsigned UpperBound = (TypoStr.size() + 2) / 3;
4587 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4588 if (ED > UpperBound) return;
4589
4590 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4591 if (isKeyword) TC.makeKeyword();
4592 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4593 addCorrection(TC);
4594 }
4595
4596 static const unsigned MaxTypoDistanceResultSets = 5;
4597
addCorrection(TypoCorrection Correction)4598 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4599 StringRef TypoStr = Typo->getName();
4600 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4601
4602 // For very short typos, ignore potential corrections that have a different
4603 // base identifier from the typo or which have a normalized edit distance
4604 // longer than the typo itself.
4605 if (TypoStr.size() < 3 &&
4606 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4607 return;
4608
4609 // If the correction is resolved but is not viable, ignore it.
4610 if (Correction.isResolved()) {
4611 checkCorrectionVisibility(SemaRef, Correction);
4612 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4613 return;
4614 }
4615
4616 TypoResultList &CList =
4617 CorrectionResults[Correction.getEditDistance(false)][Name];
4618
4619 if (!CList.empty() && !CList.back().isResolved())
4620 CList.pop_back();
4621 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4622 auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) {
4623 return TypoCorr.getCorrectionDecl() == NewND;
4624 });
4625 if (RI != CList.end()) {
4626 // The Correction refers to a decl already in the list. No insertion is
4627 // necessary and all further cases will return.
4628
4629 auto IsDeprecated = [](Decl *D) {
4630 while (D) {
4631 if (D->isDeprecated())
4632 return true;
4633 D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext());
4634 }
4635 return false;
4636 };
4637
4638 // Prefer non deprecated Corrections over deprecated and only then
4639 // sort using an alphabetical order.
4640 std::pair<bool, std::string> NewKey = {
4641 IsDeprecated(Correction.getFoundDecl()),
4642 Correction.getAsString(SemaRef.getLangOpts())};
4643
4644 std::pair<bool, std::string> PrevKey = {
4645 IsDeprecated(RI->getFoundDecl()),
4646 RI->getAsString(SemaRef.getLangOpts())};
4647
4648 if (NewKey < PrevKey)
4649 *RI = Correction;
4650 return;
4651 }
4652 }
4653 if (CList.empty() || Correction.isResolved())
4654 CList.push_back(Correction);
4655
4656 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4657 CorrectionResults.erase(std::prev(CorrectionResults.end()));
4658 }
4659
addNamespaces(const llvm::MapVector<NamespaceDecl *,bool> & KnownNamespaces)4660 void TypoCorrectionConsumer::addNamespaces(
4661 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4662 SearchNamespaces = true;
4663
4664 for (auto KNPair : KnownNamespaces)
4665 Namespaces.addNameSpecifier(KNPair.first);
4666
4667 bool SSIsTemplate = false;
4668 if (NestedNameSpecifier *NNS =
4669 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4670 if (const Type *T = NNS->getAsType())
4671 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4672 }
4673 // Do not transform this into an iterator-based loop. The loop body can
4674 // trigger the creation of further types (through lazy deserialization) and
4675 // invalid iterators into this list.
4676 auto &Types = SemaRef.getASTContext().getTypes();
4677 for (unsigned I = 0; I != Types.size(); ++I) {
4678 const auto *TI = Types[I];
4679 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4680 CD = CD->getCanonicalDecl();
4681 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4682 !CD->isUnion() && CD->getIdentifier() &&
4683 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4684 (CD->isBeingDefined() || CD->isCompleteDefinition()))
4685 Namespaces.addNameSpecifier(CD);
4686 }
4687 }
4688 }
4689
getNextCorrection()4690 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4691 if (++CurrentTCIndex < ValidatedCorrections.size())
4692 return ValidatedCorrections[CurrentTCIndex];
4693
4694 CurrentTCIndex = ValidatedCorrections.size();
4695 while (!CorrectionResults.empty()) {
4696 auto DI = CorrectionResults.begin();
4697 if (DI->second.empty()) {
4698 CorrectionResults.erase(DI);
4699 continue;
4700 }
4701
4702 auto RI = DI->second.begin();
4703 if (RI->second.empty()) {
4704 DI->second.erase(RI);
4705 performQualifiedLookups();
4706 continue;
4707 }
4708
4709 TypoCorrection TC = RI->second.pop_back_val();
4710 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4711 ValidatedCorrections.push_back(TC);
4712 return ValidatedCorrections[CurrentTCIndex];
4713 }
4714 }
4715 return ValidatedCorrections[0]; // The empty correction.
4716 }
4717
resolveCorrection(TypoCorrection & Candidate)4718 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4719 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4720 DeclContext *TempMemberContext = MemberContext;
4721 CXXScopeSpec *TempSS = SS.get();
4722 retry_lookup:
4723 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4724 EnteringContext,
4725 CorrectionValidator->IsObjCIvarLookup,
4726 Name == Typo && !Candidate.WillReplaceSpecifier());
4727 switch (Result.getResultKind()) {
4728 case LookupResult::NotFound:
4729 case LookupResult::NotFoundInCurrentInstantiation:
4730 case LookupResult::FoundUnresolvedValue:
4731 if (TempSS) {
4732 // Immediately retry the lookup without the given CXXScopeSpec
4733 TempSS = nullptr;
4734 Candidate.WillReplaceSpecifier(true);
4735 goto retry_lookup;
4736 }
4737 if (TempMemberContext) {
4738 if (SS && !TempSS)
4739 TempSS = SS.get();
4740 TempMemberContext = nullptr;
4741 goto retry_lookup;
4742 }
4743 if (SearchNamespaces)
4744 QualifiedResults.push_back(Candidate);
4745 break;
4746
4747 case LookupResult::Ambiguous:
4748 // We don't deal with ambiguities.
