1 /*
2  *
3  * Programmable Interrupt Controller functions for the Freescale MPC52xx.
4  *
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  * Copyright (C) 2006 bplan GmbH
7  * Copyright (C) 2004 Sylvain Munaut <tnt@246tNt.com>
8  * Copyright (C) 2003 Montavista Software, Inc
9  *
10  * Based on the code from the 2.4 kernel by
11  * Dale Farnsworth <dfarnsworth@mvista.com> and Kent Borg.
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  *
17  */
18 
19 /*
20  * This is the device driver for the MPC5200 interrupt controller.
21  *
22  * hardware overview
23  * -----------------
24  * The MPC5200 interrupt controller groups the all interrupt sources into
25  * three groups called 'critical', 'main', and 'peripheral'.  The critical
26  * group has 3 irqs, External IRQ0, slice timer 0 irq, and wake from deep
27  * sleep.  Main group include the other 3 external IRQs, slice timer 1, RTC,
28  * gpios, and the general purpose timers.  Peripheral group contains the
29  * remaining irq sources from all of the on-chip peripherals (PSCs, Ethernet,
30  * USB, DMA, etc).
31  *
32  * virqs
33  * -----
34  * The Linux IRQ subsystem requires that each irq source be assigned a
35  * system wide unique IRQ number starting at 1 (0 means no irq).  Since
36  * systems can have multiple interrupt controllers, the virtual IRQ (virq)
37  * infrastructure lets each interrupt controller to define a local set
38  * of IRQ numbers and the virq infrastructure maps those numbers into
39  * a unique range of the global IRQ# space.
40  *
41  * To define a range of virq numbers for this controller, this driver first
42  * assigns a number to each of the irq groups (called the level 1 or L1
43  * value).  Within each group individual irq sources are also assigned a
44  * number, as defined by the MPC5200 user guide, and refers to it as the
45  * level 2 or L2 value.  The virq number is determined by shifting up the
46  * L1 value by MPC52xx_IRQ_L1_OFFSET and ORing it with the L2 value.
47  *
48  * For example, the TMR0 interrupt is irq 9 in the main group.  The
49  * virq for TMR0 is calculated by ((1 << MPC52xx_IRQ_L1_OFFSET) | 9).
50  *
51  * The observant reader will also notice that this driver defines a 4th
52  * interrupt group called 'bestcomm'.  The bestcomm group isn't physically
53  * part of the MPC5200 interrupt controller, but it is used here to assign
54  * a separate virq number for each bestcomm task (since any of the 16
55  * bestcomm tasks can cause the bestcomm interrupt to be raised).  When a
56  * bestcomm interrupt occurs (peripheral group, irq 0) this driver determines
57  * which task needs servicing and returns the irq number for that task.  This
58  * allows drivers which use bestcomm to define their own interrupt handlers.
59  *
60  * irq_chip structures
61  * -------------------
62  * For actually manipulating IRQs (masking, enabling, clearing, etc) this
63  * driver defines four separate 'irq_chip' structures, one for the main
64  * group, one for the peripherals group, one for the bestcomm group and one
65  * for external interrupts.  The irq_chip structures provide the hooks needed
66  * to manipulate each IRQ source, and since each group is has a separate set
67  * of registers for controlling the irq, it makes sense to divide up the
68  * hooks along those lines.
69  *
70  * You'll notice that there is not an irq_chip for the critical group and
71  * you'll also notice that there is an irq_chip defined for external
72  * interrupts even though there is no external interrupt group.  The reason
73  * for this is that the four external interrupts are all managed with the same
74  * register even though one of the external IRQs is in the critical group and
75  * the other three are in the main group.  For this reason it makes sense for
76  * the 4 external irqs to be managed using a separate set of hooks.  The
77  * reason there is no crit irq_chip is that of the 3 irqs in the critical
78  * group, only external interrupt is actually support at this time by this
79  * driver and since external interrupt is the only one used, it can just
80  * be directed to make use of the external irq irq_chip.
