1 //===-- memprof_allocator.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of MemProfiler, a memory profiler.
10 //
11 // Implementation of MemProf's memory allocator, which uses the allocator
12 // from sanitizer_common.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "memprof_allocator.h"
17 #include "memprof_mapping.h"
18 #include "memprof_mibmap.h"
19 #include "memprof_rawprofile.h"
20 #include "memprof_stack.h"
21 #include "memprof_thread.h"
22 #include "profile/MemProfData.inc"
23 #include "sanitizer_common/sanitizer_allocator_checks.h"
24 #include "sanitizer_common/sanitizer_allocator_interface.h"
25 #include "sanitizer_common/sanitizer_allocator_report.h"
26 #include "sanitizer_common/sanitizer_errno.h"
27 #include "sanitizer_common/sanitizer_file.h"
28 #include "sanitizer_common/sanitizer_flags.h"
29 #include "sanitizer_common/sanitizer_internal_defs.h"
30 #include "sanitizer_common/sanitizer_procmaps.h"
31 #include "sanitizer_common/sanitizer_stackdepot.h"
32
33 #include <sched.h>
34 #include <time.h>
35
36 namespace __memprof {
37 namespace {
38 using ::llvm::memprof::MemInfoBlock;
39
Print(const MemInfoBlock & M,const u64 id,bool print_terse)40 void Print(const MemInfoBlock &M, const u64 id, bool print_terse) {
41 u64 p;
42
43 if (print_terse) {
44 p = M.TotalSize * 100 / M.AllocCount;
45 Printf("MIB:%llu/%u/%llu.%02llu/%u/%u/", id, M.AllocCount, p / 100, p % 100,
46 M.MinSize, M.MaxSize);
47 p = M.TotalAccessCount * 100 / M.AllocCount;
48 Printf("%llu.%02llu/%llu/%llu/", p / 100, p % 100, M.MinAccessCount,
49 M.MaxAccessCount);
50 p = M.TotalLifetime * 100 / M.AllocCount;
51 Printf("%llu.%02llu/%u/%u/", p / 100, p % 100, M.MinLifetime,
52 M.MaxLifetime);
53 Printf("%u/%u/%u/%u\n", M.NumMigratedCpu, M.NumLifetimeOverlaps,
54 M.NumSameAllocCpu, M.NumSameDeallocCpu);
55 } else {
56 p = M.TotalSize * 100 / M.AllocCount;
57 Printf("Memory allocation stack id = %llu\n", id);
58 Printf("\talloc_count %u, size (ave/min/max) %llu.%02llu / %u / %u\n",
59 M.AllocCount, p / 100, p % 100, M.MinSize, M.MaxSize);
60 p = M.TotalAccessCount * 100 / M.AllocCount;
61 Printf("\taccess_count (ave/min/max): %llu.%02llu / %llu / %llu\n", p / 100,
62 p % 100, M.MinAccessCount, M.MaxAccessCount);
63 p = M.TotalLifetime * 100 / M.AllocCount;
64 Printf("\tlifetime (ave/min/max): %llu.%02llu / %u / %u\n", p / 100,
65 p % 100, M.MinLifetime, M.MaxLifetime);
66 Printf("\tnum migrated: %u, num lifetime overlaps: %u, num same alloc "
67 "cpu: %u, num same dealloc_cpu: %u\n",
68 M.NumMigratedCpu, M.NumLifetimeOverlaps, M.NumSameAllocCpu,
69 M.NumSameDeallocCpu);
70 }
71 }
72 } // namespace
73
GetCpuId(void)74 static int GetCpuId(void) {
75 // _memprof_preinit is called via the preinit_array, which subsequently calls
76 // malloc. Since this is before _dl_init calls VDSO_SETUP, sched_getcpu
77 // will seg fault as the address of __vdso_getcpu will be null.
78 if (!memprof_init_done)
79 return -1;
80 return sched_getcpu();
81 }
82
83 // Compute the timestamp in ms.
GetTimestamp(void)84 static int GetTimestamp(void) {
85 // timespec_get will segfault if called from dl_init
86 if (!memprof_timestamp_inited) {
87 // By returning 0, this will be effectively treated as being
88 // timestamped at memprof init time (when memprof_init_timestamp_s
89 // is initialized).
