1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
28  */
29 
30 #ifndef _SYS_METASLAB_IMPL_H
31 #define	_SYS_METASLAB_IMPL_H
32 
33 #include <sys/metaslab.h>
34 #include <sys/space_map.h>
35 #include <sys/range_tree.h>
36 #include <sys/vdev.h>
37 #include <sys/txg.h>
38 #include <sys/avl.h>
39 #include <sys/multilist.h>
40 
41 #ifdef	__cplusplus
42 extern "C" {
43 #endif
44 
45 /*
46  * Metaslab allocation tracing record.
47  */
48 typedef struct metaslab_alloc_trace {
49 	list_node_t			mat_list_node;
50 	metaslab_group_t		*mat_mg;
51 	metaslab_t			*mat_msp;
52 	uint64_t			mat_size;
53 	uint64_t			mat_weight;
54 	uint32_t			mat_dva_id;
55 	uint64_t			mat_offset;
56 	int					mat_allocator;
57 } metaslab_alloc_trace_t;
58 
59 /*
60  * Used by the metaslab allocation tracing facility to indicate
61  * error conditions. These errors are stored to the offset member
62  * of the metaslab_alloc_trace_t record and displayed by mdb.
63  */
64 typedef enum trace_alloc_type {
65 	TRACE_ALLOC_FAILURE	= -1ULL,
66 	TRACE_TOO_SMALL		= -2ULL,
67 	TRACE_FORCE_GANG	= -3ULL,
68 	TRACE_NOT_ALLOCATABLE	= -4ULL,
69 	TRACE_GROUP_FAILURE	= -5ULL,
70 	TRACE_ENOSPC		= -6ULL,
71 	TRACE_CONDENSING	= -7ULL,
72 	TRACE_VDEV_ERROR	= -8ULL,
73 	TRACE_DISABLED		= -9ULL,
74 } trace_alloc_type_t;
75 
76 #define	METASLAB_WEIGHT_PRIMARY		(1ULL << 63)
77 #define	METASLAB_WEIGHT_SECONDARY	(1ULL << 62)
78 #define	METASLAB_WEIGHT_CLAIM		(1ULL << 61)
79 #define	METASLAB_WEIGHT_TYPE		(1ULL << 60)
80 #define	METASLAB_ACTIVE_MASK		\
81 	(METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY | \
82 	METASLAB_WEIGHT_CLAIM)
83 
84 /*
85  * The metaslab weight is used to encode the amount of free space in a
86  * metaslab, such that the "best" metaslab appears first when sorting the
87  * metaslabs by weight. The weight (and therefore the "best" metaslab) can
88  * be determined in two different ways: by computing a weighted sum of all
89  * the free space in the metaslab (a space based weight) or by counting only
90  * the free segments of the largest size (a segment based weight). We prefer
91  * the segment based weight because it reflects how the free space is
92  * comprised, but we cannot always use it -- legacy pools do not have the
93  * space map histogram information necessary to determine the largest
94  * contiguous regions. Pools that have the space map histogram determine
95  * the segment weight by looking at each bucket in the histogram and
96  * determining the free space whose size in bytes is in the range:
97  *	[2^i, 2^(i+1))
98  * We then encode the largest index, i, that contains regions into the
99  * segment-weighted value.
100  *
101  * Space-based weight:
102  *
103  *      64      56      48      40      32      24      16      8       0
104  *      +-------+-------+-------+-------+-------+-------+-------+-------+
105  *      |PSC1|                  weighted-free space                     |
106  *      +-------+-------+-------+-------+-------+-------+-------+-------+
107  *
108  *	PS - indicates primary and secondary activation
109  *	C - indicates activation for claimed block zio
110  *	space - the fragmentation-weighted space
111  *
112  * Segment-based weight:
113  *
114  *      64      56      48      40      32      24      16      8       0
115  *      +-------+-------+-------+-------+-------+-------+-------+-------+
116  *      |PSC0| idx|            count of segments in region              |
117  *      +-------+-------+-------+-------+-------+-------+-------+-------+
118  *
119  *	PS - indicates primary and secondary activation
120  *	C - indicates activation for claimed block zio
121  *	idx - index for the highest bucket in the histogram
122  *	count - number of segments in the specified bucket
123  */
124 #define	WEIGHT_GET_ACTIVE(weight)		BF64_GET((weight), 61, 3)
125 #define	WEIGHT_SET_ACTIVE(weight, x)		BF64_SET((weight), 61, 3, x)
126 
127 #define	WEIGHT_IS_SPACEBASED(weight)		\
128 	((weight) == 0 || BF64_GET((weight), 60, 1))
129 #define	WEIGHT_SET_SPACEBASED(weight)		BF64_SET((weight), 60, 1, 1)
130 
131 /*
132  * These macros are only applicable to segment-based weighting.