4749 break;
4750
4751 case LookupResult::Found:
4752 case LookupResult::FoundOverloaded:
4753 // Store all of the Decls for overloaded symbols
4754 for (auto *TRD : Result)
4755 Candidate.addCorrectionDecl(TRD);
4756 checkCorrectionVisibility(SemaRef, Candidate);
4757 if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4758 if (SearchNamespaces)
4759 QualifiedResults.push_back(Candidate);
4760 break;
4761 }
4762 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4763 return true;
4764 }
4765 return false;
4766 }
4767
performQualifiedLookups()4768 void TypoCorrectionConsumer::performQualifiedLookups() {
4769 unsigned TypoLen = Typo->getName().size();
4770 for (const TypoCorrection &QR : QualifiedResults) {
4771 for (const auto &NSI : Namespaces) {
4772 DeclContext *Ctx = NSI.DeclCtx;
4773 const Type *NSType = NSI.NameSpecifier->getAsType();
4774
4775 // If the current NestedNameSpecifier refers to a class and the
4776 // current correction candidate is the name of that class, then skip
4777 // it as it is unlikely a qualified version of the class' constructor
4778 // is an appropriate correction.
4779 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4780 nullptr) {
4781 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4782 continue;
4783 }
4784
4785 TypoCorrection TC(QR);
4786 TC.ClearCorrectionDecls();
4787 TC.setCorrectionSpecifier(NSI.NameSpecifier);
4788 TC.setQualifierDistance(NSI.EditDistance);
4789 TC.setCallbackDistance(0); // Reset the callback distance
4790
4791 // If the current correction candidate and namespace combination are
4792 // too far away from the original typo based on the normalized edit
4793 // distance, then skip performing a qualified name lookup.
4794 unsigned TmpED = TC.getEditDistance(true);
4795 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4796 TypoLen / TmpED < 3)
4797 continue;
4798
4799 Result.clear();
4800 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4801 if (!SemaRef.LookupQualifiedName(Result, Ctx))
4802 continue;
4803
4804 // Any corrections added below will be validated in subsequent
4805 // iterations of the main while() loop over the Consumer's contents.
4806 switch (Result.getResultKind()) {
4807 case LookupResult::Found:
4808 case LookupResult::FoundOverloaded: {
4809 if (SS && SS->isValid()) {
4810 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4811 std::string OldQualified;
4812 llvm::raw_string_ostream OldOStream(OldQualified);
4813 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4814 OldOStream << Typo->getName();
4815 // If correction candidate would be an identical written qualified
4816 // identifier, then the existing CXXScopeSpec probably included a
4817 // typedef that didn't get accounted for properly.
4818 if (OldOStream.str() == NewQualified)
4819 break;
4820 }
4821 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4822 TRD != TRDEnd; ++TRD) {
4823 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4824 NSType ? NSType->getAsCXXRecordDecl()
4825 : nullptr,
4826 TRD.getPair()) == Sema::AR_accessible)
4827 TC.addCorrectionDecl(*TRD);
4828 }
4829 if (TC.isResolved()) {
4830 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4831 addCorrection(TC);
4832 }
4833 break;
4834 }
4835 case LookupResult::NotFound:
4836 case LookupResult::NotFoundInCurrentInstantiation:
4837 case LookupResult::Ambiguous:
4838 case LookupResult::FoundUnresolvedValue:
4839 break;
4840 }
4841 }
4842 }
4843 QualifiedResults.clear();
4844 }
4845
NamespaceSpecifierSet(ASTContext & Context,DeclContext * CurContext,CXXScopeSpec * CurScopeSpec)4846 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4847 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4848 : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4849 if (NestedNameSpecifier *NNS =
4850 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4851 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4852 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4853
4854 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4855 }
4856 // Build the list of identifiers that would be used for an absolute
4857 // (from the global context) NestedNameSpecifier referring to the current
4858 // context.
4859 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4860 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4861 CurContextIdentifiers.push_back(ND->getIdentifier());
4862 }
4863
4864 // Add the global context as a NestedNameSpecifier
4865 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4866 NestedNameSpecifier::GlobalSpecifier(Context), 1};
4867 DistanceMap[1].push_back(SI);
4868 }
4869
buildContextChain(DeclContext * Start)4870 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4871 DeclContext *Start) -> DeclContextList {
4872 assert(Start && "Building a context chain from a null context");
4873 DeclContextList Chain;
4874 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4875 DC = DC->getLookupParent()) {
4876 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4877 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4878 !(ND && ND->isAnonymousNamespace()))
4879 Chain.push_back(DC->getPrimaryContext());
4880 }
4881 return Chain;
4882 }
4883
4884 unsigned
buildNestedNameSpecifier(DeclContextList & DeclChain,NestedNameSpecifier * & NNS)4885 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4886 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4887 unsigned NumSpecifiers = 0;
4888 for (DeclContext *C : llvm::reverse(DeclChain)) {
4889 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4890 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4891 ++NumSpecifiers;
4892 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4893 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4894 RD->getTypeForDecl());
4895 ++NumSpecifiers;
4896 }
4897 }
4898 return NumSpecifiers;
4899 }
4900
addNameSpecifier(DeclContext * Ctx)4901 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4902 DeclContext *Ctx) {
4903 NestedNameSpecifier *NNS = nullptr;
4904 unsigned NumSpecifiers = 0;
4905 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4906 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4907
4908 // Eliminate common elements from the two DeclContext chains.
4909 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4910 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4911 break;
4912 NamespaceDeclChain.pop_back();
4913 }
4914
4915 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4916 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4917
4918 // Add an explicit leading '::' specifier if needed.
