1 //===- InputSection.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "InputSection.h"
10 #include "Config.h"
11 #include "InputFiles.h"
12 #include "OutputSections.h"
13 #include "Relocations.h"
14 #include "SymbolTable.h"
15 #include "Symbols.h"
16 #include "SyntheticSections.h"
17 #include "Target.h"
18 #include "lld/Common/CommonLinkerContext.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/Compression.h"
21 #include "llvm/Support/Endian.h"
22 #include "llvm/Support/xxhash.h"
23 #include <algorithm>
24 #include <mutex>
25 #include <vector>
26
27 using namespace llvm;
28 using namespace llvm::ELF;
29 using namespace llvm::object;
30 using namespace llvm::support;
31 using namespace llvm::support::endian;
32 using namespace llvm::sys;
33 using namespace lld;
34 using namespace lld::elf;
35
36 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax;
37
38 // Returns a string to construct an error message.
toString(const InputSectionBase * sec)39 std::string lld::toString(const InputSectionBase *sec) {
40 return (toString(sec->file) + ":(" + sec->name + ")").str();
41 }
42
43 template <class ELFT>
getSectionContents(ObjFile<ELFT> & file,const typename ELFT::Shdr & hdr)44 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file,
45 const typename ELFT::Shdr &hdr) {
46 if (hdr.sh_type == SHT_NOBITS)
47 return ArrayRef<uint8_t>(nullptr, hdr.sh_size);
48 return check(file.getObj().getSectionContents(hdr));
49 }
50
InputSectionBase(InputFile * file,uint64_t flags,uint32_t type,uint64_t entsize,uint32_t link,uint32_t info,uint32_t addralign,ArrayRef<uint8_t> data,StringRef name,Kind sectionKind)51 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags,
52 uint32_t type, uint64_t entsize,
53 uint32_t link, uint32_t info,
54 uint32_t addralign, ArrayRef<uint8_t> data,
55 StringRef name, Kind sectionKind)
56 : SectionBase(sectionKind, name, flags, entsize, addralign, type, info,
57 link),
58 file(file), content_(data.data()), size(data.size()) {
59 // In order to reduce memory allocation, we assume that mergeable
60 // sections are smaller than 4 GiB, which is not an unreasonable
61 // assumption as of 2017.
62 if (sectionKind == SectionBase::Merge && content().size() > UINT32_MAX)
63 error(toString(this) + ": section too large");
64
65 // The ELF spec states that a value of 0 means the section has
66 // no alignment constraints.
67 uint32_t v = std::max<uint32_t>(addralign, 1);
68 if (!isPowerOf2_64(v))
69 fatal(toString(this) + ": sh_addralign is not a power of 2");
70 this->addralign = v;
71
72 // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no
73 // longer supported.
74 if (flags & SHF_COMPRESSED)
75 invokeELFT(parseCompressedHeader);
76 }
77
78 // Drop SHF_GROUP bit unless we are producing a re-linkable object file.
79 // SHF_GROUP is a marker that a section belongs to some comdat group.
80 // That flag doesn't make sense in an executable.
getFlags(uint64_t flags)81 static uint64_t getFlags(uint64_t flags) {
82 flags &= ~(uint64_t)SHF_INFO_LINK;
83 if (!config->relocatable)
84 flags &= ~(uint64_t)SHF_GROUP;
85 return flags;
86 }
87
88 template <class ELFT>
InputSectionBase(ObjFile<ELFT> & file,const typename ELFT::Shdr & hdr,StringRef name,Kind sectionKind)89 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file,
90 const typename ELFT::Shdr &hdr,
91 StringRef name, Kind sectionKind)
92 : InputSectionBase(&file, getFlags(hdr.sh_flags), hdr.sh_type,
93 hdr.sh_entsize, hdr.sh_link, hdr.sh_info,
94 hdr.sh_addralign, getSectionContents(file, hdr), name,
95 sectionKind) {
96 // We reject object files having insanely large alignments even though
97 // they are allowed by the spec. I think 4GB is a reasonable limitation.
98 // We might want to relax this in the future.
99 if (hdr.sh_addralign > UINT32_MAX)
100 fatal(toString(&file) + ": section sh_addralign is too large");
101 }
102
getSize() const103 size_t InputSectionBase::getSize() const {
104 if (auto *s = dyn_cast<SyntheticSection>(this))
105 return s->getSize();
106 return size - bytesDropped;
107 }
108
109 template <class ELFT>
decompressAux(const InputSectionBase & sec,uint8_t * out,size_t size)110 static void decompressAux(const InputSectionBase &sec, uint8_t *out,
111 size_t size) {
112 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(sec.content_);
113 auto compressed = ArrayRef<uint8_t>(sec.content_, sec.compressedSize)
114 .slice(sizeof(typename ELFT::Chdr));
115 if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB
116 ? compression::zlib::decompress(compressed, out, size)
117 : compression::zstd::decompress(compressed, out, size))
118 fatal(toString(&sec) +
119 ": decompress failed: " + llvm::toString(std::move(e)));
120 }
121
decompress() const122 void InputSectionBase::decompress() const {
123 uint8_t *uncompressedBuf;
124 {
125 static std::mutex mu;
126 std::lock_guard<std::mutex> lock(mu);
127 uncompressedBuf = bAlloc().Allocate<uint8_t>(size);
128 }
129
130 invokeELFT(decompressAux, *this, uncompressedBuf, size);
131 content_ = uncompressedBuf;
132 compressed = false;
133 }
134
relsOrRelas() const135 template <class ELFT> RelsOrRelas<ELFT> InputSectionBase::relsOrRelas() const {
136 if (relSecIdx == 0)
137 return {};
138 RelsOrRelas<ELFT> ret;
139 typename ELFT::Shdr shdr =
140 cast<ELFFileBase>(file)->getELFShdrs<ELFT>()[relSecIdx];
141 if (shdr.sh_type == SHT_REL) {
142 ret.rels = ArrayRef(reinterpret_cast<const typename ELFT::Rel *>(
143 file->mb.getBufferStart() + shdr.sh_offset),
144 shdr.sh_size / sizeof(typename ELFT::Rel));
145 } else {
146 assert(shdr.sh_type == SHT_RELA);
147 ret.relas = ArrayRef(reinterpret_cast<const typename ELFT::Rela *>(
148 file->mb.getBufferStart() + shdr.sh_offset),
149 shdr.sh_size / sizeof(typename ELFT::Rela));
150 }
151 return ret;
152 }
153
getOffset(uint64_t offset) const154 uint64_t SectionBase::getOffset(uint64_t offset) const {
155 switch (kind()) {
156 case Output: {
157 auto *os = cast<OutputSection>(this);
158 // For output sections we treat offset -1 as the end of the section.
159 return offset == uint64_t(-1) ? os->size : offset;
160 }
161 case Regular:
162 case Synthetic:
163 return cast<InputSection>(this)->outSecOff + offset;
164 case EHFrame: {
165 // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC
166 // crtbeginT.o may reference the start of an empty .eh_frame to identify the
167 // start of the output .eh_frame. Just return offset.
