1 /***************************************************************************
2  *   Copyright (C) 2008 by Spencer Oliver                                  *
3  *   spen@spen-soft.co.uk                                                  *
4  *                                                                         *
5  *   Copyright (C) 2008 by David T.L. Wong                                 *
6  *                                                                         *
7  *   Copyright (C) 2007,2008 Øyvind Harboe                                 *
8  *   oyvind.harboe@zylin.com                                               *
9  *                                                                         *
10  *   Copyright (C) 2011 by Drasko DRASKOVIC                                *
11  *   drasko.draskovic@gmail.com                                            *
12  *                                                                         *
13  *   This program is free software; you can redistribute it and/or modify  *
14  *   it under the terms of the GNU General Public License as published by  *
15  *   the Free Software Foundation; either version 2 of the License, or     *
16  *   (at your option) any later version.                                   *
17  *                                                                         *
18  *   This program is distributed in the hope that it will be useful,       *
19  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
20  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
21  *   GNU General Public License for more details.                          *
22  *                                                                         *
23  *   You should have received a copy of the GNU General Public License     *
24  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
25  ***************************************************************************/
26 
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30 
31 #include "mips32.h"
32 #include "breakpoints.h"
33 #include "algorithm.h"
34 #include "register.h"
35 
36 static const char *mips_isa_strings[] = {
37 	"MIPS32", "MIPS16", "", "MICRO MIPS32",
38 };
39 
40 #define MIPS32_GDB_DUMMY_FP_REG 1
41 
42 /*
43  * GDB registers
44  * based on gdb-7.6.2/gdb/features/mips-{fpu,cp0,cpu}.xml
45  */
46 static const struct {
47 	unsigned id;
48 	const char *name;
49 	enum reg_type type;
50 	const char *group;
51 	const char *feature;
52 	int flag;
53 } mips32_regs[] = {
54 	{  0,  "r0", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
55 	{  1,  "r1", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
56 	{  2,  "r2", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
57 	{  3,  "r3", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
58 	{  4,  "r4", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
59 	{  5,  "r5", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
60 	{  6,  "r6", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
61 	{  7,  "r7", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
62 	{  8,  "r8", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
63 	{  9,  "r9", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
64 	{ 10, "r10", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
65 	{ 11, "r11", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
66 	{ 12, "r12", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
67 	{ 13, "r13", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
68 	{ 14, "r14", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
69 	{ 15, "r15", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
70 	{ 16, "r16", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
71 	{ 17, "r17", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
72 	{ 18, "r18", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
73 	{ 19, "r19", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
74 	{ 20, "r20", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
75 	{ 21, "r21", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
76 	{ 22, "r22", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
77 	{ 23, "r23", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
78 	{ 24, "r24", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
79 	{ 25, "r25", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
80 	{ 26, "r26", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
81 	{ 27, "r27", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
82 	{ 28, "r28", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
83 	{ 29, "r29", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
84 	{ 30, "r30", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
85 	{ 31, "r31", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
86 	{ 32, "status", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
87 	{ 33, "lo", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
88 	{ 34, "hi", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
89 	{ 35, "badvaddr", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
