xref: /netbsd/sys/dev/pci/if_msk.c (revision 8de7985d)
1 /* $NetBSD: if_msk.c,v 1.119 2022/09/24 18:12:42 thorpej Exp $ */
2 /*	$OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $	*/
3 
4 /*
5  * Copyright (c) 1997, 1998, 1999, 2000
6  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36  */
37 
38 /*
39  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
40  *
41  * Permission to use, copy, modify, and distribute this software for any
42  * purpose with or without fee is hereby granted, provided that the above
43  * copyright notice and this permission notice appear in all copies.
44  *
45  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52  */
53 
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.119 2022/09/24 18:12:42 thorpej Exp $");
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/mutex.h>
62 #include <sys/kernel.h>
63 #include <sys/socket.h>
64 #include <sys/device.h>
65 #include <sys/queue.h>
66 #include <sys/callout.h>
67 #include <sys/sysctl.h>
68 #include <sys/endian.h>
69 #ifdef __NetBSD__
70  #define letoh16 le16toh
71  #define letoh32 le32toh
72 #endif
73 
74 #include <net/if.h>
75 #include <net/if_dl.h>
76 #include <net/if_types.h>
77 
78 #include <net/if_media.h>
79 
80 #include <net/bpf.h>
81 #include <sys/rndsource.h>
82 
83 #include <dev/mii/mii.h>
84 #include <dev/mii/miivar.h>
85 
86 #include <dev/pci/pcireg.h>
87 #include <dev/pci/pcivar.h>
88 #include <dev/pci/pcidevs.h>
89 
90 #include <dev/pci/if_skreg.h>
91 #include <dev/pci/if_mskvar.h>
92 
93 static int mskc_probe(device_t, cfdata_t, void *);
94 static void mskc_attach(device_t, device_t, void *);
95 static int mskc_detach(device_t, int);
96 static void mskc_reset(struct sk_softc *);
97 static bool mskc_suspend(device_t, const pmf_qual_t *);
98 static bool mskc_resume(device_t, const pmf_qual_t *);
99 static int msk_probe(device_t, cfdata_t, void *);
100 static void msk_attach(device_t, device_t, void *);
101 static int msk_detach(device_t, int);
102 static void msk_reset(struct sk_if_softc *);
103 static int mskcprint(void *, const char *);
104 static int msk_intr(void *);
105 static void msk_intr_yukon(struct sk_if_softc *);
106 static void msk_rxeof(struct sk_if_softc *, uint16_t, uint32_t);
107 static void msk_txeof(struct sk_if_softc *);
108 static int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
109 static void msk_start(struct ifnet *);
110 static int msk_ioctl(struct ifnet *, u_long, void *);
111 static int msk_init(struct ifnet *);
112 static void msk_init_yukon(struct sk_if_softc *);
113 static void msk_stop(struct ifnet *, int);
114 static void msk_watchdog(struct ifnet *);
115 static int msk_newbuf(struct sk_if_softc *);
116 static int msk_alloc_jumbo_mem(struct sk_if_softc *);
117 static void *msk_jalloc(struct sk_if_softc *);
118 static void msk_jfree(struct mbuf *, void *, size_t, void *);
119 static int msk_init_rx_ring(struct sk_if_softc *);
120 static int msk_init_tx_ring(struct sk_if_softc *);
121 static void msk_fill_rx_ring(struct sk_if_softc *);
122 
123 static void msk_update_int_mod(struct sk_softc *, int);
124 
125 static int msk_miibus_readreg(device_t, int, int, uint16_t *);
126 static int msk_miibus_writereg(device_t, int, int, uint16_t);
127 static void msk_miibus_statchg(struct ifnet *);
128 
129 static void msk_setmulti(struct sk_if_softc *);
130 static void msk_setpromisc(struct sk_if_softc *);
131 static void msk_tick(void *);
132 static void msk_fill_rx_tick(void *);
133 
134 /* #define MSK_DEBUG 1 */
135 #ifdef MSK_DEBUG
136 #define DPRINTF(x)	if (mskdebug) printf x
137 #define DPRINTFN(n, x)	if (mskdebug >= (n)) printf x
138 int	mskdebug = MSK_DEBUG;
139 
140 static void msk_dump_txdesc(struct msk_tx_desc *, int);
141 static void msk_dump_mbuf(struct mbuf *);
142 static void msk_dump_bytes(const char *, int);
143 #else
144 #define DPRINTF(x)
145 #define DPRINTFN(n, x)
146 #endif
147 
148 static int msk_sysctl_handler(SYSCTLFN_PROTO);
149 static int msk_root_num;
150 
151 #define MSK_ADDR_LO(x)	((uint64_t) (x) & 0xffffffffUL)
152 #define MSK_ADDR_HI(x)	((uint64_t) (x) >> 32)
153 
154 /* supported device vendors */
155 static const struct device_compatible_entry compat_data[] = {