133  */
134 #define	WEIGHT_GET_INDEX(weight)		BF64_GET((weight), 54, 6)
135 #define	WEIGHT_SET_INDEX(weight, x)		BF64_SET((weight), 54, 6, x)
136 #define	WEIGHT_GET_COUNT(weight)		BF64_GET((weight), 0, 54)
137 #define	WEIGHT_SET_COUNT(weight, x)		BF64_SET((weight), 0, 54, x)
138 
139 /*
140  * Per-allocator data structure.
141  */
142 typedef struct metaslab_class_allocator {
143 	metaslab_group_t	*mca_rotor;
144 	uint64_t		mca_aliquot;
145 
146 	/*
147 	 * The allocation throttle works on a reservation system. Whenever
148 	 * an asynchronous zio wants to perform an allocation it must
149 	 * first reserve the number of blocks that it wants to allocate.
150 	 * If there aren't sufficient slots available for the pending zio
151 	 * then that I/O is throttled until more slots free up. The current
152 	 * number of reserved allocations is maintained by the mca_alloc_slots
153 	 * refcount. The mca_alloc_max_slots value determines the maximum
154 	 * number of allocations that the system allows. Gang blocks are
155 	 * allowed to reserve slots even if we've reached the maximum
156 	 * number of allocations allowed.
157 	 */
158 	uint64_t		mca_alloc_max_slots;
159 	zfs_refcount_t		mca_alloc_slots;
160 } ____cacheline_aligned metaslab_class_allocator_t;
161 
162 /*
163  * A metaslab class encompasses a category of allocatable top-level vdevs.
164  * Each top-level vdev is associated with a metaslab group which defines
165  * the allocatable region for that vdev. Examples of these categories include
166  * "normal" for data block allocations (i.e. main pool allocations) or "log"
167  * for allocations designated for intent log devices (i.e. slog devices).
168  * When a block allocation is requested from the SPA it is associated with a
169  * metaslab_class_t, and only top-level vdevs (i.e. metaslab groups) belonging
170  * to the class can be used to satisfy that request. Allocations are done
171  * by traversing the metaslab groups that are linked off of the mca_rotor field.
172  * This rotor points to the next metaslab group where allocations will be
173  * attempted. Allocating a block is a 3 step process -- select the metaslab
174  * group, select the metaslab, and then allocate the block. The metaslab
175  * class defines the low-level block allocator that will be used as the
176  * final step in allocation. These allocators are pluggable allowing each class
177  * to use a block allocator that best suits that class.
178  */
179 struct metaslab_class {
180 	kmutex_t		mc_lock;
181 	spa_t			*mc_spa;
182 	const metaslab_ops_t		*mc_ops;
183 
184 	/*
185 	 * Track the number of metaslab groups that have been initialized
186 	 * and can accept allocations. An initialized metaslab group is
187 	 * one has been completely added to the config (i.e. we have
188 	 * updated the MOS config and the space has been added to the pool).
189 	 */
190 	uint64_t		mc_groups;
191 
192 	/*
193 	 * Toggle to enable/disable the allocation throttle.
194 	 */
195 	boolean_t		mc_alloc_throttle_enabled;
196 
197 	uint64_t		mc_alloc_groups; /* # of allocatable groups */
198 
199 	uint64_t		mc_alloc;	/* total allocated space */
200 	uint64_t		mc_deferred;	/* total deferred frees */
201 	uint64_t		mc_space;	/* total space (alloc + free) */
202 	uint64_t		mc_dspace;	/* total deflated space */
203 	uint64_t		mc_histogram[RANGE_TREE_HISTOGRAM_SIZE];
204 
205 	/*
206 	 * List of all loaded metaslabs in the class, sorted in order of most
207 	 * recent use.