90 	{ 36, "cause", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
91 	{ 37, "pc", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
92 
93 	{ 38,  "f0", REG_TYPE_IEEE_SINGLE, NULL,
94 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
95 	{ 39,  "f1", REG_TYPE_IEEE_SINGLE, NULL,
96 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
97 	{ 40,  "f2", REG_TYPE_IEEE_SINGLE, NULL,
98 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
99 	{ 41,  "f3", REG_TYPE_IEEE_SINGLE, NULL,
100 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
101 	{ 42,  "f4", REG_TYPE_IEEE_SINGLE, NULL,
102 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
103 	{ 43,  "f5", REG_TYPE_IEEE_SINGLE, NULL,
104 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
105 	{ 44,  "f6", REG_TYPE_IEEE_SINGLE, NULL,
106 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
107 	{ 45,  "f7", REG_TYPE_IEEE_SINGLE, NULL,
108 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
109 	{ 46,  "f8", REG_TYPE_IEEE_SINGLE, NULL,
110 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
111 	{ 47,  "f9", REG_TYPE_IEEE_SINGLE, NULL,
112 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
113 	{ 48, "f10", REG_TYPE_IEEE_SINGLE, NULL,
114 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
115 	{ 49, "f11", REG_TYPE_IEEE_SINGLE, NULL,
116 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
117 	{ 50, "f12", REG_TYPE_IEEE_SINGLE, NULL,
118 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
119 	{ 51, "f13", REG_TYPE_IEEE_SINGLE, NULL,
120 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
121 	{ 52, "f14", REG_TYPE_IEEE_SINGLE, NULL,
122 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
123 	{ 53, "f15", REG_TYPE_IEEE_SINGLE, NULL,
124 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
125 	{ 54, "f16", REG_TYPE_IEEE_SINGLE, NULL,
126 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
127 	{ 55, "f17", REG_TYPE_IEEE_SINGLE, NULL,
128 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
129 	{ 56, "f18", REG_TYPE_IEEE_SINGLE, NULL,
130 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
131 	{ 57, "f19", REG_TYPE_IEEE_SINGLE, NULL,
132 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
133 	{ 58, "f20", REG_TYPE_IEEE_SINGLE, NULL,
134 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
135 	{ 59, "f21", REG_TYPE_IEEE_SINGLE, NULL,
136 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
137 	{ 60, "f22", REG_TYPE_IEEE_SINGLE, NULL,
138 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
139 	{ 61, "f23", REG_TYPE_IEEE_SINGLE, NULL,
140 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
141 	{ 62, "f24", REG_TYPE_IEEE_SINGLE, NULL,
142 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
143 	{ 63, "f25", REG_TYPE_IEEE_SINGLE, NULL,
144 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
145 	{ 64, "f26", REG_TYPE_IEEE_SINGLE, NULL,
146 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
147 	{ 65, "f27", REG_TYPE_IEEE_SINGLE, NULL,
148 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
149 	{ 66, "f28", REG_TYPE_IEEE_SINGLE, NULL,
150 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
151 	{ 67, "f29", REG_TYPE_IEEE_SINGLE, NULL,
152 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
153 	{ 68, "f30", REG_TYPE_IEEE_SINGLE, NULL,
154 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
155 	{ 69, "f31", REG_TYPE_IEEE_SINGLE, NULL,
156 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
157 	{ 70, "fcsr", REG_TYPE_INT, "float",
158 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
159 	{ 71, "fir", REG_TYPE_INT, "float",
160 		"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
161 };
162 
163 
164 #define MIPS32_NUM_REGS ARRAY_SIZE(mips32_regs)
165 
166 static uint8_t mips32_gdb_dummy_fp_value[] = {0, 0, 0, 0};
167 
mips32_get_core_reg(struct reg * reg)168 static int mips32_get_core_reg(struct reg *reg)
169 {
170 	int retval;
171 	struct mips32_core_reg *mips32_reg = reg->arch_info;
172 	struct target *target = mips32_reg->target;
173 	struct mips32_common *mips32_target = target_to_mips32(target);
174 
175 	if (target->state != TARGET_HALTED)
176 		return ERROR_TARGET_NOT_HALTED;
177 
178 	retval = mips32_target->read_core_reg(target, mips32_reg->num);
179 
180 	return retval;
181 }
182 
mips32_set_core_reg(struct reg * reg,uint8_t * buf)183 static int mips32_set_core_reg(struct reg *reg, uint8_t *buf)
184 {
185 	struct mips32_core_reg *mips32_reg = reg->arch_info;
186 	struct target *target = mips32_reg->target;
187 	uint32_t value = buf_get_u32(buf, 0, 32);
188 
189 	if (target->state != TARGET_HALTED)
190 		return ERROR_TARGET_NOT_HALTED;
191 
192 	buf_set_u32(reg->value, 0, 32, value);
193 	reg->dirty = true;
194 	reg->valid = true;
195 
196 	return ERROR_OK;
197 }
198 
mips32_read_core_reg(struct target * target,unsigned int num)199 static int mips32_read_core_reg(struct target *target, unsigned int num)
200 {
201 	uint32_t reg_value;
202 
203 	/* get pointers to arch-specific information */