81  *
82  * device tree bindings
83  * --------------------
84  * The device tree bindings for this controller reflect the two level
85  * organization of irqs in the device.  #interrupt-cells = <3> where the
86  * first cell is the group number [0..3], the second cell is the irq
87  * number in the group, and the third cell is the sense type (level/edge).
88  * For reference, the following is a list of the interrupt property values
89  * associated with external interrupt sources on the MPC5200 (just because
90  * it is non-obvious to determine what the interrupts property should be
91  * when reading the mpc5200 manual and it is a frequently asked question).
92  *
93  * External interrupts:
94  * <0 0 n>	external irq0, n is sense	(n=0: level high,
95  * <1 1 n>	external irq1, n is sense	 n=1: edge rising,
96  * <1 2 n>	external irq2, n is sense	 n=2: edge falling,
97  * <1 3 n>	external irq3, n is sense	 n=3: level low)
98  */
99 #undef DEBUG
100 
101 #include <linux/interrupt.h>
102 #include <linux/irq.h>
103 #include <linux/of.h>
104 #include <linux/of_address.h>
105 #include <linux/of_irq.h>
106 #include <asm/io.h>
107 #include <asm/mpc52xx.h>
108 
109 /* HW IRQ mapping */
110 #define MPC52xx_IRQ_L1_CRIT	(0)
111 #define MPC52xx_IRQ_L1_MAIN	(1)
112 #define MPC52xx_IRQ_L1_PERP	(2)
113 #define MPC52xx_IRQ_L1_SDMA	(3)
114 
115 #define MPC52xx_IRQ_L1_OFFSET	(6)
116 #define MPC52xx_IRQ_L1_MASK	(0x00c0)
117 #define MPC52xx_IRQ_L2_MASK	(0x003f)
118 
119 #define MPC52xx_IRQ_HIGHTESTHWIRQ (0xd0)
120 
121 
122 /* MPC5200 device tree match tables */
123 static const struct of_device_id mpc52xx_pic_ids[] __initconst = {
124 	{ .compatible = "fsl,mpc5200-pic", },
125 	{ .compatible = "mpc5200-pic", },
126 	{}
127 };
128 static const struct of_device_id mpc52xx_sdma_ids[] __initconst = {
129 	{ .compatible = "fsl,mpc5200-bestcomm", },
130 	{ .compatible = "mpc5200-bestcomm", },
131 	{}
132 };
133 
134 static struct mpc52xx_intr __iomem *intr;
135 static struct mpc52xx_sdma __iomem *sdma;
136 static struct irq_domain *mpc52xx_irqhost = NULL;
137 
138 static unsigned char mpc52xx_map_senses[4] = {
139 	IRQ_TYPE_LEVEL_HIGH,
140 	IRQ_TYPE_EDGE_RISING,
141 	IRQ_TYPE_EDGE_FALLING,
142 	IRQ_TYPE_LEVEL_LOW,
143 };
144 
145 /* Utility functions */
io_be_setbit(u32 __iomem * addr,int bitno)146 static inline void io_be_setbit(u32 __iomem *addr, int bitno)
147 {
148 	out_be32(addr, in_be32(addr) | (1 << bitno));
149 }
150 
io_be_clrbit(u32 __iomem * addr,int bitno)151 static inline void io_be_clrbit(u32 __iomem *addr, int bitno)
152 {
153 	out_be32(addr, in_be32(addr) & ~(1 << bitno));
154 }
155 
156 /*
157  * IRQ[0-3] interrupt irq_chip
158  */
mpc52xx_extirq_mask(struct irq_data * d)159 static void mpc52xx_extirq_mask(struct irq_data *d)
160 {
161 	int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
162 	io_be_clrbit(&intr->ctrl, 11 - l2irq);
163 }
164 
mpc52xx_extirq_unmask(struct irq_data * d)165 static void mpc52xx_extirq_unmask(struct irq_data *d)
166 {
167 	int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
168 	io_be_setbit(&intr->ctrl, 11 - l2irq);
169 }
170 