4919 if (NamespaceDeclChain.empty()) {
4920 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4921 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4922 NumSpecifiers =
4923 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4924 } else if (NamedDecl *ND =
4925 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4926 IdentifierInfo *Name = ND->getIdentifier();
4927 bool SameNameSpecifier = false;
4928 if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) {
4929 std::string NewNameSpecifier;
4930 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4931 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4932 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4933 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4934 SpecifierOStream.flush();
4935 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4936 }
4937 if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) {
4938 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4939 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4940 NumSpecifiers =
4941 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4942 }
4943 }
4944
4945 // If the built NestedNameSpecifier would be replacing an existing
4946 // NestedNameSpecifier, use the number of component identifiers that
4947 // would need to be changed as the edit distance instead of the number
4948 // of components in the built NestedNameSpecifier.
4949 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4950 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4951 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4952 NumSpecifiers =
4953 llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers),
4954 llvm::ArrayRef(NewNameSpecifierIdentifiers));
4955 }
4956
4957 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4958 DistanceMap[NumSpecifiers].push_back(SI);
4959 }
4960
4961 /// Perform name lookup for a possible result for typo correction.
LookupPotentialTypoResult(Sema & SemaRef,LookupResult & Res,IdentifierInfo * Name,Scope * S,CXXScopeSpec * SS,DeclContext * MemberContext,bool EnteringContext,bool isObjCIvarLookup,bool FindHidden)4962 static void LookupPotentialTypoResult(Sema &SemaRef,
4963 LookupResult &Res,
4964 IdentifierInfo *Name,
4965 Scope *S, CXXScopeSpec *SS,
4966 DeclContext *MemberContext,
4967 bool EnteringContext,
4968 bool isObjCIvarLookup,
4969 bool FindHidden) {
4970 Res.suppressDiagnostics();
4971 Res.clear();
4972 Res.setLookupName(Name);
4973 Res.setAllowHidden(FindHidden);
4974 if (MemberContext) {
4975 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4976 if (isObjCIvarLookup) {
4977 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4978 Res.addDecl(Ivar);
4979 Res.resolveKind();
4980 return;
4981 }
4982 }
4983
4984 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4985 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4986 Res.addDecl(Prop);
4987 Res.resolveKind();
4988 return;
4989 }
4990 }
4991
4992 SemaRef.LookupQualifiedName(Res, MemberContext);
4993 return;
4994 }
4995
4996 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4997 EnteringContext);
4998
4999 // Fake ivar lookup; this should really be part of
5000 // LookupParsedName.
5001 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
5002 if (Method->isInstanceMethod() && Method->getClassInterface() &&
5003 (Res.empty() ||
5004 (Res.isSingleResult() &&
5005 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
5006 if (ObjCIvarDecl *IV
5007 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
5008 Res.addDecl(IV);
5009 Res.resolveKind();
5010 }
5011 }
5012 }
5013 }
5014
5015 /// Add keywords to the consumer as possible typo corrections.
AddKeywordsToConsumer(Sema & SemaRef,TypoCorrectionConsumer & Consumer,Scope * S,CorrectionCandidateCallback & CCC,bool AfterNestedNameSpecifier)5016 static void AddKeywordsToConsumer(Sema &SemaRef,
5017 TypoCorrectionConsumer &Consumer,
5018 Scope *S, CorrectionCandidateCallback &CCC,
5019 bool AfterNestedNameSpecifier) {
5020 if (AfterNestedNameSpecifier) {
5021 // For 'X::', we know exactly which keywords can appear next.
5022 Consumer.addKeywordResult("template");
5023 if (CCC.WantExpressionKeywords)
5024 Consumer.addKeywordResult("operator");
5025 return;
5026 }
5027
5028 if (CCC.WantObjCSuper)
5029 Consumer.addKeywordResult("super");
5030
5031 if (CCC.WantTypeSpecifiers) {
5032 // Add type-specifier keywords to the set of results.
5033 static const char *const CTypeSpecs[] = {
5034 "char", "const", "double", "enum", "float", "int", "long", "short",
5035 "signed", "struct", "union", "unsigned", "void", "volatile",
5036 "_Complex", "_Imaginary",
5037 // storage-specifiers as well
5038 "extern", "inline", "static", "typedef"
5039 };
5040
5041 for (const auto *CTS : CTypeSpecs)
5042 Consumer.addKeywordResult(CTS);
5043
5044 if (SemaRef.getLangOpts().C99)
5045 Consumer.addKeywordResult("restrict");
5046 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
5047 Consumer.addKeywordResult("bool");
5048 else if (SemaRef.getLangOpts().C99)
5049 Consumer.addKeywordResult("_Bool");
5050
5051 if (SemaRef.getLangOpts().CPlusPlus) {
5052 Consumer.addKeywordResult("class");
5053 Consumer.addKeywordResult("typename");
5054 Consumer.addKeywordResult("wchar_t");
5055
5056 if (SemaRef.getLangOpts().CPlusPlus11) {
5057 Consumer.addKeywordResult("char16_t");
5058 Consumer.addKeywordResult("char32_t");
5059 Consumer.addKeywordResult("constexpr");
5060 Consumer.addKeywordResult("decltype");
5061 Consumer.addKeywordResult("thread_local");
5062 }
5063 }
5064
5065 if (SemaRef.getLangOpts().GNUKeywords)
5066 Consumer.addKeywordResult("typeof");
5067 } else if (CCC.WantFunctionLikeCasts) {
5068 static const char *const CastableTypeSpecs[] = {
5069 "char", "double", "float", "int", "long", "short",
5070 "signed", "unsigned", "void"
5071 };
5072 for (auto *kw : CastableTypeSpecs)
5073 Consumer.addKeywordResult(kw);
5074 }
5075
5076 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
5077 Consumer.addKeywordResult("const_cast");
5078 Consumer.addKeywordResult("dynamic_cast");
5079 Consumer.addKeywordResult("reinterpret_cast");
5080 Consumer.addKeywordResult("static_cast");
5081 }
5082
5083 if (CCC.WantExpressionKeywords) {
5084 Consumer.addKeywordResult("sizeof");
5085 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
5086 Consumer.addKeywordResult("false");
5087 Consumer.addKeywordResult("true");
5088 }
5089
5090 if (SemaRef.getLangOpts().CPlusPlus) {
5091 static const char *const CXXExprs[] = {
5092 "delete", "new", "operator", "throw", "typeid"
5093 };
5094 for (const auto *CE : CXXExprs)
5095 Consumer.addKeywordResult(CE);
5096
5097 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
5098 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
5099 Consumer.addKeywordResult("this");
5100
5101 if (SemaRef.getLangOpts().CPlusPlus11) {
5102 Consumer.addKeywordResult("alignof");
5103 Consumer.addKeywordResult("nullptr");
5104 }
5105 }
5106
5107 if (SemaRef.getLangOpts().C11) {
5108 // FIXME: We should not suggest _Alignof if the alignof macro
5109 // is present.