168 //
169 // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be
170 // discarded due to GC/ICF. We should compute the output section offset.
171 const EhInputSection *es = cast<EhInputSection>(this);
172 if (!es->content().empty())
173 if (InputSection *isec = es->getParent())
174 return isec->outSecOff + es->getParentOffset(offset);
175 return offset;
176 }
177 case Merge:
178 const MergeInputSection *ms = cast<MergeInputSection>(this);
179 if (InputSection *isec = ms->getParent())
180 return isec->outSecOff + ms->getParentOffset(offset);
181 return ms->getParentOffset(offset);
182 }
183 llvm_unreachable("invalid section kind");
184 }
185
getVA(uint64_t offset) const186 uint64_t SectionBase::getVA(uint64_t offset) const {
187 const OutputSection *out = getOutputSection();
188 return (out ? out->addr : 0) + getOffset(offset);
189 }
190
getOutputSection()191 OutputSection *SectionBase::getOutputSection() {
192 InputSection *sec;
193 if (auto *isec = dyn_cast<InputSection>(this))
194 sec = isec;
195 else if (auto *ms = dyn_cast<MergeInputSection>(this))
196 sec = ms->getParent();
197 else if (auto *eh = dyn_cast<EhInputSection>(this))
198 sec = eh->getParent();
199 else
200 return cast<OutputSection>(this);
201 return sec ? sec->getParent() : nullptr;
202 }
203
204 // When a section is compressed, `rawData` consists with a header followed
205 // by zlib-compressed data. This function parses a header to initialize
206 // `uncompressedSize` member and remove the header from `rawData`.
parseCompressedHeader()207 template <typename ELFT> void InputSectionBase::parseCompressedHeader() {
208 flags &= ~(uint64_t)SHF_COMPRESSED;
209
210 // New-style header
211 if (content().size() < sizeof(typename ELFT::Chdr)) {
212 error(toString(this) + ": corrupted compressed section");
213 return;
214 }
215
216 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content().data());
217 if (hdr->ch_type == ELFCOMPRESS_ZLIB) {
218 if (!compression::zlib::isAvailable())
219 error(toString(this) + " is compressed with ELFCOMPRESS_ZLIB, but lld is "
220 "not built with zlib support");
221 } else if (hdr->ch_type == ELFCOMPRESS_ZSTD) {
222 if (!compression::zstd::isAvailable())
223 error(toString(this) + " is compressed with ELFCOMPRESS_ZSTD, but lld is "
224 "not built with zstd support");
225 } else {
226 error(toString(this) + ": unsupported compression type (" +
227 Twine(hdr->ch_type) + ")");
228 return;
229 }
230
231 compressed = true;
232 compressedSize = size;
233 size = hdr->ch_size;
234 addralign = std::max<uint32_t>(hdr->ch_addralign, 1);
235 }
236
getLinkOrderDep() const237 InputSection *InputSectionBase::getLinkOrderDep() const {
238 assert(flags & SHF_LINK_ORDER);
239 if (!link)
240 return nullptr;
241 return cast<InputSection>(file->getSections()[link]);
242 }
243
244 // Find a function symbol that encloses a given location.
getEnclosingFunction(uint64_t offset)245 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) {
246 for (Symbol *b : file->getSymbols())
247 if (Defined *d = dyn_cast<Defined>(b))
248 if (d->section == this && d->type == STT_FUNC && d->value <= offset &&
249 offset < d->value + d->size)
250 return d;
251 return nullptr;
252 }
253
254 // Returns an object file location string. Used to construct an error message.
getLocation(uint64_t offset)255 std::string InputSectionBase::getLocation(uint64_t offset) {
256 std::string secAndOffset =
257 (name + "+0x" + Twine::utohexstr(offset) + ")").str();
258
259 // We don't have file for synthetic sections.
260 if (file == nullptr)
261 return (config->outputFile + ":(" + secAndOffset).str();
262
263 std::string filename = toString(file);
264 if (Defined *d = getEnclosingFunction(offset))
265 return filename + ":(function " + toString(*d) + ": " + secAndOffset;
266
267 return filename + ":(" + secAndOffset;
268 }
269
270 // This function is intended to be used for constructing an error message.
271 // The returned message looks like this:
272 //
273 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
274 //
275 // Returns an empty string if there's no way to get line info.
getSrcMsg(const Symbol & sym,uint64_t offset)276 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) {
277 return file->getSrcMsg(sym, *this, offset);
278 }
279
280 // Returns a filename string along with an optional section name. This
281 // function is intended to be used for constructing an error
282 // message. The returned message looks like this:
283 //
284 // path/to/foo.o:(function bar)
285 //
286 // or
287 //
288 // path/to/foo.o:(function bar) in archive path/to/bar.a
getObjMsg(uint64_t off)289 std::string InputSectionBase::getObjMsg(uint64_t off) {
290 std::string filename = std::string(file->getName());
291
292 std::string archive;
293 if (!file->archiveName.empty())
294 archive = (" in archive " + file->archiveName).str();
295
296 // Find a symbol that encloses a given location. getObjMsg may be called
297 // before ObjFile::initSectionsAndLocalSyms where local symbols are
298 // initialized.
299 for (Symbol *b : file->getSymbols())
300 if (auto *d = dyn_cast_or_null<Defined>(b))
301 if (d->section == this && d->value <= off && off < d->value + d->size)
302 return filename + ":(" + toString(*d) + ")" + archive;
303
304 // If there's no symbol, print out the offset in the section.
305 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive)
306 .str();
307 }
308
309 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
310
InputSection(InputFile * f,uint64_t flags,uint32_t type,uint32_t addralign,ArrayRef<uint8_t> data,StringRef name,Kind k)311 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type,
312 uint32_t addralign, ArrayRef<uint8_t> data,
313 StringRef name, Kind k)
314 : InputSectionBase(f, flags, type,
315 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, addralign, data,
316 name, k) {}
317
318 template <class ELFT>
InputSection(ObjFile<ELFT> & f,const typename ELFT::Shdr & header,StringRef name)319 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
320 StringRef name)
321 : InputSectionBase(f, header, name, InputSectionBase::Regular) {}
322
323 // Copy SHT_GROUP section contents. Used only for the -r option.
copyShtGroup(uint8_t * buf)324 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) {
325 // ELFT::Word is the 32-bit integral type in the target endianness.
326 using u32 = typename ELFT::Word;
327 ArrayRef<u32> from = getDataAs<u32>();
328 auto *to = reinterpret_cast<u32 *>(buf);
329
330 // The first entry is not a section number but a flag.
331 *to++ = from[0];
332
333 // Adjust section numbers because section numbers in an input object files are
334 // different in the output. We also need to handle combined or discarded
335 // members.