90 return 0;
91 }
92 timespec ts;
93 clock_gettime(CLOCK_REALTIME, &ts);
94 return (ts.tv_sec - memprof_init_timestamp_s) * 1000 + ts.tv_nsec / 1000000;
95 }
96
97 static MemprofAllocator &get_allocator();
98
99 // The memory chunk allocated from the underlying allocator looks like this:
100 // H H U U U U U U
101 // H -- ChunkHeader (32 bytes)
102 // U -- user memory.
103
104 // If there is left padding before the ChunkHeader (due to use of memalign),
105 // we store a magic value in the first uptr word of the memory block and
106 // store the address of ChunkHeader in the next uptr.
107 // M B L L L L L L L L L H H U U U U U U
108 // | ^
109 // ---------------------|
110 // M -- magic value kAllocBegMagic
111 // B -- address of ChunkHeader pointing to the first 'H'
112
113 constexpr uptr kMaxAllowedMallocBits = 40;
114
115 // Should be no more than 32-bytes
116 struct ChunkHeader {
117 // 1-st 4 bytes.
118 u32 alloc_context_id;
119 // 2-nd 4 bytes
120 u32 cpu_id;
121 // 3-rd 4 bytes
122 u32 timestamp_ms;
123 // 4-th 4 bytes
124 // Note only 1 bit is needed for this flag if we need space in the future for
125 // more fields.
126 u32 from_memalign;
127 // 5-th and 6-th 4 bytes
128 // The max size of an allocation is 2^40 (kMaxAllowedMallocSize), so this
129 // could be shrunk to kMaxAllowedMallocBits if we need space in the future for
130 // more fields.
131 atomic_uint64_t user_requested_size;
132 // 23 bits available
133 // 7-th and 8-th 4 bytes
134 u64 data_type_id; // TODO: hash of type name
135 };
136
137 static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
138 COMPILER_CHECK(kChunkHeaderSize == 32);
139
140 struct MemprofChunk : ChunkHeader {
Beg__memprof::MemprofChunk141 uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
UsedSize__memprof::MemprofChunk142 uptr UsedSize() {
143 return atomic_load(&user_requested_size, memory_order_relaxed);
144 }
AllocBeg__memprof::MemprofChunk145 void *AllocBeg() {
146 if (from_memalign)
147 return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this));
148 return reinterpret_cast<void *>(this);
149 }
150 };
151
152 class LargeChunkHeader {
153 static constexpr uptr kAllocBegMagic =
154 FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL);
155 atomic_uintptr_t magic;
156 MemprofChunk *chunk_header;
157
158 public:
Get() const159 MemprofChunk *Get() const {
160 return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic
161 ? chunk_header
162 : nullptr;
163 }
164
Set(MemprofChunk * p)165 void Set(MemprofChunk *p) {
166 if (p) {
167 chunk_header = p;
168 atomic_store(&magic, kAllocBegMagic, memory_order_release);
169 return;
170 }
171
172 uptr old = kAllocBegMagic;
173 if (!atomic_compare_exchange_strong(&magic, &old, 0,
174 memory_order_release)) {
175 CHECK_EQ(old, kAllocBegMagic);
176 }
177 }
178 };
179
FlushUnneededMemProfShadowMemory(uptr p,uptr size)180 void FlushUnneededMemProfShadowMemory(uptr p, uptr size) {
181 // Since memprof's mapping is compacting, the shadow chunk may be
182 // not page-aligned, so we only flush the page-aligned portion.
183 ReleaseMemoryPagesToOS(MemToShadow(p), MemToShadow(p + size));
184 }
185
OnMap(uptr p,uptr size) const186 void MemprofMapUnmapCallback::OnMap(uptr p, uptr size) const {
187 // Statistics.
188 MemprofStats &thread_stats = GetCurrentThreadStats();
189 thread_stats.mmaps++;
190 thread_stats.mmaped += size;
191 }
OnUnmap(uptr p,uptr size) const192 void MemprofMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
193 // We are about to unmap a chunk of user memory.
194 // Mark the corresponding shadow memory as not needed.
195 FlushUnneededMemProfShadowMemory(p, size);
196 // Statistics.