204 	struct mips32_common *mips32 = target_to_mips32(target);
205 
206 	if (num >= MIPS32_NUM_REGS)
207 		return ERROR_COMMAND_SYNTAX_ERROR;
208 
209 	reg_value = mips32->core_regs[num];
210 	buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
211 	mips32->core_cache->reg_list[num].valid = true;
212 	mips32->core_cache->reg_list[num].dirty = false;
213 
214 	return ERROR_OK;
215 }
216 
mips32_write_core_reg(struct target * target,unsigned int num)217 static int mips32_write_core_reg(struct target *target, unsigned int num)
218 {
219 	uint32_t reg_value;
220 
221 	/* get pointers to arch-specific information */
222 	struct mips32_common *mips32 = target_to_mips32(target);
223 
224 	if (num >= MIPS32_NUM_REGS)
225 		return ERROR_COMMAND_SYNTAX_ERROR;
226 
227 	reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
228 	mips32->core_regs[num] = reg_value;
229 	LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num, reg_value);
230 	mips32->core_cache->reg_list[num].valid = true;
231 	mips32->core_cache->reg_list[num].dirty = false;
232 
233 	return ERROR_OK;
234 }
235 
mips32_get_gdb_reg_list(struct target * target,struct reg ** reg_list[],int * reg_list_size,enum target_register_class reg_class)236 int mips32_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
237 		int *reg_list_size, enum target_register_class reg_class)
238 {
239 	/* get pointers to arch-specific information */
240 	struct mips32_common *mips32 = target_to_mips32(target);
241 	unsigned int i;
242 
243 	/* include floating point registers */
244 	*reg_list_size = MIPS32_NUM_REGS;
245 	*reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
246 
247 	for (i = 0; i < MIPS32_NUM_REGS; i++)
248 		(*reg_list)[i] = &mips32->core_cache->reg_list[i];
249 
250 	return ERROR_OK;
251 }
252 
mips32_save_context(struct target * target)253 int mips32_save_context(struct target *target)
254 {
255 	unsigned int i;
256 
257 	/* get pointers to arch-specific information */
258 	struct mips32_common *mips32 = target_to_mips32(target);
259 	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
260 
261 	/* read core registers */
262 	mips32_pracc_read_regs(ejtag_info, mips32->core_regs);
263 
264 	for (i = 0; i < MIPS32_NUM_REGS; i++) {
265 		if (!mips32->core_cache->reg_list[i].valid)
266 			mips32->read_core_reg(target, i);
267 	}
268 
269 	return ERROR_OK;
270 }
271 
mips32_restore_context(struct target * target)272 int mips32_restore_context(struct target *target)
273 {
274 	unsigned int i;
275 
276 	/* get pointers to arch-specific information */
277 	struct mips32_common *mips32 = target_to_mips32(target);
278 	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
279 
280 	for (i = 0; i < MIPS32_NUM_REGS; i++) {
281 		if (mips32->core_cache->reg_list[i].dirty)
282 			mips32->write_core_reg(target, i);
283 	}
284 
285 	/* write core regs */
286 	mips32_pracc_write_regs(ejtag_info, mips32->core_regs);
287 
288 	return ERROR_OK;
289 }
290 
mips32_arch_state(struct target * target)291 int mips32_arch_state(struct target *target)
292 {
293 	struct mips32_common *mips32 = target_to_mips32(target);
294 
295 	LOG_USER("target halted in %s mode due to %s, pc: 0x%8.8" PRIx32 "",
296 		mips_isa_strings[mips32->isa_mode],
297 		debug_reason_name(target),
298 		buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32));
299 
300 	return ERROR_OK;
301 }
302 
303 static const struct reg_arch_type mips32_reg_type = {
304 	.get = mips32_get_core_reg,
305 	.set = mips32_set_core_reg,
306 };
307 
mips32_build_reg_cache(struct target * target)308 struct reg_cache *mips32_build_reg_cache(struct target *target)
309 {
310 	/* get pointers to arch-specific information */
311 	struct mips32_common *mips32 = target_to_mips32(target);
312 
313 	int num_regs = MIPS32_NUM_REGS;
314 	struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
315 	struct reg_cache *cache = malloc(sizeof(struct reg_cache));
316 	struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
317 	struct mips32_core_reg *arch_info = malloc(sizeof(struct mips32_core_reg) * num_regs);
318 	struct reg_feature *feature;
319 	int i;
320 
321 	/* Build the process context cache */
322 	cache->name = "mips32 registers";
323 	cache->next = NULL;
324 	cache->reg_list = reg_list;
325 	cache->num_regs = num_regs;
326 	(*cache_p) = cache;
327 	mips32->core_cache = cache;
328 
329 	for (i = 0; i < num_regs; i++) {
330 		arch_info[i].num = mips32_regs[i].id;
331 		arch_info[i].target = target;
332 		arch_info[i].mips32_common = mips32;
333 
334 		reg_list[i].name = mips32_regs[i].name;
335 		reg_list[i].size = 32;
336 
337 		if (mips32_regs[i].flag == MIPS32_GDB_DUMMY_FP_REG) {
338 			reg_list[i].value = mips32_gdb_dummy_fp_value;
339 			reg_list[i].valid = true;
340 			reg_list[i].arch_info = NULL;
341 			register_init_dummy(&reg_list[i]);
342 		} else {
343 			reg_list[i].value = calloc(1, 4);
344 			reg_list[i].valid = false;
345 			reg_list[i].type = &mips32_reg_type;
346 			reg_list[i].arch_info = &arch_info[i];
347 
