xref: /dragonfly/contrib/gcc-8.0/gcc/stor-layout.c (revision 58e805e6)
1 /* C-compiler utilities for types and variables storage layout
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "attribs.h"
44 #include "debug.h"
45 
46 /* Data type for the expressions representing sizes of data types.
47    It is the first integer type laid out.  */
48 tree sizetype_tab[(int) stk_type_kind_last];
49 
50 /* If nonzero, this is an upper limit on alignment of structure fields.
51    The value is measured in bits.  */
52 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
53 
54 static tree self_referential_size (tree);
55 static void finalize_record_size (record_layout_info);
56 static void finalize_type_size (tree);
57 static void place_union_field (record_layout_info, tree);
58 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
59 			     HOST_WIDE_INT, tree);
60 extern void debug_rli (record_layout_info);
61 
62 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
63    to serve as the actual size-expression for a type or decl.  */
64 
65 tree
variable_size(tree size)66 variable_size (tree size)
67 {
68   /* Obviously.  */
69   if (TREE_CONSTANT (size))
70     return size;
71 
72   /* If the size is self-referential, we can't make a SAVE_EXPR (see
73      save_expr for the rationale).  But we can do something else.  */
74   if (CONTAINS_PLACEHOLDER_P (size))
75     return self_referential_size (size);
76 
77   /* If we are in the global binding level, we can't make a SAVE_EXPR
78      since it may end up being shared across functions, so it is up
79      to the front-end to deal with this case.  */
80   if (lang_hooks.decls.global_bindings_p ())
81     return size;
82 
83   return save_expr (size);
84 }
85 
86 /* An array of functions used for self-referential size computation.  */
87 static GTY(()) vec<tree, va_gc> *size_functions;
88 
89 /* Return true if T is a self-referential component reference.  */
90 
91 static bool
self_referential_component_ref_p(tree t)92 self_referential_component_ref_p (tree t)
93 {
94   if (TREE_CODE (t) != COMPONENT_REF)
95     return false;
96 
97   while (REFERENCE_CLASS_P (t))
98     t = TREE_OPERAND (t, 0);
99 
100   return (TREE_CODE (t) == PLACEHOLDER_EXPR);
101 }
102 
103 /* Similar to copy_tree_r but do not copy component references involving
104    PLACEHOLDER_EXPRs.  These nodes are spotted in find_placeholder_in_expr
105    and substituted in substitute_in_expr.  */
106 
107 static tree
copy_self_referential_tree_r(tree * tp,int * walk_subtrees,void * data)108 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
109 {
110   enum tree_code code = TREE_CODE (*tp);
111 
112   /* Stop at types, decls, constants like copy_tree_r.  */
113   if (TREE_CODE_CLASS (code) == tcc_type
114       || TREE_CODE_CLASS (code) == tcc_declaration
115       || TREE_CODE_CLASS (code) == tcc_constant)
116     {
117       *walk_subtrees = 0;
118       return NULL_TREE;
119     }
120 
121   /* This is the pattern built in ada/make_aligning_type.  */
122   else if (code == ADDR_EXPR
123 	   && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
124     {
125       *walk_subtrees = 0;
126       return NULL_TREE;
127     }
128 
129   /* Default case: the component reference.  */
130   else if (self_referential_component_ref_p (*tp))
131     {
132       *walk_subtrees = 0;
133       return NULL_TREE;
134     }
135 
136   /* We're not supposed to have them in self-referential size trees
137      because we wouldn't properly control when they are evaluated.
138      However, not creating superfluous SAVE_EXPRs requires accurate
139      tracking of readonly-ness all the way down to here, which we
140      cannot always guarantee in practice.  So punt in this case.  */
141   else if (code == SAVE_EXPR)
142     return error_mark_node;
143 
144   else if (code == STATEMENT_LIST)
145     gcc_unreachable ();
146 
147   return copy_tree_r (tp, walk_subtrees, data);
148 }
149 
150 /* Given a SIZE expression that is self-referential, return an equivalent
151    expression to serve as the actual size expression for a type.  */
152 
153 static tree
self_referential_size(tree size)154 self_referential_size (tree size)
155 {
156   static unsigned HOST_WIDE_INT fnno = 0;
157   vec<tree> self_refs = vNULL;
158   tree param_type_list = NULL, param_decl_list = NULL;
159   tree t, ref, return_type, fntype, fnname, fndecl;
160   unsigned int i;
161   char buf[128];
162   vec<tree, va_gc> *args = NULL;
163 
164   /* Do not factor out simple operations.  */
165   t = skip_simple_constant_arithmetic (size);
166   if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
167     return size;
168 
169   /* Collect the list of self-references in the expression.  */
170   find_placeholder_in_expr (size, &self_refs);
171   gcc_assert (self_refs.length () > 0);
172 
173   /* Obtain a private copy of the expression.  */
174   t = size;
175   if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
176     return size;
177   size = t;
178 
179   /* Build the parameter and argument lists in parallel; also
180      substitute the former for the latter in the expression.  */
181   vec_alloc (args, self_refs.length ());
182   FOR_EACH_VEC_ELT (self_refs, i, ref)
183     {
184       tree subst, param_name, param_type, param_decl;
185 
186       if (DECL_P (ref))
187 	{
188 	  /* We shouldn't have true variables here.  */
189 	  gcc_assert (TREE_READONLY (ref));
190 	  subst = ref;
191 	}
192       /* This is the pattern built in ada/make_aligning_type.  */
193       else if (TREE_CODE (ref) == ADDR_EXPR)
194         subst = ref;
195       /* Default case: the component reference.  */
196       else
197 	subst = TREE_OPERAND (ref, 1);
198 
199       sprintf (buf, "p%d", i);
200       param_name = get_identifier (buf);
201       param_type = TREE_TYPE (ref);
202       param_decl
203 	= build_decl (input_location, PARM_DECL, param_name, param_type);
204       DECL_ARG_TYPE (param_decl) = param_type;
205       DECL_ARTIFICIAL (param_decl) = 1;
206       TREE_READONLY (param_decl) = 1;
207 
208       size = substitute_in_expr (size, subst, param_decl);
209 
210       param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
211       param_decl_list = chainon (param_decl, param_decl_list);
212       args->quick_push (ref);
213     }
214 
215   self_refs.release ();
216 
217   /* Append 'void' to indicate that the number of parameters is fixed.  */
218   param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
219 
220   /* The 3 lists have been created in reverse order.  */
221   param_type_list = nreverse (param_type_list);
222   param_decl_list = nreverse (param_decl_list);
223 
224   /* Build the function type.  */
225   return_type = TREE_TYPE (size);
226   fntype = build_function_type (return_type, param_type_list);
227 
228   /* Build the function declaration.  */
229   sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
230   fnname = get_file_function_name (buf);
231   fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
232   for (t = param_decl_list; t; t = DECL_CHAIN (t))
233     DECL_CONTEXT (t) = fndecl;
234   DECL_ARGUMENTS (fndecl) = param_decl_list;
235   DECL_RESULT (fndecl)
236     = build_decl (input_location, RESULT_DECL, 0, return_type);
237   DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
238 
239   /* The function has been created by the compiler and we don't
240      want to emit debug info for it.  */
241   DECL_ARTIFICIAL (fndecl) = 1;
242   DECL_IGNORED_P (fndecl) = 1;
243 
244   /* It is supposed to be "const" and never throw.  */
245   TREE_READONLY (fndecl) = 1;
246   TREE_NOTHROW (fndecl) = 1;
247 
248   /* We want it to be inlined when this is deemed profitable, as
249      well as discarded if every call has been integrated.  */
250   DECL_DECLARED_INLINE_P (fndecl) = 1;
251 
252   /* It is made up of a unique return statement.  */
253   DECL_INITIAL (fndecl) = make_node (BLOCK);
254   BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
255   t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
256   DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
257   TREE_STATIC (fndecl) = 1;
258 
259   /* Put it onto the list of size functions.  */
260   vec_safe_push (size_functions, fndecl);
261 
262   /* Replace the original expression with a call to the size function.  */
263   return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
264 }
265 
266 /* Take, queue and compile all the size functions.  It is essential that
267    the size functions be gimplified at the very end of the compilation
268    in order to guarantee transparent handling of self-referential sizes.
269    Otherwise the GENERIC inliner would not be able to inline them back
270    at each of their call sites, thus creating artificial non-constant
271    size expressions which would trigger nasty problems later on.  */
272 
273 void
finalize_size_functions(void)274 finalize_size_functions (void)
275 {
276   unsigned int i;
277   tree fndecl;
278 
279   for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
280     {
281       allocate_struct_function (fndecl, false);
282       set_cfun (NULL);
283       dump_function (TDI_original, fndecl);
284 
285       /* As these functions are used to describe the layout of variable-length
286          structures, debug info generation needs their implementation.  */
287       debug_hooks->size_function (fndecl);
288       gimplify_function_tree (fndecl);
289       cgraph_node::finalize_function (fndecl, false);
290     }
291 
292   vec_free (size_functions);
293 }
294 
295 /* Return a machine mode of class MCLASS with SIZE bits of precision,
296    if one exists.  The mode may have padding bits as well the SIZE
297    value bits.  If LIMIT is nonzero, disregard modes wider than
298    MAX_FIXED_MODE_SIZE.  */
299 
300 opt_machine_mode
mode_for_size(poly_uint64 size,enum mode_class mclass,int limit)301 mode_for_size (poly_uint64 size, enum mode_class mclass, int limit)
302 {
303   machine_mode mode;
304   int i;
305 
306   if (limit && maybe_gt (size, (unsigned int) MAX_FIXED_MODE_SIZE))
307     return opt_machine_mode ();
308 
309   /* Get the first mode which has this size, in the specified class.  */
310   FOR_EACH_MODE_IN_CLASS (mode, mclass)
311     if (known_eq (GET_MODE_PRECISION (mode), size))
312       return mode;
313 
314   if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
315     for (i = 0; i < NUM_INT_N_ENTS; i ++)
316       if (known_eq (int_n_data[i].bitsize, size)
317 	  && int_n_enabled_p[i])
318 	return int_n_data[i].m;
319 
320   return opt_machine_mode ();
321 }
322 
323 /* Similar, except passed a tree node.  */
324 
325 opt_machine_mode
mode_for_size_tree(const_tree size,enum mode_class mclass,int limit)326 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
327 {
328   unsigned HOST_WIDE_INT uhwi;
329   unsigned int ui;
330 
331   if (!tree_fits_uhwi_p (size))
332     return opt_machine_mode ();
333   uhwi = tree_to_uhwi (size);
334   ui = uhwi;
335   if (uhwi != ui)
336     return opt_machine_mode ();
337   return mode_for_size (ui, mclass, limit);
338 }
339 
340 /* Return the narrowest mode of class MCLASS that contains at least
341    SIZE bits.  Abort if no such mode exists.  */
342 
343 machine_mode
smallest_mode_for_size(poly_uint64 size,enum mode_class mclass)344 smallest_mode_for_size (poly_uint64 size, enum mode_class mclass)
345 {
346   machine_mode mode = VOIDmode;
347   int i;
348 
349   /* Get the first mode which has at least this size, in the
350      specified class.  */
351   FOR_EACH_MODE_IN_CLASS (mode, mclass)
352     if (known_ge (GET_MODE_PRECISION (mode), size))
353       break;
354 
355   gcc_assert (mode != VOIDmode);
356 
357   if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
358     for (i = 0; i < NUM_INT_N_ENTS; i ++)
359       if (known_ge (int_n_data[i].bitsize, size)
360 	  && known_lt (int_n_data[i].bitsize, GET_MODE_PRECISION (mode))
361 	  && int_n_enabled_p[i])
362 	mode = int_n_data[i].m;
363 
364   return mode;
365 }
366 
367 /* Return an integer mode of exactly the same size as MODE, if one exists.  */
368 
369 opt_scalar_int_mode
int_mode_for_mode(machine_mode mode)370 int_mode_for_mode (machine_mode mode)
371 {
372   switch (GET_MODE_CLASS (mode))
373     {
374     case MODE_INT:
375     case MODE_PARTIAL_INT:
376       return as_a <scalar_int_mode> (mode);
377 
378     case MODE_COMPLEX_INT:
379     case MODE_COMPLEX_FLOAT:
380     case MODE_FLOAT:
381     case MODE_DECIMAL_FLOAT:
382     case MODE_FRACT:
383     case MODE_ACCUM:
384     case MODE_UFRACT:
385     case MODE_UACCUM:
386     case MODE_VECTOR_BOOL:
387     case MODE_VECTOR_INT:
388     case MODE_VECTOR_FLOAT:
389     case MODE_VECTOR_FRACT:
390     case MODE_VECTOR_ACCUM:
391     case MODE_VECTOR_UFRACT:
392     case MODE_VECTOR_UACCUM:
393     case MODE_POINTER_BOUNDS:
394       return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
395 
396     case MODE_RANDOM:
397       if (mode == BLKmode)
398 	return opt_scalar_int_mode ();
399 
400       /* fall through */
401 
402     case MODE_CC:
403     default:
404       gcc_unreachable ();
405     }
406 }
407 
408 /* Find a mode that can be used for efficient bitwise operations on MODE,
409    if one exists.  */
410 
411 opt_machine_mode
bitwise_mode_for_mode(machine_mode mode)412 bitwise_mode_for_mode (machine_mode mode)
413 {
414   /* Quick exit if we already have a suitable mode.  */
415   scalar_int_mode int_mode;
416   if (is_a <scalar_int_mode> (mode, &int_mode)
417       && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
418     return int_mode;
419 
420   /* Reuse the sanity checks from int_mode_for_mode.  */
421   gcc_checking_assert ((int_mode_for_mode (mode), true));
422 
423   poly_int64 bitsize = GET_MODE_BITSIZE (mode);
424 
425   /* Try to replace complex modes with complex modes.  In general we
426      expect both components to be processed independently, so we only
427      care whether there is a register for the inner mode.  */
428   if (COMPLEX_MODE_P (mode))
429     {
430       machine_mode trial = mode;
431       if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
432 	   || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
433 	  && have_regs_of_mode[GET_MODE_INNER (trial)])
434 	return trial;
435     }
436 
437   /* Try to replace vector modes with vector modes.  Also try using vector
438      modes if an integer mode would be too big.  */
439   if (VECTOR_MODE_P (mode)
440       || maybe_gt (bitsize, MAX_FIXED_MODE_SIZE))
441     {
442       machine_mode trial = mode;
443       if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
444 	   || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
445 	  && have_regs_of_mode[trial]
446 	  && targetm.vector_mode_supported_p (trial))
447 	return trial;
448     }
449 
450   /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE.  */
451   return mode_for_size (bitsize, MODE_INT, true);
452 }
453 
454 /* Find a type that can be used for efficient bitwise operations on MODE.