336 ArrayRef<InputSectionBase *> sections = file->getSections();
337 DenseSet<uint32_t> seen;
338 for (uint32_t idx : from.slice(1)) {
339 OutputSection *osec = sections[idx]->getOutputSection();
340 if (osec && seen.insert(osec->sectionIndex).second)
341 *to++ = osec->sectionIndex;
342 }
343 }
344
getRelocatedSection() const345 InputSectionBase *InputSection::getRelocatedSection() const {
346 if (!file || (type != SHT_RELA && type != SHT_REL))
347 return nullptr;
348 ArrayRef<InputSectionBase *> sections = file->getSections();
349 return sections[info];
350 }
351
352 // This is used for -r and --emit-relocs. We can't use memcpy to copy
353 // relocations because we need to update symbol table offset and section index
354 // for each relocation. So we copy relocations one by one.
355 template <class ELFT, class RelTy>
copyRelocations(uint8_t * buf,ArrayRef<RelTy> rels)356 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) {
357 const TargetInfo &target = *elf::target;
358 InputSectionBase *sec = getRelocatedSection();
359 (void)sec->contentMaybeDecompress(); // uncompress if needed
360
361 for (const RelTy &rel : rels) {
362 RelType type = rel.getType(config->isMips64EL);
363 const ObjFile<ELFT> *file = getFile<ELFT>();
364 Symbol &sym = file->getRelocTargetSym(rel);
365
366 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf);
367 buf += sizeof(RelTy);
368
369 if (RelTy::IsRela)
370 p->r_addend = getAddend<ELFT>(rel);
371
372 // Output section VA is zero for -r, so r_offset is an offset within the
373 // section, but for --emit-relocs it is a virtual address.
374 p->r_offset = sec->getVA(rel.r_offset);
375 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type,
376 config->isMips64EL);
377
378 if (sym.type == STT_SECTION) {
379 // We combine multiple section symbols into only one per
380 // section. This means we have to update the addend. That is
381 // trivial for Elf_Rela, but for Elf_Rel we have to write to the
382 // section data. We do that by adding to the Relocation vector.
383
384 // .eh_frame is horribly special and can reference discarded sections. To
385 // avoid having to parse and recreate .eh_frame, we just replace any
386 // relocation in it pointing to discarded sections with R_*_NONE, which
387 // hopefully creates a frame that is ignored at runtime. Also, don't warn
388 // on .gcc_except_table and debug sections.
389 //
390 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
391 auto *d = dyn_cast<Defined>(&sym);
392 if (!d) {
393 if (!isDebugSection(*sec) && sec->name != ".eh_frame" &&
394 sec->name != ".gcc_except_table" && sec->name != ".got2" &&
395 sec->name != ".toc") {
396 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx;
397 Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx];
398 warn("relocation refers to a discarded section: " +
399 CHECK(file->getObj().getSectionName(sec), file) +
400 "\n>>> referenced by " + getObjMsg(p->r_offset));
401 }
402 p->setSymbolAndType(0, 0, false);
403 continue;
404 }
405 SectionBase *section = d->section;
406 if (!section->isLive()) {
407 p->setSymbolAndType(0, 0, false);
408 continue;
409 }
410
411 int64_t addend = getAddend<ELFT>(rel);
412 const uint8_t *bufLoc = sec->content().begin() + rel.r_offset;
413 if (!RelTy::IsRela)
414 addend = target.getImplicitAddend(bufLoc, type);
415
416 if (config->emachine == EM_MIPS &&
417 target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) {
418 // Some MIPS relocations depend on "gp" value. By default,
419 // this value has 0x7ff0 offset from a .got section. But
420 // relocatable files produced by a compiler or a linker
421 // might redefine this default value and we must use it
422 // for a calculation of the relocation result. When we
423 // generate EXE or DSO it's trivial. Generating a relocatable
424 // output is more difficult case because the linker does
425 // not calculate relocations in this mode and loses
426 // individual "gp" values used by each input object file.
427 // As a workaround we add the "gp" value to the relocation
428 // addend and save it back to the file.
429 addend += sec->getFile<ELFT>()->mipsGp0;
430 }
431
432 if (RelTy::IsRela)
433 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr;
434 else if (config->relocatable && type != target.noneRel)
435 sec->addReloc({R_ABS, type, rel.r_offset, addend, &sym});
436 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 &&
437 p->r_addend >= 0x8000 && sec->file->ppc32Got2) {
438 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
439 // indicates that r30 is relative to the input section .got2
440 // (r_addend>=0x8000), after linking, r30 should be relative to the output
441 // section .got2 . To compensate for the shift, adjust r_addend by
442 // ppc32Got->outSecOff.
443 p->r_addend += sec->file->ppc32Got2->outSecOff;
444 }
445 }
446 }
447
448 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
449 // references specially. The general rule is that the value of the symbol in
450 // this context is the address of the place P. A further special case is that
451 // branch relocations to an undefined weak reference resolve to the next
452 // instruction.
getARMUndefinedRelativeWeakVA(RelType type,uint32_t a,uint32_t p)453 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a,
454 uint32_t p) {
455 switch (type) {
456 // Unresolved branch relocations to weak references resolve to next
457 // instruction, this will be either 2 or 4 bytes on from P.
458 case R_ARM_THM_JUMP8:
459 case R_ARM_THM_JUMP11:
460 return p + 2 + a;
461 case R_ARM_CALL:
462 case R_ARM_JUMP24:
463 case R_ARM_PC24:
464 case R_ARM_PLT32:
465 case R_ARM_PREL31:
466 case R_ARM_THM_JUMP19:
467 case R_ARM_THM_JUMP24:
468 return p + 4 + a;
469 case R_ARM_THM_CALL:
470 // We don't want an interworking BLX to ARM
471 return p + 5 + a;
472 // Unresolved non branch pc-relative relocations
473 // R_ARM_TARGET2 which can be resolved relatively is not present as it never
474 // targets a weak-reference.
475 case R_ARM_MOVW_PREL_NC:
476 case R_ARM_MOVT_PREL:
477 case R_ARM_REL32:
478 case R_ARM_THM_ALU_PREL_11_0:
479 case R_ARM_THM_MOVW_PREL_NC:
480 case R_ARM_THM_MOVT_PREL:
481 case R_ARM_THM_PC12:
482 return p + a;
483 // p + a is unrepresentable as negative immediates can't be encoded.
484 case R_ARM_THM_PC8:
485 return p;
486 }
487 llvm_unreachable("ARM pc-relative relocation expected\n");
488 }
489
490 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
getAArch64UndefinedRelativeWeakVA(uint64_t type,uint64_t p)491 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
492 switch (type) {
493 // Unresolved branch relocations to weak references resolve to next
494 // instruction, this is 4 bytes on from P.