348 			reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
349 			if (reg_list[i].reg_data_type)
350 				reg_list[i].reg_data_type->type = mips32_regs[i].type;
351 			else
352 				LOG_ERROR("unable to allocate reg type list");
353 		}
354 
355 		reg_list[i].dirty = false;
356 
357 		reg_list[i].group = mips32_regs[i].group;
358 		reg_list[i].number = i;
359 		reg_list[i].exist = true;
360 		reg_list[i].caller_save = true;	/* gdb defaults to true */
361 
362 		feature = calloc(1, sizeof(struct reg_feature));
363 		if (feature) {
364 			feature->name = mips32_regs[i].feature;
365 			reg_list[i].feature = feature;
366 		} else
367 			LOG_ERROR("unable to allocate feature list");
368 	}
369 
370 	return cache;
371 }
372 
mips32_init_arch_info(struct target * target,struct mips32_common * mips32,struct jtag_tap * tap)373 int mips32_init_arch_info(struct target *target, struct mips32_common *mips32, struct jtag_tap *tap)
374 {
375 	target->arch_info = mips32;
376 	mips32->common_magic = MIPS32_COMMON_MAGIC;
377 	mips32->fast_data_area = NULL;
378 	mips32->isa_imp = MIPS32_ONLY;	/* default */
379 
380 	/* has breakpoint/watchpoint unit been scanned */
381 	mips32->bp_scanned = 0;
382 	mips32->data_break_list = NULL;
383 
384 	mips32->ejtag_info.tap = tap;
385 	mips32->read_core_reg = mips32_read_core_reg;
386 	mips32->write_core_reg = mips32_write_core_reg;
387 	/* if unknown endianness defaults to little endian, 1 */
388 	mips32->ejtag_info.endianness = target->endianness == TARGET_BIG_ENDIAN ? 0 : 1;
389 	mips32->ejtag_info.scan_delay = MIPS32_SCAN_DELAY_LEGACY_MODE;
390 	mips32->ejtag_info.mode = 0;			/* Initial default value */
391 	mips32->ejtag_info.isa = 0;	/* isa on debug mips32, updated by poll function */
392 	mips32->ejtag_info.config_regs = 0;	/* no config register read */
393 	return ERROR_OK;
394 }
395 
396 /* run to exit point. return error if exit point was not reached. */
mips32_run_and_wait(struct target * target,target_addr_t entry_point,int timeout_ms,target_addr_t exit_point,struct mips32_common * mips32)397 static int mips32_run_and_wait(struct target *target, target_addr_t entry_point,
398 		int timeout_ms, target_addr_t exit_point, struct mips32_common *mips32)
399 {
400 	uint32_t pc;
401 	int retval;
402 	/* This code relies on the target specific  resume() and  poll()->debug_entry()
403 	 * sequence to write register values to the processor and the read them back */
404 	retval = target_resume(target, 0, entry_point, 0, 1);
405 	if (retval != ERROR_OK)
406 		return retval;
407 
408 	retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
409 	/* If the target fails to halt due to the breakpoint, force a halt */
410 	if (retval != ERROR_OK || target->state != TARGET_HALTED) {
411 		retval = target_halt(target);
412 		if (retval != ERROR_OK)
413 			return retval;
414 		retval = target_wait_state(target, TARGET_HALTED, 500);
415 		if (retval != ERROR_OK)
416 			return retval;
417 		return ERROR_TARGET_TIMEOUT;
418 	}
419 
420 	pc = buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32);
421 	if (exit_point && (pc != exit_point)) {
422 		LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 " ", pc);
423 		return ERROR_TARGET_TIMEOUT;
424 	}
425 
426 	return ERROR_OK;
427 }
428 
mips32_run_algorithm(struct target * target,int num_mem_params,struct mem_param * mem_params,int num_reg_params,struct reg_param * reg_params,target_addr_t entry_point,target_addr_t exit_point,int timeout_ms,void * arch_info)429 int mips32_run_algorithm(struct target *target, int num_mem_params,
430 		struct mem_param *mem_params, int num_reg_params,
431 		struct reg_param *reg_params, target_addr_t entry_point,
432 		target_addr_t exit_point, int timeout_ms, void *arch_info)
433 {
434 	struct mips32_common *mips32 = target_to_mips32(target);
435 	struct mips32_algorithm *mips32_algorithm_info = arch_info;
436 	enum mips32_isa_mode isa_mode = mips32->isa_mode;
437 
438 	uint32_t context[MIPS32_NUM_REGS];
439 	int retval = ERROR_OK;
440 
441 	LOG_DEBUG("Running algorithm");
442 
443 	/* NOTE: mips32_run_algorithm requires that each algorithm uses a software breakpoint
444 	 * at the exit point */
445 
446 	if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
447 		LOG_ERROR("current target isn't a MIPS32 target");
448 		return ERROR_TARGET_INVALID;
449 	}
450 
451 	if (target->state != TARGET_HALTED) {
452 		LOG_WARNING("target not halted");
453 		return ERROR_TARGET_NOT_HALTED;
454 	}
455 
456 	/* refresh core register cache */
457 	for (unsigned int i = 0; i < MIPS32_NUM_REGS; i++) {
458 		if (!mips32->core_cache->reg_list[i].valid)
459 			mips32->read_core_reg(target, i);
460 		context[i] = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
461 	}
462 
463 	for (int i = 0; i < num_mem_params; i++) {
464 		if (mem_params[i].direction == PARAM_IN)
465 			continue;
466 		retval = target_write_buffer(target, mem_params[i].address,
467 				mem_params[i].size, mem_params[i].value);
468 		if (retval != ERROR_OK)
469 			return retval;
470 	}
471 