5110 Consumer.addKeywordResult("_Alignof");
5111 }
5112 }
5113
5114 if (CCC.WantRemainingKeywords) {
5115 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
5116 // Statements.
5117 static const char *const CStmts[] = {
5118 "do", "else", "for", "goto", "if", "return", "switch", "while" };
5119 for (const auto *CS : CStmts)
5120 Consumer.addKeywordResult(CS);
5121
5122 if (SemaRef.getLangOpts().CPlusPlus) {
5123 Consumer.addKeywordResult("catch");
5124 Consumer.addKeywordResult("try");
5125 }
5126
5127 if (S && S->getBreakParent())
5128 Consumer.addKeywordResult("break");
5129
5130 if (S && S->getContinueParent())
5131 Consumer.addKeywordResult("continue");
5132
5133 if (SemaRef.getCurFunction() &&
5134 !SemaRef.getCurFunction()->SwitchStack.empty()) {
5135 Consumer.addKeywordResult("case");
5136 Consumer.addKeywordResult("default");
5137 }
5138 } else {
5139 if (SemaRef.getLangOpts().CPlusPlus) {
5140 Consumer.addKeywordResult("namespace");
5141 Consumer.addKeywordResult("template");
5142 }
5143
5144 if (S && S->isClassScope()) {
5145 Consumer.addKeywordResult("explicit");
5146 Consumer.addKeywordResult("friend");
5147 Consumer.addKeywordResult("mutable");
5148 Consumer.addKeywordResult("private");
5149 Consumer.addKeywordResult("protected");
5150 Consumer.addKeywordResult("public");
5151 Consumer.addKeywordResult("virtual");
5152 }
5153 }
5154
5155 if (SemaRef.getLangOpts().CPlusPlus) {
5156 Consumer.addKeywordResult("using");
5157
5158 if (SemaRef.getLangOpts().CPlusPlus11)
5159 Consumer.addKeywordResult("static_assert");
5160 }
5161 }
5162 }
5163
makeTypoCorrectionConsumer(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,CorrectionCandidateCallback & CCC,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT,bool ErrorRecovery)5164 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
5165 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5166 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5167 DeclContext *MemberContext, bool EnteringContext,
5168 const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
5169
5170 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
5171 DisableTypoCorrection)
5172 return nullptr;
5173
5174 // In Microsoft mode, don't perform typo correction in a template member
5175 // function dependent context because it interferes with the "lookup into
5176 // dependent bases of class templates" feature.
5177 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
5178 isa<CXXMethodDecl>(CurContext))
5179 return nullptr;
5180
5181 // We only attempt to correct typos for identifiers.
5182 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5183 if (!Typo)
5184 return nullptr;
5185
5186 // If the scope specifier itself was invalid, don't try to correct
5187 // typos.
5188 if (SS && SS->isInvalid())
5189 return nullptr;
5190
5191 // Never try to correct typos during any kind of code synthesis.
5192 if (!CodeSynthesisContexts.empty())
5193 return nullptr;
5194
5195 // Don't try to correct 'super'.
5196 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
5197 return nullptr;
5198
5199 // Abort if typo correction already failed for this specific typo.
5200 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
5201 if (locs != TypoCorrectionFailures.end() &&
5202 locs->second.count(TypoName.getLoc()))
5203 return nullptr;
5204
5205 // Don't try to correct the identifier "vector" when in AltiVec mode.
5206 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
5207 // remove this workaround.
5208 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
5209 return nullptr;
5210
5211 // Provide a stop gap for files that are just seriously broken. Trying
5212 // to correct all typos can turn into a HUGE performance penalty, causing
5213 // some files to take minutes to get rejected by the parser.
5214 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
5215 if (Limit && TyposCorrected >= Limit)
5216 return nullptr;
5217 ++TyposCorrected;
5218
5219 // If we're handling a missing symbol error, using modules, and the
5220 // special search all modules option is used, look for a missing import.
5221 if (ErrorRecovery && getLangOpts().Modules &&
5222 getLangOpts().ModulesSearchAll) {
5223 // The following has the side effect of loading the missing module.
5224 getModuleLoader().lookupMissingImports(Typo->getName(),
5225 TypoName.getBeginLoc());
5226 }
5227
5228 // Extend the lifetime of the callback. We delayed this until here
5229 // to avoid allocations in the hot path (which is where no typo correction
5230 // occurs). Note that CorrectionCandidateCallback is polymorphic and
5231 // initially stack-allocated.
5232 std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
5233 auto Consumer = std::make_unique<TypoCorrectionConsumer>(
5234 *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
5235 EnteringContext);
5236
5237 // Perform name lookup to find visible, similarly-named entities.