197 MemprofStats &thread_stats = GetCurrentThreadStats();
198 thread_stats.munmaps++;
199 thread_stats.munmaped += size;
200 }
201
GetAllocatorCache(MemprofThreadLocalMallocStorage * ms)202 AllocatorCache *GetAllocatorCache(MemprofThreadLocalMallocStorage *ms) {
203 CHECK(ms);
204 return &ms->allocator_cache;
205 }
206
207 // Accumulates the access count from the shadow for the given pointer and size.
GetShadowCount(uptr p,u32 size)208 u64 GetShadowCount(uptr p, u32 size) {
209 u64 *shadow = (u64 *)MEM_TO_SHADOW(p);
210 u64 *shadow_end = (u64 *)MEM_TO_SHADOW(p + size);
211 u64 count = 0;
212 for (; shadow <= shadow_end; shadow++)
213 count += *shadow;
214 return count;
215 }
216
217 // Clears the shadow counters (when memory is allocated).
ClearShadow(uptr addr,uptr size)218 void ClearShadow(uptr addr, uptr size) {
219 CHECK(AddrIsAlignedByGranularity(addr));
220 CHECK(AddrIsInMem(addr));
221 CHECK(AddrIsAlignedByGranularity(addr + size));
222 CHECK(AddrIsInMem(addr + size - SHADOW_GRANULARITY));
223 CHECK(REAL(memset));
224 uptr shadow_beg = MEM_TO_SHADOW(addr);
225 uptr shadow_end = MEM_TO_SHADOW(addr + size - SHADOW_GRANULARITY) + 1;
226 if (shadow_end - shadow_beg < common_flags()->clear_shadow_mmap_threshold) {
227 REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg);
228 } else {
229 uptr page_size = GetPageSizeCached();
230 uptr page_beg = RoundUpTo(shadow_beg, page_size);
231 uptr page_end = RoundDownTo(shadow_end, page_size);
232
233 if (page_beg >= page_end) {
234 REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg);
235 } else {
236 if (page_beg != shadow_beg) {
237 REAL(memset)((void *)shadow_beg, 0, page_beg - shadow_beg);
238 }
239 if (page_end != shadow_end) {
240 REAL(memset)((void *)page_end, 0, shadow_end - page_end);
241 }
242 ReserveShadowMemoryRange(page_beg, page_end - 1, nullptr);
243 }
244 }
245 }
246
247 struct Allocator {
248 static const uptr kMaxAllowedMallocSize = 1ULL << kMaxAllowedMallocBits;
249
250 MemprofAllocator allocator;
251 StaticSpinMutex fallback_mutex;
252 AllocatorCache fallback_allocator_cache;
253
254 uptr max_user_defined_malloc_size;
255
256 // Holds the mapping of stack ids to MemInfoBlocks.
257 MIBMapTy MIBMap;
258
259 atomic_uint8_t destructing;
260 atomic_uint8_t constructed;
261 bool print_text;
262
263 // ------------------- Initialization ------------------------
Allocator__memprof::Allocator264 explicit Allocator(LinkerInitialized) : print_text(flags()->print_text) {
265 atomic_store_relaxed(&destructing, 0);
266 atomic_store_relaxed(&constructed, 1);
267 }
268
~Allocator__memprof::Allocator269 ~Allocator() {
270 atomic_store_relaxed(&destructing, 1);
271 FinishAndWrite();
272 }
273
PrintCallback__memprof::Allocator274 static void PrintCallback(const uptr Key, LockedMemInfoBlock *const &Value,
275 void *Arg) {
276 SpinMutexLock l(&Value->mutex);
277 Print(Value->mib, Key, bool(Arg));
278 }
279
FinishAndWrite__memprof::Allocator280 void FinishAndWrite() {
281 if (print_text && common_flags()->print_module_map)
282 DumpProcessMap();
283
284 allocator.ForceLock();
285
286 InsertLiveBlocks();
287 if (print_text) {
288 if (!flags()->print_terse)
289 Printf("Recorded MIBs (incl. live on exit):\n");
290 MIBMap.ForEach(PrintCallback,
291 reinterpret_cast<void *>(flags()->print_terse));
292 StackDepotPrintAll();
293 } else {
294 // Serialize the contents to a raw profile. Format documented in
295 // memprof_rawprofile.h.