472 	for (int i = 0; i < num_reg_params; i++) {
473 		if (reg_params[i].direction == PARAM_IN)
474 			continue;
475 
476 		struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
477 
478 		if (!reg) {
479 			LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
480 			return ERROR_COMMAND_SYNTAX_ERROR;
481 		}
482 
483 		if (reg->size != reg_params[i].size) {
484 			LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
485 					reg_params[i].reg_name);
486 			return ERROR_COMMAND_SYNTAX_ERROR;
487 		}
488 
489 		mips32_set_core_reg(reg, reg_params[i].value);
490 	}
491 
492 	mips32->isa_mode = mips32_algorithm_info->isa_mode;
493 
494 	retval = mips32_run_and_wait(target, entry_point, timeout_ms, exit_point, mips32);
495 
496 	if (retval != ERROR_OK)
497 		return retval;
498 
499 	for (int i = 0; i < num_mem_params; i++) {
500 		if (mem_params[i].direction != PARAM_OUT) {
501 			retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size,
502 					mem_params[i].value);
503 			if (retval != ERROR_OK)
504 				return retval;
505 		}
506 	}
507 
508 	for (int i = 0; i < num_reg_params; i++) {
509 		if (reg_params[i].direction != PARAM_OUT) {
510 			struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
511 			if (!reg) {
512 				LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
513 				return ERROR_COMMAND_SYNTAX_ERROR;
514 			}
515 
516 			if (reg->size != reg_params[i].size) {
517 				LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
518 						reg_params[i].reg_name);
519 				return ERROR_COMMAND_SYNTAX_ERROR;
520 			}
521 
522 			buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
523 		}
524 	}
525 
526 	/* restore everything we saved before */
527 	for (unsigned int i = 0; i < MIPS32_NUM_REGS; i++) {
528 		uint32_t regvalue;
529 		regvalue = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
530 		if (regvalue != context[i]) {
531 			LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
532 				mips32->core_cache->reg_list[i].name, context[i]);
533 			buf_set_u32(mips32->core_cache->reg_list[i].value,
534 					0, 32, context[i]);
535 			mips32->core_cache->reg_list[i].valid = true;
536 			mips32->core_cache->reg_list[i].dirty = true;
537 		}
538 	}
539 
540 	mips32->isa_mode = isa_mode;
541 
542 	return ERROR_OK;
543 }
544 
mips32_examine(struct target * target)545 int mips32_examine(struct target *target)
546 {
547 	struct mips32_common *mips32 = target_to_mips32(target);
548 
549 	if (!target_was_examined(target)) {
550 		target_set_examined(target);
551 
552 		/* we will configure later */
553 		mips32->bp_scanned = 0;
554 		mips32->num_inst_bpoints = 0;
555 		mips32->num_data_bpoints = 0;
556 		mips32->num_inst_bpoints_avail = 0;
557 		mips32->num_data_bpoints_avail = 0;
558 	}
559 
560 	return ERROR_OK;
561 }
562 
mips32_configure_ibs(struct target * target)563 static int mips32_configure_ibs(struct target *target)
564 {
565 	struct mips32_common *mips32 = target_to_mips32(target);
566 	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
567 	int retval, i;
568 	uint32_t bpinfo;
569 
570 	/* get number of inst breakpoints */
571 	retval = target_read_u32(target, ejtag_info->ejtag_ibs_addr, &bpinfo);
572 	if (retval != ERROR_OK)
573 		return retval;
574 
575 	mips32->num_inst_bpoints = (bpinfo >> 24) & 0x0F;
576 	mips32->num_inst_bpoints_avail = mips32->num_inst_bpoints;
577 	mips32->inst_break_list = calloc(mips32->num_inst_bpoints,
578 		sizeof(struct mips32_comparator));
579 
580 	for (i = 0; i < mips32->num_inst_bpoints; i++)
581 		mips32->inst_break_list[i].reg_address =
582 			ejtag_info->ejtag_iba0_addr +
583 			(ejtag_info->ejtag_iba_step_size * i);
584 
585 	/* clear IBIS reg */
586 	retval = target_write_u32(target, ejtag_info->ejtag_ibs_addr, 0);
587 	return retval;
588 }
589 
mips32_configure_dbs(struct target * target)590 static int mips32_configure_dbs(struct target *target)
591 {
592 	struct mips32_common *mips32 = target_to_mips32(target);
593 	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
594 	int retval, i;
595 	uint32_t bpinfo;
596 
597 	/* get number of data breakpoints */
598 	retval = target_read_u32(target, ejtag_info->ejtag_dbs_addr, &bpinfo);
599 	if (retval != ERROR_OK)
600 		return retval;
601 
602 	mips32->num_data_bpoints = (bpinfo >> 24) & 0x0F;
603 	mips32->num_data_bpoints_avail = mips32->num_data_bpoints;
604 	mips32->data_break_list = calloc(mips32->num_data_bpoints,
605 		sizeof(struct mips32_comparator));
606 
607 	for (i = 0; i < mips32->num_data_bpoints; i++)
608 		mips32->data_break_list[i].reg_address =
609 			ejtag_info->ejtag_dba0_addr +
610 			(ejtag_info->ejtag_dba_step_size * i);
611 
612 	/* clear DBIS reg */
613 	retval = target_write_u32(target, ejtag_info->ejtag_dbs_addr, 0);
614 	return retval;
615 }
616 
mips32_configure_break_unit(struct target * target)617 int mips32_configure_break_unit(struct target *target)
618 {
619 	/* get pointers to arch-specific information */
620 	struct mips32_common *mips32 = target_to_mips32(target);