156 	{ .id = PCI_ID_CODE(PCI_VENDOR_DLINK,
157 		PCI_PRODUCT_DLINK_DGE550SX) },
158 	{ .id = PCI_ID_CODE(PCI_VENDOR_DLINK,
159 		PCI_PRODUCT_DLINK_DGE550T_B1) },
160 	{ .id = PCI_ID_CODE(PCI_VENDOR_DLINK,
161 		PCI_PRODUCT_DLINK_DGE560SX) },
162 	{ .id = PCI_ID_CODE(PCI_VENDOR_DLINK,
163 		PCI_PRODUCT_DLINK_DGE560T) },
164 
165 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
166 		PCI_PRODUCT_MARVELL_YUKONII_8021CU) },
167 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
168 		PCI_PRODUCT_MARVELL_YUKONII_8021X) },
169 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
170 		PCI_PRODUCT_MARVELL_YUKONII_8022CU) },
171 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
172 		PCI_PRODUCT_MARVELL_YUKONII_8022X) },
173 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
174 		PCI_PRODUCT_MARVELL_YUKON_8035) },
175 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
176 		PCI_PRODUCT_MARVELL_YUKON_8036) },
177 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
178 		PCI_PRODUCT_MARVELL_YUKON_8038) },
179 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
180 		PCI_PRODUCT_MARVELL_YUKON_8039) },
181 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
182 		PCI_PRODUCT_MARVELL_YUKON_8040) },
183 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
184 		PCI_PRODUCT_MARVELL_YUKON_8040T) },
185 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
186 		PCI_PRODUCT_MARVELL_YUKON_8042) },
187 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
188 		PCI_PRODUCT_MARVELL_YUKON_8048) },
189 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
190 		PCI_PRODUCT_MARVELL_YUKON_8050) },
191 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
192 		PCI_PRODUCT_MARVELL_YUKON_8052) },
193 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
194 		PCI_PRODUCT_MARVELL_YUKON_8053) },
195 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
196 		PCI_PRODUCT_MARVELL_YUKON_8055) },
197 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
198 		PCI_PRODUCT_MARVELL_YUKON_8055_2) },
199 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
200 		PCI_PRODUCT_MARVELL_YUKON_8056) },
201 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
202 		PCI_PRODUCT_MARVELL_YUKON_8057) },
203 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
204 		PCI_PRODUCT_MARVELL_YUKON_8058) },
205 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
206 		PCI_PRODUCT_MARVELL_YUKON_8059) },
207 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
208 		PCI_PRODUCT_MARVELL_YUKONII_8061CU) },
209 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
210 		PCI_PRODUCT_MARVELL_YUKONII_8061X) },
211 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
212 		PCI_PRODUCT_MARVELL_YUKONII_8062CU) },
213 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
214 		PCI_PRODUCT_MARVELL_YUKONII_8062X) },
215 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
216 		PCI_PRODUCT_MARVELL_YUKON_8070) },
217 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
218 		PCI_PRODUCT_MARVELL_YUKON_8071) },
219 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
220 		PCI_PRODUCT_MARVELL_YUKON_8072) },
221 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
222 		PCI_PRODUCT_MARVELL_YUKON_8075) },
223 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
224 		PCI_PRODUCT_MARVELL_YUKON_8079) },
225 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
226 		PCI_PRODUCT_MARVELL_YUKON_C032) },
227 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
228 		PCI_PRODUCT_MARVELL_YUKON_C033) },
229 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
230 		PCI_PRODUCT_MARVELL_YUKON_C034) },
231 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
232 		PCI_PRODUCT_MARVELL_YUKON_C036) },
233 	{ .id = PCI_ID_CODE(PCI_VENDOR_MARVELL,
234 		PCI_PRODUCT_MARVELL_YUKON_C042) },
235 
236 	{ .id = PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
237 		PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX) },
238 	{ .id = PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
239 		PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21) },
240 
241 	PCI_COMPAT_EOL
242 };
243 
244 static inline uint32_t
sk_win_read_4(struct sk_softc * sc,uint32_t reg)245 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