455    Return null if no such mode exists.  */
456 
457 tree
bitwise_type_for_mode(machine_mode mode)458 bitwise_type_for_mode (machine_mode mode)
459 {
460   if (!bitwise_mode_for_mode (mode).exists (&mode))
461     return NULL_TREE;
462 
463   unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
464   tree inner_type = build_nonstandard_integer_type (inner_size, true);
465 
466   if (VECTOR_MODE_P (mode))
467     return build_vector_type_for_mode (inner_type, mode);
468 
469   if (COMPLEX_MODE_P (mode))
470     return build_complex_type (inner_type);
471 
472   gcc_checking_assert (GET_MODE_INNER (mode) == mode);
473   return inner_type;
474 }
475 
476 /* Find a mode that is suitable for representing a vector with NUNITS
477    elements of mode INNERMODE, if one exists.  The returned mode can be
478    either an integer mode or a vector mode.  */
479 
480 opt_machine_mode
mode_for_vector(scalar_mode innermode,poly_uint64 nunits)481 mode_for_vector (scalar_mode innermode, poly_uint64 nunits)
482 {
483   machine_mode mode;
484 
485   /* First, look for a supported vector type.  */
486   if (SCALAR_FLOAT_MODE_P (innermode))
487     mode = MIN_MODE_VECTOR_FLOAT;
488   else if (SCALAR_FRACT_MODE_P (innermode))
489     mode = MIN_MODE_VECTOR_FRACT;
490   else if (SCALAR_UFRACT_MODE_P (innermode))
491     mode = MIN_MODE_VECTOR_UFRACT;
492   else if (SCALAR_ACCUM_MODE_P (innermode))
493     mode = MIN_MODE_VECTOR_ACCUM;
494   else if (SCALAR_UACCUM_MODE_P (innermode))
495     mode = MIN_MODE_VECTOR_UACCUM;
496   else
497     mode = MIN_MODE_VECTOR_INT;
498 
499   /* Do not check vector_mode_supported_p here.  We'll do that
500      later in vector_type_mode.  */
501   FOR_EACH_MODE_FROM (mode, mode)
502     if (known_eq (GET_MODE_NUNITS (mode), nunits)
503 	&& GET_MODE_INNER (mode) == innermode)
504       return mode;
505 
506   /* For integers, try mapping it to a same-sized scalar mode.  */
507   if (GET_MODE_CLASS (innermode) == MODE_INT)
508     {
509       poly_uint64 nbits = nunits * GET_MODE_BITSIZE (innermode);
510       if (int_mode_for_size (nbits, 0).exists (&mode)
511 	  && have_regs_of_mode[mode])
512 	return mode;
513     }
514 
515   return opt_machine_mode ();
516 }
517 
518 /* Return the mode for a vector that has NUNITS integer elements of
519    INT_BITS bits each, if such a mode exists.  The mode can be either
520    an integer mode or a vector mode.  */
521 
522 opt_machine_mode
mode_for_int_vector(unsigned int int_bits,poly_uint64 nunits)523 mode_for_int_vector (unsigned int int_bits, poly_uint64 nunits)
524 {
525   scalar_int_mode int_mode;
526   machine_mode vec_mode;
527   if (int_mode_for_size (int_bits, 0).exists (&int_mode)
528       && mode_for_vector (int_mode, nunits).exists (&vec_mode))
529     return vec_mode;
530   return opt_machine_mode ();
531 }
532 
533 /* Return the alignment of MODE. This will be bounded by 1 and
534    BIGGEST_ALIGNMENT.  */
535 
536 unsigned int
get_mode_alignment(machine_mode mode)537 get_mode_alignment (machine_mode mode)
538 {
539   return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
540 }
541 
542 /* Return the natural mode of an array, given that it is SIZE bytes in
543    total and has elements of type ELEM_TYPE.  */
544 
545 static machine_mode
mode_for_array(tree elem_type,tree size)546 mode_for_array (tree elem_type, tree size)
547 {
548   tree elem_size;
549   poly_uint64 int_size, int_elem_size;
550   unsigned HOST_WIDE_INT num_elems;
551   bool limit_p;
552 
553   /* One-element arrays get the component type's mode.  */
554   elem_size = TYPE_SIZE (elem_type);
555   if (simple_cst_equal (size, elem_size))
556     return TYPE_MODE (elem_type);
557 
558   limit_p = true;
559   if (poly_int_tree_p (size, &int_size)
560       && poly_int_tree_p (elem_size, &int_elem_size)
561       && maybe_ne (int_elem_size, 0U)
562       && constant_multiple_p (int_size, int_elem_size, &num_elems))
563     {
564       machine_mode elem_mode = TYPE_MODE (elem_type);
565       machine_mode mode;
566       if (targetm.array_mode (elem_mode, num_elems).exists (&mode))
567 	return mode;
568       if (targetm.array_mode_supported_p (elem_mode, num_elems))
569 	limit_p = false;
570     }
571   return mode_for_size_tree (size, MODE_INT, limit_p).else_blk ();
572 }
573 
574 /* Subroutine of layout_decl: Force alignment required for the data type.
575    But if the decl itself wants greater alignment, don't override that.  */
576 
577 static inline void
do_type_align(tree type,tree decl)578 do_type_align (tree type, tree decl)
579 {
580   if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
581     {
582       SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
583       if (TREE_CODE (decl) == FIELD_DECL)
584 	DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
585     }
586   if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
587     SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
588 }
589 
590 /* Set the size, mode and alignment of a ..._DECL node.
591    TYPE_DECL does need this for C++.
592    Note that LABEL_DECL and CONST_DECL nodes do not need this,
593    and FUNCTION_DECL nodes have them set up in a special (and simple) way.
594    Don't call layout_decl for them.
595 
596    KNOWN_ALIGN is the amount of alignment we can assume this
597    decl has with no special effort.  It is relevant only for FIELD_DECLs
598    and depends on the previous fields.
599    All that matters about KNOWN_ALIGN is which powers of 2 divide it.
600    If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
601    the record will be aligned to suit.  */
602 
603 void
layout_decl(tree decl,unsigned int known_align)604 layout_decl (tree decl, unsigned int known_align)
605 {
606   tree type = TREE_TYPE (decl);
607   enum tree_code code = TREE_CODE (decl);
608   rtx rtl = NULL_RTX;
609   location_t loc = DECL_SOURCE_LOCATION (decl);
610 
611   if (code == CONST_DECL)
612     return;
613 
614   gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
615 	      || code == TYPE_DECL || code == FIELD_DECL);
616 
617   rtl = DECL_RTL_IF_SET (decl);
618 
619   if (type == error_mark_node)
620     type = void_type_node;
621 
622   /* Usually the size and mode come from the data type without change,
623      however, the front-end may set the explicit width of the field, so its
624      size may not be the same as the size of its type.  This happens with
625      bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
626      also happens with other fields.  For example, the C++ front-end creates
627      zero-sized fields corresponding to empty base classes, and depends on
628      layout_type setting DECL_FIELD_BITPOS correctly for the field.  Set the
629      size in bytes from the size in bits.  If we have already set the mode,
630      don't set it again since we can be called twice for FIELD_DECLs.  */
631 
632   DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
633   if (DECL_MODE (decl) == VOIDmode)
634     SET_DECL_MODE (decl, TYPE_MODE (type));
635 
636   if (DECL_SIZE (decl) == 0)
637     {
638       DECL_SIZE (decl) = TYPE_SIZE (type);
639       DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
640     }
641   else if (DECL_SIZE_UNIT (decl) == 0)
642     DECL_SIZE_UNIT (decl)
643       = fold_convert_loc (loc, sizetype,
644 			  size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
645 					  bitsize_unit_node));
646 
647   if (code != FIELD_DECL)
648     /* For non-fields, update the alignment from the type.  */
649     do_type_align (type, decl);
650   else
651     /* For fields, it's a bit more complicated...  */
652     {
653       bool old_user_align = DECL_USER_ALIGN (decl);
654       bool zero_bitfield = false;
655       bool packed_p = DECL_PACKED (decl);
656       unsigned int mfa;
657 
658       if (DECL_BIT_FIELD (decl))
659 	{
660 	  DECL_BIT_FIELD_TYPE (decl) = type;
661 
662 	  /* A zero-length bit-field affects the alignment of the next
663 	     field.  In essence such bit-fields are not influenced by
664 	     any packing due to #pragma pack or attribute packed.  */
665 	  if (integer_zerop (DECL_SIZE (decl))
666 	      && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
667 	    {
668 	      zero_bitfield = true;
669 	      packed_p = false;
670 	      if (PCC_BITFIELD_TYPE_MATTERS)
671 		do_type_align (type, decl);
672 	      else
673 		{
674 #ifdef EMPTY_FIELD_BOUNDARY
675 		  if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
676 		    {
677 		      SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
678 		      DECL_USER_ALIGN (decl) = 0;
679 		    }
680 #endif
681 		}
682 	    }
683 
684 	  /* See if we can use an ordinary integer mode for a bit-field.
685 	     Conditions are: a fixed size that is correct for another mode,
686 	     occupying a complete byte or bytes on proper boundary.  */
687 	  if (TYPE_SIZE (type) != 0
688 	      && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
689 	      && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
690 	    {
691 	      machine_mode xmode;
692 	      if (mode_for_size_tree (DECL_SIZE (decl),
693 				      MODE_INT, 1).exists (&xmode))
694 		{
695 		  unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
696 		  if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
697 		      && (known_align == 0 || known_align >= xalign))
698 		    {
699 		      SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
700 		      SET_DECL_MODE (decl, xmode);
701 		      DECL_BIT_FIELD (decl) = 0;
702 		    }
703 		}
704 	    }
705 
706 	  /* Turn off DECL_BIT_FIELD if we won't need it set.  */
707 	  if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
708 	      && known_align >= TYPE_ALIGN (type)
709 	      && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
710 	    DECL_BIT_FIELD (decl) = 0;
711 	}
712       else if (packed_p && DECL_USER_ALIGN (decl))
713 	/* Don't touch DECL_ALIGN.  For other packed fields, go ahead and
714 	   round up; we'll reduce it again below.  We want packing to
715 	   supersede USER_ALIGN inherited from the type, but defer to
716 	   alignment explicitly specified on the field decl.  */;
717       else
718 	do_type_align (type, decl);
719 
720       /* If the field is packed and not explicitly aligned, give it the
721 	 minimum alignment.  Note that do_type_align may set
722 	 DECL_USER_ALIGN, so we need to check old_user_align instead.  */
723       if (packed_p
724 	  && !old_user_align)
725 	SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
726 
727       if (! packed_p && ! DECL_USER_ALIGN (decl))
728 	{
729 	  /* Some targets (i.e. i386, VMS) limit struct field alignment
730 	     to a lower boundary than alignment of variables unless
731 	     it was overridden by attribute aligned.  */
732 #ifdef BIGGEST_FIELD_ALIGNMENT
733 	  SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
734 				     (unsigned) BIGGEST_FIELD_ALIGNMENT));
735 #endif
736 #ifdef ADJUST_FIELD_ALIGN
737 	  SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
738 						    DECL_ALIGN (decl)));
739 #endif
740 	}
741 
742       if (zero_bitfield)
743         mfa = initial_max_fld_align * BITS_PER_UNIT;
744       else
745 	mfa = maximum_field_alignment;
746       /* Should this be controlled by DECL_USER_ALIGN, too?  */
747       if (mfa != 0)
748 	SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
749     }
750 
751   /* Evaluate nonconstant size only once, either now or as soon as safe.  */
752   if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
753     DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
754   if (DECL_SIZE_UNIT (decl) != 0
755       && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
756     DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
757 
758   /* If requested, warn about definitions of large data objects.  */
759   if (warn_larger_than
760       && (code == VAR_DECL || code == PARM_DECL)
761       && ! DECL_EXTERNAL (decl))
762     {
763       tree size = DECL_SIZE_UNIT (decl);
764 
765       if (size != 0 && TREE_CODE (size) == INTEGER_CST
766 	  && compare_tree_int (size, larger_than_size) > 0)
767 	{
768 	  int size_as_int = TREE_INT_CST_LOW (size);
769 
770 	  if (compare_tree_int (size, size_as_int) == 0)
771 	    warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
772 	  else
773 	    warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
774                      decl, larger_than_size);
775 	}
776     }
777 
778   /* If the RTL was already set, update its mode and mem attributes.  */
779   if (rtl)
780     {
781       PUT_MODE (rtl, DECL_MODE (decl));
782       SET_DECL_RTL (decl, 0);
783       if (MEM_P (rtl))
784 	set_mem_attributes (rtl, decl, 1);
785       SET_DECL_RTL (decl, rtl);
786     }
787 }
788 
789 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
790    results of a previous call to layout_decl and calls it again.  */
791 
792 void
relayout_decl(tree decl)793 relayout_decl (tree decl)
794 {
795   DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
796   SET_DECL_MODE (decl, VOIDmode);
797   if (!DECL_USER_ALIGN (decl))
798     SET_DECL_ALIGN (decl, 0);
799   if (DECL_RTL_SET_P (decl))
800     SET_DECL_RTL (decl, 0);
801 
802   layout_decl (decl, 0);
803 }
804 
805 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
806    QUAL_UNION_TYPE.  Return a pointer to a struct record_layout_info which
807    is to be passed to all other layout functions for this record.  It is the
808    responsibility of the caller to call `free' for the storage returned.