296 char *Buffer = nullptr;
297
298 MemoryMappingLayout Layout(/*cache_enabled=*/true);
299 u64 BytesSerialized = SerializeToRawProfile(MIBMap, Layout, Buffer);
300 CHECK(Buffer && BytesSerialized && "could not serialize to buffer");
301 report_file.Write(Buffer, BytesSerialized);
302 }
303
304 allocator.ForceUnlock();
305 }
306
307 // Inserts any blocks which have been allocated but not yet deallocated.
InsertLiveBlocks__memprof::Allocator308 void InsertLiveBlocks() {
309 allocator.ForEachChunk(
310 [](uptr chunk, void *alloc) {
311 u64 user_requested_size;
312 Allocator *A = (Allocator *)alloc;
313 MemprofChunk *m =
314 A->GetMemprofChunk((void *)chunk, user_requested_size);
315 if (!m)
316 return;
317 uptr user_beg = ((uptr)m) + kChunkHeaderSize;
318 u64 c = GetShadowCount(user_beg, user_requested_size);
319 long curtime = GetTimestamp();
320 MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime,
321 m->cpu_id, GetCpuId());
322 InsertOrMerge(m->alloc_context_id, newMIB, A->MIBMap);
323 },
324 this);
325 }
326
InitLinkerInitialized__memprof::Allocator327 void InitLinkerInitialized() {
328 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
329 allocator.InitLinkerInitialized(
330 common_flags()->allocator_release_to_os_interval_ms);
331 max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
332 ? common_flags()->max_allocation_size_mb
333 << 20
334 : kMaxAllowedMallocSize;
335 }
336
337 // -------------------- Allocation/Deallocation routines ---------------
Allocate__memprof::Allocator338 void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
339 AllocType alloc_type) {
340 if (UNLIKELY(!memprof_inited))
341 MemprofInitFromRtl();
342 if (UNLIKELY(IsRssLimitExceeded())) {
343 if (AllocatorMayReturnNull())
344 return nullptr;
345 ReportRssLimitExceeded(stack);
346 }
347 CHECK(stack);
348 const uptr min_alignment = MEMPROF_ALIGNMENT;
349 if (alignment < min_alignment)
350 alignment = min_alignment;
351 if (size == 0) {
352 // We'd be happy to avoid allocating memory for zero-size requests, but
353 // some programs/tests depend on this behavior and assume that malloc
354 // would not return NULL even for zero-size allocations. Moreover, it
355 // looks like operator new should never return NULL, and results of
356 // consecutive "new" calls must be different even if the allocated size
357 // is zero.
358 size = 1;
359 }
360 CHECK(IsPowerOfTwo(alignment));
361 uptr rounded_size = RoundUpTo(size, alignment);
362 uptr needed_size = rounded_size + kChunkHeaderSize;
363 if (alignment > min_alignment)
364 needed_size += alignment;
365 CHECK(IsAligned(needed_size, min_alignment));
366 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize ||
367 size > max_user_defined_malloc_size) {
368 if (AllocatorMayReturnNull()) {
369 Report("WARNING: MemProfiler failed to allocate 0x%zx bytes\n", size);
370 return nullptr;
371 }
372 uptr malloc_limit =
373 Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
374 ReportAllocationSizeTooBig(size, malloc_limit, stack);
375 }
376
377 MemprofThread *t = GetCurrentThread();
378 void *allocated;
379 if (t) {
380 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
381 allocated = allocator.Allocate(cache, needed_size, 8);
382 } else {
383 SpinMutexLock l(&fallback_mutex);
384 AllocatorCache *cache = &fallback_allocator_cache;
385 allocated = allocator.Allocate(cache, needed_size, 8);
386 }
387 if (UNLIKELY(!allocated)) {
388 SetAllocatorOutOfMemory();
389 if (AllocatorMayReturnNull())
390 return nullptr;
391 ReportOutOfMemory(size, stack);
392 }
393
394 uptr alloc_beg = reinterpret_cast<uptr>(allocated);
395 uptr alloc_end = alloc_beg + needed_size;
396 uptr beg_plus_header = alloc_beg + kChunkHeaderSize;
397 uptr user_beg = beg_plus_header;
398 if (!IsAligned(user_beg, alignment))
399 user_beg = RoundUpTo(user_beg, alignment);
400 uptr user_end = user_beg + size;
401 CHECK_LE(user_end, alloc_end);