246 {
247 	return CSR_READ_4(sc, reg);
248 }
249 
250 static inline uint16_t
sk_win_read_2(struct sk_softc * sc,uint32_t reg)251 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
252 {
253 	return CSR_READ_2(sc, reg);
254 }
255 
256 static inline uint8_t
sk_win_read_1(struct sk_softc * sc,uint32_t reg)257 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
258 {
259 	return CSR_READ_1(sc, reg);
260 }
261 
262 static inline void
sk_win_write_4(struct sk_softc * sc,uint32_t reg,uint32_t x)263 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
264 {
265 	CSR_WRITE_4(sc, reg, x);
266 }
267 
268 static inline void
sk_win_write_2(struct sk_softc * sc,uint32_t reg,uint16_t x)269 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
270 {
271 	CSR_WRITE_2(sc, reg, x);
272 }
273 
274 static inline void
sk_win_write_1(struct sk_softc * sc,uint32_t reg,uint8_t x)275 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
276 {
277 	CSR_WRITE_1(sc, reg, x);
278 }
279 
280 static int
msk_miibus_readreg(device_t dev,int phy,int reg,uint16_t * val)281 msk_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
282 {
283 	struct sk_if_softc *sc_if = device_private(dev);
284 	uint16_t data;
285 	int i;
286 
287 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
288 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
289 
290 	for (i = 0; i < SK_TIMEOUT; i++) {
291 		DELAY(1);
292 		data = SK_YU_READ_2(sc_if, YUKON_SMICR);
293 		if (data & YU_SMICR_READ_VALID)
294 			break;
295 	}
296 
297 	if (i == SK_TIMEOUT) {
298 		device_printf(sc_if->sk_dev, "phy failed to come ready\n");
299 		return ETIMEDOUT;
300 	}
301 
302 	DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT));
303 
304 	*val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
305 
306 	DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
307 		phy, reg, *val));
308 
309 	return 0;
310 }
311 
312 static int
msk_miibus_writereg(device_t dev,int phy,int reg,uint16_t val)313 msk_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
314 {
315 	struct sk_if_softc *sc_if = device_private(dev);
316 	int i;
317 
318 	DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#hx\n",
319 		     phy, reg, val));
320 
321 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
322 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
323 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
324 
325 	for (i = 0; i < SK_TIMEOUT; i++) {
326 		DELAY(1);
327 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
328 			break;
329 	}
330 
331 	if (i == SK_TIMEOUT) {
332 		device_printf(sc_if->sk_dev, "phy write timed out\n");
333 		return ETIMEDOUT;
334 	}
335 
336 	return 0;
337 }
338 
339 static void
msk_miibus_statchg(struct ifnet * ifp)340 msk_miibus_statchg(struct ifnet *ifp)
341 {
342 	struct sk_if_softc *sc_if = ifp->if_softc;
343 	struct mii_data *mii = &sc_if->sk_mii;
344 	struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
345 	int gpcr;
346 
347 	gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
348 	gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
349 
350 	if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
351 	    sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
352 		/* Set speed. */
353 		gpcr |= YU_GPCR_SPEED_DIS;
354 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
355 		case IFM_1000_SX:
356 		case IFM_1000_LX:
357 		case IFM_1000_CX:
358 		case IFM_1000_T:
359 			gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
360 			break;
361 		case IFM_100_TX:
362 			gpcr |= YU_GPCR_SPEED;
363 			break;
364 		}
365 
366 		/* Set duplex. */
367 		gpcr |= YU_GPCR_DPLX_DIS;
368 		if ((mii->mii_media_active & IFM_FDX) != 0)
369 			gpcr |= YU_GPCR_DUPLEX;
370 
371 		/* Disable flow control. */
372 		gpcr |= YU_GPCR_FCTL_DIS;
373 		gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
374 	}
375 
376 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
377 
378 	DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
379 		     SK_YU_READ_2(sc_if, YUKON_GPCR)));
380 }
381 
382 static void
msk_setmulti(struct sk_if_softc * sc_if)383 msk_setmulti(struct sk_if_softc *sc_if)
384 {
385 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
386 	uint32_t hashes[2] = { 0, 0 };