495 case R_AARCH64_CALL26:
496 case R_AARCH64_CONDBR19:
497 case R_AARCH64_JUMP26:
498 case R_AARCH64_TSTBR14:
499 return p + 4;
500 // Unresolved non branch pc-relative relocations
501 case R_AARCH64_PREL16:
502 case R_AARCH64_PREL32:
503 case R_AARCH64_PREL64:
504 case R_AARCH64_ADR_PREL_LO21:
505 case R_AARCH64_LD_PREL_LO19:
506 case R_AARCH64_PLT32:
507 return p;
508 }
509 llvm_unreachable("AArch64 pc-relative relocation expected\n");
510 }
511
getRISCVUndefinedRelativeWeakVA(uint64_t type,uint64_t p)512 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
513 switch (type) {
514 case R_RISCV_BRANCH:
515 case R_RISCV_JAL:
516 case R_RISCV_CALL:
517 case R_RISCV_CALL_PLT:
518 case R_RISCV_RVC_BRANCH:
519 case R_RISCV_RVC_JUMP:
520 return p;
521 default:
522 return 0;
523 }
524 }
525
526 // ARM SBREL relocations are of the form S + A - B where B is the static base
527 // The ARM ABI defines base to be "addressing origin of the output segment
528 // defining the symbol S". We defined the "addressing origin"/static base to be
529 // the base of the PT_LOAD segment containing the Sym.
530 // The procedure call standard only defines a Read Write Position Independent
531 // RWPI variant so in practice we should expect the static base to be the base
532 // of the RW segment.
getARMStaticBase(const Symbol & sym)533 static uint64_t getARMStaticBase(const Symbol &sym) {
534 OutputSection *os = sym.getOutputSection();
535 if (!os || !os->ptLoad || !os->ptLoad->firstSec)
536 fatal("SBREL relocation to " + sym.getName() + " without static base");
537 return os->ptLoad->firstSec->addr;
538 }
539
540 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
541 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
542 // is calculated using PCREL_HI20's symbol.
543 //
544 // This function returns the R_RISCV_PCREL_HI20 relocation from
545 // R_RISCV_PCREL_LO12's symbol and addend.
getRISCVPCRelHi20(const Symbol * sym,uint64_t addend)546 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) {
547 const Defined *d = cast<Defined>(sym);
548 if (!d->section) {
549 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " +
550 sym->getName());
551 return nullptr;
552 }
553 InputSection *isec = cast<InputSection>(d->section);
554
555 if (addend != 0)
556 warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
557 isec->getObjMsg(d->value) + " is ignored");
558
559 // Relocations are sorted by offset, so we can use std::equal_range to do
560 // binary search.
561 Relocation r;
562 r.offset = d->value;
563 auto range =
564 std::equal_range(isec->relocs().begin(), isec->relocs().end(), r,
565 [](const Relocation &lhs, const Relocation &rhs) {
566 return lhs.offset < rhs.offset;
567 });
568
569 for (auto it = range.first; it != range.second; ++it)
570 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 ||
571 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20)
572 return &*it;
573
574 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to " +
575 isec->getObjMsg(d->value) +
576 " without an associated R_RISCV_PCREL_HI20 relocation");
577 return nullptr;
578 }
579
580 // A TLS symbol's virtual address is relative to the TLS segment. Add a
581 // target-specific adjustment to produce a thread-pointer-relative offset.
getTlsTpOffset(const Symbol & s)582 static int64_t getTlsTpOffset(const Symbol &s) {
583 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
584 if (&s == ElfSym::tlsModuleBase)
585 return 0;
586
587 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
588 // while most others use Variant 1. At run time TP will be aligned to p_align.
589
590 // Variant 1. TP will be followed by an optional gap (which is the size of 2
591 // pointers on ARM/AArch64, 0 on other targets), followed by alignment
592 // padding, then the static TLS blocks. The alignment padding is added so that
593 // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
594 //
595 // Variant 2. Static TLS blocks, followed by alignment padding are placed
596 // before TP. The alignment padding is added so that (TP - padding -
597 // p_memsz) is congruent to p_vaddr modulo p_align.
598 PhdrEntry *tls = Out::tlsPhdr;
599 switch (config->emachine) {
600 // Variant 1.
601 case EM_ARM:
602 case EM_AARCH64:
603 return s.getVA(0) + config->wordsize * 2 +
604 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1));
605 case EM_MIPS:
606 case EM_PPC:
607 case EM_PPC64:
608 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
609 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
610 // data and 0xf000 of the program's TLS segment.
611 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000;
612 case EM_RISCV:
613 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1));
614
615 // Variant 2.
616 case EM_HEXAGON:
617 case EM_SPARCV9:
618 case EM_386:
619 case EM_X86_64:
620 return s.getVA(0) - tls->p_memsz -
621 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1));
622 default:
623 llvm_unreachable("unhandled Config->EMachine");
624 }
625 }
626
getRelocTargetVA(const InputFile * file,RelType type,int64_t a,uint64_t p,const Symbol & sym,RelExpr expr)627 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type,
628 int64_t a, uint64_t p,
629 const Symbol &sym, RelExpr expr) {
630 switch (expr) {
631 case R_ABS:
632 case R_DTPREL:
633 case R_RELAX_TLS_LD_TO_LE_ABS:
634 case R_RELAX_GOT_PC_NOPIC:
635 case R_RISCV_ADD:
636 return sym.getVA(a);
637 case R_ADDEND:
638 return a;
639 case R_RELAX_HINT:
640 return 0;
641 case R_ARM_SBREL:
642 return sym.getVA(a) - getARMStaticBase(sym);
643 case R_GOT:
644 case R_RELAX_TLS_GD_TO_IE_ABS:
645 return sym.getGotVA() + a;
646 case R_GOTONLY_PC:
647 return in.got->getVA() + a - p;
648 case R_GOTPLTONLY_PC:
649 return in.gotPlt->getVA() + a - p;
650 case R_GOTREL:
651 case R_PPC64_RELAX_TOC:
652 return sym.getVA(a) - in.got->getVA();
653 case R_GOTPLTREL:
654 return sym.getVA(a) - in.gotPlt->getVA();
655 case R_GOTPLT:
656 case R_RELAX_TLS_GD_TO_IE_GOTPLT:
657 return sym.getGotVA() + a - in.gotPlt->getVA();
658 case R_TLSLD_GOT_OFF:
659 case R_GOT_OFF:
660 case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
661 return sym.getGotOffset() + a;
662 case R_AARCH64_GOT_PAGE_PC:
663 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
664 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p);
665 case R_AARCH64_GOT_PAGE:
666 return sym.getGotVA() + a - getAArch64Page(in.got->getVA());
667 case R_GOT_PC:
668 case R_RELAX_TLS_GD_TO_IE:
669 return sym.getGotVA() + a - p;
670 case R_MIPS_GOTREL:
671 return sym.getVA(a) - in.mipsGot->getGp(file);
672 case R_MIPS_GOT_GP:
673 return in.mipsGot->getGp(file) + a;
674 case R_MIPS_GOT_GP_PC: {
675 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
676 // is _gp_disp symbol. In that case we should use the following
677 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
678 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
679 // microMIPS variants of these relocations use slightly different
680 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
681 // to correctly handle less-significant bit of the microMIPS symbol.
