xref: /linux/include/linux/maple_tree.h (revision 9b6713cc)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 #ifndef _LINUX_MAPLE_TREE_H
3 #define _LINUX_MAPLE_TREE_H
4 /*
5  * Maple Tree - An RCU-safe adaptive tree for storing ranges
6  * Copyright (c) 2018-2022 Oracle
7  * Authors:     Liam R. Howlett <Liam.Howlett@Oracle.com>
8  *              Matthew Wilcox <willy@infradead.org>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/rcupdate.h>
13 #include <linux/spinlock.h>
14 /* #define CONFIG_MAPLE_RCU_DISABLED */
15 
16 /*
17  * Allocated nodes are mutable until they have been inserted into the tree,
18  * at which time they cannot change their type until they have been removed
19  * from the tree and an RCU grace period has passed.
20  *
21  * Removed nodes have their ->parent set to point to themselves.  RCU readers
22  * check ->parent before relying on the value that they loaded from the
23  * slots array.  This lets us reuse the slots array for the RCU head.
24  *
25  * Nodes in the tree point to their parent unless bit 0 is set.
26  */
27 #if defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64)
28 /* 64bit sizes */
29 #define MAPLE_NODE_SLOTS	31	/* 256 bytes including ->parent */
30 #define MAPLE_RANGE64_SLOTS	16	/* 256 bytes */
31 #define MAPLE_ARANGE64_SLOTS	10	/* 240 bytes */
32 #define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 1)
33 #else
34 /* 32bit sizes */
35 #define MAPLE_NODE_SLOTS	63	/* 256 bytes including ->parent */
36 #define MAPLE_RANGE64_SLOTS	32	/* 256 bytes */
37 #define MAPLE_ARANGE64_SLOTS	21	/* 240 bytes */
38 #define MAPLE_ALLOC_SLOTS	(MAPLE_NODE_SLOTS - 2)
39 #endif /* defined(CONFIG_64BIT) || defined(BUILD_VDSO32_64) */
40 
41 #define MAPLE_NODE_MASK		255UL
42 
43 /*
44  * The node->parent of the root node has bit 0 set and the rest of the pointer
45  * is a pointer to the tree itself.  No more bits are available in this pointer
46  * (on m68k, the data structure may only be 2-byte aligned).
47  *
48  * Internal non-root nodes can only have maple_range_* nodes as parents.  The
49  * parent pointer is 256B aligned like all other tree nodes.  When storing a 32
50  * or 64 bit values, the offset can fit into 4 bits.  The 16 bit values need an
51  * extra bit to store the offset.  This extra bit comes from a reuse of the last
52  * bit in the node type.  This is possible by using bit 1 to indicate if bit 2
53  * is part of the type or the slot.
54  *
55  * Once the type is decided, the decision of an allocation range type or a range
56  * type is done by examining the immutable tree flag for the MAPLE_ALLOC_RANGE
57  * flag.
58  *
59  *  Node types:
60  *   0x??1 = Root
61  *   0x?00 = 16 bit nodes
62  *   0x010 = 32 bit nodes
63  *   0x110 = 64 bit nodes
64  *
65  *  Slot size and location in the parent pointer:
66  *   type  : slot location
67  *   0x??1 : Root
68  *   0x?00 : 16 bit values, type in 0-1, slot in 2-6
69  *   0x010 : 32 bit values, type in 0-2, slot in 3-6
70  *   0x110 : 64 bit values, type in 0-2, slot in 3-6
71  */
72 
73 /*
74  * This metadata is used to optimize the gap updating code and in reverse
75  * searching for gaps or any other code that needs to find the end of the data.
76  */
77 struct maple_metadata {
78 	unsigned char end;
79 	unsigned char gap;
80 };
81 
82 /*
83  * Leaf nodes do not store pointers to nodes, they store user data.  Users may
84  * store almost any bit pattern.  As noted above, the optimisation of storing an
85  * entry at 0 in the root pointer cannot be done for data which have the bottom
86  * two bits set to '10'.  We also reserve values with the bottom two bits set to
87  * '10' which are below 4096 (ie 2, 6, 10 .. 4094) for internal use.  Some APIs
88  * return errnos as a negative errno shifted right by two bits and the bottom
89  * two bits set to '10', and while choosing to store these values in the array
90  * is not an error, it may lead to confusion if you're testing for an error with
91  * mas_is_err().
92  *
93  * Non-leaf nodes store the type of the node pointed to (enum maple_type in bits
94  * 3-6), bit 2 is reserved.  That leaves bits 0-1 unused for now.