387 	int h;
388 	struct ethercom *ec = &sc_if->sk_ethercom;
389 	struct ether_multi *enm;
390 	struct ether_multistep step;
391 	uint16_t reg;
392 
393 	/* First, zot all the existing filters. */
394 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
395 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
396 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
397 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
398 
399 
400 	/* Now program new ones. */
401 	reg = SK_YU_READ_2(sc_if, YUKON_RCR);
402 	reg |= YU_RCR_UFLEN;
403 allmulti:
404 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
405 		if ((ifp->if_flags & IFF_PROMISC) != 0)
406 			reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
407 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
408 			hashes[0] = 0xFFFFFFFF;
409 			hashes[1] = 0xFFFFFFFF;
410 		}
411 	} else {
412 		/* First find the tail of the list. */
413 		ETHER_LOCK(ec);
414 		ETHER_FIRST_MULTI(step, ec, enm);
415 		while (enm != NULL) {
416 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
417 				 ETHER_ADDR_LEN)) {
418 				ifp->if_flags |= IFF_ALLMULTI;
419 				ETHER_UNLOCK(ec);
420 				goto allmulti;
421 			}
422 			h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
423 			    ((1 << SK_HASH_BITS) - 1);
424 			if (h < 32)
425 				hashes[0] |= (1 << h);
426 			else
427 				hashes[1] |= (1 << (h - 32));
428 
429 			ETHER_NEXT_MULTI(step, enm);
430 		}
431 		ETHER_UNLOCK(ec);
432 		reg |= YU_RCR_MUFLEN;
433 	}
434 
435 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
436 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
437 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
438 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
439 	SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
440 }
441 
442 static void
msk_setpromisc(struct sk_if_softc * sc_if)443 msk_setpromisc(struct sk_if_softc *sc_if)
444 {
445 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
446 
447 	if (ifp->if_flags & IFF_PROMISC)
448 		SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
449 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
450 	else
451 		SK_YU_SETBIT_2(sc_if, YUKON_RCR,
452 		    YU_RCR_UFLEN | YU_RCR_MUFLEN);
453 }
454 
455 static int
msk_init_rx_ring(struct sk_if_softc * sc_if)456 msk_init_rx_ring(struct sk_if_softc *sc_if)
457 {
458 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
459 	struct msk_ring_data	*rd = sc_if->sk_rdata;
460 	struct msk_rx_desc	*r;
461 
462 	memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
463 
464 	sc_if->sk_cdata.sk_rx_prod = 0;
465 	sc_if->sk_cdata.sk_rx_cons = 0;
466 	sc_if->sk_cdata.sk_rx_cnt = 0;
467 	sc_if->sk_cdata.sk_rx_hiaddr = 0;
468 
469 	/* Mark the first ring element to initialize the high address. */
470 	sc_if->sk_cdata.sk_rx_hiaddr = 0;
471 	r = &rd->sk_rx_ring[cd->sk_rx_prod];
472 	r->sk_addr = htole32(cd->sk_rx_hiaddr);
473 	r->sk_len = 0;
474 	r->sk_ctl = 0;
475 	r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
476 	MSK_CDRXSYNC(sc_if, cd->sk_rx_prod,
477 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
478 	SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
479 	sc_if->sk_cdata.sk_rx_cnt++;
480 
481 	msk_fill_rx_ring(sc_if);
482 	return 0;
483 }
484 
485 static int
msk_init_tx_ring(struct sk_if_softc * sc_if)486 msk_init_tx_ring(struct sk_if_softc *sc_if)
487 {
488 	struct msk_chain_data	*cd = &sc_if->sk_cdata;
489 	struct msk_ring_data	*rd = sc_if->sk_rdata;
490 	struct msk_tx_desc	*t;
491 
492 	memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
493 
494 	sc_if->sk_cdata.sk_tx_prod = 0;
495 	sc_if->sk_cdata.sk_tx_cons = 0;
496 	sc_if->sk_cdata.sk_tx_cnt = 0;
497 	sc_if->sk_cdata.sk_tx_hiaddr = 0;
498 
499 	/* Mark the first ring element to initialize the high address. */
500 	sc_if->sk_cdata.sk_tx_hiaddr = 0;
501 	t = &rd->sk_tx_ring[cd->sk_tx_prod];
502 	t->sk_addr = htole32(cd->sk_tx_hiaddr);
503 	t->sk_len = 0;
504 	t->sk_ctl = 0;
505 	t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
506 	MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
507 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
508 	SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT);