682 uint64_t v = in.mipsGot->getGp(file) + a - p;
683 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16)
684 v += 4;
685 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16)
686 v -= 1;
687 return v;
688 }
689 case R_MIPS_GOT_LOCAL_PAGE:
690 // If relocation against MIPS local symbol requires GOT entry, this entry
691 // should be initialized by 'page address'. This address is high 16-bits
692 // of sum the symbol's value and the addend.
693 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) -
694 in.mipsGot->getGp(file);
695 case R_MIPS_GOT_OFF:
696 case R_MIPS_GOT_OFF32:
697 // In case of MIPS if a GOT relocation has non-zero addend this addend
698 // should be applied to the GOT entry content not to the GOT entry offset.
699 // That is why we use separate expression type.
700 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) -
701 in.mipsGot->getGp(file);
702 case R_MIPS_TLSGD:
703 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) -
704 in.mipsGot->getGp(file);
705 case R_MIPS_TLSLD:
706 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) -
707 in.mipsGot->getGp(file);
708 case R_AARCH64_PAGE_PC: {
709 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a);
710 return getAArch64Page(val) - getAArch64Page(p);
711 }
712 case R_RISCV_PC_INDIRECT: {
713 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a))
714 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(),
715 *hiRel->sym, hiRel->expr);
716 return 0;
717 }
718 case R_PC:
719 case R_ARM_PCA: {
720 uint64_t dest;
721 if (expr == R_ARM_PCA)
722 // Some PC relative ARM (Thumb) relocations align down the place.
723 p = p & 0xfffffffc;
724 if (sym.isUndefined()) {
725 // On ARM and AArch64 a branch to an undefined weak resolves to the next
726 // instruction, otherwise the place. On RISCV, resolve an undefined weak
727 // to the same instruction to cause an infinite loop (making the user
728 // aware of the issue) while ensuring no overflow.
729 // Note: if the symbol is hidden, its binding has been converted to local,
730 // so we just check isUndefined() here.
731 if (config->emachine == EM_ARM)
732 dest = getARMUndefinedRelativeWeakVA(type, a, p);
733 else if (config->emachine == EM_AARCH64)
734 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a;
735 else if (config->emachine == EM_PPC)
736 dest = p;
737 else if (config->emachine == EM_RISCV)
738 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a;
739 else
740 dest = sym.getVA(a);
741 } else {
742 dest = sym.getVA(a);
743 }
744 return dest - p;
745 }
746 case R_PLT:
747 return sym.getPltVA() + a;
748 case R_PLT_PC:
749 case R_PPC64_CALL_PLT:
750 return sym.getPltVA() + a - p;
751 case R_PLT_GOTPLT:
752 return sym.getPltVA() + a - in.gotPlt->getVA();
753 case R_PPC32_PLTREL:
754 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
755 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
756 // target VA computation.
757 return sym.getPltVA() - p;
758 case R_PPC64_CALL: {
759 uint64_t symVA = sym.getVA(a);
760 // If we have an undefined weak symbol, we might get here with a symbol
761 // address of zero. That could overflow, but the code must be unreachable,
762 // so don't bother doing anything at all.
763 if (!symVA)
764 return 0;
765
766 // PPC64 V2 ABI describes two entry points to a function. The global entry
767 // point is used for calls where the caller and callee (may) have different
768 // TOC base pointers and r2 needs to be modified to hold the TOC base for
769 // the callee. For local calls the caller and callee share the same
770 // TOC base and so the TOC pointer initialization code should be skipped by
771 // branching to the local entry point.
772 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther);
773 }
774 case R_PPC64_TOCBASE:
775 return getPPC64TocBase() + a;
776 case R_RELAX_GOT_PC:
777 case R_PPC64_RELAX_GOT_PC:
778 return sym.getVA(a) - p;
779 case R_RELAX_TLS_GD_TO_LE:
780 case R_RELAX_TLS_IE_TO_LE:
781 case R_RELAX_TLS_LD_TO_LE:
782 case R_TPREL:
783 // It is not very clear what to return if the symbol is undefined. With
784 // --noinhibit-exec, even a non-weak undefined reference may reach here.
785 // Just return A, which matches R_ABS, and the behavior of some dynamic
786 // loaders.
787 if (sym.isUndefined())
788 return a;
789 return getTlsTpOffset(sym) + a;
790 case R_RELAX_TLS_GD_TO_LE_NEG:
791 case R_TPREL_NEG:
792 if (sym.isUndefined())
793 return a;
794 return -getTlsTpOffset(sym) + a;
795 case R_SIZE:
796 return sym.getSize() + a;
797 case R_TLSDESC:
798 return in.got->getTlsDescAddr(sym) + a;
799 case R_TLSDESC_PC:
800 return in.got->getTlsDescAddr(sym) + a - p;
801 case R_TLSDESC_GOTPLT:
802 return in.got->getTlsDescAddr(sym) + a - in.gotPlt->getVA();
803 case R_AARCH64_TLSDESC_PAGE:
804 return getAArch64Page(in.got->getTlsDescAddr(sym) + a) - getAArch64Page(p);
805 case R_TLSGD_GOT:
806 return in.got->getGlobalDynOffset(sym) + a;
807 case R_TLSGD_GOTPLT:
808 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA();
809 case R_TLSGD_PC:
810 return in.got->getGlobalDynAddr(sym) + a - p;
811 case R_TLSLD_GOTPLT:
812 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA();
813 case R_TLSLD_GOT:
814 return in.got->getTlsIndexOff() + a;
815 case R_TLSLD_PC:
816 return in.got->getTlsIndexVA() + a - p;
817 default:
818 llvm_unreachable("invalid expression");
819 }
820 }
821
822 // This function applies relocations to sections without SHF_ALLOC bit.
823 // Such sections are never mapped to memory at runtime. Debug sections are
824 // an example. Relocations in non-alloc sections are much easier to
825 // handle than in allocated sections because it will never need complex
826 // treatment such as GOT or PLT (because at runtime no one refers them).
827 // So, we handle relocations for non-alloc sections directly in this
828 // function as a performance optimization.
829 template <class ELFT, class RelTy>
relocateNonAlloc(uint8_t * buf,ArrayRef<RelTy> rels)830 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) {
831 const unsigned bits = sizeof(typename ELFT::uint) * 8;
832 const TargetInfo &target = *elf::target;
833 const bool isDebug = isDebugSection(*this);
834 const bool isDebugLocOrRanges =
835 isDebug && (name == ".debug_loc" || name == ".debug_ranges");
836 const bool isDebugLine = isDebug && name == ".debug_line";
837 std::optional<uint64_t> tombstone;
838 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc))
839 if (patAndValue.first.match(this->name)) {
840 tombstone = patAndValue.second;
841 break;
842 }
843
844 for (const RelTy &rel : rels) {
845 RelType type = rel.getType(config->isMips64EL);
846
847 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
848 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
849 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
850 // need to keep this bug-compatible code for a while.