621 	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
622 	int retval;
623 	uint32_t dcr;
624 
625 	if (mips32->bp_scanned)
626 		return ERROR_OK;
627 
628 	/* get info about breakpoint support */
629 	retval = target_read_u32(target, EJTAG_DCR, &dcr);
630 	if (retval != ERROR_OK)
631 		return retval;
632 
633 	/* EJTAG 2.0 defines IB and DB bits in IMP instead of DCR. */
634 	if (ejtag_info->ejtag_version == EJTAG_VERSION_20) {
635 		ejtag_info->debug_caps = dcr & EJTAG_DCR_ENM;
636 		if (!(ejtag_info->impcode & EJTAG_V20_IMP_NOIB))
637 			ejtag_info->debug_caps |= EJTAG_DCR_IB;
638 		if (!(ejtag_info->impcode & EJTAG_V20_IMP_NODB))
639 			ejtag_info->debug_caps |= EJTAG_DCR_DB;
640 	} else
641 		/* keep  debug caps for later use */
642 		ejtag_info->debug_caps = dcr & (EJTAG_DCR_ENM
643 				| EJTAG_DCR_IB | EJTAG_DCR_DB);
644 
645 
646 	if (ejtag_info->debug_caps & EJTAG_DCR_IB) {
647 		retval = mips32_configure_ibs(target);
648 		if (retval != ERROR_OK)
649 			return retval;
650 	}
651 
652 	if (ejtag_info->debug_caps & EJTAG_DCR_DB) {
653 		retval = mips32_configure_dbs(target);
654 		if (retval != ERROR_OK)
655 			return retval;
656 	}
657 
658 	/* check if target endianness settings matches debug control register */
659 	if (((ejtag_info->debug_caps & EJTAG_DCR_ENM)
660 			&& (target->endianness == TARGET_LITTLE_ENDIAN)) ||
661 			(!(ejtag_info->debug_caps & EJTAG_DCR_ENM)
662 			 && (target->endianness == TARGET_BIG_ENDIAN)))
663 		LOG_WARNING("DCR endianness settings does not match target settings");
664 
665 	LOG_DEBUG("DCR 0x%" PRIx32 " numinst %i numdata %i", dcr, mips32->num_inst_bpoints,
666 			mips32->num_data_bpoints);
667 
668 	mips32->bp_scanned = 1;
669 
670 	return ERROR_OK;
671 }
672 
mips32_enable_interrupts(struct target * target,int enable)673 int mips32_enable_interrupts(struct target *target, int enable)
674 {
675 	int retval;
676 	int update = 0;
677 	uint32_t dcr;
678 
679 	/* read debug control register */
680 	retval = target_read_u32(target, EJTAG_DCR, &dcr);
681 	if (retval != ERROR_OK)
682 		return retval;
683 
684 	if (enable) {
685 		if (!(dcr & EJTAG_DCR_INTE)) {
686 			/* enable interrupts */
687 			dcr |= EJTAG_DCR_INTE;
688 			update = 1;
689 		}
690 	} else {
691 		if (dcr & EJTAG_DCR_INTE) {
692 			/* disable interrupts */
693 			dcr &= ~EJTAG_DCR_INTE;
694 			update = 1;
695 		}
696 	}
697 
698 	if (update) {
699 		retval = target_write_u32(target, EJTAG_DCR, dcr);
700 		if (retval != ERROR_OK)
701 			return retval;
702 	}
703 
704 	return ERROR_OK;
705 }
706 
707 /* read config to config3 cp0 registers and log isa implementation */
mips32_read_config_regs(struct target * target)708 int mips32_read_config_regs(struct target *target)
709 {
710 	struct mips32_common *mips32 = target_to_mips32(target);
711 	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
712 
713 	if (ejtag_info->config_regs == 0)
714 		for (int i = 0; i != 4; i++) {
715 			int retval = mips32_cp0_read(ejtag_info, &ejtag_info->config[i], 16, i);
716 			if (retval != ERROR_OK) {
717 				LOG_ERROR("isa info not available, failed to read cp0 config register: %" PRId32, i);
718 				ejtag_info->config_regs = 0;
719 				return retval;
720 			}
721 			ejtag_info->config_regs = i + 1;
722 			if ((ejtag_info->config[i] & (1 << 31)) == 0)
723 				break;	/* no more config registers implemented */
724 		}
725 	else
726 		return ERROR_OK;	/* already successfully read */
727 
728 	LOG_DEBUG("read  %"PRIu32" config registers", ejtag_info->config_regs);
729 
730 	if (ejtag_info->impcode & EJTAG_IMP_MIPS16) {
731 		mips32->isa_imp = MIPS32_MIPS16;
732 		LOG_USER("MIPS32 with MIPS16 support implemented");
733 
734 	} else if (ejtag_info->config_regs >= 4) {	/* config3 implemented */
735 		unsigned isa_imp = (ejtag_info->config[3] & MIPS32_CONFIG3_ISA_MASK) >> MIPS32_CONFIG3_ISA_SHIFT;
736 		if (isa_imp == 1) {
737 			mips32->isa_imp = MMIPS32_ONLY;
738 			LOG_USER("MICRO MIPS32 only implemented");
739 
740 		} else if (isa_imp != 0) {
741 			mips32->isa_imp = MIPS32_MMIPS32;
742 			LOG_USER("MIPS32 and MICRO MIPS32 implemented");
743 		}
744 	}
745 
746 	if (mips32->isa_imp == MIPS32_ONLY)	/* initial default value */
747 		LOG_USER("MIPS32 only implemented");
748 
749 	return ERROR_OK;
750 }
mips32_checksum_memory(struct target * target,target_addr_t address,uint32_t count,uint32_t * checksum)751 int mips32_checksum_memory(struct target *target, target_addr_t address,
752 		uint32_t count, uint32_t *checksum)
753 {
754 	struct working_area *crc_algorithm;
755 	struct reg_param reg_params[2];
756 	struct mips32_algorithm mips32_info;
757 
758 	struct mips32_common *mips32 = target_to_mips32(target);
759 	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
760 
761 	/* see contrib/loaders/checksum/mips32.s for src */
762 	uint32_t isa = ejtag_info->isa ? 1 : 0;
763 
764 	uint32_t mips_crc_code[] = {
765 		MIPS32_ADDIU(isa, 12, 4, 0),			/* addiu	$t4, $a0, 0 */
766 		MIPS32_ADDIU(isa, 10, 5, 0),			/* addiu	$t2, $a1, 0 */