509 	sc_if->sk_cdata.sk_tx_cnt++;
510 
511 	return 0;
512 }
513 
514 static int
msk_newbuf(struct sk_if_softc * sc_if)515 msk_newbuf(struct sk_if_softc *sc_if)
516 {
517 	struct sk_softc		*sc = sc_if->sk_softc;
518 	struct mbuf		*m_new = NULL;
519 	struct sk_chain		*c;
520 	struct msk_rx_desc	*r;
521 	void			*buf = NULL;
522 	bus_addr_t		addr;
523 	bus_dmamap_t		rxmap;
524 	size_t			i;
525 	uint32_t		rxidx, frag, cur, hiaddr, total;
526 	uint32_t		entries = 0;
527 	uint8_t			own = 0;
528 
529 	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
530 	if (m_new == NULL)
531 		return ENOBUFS;
532 
533 	/* Allocate the jumbo buffer */
534 	buf = msk_jalloc(sc_if);
535 	if (buf == NULL) {
536 		m_freem(m_new);
537 		DPRINTFN(1, ("%s jumbo allocation failed -- packet "
538 		    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
539 		return ENOBUFS;
540 	}
541 
542 	/* Attach the buffer to the mbuf */
543 	m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
544 	MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
545 
546 	m_adj(m_new, ETHER_ALIGN);
547 
548 	rxidx = frag = cur = sc_if->sk_cdata.sk_rx_prod;
549 	rxmap = sc_if->sk_cdata.sk_rx_chain[rxidx].sk_dmamap;
550 
551 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, rxmap, m_new, BUS_DMA_NOWAIT)) {
552 		DPRINTFN(2, ("msk_newbuf: dmamap_load failed\n"));
553 		m_freem(m_new);
554 		return ENOBUFS;
555 	}
556 
557 	/* Count how many rx descriptors needed. */
558 	hiaddr = sc_if->sk_cdata.sk_rx_hiaddr;
559 	for (total = i = 0; i < rxmap->dm_nsegs; i++) {
560 		if (hiaddr != MSK_ADDR_HI(rxmap->dm_segs[i].ds_addr)) {
561 			hiaddr = MSK_ADDR_HI(rxmap->dm_segs[i].ds_addr);
562 			total++;
563 		}
564 		total++;
565 	}
566 
567 	if (total > MSK_RX_RING_CNT - sc_if->sk_cdata.sk_rx_cnt - 1) {
568 		DPRINTFN(2, ("msk_newbuf: too few descriptors free\n"));
569 		bus_dmamap_unload(sc->sc_dmatag, rxmap);
570 		m_freem(m_new);
571 		return ENOBUFS;
572 	}
573 
574 	DPRINTFN(2, ("msk_newbuf: dm_nsegs=%d total desc=%u\n",
575 	    rxmap->dm_nsegs, total));
576 
577 	/* Sync the DMA map. */
578 	bus_dmamap_sync(sc->sc_dmatag, rxmap, 0, rxmap->dm_mapsize,
579 	    BUS_DMASYNC_PREREAD);
580 
581 	for (i = 0; i < rxmap->dm_nsegs; i++) {
582 		addr = rxmap->dm_segs[i].ds_addr;
583 		DPRINTFN(2, ("msk_newbuf: addr %llx\n",
584 		    (unsigned long long)addr));
585 		hiaddr = MSK_ADDR_HI(addr);
586 
587 		if (sc_if->sk_cdata.sk_rx_hiaddr != hiaddr) {
588 			c = &sc_if->sk_cdata.sk_rx_chain[frag];
589 			c->sk_mbuf = NULL;
590 			r = &sc_if->sk_rdata->sk_rx_ring[frag];
591 			r->sk_addr = htole32(hiaddr);
592 			r->sk_len = 0;
593 			r->sk_ctl = 0;
594 			r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | own;
595 			own = SK_Y2_RXOPC_OWN;
596 			sc_if->sk_cdata.sk_rx_hiaddr = hiaddr;
597 			MSK_CDRXSYNC(sc_if, frag,
598 			    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
599 			SK_INC(frag, MSK_RX_RING_CNT);
600 			entries++;
601 			DPRINTFN(10, ("%s: rx ADDR64: %#x\n",
602 			    sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
603 		}
604 
605 		c = &sc_if->sk_cdata.sk_rx_chain[frag];
606 		r = &sc_if->sk_rdata->sk_rx_ring[frag];
607 		r->sk_addr = htole32(MSK_ADDR_LO(addr));
608 		r->sk_len = htole16(rxmap->dm_segs[i].ds_len);
609 		r->sk_ctl = 0;
610 		if (i == 0) {
611 			r->sk_opcode = SK_Y2_RXOPC_PACKET | own;
612 		} else
613 			r->sk_opcode = SK_Y2_RXOPC_BUFFER | own;
614 		own = SK_Y2_RXOPC_OWN;
615 		MSK_CDRXSYNC(sc_if, frag,
616 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
617 		cur = frag;
618 		SK_INC(frag, MSK_RX_RING_CNT);
619 		entries++;
620 	}
621 	KASSERTMSG(entries == total, "entries %u total %u", entries, total);
622 
623 	sc_if->sk_cdata.sk_rx_chain[rxidx].sk_dmamap =
624 	    sc_if->sk_cdata.sk_rx_chain[cur].sk_dmamap;
625 	sc_if->sk_cdata.sk_rx_chain[cur].sk_mbuf = m_new;
626 	sc_if->sk_cdata.sk_rx_chain[cur].sk_dmamap = rxmap;
627 
628 	sc_if->sk_rdata->sk_rx_ring[rxidx].sk_opcode |= SK_Y2_RXOPC_OWN;
629 	MSK_CDRXSYNC(sc_if, rxidx,
630 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
631 
632 	sc_if->sk_cdata.sk_rx_cnt += entries;
633 	sc_if->sk_cdata.sk_rx_prod = frag;
634 
635 	return 0;
636 }
637 
638 /*
639  * Memory management for jumbo frames.