851 if (config->emachine == EM_386 && type == R_386_GOTPC)
852 continue;
853
854 uint64_t offset = rel.r_offset;
855 uint8_t *bufLoc = buf + offset;
856 int64_t addend = getAddend<ELFT>(rel);
857 if (!RelTy::IsRela)
858 addend += target.getImplicitAddend(bufLoc, type);
859
860 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel);
861 RelExpr expr = target.getRelExpr(type, sym, bufLoc);
862 if (expr == R_NONE)
863 continue;
864
865 if (tombstone ||
866 (isDebug && (type == target.symbolicRel || expr == R_DTPREL))) {
867 // Resolve relocations in .debug_* referencing (discarded symbols or ICF
868 // folded section symbols) to a tombstone value. Resolving to addend is
869 // unsatisfactory because the result address range may collide with a
870 // valid range of low address, or leave multiple CUs claiming ownership of
871 // the same range of code, which may confuse consumers.
872 //
873 // To address the problems, we use -1 as a tombstone value for most
874 // .debug_* sections. We have to ignore the addend because we don't want
875 // to resolve an address attribute (which may have a non-zero addend) to
876 // -1+addend (wrap around to a low address).
877 //
878 // R_DTPREL type relocations represent an offset into the dynamic thread
879 // vector. The computed value is st_value plus a non-negative offset.
880 // Negative values are invalid, so -1 can be used as the tombstone value.
881 //
882 // If the referenced symbol is discarded (made Undefined), or the
883 // section defining the referenced symbol is garbage collected,
884 // sym.getOutputSection() is nullptr. `ds->folded` catches the ICF folded
885 // case. However, resolving a relocation in .debug_line to -1 would stop
886 // debugger users from setting breakpoints on the folded-in function, so
887 // exclude .debug_line.
888 //
889 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value
890 // (base address selection entry), use 1 (which is used by GNU ld for
891 // .debug_ranges).
892 //
893 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone
894 // value. Enable -1 in a future release.
895 auto *ds = dyn_cast<Defined>(&sym);
896 if (!sym.getOutputSection() || (ds && ds->folded && !isDebugLine)) {
897 // If -z dead-reloc-in-nonalloc= is specified, respect it.
898 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone)
899 : (isDebugLocOrRanges ? 1 : 0);
900 target.relocateNoSym(bufLoc, type, value);
901 continue;
902 }
903 }
904
905 // For a relocatable link, only tombstone values are applied.
906 if (config->relocatable)
907 continue;
908
909 if (expr == R_SIZE) {
910 target.relocateNoSym(bufLoc, type,
911 SignExtend64<bits>(sym.getSize() + addend));
912 continue;
913 }
914
915 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC
916 // sections.
917 if (expr == R_ABS || expr == R_DTPREL || expr == R_GOTPLTREL ||
918 expr == R_RISCV_ADD) {
919 target.relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend)));
920 continue;
921 }
922
923 std::string msg = getLocation(offset) + ": has non-ABS relocation " +
924 toString(type) + " against symbol '" + toString(sym) +
925 "'";
926 if (expr != R_PC && expr != R_ARM_PCA) {
927 error(msg);
928 return;
929 }
930
931 // If the control reaches here, we found a PC-relative relocation in a
932 // non-ALLOC section. Since non-ALLOC section is not loaded into memory
933 // at runtime, the notion of PC-relative doesn't make sense here. So,
934 // this is a usage error. However, GNU linkers historically accept such
935 // relocations without any errors and relocate them as if they were at
936 // address 0. For bug-compatibility, we accept them with warnings. We
937 // know Steel Bank Common Lisp as of 2018 have this bug.
938 warn(msg);
939 target.relocateNoSym(
940 bufLoc, type,
941 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff)));
942 }
943 }
944
945 // This is used when '-r' is given.
946 // For REL targets, InputSection::copyRelocations() may store artificial
947 // relocations aimed to update addends. They are handled in relocateAlloc()
948 // for allocatable sections, and this function does the same for
949 // non-allocatable sections, such as sections with debug information.
relocateNonAllocForRelocatable(InputSection * sec,uint8_t * buf)950 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) {
951 const unsigned bits = config->is64 ? 64 : 32;
952
953 for (const Relocation &rel : sec->relocs()) {
954 // InputSection::copyRelocations() adds only R_ABS relocations.
955 assert(rel.expr == R_ABS);
956 uint8_t *bufLoc = buf + rel.offset;
957 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits);
958 target->relocate(bufLoc, rel, targetVA);
959 }
960 }
961
962 template <class ELFT>
relocate(uint8_t * buf,uint8_t * bufEnd)963 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) {
964 if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack))
965 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd);
966
967 if (flags & SHF_ALLOC) {
968 target->relocateAlloc(*this, buf);
969 return;
970 }
971
972 auto *sec = cast<InputSection>(this);
973 if (config->relocatable)
974 relocateNonAllocForRelocatable(sec, buf);
975 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable
976 // locations with tombstone values.
977 const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
978 if (rels.areRelocsRel())
979 sec->relocateNonAlloc<ELFT>(buf, rels.rels);
980 else
981 sec->relocateNonAlloc<ELFT>(buf, rels.relas);
982 }
983
984 // For each function-defining prologue, find any calls to __morestack,
985 // and replace them with calls to __morestack_non_split.
switchMorestackCallsToMorestackNonSplit(DenseSet<Defined * > & prologues,SmallVector<Relocation *,0> & morestackCalls)986 static void switchMorestackCallsToMorestackNonSplit(
987 DenseSet<Defined *> &prologues,
988 SmallVector<Relocation *, 0> &morestackCalls) {
989
990 // If the target adjusted a function's prologue, all calls to
991 // __morestack inside that function should be switched to
992 // __morestack_non_split.
993 Symbol *moreStackNonSplit = symtab.find("__morestack_non_split");
994 if (!moreStackNonSplit) {
995 error("mixing split-stack objects requires a definition of "
996 "__morestack_non_split");
997 return;
998 }
999
1000 // Sort both collections to compare addresses efficiently.
1001 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) {
1002 return l->offset < r->offset;
1003 });
1004 std::vector<Defined *> functions(prologues.begin(), prologues.end());
1005 llvm::sort(functions, [](const Defined *l, const Defined *r) {
1006 return l->value < r->value;
1007 });
1008
1009 auto it = morestackCalls.begin();
1010 for (Defined *f : functions) {
1011 // Find the first call to __morestack within the function.
1012 while (it != morestackCalls.end() && (*it)->offset < f->value)
1013 ++it;
1014 // Adjust all calls inside the function.
1015 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) {
1016 (*it)->sym = moreStackNonSplit;
1017 ++it;
1018 }
1019 }
1020 }
1021
enclosingPrologueAttempted(uint64_t offset,const DenseSet<Defined * > & prologues)1022 static bool enclosingPrologueAttempted(uint64_t offset,
1023 const DenseSet<Defined *> &prologues) {
1024 for (Defined *f : prologues)
1025 if (f->value <= offset && offset < f->value + f->size)
1026 return true;
1027 return false;
1028 }
1029
1030 // If a function compiled for split stack calls a function not
1031 // compiled for split stack, then the caller needs its prologue
1032 // adjusted to ensure that the called function will have enough stack
1033 // available. Find those functions, and adjust their prologues.