95  *
96  * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
97  * indicate that the tree is specifying ranges,  Pivots may appear in the
98  * subtree with an entry attached to the value whereas keys are unique to a
99  * specific position of a B-tree.  Pivot values are inclusive of the slot with
100  * the same index.
101  */
102 
103 struct maple_range_64 {
104 	struct maple_pnode *parent;
105 	unsigned long pivot[MAPLE_RANGE64_SLOTS - 1];
106 	union {
107 		void __rcu *slot[MAPLE_RANGE64_SLOTS];
108 		struct {
109 			void __rcu *pad[MAPLE_RANGE64_SLOTS - 1];
110 			struct maple_metadata meta;
111 		};
112 	};
113 };
114 
115 /*
116  * At tree creation time, the user can specify that they're willing to trade off
117  * storing fewer entries in a tree in return for storing more information in
118  * each node.
119  *
120  * The maple tree supports recording the largest range of NULL entries available
121  * in this node, also called gaps.  This optimises the tree for allocating a
122  * range.
123  */
124 struct maple_arange_64 {
125 	struct maple_pnode *parent;
126 	unsigned long pivot[MAPLE_ARANGE64_SLOTS - 1];
127 	void __rcu *slot[MAPLE_ARANGE64_SLOTS];
128 	unsigned long gap[MAPLE_ARANGE64_SLOTS];
129 	struct maple_metadata meta;
130 };
131 
132 struct maple_alloc {
133 	unsigned long total;
134 	unsigned char node_count;
135 	unsigned int request_count;
136 	struct maple_alloc *slot[MAPLE_ALLOC_SLOTS];
137 };
138 
139 struct maple_topiary {
140 	struct maple_pnode *parent;
141 	struct maple_enode *next; /* Overlaps the pivot */
142 };
143 
144 enum maple_type {
145 	maple_dense,
146 	maple_leaf_64,
147 	maple_range_64,
148 	maple_arange_64,
149 };
150 
151 
152 /**
153  * DOC: Maple tree flags
154  *
155  * * MT_FLAGS_ALLOC_RANGE	- Track gaps in this tree
156  * * MT_FLAGS_USE_RCU		- Operate in RCU mode
157  * * MT_FLAGS_HEIGHT_OFFSET	- The position of the tree height in the flags
158  * * MT_FLAGS_HEIGHT_MASK	- The mask for the maple tree height value
159  * * MT_FLAGS_LOCK_MASK		- How the mt_lock is used
160  * * MT_FLAGS_LOCK_IRQ		- Acquired irq-safe
161  * * MT_FLAGS_LOCK_BH		- Acquired bh-safe
162  * * MT_FLAGS_LOCK_EXTERN	- mt_lock is not used
163  *
164  * MAPLE_HEIGHT_MAX	The largest height that can be stored
165  */
166 #define MT_FLAGS_ALLOC_RANGE	0x01
167 #define MT_FLAGS_USE_RCU	0x02
168 #define MT_FLAGS_HEIGHT_OFFSET	0x02
169 #define MT_FLAGS_HEIGHT_MASK	0x7C
170 #define MT_FLAGS_LOCK_MASK	0x300
171 #define MT_FLAGS_LOCK_IRQ	0x100
172 #define MT_FLAGS_LOCK_BH	0x200
173 #define MT_FLAGS_LOCK_EXTERN	0x300
174 #define MT_FLAGS_ALLOC_WRAPPED	0x0800
175 
176 #define MAPLE_HEIGHT_MAX	31
177 
178 
179 #define MAPLE_NODE_TYPE_MASK	0x0F
180 #define MAPLE_NODE_TYPE_SHIFT	0x03
181 
182 #define MAPLE_RESERVED_RANGE	4096
183 
184 #ifdef CONFIG_LOCKDEP
185 typedef struct lockdep_map *lockdep_map_p;
186 #define mt_lock_is_held(mt)                                             \
187 	(!(mt)->ma_external_lock || lock_is_held((mt)->ma_external_lock))
188 
189 #define mt_write_lock_is_held(mt)					\
190 	(!(mt)->ma_external_lock ||					\
191 	 lock_is_held_type((mt)->ma_external_lock, 0))
192 
193 #define mt_set_external_lock(mt, lock)					\
194 	(mt)->ma_external_lock = &(lock)->dep_map
195 
196 #define mt_on_stack(mt)			(mt).ma_external_lock = NULL
197 #else
198 typedef struct { /* nothing */ } lockdep_map_p;
199 #define mt_lock_is_held(mt)		1
200 #define mt_write_lock_is_held(mt)	1
201 #define mt_set_external_lock(mt, lock)	do { } while (0)
202 #define mt_on_stack(mt)			do { } while (0)
203 #endif
204 
205 /*
206  * If the tree contains a single entry at index 0, it is usually stored in
207  * tree->ma_root.  To optimise for the page cache, an entry which ends in '00',
208  * '01' or '11' is stored in the root, but an entry which ends in '10' will be
209  * stored in a node.  Bits 3-6 are used to store enum maple_type.