mpc52xx_extirq_ack(struct irq_data * d)171 static void mpc52xx_extirq_ack(struct irq_data *d)
172 {
173 	int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
174 	io_be_setbit(&intr->ctrl, 27-l2irq);
175 }
176 
mpc52xx_extirq_set_type(struct irq_data * d,unsigned int flow_type)177 static int mpc52xx_extirq_set_type(struct irq_data *d, unsigned int flow_type)
178 {
179 	u32 ctrl_reg, type;
180 	int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
181 	void *handler = handle_level_irq;
182 
183 	pr_debug("%s: irq=%x. l2=%d flow_type=%d\n", __func__,
184 		(int) irqd_to_hwirq(d), l2irq, flow_type);
185 
186 	switch (flow_type) {
187 	case IRQF_TRIGGER_HIGH: type = 0; break;
188 	case IRQF_TRIGGER_RISING: type = 1; handler = handle_edge_irq; break;
189 	case IRQF_TRIGGER_FALLING: type = 2; handler = handle_edge_irq; break;
190 	case IRQF_TRIGGER_LOW: type = 3; break;
191 	default:
192 		type = 0;
193 	}
194 
195 	ctrl_reg = in_be32(&intr->ctrl);
196 	ctrl_reg &= ~(0x3 << (22 - (l2irq * 2)));
197 	ctrl_reg |= (type << (22 - (l2irq * 2)));
198 	out_be32(&intr->ctrl, ctrl_reg);
199 
200 	irq_set_handler_locked(d, handler);
201 
202 	return 0;
203 }
204 
205 static struct irq_chip mpc52xx_extirq_irqchip = {
206 	.name = "MPC52xx External",
207 	.irq_mask = mpc52xx_extirq_mask,
208 	.irq_unmask = mpc52xx_extirq_unmask,
209 	.irq_ack = mpc52xx_extirq_ack,
210 	.irq_set_type = mpc52xx_extirq_set_type,
211 };
212 
213 /*
214  * Main interrupt irq_chip
215  */
mpc52xx_null_set_type(struct irq_data * d,unsigned int flow_type)216 static int mpc52xx_null_set_type(struct irq_data *d, unsigned int flow_type)
217 {
218 	return 0; /* Do nothing so that the sense mask will get updated */
219 }
220 
mpc52xx_main_mask(struct irq_data * d)221 static void mpc52xx_main_mask(struct irq_data *d)
222 {
223 	int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
224 	io_be_setbit(&intr->main_mask, 16 - l2irq);
225 }
226 
mpc52xx_main_unmask(struct irq_data * d)227 static void mpc52xx_main_unmask(struct irq_data *d)
228 {
229 	int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
230 	io_be_clrbit(&intr->main_mask, 16 - l2irq);
231 }
232 
233 static struct irq_chip mpc52xx_main_irqchip = {
234 	.name = "MPC52xx Main",
235 	.irq_mask = mpc52xx_main_mask,
236 	.irq_mask_ack = mpc52xx_main_mask,
237 	.irq_unmask = mpc52xx_main_unmask,
238 	.irq_set_type = mpc52xx_null_set_type,
239 };
240 
241 /*
242  * Peripherals interrupt irq_chip
243  */
mpc52xx_periph_mask(struct irq_data * d)244 static void mpc52xx_periph_mask(struct irq_data *d)
245 {
246 	int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
247 	io_be_setbit(&intr->per_mask, 31 - l2irq);
248 }
249 
mpc52xx_periph_unmask(struct irq_data * d)250 static void mpc52xx_periph_unmask(struct irq_data *d)
251 {
252 	int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
253 	io_be_clrbit(&intr->per_mask, 31 - l2irq);
254 }
255 
256 static struct irq_chip mpc52xx_periph_irqchip = {
257 	.name = "MPC52xx Peripherals",
258 	.irq_mask = mpc52xx_periph_mask,
259 	.irq_mask_ack = mpc52xx_periph_mask,
260 	.irq_unmask = mpc52xx_periph_unmask,