208 	 */
209 	multilist_t		mc_metaslab_txg_list;
210 
211 	metaslab_class_allocator_t	mc_allocator[];
212 };
213 
214 /*
215  * Per-allocator data structure.
216  */
217 typedef struct metaslab_group_allocator {
218 	uint64_t	mga_cur_max_alloc_queue_depth;
219 	zfs_refcount_t	mga_alloc_queue_depth;
220 	metaslab_t	*mga_primary;
221 	metaslab_t	*mga_secondary;
222 } metaslab_group_allocator_t;
223 
224 /*
225  * Metaslab groups encapsulate all the allocatable regions (i.e. metaslabs)
226  * of a top-level vdev. They are linked together to form a circular linked
227  * list and can belong to only one metaslab class. Metaslab groups may become
228  * ineligible for allocations for a number of reasons such as limited free
229  * space, fragmentation, or going offline. When this happens the allocator will
230  * simply find the next metaslab group in the linked list and attempt
231  * to allocate from that group instead.
232  */
233 struct metaslab_group {
234 	kmutex_t		mg_lock;
235 	avl_tree_t		mg_metaslab_tree;
236 	uint64_t		mg_aliquot;
237 	boolean_t		mg_allocatable;		/* can we allocate? */
238 	uint64_t		mg_ms_ready;
239 
240 	/*
241 	 * A metaslab group is considered to be initialized only after
242 	 * we have updated the MOS config and added the space to the pool.
243 	 * We only allow allocation attempts to a metaslab group if it
244 	 * has been initialized.
245 	 */
246 	boolean_t		mg_initialized;
247 
248 	uint64_t		mg_free_capacity;	/* percentage free */
249 	int64_t			mg_bias;
250 	int64_t			mg_activation_count;
251 	metaslab_class_t	*mg_class;
252 	vdev_t			*mg_vd;
253 	metaslab_group_t	*mg_prev;
254 	metaslab_group_t	*mg_next;
255 
256 	/*
257 	 * In order for the allocation throttle to function properly, we cannot
258 	 * have too many IOs going to each disk by default; the throttle
259 	 * operates by allocating more work to disks that finish quickly, so
260 	 * allocating larger chunks to each disk reduces its effectiveness.
261 	 * However, if the number of IOs going to each allocator is too small,
262 	 * we will not perform proper aggregation at the vdev_queue layer,
263 	 * also resulting in decreased performance. Therefore, we will use a
264 	 * ramp-up strategy.
265 	 *
266 	 * Each allocator in each metaslab group has a current queue depth
267 	 * (mg_alloc_queue_depth[allocator]) and a current max queue depth
268 	 * (mga_cur_max_alloc_queue_depth[allocator]), and each metaslab group
269 	 * has an absolute max queue depth (mg_max_alloc_queue_depth).  We
270 	 * add IOs to an allocator until the mg_alloc_queue_depth for that
271 	 * allocator hits the cur_max. Every time an IO completes for a given
272 	 * allocator on a given metaslab group, we increment its cur_max until
273 	 * it reaches mg_max_alloc_queue_depth. The cur_max resets every txg to
274 	 * help protect against disks that decrease in performance over time.
275 	 *
276 	 * It's possible for an allocator to handle more allocations than
277 	 * its max. This can occur when gang blocks are required or when other
278 	 * groups are unable to handle their share of allocations.
279 	 */
280 	uint64_t		mg_max_alloc_queue_depth;
281 
282 	/*
283 	 * A metalab group that can no longer allocate the minimum block
284 	 * size will set mg_no_free_space. Once a metaslab group is out
285 	 * of space then its share of work must be distributed to other
286 	 * groups.
287 	 */
288 	boolean_t		mg_no_free_space;
289 
290 	uint64_t		mg_allocations;
291 	uint64_t		mg_failed_allocations;
292 	uint64_t		mg_fragmentation;
293 	uint64_t		mg_histogram[RANGE_TREE_HISTOGRAM_SIZE];
294 
295 	int			mg_ms_disabled;
296 	boolean_t		mg_disabled_updating;
297 	kmutex_t		mg_ms_disabled_lock;
298 	kcondvar_t		mg_ms_disabled_cv;
299 
300 	int			mg_allocators;
301 	metaslab_group_allocator_t	mg_allocator[];
302 };
303 
304 /*
305  * This value defines the number of elements in the ms_lbas array. The value
306  * of 64 was chosen as it covers all power of 2 buckets up to UINT64_MAX.