210  *
211  * The flags are used both to store some immutable information about this tree
212  * (set at tree creation time) and dynamic information set under the spinlock.
213  *
214  * Another use of flags are to indicate global states of the tree.  This is the
215  * case with the MAPLE_USE_RCU flag, which indicates the tree is currently in
216  * RCU mode.  This mode was added to allow the tree to reuse nodes instead of
217  * re-allocating and RCU freeing nodes when there is a single user.
218  */
219 struct maple_tree {
220 	union {
221 		spinlock_t	ma_lock;
222 		lockdep_map_p	ma_external_lock;
223 	};
224 	unsigned int	ma_flags;
225 	void __rcu      *ma_root;
226 };
227 
228 /**
229  * MTREE_INIT() - Initialize a maple tree
230  * @name: The maple tree name
231  * @__flags: The maple tree flags
232  *
233  */
234 #define MTREE_INIT(name, __flags) {					\
235 	.ma_lock = __SPIN_LOCK_UNLOCKED((name).ma_lock),		\
236 	.ma_flags = __flags,						\
237 	.ma_root = NULL,						\
238 }
239 
240 /**
241  * MTREE_INIT_EXT() - Initialize a maple tree with an external lock.
242  * @name: The tree name
243  * @__flags: The maple tree flags
244  * @__lock: The external lock
245  */
246 #ifdef CONFIG_LOCKDEP
247 #define MTREE_INIT_EXT(name, __flags, __lock) {				\
248 	.ma_external_lock = &(__lock).dep_map,				\
249 	.ma_flags = (__flags),						\
250 	.ma_root = NULL,						\
251 }
252 #else
253 #define MTREE_INIT_EXT(name, __flags, __lock)	MTREE_INIT(name, __flags)
254 #endif
255 
256 #define DEFINE_MTREE(name)						\
257 	struct maple_tree name = MTREE_INIT(name, 0)
258 
259 #define mtree_lock(mt)		spin_lock((&(mt)->ma_lock))
260 #define mtree_lock_nested(mas, subclass) \
261 		spin_lock_nested((&(mt)->ma_lock), subclass)
262 #define mtree_unlock(mt)	spin_unlock((&(mt)->ma_lock))
263 
264 /*
265  * The Maple Tree squeezes various bits in at various points which aren't
266  * necessarily obvious.  Usually, this is done by observing that pointers are
267  * N-byte aligned and thus the bottom log_2(N) bits are available for use.  We
268  * don't use the high bits of pointers to store additional information because
269  * we don't know what bits are unused on any given architecture.
270  *
271  * Nodes are 256 bytes in size and are also aligned to 256 bytes, giving us 8
272  * low bits for our own purposes.  Nodes are currently of 4 types:
273  * 1. Single pointer (Range is 0-0)
274  * 2. Non-leaf Allocation Range nodes
275  * 3. Non-leaf Range nodes
276  * 4. Leaf Range nodes All nodes consist of a number of node slots,
277  *    pivots, and a parent pointer.
278  */
279 
280 struct maple_node {
281 	union {
282 		struct {
283 			struct maple_pnode *parent;
284 			void __rcu *slot[MAPLE_NODE_SLOTS];
285 		};
286 		struct {
287 			void *pad;
288 			struct rcu_head rcu;
289 			struct maple_enode *piv_parent;
290 			unsigned char parent_slot;
291 			enum maple_type type;
292 			unsigned char slot_len;
293 			unsigned int ma_flags;
294 		};
295 		struct maple_range_64 mr64;
296 		struct maple_arange_64 ma64;
297 		struct maple_alloc alloc;
298 	};
299 };
300 
301 /*
302  * More complicated stores can cause two nodes to become one or three and
303  * potentially alter the height of the tree.  Either half of the tree may need
304  * to be rebalanced against the other.  The ma_topiary struct is used to track
305  * which nodes have been 'cut' from the tree so that the change can be done
306  * safely at a later date.  This is done to support RCU.