640  */
641 
642 static int
msk_alloc_jumbo_mem(struct sk_if_softc * sc_if)643 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
644 {
645 	struct sk_softc		*sc = sc_if->sk_softc;
646 	char *ptr, *kva;
647 	int		i, state, error;
648 	struct sk_jpool_entry	*entry;
649 
650 	state = error = 0;
651 
652 	/* Grab a big chunk o' storage. */
653 	if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
654 	     &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
655 	     BUS_DMA_NOWAIT)) {
656 		aprint_error(": can't alloc rx buffers");
657 		return ENOBUFS;
658 	}
659 
660 	state = 1;
661 	if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
662 	    sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
663 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) {
664 		aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
665 		error = ENOBUFS;
666 		goto out;
667 	}
668 
669 	state = 2;
670 	if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
671 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
672 		aprint_error(": can't create dma map");
673 		error = ENOBUFS;
674 		goto out;
675 	}
676 
677 	state = 3;
678 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
679 			    kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
680 		aprint_error(": can't load dma map");
681 		error = ENOBUFS;
682 		goto out;
683 	}
684 
685 	state = 4;
686 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
687 	DPRINTFN(1,("msk_jumbo_buf = %p\n",
688 		(void *)sc_if->sk_cdata.sk_jumbo_buf));
689 
690 	LIST_INIT(&sc_if->sk_jfree_listhead);
691 	LIST_INIT(&sc_if->sk_jinuse_listhead);
692 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
693 
694 	/*
695 	 * Now divide it up into 9K pieces and save the addresses
696 	 * in an array.
697 	 */
698 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
699 	for (i = 0; i < MSK_JSLOTS; i++) {
700 		sc_if->sk_cdata.sk_jslots[i] = ptr;
701 		ptr += SK_JLEN;
702 		entry = malloc(sizeof(struct sk_jpool_entry),
703 		    M_DEVBUF, M_WAITOK);
704 		entry->slot = i;
705 		LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
706 				 entry, jpool_entries);
707 	}
708 out:
709 	if (error != 0) {
710 		switch (state) {
711 		case 4:
712 			bus_dmamap_unload(sc->sc_dmatag,
713 			    sc_if->sk_cdata.sk_rx_jumbo_map);
714 			/* FALLTHROUGH */
715 		case 3:
716 			bus_dmamap_destroy(sc->sc_dmatag,
717 			    sc_if->sk_cdata.sk_rx_jumbo_map);
718 			/* FALLTHROUGH */
719 		case 2:
720 			bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
721 			/* FALLTHROUGH */
722 		case 1:
723 			bus_dmamem_free(sc->sc_dmatag,
724 			    &sc_if->sk_cdata.sk_jumbo_seg,
725 			    sc_if->sk_cdata.sk_jumbo_nseg);
726 			break;
727 		default:
728 			break;
729 		}
730 	}
731 
732 	return error;
733 }
734 
735 static void
msk_free_jumbo_mem(struct sk_if_softc * sc_if)736 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
737 {
738 	struct sk_softc		*sc = sc_if->sk_softc;
739 
740 	bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
741 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
742 	bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
743 	bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
744 	    sc_if->sk_cdata.sk_jumbo_nseg);
745 }
746 
747 /*
748  * Allocate a jumbo buffer.
749  */
750 static void *
msk_jalloc(struct sk_if_softc * sc_if)751 msk_jalloc(struct sk_if_softc *sc_if)
752 {
753 	struct sk_jpool_entry	*entry;
754 
755 	mutex_enter(&sc_if->sk_jpool_mtx);
756 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
757 
758 	if (entry == NULL) {
759 		mutex_exit(&sc_if->sk_jpool_mtx);
760 		return NULL;
761 	}
762 
763 	LIST_REMOVE(entry, jpool_entries);
764 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
765 	mutex_exit(&sc_if->sk_jpool_mtx);
766 	return sc_if->sk_cdata.sk_jslots[entry->slot];
767 }
768 
769 /*
770  * Release a jumbo buffer.