809    Note that garbage collection is not permitted until we finish laying
810    out the record.  */
811 
812 record_layout_info
start_record_layout(tree t)813 start_record_layout (tree t)
814 {
815   record_layout_info rli = XNEW (struct record_layout_info_s);
816 
817   rli->t = t;
818 
819   /* If the type has a minimum specified alignment (via an attribute
820      declaration, for example) use it -- otherwise, start with a
821      one-byte alignment.  */
822   rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
823   rli->unpacked_align = rli->record_align;
824   rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
825 
826 #ifdef STRUCTURE_SIZE_BOUNDARY
827   /* Packed structures don't need to have minimum size.  */
828   if (! TYPE_PACKED (t))
829     {
830       unsigned tmp;
831 
832       /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY.  */
833       tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
834       if (maximum_field_alignment != 0)
835 	tmp = MIN (tmp, maximum_field_alignment);
836       rli->record_align = MAX (rli->record_align, tmp);
837     }
838 #endif
839 
840   rli->offset = size_zero_node;
841   rli->bitpos = bitsize_zero_node;
842   rli->prev_field = 0;
843   rli->pending_statics = 0;
844   rli->packed_maybe_necessary = 0;
845   rli->remaining_in_alignment = 0;
846 
847   return rli;
848 }
849 
850 /* Fold sizetype value X to bitsizetype, given that X represents a type
851    size or offset.  */
852 
853 static tree
bits_from_bytes(tree x)854 bits_from_bytes (tree x)
855 {
856   if (POLY_INT_CST_P (x))
857     /* The runtime calculation isn't allowed to overflow sizetype;
858        increasing the runtime values must always increase the size
859        or offset of the object.  This means that the object imposes
860        a maximum value on the runtime parameters, but we don't record
861        what that is.  */
862     return build_poly_int_cst
863       (bitsizetype,
864        poly_wide_int::from (poly_int_cst_value (x),
865 			    TYPE_PRECISION (bitsizetype),
866 			    TYPE_SIGN (TREE_TYPE (x))));
867   x = fold_convert (bitsizetype, x);
868   gcc_checking_assert (x);
869   return x;
870 }
871 
872 /* Return the combined bit position for the byte offset OFFSET and the
873    bit position BITPOS.
874 
875    These functions operate on byte and bit positions present in FIELD_DECLs
876    and assume that these expressions result in no (intermediate) overflow.
877    This assumption is necessary to fold the expressions as much as possible,
878    so as to avoid creating artificially variable-sized types in languages
879    supporting variable-sized types like Ada.  */
880 
881 tree
bit_from_pos(tree offset,tree bitpos)882 bit_from_pos (tree offset, tree bitpos)
883 {
884   return size_binop (PLUS_EXPR, bitpos,
885 		     size_binop (MULT_EXPR, bits_from_bytes (offset),
886 				 bitsize_unit_node));
887 }
888 
889 /* Return the combined truncated byte position for the byte offset OFFSET and
890    the bit position BITPOS.  */
891 
892 tree
byte_from_pos(tree offset,tree bitpos)893 byte_from_pos (tree offset, tree bitpos)
894 {
895   tree bytepos;
896   if (TREE_CODE (bitpos) == MULT_EXPR
897       && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
898     bytepos = TREE_OPERAND (bitpos, 0);
899   else
900     bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
901   return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
902 }
903 
904 /* Split the bit position POS into a byte offset *POFFSET and a bit
905    position *PBITPOS with the byte offset aligned to OFF_ALIGN bits.  */
906 
907 void
pos_from_bit(tree * poffset,tree * pbitpos,unsigned int off_align,tree pos)908 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
909 	      tree pos)
910 {
911   tree toff_align = bitsize_int (off_align);
912   if (TREE_CODE (pos) == MULT_EXPR
913       && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
914     {
915       *poffset = size_binop (MULT_EXPR,
916 			     fold_convert (sizetype, TREE_OPERAND (pos, 0)),
917 			     size_int (off_align / BITS_PER_UNIT));
918       *pbitpos = bitsize_zero_node;
919     }
920   else
921     {
922       *poffset = size_binop (MULT_EXPR,
923 			     fold_convert (sizetype,
924 					   size_binop (FLOOR_DIV_EXPR, pos,
925 						       toff_align)),
926 			     size_int (off_align / BITS_PER_UNIT));
927       *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
928     }
929 }
930 
931 /* Given a pointer to bit and byte offsets and an offset alignment,
932    normalize the offsets so they are within the alignment.  */
933 
934 void
normalize_offset(tree * poffset,tree * pbitpos,unsigned int off_align)935 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
936 {
937   /* If the bit position is now larger than it should be, adjust it
938      downwards.  */
939   if (compare_tree_int (*pbitpos, off_align) >= 0)
940     {
941       tree offset, bitpos;
942       pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
943       *poffset = size_binop (PLUS_EXPR, *poffset, offset);
944       *pbitpos = bitpos;
945     }
946 }
947 
948 /* Print debugging information about the information in RLI.  */
949 
950 DEBUG_FUNCTION void
debug_rli(record_layout_info rli)951 debug_rli (record_layout_info rli)
952 {
953   print_node_brief (stderr, "type", rli->t, 0);
954   print_node_brief (stderr, "\noffset", rli->offset, 0);
955   print_node_brief (stderr, " bitpos", rli->bitpos, 0);
956 
957   fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
958 	   rli->record_align, rli->unpacked_align,
959 	   rli->offset_align);
960 
961   /* The ms_struct code is the only that uses this.  */
962   if (targetm.ms_bitfield_layout_p (rli->t))
963     fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
964 
965   if (rli->packed_maybe_necessary)
966     fprintf (stderr, "packed may be necessary\n");
967 
968   if (!vec_safe_is_empty (rli->pending_statics))
969     {
970       fprintf (stderr, "pending statics:\n");
971       debug (rli->pending_statics);
972     }
973 }
974 
975 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
976    BITPOS if necessary to keep BITPOS below OFFSET_ALIGN.  */
977 
978 void
normalize_rli(record_layout_info rli)979 normalize_rli (record_layout_info rli)
980 {
981   normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
982 }
983 
984 /* Returns the size in bytes allocated so far.  */
985 
986 tree
rli_size_unit_so_far(record_layout_info rli)987 rli_size_unit_so_far (record_layout_info rli)
988 {
989   return byte_from_pos (rli->offset, rli->bitpos);
990 }
991 
992 /* Returns the size in bits allocated so far.  */
993 
994 tree
rli_size_so_far(record_layout_info rli)995 rli_size_so_far (record_layout_info rli)
996 {
997   return bit_from_pos (rli->offset, rli->bitpos);
998 }
999 
1000 /* FIELD is about to be added to RLI->T.  The alignment (in bits) of
1001    the next available location within the record is given by KNOWN_ALIGN.
1002    Update the variable alignment fields in RLI, and return the alignment
1003    to give the FIELD.  */
1004 
1005 unsigned int
update_alignment_for_field(record_layout_info rli,tree field,unsigned int known_align)1006 update_alignment_for_field (record_layout_info rli, tree field,
1007 			    unsigned int known_align)
1008 {
1009   /* The alignment required for FIELD.  */
1010   unsigned int desired_align;
1011   /* The type of this field.  */
1012   tree type = TREE_TYPE (field);
1013   /* True if the field was explicitly aligned by the user.  */
1014   bool user_align;
1015   bool is_bitfield;
1016 
1017   /* Do not attempt to align an ERROR_MARK node */
1018   if (TREE_CODE (type) == ERROR_MARK)
1019     return 0;
1020 
1021   /* Lay out the field so we know what alignment it needs.  */
1022   layout_decl (field, known_align);
1023   desired_align = DECL_ALIGN (field);
1024   user_align = DECL_USER_ALIGN (field);
1025 
1026   is_bitfield = (type != error_mark_node
1027 		 && DECL_BIT_FIELD_TYPE (field)
1028 		 && ! integer_zerop (TYPE_SIZE (type)));
1029 
1030   /* Record must have at least as much alignment as any field.
1031      Otherwise, the alignment of the field within the record is
1032      meaningless.  */
1033   if (targetm.ms_bitfield_layout_p (rli->t))
1034     {
1035       /* Here, the alignment of the underlying type of a bitfield can
1036 	 affect the alignment of a record; even a zero-sized field
1037 	 can do this.  The alignment should be to the alignment of
1038 	 the type, except that for zero-size bitfields this only
1039 	 applies if there was an immediately prior, nonzero-size
1040 	 bitfield.  (That's the way it is, experimentally.) */
1041       if (!is_bitfield
1042 	  || ((DECL_SIZE (field) == NULL_TREE
1043 	       || !integer_zerop (DECL_SIZE (field)))
1044 	      ? !DECL_PACKED (field)
1045 	      : (rli->prev_field
1046 		 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1047 		 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1048 	{
1049 	  unsigned int type_align = TYPE_ALIGN (type);
1050 	  if (!is_bitfield && DECL_PACKED (field))
1051 	    type_align = desired_align;
1052 	  else
1053 	    type_align = MAX (type_align, desired_align);
1054 	  if (maximum_field_alignment != 0)
1055 	    type_align = MIN (type_align, maximum_field_alignment);
1056 	  rli->record_align = MAX (rli->record_align, type_align);
1057 	  rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1058 	}
1059     }
1060   else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1061     {
1062       /* Named bit-fields cause the entire structure to have the
1063 	 alignment implied by their type.  Some targets also apply the same
1064 	 rules to unnamed bitfields.  */
1065       if (DECL_NAME (field) != 0
1066 	  || targetm.align_anon_bitfield ())
1067 	{
1068 	  unsigned int type_align = TYPE_ALIGN (type);
1069 
1070 #ifdef ADJUST_FIELD_ALIGN
1071 	  if (! TYPE_USER_ALIGN (type))
1072 	    type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1073 #endif
1074 
1075 	  /* Targets might chose to handle unnamed and hence possibly
1076 	     zero-width bitfield.  Those are not influenced by #pragmas
1077 	     or packed attributes.  */
1078 	  if (integer_zerop (DECL_SIZE (field)))
1079 	    {
1080 	      if (initial_max_fld_align)
1081 	        type_align = MIN (type_align,
1082 				  initial_max_fld_align * BITS_PER_UNIT);
1083 	    }
1084 	  else if (maximum_field_alignment != 0)
1085 	    type_align = MIN (type_align, maximum_field_alignment);
1086 	  else if (DECL_PACKED (field))
1087 	    type_align = MIN (type_align, BITS_PER_UNIT);
1088 
1089 	  /* The alignment of the record is increased to the maximum
1090 	     of the current alignment, the alignment indicated on the
1091 	     field (i.e., the alignment specified by an __aligned__
1092 	     attribute), and the alignment indicated by the type of
1093 	     the field.  */
1094 	  rli->record_align = MAX (rli->record_align, desired_align);
1095 	  rli->record_align = MAX (rli->record_align, type_align);
1096 
1097 	  if (warn_packed)
1098 	    rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1099 	  user_align |= TYPE_USER_ALIGN (type);
1100 	}
1101     }
1102   else
1103     {
1104       rli->record_align = MAX (rli->record_align, desired_align);
1105       rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1106     }
1107 
1108   TYPE_USER_ALIGN (rli->t) |= user_align;
1109 
1110   return desired_align;
1111 }
1112 
1113 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1114    the field alignment of FIELD or FIELD isn't aligned. */
1115 
1116 static void
handle_warn_if_not_align(tree field,unsigned int record_align)1117 handle_warn_if_not_align (tree field, unsigned int record_align)
1118 {
1119   tree type = TREE_TYPE (field);
1120 
1121   if (type == error_mark_node)
1122     return;
1123 
1124   unsigned int warn_if_not_align = 0;
1125 
1126   int opt_w = 0;
1127 
1128   if (warn_if_not_aligned)
1129     {
1130       warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1131       if (!warn_if_not_align)
1132 	warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1133       if (warn_if_not_align)
1134 	opt_w = OPT_Wif_not_aligned;
1135     }
1136 
1137   if (!warn_if_not_align
1138       && warn_packed_not_aligned
1139       && lookup_attribute ("aligned", TYPE_ATTRIBUTES (type)))
1140     {
1141       warn_if_not_align = TYPE_ALIGN (type);
1142       opt_w = OPT_Wpacked_not_aligned;
1143     }
1144 
1145   if (!warn_if_not_align)
1146     return;
1147 
1148   tree context = DECL_CONTEXT (field);
1149 
1150   warn_if_not_align /= BITS_PER_UNIT;
1151   record_align /= BITS_PER_UNIT;
1152   if ((record_align % warn_if_not_align) != 0)
1153     warning (opt_w, "alignment %u of %qT is less than %u",
1154 	     record_align, context, warn_if_not_align);
1155 
1156   tree off = byte_position (field);
1157   if (!multiple_of_p (TREE_TYPE (off), off, size_int (warn_if_not_align)))
1158     {
1159       if (TREE_CODE (off) == INTEGER_CST)
1160 	warning (opt_w, "%q+D offset %E in %qT isn%'t aligned to %u",
1161 		 field, off, context, warn_if_not_align);
1162       else
1163 	warning (opt_w, "%q+D offset %E in %qT may not be aligned to %u",
1164 		 field, off, context, warn_if_not_align);
1165     }
1166 }
1167 
1168 /* Called from place_field to handle unions.  */
1169 
1170 static void
place_union_field(record_layout_info rli,tree field)1171 place_union_field (record_layout_info rli, tree field)
1172 {
1173   update_alignment_for_field (rli, field, /*known_align=*/0);
1174 
1175   DECL_FIELD_OFFSET (field) = size_zero_node;
1176   DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1177   SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1178   handle_warn_if_not_align (field, rli->record_align);
1179 
1180   /* If this is an ERROR_MARK return *after* having set the
1181      field at the start of the union. This helps when parsing
1182      invalid fields. */
1183   if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1184     return;
1185 
1186   if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1187       && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1188     TYPE_TYPELESS_STORAGE (rli->t) = 1;
1189 
1190   /* We assume the union's size will be a multiple of a byte so we don't
1191      bother with BITPOS.  */
1192   if (TREE_CODE (rli->t) == UNION_TYPE)
1193     rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1194   else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1195     rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1196 			       DECL_SIZE_UNIT (field), rli->offset);