307  */
308 struct ma_topiary {
309 	struct maple_enode *head;
310 	struct maple_enode *tail;
311 	struct maple_tree *mtree;
312 };
313 
314 void *mtree_load(struct maple_tree *mt, unsigned long index);
315 
316 int mtree_insert(struct maple_tree *mt, unsigned long index,
317 		void *entry, gfp_t gfp);
318 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
319 		unsigned long last, void *entry, gfp_t gfp);
320 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
321 		void *entry, unsigned long size, unsigned long min,
322 		unsigned long max, gfp_t gfp);
323 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
324 		void *entry, unsigned long range_lo, unsigned long range_hi,
325 		unsigned long *next, gfp_t gfp);
326 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
327 		void *entry, unsigned long size, unsigned long min,
328 		unsigned long max, gfp_t gfp);
329 
330 int mtree_store_range(struct maple_tree *mt, unsigned long first,
331 		      unsigned long last, void *entry, gfp_t gfp);
332 int mtree_store(struct maple_tree *mt, unsigned long index,
333 		void *entry, gfp_t gfp);
334 void *mtree_erase(struct maple_tree *mt, unsigned long index);
335 
336 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp);
337 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp);
338 
339 void mtree_destroy(struct maple_tree *mt);
340 void __mt_destroy(struct maple_tree *mt);
341 
342 /**
343  * mtree_empty() - Determine if a tree has any present entries.
344  * @mt: Maple Tree.
345  *
346  * Context: Any context.
347  * Return: %true if the tree contains only NULL pointers.
348  */
mtree_empty(const struct maple_tree * mt)349 static inline bool mtree_empty(const struct maple_tree *mt)
350 {
351 	return mt->ma_root == NULL;
352 }
353 
354 /* Advanced API */
355 
356 /*
357  * Maple State Status
358  * ma_active means the maple state is pointing to a node and offset and can
359  * continue operating on the tree.
360  * ma_start means we have not searched the tree.
361  * ma_root means we have searched the tree and the entry we found lives in
362  * the root of the tree (ie it has index 0, length 1 and is the only entry in
363  * the tree).
364  * ma_none means we have searched the tree and there is no node in the
365  * tree for this entry.  For example, we searched for index 1 in an empty
366  * tree.  Or we have a tree which points to a full leaf node and we
367  * searched for an entry which is larger than can be contained in that
368  * leaf node.
369  * ma_pause means the data within the maple state may be stale, restart the
370  * operation
371  * ma_overflow means the search has reached the upper limit of the search
372  * ma_underflow means the search has reached the lower limit of the search
373  * ma_error means there was an error, check the node for the error number.
374  */
375 enum maple_status {
376 	ma_active,
377 	ma_start,
378 	ma_root,
379 	ma_none,
380 	ma_pause,
381 	ma_overflow,
382 	ma_underflow,
383 	ma_error,
384 };
385 
386 /*
387  * The maple state is defined in the struct ma_state and is used to keep track
388  * of information during operations, and even between operations when using the
389  * advanced API.
390  *
391  * If state->node has bit 0 set then it references a tree location which is not
392  * a node (eg the root).  If bit 1 is set, the rest of the bits are a negative
393  * errno.  Bit 2 (the 'unallocated slots' bit) is clear.  Bits 3-6 indicate the
394  * node type.
395  *
396  * state->alloc either has a request number of nodes or an allocated node.  If
397  * stat->alloc has a requested number of nodes, the first bit will be set (0x1)
398  * and the remaining bits are the value.  If state->alloc is a node, then the
399  * node will be of type maple_alloc.  maple_alloc has MAPLE_NODE_SLOTS - 1 for
400  * storing more allocated nodes, a total number of nodes allocated, and the
401  * node_count in this node.  node_count is the number of allocated nodes in this
402  * node.  The scaling beyond MAPLE_NODE_SLOTS - 1 is handled by storing further
403  * nodes into state->alloc->slot[0]'s node.  Nodes are taken from state->alloc
404  * by removing a node from the state->alloc node until state->alloc->node_count
405  * is 1, when state->alloc is returned and the state->alloc->slot[0] is promoted
406  * to state->alloc.  Nodes are pushed onto state->alloc by putting the current
407  * state->alloc into the pushed node's slot[0].
408  *
409  * The state also contains the implied min/max of the state->node, the depth of
410  * this search, and the offset. The implied min/max are either from the parent
411  * node or are 0-oo for the root node.  The depth is incremented or decremented
412  * every time a node is walked down or up.  The offset is the slot/pivot of
413  * interest in the node - either for reading or writing.
414  *
415  * When returning a value the maple state index and last respectively contain
416  * the start and end of the range for the entry.  Ranges are inclusive in the
417  * Maple Tree.
418  *
419  * The status of the state is used to determine how the next action should treat
420  * the state.  For instance, if the status is ma_start then the next action
421  * should start at the root of the tree and walk down.  If the status is
422  * ma_pause then the node may be stale data and should be discarded.  If the
423  * status is ma_overflow, then the last action hit the upper limit.