402 uptr chunk_beg = user_beg - kChunkHeaderSize;
403 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
404 m->from_memalign = alloc_beg != chunk_beg;
405 CHECK(size);
406
407 m->cpu_id = GetCpuId();
408 m->timestamp_ms = GetTimestamp();
409 m->alloc_context_id = StackDepotPut(*stack);
410
411 uptr size_rounded_down_to_granularity =
412 RoundDownTo(size, SHADOW_GRANULARITY);
413 if (size_rounded_down_to_granularity)
414 ClearShadow(user_beg, size_rounded_down_to_granularity);
415
416 MemprofStats &thread_stats = GetCurrentThreadStats();
417 thread_stats.mallocs++;
418 thread_stats.malloced += size;
419 thread_stats.malloced_overhead += needed_size - size;
420 if (needed_size > SizeClassMap::kMaxSize)
421 thread_stats.malloc_large++;
422 else
423 thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
424
425 void *res = reinterpret_cast<void *>(user_beg);
426 atomic_store(&m->user_requested_size, size, memory_order_release);
427 if (alloc_beg != chunk_beg) {
428 CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg);
429 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m);
430 }
431 RunMallocHooks(res, size);
432 return res;
433 }
434
Deallocate__memprof::Allocator435 void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
436 BufferedStackTrace *stack, AllocType alloc_type) {
437 uptr p = reinterpret_cast<uptr>(ptr);
438 if (p == 0)
439 return;
440
441 RunFreeHooks(ptr);
442
443 uptr chunk_beg = p - kChunkHeaderSize;
444 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
445
446 u64 user_requested_size =
447 atomic_exchange(&m->user_requested_size, 0, memory_order_acquire);
448 if (memprof_inited && memprof_init_done &&
449 atomic_load_relaxed(&constructed) &&
450 !atomic_load_relaxed(&destructing)) {
451 u64 c = GetShadowCount(p, user_requested_size);
452 long curtime = GetTimestamp();
453
454 MemInfoBlock newMIB(user_requested_size, c, m->timestamp_ms, curtime,
455 m->cpu_id, GetCpuId());
456 InsertOrMerge(m->alloc_context_id, newMIB, MIBMap);
457 }
458
459 MemprofStats &thread_stats = GetCurrentThreadStats();
460 thread_stats.frees++;
461 thread_stats.freed += user_requested_size;
462
463 void *alloc_beg = m->AllocBeg();
464 if (alloc_beg != m) {
465 // Clear the magic value, as allocator internals may overwrite the
466 // contents of deallocated chunk, confusing GetMemprofChunk lookup.
467 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(nullptr);
468 }
469
470 MemprofThread *t = GetCurrentThread();
471 if (t) {
472 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
473 allocator.Deallocate(cache, alloc_beg);
474 } else {
475 SpinMutexLock l(&fallback_mutex);
476 AllocatorCache *cache = &fallback_allocator_cache;
477 allocator.Deallocate(cache, alloc_beg);
478 }
479 }
480
Reallocate__memprof::Allocator481 void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
482 CHECK(old_ptr && new_size);
483 uptr p = reinterpret_cast<uptr>(old_ptr);
484 uptr chunk_beg = p - kChunkHeaderSize;
485 MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
486
487 MemprofStats &thread_stats = GetCurrentThreadStats();
488 thread_stats.reallocs++;
489 thread_stats.realloced += new_size;
490
491 void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC);
492 if (new_ptr) {
493 CHECK_NE(REAL(memcpy), nullptr);
494 uptr memcpy_size = Min(new_size, m->UsedSize());
495 REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
496 Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
497 }
498 return new_ptr;
499 }
500
Calloc__memprof::Allocator501 void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
502 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
503 if (AllocatorMayReturnNull())
504 return nullptr;
505 ReportCallocOverflow(nmemb, size, stack);
506 }
507 void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC);
508 // If the memory comes from the secondary allocator no need to clear it
509 // as it comes directly from mmap.