1197 }
1198 
1199 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1200    at BYTE_OFFSET / BIT_OFFSET.  Return nonzero if the field would span more
1201    units of alignment than the underlying TYPE.  */
1202 static int
excess_unit_span(HOST_WIDE_INT byte_offset,HOST_WIDE_INT bit_offset,HOST_WIDE_INT size,HOST_WIDE_INT align,tree type)1203 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1204 		  HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1205 {
1206   /* Note that the calculation of OFFSET might overflow; we calculate it so
1207      that we still get the right result as long as ALIGN is a power of two.  */
1208   unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1209 
1210   offset = offset % align;
1211   return ((offset + size + align - 1) / align
1212 	  > tree_to_uhwi (TYPE_SIZE (type)) / align);
1213 }
1214 
1215 /* RLI contains information about the layout of a RECORD_TYPE.  FIELD
1216    is a FIELD_DECL to be added after those fields already present in
1217    T.  (FIELD is not actually added to the TYPE_FIELDS list here;
1218    callers that desire that behavior must manually perform that step.)  */
1219 
1220 void
place_field(record_layout_info rli,tree field)1221 place_field (record_layout_info rli, tree field)
1222 {
1223   /* The alignment required for FIELD.  */
1224   unsigned int desired_align;
1225   /* The alignment FIELD would have if we just dropped it into the
1226      record as it presently stands.  */
1227   unsigned int known_align;
1228   unsigned int actual_align;
1229   /* The type of this field.  */
1230   tree type = TREE_TYPE (field);
1231 
1232   gcc_assert (TREE_CODE (field) != ERROR_MARK);
1233 
1234   /* If FIELD is static, then treat it like a separate variable, not
1235      really like a structure field.  If it is a FUNCTION_DECL, it's a
1236      method.  In both cases, all we do is lay out the decl, and we do
1237      it *after* the record is laid out.  */
1238   if (VAR_P (field))
1239     {
1240       vec_safe_push (rli->pending_statics, field);
1241       return;
1242     }
1243 
1244   /* Enumerators and enum types which are local to this class need not
1245      be laid out.  Likewise for initialized constant fields.  */
1246   else if (TREE_CODE (field) != FIELD_DECL)
1247     return;
1248 
1249   /* Unions are laid out very differently than records, so split
1250      that code off to another function.  */
1251   else if (TREE_CODE (rli->t) != RECORD_TYPE)
1252     {
1253       place_union_field (rli, field);
1254       return;
1255     }
1256 
1257   else if (TREE_CODE (type) == ERROR_MARK)
1258     {
1259       /* Place this field at the current allocation position, so we
1260 	 maintain monotonicity.  */
1261       DECL_FIELD_OFFSET (field) = rli->offset;
1262       DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1263       SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1264       handle_warn_if_not_align (field, rli->record_align);
1265       return;
1266     }
1267 
1268   if (AGGREGATE_TYPE_P (type)
1269       && TYPE_TYPELESS_STORAGE (type))
1270     TYPE_TYPELESS_STORAGE (rli->t) = 1;
1271 
1272   /* Work out the known alignment so far.  Note that A & (-A) is the
1273      value of the least-significant bit in A that is one.  */
1274   if (! integer_zerop (rli->bitpos))
1275     known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1276   else if (integer_zerop (rli->offset))
1277     known_align = 0;
1278   else if (tree_fits_uhwi_p (rli->offset))
1279     known_align = (BITS_PER_UNIT
1280 		   * least_bit_hwi (tree_to_uhwi (rli->offset)));
1281   else
1282     known_align = rli->offset_align;
1283 
1284   desired_align = update_alignment_for_field (rli, field, known_align);
1285   if (known_align == 0)
1286     known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1287 
1288   if (warn_packed && DECL_PACKED (field))
1289     {
1290       if (known_align >= TYPE_ALIGN (type))
1291 	{
1292 	  if (TYPE_ALIGN (type) > desired_align)
1293 	    {
1294 	      if (STRICT_ALIGNMENT)
1295 		warning (OPT_Wattributes, "packed attribute causes "
1296                          "inefficient alignment for %q+D", field);
1297 	      /* Don't warn if DECL_PACKED was set by the type.  */
1298 	      else if (!TYPE_PACKED (rli->t))
1299 		warning (OPT_Wattributes, "packed attribute is "
1300 			 "unnecessary for %q+D", field);
1301 	    }
1302 	}
1303       else
1304 	rli->packed_maybe_necessary = 1;
1305     }
1306 
1307   /* Does this field automatically have alignment it needs by virtue
1308      of the fields that precede it and the record's own alignment?  */
1309   if (known_align < desired_align
1310       && (! targetm.ms_bitfield_layout_p (rli->t)
1311 	  || rli->prev_field == NULL))
1312     {
1313       /* No, we need to skip space before this field.
1314 	 Bump the cumulative size to multiple of field alignment.  */
1315 
1316       if (!targetm.ms_bitfield_layout_p (rli->t)
1317           && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1318 	warning (OPT_Wpadded, "padding struct to align %q+D", field);
1319 
1320       /* If the alignment is still within offset_align, just align
1321 	 the bit position.  */
1322       if (desired_align < rli->offset_align)
1323 	rli->bitpos = round_up (rli->bitpos, desired_align);
1324       else
1325 	{
1326 	  /* First adjust OFFSET by the partial bits, then align.  */
1327 	  rli->offset
1328 	    = size_binop (PLUS_EXPR, rli->offset,
1329 			  fold_convert (sizetype,
1330 					size_binop (CEIL_DIV_EXPR, rli->bitpos,
1331 						    bitsize_unit_node)));
1332 	  rli->bitpos = bitsize_zero_node;
1333 
1334 	  rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1335 	}
1336 
1337       if (! TREE_CONSTANT (rli->offset))
1338 	rli->offset_align = desired_align;
1339     }
1340 
1341   /* Handle compatibility with PCC.  Note that if the record has any
1342      variable-sized fields, we need not worry about compatibility.  */
1343   if (PCC_BITFIELD_TYPE_MATTERS
1344       && ! targetm.ms_bitfield_layout_p (rli->t)
1345       && TREE_CODE (field) == FIELD_DECL
1346       && type != error_mark_node
1347       && DECL_BIT_FIELD (field)
1348       && (! DECL_PACKED (field)
1349 	  /* Enter for these packed fields only to issue a warning.  */
1350 	  || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1351       && maximum_field_alignment == 0
1352       && ! integer_zerop (DECL_SIZE (field))
1353       && tree_fits_uhwi_p (DECL_SIZE (field))
1354       && tree_fits_uhwi_p (rli->offset)
1355       && tree_fits_uhwi_p (TYPE_SIZE (type)))
1356     {
1357       unsigned int type_align = TYPE_ALIGN (type);
1358       tree dsize = DECL_SIZE (field);
1359       HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1360       HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1361       HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1362 
1363 #ifdef ADJUST_FIELD_ALIGN
1364       if (! TYPE_USER_ALIGN (type))
1365 	type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1366 #endif
1367 
1368       /* A bit field may not span more units of alignment of its type
1369 	 than its type itself.  Advance to next boundary if necessary.  */
1370       if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1371 	{
1372 	  if (DECL_PACKED (field))
1373 	    {
1374 	      if (warn_packed_bitfield_compat == 1)
1375 		inform
1376 		  (input_location,
1377 		   "offset of packed bit-field %qD has changed in GCC 4.4",
1378 		   field);
1379 	    }
1380 	  else
1381 	    rli->bitpos = round_up (rli->bitpos, type_align);
1382 	}
1383 
1384       if (! DECL_PACKED (field))
1385 	TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1386 
1387       SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1388 				  TYPE_WARN_IF_NOT_ALIGN (type));
1389     }
1390 
1391 #ifdef BITFIELD_NBYTES_LIMITED
1392   if (BITFIELD_NBYTES_LIMITED
1393       && ! targetm.ms_bitfield_layout_p (rli->t)
1394       && TREE_CODE (field) == FIELD_DECL
1395       && type != error_mark_node
1396       && DECL_BIT_FIELD_TYPE (field)
1397       && ! DECL_PACKED (field)
1398       && ! integer_zerop (DECL_SIZE (field))
1399       && tree_fits_uhwi_p (DECL_SIZE (field))
1400       && tree_fits_uhwi_p (rli->offset)
1401       && tree_fits_uhwi_p (TYPE_SIZE (type)))
1402     {
1403       unsigned int type_align = TYPE_ALIGN (type);
1404       tree dsize = DECL_SIZE (field);
1405       HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1406       HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1407       HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1408 
1409 #ifdef ADJUST_FIELD_ALIGN
1410       if (! TYPE_USER_ALIGN (type))
1411 	type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1412 #endif
1413 
1414       if (maximum_field_alignment != 0)
1415 	type_align = MIN (type_align, maximum_field_alignment);
1416       /* ??? This test is opposite the test in the containing if
1417 	 statement, so this code is unreachable currently.  */
1418       else if (DECL_PACKED (field))
1419 	type_align = MIN (type_align, BITS_PER_UNIT);
1420 
1421       /* A bit field may not span the unit of alignment of its type.
1422 	 Advance to next boundary if necessary.  */
1423       if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1424 	rli->bitpos = round_up (rli->bitpos, type_align);
1425 
1426       TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1427       SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1428 				  TYPE_WARN_IF_NOT_ALIGN (type));
1429     }
1430 #endif
1431 
1432   /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1433      A subtlety:
1434 	When a bit field is inserted into a packed record, the whole
1435 	size of the underlying type is used by one or more same-size
1436 	adjacent bitfields.  (That is, if its long:3, 32 bits is
1437 	used in the record, and any additional adjacent long bitfields are
1438 	packed into the same chunk of 32 bits. However, if the size
1439 	changes, a new field of that size is allocated.)  In an unpacked
1440 	record, this is the same as using alignment, but not equivalent
1441 	when packing.
1442 
1443      Note: for compatibility, we use the type size, not the type alignment
1444      to determine alignment, since that matches the documentation */
1445 
1446   if (targetm.ms_bitfield_layout_p (rli->t))
1447     {
1448       tree prev_saved = rli->prev_field;
1449       tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1450 
1451       /* This is a bitfield if it exists.  */
1452       if (rli->prev_field)
1453 	{
1454 	  bool realign_p = known_align < desired_align;
1455 
1456 	  /* If both are bitfields, nonzero, and the same size, this is
1457 	     the middle of a run.  Zero declared size fields are special
1458 	     and handled as "end of run". (Note: it's nonzero declared
1459 	     size, but equal type sizes!) (Since we know that both
1460 	     the current and previous fields are bitfields by the
1461 	     time we check it, DECL_SIZE must be present for both.) */
1462 	  if (DECL_BIT_FIELD_TYPE (field)
1463 	      && !integer_zerop (DECL_SIZE (field))
1464 	      && !integer_zerop (DECL_SIZE (rli->prev_field))
1465 	      && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1466 	      && tree_fits_uhwi_p (TYPE_SIZE (type))
1467 	      && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1468 	    {
1469 	      /* We're in the middle of a run of equal type size fields; make
1470 		 sure we realign if we run out of bits.  (Not decl size,
1471 		 type size!) */
1472 	      HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1473 
1474 	      if (rli->remaining_in_alignment < bitsize)
1475 		{
1476 		  HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1477 
1478 		  /* out of bits; bump up to next 'word'.  */
1479 		  rli->bitpos
1480 		    = size_binop (PLUS_EXPR, rli->bitpos,
1481 				  bitsize_int (rli->remaining_in_alignment));
1482 		  rli->prev_field = field;
1483 		  if (typesize < bitsize)
1484 		    rli->remaining_in_alignment = 0;
1485 		  else
1486 		    rli->remaining_in_alignment = typesize - bitsize;
1487 		}
1488 	      else
1489 		{
1490 		  rli->remaining_in_alignment -= bitsize;
1491 		  realign_p = false;
1492 		}
1493 	    }
1494 	  else
1495 	    {
1496 	      /* End of a run: if leaving a run of bitfields of the same type
1497 		 size, we have to "use up" the rest of the bits of the type
1498 		 size.
1499 
1500 		 Compute the new position as the sum of the size for the prior
1501 		 type and where we first started working on that type.
1502 		 Note: since the beginning of the field was aligned then
1503 		 of course the end will be too.  No round needed.  */
1504 
1505 	      if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1506 		{
1507 		  rli->bitpos
1508 		    = size_binop (PLUS_EXPR, rli->bitpos,
1509 				  bitsize_int (rli->remaining_in_alignment));
1510 		}
1511 	      else
1512 		/* We "use up" size zero fields; the code below should behave
1513 		   as if the prior field was not a bitfield.  */
1514 		prev_saved = NULL;
1515 
1516 	      /* Cause a new bitfield to be captured, either this time (if
1517 		 currently a bitfield) or next time we see one.  */
1518 	      if (!DECL_BIT_FIELD_TYPE (field)
1519 		  || integer_zerop (DECL_SIZE (field)))
1520 		rli->prev_field = NULL;
1521 	    }
1522 
1523 	  /* Does this field automatically have alignment it needs by virtue
1524 	     of the fields that precede it and the record's own alignment?  */
1525 	  if (realign_p)
1526 	    {
1527 	      /* If the alignment is still within offset_align, just align
1528 		 the bit position.  */
1529 	      if (desired_align < rli->offset_align)
1530 		rli->bitpos = round_up (rli->bitpos, desired_align);
1531 	      else
1532 		{
1533 		  /* First adjust OFFSET by the partial bits, then align.  */
1534 		  tree d = size_binop (CEIL_DIV_EXPR, rli->bitpos,
1535 				       bitsize_unit_node);
1536 		  rli->offset = size_binop (PLUS_EXPR, rli->offset,
1537 					    fold_convert (sizetype, d));
1538 		  rli->bitpos = bitsize_zero_node;
1539 
1540 		  rli->offset = round_up (rli->offset,
1541 					  desired_align / BITS_PER_UNIT);
1542 		}
1543 
1544 	      if (! TREE_CONSTANT (rli->offset))
1545 		rli->offset_align = desired_align;
1546 	    }
1547 
1548 	  normalize_rli (rli);
1549         }
1550 
1551       /* If we're starting a new run of same type size bitfields
1552 	 (or a run of non-bitfields), set up the "first of the run"
1553 	 fields.