424  *
425  */
426 struct ma_state {
427 	struct maple_tree *tree;	/* The tree we're operating in */
428 	unsigned long index;		/* The index we're operating on - range start */
429 	unsigned long last;		/* The last index we're operating on - range end */
430 	struct maple_enode *node;	/* The node containing this entry */
431 	unsigned long min;		/* The minimum index of this node - implied pivot min */
432 	unsigned long max;		/* The maximum index of this node - implied pivot max */
433 	struct maple_alloc *alloc;	/* Allocated nodes for this operation */
434 	enum maple_status status;	/* The status of the state (active, start, none, etc) */
435 	unsigned char depth;		/* depth of tree descent during write */
436 	unsigned char offset;
437 	unsigned char mas_flags;
438 	unsigned char end;		/* The end of the node */
439 };
440 
441 struct ma_wr_state {
442 	struct ma_state *mas;
443 	struct maple_node *node;	/* Decoded mas->node */
444 	unsigned long r_min;		/* range min */
445 	unsigned long r_max;		/* range max */
446 	enum maple_type type;		/* mas->node type */
447 	unsigned char offset_end;	/* The offset where the write ends */
448 	unsigned long *pivots;		/* mas->node->pivots pointer */
449 	unsigned long end_piv;		/* The pivot at the offset end */
450 	void __rcu **slots;		/* mas->node->slots pointer */
451 	void *entry;			/* The entry to write */
452 	void *content;			/* The existing entry that is being overwritten */
453 };
454 
455 #define mas_lock(mas)           spin_lock(&((mas)->tree->ma_lock))
456 #define mas_lock_nested(mas, subclass) \
457 		spin_lock_nested(&((mas)->tree->ma_lock), subclass)
458 #define mas_unlock(mas)         spin_unlock(&((mas)->tree->ma_lock))
459 
460 /*
461  * Special values for ma_state.node.
462  * MA_ERROR represents an errno.  After dropping the lock and attempting
463  * to resolve the error, the walk would have to be restarted from the
464  * top of the tree as the tree may have been modified.
465  */
466 #define MA_ERROR(err) \
467 		((struct maple_enode *)(((unsigned long)err << 2) | 2UL))
468 
469 #define MA_STATE(name, mt, first, end)					\
470 	struct ma_state name = {					\
471 		.tree = mt,						\
472 		.index = first,						\
473 		.last = end,						\
474 		.node = NULL,						\
475 		.status = ma_start,					\
476 		.min = 0,						\
477 		.max = ULONG_MAX,					\
478 		.alloc = NULL,						\
479 		.mas_flags = 0,						\
480 	}
481 
482 #define MA_WR_STATE(name, ma_state, wr_entry)				\
483 	struct ma_wr_state name = {					\
484 		.mas = ma_state,					\
485 		.content = NULL,					\
486 		.entry = wr_entry,					\
487 	}
488 
489 #define MA_TOPIARY(name, tree)						\
490 	struct ma_topiary name = {					\
491 		.head = NULL,						\
492 		.tail = NULL,						\
493 		.mtree = tree,						\
494 	}
495 
496 void *mas_walk(struct ma_state *mas);
497 void *mas_store(struct ma_state *mas, void *entry);
498 void *mas_erase(struct ma_state *mas);
499 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp);
500 void mas_store_prealloc(struct ma_state *mas, void *entry);
501 void *mas_find(struct ma_state *mas, unsigned long max);
502 void *mas_find_range(struct ma_state *mas, unsigned long max);
503 void *mas_find_rev(struct ma_state *mas, unsigned long min);
504 void *mas_find_range_rev(struct ma_state *mas, unsigned long max);
505 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp);
506 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
507 		void *entry, unsigned long range_lo, unsigned long range_hi,
508 		unsigned long *next, gfp_t gfp);
509 
510 bool mas_nomem(struct ma_state *mas, gfp_t gfp);
511 void mas_pause(struct ma_state *mas);
512 void maple_tree_init(void);
513 void mas_destroy(struct ma_state *mas);
514 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries);
515 
516 void *mas_prev(struct ma_state *mas, unsigned long min);
517 void *mas_prev_range(struct ma_state *mas, unsigned long max);
518 void *mas_next(struct ma_state *mas, unsigned long max);
519 void *mas_next_range(struct ma_state *mas, unsigned long max);
520 
521 int mas_empty_area(struct ma_state *mas, unsigned long min, unsigned long max,
522 		   unsigned long size);
523 /*
524  * This finds an empty area from the highest address to the lowest.