261 	.irq_set_type = mpc52xx_null_set_type,
262 };
263 
264 /*
265  * SDMA interrupt irq_chip
266  */
mpc52xx_sdma_mask(struct irq_data * d)267 static void mpc52xx_sdma_mask(struct irq_data *d)
268 {
269 	int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
270 	io_be_setbit(&sdma->IntMask, l2irq);
271 }
272 
mpc52xx_sdma_unmask(struct irq_data * d)273 static void mpc52xx_sdma_unmask(struct irq_data *d)
274 {
275 	int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
276 	io_be_clrbit(&sdma->IntMask, l2irq);
277 }
278 
mpc52xx_sdma_ack(struct irq_data * d)279 static void mpc52xx_sdma_ack(struct irq_data *d)
280 {
281 	int l2irq = irqd_to_hwirq(d) & MPC52xx_IRQ_L2_MASK;
282 	out_be32(&sdma->IntPend, 1 << l2irq);
283 }
284 
285 static struct irq_chip mpc52xx_sdma_irqchip = {
286 	.name = "MPC52xx SDMA",
287 	.irq_mask = mpc52xx_sdma_mask,
288 	.irq_unmask = mpc52xx_sdma_unmask,
289 	.irq_ack = mpc52xx_sdma_ack,
290 	.irq_set_type = mpc52xx_null_set_type,
291 };
292 
293 /**
294  * mpc52xx_is_extirq - Returns true if hwirq number is for an external IRQ
295  */
mpc52xx_is_extirq(int l1,int l2)296 static int mpc52xx_is_extirq(int l1, int l2)
297 {
298 	return ((l1 == 0) && (l2 == 0)) ||
299 	       ((l1 == 1) && (l2 >= 1) && (l2 <= 3));
300 }
301 
302 /**
303  * mpc52xx_irqhost_xlate - translate virq# from device tree interrupts property
304  */
mpc52xx_irqhost_xlate(struct irq_domain * h,struct device_node * ct,const u32 * intspec,unsigned int intsize,irq_hw_number_t * out_hwirq,unsigned int * out_flags)305 static int mpc52xx_irqhost_xlate(struct irq_domain *h, struct device_node *ct,
306 				 const u32 *intspec, unsigned int intsize,
307 				 irq_hw_number_t *out_hwirq,
308 				 unsigned int *out_flags)
309 {
310 	int intrvect_l1;
311 	int intrvect_l2;
312 	int intrvect_type;
313 	int intrvect_linux;
314 
315 	if (intsize != 3)
316 		return -1;
317 
318 	intrvect_l1 = (int)intspec[0];
319 	intrvect_l2 = (int)intspec[1];
320 	intrvect_type = (int)intspec[2] & 0x3;
321 
322 	intrvect_linux = (intrvect_l1 << MPC52xx_IRQ_L1_OFFSET) &
323 			 MPC52xx_IRQ_L1_MASK;
324 	intrvect_linux |= intrvect_l2 & MPC52xx_IRQ_L2_MASK;
325 
326 	*out_hwirq = intrvect_linux;
327 	*out_flags = IRQ_TYPE_LEVEL_LOW;
328 	if (mpc52xx_is_extirq(intrvect_l1, intrvect_l2))
329 		*out_flags = mpc52xx_map_senses[intrvect_type];
330 
331 	pr_debug("return %x, l1=%d, l2=%d\n", intrvect_linux, intrvect_l1,
332 		 intrvect_l2);
333 	return 0;
334 }
335 
336 /**
337  * mpc52xx_irqhost_map - Hook to map from virq to an irq_chip structure
338  */
mpc52xx_irqhost_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t irq)339 static int mpc52xx_irqhost_map(struct irq_domain *h, unsigned int virq,
340 			       irq_hw_number_t irq)
341 {
342 	int l1irq;
343 	int l2irq;
344 	struct irq_chip *irqchip;
345 	void *hndlr;
346 	int type;
347 	u32 reg;
348 
349 	l1irq = (irq & MPC52xx_IRQ_L1_MASK) >> MPC52xx_IRQ_L1_OFFSET;
350 	l2irq = irq & MPC52xx_IRQ_L2_MASK;
351 
352 	/*
353 	 * External IRQs are handled differently by the hardware so they are
354 	 * handled by a dedicated irq_chip structure.