771  */
772 static void
msk_jfree(struct mbuf * m,void * buf,size_t size,void * arg)773 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
774 {
775 	struct sk_jpool_entry *entry;
776 	struct sk_if_softc *sc;
777 	int i;
778 
779 	/* Extract the softc struct pointer. */
780 	sc = (struct sk_if_softc *)arg;
781 
782 	if (sc == NULL)
783 		panic("msk_jfree: can't find softc pointer!");
784 
785 	/* calculate the slot this buffer belongs to */
786 	i = ((vaddr_t)buf
787 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
788 
789 	if ((i < 0) || (i >= MSK_JSLOTS))
790 		panic("msk_jfree: asked to free buffer that we don't manage!");
791 
792 	mutex_enter(&sc->sk_jpool_mtx);
793 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
794 	if (entry == NULL)
795 		panic("msk_jfree: buffer not in use!");
796 	entry->slot = i;
797 	LIST_REMOVE(entry, jpool_entries);
798 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
799 	mutex_exit(&sc->sk_jpool_mtx);
800 
801 	if (__predict_true(m != NULL))
802 		pool_cache_put(mb_cache, m);
803 
804 	/* Now that we know we have a free RX buffer, refill if running out */
805 	if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
806 	    && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
807 		callout_schedule(&sc->sk_tick_rx, 0);
808 }
809 
810 static int
msk_ioctl(struct ifnet * ifp,u_long cmd,void * data)811 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
812 {
813 	struct sk_if_softc *sc = ifp->if_softc;
814 	int s, error;
815 
816 	s = splnet();
817 
818 	DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd));
819 	switch (cmd) {
820 	case SIOCSIFFLAGS:
821 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
822 			break;
823 
824 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
825 		case IFF_RUNNING:
826 			msk_stop(ifp, 1);
827 			break;
828 		case IFF_UP:
829 			msk_init(ifp);
830 			break;
831 		case IFF_UP | IFF_RUNNING:
832 			if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
833 				msk_setpromisc(sc);
834 				msk_setmulti(sc);
835 			} else
836 				msk_init(ifp);
837 			break;
838 		}
839 		sc->sk_if_flags = ifp->if_flags;
840 		break;
841 	default:
842 		error = ether_ioctl(ifp, cmd, data);
843 		if (error == ENETRESET) {
844 			error = 0;
845 			if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
846 				;
847 			else if (ifp->if_flags & IFF_RUNNING) {
848 				/*
849 				 * Multicast list has changed; set the hardware
850 				 * filter accordingly.
851 				 */
852 				msk_setmulti(sc);
853 			}
854 		}
855 		break;
856 	}
857 
858 	splx(s);
859 	return error;
860 }
861 
862 static void
msk_update_int_mod(struct sk_softc * sc,int verbose)863 msk_update_int_mod(struct sk_softc *sc, int verbose)
864 {
865 	uint32_t imtimer_ticks;
866 
867 	/*
868  	 * Configure interrupt moderation. The moderation timer
869 	 * defers interrupts specified in the interrupt moderation
870 	 * timer mask based on the timeout specified in the interrupt
871 	 * moderation timer init register. Each bit in the timer
872 	 * register represents one tick, so to specify a timeout in
873 	 * microseconds, we have to multiply by the correct number of
874 	 * ticks-per-microsecond.
875 	 */
876 	switch (sc->sk_type) {
877 	case SK_YUKON_EC:
878 	case SK_YUKON_EC_U:
879 	case SK_YUKON_EX:
880 	case SK_YUKON_SUPR:
881 	case SK_YUKON_ULTRA2:
882 	case SK_YUKON_OPTIMA:
883 	case SK_YUKON_PRM:
884 	case SK_YUKON_OPTIMA2:
885 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
886 		break;
887 	case SK_YUKON_FE:
888 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
889 		break;
890 	case SK_YUKON_FE_P:
891 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
892 		break;
893 	case SK_YUKON_XL:
894 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
895 		break;
896 	default:
897 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
898 	}
899 	if (verbose)
900 		aprint_verbose_dev(sc->sk_dev,
901 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
902 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
903 	sk_win_write_4(sc, SK_IMMR, 0); /* moderate no interrupts */
904 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
905 	sc->sk_int_mod_pending = 0;
906 }
907 
908 /*
909  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
910  * IDs against our list and return a device name if we find a match.
911  */
912 static int
mskc_probe(device_t parent,cfdata_t match,void * aux)913 mskc_probe(device_t parent, cfdata_t match, void *aux)
914 {
915 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
916 
917 	return pci_compatible_match(pa, compat_data);
918 }
919 
920 /*
921  * Force the GEnesis into reset, then bring it out of reset.