5238 bool IsUnqualifiedLookup = false;
5239 DeclContext *QualifiedDC = MemberContext;
5240 if (MemberContext) {
5241 LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
5242
5243 // Look in qualified interfaces.
5244 if (OPT) {
5245 for (auto *I : OPT->quals())
5246 LookupVisibleDecls(I, LookupKind, *Consumer);
5247 }
5248 } else if (SS && SS->isSet()) {
5249 QualifiedDC = computeDeclContext(*SS, EnteringContext);
5250 if (!QualifiedDC)
5251 return nullptr;
5252
5253 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
5254 } else {
5255 IsUnqualifiedLookup = true;
5256 }
5257
5258 // Determine whether we are going to search in the various namespaces for
5259 // corrections.
5260 bool SearchNamespaces
5261 = getLangOpts().CPlusPlus &&
5262 (IsUnqualifiedLookup || (SS && SS->isSet()));
5263
5264 if (IsUnqualifiedLookup || SearchNamespaces) {
5265 // For unqualified lookup, look through all of the names that we have
5266 // seen in this translation unit.
5267 // FIXME: Re-add the ability to skip very unlikely potential corrections.
5268 for (const auto &I : Context.Idents)
5269 Consumer->FoundName(I.getKey());
5270
5271 // Walk through identifiers in external identifier sources.
5272 // FIXME: Re-add the ability to skip very unlikely potential corrections.
5273 if (IdentifierInfoLookup *External
5274 = Context.Idents.getExternalIdentifierLookup()) {
5275 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
5276 do {
5277 StringRef Name = Iter->Next();
5278 if (Name.empty())
5279 break;
5280
5281 Consumer->FoundName(Name);
5282 } while (true);
5283 }
5284 }
5285
5286 AddKeywordsToConsumer(*this, *Consumer, S,
5287 *Consumer->getCorrectionValidator(),
5288 SS && SS->isNotEmpty());
5289
5290 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
5291 // to search those namespaces.
5292 if (SearchNamespaces) {
5293 // Load any externally-known namespaces.
5294 if (ExternalSource && !LoadedExternalKnownNamespaces) {
5295 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
5296 LoadedExternalKnownNamespaces = true;
5297 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
5298 for (auto *N : ExternalKnownNamespaces)
5299 KnownNamespaces[N] = true;
5300 }
5301
5302 Consumer->addNamespaces(KnownNamespaces);
5303 }
5304
5305 return Consumer;
5306 }
5307
5308 /// Try to "correct" a typo in the source code by finding
5309 /// visible declarations whose names are similar to the name that was
5310 /// present in the source code.
5311 ///
5312 /// \param TypoName the \c DeclarationNameInfo structure that contains
5313 /// the name that was present in the source code along with its location.
5314 ///
5315 /// \param LookupKind the name-lookup criteria used to search for the name.
5316 ///
5317 /// \param S the scope in which name lookup occurs.
5318 ///
5319 /// \param SS the nested-name-specifier that precedes the name we're
5320 /// looking for, if present.
5321 ///
5322 /// \param CCC A CorrectionCandidateCallback object that provides further
5323 /// validation of typo correction candidates. It also provides flags for
5324 /// determining the set of keywords permitted.
5325 ///
5326 /// \param MemberContext if non-NULL, the context in which to look for
5327 /// a member access expression.
5328 ///
5329 /// \param EnteringContext whether we're entering the context described by
5330 /// the nested-name-specifier SS.
5331 ///
5332 /// \param OPT when non-NULL, the search for visible declarations will
5333 /// also walk the protocols in the qualified interfaces of \p OPT.
5334 ///
5335 /// \returns a \c TypoCorrection containing the corrected name if the typo
5336 /// along with information such as the \c NamedDecl where the corrected name
5337 /// was declared, and any additional \c NestedNameSpecifier needed to access
5338 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
CorrectTypo(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,CorrectionCandidateCallback & CCC,CorrectTypoKind Mode,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT,bool RecordFailure)5339 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
5340 Sema::LookupNameKind LookupKind,
5341 Scope *S, CXXScopeSpec *SS,
5342 CorrectionCandidateCallback &CCC,
5343 CorrectTypoKind Mode,
5344 DeclContext *MemberContext,
5345 bool EnteringContext,
5346 const ObjCObjectPointerType *OPT,
5347 bool RecordFailure) {
5348 // Always let the ExternalSource have the first chance at correction, even
5349 // if we would otherwise have given up.
5350 if (ExternalSource) {
5351 if (TypoCorrection Correction =
5352 ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
5353 MemberContext, EnteringContext, OPT))
5354 return Correction;
5355 }
5356
5357 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5358 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5359 // some instances of CTC_Unknown, while WantRemainingKeywords is true
5360 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5361 bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
5362
5363 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5364 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5365 MemberContext, EnteringContext,
5366 OPT, Mode == CTK_ErrorRecovery);
5367
5368 if (!Consumer)
5369 return TypoCorrection();
5370
5371 // If we haven't found anything, we're done.
5372 if (Consumer->empty())
5373 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5374
5375 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5376 // is not more that about a third of the length of the typo's identifier.
5377 unsigned ED = Consumer->getBestEditDistance(true);
5378 unsigned TypoLen = Typo->getName().size();
5379 if (ED > 0 && TypoLen / ED < 3)
5380 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5381
5382 TypoCorrection BestTC = Consumer->getNextCorrection();
5383 TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5384 if (!BestTC)
5385 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5386
5387 ED = BestTC.getEditDistance();
5388
5389 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5390 // If this was an unqualified lookup and we believe the callback
5391 // object wouldn't have filtered out possible corrections, note
5392 // that no correction was found.
5393 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5394 }
5395
5396 // If only a single name remains, return that result.