510 if (ptr && allocator.FromPrimary(ptr))
511 REAL(memset)(ptr, 0, nmemb * size);
512 return ptr;
513 }
514
CommitBack__memprof::Allocator515 void CommitBack(MemprofThreadLocalMallocStorage *ms,
516 BufferedStackTrace *stack) {
517 AllocatorCache *ac = GetAllocatorCache(ms);
518 allocator.SwallowCache(ac);
519 }
520
521 // -------------------------- Chunk lookup ----------------------
522
523 // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
GetMemprofChunk__memprof::Allocator524 MemprofChunk *GetMemprofChunk(void *alloc_beg, u64 &user_requested_size) {
525 if (!alloc_beg)
526 return nullptr;
527 MemprofChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get();
528 if (!p) {
529 if (!allocator.FromPrimary(alloc_beg))
530 return nullptr;
531 p = reinterpret_cast<MemprofChunk *>(alloc_beg);
532 }
533 // The size is reset to 0 on deallocation (and a min of 1 on
534 // allocation).
535 user_requested_size =
536 atomic_load(&p->user_requested_size, memory_order_acquire);
537 if (user_requested_size)
538 return p;
539 return nullptr;
540 }
541
GetMemprofChunkByAddr__memprof::Allocator542 MemprofChunk *GetMemprofChunkByAddr(uptr p, u64 &user_requested_size) {
543 void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
544 return GetMemprofChunk(alloc_beg, user_requested_size);
545 }
546
AllocationSize__memprof::Allocator547 uptr AllocationSize(uptr p) {
548 u64 user_requested_size;
549 MemprofChunk *m = GetMemprofChunkByAddr(p, user_requested_size);
550 if (!m)
551 return 0;
552 if (m->Beg() != p)
553 return 0;
554 return user_requested_size;
555 }
556
Purge__memprof::Allocator557 void Purge(BufferedStackTrace *stack) { allocator.ForceReleaseToOS(); }
558
PrintStats__memprof::Allocator559 void PrintStats() { allocator.PrintStats(); }
560
ForceLock__memprof::Allocator561 void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
562 allocator.ForceLock();
563 fallback_mutex.Lock();
564 }
565
ForceUnlock__memprof::Allocator566 void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
567 fallback_mutex.Unlock();
568 allocator.ForceUnlock();
569 }
570 };
571
572 static Allocator instance(LINKER_INITIALIZED);
573
get_allocator()574 static MemprofAllocator &get_allocator() { return instance.allocator; }
575
InitializeAllocator()576 void InitializeAllocator() { instance.InitLinkerInitialized(); }
577
CommitBack()578 void MemprofThreadLocalMallocStorage::CommitBack() {
579 GET_STACK_TRACE_MALLOC;
580 instance.CommitBack(this, &stack);
581 }
582
PrintInternalAllocatorStats()583 void PrintInternalAllocatorStats() { instance.PrintStats(); }
584
memprof_free(void * ptr,BufferedStackTrace * stack,AllocType alloc_type)585 void memprof_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
586 instance.Deallocate(ptr, 0, 0, stack, alloc_type);
587 }
588
memprof_delete(void * ptr,uptr size,uptr alignment,BufferedStackTrace * stack,AllocType alloc_type)589 void memprof_delete(void *ptr, uptr size, uptr alignment,
590 BufferedStackTrace *stack, AllocType alloc_type) {
591 instance.Deallocate(ptr, size, alignment, stack, alloc_type);
592 }
593
memprof_malloc(uptr size,BufferedStackTrace * stack)594 void *memprof_malloc(uptr size, BufferedStackTrace *stack) {
595 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC));
596 }
597
memprof_calloc(uptr nmemb,uptr size,BufferedStackTrace * stack)598 void *memprof_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
599 return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
600 }
601
memprof_reallocarray(void * p,uptr nmemb,uptr size,BufferedStackTrace * stack)602 void *memprof_reallocarray(void *p, uptr nmemb, uptr size,
603 BufferedStackTrace *stack) {
604 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
605 errno = errno_ENOMEM;
606 if (AllocatorMayReturnNull())
607 return nullptr;
608 ReportReallocArrayOverflow(nmemb, size, stack);
609 }
610 return memprof_realloc(p, nmemb * size, stack);
611 }
612
memprof_realloc(void * p,uptr size,BufferedStackTrace * stack)613 void *memprof_realloc(void *p, uptr size, BufferedStackTrace *stack) {
614 if (!p)
615 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC));
616 if (size == 0) {
617 if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
618 instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
619 return nullptr;
620 }
621 // Allocate a size of 1 if we shouldn't free() on Realloc to 0
622 size = 1;
623 }
624 return SetErrnoOnNull(instance.Reallocate(p, size, stack));
625 }
626
memprof_valloc(uptr size,BufferedStackTrace * stack)627 void *memprof_valloc(uptr size, BufferedStackTrace *stack) {
628 return SetErrnoOnNull(
629 instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC));
630 }
631
memprof_pvalloc(uptr size,BufferedStackTrace * stack)632 void *memprof_pvalloc(uptr size, BufferedStackTrace *stack) {
633 uptr PageSize = GetPageSizeCached();
634 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
635 errno = errno_ENOMEM;
636 if (AllocatorMayReturnNull())
637 return nullptr;
638 ReportPvallocOverflow(size, stack);
639 }
640 // pvalloc(0) should allocate one page.