355 	 */
356 	if (mpc52xx_is_extirq(l1irq, l2irq)) {
357 		reg = in_be32(&intr->ctrl);
358 		type = mpc52xx_map_senses[(reg >> (22 - l2irq * 2)) & 0x3];
359 		if ((type == IRQ_TYPE_EDGE_FALLING) ||
360 		    (type == IRQ_TYPE_EDGE_RISING))
361 			hndlr = handle_edge_irq;
362 		else
363 			hndlr = handle_level_irq;
364 
365 		irq_set_chip_and_handler(virq, &mpc52xx_extirq_irqchip, hndlr);
366 		pr_debug("%s: External IRQ%i virq=%x, hw=%x. type=%x\n",
367 			 __func__, l2irq, virq, (int)irq, type);
368 		return 0;
369 	}
370 
371 	/* It is an internal SOC irq.  Choose the correct irq_chip */
372 	switch (l1irq) {
373 	case MPC52xx_IRQ_L1_MAIN: irqchip = &mpc52xx_main_irqchip; break;
374 	case MPC52xx_IRQ_L1_PERP: irqchip = &mpc52xx_periph_irqchip; break;
375 	case MPC52xx_IRQ_L1_SDMA: irqchip = &mpc52xx_sdma_irqchip; break;
376 	case MPC52xx_IRQ_L1_CRIT:
377 		pr_warn("%s: Critical IRQ #%d is unsupported! Nopping it.\n",
378 			__func__, l2irq);
379 		irq_set_chip(virq, &no_irq_chip);
380 		return 0;
381 	}
382 
383 	irq_set_chip_and_handler(virq, irqchip, handle_level_irq);
384 	pr_debug("%s: virq=%x, l1=%i, l2=%i\n", __func__, virq, l1irq, l2irq);
385 
386 	return 0;
387 }
388 
389 static const struct irq_domain_ops mpc52xx_irqhost_ops = {
390 	.xlate = mpc52xx_irqhost_xlate,
391 	.map = mpc52xx_irqhost_map,
392 };
393 
394 /**
395  * mpc52xx_init_irq - Initialize and register with the virq subsystem
396  *
397  * Hook for setting up IRQs on an mpc5200 system.  A pointer to this function
398  * is to be put into the machine definition structure.
399  *
400  * This function searches the device tree for an MPC5200 interrupt controller,
401  * initializes it, and registers it with the virq subsystem.
402  */
mpc52xx_init_irq(void)403 void __init mpc52xx_init_irq(void)
404 {
405 	u32 intr_ctrl;
406 	struct device_node *picnode;
407 	struct device_node *np;
408 
409 	/* Remap the necessary zones */
410 	picnode = of_find_matching_node(NULL, mpc52xx_pic_ids);
411 	intr = of_iomap(picnode, 0);
412 	if (!intr)
413 		panic(__FILE__	": find_and_map failed on 'mpc5200-pic'. "
414 				"Check node !");
415 
416 	np = of_find_matching_node(NULL, mpc52xx_sdma_ids);
417 	sdma = of_iomap(np, 0);
418 	of_node_put(np);
419 	if (!sdma)
420 		panic(__FILE__	": find_and_map failed on 'mpc5200-bestcomm'. "
421 				"Check node !");
422 
423 	pr_debug("MPC5200 IRQ controller mapped to 0x%p\n", intr);
424 
425 	/* Disable all interrupt sources. */
426 	out_be32(&sdma->IntPend, 0xffffffff);	/* 1 means clear pending */
427 	out_be32(&sdma->IntMask, 0xffffffff);	/* 1 means disabled */
428 	out_be32(&intr->per_mask, 0x7ffffc00);	/* 1 means disabled */
429 	out_be32(&intr->main_mask, 0x00010fff);	/* 1 means disabled */
430 	intr_ctrl = in_be32(&intr->ctrl);
431 	intr_ctrl &= 0x00ff0000;	/* Keeps IRQ[0-3] config */
432 	intr_ctrl |=	0x0f000000 |	/* clear IRQ 0-3 */
433 			0x00001000 |	/* MEE master external enable */
434 			0x00000000 |	/* 0 means disable IRQ 0-3 */
435 			0x00000001;	/* CEb route critical normally */
436 	out_be32(&intr->ctrl, intr_ctrl);
437 
438 	/* Zero a bunch of the priority settings. */
439 	out_be32(&intr->per_pri1, 0);