5397 if (!SecondBestTC ||
5398 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5399 const TypoCorrection &Result = BestTC;
5400
5401 // Don't correct to a keyword that's the same as the typo; the keyword
5402 // wasn't actually in scope.
5403 if (ED == 0 && Result.isKeyword())
5404 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5405
5406 TypoCorrection TC = Result;
5407 TC.setCorrectionRange(SS, TypoName);
5408 checkCorrectionVisibility(*this, TC);
5409 return TC;
5410 } else if (SecondBestTC && ObjCMessageReceiver) {
5411 // Prefer 'super' when we're completing in a message-receiver
5412 // context.
5413
5414 if (BestTC.getCorrection().getAsString() != "super") {
5415 if (SecondBestTC.getCorrection().getAsString() == "super")
5416 BestTC = SecondBestTC;
5417 else if ((*Consumer)["super"].front().isKeyword())
5418 BestTC = (*Consumer)["super"].front();
5419 }
5420 // Don't correct to a keyword that's the same as the typo; the keyword
5421 // wasn't actually in scope.
5422 if (BestTC.getEditDistance() == 0 ||
5423 BestTC.getCorrection().getAsString() != "super")
5424 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5425
5426 BestTC.setCorrectionRange(SS, TypoName);
5427 return BestTC;
5428 }
5429
5430 // Record the failure's location if needed and return an empty correction. If
5431 // this was an unqualified lookup and we believe the callback object did not
5432 // filter out possible corrections, also cache the failure for the typo.
5433 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5434 }
5435
5436 /// Try to "correct" a typo in the source code by finding
5437 /// visible declarations whose names are similar to the name that was
5438 /// present in the source code.
5439 ///
5440 /// \param TypoName the \c DeclarationNameInfo structure that contains
5441 /// the name that was present in the source code along with its location.
5442 ///
5443 /// \param LookupKind the name-lookup criteria used to search for the name.
5444 ///
5445 /// \param S the scope in which name lookup occurs.
5446 ///
5447 /// \param SS the nested-name-specifier that precedes the name we're
5448 /// looking for, if present.
5449 ///
5450 /// \param CCC A CorrectionCandidateCallback object that provides further
5451 /// validation of typo correction candidates. It also provides flags for
5452 /// determining the set of keywords permitted.
5453 ///
5454 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5455 /// diagnostics when the actual typo correction is attempted.
5456 ///
5457 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
5458 /// Expr from a typo correction candidate.
5459 ///
5460 /// \param MemberContext if non-NULL, the context in which to look for
5461 /// a member access expression.
5462 ///
5463 /// \param EnteringContext whether we're entering the context described by
5464 /// the nested-name-specifier SS.
5465 ///
5466 /// \param OPT when non-NULL, the search for visible declarations will
5467 /// also walk the protocols in the qualified interfaces of \p OPT.
5468 ///
5469 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
5470 /// Expr representing the result of performing typo correction, or nullptr if
5471 /// typo correction is not possible. If nullptr is returned, no diagnostics will
5472 /// be emitted and it is the responsibility of the caller to emit any that are
5473 /// needed.
CorrectTypoDelayed(const DeclarationNameInfo & TypoName,Sema::LookupNameKind LookupKind,Scope * S,CXXScopeSpec * SS,CorrectionCandidateCallback & CCC,TypoDiagnosticGenerator TDG,TypoRecoveryCallback TRC,CorrectTypoKind Mode,DeclContext * MemberContext,bool EnteringContext,const ObjCObjectPointerType * OPT)5474 TypoExpr *Sema::CorrectTypoDelayed(
5475 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5476 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5477 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5478 DeclContext *MemberContext, bool EnteringContext,
5479 const ObjCObjectPointerType *OPT) {
5480 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5481 MemberContext, EnteringContext,
5482 OPT, Mode == CTK_ErrorRecovery);
5483
5484 // Give the external sema source a chance to correct the typo.
5485 TypoCorrection ExternalTypo;
5486 if (ExternalSource && Consumer) {
5487 ExternalTypo = ExternalSource->CorrectTypo(
5488 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5489 MemberContext, EnteringContext, OPT);
5490 if (ExternalTypo)
5491 Consumer->addCorrection(ExternalTypo);
5492 }
5493
5494 if (!Consumer || Consumer->empty())
5495 return nullptr;
5496
5497 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5498 // is not more that about a third of the length of the typo's identifier.