1034 template <class ELFT>
adjustSplitStackFunctionPrologues(uint8_t * buf,uint8_t * end)1035 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf,
1036 uint8_t *end) {
1037 DenseSet<Defined *> prologues;
1038 SmallVector<Relocation *, 0> morestackCalls;
1039
1040 for (Relocation &rel : relocs()) {
1041 // Ignore calls into the split-stack api.
1042 if (rel.sym->getName().startswith("__morestack")) {
1043 if (rel.sym->getName().equals("__morestack"))
1044 morestackCalls.push_back(&rel);
1045 continue;
1046 }
1047
1048 // A relocation to non-function isn't relevant. Sometimes
1049 // __morestack is not marked as a function, so this check comes
1050 // after the name check.
1051 if (rel.sym->type != STT_FUNC)
1052 continue;
1053
1054 // If the callee's-file was compiled with split stack, nothing to do. In
1055 // this context, a "Defined" symbol is one "defined by the binary currently
1056 // being produced". So an "undefined" symbol might be provided by a shared
1057 // library. It is not possible to tell how such symbols were compiled, so be
1058 // conservative.
1059 if (Defined *d = dyn_cast<Defined>(rel.sym))
1060 if (InputSection *isec = cast_or_null<InputSection>(d->section))
1061 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack)
1062 continue;
1063
1064 if (enclosingPrologueAttempted(rel.offset, prologues))
1065 continue;
1066
1067 if (Defined *f = getEnclosingFunction(rel.offset)) {
1068 prologues.insert(f);
1069 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end,
1070 f->stOther))
1071 continue;
1072 if (!getFile<ELFT>()->someNoSplitStack)
1073 error(lld::toString(this) + ": " + f->getName() +
1074 " (with -fsplit-stack) calls " + rel.sym->getName() +
1075 " (without -fsplit-stack), but couldn't adjust its prologue");
1076 }
1077 }
1078
1079 if (target->needsMoreStackNonSplit)
1080 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls);
1081 }
1082
writeTo(uint8_t * buf)1083 template <class ELFT> void InputSection::writeTo(uint8_t *buf) {
1084 if (LLVM_UNLIKELY(type == SHT_NOBITS))
1085 return;
1086 // If -r or --emit-relocs is given, then an InputSection
1087 // may be a relocation section.
1088 if (LLVM_UNLIKELY(type == SHT_RELA)) {
1089 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rela>());
1090 return;
1091 }
1092 if (LLVM_UNLIKELY(type == SHT_REL)) {
1093 copyRelocations<ELFT>(buf, getDataAs<typename ELFT::Rel>());
1094 return;
1095 }
1096
1097 // If -r is given, we may have a SHT_GROUP section.
1098 if (LLVM_UNLIKELY(type == SHT_GROUP)) {
1099 copyShtGroup<ELFT>(buf);
1100 return;
1101 }
1102
1103 // If this is a compressed section, uncompress section contents directly
1104 // to the buffer.
1105 if (compressed) {
1106 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content_);
1107 auto compressed = ArrayRef<uint8_t>(content_, compressedSize)
1108 .slice(sizeof(typename ELFT::Chdr));
1109 size_t size = this->size;
1110 if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB
1111 ? compression::zlib::decompress(compressed, buf, size)
1112 : compression::zstd::decompress(compressed, buf, size))
1113 fatal(toString(this) +
1114 ": decompress failed: " + llvm::toString(std::move(e)));
1115 uint8_t *bufEnd = buf + size;
1116 relocate<ELFT>(buf, bufEnd);
1117 return;
1118 }
1119
1120 // Copy section contents from source object file to output file
1121 // and then apply relocations.
1122 memcpy(buf, content().data(), content().size());
1123 relocate<ELFT>(buf, buf + content().size());
1124 }
1125
replace(InputSection * other)1126 void InputSection::replace(InputSection *other) {
1127 addralign = std::max(addralign, other->addralign);
1128
1129 // When a section is replaced with another section that was allocated to
1130 // another partition, the replacement section (and its associated sections)
1131 // need to be placed in the main partition so that both partitions will be
1132 // able to access it.
1133 if (partition != other->partition) {
1134 partition = 1;
1135 for (InputSection *isec : dependentSections)
1136 isec->partition = 1;
1137 }
1138
1139 other->repl = repl;
1140 other->markDead();
1141 }
1142
1143 template <class ELFT>
EhInputSection(ObjFile<ELFT> & f,const typename ELFT::Shdr & header,StringRef name)1144 EhInputSection::EhInputSection(ObjFile<ELFT> &f,
1145 const typename ELFT::Shdr &header,
1146 StringRef name)
1147 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {}
1148
getParent() const1149 SyntheticSection *EhInputSection::getParent() const {
1150 return cast_or_null<SyntheticSection>(parent);
1151 }
1152
1153 // .eh_frame is a sequence of CIE or FDE records.
1154 // This function splits an input section into records and returns them.
split()1155 template <class ELFT> void EhInputSection::split() {
1156 const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>();
1157 // getReloc expects the relocations to be sorted by r_offset. See the comment
1158 // in scanRelocs.
1159 if (rels.areRelocsRel()) {
1160 SmallVector<typename ELFT::Rel, 0> storage;
1161 split<ELFT>(sortRels(rels.rels, storage));
1162 } else {
1163 SmallVector<typename ELFT::Rela, 0> storage;
1164 split<ELFT>(sortRels(rels.relas, storage));
1165 }
1166 }
1167
1168 template <class ELFT, class RelTy>
split(ArrayRef<RelTy> rels)1169 void EhInputSection::split(ArrayRef<RelTy> rels) {
1170 ArrayRef<uint8_t> d = content();
1171 const char *msg = nullptr;
1172 unsigned relI = 0;
1173 while (!d.empty()) {
1174 if (d.size() < 4) {
1175 msg = "CIE/FDE too small";
1176 break;
1177 }
1178 uint64_t size = endian::read32<ELFT::TargetEndianness>(d.data());
1179 if (size == 0) // ZERO terminator
1180 break;
1181 uint32_t id = endian::read32<ELFT::TargetEndianness>(d.data() + 4);
1182 size += 4;
1183 if (LLVM_UNLIKELY(size > d.size())) {
1184 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead,
1185 // but we do not support that format yet.
1186 msg = size == UINT32_MAX + uint64_t(4)
1187 ? "CIE/FDE too large"
1188 : "CIE/FDE ends past the end of the section";
1189 break;
1190 }
1191
1192 // Find the first relocation that points to [off,off+size). Relocations
1193 // have been sorted by r_offset.