1554 
1555 	 That is, if the current field is not a bitfield, or if there
1556 	 was a prior bitfield the type sizes differ, or if there wasn't
1557 	 a prior bitfield the size of the current field is nonzero.
1558 
1559 	 Note: we must be sure to test ONLY the type size if there was
1560 	 a prior bitfield and ONLY for the current field being zero if
1561 	 there wasn't.  */
1562 
1563       if (!DECL_BIT_FIELD_TYPE (field)
1564 	  || (prev_saved != NULL
1565 	      ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1566 	      : !integer_zerop (DECL_SIZE (field))))
1567 	{
1568 	  /* Never smaller than a byte for compatibility.  */
1569 	  unsigned int type_align = BITS_PER_UNIT;
1570 
1571 	  /* (When not a bitfield), we could be seeing a flex array (with
1572 	     no DECL_SIZE).  Since we won't be using remaining_in_alignment
1573 	     until we see a bitfield (and come by here again) we just skip
1574 	     calculating it.  */
1575 	  if (DECL_SIZE (field) != NULL
1576 	      && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1577 	      && tree_fits_uhwi_p (DECL_SIZE (field)))
1578 	    {
1579 	      unsigned HOST_WIDE_INT bitsize
1580 		= tree_to_uhwi (DECL_SIZE (field));
1581 	      unsigned HOST_WIDE_INT typesize
1582 		= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1583 
1584 	      if (typesize < bitsize)
1585 		rli->remaining_in_alignment = 0;
1586 	      else
1587 		rli->remaining_in_alignment = typesize - bitsize;
1588 	    }
1589 
1590 	  /* Now align (conventionally) for the new type.  */
1591 	  if (! DECL_PACKED (field))
1592 	    type_align = TYPE_ALIGN (TREE_TYPE (field));
1593 
1594 	  if (maximum_field_alignment != 0)
1595 	    type_align = MIN (type_align, maximum_field_alignment);
1596 
1597 	  rli->bitpos = round_up (rli->bitpos, type_align);
1598 
1599           /* If we really aligned, don't allow subsequent bitfields
1600 	     to undo that.  */
1601 	  rli->prev_field = NULL;
1602 	}
1603     }
1604 
1605   /* Offset so far becomes the position of this field after normalizing.  */
1606   normalize_rli (rli);
1607   DECL_FIELD_OFFSET (field) = rli->offset;
1608   DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1609   SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1610   handle_warn_if_not_align (field, rli->record_align);
1611 
1612   /* Evaluate nonconstant offsets only once, either now or as soon as safe.  */
1613   if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1614     DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1615 
1616   /* If this field ended up more aligned than we thought it would be (we
1617      approximate this by seeing if its position changed), lay out the field
1618      again; perhaps we can use an integral mode for it now.  */
1619   if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1620     actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1621   else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1622     actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1623   else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1624     actual_align = (BITS_PER_UNIT
1625 		    * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1626   else
1627     actual_align = DECL_OFFSET_ALIGN (field);
1628   /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1629      store / extract bit field operations will check the alignment of the
1630      record against the mode of bit fields.  */
1631 
1632   if (known_align != actual_align)
1633     layout_decl (field, actual_align);
1634 
1635   if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1636     rli->prev_field = field;
1637 
1638   /* Now add size of this field to the size of the record.  If the size is
1639      not constant, treat the field as being a multiple of bytes and just
1640      adjust the offset, resetting the bit position.  Otherwise, apportion the
1641      size amongst the bit position and offset.  First handle the case of an
1642      unspecified size, which can happen when we have an invalid nested struct
1643      definition, such as struct j { struct j { int i; } }.  The error message
1644      is printed in finish_struct.  */
1645   if (DECL_SIZE (field) == 0)
1646     /* Do nothing.  */;
1647   else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1648 	   || TREE_OVERFLOW (DECL_SIZE (field)))
1649     {
1650       rli->offset
1651 	= size_binop (PLUS_EXPR, rli->offset,
1652 		      fold_convert (sizetype,
1653 				    size_binop (CEIL_DIV_EXPR, rli->bitpos,
1654 						bitsize_unit_node)));
1655       rli->offset
1656 	= size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1657       rli->bitpos = bitsize_zero_node;
1658       rli->offset_align = MIN (rli->offset_align, desired_align);
1659 
1660       if (!multiple_of_p (bitsizetype, DECL_SIZE (field),
1661 			  bitsize_int (rli->offset_align)))
1662 	{
1663 	  tree type = strip_array_types (TREE_TYPE (field));
1664 	  /* The above adjusts offset_align just based on the start of the
1665 	     field.  The field might not have a size that is a multiple of
1666 	     that offset_align though.  If the field is an array of fixed
1667 	     sized elements, assume there can be any multiple of those
1668 	     sizes.  If it is a variable length aggregate or array of
1669 	     variable length aggregates, assume worst that the end is
1670 	     just BITS_PER_UNIT aligned.  */
1671 	  if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
1672 	    {
1673 	      if (TREE_INT_CST_LOW (TYPE_SIZE (type)))
1674 		{
1675 		  unsigned HOST_WIDE_INT sz
1676 		    = least_bit_hwi (TREE_INT_CST_LOW (TYPE_SIZE (type)));
1677 		  rli->offset_align = MIN (rli->offset_align, sz);
1678 		}
1679 	    }
1680 	  else
1681 	    rli->offset_align = MIN (rli->offset_align, BITS_PER_UNIT);
1682 	}
1683     }
1684   else if (targetm.ms_bitfield_layout_p (rli->t))
1685     {
1686       rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1687 
1688       /* If FIELD is the last field and doesn't end at the full length
1689 	 of the type then pad the struct out to the full length of the
1690 	 last type.  */
1691       if (DECL_BIT_FIELD_TYPE (field)
1692 	  && !integer_zerop (DECL_SIZE (field)))
1693 	{
1694 	  /* We have to scan, because non-field DECLS are also here.  */
1695 	  tree probe = field;
1696 	  while ((probe = DECL_CHAIN (probe)))
1697 	    if (TREE_CODE (probe) == FIELD_DECL)
1698 	      break;
1699 	  if (!probe)
1700 	    rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1701 				      bitsize_int (rli->remaining_in_alignment));
1702 	}
1703 
1704       normalize_rli (rli);
1705     }
1706   else
1707     {
1708       rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1709       normalize_rli (rli);
1710     }
1711 }
1712 
1713 /* Assuming that all the fields have been laid out, this function uses
1714    RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1715    indicated by RLI.  */
1716 
1717 static void
finalize_record_size(record_layout_info rli)1718 finalize_record_size (record_layout_info rli)
1719 {
1720   tree unpadded_size, unpadded_size_unit;
1721 
1722   /* Now we want just byte and bit offsets, so set the offset alignment
1723      to be a byte and then normalize.  */
1724   rli->offset_align = BITS_PER_UNIT;
1725   normalize_rli (rli);
1726 
1727   /* Determine the desired alignment.  */
1728 #ifdef ROUND_TYPE_ALIGN
1729   SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1730 					    rli->record_align));
1731 #else
1732   SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1733 #endif
1734 
1735   /* Compute the size so far.  Be sure to allow for extra bits in the
1736      size in bytes.  We have guaranteed above that it will be no more
1737      than a single byte.  */
1738   unpadded_size = rli_size_so_far (rli);
1739   unpadded_size_unit = rli_size_unit_so_far (rli);
1740   if (! integer_zerop (rli->bitpos))
1741     unpadded_size_unit
1742       = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1743 
1744   /* Round the size up to be a multiple of the required alignment.  */
1745   TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1746   TYPE_SIZE_UNIT (rli->t)
1747     = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1748 
1749   if (TREE_CONSTANT (unpadded_size)
1750       && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1751       && input_location != BUILTINS_LOCATION)
1752     warning (OPT_Wpadded, "padding struct size to alignment boundary");
1753 
1754   if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1755       && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1756       && TREE_CONSTANT (unpadded_size))
1757     {
1758       tree unpacked_size;
1759 
1760 #ifdef ROUND_TYPE_ALIGN
1761       rli->unpacked_align
1762 	= ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1763 #else
1764       rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1765 #endif
1766 
1767       unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1768       if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1769 	{
1770 	  if (TYPE_NAME (rli->t))
1771 	    {
1772 	      tree name;
1773 
1774 	      if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1775 		name = TYPE_NAME (rli->t);
1776 	      else
1777 		name = DECL_NAME (TYPE_NAME (rli->t));
1778 
1779 	      if (STRICT_ALIGNMENT)
1780 		warning (OPT_Wpacked, "packed attribute causes inefficient "
1781 			 "alignment for %qE", name);
1782 	      else
1783 		warning (OPT_Wpacked,
1784 			 "packed attribute is unnecessary for %qE", name);
1785 	    }
1786 	  else
1787 	    {
1788 	      if (STRICT_ALIGNMENT)
1789 		warning (OPT_Wpacked,
1790 			 "packed attribute causes inefficient alignment");
1791 	      else
1792 		warning (OPT_Wpacked, "packed attribute is unnecessary");
1793 	    }
1794 	}
1795     }
1796 }
1797 
1798 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE).  */
1799 
1800 void
compute_record_mode(tree type)1801 compute_record_mode (tree type)
1802 {
1803   tree field;
1804   machine_mode mode = VOIDmode;
1805 
1806   /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1807      However, if possible, we use a mode that fits in a register
1808      instead, in order to allow for better optimization down the
1809      line.  */
1810   SET_TYPE_MODE (type, BLKmode);
1811 
1812   if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1813     return;
1814 
1815   /* A record which has any BLKmode members must itself be
1816      BLKmode; it can't go in a register.  Unless the member is
1817      BLKmode only because it isn't aligned.  */
1818   for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1819     {
1820       if (TREE_CODE (field) != FIELD_DECL)
1821 	continue;
1822 
1823       if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1824 	  || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1825 	      && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1826 	      && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1827 		   && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1828 	  || ! tree_fits_uhwi_p (bit_position (field))
1829 	  || DECL_SIZE (field) == 0
1830 	  || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1831 	return;
1832 
1833       /* If this field is the whole struct, remember its mode so
1834 	 that, say, we can put a double in a class into a DF
1835 	 register instead of forcing it to live in the stack.  */
1836       if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1837 	mode = DECL_MODE (field);
1838 
1839       /* With some targets, it is sub-optimal to access an aligned
1840 	 BLKmode structure as a scalar.  */
1841       if (targetm.member_type_forces_blk (field, mode))
1842 	return;
1843     }
1844 
1845   /* If we only have one real field; use its mode if that mode's size
1846      matches the type's size.  This only applies to RECORD_TYPE.  This
1847      does not apply to unions.  */
1848   if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1849       && tree_fits_uhwi_p (TYPE_SIZE (type))
1850       && known_eq (GET_MODE_BITSIZE (mode), tree_to_uhwi (TYPE_SIZE (type))))
1851     ;
1852   else
1853     mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk ();
1854 
1855   /* If structure's known alignment is less than what the scalar
1856      mode would need, and it matters, then stick with BLKmode.  */
1857   if (mode != BLKmode
1858       && STRICT_ALIGNMENT
1859       && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1860 	    || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
1861     {
1862       /* If this is the only reason this type is BLKmode, then
1863 	 don't force containing types to be BLKmode.  */
1864       TYPE_NO_FORCE_BLK (type) = 1;
1865       mode = BLKmode;
1866     }
1867 
1868   SET_TYPE_MODE (type, mode);
1869 }
1870 
1871 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1872    out.  */
1873 
1874 static void
finalize_type_size(tree type)1875 finalize_type_size (tree type)
1876 {
1877   /* Normally, use the alignment corresponding to the mode chosen.