307  * This is the equivalent of highbit(UINT64_MAX).
308  */
309 #define	MAX_LBAS	64
310 
311 /*
312  * Each metaslab maintains a set of in-core trees to track metaslab
313  * operations.  The in-core free tree (ms_allocatable) contains the list of
314  * free segments which are eligible for allocation.  As blocks are
315  * allocated, the allocated segments are removed from the ms_allocatable and
316  * added to a per txg allocation tree (ms_allocating).  As blocks are
317  * freed, they are added to the free tree (ms_freeing).  These trees
318  * allow us to process all allocations and frees in syncing context
319  * where it is safe to update the on-disk space maps.  An additional set
320  * of in-core trees is maintained to track deferred frees
321  * (ms_defer).  Once a block is freed it will move from the
322  * ms_freed to the ms_defer tree.  A deferred free means that a block
323  * has been freed but cannot be used by the pool until TXG_DEFER_SIZE
324  * transactions groups later.  For example, a block that is freed in txg
325  * 50 will not be available for reallocation until txg 52 (50 +
326  * TXG_DEFER_SIZE).  This provides a safety net for uberblock rollback.
327  * A pool could be safely rolled back TXG_DEFERS_SIZE transactions
328  * groups and ensure that no block has been reallocated.
329  *
330  * The simplified transition diagram looks like this:
331  *
332  *
333  *      ALLOCATE
334  *         |
335  *         V
336  *    free segment (ms_allocatable) -> ms_allocating[4] -> (write to space map)
337  *         ^
338  *         |                        ms_freeing <--- FREE
339  *         |                             |
340  *         |                             v
341  *         |                         ms_freed
342  *         |                             |
343  *         +-------- ms_defer[2] <-------+-------> (write to space map)
344  *
345  *
346  * Each metaslab's space is tracked in a single space map in the MOS,
347  * which is only updated in syncing context.  Each time we sync a txg,
348  * we append the allocs and frees from that txg to the space map.  The
349  * pool space is only updated once all metaslabs have finished syncing.
350  *
351  * To load the in-core free tree we read the space map from disk.  This
352  * object contains a series of alloc and free records that are combined
353  * to make up the list of all free segments in this metaslab.  These
354  * segments are represented in-core by the ms_allocatable and are stored
355  * in an AVL tree.
356  *
357  * As the space map grows (as a result of the appends) it will
358  * eventually become space-inefficient.  When the metaslab's in-core
359  * free tree is zfs_condense_pct/100 times the size of the minimal
360  * on-disk representation, we rewrite it in its minimized form.  If a
361  * metaslab needs to condense then we must set the ms_condensing flag to
362  * ensure that allocations are not performed on the metaslab that is
363  * being written.
364  */
365 struct metaslab {
366 	/*
367 	 * This is the main lock of the metaslab and its purpose is to
368 	 * coordinate our allocations and frees [e.g., metaslab_block_alloc(),
369 	 * metaslab_free_concrete(), ..etc] with our various syncing
370 	 * procedures [e.g., metaslab_sync(), metaslab_sync_done(), ..etc].
371 	 *
372 	 * The lock is also used during some miscellaneous operations like
373 	 * using the metaslab's histogram for the metaslab group's histogram
374 	 * aggregation, or marking the metaslab for initialization.
375 	 */
376 	kmutex_t	ms_lock;
377 
378 	/*
379 	 * Acquired together with the ms_lock whenever we expect to
380 	 * write to metaslab data on-disk (i.e flushing entries to
381 	 * the metaslab's space map). It helps coordinate readers of
382 	 * the metaslab's space map [see spa_vdev_remove_thread()]
383 	 * with writers [see metaslab_sync() or metaslab_flush()].
384 	 *
385 	 * Note that metaslab_load(), even though a reader, uses
386 	 * a completely different mechanism to deal with the reading
387 	 * of the metaslab's space map based on ms_synced_length. That
388 	 * said, the function still uses the ms_sync_lock after it
389 	 * has read the ms_sm [see relevant comment in metaslab_load()
390 	 * as to why].