5499 unsigned ED = Consumer->getBestEditDistance(true);
5500 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5501 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5502 return nullptr;
5503 ExprEvalContexts.back().NumTypos++;
5504 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC),
5505 TypoName.getLoc());
5506 }
5507
addCorrectionDecl(NamedDecl * CDecl)5508 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5509 if (!CDecl) return;
5510
5511 if (isKeyword())
5512 CorrectionDecls.clear();
5513
5514 CorrectionDecls.push_back(CDecl);
5515
5516 if (!CorrectionName)
5517 CorrectionName = CDecl->getDeclName();
5518 }
5519
getAsString(const LangOptions & LO) const5520 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5521 if (CorrectionNameSpec) {
5522 std::string tmpBuffer;
5523 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5524 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5525 PrefixOStream << CorrectionName;
5526 return PrefixOStream.str();
5527 }
5528
5529 return CorrectionName.getAsString();
5530 }
5531
ValidateCandidate(const TypoCorrection & candidate)5532 bool CorrectionCandidateCallback::ValidateCandidate(
5533 const TypoCorrection &candidate) {
5534 if (!candidate.isResolved())
5535 return true;
5536
5537 if (candidate.isKeyword())
5538 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5539 WantRemainingKeywords || WantObjCSuper;
5540
5541 bool HasNonType = false;
5542 bool HasStaticMethod = false;
5543 bool HasNonStaticMethod = false;
5544 for (Decl *D : candidate) {
5545 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5546 D = FTD->getTemplatedDecl();
5547 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5548 if (Method->isStatic())
5549 HasStaticMethod = true;
5550 else
5551 HasNonStaticMethod = true;
5552 }
5553 if (!isa<TypeDecl>(D))
5554 HasNonType = true;
5555 }
5556
5557 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5558 !candidate.getCorrectionSpecifier())
5559 return false;
5560
5561 return WantTypeSpecifiers || HasNonType;
5562 }
5563
FunctionCallFilterCCC(Sema & SemaRef,unsigned NumArgs,bool HasExplicitTemplateArgs,MemberExpr * ME)5564 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5565 bool HasExplicitTemplateArgs,
5566 MemberExpr *ME)
5567 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5568 CurContext(SemaRef.CurContext), MemberFn(ME) {
5569 WantTypeSpecifiers = false;
5570 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5571 !HasExplicitTemplateArgs && NumArgs == 1;
5572 WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5573 WantRemainingKeywords = false;
5574 }
5575
ValidateCandidate(const TypoCorrection & candidate)5576 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5577 if (!candidate.getCorrectionDecl())
5578 return candidate.isKeyword();
5579
5580 for (auto *C : candidate) {
5581 FunctionDecl *FD = nullptr;
5582 NamedDecl *ND = C->getUnderlyingDecl();
5583 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5584 FD = FTD->getTemplatedDecl();
5585 if (!HasExplicitTemplateArgs && !FD) {
5586 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5587 // If the Decl is neither a function nor a template function,
5588 // determine if it is a pointer or reference to a function. If so,
5589 // check against the number of arguments expected for the pointee.
5590 QualType ValType = cast<ValueDecl>(ND)->getType();
5591 if (ValType.isNull())
5592 continue;
5593 if (ValType->isAnyPointerType() || ValType->isReferenceType())
5594 ValType = ValType->getPointeeType();
5595 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5596 if (FPT->getNumParams() == NumArgs)
5597 return true;
5598 }
5599 }
5600
5601 // A typo for a function-style cast can look like a function call in C++.
5602 if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5603 : isa<TypeDecl>(ND)) &&
5604 CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5605 // Only a class or class template can take two or more arguments.
5606 return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5607
5608 // Skip the current candidate if it is not a FunctionDecl or does not accept
5609 // the current number of arguments.
5610 if (!FD || !(FD->getNumParams() >= NumArgs &&
5611 FD->getMinRequiredArguments() <= NumArgs))
5612 continue;
5613
5614 // If the current candidate is a non-static C++ method, skip the candidate
5615 // unless the method being corrected--or the current DeclContext, if the
5616 // function being corrected is not a method--is a method in the same class
5617 // or a descendent class of the candidate's parent class.
5618 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5619 if (MemberFn || !MD->isStatic()) {
5620 CXXMethodDecl *CurMD =
5621 MemberFn
5622 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
5623 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
5624 CXXRecordDecl *CurRD =
5625 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5626 CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5627 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5628 continue;
5629 }
5630 }
5631 return true;
5632 }
5633 return false;
5634 }
5635
diagnoseTypo(const TypoCorrection & Correction,const PartialDiagnostic & TypoDiag,bool ErrorRecovery)5636 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5637 const PartialDiagnostic &TypoDiag,
5638 bool ErrorRecovery) {
5639 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5640 ErrorRecovery);
5641 }
5642
5643 /// Find which declaration we should import to provide the definition of
5644 /// the given declaration.
getDefinitionToImport(NamedDecl * D)5645 static NamedDecl *getDefinitionToImport(NamedDecl *D) {
5646 if (VarDecl *VD = dyn_cast<VarDecl>(D))
5647 return VD->getDefinition();
5648 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5649 return FD->getDefinition();
5650 if (TagDecl *TD = dyn_cast<TagDecl>(D))
5651 return TD->getDefinition();
5652 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
5653 return ID->getDefinition();
5654 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
5655 return PD->getDefinition();
5656 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
5657 if (NamedDecl *TTD = TD->getTemplatedDecl())
5658 return getDefinitionToImport(TTD);
5659 return nullptr;
5660 }
5661
diagnoseMissingImport(SourceLocation Loc,NamedDecl * Decl,MissingImportKind MIK,bool Recover)5662 void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
5663 MissingImportKind MIK, bool Recover) {
5664 // Suggest importing a module providing the definition of this entity, if
5665 // possible.
5666 NamedDecl *Def = getDefinitionToImport(Decl);
5667 if (!Def)
5668 Def = Decl;
5669
5670 Module *Owner = getOwningModule(Def);
5671 assert(Owner && "definition of hidden declaration is not in a module");
5672
5673 llvm::SmallVector<Module*, 8> OwningModules;
5674 OwningModules.push_back(Owner);
5675 auto Merged = Context.getModulesWithMergedDefinition(Def);
5676 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5677
5678 diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5679 Recover);
5680 }
5681
5682 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5683 /// suggesting the addition of a #include of the specified file.
getHeaderNameForHeader(Preprocessor & PP,const FileEntry * E,llvm::StringRef IncludingFile)5684 static std::string getHeaderNameForHeader(Preprocessor &PP, const FileEntry *E,
5685 llvm::StringRef IncludingFile) {
5686 bool IsSystem = false;
5687 auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5688 E, IncludingFile, &IsSystem);
5689 return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5690 }
5691
diagnoseMissingImport(SourceLocation UseLoc,NamedDecl * Decl,SourceLocation DeclLoc,ArrayRef<Module * > Modules,MissingImportKind MIK,bool Recover)5692 void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5693 SourceLocation DeclLoc,
5694 ArrayRef<Module *> Modules,
5695 MissingImportKind MIK, bool Recover) {
5696 assert(!Modules.empty());
5697
5698 auto NotePrevious = [&] {
5699 // FIXME: Suppress the note backtrace even under
5700 // -fdiagnostics-show-note-include-stack. We don't care how this
5701 // declaration was previously reached.