641 size = size ? RoundUpTo(size, PageSize) : PageSize;
642 return SetErrnoOnNull(instance.Allocate(size, PageSize, stack, FROM_MALLOC));
643 }
644
memprof_memalign(uptr alignment,uptr size,BufferedStackTrace * stack,AllocType alloc_type)645 void *memprof_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
646 AllocType alloc_type) {
647 if (UNLIKELY(!IsPowerOfTwo(alignment))) {
648 errno = errno_EINVAL;
649 if (AllocatorMayReturnNull())
650 return nullptr;
651 ReportInvalidAllocationAlignment(alignment, stack);
652 }
653 return SetErrnoOnNull(instance.Allocate(size, alignment, stack, alloc_type));
654 }
655
memprof_aligned_alloc(uptr alignment,uptr size,BufferedStackTrace * stack)656 void *memprof_aligned_alloc(uptr alignment, uptr size,
657 BufferedStackTrace *stack) {
658 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
659 errno = errno_EINVAL;
660 if (AllocatorMayReturnNull())
661 return nullptr;
662 ReportInvalidAlignedAllocAlignment(size, alignment, stack);
663 }
664 return SetErrnoOnNull(instance.Allocate(size, alignment, stack, FROM_MALLOC));
665 }
666
memprof_posix_memalign(void ** memptr,uptr alignment,uptr size,BufferedStackTrace * stack)667 int memprof_posix_memalign(void **memptr, uptr alignment, uptr size,
668 BufferedStackTrace *stack) {
669 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
670 if (AllocatorMayReturnNull())
671 return errno_EINVAL;
672 ReportInvalidPosixMemalignAlignment(alignment, stack);
673 }
674 void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC);
675 if (UNLIKELY(!ptr))
676 // OOM error is already taken care of by Allocate.
677 return errno_ENOMEM;
678 CHECK(IsAligned((uptr)ptr, alignment));
679 *memptr = ptr;
680 return 0;
681 }
682
memprof_malloc_usable_size(const void * ptr,uptr pc,uptr bp)683 uptr memprof_malloc_usable_size(const void *ptr, uptr pc, uptr bp) {
684 if (!ptr)
685 return 0;
686 uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
687 return usable_size;
688 }
689
690 } // namespace __memprof
691
692 // ---------------------- Interface ---------------- {{{1
693 using namespace __memprof;
694
__sanitizer_get_estimated_allocated_size(uptr size)695 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
696
__sanitizer_get_ownership(const void * p)697 int __sanitizer_get_ownership(const void *p) {
698 return memprof_malloc_usable_size(p, 0, 0) != 0;
699 }
700
__sanitizer_get_allocated_size(const void * p)701 uptr __sanitizer_get_allocated_size(const void *p) {
702 return memprof_malloc_usable_size(p, 0, 0);
703 }
704
__memprof_profile_dump()705 int __memprof_profile_dump() {
706 instance.FinishAndWrite();
707 // In the future we may want to return non-zero if there are any errors
708 // detected during the dumping process.
709 return 0;
710 }
711