391 	 */
392 	kmutex_t	ms_sync_lock;
393 
394 	kcondvar_t	ms_load_cv;
395 	space_map_t	*ms_sm;
396 	uint64_t	ms_id;
397 	uint64_t	ms_start;
398 	uint64_t	ms_size;
399 	uint64_t	ms_fragmentation;
400 
401 	range_tree_t	*ms_allocating[TXG_SIZE];
402 	range_tree_t	*ms_allocatable;
403 	uint64_t	ms_allocated_this_txg;
404 	uint64_t	ms_allocating_total;
405 
406 	/*
407 	 * The following range trees are accessed only from syncing context.
408 	 * ms_free*tree only have entries while syncing, and are empty
409 	 * between syncs.
410 	 */
411 	range_tree_t	*ms_freeing;	/* to free this syncing txg */
412 	range_tree_t	*ms_freed;	/* already freed this syncing txg */
413 	range_tree_t	*ms_defer[TXG_DEFER_SIZE];
414 	range_tree_t	*ms_checkpointing; /* to add to the checkpoint */
415 
416 	/*
417 	 * The ms_trim tree is the set of allocatable segments which are
418 	 * eligible for trimming. (When the metaslab is loaded, it's a
419 	 * subset of ms_allocatable.)  It's kept in-core as long as the
420 	 * autotrim property is set and is not vacated when the metaslab
421 	 * is unloaded.  Its purpose is to aggregate freed ranges to
422 	 * facilitate efficient trimming.
423 	 */
424 	range_tree_t	*ms_trim;
425 
426 	boolean_t	ms_condensing;	/* condensing? */
427 	boolean_t	ms_condense_wanted;
428 
429 	/*
430 	 * The number of consumers which have disabled the metaslab.
431 	 */
432 	uint64_t	ms_disabled;
433 
434 	/*
435 	 * We must always hold the ms_lock when modifying ms_loaded
436 	 * and ms_loading.
437 	 */
438 	boolean_t	ms_loaded;
439 	boolean_t	ms_loading;
440 	kcondvar_t	ms_flush_cv;
441 	boolean_t	ms_flushing;
442 
443 	/*
444 	 * The following histograms count entries that are in the
445 	 * metaslab's space map (and its histogram) but are not in
446 	 * ms_allocatable yet, because they are in ms_freed, ms_freeing,
447 	 * or ms_defer[].
448 	 *
449 	 * When the metaslab is not loaded, its ms_weight needs to
450 	 * reflect what is allocatable (i.e. what will be part of
451 	 * ms_allocatable if it is loaded).  The weight is computed from
452 	 * the spacemap histogram, but that includes ranges that are
453 	 * not yet allocatable (because they are in ms_freed,
454 	 * ms_freeing, or ms_defer[]).  Therefore, when calculating the
455 	 * weight, we need to remove those ranges.
456 	 *
457 	 * The ranges in the ms_freed and ms_defer[] range trees are all
458 	 * present in the spacemap.  However, the spacemap may have
459 	 * multiple entries to represent a contiguous range, because it
460 	 * is written across multiple sync passes, but the changes of
461 	 * all sync passes are consolidated into the range trees.
462 	 * Adjacent ranges that are freed in different sync passes of
463 	 * one txg will be represented separately (as 2 or more entries)
464 	 * in the space map (and its histogram), but these adjacent
465 	 * ranges will be consolidated (represented as one entry) in the
466 	 * ms_freed/ms_defer[] range trees (and their histograms).
467 	 *
468 	 * When calculating the weight, we can not simply subtract the
469 	 * range trees' histograms from the spacemap's histogram,
470 	 * because the range trees' histograms may have entries in
471 	 * higher buckets than the spacemap, due to consolidation.
472 	 * Instead we must subtract the exact entries that were added to
473 	 * the spacemap's histogram.  ms_synchist and ms_deferhist[]
474 	 * represent these exact entries, so we can subtract them from
475 	 * the spacemap's histogram when calculating ms_weight.
476 	 *
477 	 * ms_synchist represents the same ranges as ms_freeing +
478 	 * ms_freed, but without consolidation across sync passes.