440 	out_be32(&intr->per_pri2, 0);
441 	out_be32(&intr->per_pri3, 0);
442 	out_be32(&intr->main_pri1, 0);
443 	out_be32(&intr->main_pri2, 0);
444 
445 	/*
446 	 * As last step, add an irq host to translate the real
447 	 * hw irq information provided by the ofw to linux virq
448 	 */
449 	mpc52xx_irqhost = irq_domain_add_linear(picnode,
450 	                                 MPC52xx_IRQ_HIGHTESTHWIRQ,
451 	                                 &mpc52xx_irqhost_ops, NULL);
452 
453 	if (!mpc52xx_irqhost)
454 		panic(__FILE__ ": Cannot allocate the IRQ host\n");
455 
456 	irq_set_default_host(mpc52xx_irqhost);
457 
458 	pr_info("MPC52xx PIC is up and running!\n");
459 }
460 
461 /**
462  * mpc52xx_get_irq - Get pending interrupt number hook function
463  *
464  * Called by the interrupt handler to determine what IRQ handler needs to be
465  * executed.
466  *
467  * Status of pending interrupts is determined by reading the encoded status
468  * register.  The encoded status register has three fields; one for each of the
469  * types of interrupts defined by the controller - 'critical', 'main' and
470  * 'peripheral'.  This function reads the status register and returns the IRQ
471  * number associated with the highest priority pending interrupt.  'Critical'
472  * interrupts have the highest priority, followed by 'main' interrupts, and
473  * then 'peripheral'.
474  *
475  * The mpc5200 interrupt controller can be configured to boost the priority
476  * of individual 'peripheral' interrupts.  If this is the case then a special
477  * value will appear in either the crit or main fields indicating a high
478  * or medium priority peripheral irq has occurred.
479  *
480  * This function checks each of the 3 irq request fields and returns the
481  * first pending interrupt that it finds.
482  *
483  * This function also identifies a 4th type of interrupt; 'bestcomm'.  Each
484  * bestcomm DMA task can raise the bestcomm peripheral interrupt.  When this
485  * occurs at task-specific IRQ# is decoded so that each task can have its
486  * own IRQ handler.
487  */
mpc52xx_get_irq(void)488 unsigned int mpc52xx_get_irq(void)
489 {
490 	u32 status;
491 	int irq;
492 
493 	status = in_be32(&intr->enc_status);
494 	if (status & 0x00000400) {	/* critical */
495 		irq = (status >> 8) & 0x3;
496 		if (irq == 2)	/* high priority peripheral */
497 			goto peripheral;
498 		irq |= (MPC52xx_IRQ_L1_CRIT << MPC52xx_IRQ_L1_OFFSET);
499 	} else if (status & 0x00200000) {	/* main */
500 		irq = (status >> 16) & 0x1f;
501 		if (irq == 4)	/* low priority peripheral */
502 			goto peripheral;
503 		irq |= (MPC52xx_IRQ_L1_MAIN << MPC52xx_IRQ_L1_OFFSET);
504 	} else if (status & 0x20000000) {	/* peripheral */
505 	      peripheral:
506 		irq = (status >> 24) & 0x1f;
507 		if (irq == 0) {	/* bestcomm */
508 			status = in_be32(&sdma->IntPend);
509 			irq = ffs(status) - 1;
510 			irq |= (MPC52xx_IRQ_L1_SDMA << MPC52xx_IRQ_L1_OFFSET);
511 		} else {
512 			irq |= (MPC52xx_IRQ_L1_PERP << MPC52xx_IRQ_L1_OFFSET);
513 		}
514 	} else {
515 		return 0;
516 	}
517 
518 	return irq_linear_revmap(mpc52xx_irqhost, irq);
519 }
520