525  * AKA "Topdown" version,
526  */
527 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
528 		       unsigned long max, unsigned long size);
529 
mas_init(struct ma_state * mas,struct maple_tree * tree,unsigned long addr)530 static inline void mas_init(struct ma_state *mas, struct maple_tree *tree,
531 			    unsigned long addr)
532 {
533 	memset(mas, 0, sizeof(struct ma_state));
534 	mas->tree = tree;
535 	mas->index = mas->last = addr;
536 	mas->max = ULONG_MAX;
537 	mas->status = ma_start;
538 	mas->node = NULL;
539 }
540 
mas_is_active(struct ma_state * mas)541 static inline bool mas_is_active(struct ma_state *mas)
542 {
543 	return mas->status == ma_active;
544 }
545 
mas_is_err(struct ma_state * mas)546 static inline bool mas_is_err(struct ma_state *mas)
547 {
548 	return mas->status == ma_error;
549 }
550 
551 /**
552  * mas_reset() - Reset a Maple Tree operation state.
553  * @mas: Maple Tree operation state.
554  *
555  * Resets the error or walk state of the @mas so future walks of the
556  * array will start from the root.  Use this if you have dropped the
557  * lock and want to reuse the ma_state.
558  *
559  * Context: Any context.
560  */
mas_reset(struct ma_state * mas)561 static __always_inline void mas_reset(struct ma_state *mas)
562 {
563 	mas->status = ma_start;
564 	mas->node = NULL;
565 }
566 
567 /**
568  * mas_for_each() - Iterate over a range of the maple tree.
569  * @__mas: Maple Tree operation state (maple_state)
570  * @__entry: Entry retrieved from the tree
571  * @__max: maximum index to retrieve from the tree
572  *
573  * When returned, mas->index and mas->last will hold the entire range for the
574  * entry.
575  *
576  * Note: may return the zero entry.
577  */
578 #define mas_for_each(__mas, __entry, __max) \
579 	while (((__entry) = mas_find((__mas), (__max))) != NULL)
580 
581 #ifdef CONFIG_DEBUG_MAPLE_TREE
582 enum mt_dump_format {
583 	mt_dump_dec,
584 	mt_dump_hex,
585 };
586 
587 extern atomic_t maple_tree_tests_run;
588 extern atomic_t maple_tree_tests_passed;
589 
590 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format);
591 void mas_dump(const struct ma_state *mas);
592 void mas_wr_dump(const struct ma_wr_state *wr_mas);
593 void mt_validate(struct maple_tree *mt);
594 void mt_cache_shrink(void);
595 #define MT_BUG_ON(__tree, __x) do {					\
596 	atomic_inc(&maple_tree_tests_run);				\
597 	if (__x) {							\
598 		pr_info("BUG at %s:%d (%u)\n",				\
599 		__func__, __LINE__, __x);				\
600 		mt_dump(__tree, mt_dump_hex);				\
601 		pr_info("Pass: %u Run:%u\n",				\
602 			atomic_read(&maple_tree_tests_passed),		\
603 			atomic_read(&maple_tree_tests_run));		\
604 		dump_stack();						\
605 	} else {							\
606 		atomic_inc(&maple_tree_tests_passed);			\
607 	}								\
608 } while (0)
609 
610 #define MAS_BUG_ON(__mas, __x) do {					\
611 	atomic_inc(&maple_tree_tests_run);				\
612 	if (__x) {							\
613 		pr_info("BUG at %s:%d (%u)\n",				\
614 		__func__, __LINE__, __x);				\
615 		mas_dump(__mas);					\
616 		mt_dump((__mas)->tree, mt_dump_hex);			\
617 		pr_info("Pass: %u Run:%u\n",				\
618 			atomic_read(&maple_tree_tests_passed),		\
619 			atomic_read(&maple_tree_tests_run));		\
620 		dump_stack();						\
621 	} else {							\
622 		atomic_inc(&maple_tree_tests_passed);			\
623 	}								\
624 } while (0)
625 
626 #define MAS_WR_BUG_ON(__wrmas, __x) do {				\
627 	atomic_inc(&maple_tree_tests_run);				\
628 	if (__x) {							\
629 		pr_info("BUG at %s:%d (%u)\n",				\
630 		__func__, __LINE__, __x);				\
631 		mas_wr_dump(__wrmas);					\
632 		mas_dump((__wrmas)->mas);				\
633 		mt_dump((__wrmas)->mas->tree, mt_dump_hex);		\
634 		pr_info("Pass: %u Run:%u\n",				\
635 			atomic_read(&maple_tree_tests_passed),		\
636 			atomic_read(&maple_tree_tests_run));		\
637 		dump_stack();						\
638 	} else {							\
639 		atomic_inc(&maple_tree_tests_passed);			\