1878      However, where strict alignment is not required, avoid
1879      over-aligning structures, since most compilers do not do this
1880      alignment.  */
1881   if (TYPE_MODE (type) != BLKmode
1882       && TYPE_MODE (type) != VOIDmode
1883       && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1884     {
1885       unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1886 
1887       /* Don't override a larger alignment requirement coming from a user
1888 	 alignment of one of the fields.  */
1889       if (mode_align >= TYPE_ALIGN (type))
1890 	{
1891 	  SET_TYPE_ALIGN (type, mode_align);
1892 	  TYPE_USER_ALIGN (type) = 0;
1893 	}
1894     }
1895 
1896   /* Do machine-dependent extra alignment.  */
1897 #ifdef ROUND_TYPE_ALIGN
1898   SET_TYPE_ALIGN (type,
1899                   ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1900 #endif
1901 
1902   /* If we failed to find a simple way to calculate the unit size
1903      of the type, find it by division.  */
1904   if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1905     /* TYPE_SIZE (type) is computed in bitsizetype.  After the division, the
1906        result will fit in sizetype.  We will get more efficient code using
1907        sizetype, so we force a conversion.  */
1908     TYPE_SIZE_UNIT (type)
1909       = fold_convert (sizetype,
1910 		      size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1911 				  bitsize_unit_node));
1912 
1913   if (TYPE_SIZE (type) != 0)
1914     {
1915       TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1916       TYPE_SIZE_UNIT (type)
1917 	= round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1918     }
1919 
1920   /* Evaluate nonconstant sizes only once, either now or as soon as safe.  */
1921   if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1922     TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1923   if (TYPE_SIZE_UNIT (type) != 0
1924       && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1925     TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1926 
1927   /* Handle empty records as per the x86-64 psABI.  */
1928   TYPE_EMPTY_P (type) = targetm.calls.empty_record_p (type);
1929 
1930   /* Also layout any other variants of the type.  */
1931   if (TYPE_NEXT_VARIANT (type)
1932       || type != TYPE_MAIN_VARIANT (type))
1933     {
1934       tree variant;
1935       /* Record layout info of this variant.  */
1936       tree size = TYPE_SIZE (type);
1937       tree size_unit = TYPE_SIZE_UNIT (type);
1938       unsigned int align = TYPE_ALIGN (type);
1939       unsigned int precision = TYPE_PRECISION (type);
1940       unsigned int user_align = TYPE_USER_ALIGN (type);
1941       machine_mode mode = TYPE_MODE (type);
1942       bool empty_p = TYPE_EMPTY_P (type);
1943 
1944       /* Copy it into all variants.  */
1945       for (variant = TYPE_MAIN_VARIANT (type);
1946 	   variant != 0;
1947 	   variant = TYPE_NEXT_VARIANT (variant))
1948 	{
1949 	  TYPE_SIZE (variant) = size;
1950 	  TYPE_SIZE_UNIT (variant) = size_unit;
1951 	  unsigned valign = align;
1952 	  if (TYPE_USER_ALIGN (variant))
1953 	    valign = MAX (valign, TYPE_ALIGN (variant));
1954 	  else
1955 	    TYPE_USER_ALIGN (variant) = user_align;
1956 	  SET_TYPE_ALIGN (variant, valign);
1957 	  TYPE_PRECISION (variant) = precision;
1958 	  SET_TYPE_MODE (variant, mode);
1959 	  TYPE_EMPTY_P (variant) = empty_p;
1960 	}
1961     }
1962 }
1963 
1964 /* Return a new underlying object for a bitfield started with FIELD.  */
1965 
1966 static tree
start_bitfield_representative(tree field)1967 start_bitfield_representative (tree field)
1968 {
1969   tree repr = make_node (FIELD_DECL);
1970   DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1971   /* Force the representative to begin at a BITS_PER_UNIT aligned
1972      boundary - C++ may use tail-padding of a base object to
1973      continue packing bits so the bitfield region does not start
1974      at bit zero (see g++.dg/abi/bitfield5.C for example).
1975      Unallocated bits may happen for other reasons as well,
1976      for example Ada which allows explicit bit-granular structure layout.  */
1977   DECL_FIELD_BIT_OFFSET (repr)
1978     = size_binop (BIT_AND_EXPR,
1979 		  DECL_FIELD_BIT_OFFSET (field),
1980 		  bitsize_int (~(BITS_PER_UNIT - 1)));
1981   SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1982   DECL_SIZE (repr) = DECL_SIZE (field);
1983   DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1984   DECL_PACKED (repr) = DECL_PACKED (field);
1985   DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1986   /* There are no indirect accesses to this field.  If we introduce
1987      some then they have to use the record alias set.  This makes
1988      sure to properly conflict with [indirect] accesses to addressable
1989      fields of the bitfield group.  */
1990   DECL_NONADDRESSABLE_P (repr) = 1;
1991   return repr;
1992 }
1993 
1994 /* Finish up a bitfield group that was started by creating the underlying
1995    object REPR with the last field in the bitfield group FIELD.  */
1996 
1997 static void
finish_bitfield_representative(tree repr,tree field)1998 finish_bitfield_representative (tree repr, tree field)
1999 {
2000   unsigned HOST_WIDE_INT bitsize, maxbitsize;
2001   tree nextf, size;
2002 
2003   size = size_diffop (DECL_FIELD_OFFSET (field),
2004 		      DECL_FIELD_OFFSET (repr));
2005   while (TREE_CODE (size) == COMPOUND_EXPR)
2006     size = TREE_OPERAND (size, 1);
2007   gcc_assert (tree_fits_uhwi_p (size));
2008   bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
2009 	     + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2010 	     - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
2011 	     + tree_to_uhwi (DECL_SIZE (field)));
2012 
2013   /* Round up bitsize to multiples of BITS_PER_UNIT.  */
2014   bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2015 
2016   /* Now nothing tells us how to pad out bitsize ...  */
2017   nextf = DECL_CHAIN (field);
2018   while (nextf && TREE_CODE (nextf) != FIELD_DECL)
2019     nextf = DECL_CHAIN (nextf);
2020   if (nextf)
2021     {
2022       tree maxsize;
2023       /* If there was an error, the field may be not laid out
2024          correctly.  Don't bother to do anything.  */
2025       if (TREE_TYPE (nextf) == error_mark_node)
2026 	return;
2027       maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
2028 			     DECL_FIELD_OFFSET (repr));
2029       if (tree_fits_uhwi_p (maxsize))
2030 	{
2031 	  maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2032 			+ tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
2033 			- tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2034 	  /* If the group ends within a bitfield nextf does not need to be
2035 	     aligned to BITS_PER_UNIT.  Thus round up.  */
2036 	  maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2037 	}
2038       else
2039 	maxbitsize = bitsize;
2040     }
2041   else
2042     {
2043       /* Note that if the C++ FE sets up tail-padding to be re-used it
2044          creates a as-base variant of the type with TYPE_SIZE adjusted
2045 	 accordingly.  So it is safe to include tail-padding here.  */
2046       tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
2047 							(DECL_CONTEXT (field));
2048       tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
2049       /* We cannot generally rely on maxsize to fold to an integer constant,
2050 	 so use bitsize as fallback for this case.  */
2051       if (tree_fits_uhwi_p (maxsize))
2052 	maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2053 		      - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2054       else
2055 	maxbitsize = bitsize;
2056     }
2057 
2058   /* Only if we don't artificially break up the representative in
2059      the middle of a large bitfield with different possibly
2060      overlapping representatives.  And all representatives start
2061      at byte offset.  */
2062   gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
2063 
2064   /* Find the smallest nice mode to use.  */
2065   opt_scalar_int_mode mode_iter;
2066   FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2067     if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
2068       break;
2069 
2070   scalar_int_mode mode;
2071   if (!mode_iter.exists (&mode)
2072       || GET_MODE_BITSIZE (mode) > maxbitsize
2073       || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
2074     {
2075       /* We really want a BLKmode representative only as a last resort,
2076          considering the member b in
2077 	   struct { int a : 7; int b : 17; int c; } __attribute__((packed));
2078 	 Otherwise we simply want to split the representative up
2079 	 allowing for overlaps within the bitfield region as required for
2080 	   struct { int a : 7; int b : 7;
2081 		    int c : 10; int d; } __attribute__((packed));
2082 	 [0, 15] HImode for a and b, [8, 23] HImode for c.  */
2083       DECL_SIZE (repr) = bitsize_int (bitsize);
2084       DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
2085       SET_DECL_MODE (repr, BLKmode);
2086       TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
2087 						 bitsize / BITS_PER_UNIT);
2088     }
2089   else
2090     {
2091       unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
2092       DECL_SIZE (repr) = bitsize_int (modesize);
2093       DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
2094       SET_DECL_MODE (repr, mode);
2095       TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
2096     }
2097 
2098   /* Remember whether the bitfield group is at the end of the
2099      structure or not.  */
2100   DECL_CHAIN (repr) = nextf;
2101 }
2102 
2103 /* Compute and set FIELD_DECLs for the underlying objects we should
2104    use for bitfield access for the structure T.  */
2105 
2106 void
finish_bitfield_layout(tree t)2107 finish_bitfield_layout (tree t)
2108 {
2109   tree field, prev;
2110   tree repr = NULL_TREE;
2111 
2112   /* Unions would be special, for the ease of type-punning optimizations
2113      we could use the underlying type as hint for the representative
2114      if the bitfield would fit and the representative would not exceed
2115      the union in size.  */
2116   if (TREE_CODE (t) != RECORD_TYPE)
2117     return;
2118 
2119   for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2120        field; field = DECL_CHAIN (field))
2121     {
2122       if (TREE_CODE (field) != FIELD_DECL)
2123 	continue;
2124 
2125       /* In the C++ memory model, consecutive bit fields in a structure are
2126 	 considered one memory location and updating a memory location
2127 	 may not store into adjacent memory locations.  */
2128       if (!repr
2129 	  && DECL_BIT_FIELD_TYPE (field))
2130 	{
2131 	  /* Start new representative.  */
2132 	  repr = start_bitfield_representative (field);
2133 	}
2134       else if (repr
2135 	       && ! DECL_BIT_FIELD_TYPE (field))
2136 	{
2137 	  /* Finish off new representative.  */
2138 	  finish_bitfield_representative (repr, prev);
2139 	  repr = NULL_TREE;
2140 	}
2141       else if (DECL_BIT_FIELD_TYPE (field))
2142 	{
2143 	  gcc_assert (repr != NULL_TREE);
2144 
2145 	  /* Zero-size bitfields finish off a representative and
2146 	     do not have a representative themselves.  This is
2147 	     required by the C++ memory model.  */
2148 	  if (integer_zerop (DECL_SIZE (field)))
2149 	    {
2150 	      finish_bitfield_representative (repr, prev);
2151 	      repr = NULL_TREE;
2152 	    }
2153 
2154 	  /* We assume that either DECL_FIELD_OFFSET of the representative
2155 	     and each bitfield member is a constant or they are equal.
2156 	     This is because we need to be able to compute the bit-offset
2157 	     of each field relative to the representative in get_bit_range
2158 	     during RTL expansion.
2159 	     If these constraints are not met, simply force a new
2160 	     representative to be generated.  That will at most
2161 	     generate worse code but still maintain correctness with
2162 	     respect to the C++ memory model.  */
2163 	  else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2164 		      && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2165 		     || operand_equal_p (DECL_FIELD_OFFSET (repr),
2166 					 DECL_FIELD_OFFSET (field), 0)))
2167 	    {
2168 	      finish_bitfield_representative (repr, prev);
2169 	      repr = start_bitfield_representative (field);
2170 	    }
2171 	}
2172       else
2173 	continue;
2174 
2175       if (repr)
2176 	DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2177 
2178       prev = field;
2179     }
2180 
2181   if (repr)
2182     finish_bitfield_representative (repr, prev);
2183 }
2184 
2185 /* Do all of the work required to layout the type indicated by RLI,
2186    once the fields have been laid out.  This function will call `free'
2187    for RLI, unless FREE_P is false.  Passing a value other than false
2188    for FREE_P is bad practice; this option only exists to support the
2189    G++ 3.2 ABI.  */
2190 
2191 void
finish_record_layout(record_layout_info rli,int free_p)2192 finish_record_layout (record_layout_info rli, int free_p)
2193 {
2194   tree variant;
2195 
2196   /* Compute the final size.  */
2197   finalize_record_size (rli);
2198 
2199   /* Compute the TYPE_MODE for the record.  */
2200   compute_record_mode (rli->t);
2201 
2202   /* Perform any last tweaks to the TYPE_SIZE, etc.  */
2203   finalize_type_size (rli->t);
2204 
2205   /* Compute bitfield representatives.  */
2206   finish_bitfield_layout (rli->t);
2207 
2208   /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2209      With C++ templates, it is too early to do this when the attribute
2210      is being parsed.  */
2211   for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2212        variant = TYPE_NEXT_VARIANT (variant))
2213     {
2214       TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2215       TYPE_REVERSE_STORAGE_ORDER (variant)
2216 	= TYPE_REVERSE_STORAGE_ORDER (rli->t);
2217     }
2218 
2219   /* Lay out any static members.  This is done now because their type
2220      may use the record's type.  */
2221   while (!vec_safe_is_empty (rli->pending_statics))
2222     layout_decl (rli->pending_statics->pop (), 0);
2223 
2224   /* Clean up.  */
2225   if (free_p)
2226     {
2227       vec_free (rli->pending_statics);
2228       free (rli);
2229     }
2230 }
2231 
2232 
2233 /* Finish processing a builtin RECORD_TYPE type TYPE.  It's name is
2234    NAME, its fields are chained in reverse on FIELDS.
2235 
2236    If ALIGN_TYPE is non-null, it is given the same alignment as
2237    ALIGN_TYPE.  */
2238 
2239 void
finish_builtin_struct(tree type,const char * name,tree fields,tree align_type)2240 finish_builtin_struct (tree type, const char *name, tree fields,
2241 		       tree align_type)
2242 {
2243   tree tail, next;
2244 
2245   for (tail = NULL_TREE; fields; tail = fields, fields = next)
2246     {
2247       DECL_FIELD_CONTEXT (fields) = type;
2248       next = DECL_CHAIN (fields);
2249       DECL_CHAIN (fields) = tail;
2250     }
2251   TYPE_FIELDS (type) = tail;
2252 
2253   if (align_type)
2254     {
2255       SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2256       TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2257       SET_TYPE_WARN_IF_NOT_ALIGN (type,
2258 				  TYPE_WARN_IF_NOT_ALIGN (align_type));
2259     }
2260 
2261   layout_type (type);
2262 #if 0 /* not yet, should get fixed properly later */
2263   TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2264 #else
2265   TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2266 				 TYPE_DECL, get_identifier (name), type);
2267 #endif
2268   TYPE_STUB_DECL (type) = TYPE_NAME (type);
2269   layout_decl (TYPE_NAME (type), 0);
2270 }
2271 
2272 /* Calculate the mode, size, and alignment for TYPE.
2273    For an array type, calculate the element separation as well.
2274    Record TYPE on the chain of permanent or temporary types
2275    so that dbxout will find out about it.
2276 
2277    TYPE_SIZE of a type is nonzero if the type has been laid out already.
2278    layout_type does nothing on such a type.