767 		MIPS32_ADDIU(isa, 4, 0, 0xFFFF),		/* addiu	$a0, $zero, 0xffff */
768 		MIPS32_BEQ(isa, 0, 0, 0x10 << isa),		/* beq		$zero, $zero, ncomp */
769 		MIPS32_ADDIU(isa, 11, 0, 0),			/* addiu	$t3, $zero, 0 */
770 						/* nbyte: */
771 		MIPS32_LB(isa, 5, 0, 12),			/* lb		$a1, ($t4) */
772 		MIPS32_ADDI(isa, 12, 12, 1),			/* addi		$t4, $t4, 1 */
773 		MIPS32_SLL(isa, 5, 5, 24),			/* sll		$a1, $a1, 24 */
774 		MIPS32_LUI(isa, 2, 0x04c1),			/* lui		$v0, 0x04c1 */
775 		MIPS32_XOR(isa, 4, 4, 5),			/* xor		$a0, $a0, $a1 */
776 		MIPS32_ORI(isa, 7, 2, 0x1db7),			/* ori		$a3, $v0, 0x1db7 */
777 		MIPS32_ADDU(isa, 6, 0, 0),			/* addu		$a2, $zero, $zero */
778 						/* loop */
779 		MIPS32_SLL(isa, 8, 4, 1),			/* sll		$t0, $a0, 1 */
780 		MIPS32_ADDIU(isa, 6, 6, 1),			/* addiu	$a2, $a2, 1 */
781 		MIPS32_SLTI(isa, 4, 4, 0),			/* slti		$a0, $a0, 0 */
782 		MIPS32_XOR(isa, 9, 8, 7),			/* xor		$t1, $t0, $a3 */
783 		MIPS32_MOVN(isa, 8, 9, 4),			/* movn		$t0, $t1, $a0 */
784 		MIPS32_SLTI(isa, 3, 6, 8),			/* slti		$v1, $a2, 8 */
785 		MIPS32_BNE(isa, 3, 0, NEG16(7 << isa)),		/* bne		$v1, $zero, loop */
786 		MIPS32_ADDU(isa, 4, 8, 0),			/* addu		$a0, $t0, $zero */
787 						/* ncomp */
788 		MIPS32_BNE(isa, 10, 11, NEG16(16 << isa)),	/* bne		$t2, $t3, nbyte */
789 		MIPS32_ADDIU(isa, 11, 11, 1),			/* addiu	$t3, $t3, 1 */
790 		MIPS32_SDBBP(isa),
791 	};
792 
793 	/* make sure we have a working area */
794 	if (target_alloc_working_area(target, sizeof(mips_crc_code), &crc_algorithm) != ERROR_OK)
795 		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
796 
797 	pracc_swap16_array(ejtag_info, mips_crc_code, ARRAY_SIZE(mips_crc_code));
798 
799 	/* convert mips crc code into a buffer in target endianness */
800 	uint8_t mips_crc_code_8[sizeof(mips_crc_code)];
801 	target_buffer_set_u32_array(target, mips_crc_code_8,
802 					ARRAY_SIZE(mips_crc_code), mips_crc_code);
803 
804 	int retval = target_write_buffer(target, crc_algorithm->address, sizeof(mips_crc_code), mips_crc_code_8);
805 	if (retval != ERROR_OK)
806 		return retval;
807 
808 	mips32_info.common_magic = MIPS32_COMMON_MAGIC;
809 	mips32_info.isa_mode = isa ? MIPS32_ISA_MMIPS32 : MIPS32_ISA_MIPS32;	/* run isa as in debug mode */
810 
811 	init_reg_param(&reg_params[0], "r4", 32, PARAM_IN_OUT);
812 	buf_set_u32(reg_params[0].value, 0, 32, address);
813 
814 	init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
815 	buf_set_u32(reg_params[1].value, 0, 32, count);
816 
817 	int timeout = 20000 * (1 + (count / (1024 * 1024)));
818 
819 	retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
820 				      crc_algorithm->address + (sizeof(mips_crc_code) - 4), timeout, &mips32_info);
821 
822 	if (retval == ERROR_OK)
823 		*checksum = buf_get_u32(reg_params[0].value, 0, 32);
824 
825 	destroy_reg_param(&reg_params[0]);
826 	destroy_reg_param(&reg_params[1]);
827 
828 	target_free_working_area(target, crc_algorithm);
829 
830 	return retval;
831 }
832 
833 /** Checks whether a memory region is erased. */
mips32_blank_check_memory(struct target * target,struct target_memory_check_block * blocks,int num_blocks,uint8_t erased_value)834 int mips32_blank_check_memory(struct target *target,
835 		struct target_memory_check_block *blocks, int num_blocks,
836 		uint8_t erased_value)
837 {
838 	struct working_area *erase_check_algorithm;
839 	struct reg_param reg_params[3];
840 	struct mips32_algorithm mips32_info;
841 
842 	struct mips32_common *mips32 = target_to_mips32(target);
843 	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
844 
845 	if (erased_value != 0xff) {
846 		LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for MIPS32",
847 			erased_value);
848 		return ERROR_FAIL;
849 	}
850 	uint32_t isa = ejtag_info->isa ? 1 : 0;
851 	uint32_t erase_check_code[] = {
852 						/* nbyte: */
853 		MIPS32_LB(isa, 8, 0, 4),			/* lb		$t0, ($a0) */
854 		MIPS32_AND(isa, 6, 6, 8),			/* and		$a2, $a2, $t0 */
855 		MIPS32_ADDIU(isa, 5, 5, NEG16(1)),		/* addiu	$a1, $a1, -1 */
856 		MIPS32_BNE(isa, 5, 0, NEG16(4 << isa)),		/* bne		$a1, $zero, nbyte */
857 		MIPS32_ADDIU(isa, 4, 4, 1),			/* addiu	$a0, $a0, 1 */
858 		MIPS32_SDBBP(isa)				/* sdbbp */
859 	};
860 
861 	/* make sure we have a working area */
862 	if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
863 		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
864 
865 	pracc_swap16_array(ejtag_info, erase_check_code, ARRAY_SIZE(erase_check_code));
866 
867 	/* convert erase check code into a buffer in target endianness */
868 	uint8_t erase_check_code_8[sizeof(erase_check_code)];
869 	target_buffer_set_u32_array(target, erase_check_code_8,
870 					ARRAY_SIZE(erase_check_code), erase_check_code);
871 
872 	int retval = target_write_buffer(target, erase_check_algorithm->address,
873 						sizeof(erase_check_code), erase_check_code_8);
874 	if (retval != ERROR_OK)
875 		goto cleanup;
876 
877 	mips32_info.common_magic = MIPS32_COMMON_MAGIC;
878 	mips32_info.isa_mode = isa ? MIPS32_ISA_MMIPS32 : MIPS32_ISA_MIPS32;
879 