479 	 *
480 	 * ms_deferhist[i] represents the same ranges as ms_defer[i],
481 	 * but without consolidation across sync passes.
482 	 */
483 	uint64_t	ms_synchist[SPACE_MAP_HISTOGRAM_SIZE];
484 	uint64_t	ms_deferhist[TXG_DEFER_SIZE][SPACE_MAP_HISTOGRAM_SIZE];
485 
486 	/*
487 	 * Tracks the exact amount of allocated space of this metaslab
488 	 * (and specifically the metaslab's space map) up to the most
489 	 * recently completed sync pass [see usage in metaslab_sync()].
490 	 */
491 	uint64_t	ms_allocated_space;
492 	int64_t		ms_deferspace;	/* sum of ms_defermap[] space	*/
493 	uint64_t	ms_weight;	/* weight vs. others in group	*/
494 	uint64_t	ms_activation_weight;	/* activation weight	*/
495 
496 	/*
497 	 * Track of whenever a metaslab is selected for loading or allocation.
498 	 * We use this value to determine how long the metaslab should
499 	 * stay cached.
500 	 */
501 	uint64_t	ms_selected_txg;
502 	/*
503 	 * ms_load/unload_time can be used for performance monitoring
504 	 * (e.g. by dtrace or mdb).
505 	 */
506 	hrtime_t	ms_load_time;	/* time last loaded */
507 	hrtime_t	ms_unload_time;	/* time last unloaded */
508 	hrtime_t	ms_selected_time; /* time last allocated from */
509 
510 	uint64_t	ms_alloc_txg;	/* last successful alloc (debug only) */
511 	uint64_t	ms_max_size;	/* maximum allocatable size	*/
512 
513 	/*
514 	 * -1 if it's not active in an allocator, otherwise set to the allocator
515 	 * this metaslab is active for.
516 	 */
517 	int		ms_allocator;
518 	boolean_t	ms_primary; /* Only valid if ms_allocator is not -1 */
519 
520 	/*
521 	 * The metaslab block allocators can optionally use a size-ordered
522 	 * range tree and/or an array of LBAs. Not all allocators use
523 	 * this functionality. The ms_allocatable_by_size should always
524 	 * contain the same number of segments as the ms_allocatable. The
525 	 * only difference is that the ms_allocatable_by_size is ordered by
526 	 * segment sizes.
527 	 */
528 	zfs_btree_t		ms_allocatable_by_size;
529 	zfs_btree_t		ms_unflushed_frees_by_size;
530 	uint64_t	ms_lbas[MAX_LBAS];
531 
532 	metaslab_group_t *ms_group;	/* metaslab group		*/
533 	avl_node_t	ms_group_node;	/* node in metaslab group tree	*/
534 	txg_node_t	ms_txg_node;	/* per-txg dirty metaslab links	*/
535 	avl_node_t	ms_spa_txg_node; /* node in spa_metaslabs_by_txg */
536 	/*
537 	 * Node in metaslab class's selected txg list
538 	 */
539 	multilist_node_t	ms_class_txg_node;
540 
541 	/*
542 	 * Allocs and frees that are committed to the vdev log spacemap but
543 	 * not yet to this metaslab's spacemap.
544 	 */
545 	range_tree_t	*ms_unflushed_allocs;
546 	range_tree_t	*ms_unflushed_frees;
547 
548 	/*
549 	 * We have flushed entries up to but not including this TXG. In
550 	 * other words, all changes from this TXG and onward should not
551 	 * be in this metaslab's space map and must be read from the
552 	 * log space maps.
553 	 */
554 	uint64_t	ms_unflushed_txg;
555 	boolean_t	ms_unflushed_dirty;
556 
557 	/* updated every time we are done syncing the metaslab's space map */
558 	uint64_t	ms_synced_length;
559 
560 	boolean_t	ms_new;
561 };
562 
563 typedef struct metaslab_unflushed_phys {
564 	/* on-disk counterpart of ms_unflushed_txg */
565 	uint64_t	msp_unflushed_txg;
566 } metaslab_unflushed_phys_t;
567 
568 #ifdef	__cplusplus
569 }
570 #endif
571 
572 #endif	/* _SYS_METASLAB_IMPL_H */
573