2279 
2280    If the type is incomplete, its TYPE_SIZE remains zero.  */
2281 
2282 void
layout_type(tree type)2283 layout_type (tree type)
2284 {
2285   gcc_assert (type);
2286 
2287   if (type == error_mark_node)
2288     return;
2289 
2290   /* We don't want finalize_type_size to copy an alignment attribute to
2291      variants that don't have it.  */
2292   type = TYPE_MAIN_VARIANT (type);
2293 
2294   /* Do nothing if type has been laid out before.  */
2295   if (TYPE_SIZE (type))
2296     return;
2297 
2298   switch (TREE_CODE (type))
2299     {
2300     case LANG_TYPE:
2301       /* This kind of type is the responsibility
2302 	 of the language-specific code.  */
2303       gcc_unreachable ();
2304 
2305     case BOOLEAN_TYPE:
2306     case INTEGER_TYPE:
2307     case ENUMERAL_TYPE:
2308       {
2309 	scalar_int_mode mode
2310 	  = smallest_int_mode_for_size (TYPE_PRECISION (type));
2311 	SET_TYPE_MODE (type, mode);
2312 	TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2313 	/* Don't set TYPE_PRECISION here, as it may be set by a bitfield.  */
2314 	TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2315 	break;
2316       }
2317 
2318     case REAL_TYPE:
2319       {
2320 	/* Allow the caller to choose the type mode, which is how decimal
2321 	   floats are distinguished from binary ones.  */
2322 	if (TYPE_MODE (type) == VOIDmode)
2323 	  SET_TYPE_MODE
2324 	    (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2325 	scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2326 	TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2327 	TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2328 	break;
2329       }
2330 
2331    case FIXED_POINT_TYPE:
2332      {
2333        /* TYPE_MODE (type) has been set already.  */
2334        scalar_mode mode = SCALAR_TYPE_MODE (type);
2335        TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2336        TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2337        break;
2338      }
2339 
2340     case COMPLEX_TYPE:
2341       TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2342       SET_TYPE_MODE (type,
2343 		     GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2344 
2345       TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2346       TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2347       break;
2348 
2349     case VECTOR_TYPE:
2350       {
2351 	poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type);
2352 	tree innertype = TREE_TYPE (type);
2353 
2354 	/* Find an appropriate mode for the vector type.  */
2355 	if (TYPE_MODE (type) == VOIDmode)
2356 	  SET_TYPE_MODE (type,
2357 			 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2358 					  nunits).else_blk ());
2359 
2360 	TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2361         TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2362 	/* Several boolean vector elements may fit in a single unit.  */
2363 	if (VECTOR_BOOLEAN_TYPE_P (type)
2364 	    && type->type_common.mode != BLKmode)
2365 	  TYPE_SIZE_UNIT (type)
2366 	    = size_int (GET_MODE_SIZE (type->type_common.mode));
2367 	else
2368 	  TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2369 						   TYPE_SIZE_UNIT (innertype),
2370 						   size_int (nunits));
2371 	TYPE_SIZE (type) = int_const_binop
2372 	  (MULT_EXPR,
2373 	   bits_from_bytes (TYPE_SIZE_UNIT (type)),
2374 	   bitsize_int (BITS_PER_UNIT));
2375 
2376 	/* For vector types, we do not default to the mode's alignment.
2377 	   Instead, query a target hook, defaulting to natural alignment.
2378 	   This prevents ABI changes depending on whether or not native
2379 	   vector modes are supported.  */
2380 	SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2381 
2382 	/* However, if the underlying mode requires a bigger alignment than
2383 	   what the target hook provides, we cannot use the mode.  For now,
2384 	   simply reject that case.  */
2385 	gcc_assert (TYPE_ALIGN (type)
2386 		    >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2387         break;
2388       }
2389 
2390     case VOID_TYPE:
2391       /* This is an incomplete type and so doesn't have a size.  */
2392       SET_TYPE_ALIGN (type, 1);
2393       TYPE_USER_ALIGN (type) = 0;
2394       SET_TYPE_MODE (type, VOIDmode);
2395       break;
2396 
2397     case POINTER_BOUNDS_TYPE:
2398       TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2399       TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2400       break;
2401 
2402     case OFFSET_TYPE:
2403       TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2404       TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2405       /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2406 	 integral, which may be an __intN.  */
2407       SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2408       TYPE_PRECISION (type) = POINTER_SIZE;
2409       break;
2410 
2411     case FUNCTION_TYPE:
2412     case METHOD_TYPE:
2413       /* It's hard to see what the mode and size of a function ought to
2414 	 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2415 	 make it consistent with that.  */
2416       SET_TYPE_MODE (type,
2417 		     int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2418       TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2419       TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2420       break;
2421 
2422     case POINTER_TYPE:
2423     case REFERENCE_TYPE:
2424       {
2425 	scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2426 	TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2427 	TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2428 	TYPE_UNSIGNED (type) = 1;
2429 	TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2430       }
2431       break;
2432 
2433     case ARRAY_TYPE:
2434       {
2435 	tree index = TYPE_DOMAIN (type);
2436 	tree element = TREE_TYPE (type);
2437 
2438 	/* We need to know both bounds in order to compute the size.  */
2439 	if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2440 	    && TYPE_SIZE (element))
2441 	  {
2442 	    tree ub = TYPE_MAX_VALUE (index);
2443 	    tree lb = TYPE_MIN_VALUE (index);
2444 	    tree element_size = TYPE_SIZE (element);
2445 	    tree length;
2446 
2447 	    /* Make sure that an array of zero-sized element is zero-sized
2448 	       regardless of its extent.  */
2449 	    if (integer_zerop (element_size))
2450 	      length = size_zero_node;
2451 
2452 	    /* The computation should happen in the original signedness so
2453 	       that (possible) negative values are handled appropriately
2454 	       when determining overflow.  */
2455 	    else
2456 	      {
2457 		/* ???  When it is obvious that the range is signed
2458 		   represent it using ssizetype.  */
2459 		if (TREE_CODE (lb) == INTEGER_CST
2460 		    && TREE_CODE (ub) == INTEGER_CST
2461 		    && TYPE_UNSIGNED (TREE_TYPE (lb))
2462 		    && tree_int_cst_lt (ub, lb))
2463 		  {
2464 		    lb = wide_int_to_tree (ssizetype,
2465 					   offset_int::from (wi::to_wide (lb),
2466 							     SIGNED));
2467 		    ub = wide_int_to_tree (ssizetype,
2468 					   offset_int::from (wi::to_wide (ub),
2469 							     SIGNED));
2470 		  }
2471 		length
2472 		  = fold_convert (sizetype,
2473 				  size_binop (PLUS_EXPR,
2474 					      build_int_cst (TREE_TYPE (lb), 1),
2475 					      size_binop (MINUS_EXPR, ub, lb)));
2476 	      }
2477 
2478 	    /* ??? We have no way to distinguish a null-sized array from an
2479 	       array spanning the whole sizetype range, so we arbitrarily
2480 	       decide that [0, -1] is the only valid representation.  */
2481 	    if (integer_zerop (length)
2482 	        && TREE_OVERFLOW (length)
2483 		&& integer_zerop (lb))
2484 	      length = size_zero_node;
2485 
2486 	    TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2487 					   bits_from_bytes (length));
2488 
2489 	    /* If we know the size of the element, calculate the total size
2490 	       directly, rather than do some division thing below.  This
2491 	       optimization helps Fortran assumed-size arrays (where the
2492 	       size of the array is determined at runtime) substantially.  */
2493 	    if (TYPE_SIZE_UNIT (element))
2494 	      TYPE_SIZE_UNIT (type)
2495 		= size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2496 	  }
2497 
2498 	/* Now round the alignment and size,
2499 	   using machine-dependent criteria if any.  */
2500 
2501 	unsigned align = TYPE_ALIGN (element);
2502 	if (TYPE_USER_ALIGN (type))
2503 	  align = MAX (align, TYPE_ALIGN (type));
2504 	else
2505 	  TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2506 	if (!TYPE_WARN_IF_NOT_ALIGN (type))
2507 	  SET_TYPE_WARN_IF_NOT_ALIGN (type,
2508 				      TYPE_WARN_IF_NOT_ALIGN (element));
2509 #ifdef ROUND_TYPE_ALIGN
2510 	align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2511 #else
2512 	align = MAX (align, BITS_PER_UNIT);
2513 #endif
2514 	SET_TYPE_ALIGN (type, align);
2515 	SET_TYPE_MODE (type, BLKmode);
2516 	if (TYPE_SIZE (type) != 0
2517 	    && ! targetm.member_type_forces_blk (type, VOIDmode)
2518 	    /* BLKmode elements force BLKmode aggregate;
2519 	       else extract/store fields may lose.  */
2520 	    && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2521 		|| TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2522 	  {
2523 	    SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2524 						 TYPE_SIZE (type)));
2525 	    if (TYPE_MODE (type) != BLKmode
2526 		&& STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2527 		&& TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2528 	      {
2529 		TYPE_NO_FORCE_BLK (type) = 1;
2530 		SET_TYPE_MODE (type, BLKmode);
2531 	      }
2532 	  }
2533 	if (AGGREGATE_TYPE_P (element))
2534 	  TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2535 	/* When the element size is constant, check that it is at least as
2536 	   large as the element alignment.  */
2537 	if (TYPE_SIZE_UNIT (element)
2538 	    && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2539 	    /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2540 	       TYPE_ALIGN_UNIT.  */
2541 	    && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2542 	    && !integer_zerop (TYPE_SIZE_UNIT (element))
2543 	    && compare_tree_int (TYPE_SIZE_UNIT (element),
2544 			  	 TYPE_ALIGN_UNIT (element)) < 0)
2545 	  error ("alignment of array elements is greater than element size");
2546 	break;
2547       }
2548 
2549     case RECORD_TYPE:
2550     case UNION_TYPE:
2551     case QUAL_UNION_TYPE:
2552       {
2553 	tree field;
2554 	record_layout_info rli;
2555 
2556 	/* Initialize the layout information.  */
2557 	rli = start_record_layout (type);
2558 
2559 	/* If this is a QUAL_UNION_TYPE, we want to process the fields
2560 	   in the reverse order in building the COND_EXPR that denotes
2561 	   its size.  We reverse them again later.  */
2562 	if (TREE_CODE (type) == QUAL_UNION_TYPE)
2563 	  TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2564 
2565 	/* Place all the fields.  */
2566 	for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2567 	  place_field (rli, field);
2568 
2569 	if (TREE_CODE (type) == QUAL_UNION_TYPE)
2570 	  TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2571 
2572 	/* Finish laying out the record.  */
2573 	finish_record_layout (rli, /*free_p=*/true);
2574       }
2575       break;
2576 
2577     default:
2578       gcc_unreachable ();
2579     }
2580 
2581   /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE.  For
2582      records and unions, finish_record_layout already called this
2583      function.  */
2584   if (!RECORD_OR_UNION_TYPE_P (type))
2585     finalize_type_size (type);
2586 
2587   /* We should never see alias sets on incomplete aggregates.  And we
2588      should not call layout_type on not incomplete aggregates.  */
2589   if (AGGREGATE_TYPE_P (type))
2590     gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2591 }
2592 
2593 /* Return the least alignment required for type TYPE.  */
2594 
2595 unsigned int
min_align_of_type(tree type)2596 min_align_of_type (tree type)
2597 {
2598   unsigned int align = TYPE_ALIGN (type);
2599   if (!TYPE_USER_ALIGN (type))
2600     {
2601       align = MIN (align, BIGGEST_ALIGNMENT);
2602 #ifdef BIGGEST_FIELD_ALIGNMENT
2603       align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2604 #endif
2605       unsigned int field_align = align;
2606 #ifdef ADJUST_FIELD_ALIGN
2607       field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2608 #endif
2609       align = MIN (align, field_align);
2610     }
2611   return align / BITS_PER_UNIT;
2612 }
2613 
2614 /* Create and return a type for signed integers of PRECISION bits.  */
2615 
2616 tree
make_signed_type(int precision)2617 make_signed_type (int precision)
2618 {
2619   tree type = make_node (INTEGER_TYPE);
2620 
2621   TYPE_PRECISION (type) = precision;
2622 
2623   fixup_signed_type (type);
2624   return type;
2625 }
2626 
2627 /* Create and return a type for unsigned integers of PRECISION bits.  */
2628 
2629 tree
make_unsigned_type(int precision)2630 make_unsigned_type (int precision)
2631 {
2632   tree type = make_node (INTEGER_TYPE);
2633 
2634   TYPE_PRECISION (type) = precision;
2635 
2636   fixup_unsigned_type (type);
2637   return type;
2638 }
2639 
2640 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2641    and SATP.  */
2642 
2643 tree
make_fract_type(int precision,int unsignedp,int satp)2644 make_fract_type (int precision, int unsignedp, int satp)
2645 {
2646   tree type = make_node (FIXED_POINT_TYPE);
2647 
2648   TYPE_PRECISION (type) = precision;
2649 
2650   if (satp)
2651     TYPE_SATURATING (type) = 1;
2652 
2653   /* Lay out the type: set its alignment, size, etc.  */
2654   TYPE_UNSIGNED (type) = unsignedp;
2655   enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2656   SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2657   layout_type (type);
2658 
2659   return type;
2660 }
2661 
2662 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2663    and SATP.  */
2664 
2665 tree
make_accum_type(int precision,int unsignedp,int satp)2666 make_accum_type (int precision, int unsignedp, int satp)
2667 {
2668   tree type = make_node (FIXED_POINT_TYPE);
2669 
2670   TYPE_PRECISION (type) = precision;
2671 
2672   if (satp)
2673     TYPE_SATURATING (type) = 1;
2674 
2675   /* Lay out the type: set its alignment, size, etc.  */
2676   TYPE_UNSIGNED (type) = unsignedp;
2677   enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2678   SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2679   layout_type (type);
2680 
2681   return type;
2682 }
2683 
2684 /* Initialize sizetypes so layout_type can use them.  */
2685 
2686 void
initialize_sizetypes(void)2687 initialize_sizetypes (void)
2688 {