880 	init_reg_param(&reg_params[0], "r4", 32, PARAM_OUT);
881 	buf_set_u32(reg_params[0].value, 0, 32, blocks[0].address);
882 
883 	init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
884 	buf_set_u32(reg_params[1].value, 0, 32, blocks[0].size);
885 
886 	init_reg_param(&reg_params[2], "r6", 32, PARAM_IN_OUT);
887 	buf_set_u32(reg_params[2].value, 0, 32, erased_value);
888 
889 	retval = target_run_algorithm(target, 0, NULL, 3, reg_params, erase_check_algorithm->address,
890 			erase_check_algorithm->address + (sizeof(erase_check_code) - 4), 10000, &mips32_info);
891 
892 	if (retval == ERROR_OK)
893 		blocks[0].result = buf_get_u32(reg_params[2].value, 0, 32);
894 
895 	destroy_reg_param(&reg_params[0]);
896 	destroy_reg_param(&reg_params[1]);
897 	destroy_reg_param(&reg_params[2]);
898 
899 cleanup:
900 	target_free_working_area(target, erase_check_algorithm);
901 
902 	if (retval != ERROR_OK)
903 		return retval;
904 
905 	return 1;       /* only one block has been checked */
906 }
907 
mips32_verify_pointer(struct command_invocation * cmd,struct mips32_common * mips32)908 static int mips32_verify_pointer(struct command_invocation *cmd,
909 		struct mips32_common *mips32)
910 {
911 	if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
912 		command_print(cmd, "target is not an MIPS32");
913 		return ERROR_TARGET_INVALID;
914 	}
915 	return ERROR_OK;
916 }
917 
918 /**
919  * MIPS32 targets expose command interface
920  * to manipulate CP0 registers
921  */
COMMAND_HANDLER(mips32_handle_cp0_command)922 COMMAND_HANDLER(mips32_handle_cp0_command)
923 {
924 	int retval;
925 	struct target *target = get_current_target(CMD_CTX);
926 	struct mips32_common *mips32 = target_to_mips32(target);
927 	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
928 
929 
930 	retval = mips32_verify_pointer(CMD, mips32);
931 	if (retval != ERROR_OK)
932 		return retval;
933 
934 	if (target->state != TARGET_HALTED) {
935 		command_print(CMD, "target must be stopped for \"%s\" command", CMD_NAME);
936 		return ERROR_OK;
937 	}
938 
939 	/* two or more argument, access a single register/select (write if third argument is given) */
940 	if (CMD_ARGC < 2)
941 		return ERROR_COMMAND_SYNTAX_ERROR;
942 	else {
943 		uint32_t cp0_reg, cp0_sel;
944 		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], cp0_reg);
945 		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], cp0_sel);
946 
947 		if (CMD_ARGC == 2) {
948 			uint32_t value;
949 
950 			retval = mips32_cp0_read(ejtag_info, &value, cp0_reg, cp0_sel);
951 			if (retval != ERROR_OK) {
952 				command_print(CMD,
953 						"couldn't access reg %" PRIu32,
954 						cp0_reg);
955 				return ERROR_OK;
956 			}
957 			command_print(CMD, "cp0 reg %" PRIu32 ", select %" PRIu32 ": %8.8" PRIx32,
958 					cp0_reg, cp0_sel, value);
959 
960 		} else if (CMD_ARGC == 3) {
961 			uint32_t value;
962 			COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
963 			retval = mips32_cp0_write(ejtag_info, value, cp0_reg, cp0_sel);
964 			if (retval != ERROR_OK) {
965 				command_print(CMD,
966 						"couldn't access cp0 reg %" PRIu32 ", select %" PRIu32,
967 						cp0_reg,  cp0_sel);
968 				return ERROR_OK;
969 			}
970 			command_print(CMD, "cp0 reg %" PRIu32 ", select %" PRIu32 ": %8.8" PRIx32,
971 					cp0_reg, cp0_sel, value);
972 		}
973 	}
974 
975 	return ERROR_OK;
976 }
977 
COMMAND_HANDLER(mips32_handle_scan_delay_command)978 COMMAND_HANDLER(mips32_handle_scan_delay_command)
979 {
980 	struct target *target = get_current_target(CMD_CTX);
981 	struct mips32_common *mips32 = target_to_mips32(target);
982 	struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
983 
984 	if (CMD_ARGC == 1)
985 		COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], ejtag_info->scan_delay);
986 	else if (CMD_ARGC > 1)
987 			return ERROR_COMMAND_SYNTAX_ERROR;
988 
989 	command_print(CMD, "scan delay: %d nsec", ejtag_info->scan_delay);
990 	if (ejtag_info->scan_delay >= MIPS32_SCAN_DELAY_LEGACY_MODE) {
991 		ejtag_info->mode = 0;
992 		command_print(CMD, "running in legacy mode");
993 	} else {
994 		ejtag_info->mode = 1;
995 		command_print(CMD, "running in fast queued mode");
996 	}
997 
998 	return ERROR_OK;
999 }
1000 
1001 static const struct command_registration mips32_exec_command_handlers[] = {
1002 	{
1003 		.name = "cp0",
1004 		.handler = mips32_handle_cp0_command,
1005 		.mode = COMMAND_EXEC,
1006 		.usage = "regnum select [value]",
1007 		.help = "display/modify cp0 register",
1008 	},
1009 		{
1010 		.name = "scan_delay",
1011 		.handler = mips32_handle_scan_delay_command,
1012 		.mode = COMMAND_ANY,
1013 		.help = "display/set scan delay in nano seconds",
1014 		.usage = "[value]",
1015 	},
1016 	COMMAND_REGISTRATION_DONE
1017 };
1018 
1019 const struct command_registration mips32_command_handlers[] = {
1020 	{
1021 		.name = "mips32",
1022 		.mode = COMMAND_ANY,
1023 		.help = "mips32 command group",
1024 		.usage = "",
1025 		.chain = mips32_exec_command_handlers,
1026 	},
1027 	COMMAND_REGISTRATION_DONE
1028 };
1029