640 	}								\
641 } while (0)
642 
643 #define MT_WARN_ON(__tree, __x)  ({					\
644 	int ret = !!(__x);						\
645 	atomic_inc(&maple_tree_tests_run);				\
646 	if (ret) {							\
647 		pr_info("WARN at %s:%d (%u)\n",				\
648 		__func__, __LINE__, __x);				\
649 		mt_dump(__tree, mt_dump_hex);				\
650 		pr_info("Pass: %u Run:%u\n",				\
651 			atomic_read(&maple_tree_tests_passed),		\
652 			atomic_read(&maple_tree_tests_run));		\
653 		dump_stack();						\
654 	} else {							\
655 		atomic_inc(&maple_tree_tests_passed);			\
656 	}								\
657 	unlikely(ret);							\
658 })
659 
660 #define MAS_WARN_ON(__mas, __x) ({					\
661 	int ret = !!(__x);						\
662 	atomic_inc(&maple_tree_tests_run);				\
663 	if (ret) {							\
664 		pr_info("WARN at %s:%d (%u)\n",				\
665 		__func__, __LINE__, __x);				\
666 		mas_dump(__mas);					\
667 		mt_dump((__mas)->tree, mt_dump_hex);			\
668 		pr_info("Pass: %u Run:%u\n",				\
669 			atomic_read(&maple_tree_tests_passed),		\
670 			atomic_read(&maple_tree_tests_run));		\
671 		dump_stack();						\
672 	} else {							\
673 		atomic_inc(&maple_tree_tests_passed);			\
674 	}								\
675 	unlikely(ret);							\
676 })
677 
678 #define MAS_WR_WARN_ON(__wrmas, __x) ({					\
679 	int ret = !!(__x);						\
680 	atomic_inc(&maple_tree_tests_run);				\
681 	if (ret) {							\
682 		pr_info("WARN at %s:%d (%u)\n",				\
683 		__func__, __LINE__, __x);				\
684 		mas_wr_dump(__wrmas);					\
685 		mas_dump((__wrmas)->mas);				\
686 		mt_dump((__wrmas)->mas->tree, mt_dump_hex);		\
687 		pr_info("Pass: %u Run:%u\n",				\
688 			atomic_read(&maple_tree_tests_passed),		\
689 			atomic_read(&maple_tree_tests_run));		\
690 		dump_stack();						\
691 	} else {							\
692 		atomic_inc(&maple_tree_tests_passed);			\
693 	}								\
694 	unlikely(ret);							\
695 })
696 #else
697 #define MT_BUG_ON(__tree, __x)		BUG_ON(__x)
698 #define MAS_BUG_ON(__mas, __x)		BUG_ON(__x)
699 #define MAS_WR_BUG_ON(__mas, __x)	BUG_ON(__x)
700 #define MT_WARN_ON(__tree, __x)		WARN_ON(__x)
701 #define MAS_WARN_ON(__mas, __x)		WARN_ON(__x)
702 #define MAS_WR_WARN_ON(__mas, __x)	WARN_ON(__x)
703 #endif /* CONFIG_DEBUG_MAPLE_TREE */
704 
705 /**
706  * __mas_set_range() - Set up Maple Tree operation state to a sub-range of the
707  * current location.
708  * @mas: Maple Tree operation state.
709  * @start: New start of range in the Maple Tree.
710  * @last: New end of range in the Maple Tree.
711  *
712  * set the internal maple state values to a sub-range.
713  * Please use mas_set_range() if you do not know where you are in the tree.
714  */
__mas_set_range(struct ma_state * mas,unsigned long start,unsigned long last)715 static inline void __mas_set_range(struct ma_state *mas, unsigned long start,
716 		unsigned long last)
717 {
718 	/* Ensure the range starts within the current slot */
719 	MAS_WARN_ON(mas, mas_is_active(mas) &&
720 		   (mas->index > start || mas->last < start));
721 	mas->index = start;
722 	mas->last = last;
723 }
724 
725 /**
726  * mas_set_range() - Set up Maple Tree operation state for a different index.
727  * @mas: Maple Tree operation state.
728  * @start: New start of range in the Maple Tree.
729  * @last: New end of range in the Maple Tree.
730  *
731  * Move the operation state to refer to a different range.  This will
732  * have the effect of starting a walk from the top; see mas_next()
733  * to move to an adjacent index.
734  */
735 static inline
mas_set_range(struct ma_state * mas,unsigned long start,unsigned long last)736 void mas_set_range(struct ma_state *mas, unsigned long start, unsigned long last)
737 {
738 	mas_reset(mas);
739 	__mas_set_range(mas, start, last);
740 }
741 
742 /**
743  * mas_set() - Set up Maple Tree operation state for a different index.
744  * @mas: Maple Tree operation state.
745  * @index: New index into the Maple Tree.