2689   int precision, bprecision;
2690 
2691   /* Get sizetypes precision from the SIZE_TYPE target macro.  */
2692   if (strcmp (SIZETYPE, "unsigned int") == 0)
2693     precision = INT_TYPE_SIZE;
2694   else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2695     precision = LONG_TYPE_SIZE;
2696   else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2697     precision = LONG_LONG_TYPE_SIZE;
2698   else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2699     precision = SHORT_TYPE_SIZE;
2700   else
2701     {
2702       int i;
2703 
2704       precision = -1;
2705       for (i = 0; i < NUM_INT_N_ENTS; i++)
2706 	if (int_n_enabled_p[i])
2707 	  {
2708 	    char name[50];
2709 	    sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2710 
2711 	    if (strcmp (name, SIZETYPE) == 0)
2712 	      {
2713 		precision = int_n_data[i].bitsize;
2714 	      }
2715 	  }
2716       if (precision == -1)
2717 	gcc_unreachable ();
2718     }
2719 
2720   bprecision
2721     = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2722   bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
2723   if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2724     bprecision = HOST_BITS_PER_DOUBLE_INT;
2725 
2726   /* Create stubs for sizetype and bitsizetype so we can create constants.  */
2727   sizetype = make_node (INTEGER_TYPE);
2728   TYPE_NAME (sizetype) = get_identifier ("sizetype");
2729   TYPE_PRECISION (sizetype) = precision;
2730   TYPE_UNSIGNED (sizetype) = 1;
2731   bitsizetype = make_node (INTEGER_TYPE);
2732   TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2733   TYPE_PRECISION (bitsizetype) = bprecision;
2734   TYPE_UNSIGNED (bitsizetype) = 1;
2735 
2736   /* Now layout both types manually.  */
2737   scalar_int_mode mode = smallest_int_mode_for_size (precision);
2738   SET_TYPE_MODE (sizetype, mode);
2739   SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2740   TYPE_SIZE (sizetype) = bitsize_int (precision);
2741   TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2742   set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2743 
2744   mode = smallest_int_mode_for_size (bprecision);
2745   SET_TYPE_MODE (bitsizetype, mode);
2746   SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2747   TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2748   TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2749   set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2750 
2751   /* Create the signed variants of *sizetype.  */
2752   ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2753   TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2754   sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2755   TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2756 }
2757 
2758 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2759    or BOOLEAN_TYPE.  Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2760    for TYPE, based on the PRECISION and whether or not the TYPE
2761    IS_UNSIGNED.  PRECISION need not correspond to a width supported
2762    natively by the hardware; for example, on a machine with 8-bit,
2763    16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2764    61.  */
2765 
2766 void
set_min_and_max_values_for_integral_type(tree type,int precision,signop sgn)2767 set_min_and_max_values_for_integral_type (tree type,
2768 					  int precision,
2769 					  signop sgn)
2770 {
2771   /* For bitfields with zero width we end up creating integer types
2772      with zero precision.  Don't assign any minimum/maximum values
2773      to those types, they don't have any valid value.  */
2774   if (precision < 1)
2775     return;
2776 
2777   TYPE_MIN_VALUE (type)
2778     = wide_int_to_tree (type, wi::min_value (precision, sgn));
2779   TYPE_MAX_VALUE (type)
2780     = wide_int_to_tree (type, wi::max_value (precision, sgn));
2781 }
2782 
2783 /* Set the extreme values of TYPE based on its precision in bits,
2784    then lay it out.  Used when make_signed_type won't do
2785    because the tree code is not INTEGER_TYPE.  */
2786 
2787 void
fixup_signed_type(tree type)2788 fixup_signed_type (tree type)
2789 {
2790   int precision = TYPE_PRECISION (type);
2791 
2792   set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2793 
2794   /* Lay out the type: set its alignment, size, etc.  */
2795   layout_type (type);
2796 }
2797 
2798 /* Set the extreme values of TYPE based on its precision in bits,
2799    then lay it out.  This is used both in `make_unsigned_type'
2800    and for enumeral types.  */
2801 
2802 void
fixup_unsigned_type(tree type)2803 fixup_unsigned_type (tree type)
2804 {
2805   int precision = TYPE_PRECISION (type);
2806 
2807   TYPE_UNSIGNED (type) = 1;
2808 
2809   set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2810 
2811   /* Lay out the type: set its alignment, size, etc.  */
2812   layout_type (type);
2813 }
2814 
2815 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2816    starting at BITPOS.
2817 
2818    BITREGION_START is the bit position of the first bit in this
2819    sequence of bit fields.  BITREGION_END is the last bit in this
2820    sequence.  If these two fields are non-zero, we should restrict the
2821    memory access to that range.  Otherwise, we are allowed to touch
2822    any adjacent non bit-fields.
2823 
2824    ALIGN is the alignment of the underlying object in bits.
2825    VOLATILEP says whether the bitfield is volatile.  */
2826 
2827 bit_field_mode_iterator
bit_field_mode_iterator(HOST_WIDE_INT bitsize,HOST_WIDE_INT bitpos,poly_int64 bitregion_start,poly_int64 bitregion_end,unsigned int align,bool volatilep)2828 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2829 			   poly_int64 bitregion_start,
2830 			   poly_int64 bitregion_end,
2831 			   unsigned int align, bool volatilep)
2832 : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
2833   m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2834   m_bitregion_end (bitregion_end), m_align (align),
2835   m_volatilep (volatilep), m_count (0)
2836 {
2837   if (known_eq (m_bitregion_end, 0))
2838     {
2839       /* We can assume that any aligned chunk of ALIGN bits that overlaps
2840 	 the bitfield is mapped and won't trap, provided that ALIGN isn't
2841 	 too large.  The cap is the biggest required alignment for data,
2842 	 or at least the word size.  And force one such chunk at least.  */
2843       unsigned HOST_WIDE_INT units
2844 	= MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2845       if (bitsize <= 0)
2846 	bitsize = 1;
2847       HOST_WIDE_INT end = bitpos + bitsize + units - 1;
2848       m_bitregion_end = end - end % units - 1;
2849     }
2850 }
2851 
2852 /* Calls to this function return successively larger modes that can be used
2853    to represent the bitfield.  Return true if another bitfield mode is
2854    available, storing it in *OUT_MODE if so.  */
2855 
2856 bool
next_mode(scalar_int_mode * out_mode)2857 bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
2858 {
2859   scalar_int_mode mode;
2860   for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
2861     {
2862       unsigned int unit = GET_MODE_BITSIZE (mode);
2863 
2864       /* Skip modes that don't have full precision.  */
2865       if (unit != GET_MODE_PRECISION (mode))
2866 	continue;
2867 
2868       /* Stop if the mode is too wide to handle efficiently.  */
2869       if (unit > MAX_FIXED_MODE_SIZE)
2870 	break;
2871 
2872       /* Don't deliver more than one multiword mode; the smallest one
2873 	 should be used.  */
2874       if (m_count > 0 && unit > BITS_PER_WORD)
2875 	break;
2876 
2877       /* Skip modes that are too small.  */
2878       unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2879       unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2880       if (subend > unit)
2881 	continue;
2882 
2883       /* Stop if the mode goes outside the bitregion.  */
2884       HOST_WIDE_INT start = m_bitpos - substart;
2885       if (maybe_ne (m_bitregion_start, 0)
2886 	  && maybe_lt (start, m_bitregion_start))
2887 	break;
2888       HOST_WIDE_INT end = start + unit;
2889       if (maybe_gt (end, m_bitregion_end + 1))
2890 	break;
2891 
2892       /* Stop if the mode requires too much alignment.  */
2893       if (GET_MODE_ALIGNMENT (mode) > m_align
2894 	  && targetm.slow_unaligned_access (mode, m_align))
2895 	break;
2896 
2897       *out_mode = mode;
2898       m_mode = GET_MODE_WIDER_MODE (mode);
2899       m_count++;
2900       return true;
2901     }
2902   return false;
2903 }
2904 
2905 /* Return true if smaller modes are generally preferred for this kind
2906    of bitfield.  */
2907 
2908 bool
prefer_smaller_modes()2909 bit_field_mode_iterator::prefer_smaller_modes ()
2910 {
2911   return (m_volatilep
2912 	  ? targetm.narrow_volatile_bitfield ()
2913 	  : !SLOW_BYTE_ACCESS);
2914 }
2915 
2916 /* Find the best machine mode to use when referencing a bit field of length
2917    BITSIZE bits starting at BITPOS.
2918 
2919    BITREGION_START is the bit position of the first bit in this
2920    sequence of bit fields.  BITREGION_END is the last bit in this
2921    sequence.  If these two fields are non-zero, we should restrict the
2922    memory access to that range.  Otherwise, we are allowed to touch
2923    any adjacent non bit-fields.
2924 
2925    The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
2926    INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
2927    doesn't want to apply a specific limit.
2928 
2929    If no mode meets all these conditions, we return VOIDmode.
2930 
2931    The underlying object is known to be aligned to a boundary of ALIGN bits.
2932 
2933    If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2934    smallest mode meeting these conditions.
2935 
2936    If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2937    largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2938    all the conditions.
2939 
2940    If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2941    decide which of the above modes should be used.  */
2942 
2943 bool
get_best_mode(int bitsize,int bitpos,poly_uint64 bitregion_start,poly_uint64 bitregion_end,unsigned int align,unsigned HOST_WIDE_INT largest_mode_bitsize,bool volatilep,scalar_int_mode * best_mode)2944 get_best_mode (int bitsize, int bitpos,
2945 	       poly_uint64 bitregion_start, poly_uint64 bitregion_end,
2946 	       unsigned int align,
2947 	       unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
2948 	       scalar_int_mode *best_mode)
2949 {
2950   bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2951 				bitregion_end, align, volatilep);
2952   scalar_int_mode mode;
2953   bool found = false;
2954   while (iter.next_mode (&mode)
2955 	 /* ??? For historical reasons, reject modes that would normally
2956 	    receive greater alignment, even if unaligned accesses are
2957 	    acceptable.  This has both advantages and disadvantages.
2958 	    Removing this check means that something like:
2959 
2960 	       struct s { unsigned int x; unsigned int y; };
2961 	       int f (struct s *s) { return s->x == 0 && s->y == 0; }
2962 
2963 	    can be implemented using a single load and compare on
2964 	    64-bit machines that have no alignment restrictions.
2965 	    For example, on powerpc64-linux-gnu, we would generate:
2966 
2967 		    ld 3,0(3)
2968 		    cntlzd 3,3
2969 		    srdi 3,3,6
2970 		    blr
2971 
2972 	    rather than:
2973 
2974 		    lwz 9,0(3)
2975 		    cmpwi 7,9,0
2976 		    bne 7,.L3
2977 		    lwz 3,4(3)
2978 		    cntlzw 3,3
2979 		    srwi 3,3,5
2980 		    extsw 3,3
2981 		    blr
2982 		    .p2align 4,,15
2983 	    .L3:
2984 		    li 3,0
2985 		    blr
2986 
2987 	    However, accessing more than one field can make life harder
2988 	    for the gimple optimizers.  For example, gcc.dg/vect/bb-slp-5.c
2989 	    has a series of unsigned short copies followed by a series of
2990 	    unsigned short comparisons.  With this check, both the copies
2991 	    and comparisons remain 16-bit accesses and FRE is able
2992 	    to eliminate the latter.  Without the check, the comparisons
2993 	    can be done using 2 64-bit operations, which FRE isn't able
2994 	    to handle in the same way.
2995 
2996 	    Either way, it would probably be worth disabling this check
2997 	    during expand.  One particular example where removing the
2998 	    check would help is the get_best_mode call in store_bit_field.
2999 	    If we are given a memory bitregion of 128 bits that is aligned
3000 	    to a 64-bit boundary, and the bitfield we want to modify is
3001 	    in the second half of the bitregion, this check causes
3002 	    store_bitfield to turn the memory into a 64-bit reference
3003 	    to the _first_ half of the region.  We later use
3004 	    adjust_bitfield_address to get a reference to the correct half,
3005 	    but doing so looks to adjust_bitfield_address as though we are
3006 	    moving past the end of the original object, so it drops the
3007 	    associated MEM_EXPR and MEM_OFFSET.  Removing the check
3008 	    causes store_bit_field to keep a 128-bit memory reference,
3009 	    so that the final bitfield reference still has a MEM_EXPR
3010 	    and MEM_OFFSET.  */
3011 	 && GET_MODE_ALIGNMENT (mode) <= align
3012 	 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
3013     {
3014       *best_mode = mode;
3015       found = true;
3016       if (iter.prefer_smaller_modes ())
3017 	break;
3018     }
3019 
3020   return found;
3021 }
3022 
3023 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
3024    SIGN).  The returned constants are made to be usable in TARGET_MODE.  */
3025 
3026 void
get_mode_bounds(scalar_int_mode mode,int sign,scalar_int_mode target_mode,rtx * mmin,rtx * mmax)3027 get_mode_bounds (scalar_int_mode mode, int sign,
3028 		 scalar_int_mode target_mode,
3029 		 rtx *mmin, rtx *mmax)
3030 {
3031   unsigned size = GET_MODE_PRECISION (mode);
3032   unsigned HOST_WIDE_INT min_val, max_val;
3033 
3034   gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
3035 
3036   /* Special case BImode, which has values 0 and STORE_FLAG_VALUE.  */
3037   if (mode == BImode)
3038     {
3039       if (STORE_FLAG_VALUE < 0)
3040 	{
3041 	  min_val = STORE_FLAG_VALUE;
3042 	  max_val = 0;
3043 	}
3044       else
3045 	{
3046 	  min_val = 0;
3047 	  max_val = STORE_FLAG_VALUE;
3048 	}
3049     }
3050   else if (sign)
3051     {
3052       min_val = -(HOST_WIDE_INT_1U << (size - 1));
3053       max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
3054     }
3055   else
3056     {
3057       min_val = 0;
3058       max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
3059     }
3060 
3061   *mmin = gen_int_mode (min_val, target_mode);
3062   *mmax = gen_int_mode (max_val, target_mode);
3063 }
3064 
3065 #include "gt-stor-layout.h"
3066