5702 Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK;
5703 };
5704
5705 // Weed out duplicates from module list.
5706 llvm::SmallVector<Module*, 8> UniqueModules;
5707 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5708 for (auto *M : Modules) {
5709 if (M->isGlobalModule() || M->isPrivateModule())
5710 continue;
5711 if (UniqueModuleSet.insert(M).second)
5712 UniqueModules.push_back(M);
5713 }
5714
5715 // Try to find a suitable header-name to #include.
5716 std::string HeaderName;
5717 if (const FileEntry *Header =
5718 PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
5719 if (const FileEntry *FE =
5720 SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5721 HeaderName = getHeaderNameForHeader(PP, Header, FE->tryGetRealPathName());
5722 }
5723
5724 // If we have a #include we should suggest, or if all definition locations
5725 // were in global module fragments, don't suggest an import.
5726 if (!HeaderName.empty() || UniqueModules.empty()) {
5727 // FIXME: Find a smart place to suggest inserting a #include, and add
5728 // a FixItHint there.
5729 Diag(UseLoc, diag::err_module_unimported_use_header)
5730 << (int)MIK << Decl << !HeaderName.empty() << HeaderName;
5731 // Produce a note showing where the entity was declared.
5732 NotePrevious();
5733 if (Recover)
5734 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5735 return;
5736 }
5737
5738 Modules = UniqueModules;
5739
5740 if (Modules.size() > 1) {
5741 std::string ModuleList;
5742 unsigned N = 0;
5743 for (Module *M : Modules) {
5744 ModuleList += "\n ";
5745 if (++N == 5 && N != Modules.size()) {
5746 ModuleList += "[...]";
5747 break;
5748 }
5749 ModuleList += M->getFullModuleName();
5750 }
5751
5752 Diag(UseLoc, diag::err_module_unimported_use_multiple)
5753 << (int)MIK << Decl << ModuleList;
5754 } else {
5755 // FIXME: Add a FixItHint that imports the corresponding module.
5756 Diag(UseLoc, diag::err_module_unimported_use)
5757 << (int)MIK << Decl << Modules[0]->getFullModuleName();
5758 }
5759
5760 NotePrevious();
5761
5762 // Try to recover by implicitly importing this module.
5763 if (Recover)
5764 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5765 }
5766
5767 /// Diagnose a successfully-corrected typo. Separated from the correction
5768 /// itself to allow external validation of the result, etc.
5769 ///
5770 /// \param Correction The result of performing typo correction.
5771 /// \param TypoDiag The diagnostic to produce. This will have the corrected
5772 /// string added to it (and usually also a fixit).
5773 /// \param PrevNote A note to use when indicating the location of the entity to
5774 /// which we are correcting. Will have the correction string added to it.
5775 /// \param ErrorRecovery If \c true (the default), the caller is going to
5776 /// recover from the typo as if the corrected string had been typed.
5777 /// In this case, \c PDiag must be an error, and we will attach a fixit
5778 /// to it.
diagnoseTypo(const TypoCorrection & Correction,const PartialDiagnostic & TypoDiag,const PartialDiagnostic & PrevNote,bool ErrorRecovery)5779 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5780 const PartialDiagnostic &TypoDiag,
5781 const PartialDiagnostic &PrevNote,
5782 bool ErrorRecovery) {
5783 std::string CorrectedStr = Correction.getAsString(getLangOpts());
5784 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5785 FixItHint FixTypo = FixItHint::CreateReplacement(
5786 Correction.getCorrectionRange(), CorrectedStr);
5787
5788 // Maybe we're just missing a module import.
5789 if (Correction.requiresImport()) {
5790 NamedDecl *Decl = Correction.getFoundDecl();
5791 assert(Decl && "import required but no declaration to import");
5792
5793 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5794 MissingImportKind::Declaration, ErrorRecovery);
5795 return;
5796 }
5797
5798 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5799 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5800
5801 NamedDecl *ChosenDecl =
5802 Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5803 if (PrevNote.getDiagID() && ChosenDecl)
5804 Diag(ChosenDecl->getLocation(), PrevNote)
5805 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5806
5807 // Add any extra diagnostics.
5808 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5809 Diag(Correction.getCorrectionRange().getBegin(), PD);
5810 }
5811
createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,TypoDiagnosticGenerator TDG,TypoRecoveryCallback TRC,SourceLocation TypoLoc)5812 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5813 TypoDiagnosticGenerator TDG,
5814 TypoRecoveryCallback TRC,
5815 SourceLocation TypoLoc) {
5816 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5817 auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc);
5818 auto &State = DelayedTypos[TE];
5819 State.Consumer = std::move(TCC);
5820 State.DiagHandler = std::move(TDG);
5821 State.RecoveryHandler = std::move(TRC);
5822 if (TE)
5823 TypoExprs.push_back(TE);
5824 return TE;
5825 }
5826
getTypoExprState(TypoExpr * TE) const5827 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5828 auto Entry = DelayedTypos.find(TE);
5829 assert(Entry != DelayedTypos.end() &&
5830 "Failed to get the state for a TypoExpr!");
5831 return Entry->second;
5832 }
5833
clearDelayedTypo(TypoExpr * TE)5834 void Sema::clearDelayedTypo(TypoExpr *TE) {
5835 DelayedTypos.erase(TE);
5836 }
5837
ActOnPragmaDump(Scope * S,SourceLocation IILoc,IdentifierInfo * II)5838 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5839 DeclarationNameInfo Name(II, IILoc);
5840 LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5841 R.suppressDiagnostics();
5842 R.setHideTags(false);
5843 LookupName(R, S);
5844 R.dump();
5845 }
5846