746  *
747  * Move the operation state to refer to a different index.  This will
748  * have the effect of starting a walk from the top; see mas_next()
749  * to move to an adjacent index.
750  */
mas_set(struct ma_state * mas,unsigned long index)751 static inline void mas_set(struct ma_state *mas, unsigned long index)
752 {
753 
754 	mas_set_range(mas, index, index);
755 }
756 
mt_external_lock(const struct maple_tree * mt)757 static inline bool mt_external_lock(const struct maple_tree *mt)
758 {
759 	return (mt->ma_flags & MT_FLAGS_LOCK_MASK) == MT_FLAGS_LOCK_EXTERN;
760 }
761 
762 /**
763  * mt_init_flags() - Initialise an empty maple tree with flags.
764  * @mt: Maple Tree
765  * @flags: maple tree flags.
766  *
767  * If you need to initialise a Maple Tree with special flags (eg, an
768  * allocation tree), use this function.
769  *
770  * Context: Any context.
771  */
mt_init_flags(struct maple_tree * mt,unsigned int flags)772 static inline void mt_init_flags(struct maple_tree *mt, unsigned int flags)
773 {
774 	mt->ma_flags = flags;
775 	if (!mt_external_lock(mt))
776 		spin_lock_init(&mt->ma_lock);
777 	rcu_assign_pointer(mt->ma_root, NULL);
778 }
779 
780 /**
781  * mt_init() - Initialise an empty maple tree.
782  * @mt: Maple Tree
783  *
784  * An empty Maple Tree.
785  *
786  * Context: Any context.
787  */
mt_init(struct maple_tree * mt)788 static inline void mt_init(struct maple_tree *mt)
789 {
790 	mt_init_flags(mt, 0);
791 }
792 
mt_in_rcu(struct maple_tree * mt)793 static inline bool mt_in_rcu(struct maple_tree *mt)
794 {
795 #ifdef CONFIG_MAPLE_RCU_DISABLED
796 	return false;
797 #endif
798 	return mt->ma_flags & MT_FLAGS_USE_RCU;
799 }
800 
801 /**
802  * mt_clear_in_rcu() - Switch the tree to non-RCU mode.
803  * @mt: The Maple Tree
804  */
mt_clear_in_rcu(struct maple_tree * mt)805 static inline void mt_clear_in_rcu(struct maple_tree *mt)
806 {
807 	if (!mt_in_rcu(mt))
808 		return;
809 
810 	if (mt_external_lock(mt)) {
811 		WARN_ON(!mt_lock_is_held(mt));
812 		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
813 	} else {
814 		mtree_lock(mt);
815 		mt->ma_flags &= ~MT_FLAGS_USE_RCU;
816 		mtree_unlock(mt);
817 	}
818 }
819 
820 /**
821  * mt_set_in_rcu() - Switch the tree to RCU safe mode.
822  * @mt: The Maple Tree
823  */
mt_set_in_rcu(struct maple_tree * mt)824 static inline void mt_set_in_rcu(struct maple_tree *mt)
825 {
826 	if (mt_in_rcu(mt))
827 		return;
828 
829 	if (mt_external_lock(mt)) {
830 		WARN_ON(!mt_lock_is_held(mt));
831 		mt->ma_flags |= MT_FLAGS_USE_RCU;
832 	} else {
833 		mtree_lock(mt);
834 		mt->ma_flags |= MT_FLAGS_USE_RCU;
835 		mtree_unlock(mt);
836 	}
837 }
838 
mt_height(const struct maple_tree * mt)839 static inline unsigned int mt_height(const struct maple_tree *mt)
840 {
841 	return (mt->ma_flags & MT_FLAGS_HEIGHT_MASK) >> MT_FLAGS_HEIGHT_OFFSET;
842 }
843 
844 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max);
845 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
846 		    unsigned long max);
847 void *mt_prev(struct maple_tree *mt, unsigned long index,  unsigned long min);
848 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max);
849 
850 /**
851  * mt_for_each - Iterate over each entry starting at index until max.
852  * @__tree: The Maple Tree
853  * @__entry: The current entry
854  * @__index: The index to start the search from. Subsequently used as iterator.
855  * @__max: The maximum limit for @index
856  *
857  * This iterator skips all entries, which resolve to a NULL pointer,
858  * e.g. entries which has been reserved with XA_ZERO_ENTRY.
859  */
860 #define mt_for_each(__tree, __entry, __index, __max) \
861 	for (__entry = mt_find(__tree, &(__index), __max); \
862 		__entry; __entry = mt_find_after(__tree, &(__index), __max))
863 
864 #endif /*_LINUX_MAPLE_TREE_H */
865