1194 const uint64_t off = d.data() - content().data();
1195 while (relI != rels.size() && rels[relI].r_offset < off)
1196 ++relI;
1197 unsigned firstRel = -1;
1198 if (relI != rels.size() && rels[relI].r_offset < off + size)
1199 firstRel = relI;
1200 (id == 0 ? cies : fdes).emplace_back(off, this, size, firstRel);
1201 d = d.slice(size);
1202 }
1203 if (msg)
1204 errorOrWarn("corrupted .eh_frame: " + Twine(msg) + "\n>>> defined in " +
1205 getObjMsg(d.data() - content().data()));
1206 }
1207
1208 // Return the offset in an output section for a given input offset.
getParentOffset(uint64_t offset) const1209 uint64_t EhInputSection::getParentOffset(uint64_t offset) const {
1210 auto it = partition_point(
1211 fdes, [=](EhSectionPiece p) { return p.inputOff <= offset; });
1212 if (it == fdes.begin() || it[-1].inputOff + it[-1].size <= offset) {
1213 it = partition_point(
1214 cies, [=](EhSectionPiece p) { return p.inputOff <= offset; });
1215 if (it == cies.begin()) // invalid piece
1216 return offset;
1217 }
1218 if (it[-1].outputOff == -1) // invalid piece
1219 return offset - it[-1].inputOff;
1220 return it[-1].outputOff + (offset - it[-1].inputOff);
1221 }
1222
findNull(StringRef s,size_t entSize)1223 static size_t findNull(StringRef s, size_t entSize) {
1224 for (unsigned i = 0, n = s.size(); i != n; i += entSize) {
1225 const char *b = s.begin() + i;
1226 if (std::all_of(b, b + entSize, [](char c) { return c == 0; }))
1227 return i;
1228 }
1229 llvm_unreachable("");
1230 }
1231
1232 // Split SHF_STRINGS section. Such section is a sequence of
1233 // null-terminated strings.
splitStrings(StringRef s,size_t entSize)1234 void MergeInputSection::splitStrings(StringRef s, size_t entSize) {
1235 const bool live = !(flags & SHF_ALLOC) || !config->gcSections;
1236 const char *p = s.data(), *end = s.data() + s.size();
1237 if (!std::all_of(end - entSize, end, [](char c) { return c == 0; }))
1238 fatal(toString(this) + ": string is not null terminated");
1239 if (entSize == 1) {
1240 // Optimize the common case.
1241 do {
1242 size_t size = strlen(p);
1243 pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live);
1244 p += size + 1;
1245 } while (p != end);
1246 } else {
1247 do {
1248 size_t size = findNull(StringRef(p, end - p), entSize);
1249 pieces.emplace_back(p - s.begin(), xxHash64(StringRef(p, size)), live);
1250 p += size + entSize;
1251 } while (p != end);
1252 }
1253 }
1254
1255 // Split non-SHF_STRINGS section. Such section is a sequence of
1256 // fixed size records.
splitNonStrings(ArrayRef<uint8_t> data,size_t entSize)1257 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data,
1258 size_t entSize) {
1259 size_t size = data.size();
1260 assert((size % entSize) == 0);
1261 const bool live = !(flags & SHF_ALLOC) || !config->gcSections;
1262
1263 pieces.resize_for_overwrite(size / entSize);
1264 for (size_t i = 0, j = 0; i != size; i += entSize, j++)
1265 pieces[j] = {i, (uint32_t)xxHash64(data.slice(i, entSize)), live};
1266 }
1267
1268 template <class ELFT>
MergeInputSection(ObjFile<ELFT> & f,const typename ELFT::Shdr & header,StringRef name)1269 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f,
1270 const typename ELFT::Shdr &header,
1271 StringRef name)
1272 : InputSectionBase(f, header, name, InputSectionBase::Merge) {}
1273
MergeInputSection(uint64_t flags,uint32_t type,uint64_t entsize,ArrayRef<uint8_t> data,StringRef name)1274 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type,
1275 uint64_t entsize, ArrayRef<uint8_t> data,
1276 StringRef name)
1277 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0,
1278 /*Alignment*/ entsize, data, name, SectionBase::Merge) {}
1279
1280 // This function is called after we obtain a complete list of input sections
1281 // that need to be linked. This is responsible to split section contents
1282 // into small chunks for further processing.
1283 //
1284 // Note that this function is called from parallelForEach. This must be
1285 // thread-safe (i.e. no memory allocation from the pools).
splitIntoPieces()1286 void MergeInputSection::splitIntoPieces() {
1287 assert(pieces.empty());
1288
1289 if (flags & SHF_STRINGS)
1290 splitStrings(toStringRef(contentMaybeDecompress()), entsize);
1291 else
1292 splitNonStrings(contentMaybeDecompress(), entsize);
1293 }
1294
getSectionPiece(uint64_t offset)1295 SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) {
1296 if (content().size() <= offset)
1297 fatal(toString(this) + ": offset is outside the section");
1298 return partition_point(
1299 pieces, [=](SectionPiece p) { return p.inputOff <= offset; })[-1];
1300 }
1301
1302 // Return the offset in an output section for a given input offset.
getParentOffset(uint64_t offset) const1303 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const {
1304 const SectionPiece &piece = getSectionPiece(offset);
1305 return piece.outputOff + (offset - piece.inputOff);
1306 }
1307
1308 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1309 StringRef);
1310 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1311 StringRef);
1312 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1313 StringRef);
1314 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1315 StringRef);
1316
1317 template void InputSection::writeTo<ELF32LE>(uint8_t *);
1318 template void InputSection::writeTo<ELF32BE>(uint8_t *);
1319 template void InputSection::writeTo<ELF64LE>(uint8_t *);
1320 template void InputSection::writeTo<ELF64BE>(uint8_t *);
1321
1322 template RelsOrRelas<ELF32LE> InputSectionBase::relsOrRelas<ELF32LE>() const;
1323 template RelsOrRelas<ELF32BE> InputSectionBase::relsOrRelas<ELF32BE>() const;
1324 template RelsOrRelas<ELF64LE> InputSectionBase::relsOrRelas<ELF64LE>() const;
1325 template RelsOrRelas<ELF64BE> InputSectionBase::relsOrRelas<ELF64BE>() const;
1326
1327 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1328 const ELF32LE::Shdr &, StringRef);
1329 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1330 const ELF32BE::Shdr &, StringRef);
1331 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1332 const ELF64LE::Shdr &, StringRef);
1333 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1334 const ELF64BE::Shdr &, StringRef);
1335
1336 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1337 const ELF32LE::Shdr &, StringRef);
1338 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1339 const ELF32BE::Shdr &, StringRef);
1340 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1341 const ELF64LE::Shdr &, StringRef);
1342 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1343 const ELF64BE::Shdr &, StringRef);
1344
1345 template void EhInputSection::split<ELF32LE>();
1346 template void EhInputSection::split<ELF32BE>();
1347 template void EhInputSection::split<ELF64LE>();
1348 template void EhInputSection::split<ELF64BE>();
1349