922  */
923 static void
mskc_reset(struct sk_softc * sc)924 mskc_reset(struct sk_softc *sc)
925 {
926 	uint32_t imtimer_ticks, reg1;
927 	uint16_t status;
928 	int reg;
929 
930 	DPRINTFN(2, ("mskc_reset\n"));
931 
932 	/* Disable ASF */
933 	if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
934 		CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
935 		status = CSR_READ_2(sc, SK_Y2_ASF_HCU_CCSR);
936 		/* Clear AHB bridge & microcontroller reset. */
937 		status &= ~(SK_Y2_ASF_HCU_CSSR_ARB_RST |
938 		    SK_Y2_ASF_HCU_CSSR_CPU_RST_MODE);
939 		/* Clear ASF microcontroller state. */
940 		status &= ~SK_Y2_ASF_HCU_CSSR_UC_STATE_MSK;
941 		status &= ~SK_Y2_ASF_HCU_CSSR_CPU_CLK_DIVIDE_MSK;
942 		CSR_WRITE_2(sc, SK_Y2_ASF_HCU_CCSR, status);
943 		CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
944 	} else
945 		CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
946 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
947 
948 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
949 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
950 
951 	DELAY(1000);
952 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
953 	DELAY(2);
954 	CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
955 	sk_win_write_1(sc, SK_TESTCTL1, 2);
956 
957 	if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
958 	    sc->sk_type >= SK_YUKON_FE_P) {
959 		uint32_t our;
960 
961 		CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
962 
963 		/* enable all clocks. */
964 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
965 		our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
966 		our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST |
967 			SK_Y2_REG4_ASPM_GPHY_LINK_DOWN |
968 			SK_Y2_REG4_ASPM_INT_FIFO_EMPTY |
969 			SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
970 		/* Set all bits to 0 except bits 15..12 */
971 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
972 		/* Set to default value */
973 		sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
974 
975 		/*
976 		 * Disable status race, workaround for Yukon EC Ultra &
977 		 * Yukon EX.
978 		 */
979 		reg1 = sk_win_read_4(sc, SK_GPIO);
980 		reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
981 		sk_win_write_4(sc, SK_GPIO, reg1);
982 		sk_win_read_4(sc, SK_GPIO);
983 	}
984 
985 	/* release PHY from PowerDown/Coma mode. */
986 	reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
987 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
988 		reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
989 	else
990 		reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
991 	sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
992 
993 	if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
994 		sk_win_write_1(sc, SK_Y2_CLKGATE,
995 		    SK_Y2_CLKGATE_LINK1_GATE_DIS |
996 		    SK_Y2_CLKGATE_LINK2_GATE_DIS |
997 		    SK_Y2_CLKGATE_LINK1_CORE_DIS |
998 		    SK_Y2_CLKGATE_LINK2_CORE_DIS |
999 		    SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
1000 	else
1001 		sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
1002 
1003 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1004 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
1005 	DELAY(1000);
1006 	CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1007 	CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
1008 
1009 	if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
1010 		CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
1011 		    SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
1012 	}
1013 
1014 	sk_win_write_1(sc, SK_TESTCTL1, 1);
1015 
1016 	DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
1017 	DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
1018 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1019 
1020 	/* Clear I2C IRQ noise */
1021 	CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
1022 
1023 	/* Disable hardware timer */
1024 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
1025 	CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
1026 
1027 	/* Disable descriptor polling */
1028 	CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
1029 
1030 	/* Disable time stamps */
1031 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
1032 	CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
1033 
1034 	/* Enable RAM interface */
1035 	sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1036 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
1037 		sk_win_write_1(sc, reg, 36);
1038 	sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
1039 	for (reg = SK_TO0;reg <= SK_TO11; reg++)
1040 		sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
1041 
1042 	/*
1043 	 * Configure interrupt moderation. The moderation timer
1044 	 * defers interrupts specified in the interrupt moderation
1045 	 * timer mask based on the timeout specified in the interrupt
1046 	 * moderation timer init register. Each bit in the timer
1047 	 * register represents one tick, so to specify a timeout in
1048 	 * microseconds, we have to multiply by the correct number of
1049 	 * ticks-per-microsecond.
1050 	 */
1051 	switch (sc->sk_type) {
1052 	case SK_YUKON_EC:
1053 	case SK_YUKON_EC_U:
1054 	case SK_YUKON_EX:
1055 	case SK_YUKON_SUPR:
1056 	case SK_YUKON_ULTRA2:
1057 	case SK_YUKON_OPTIMA:
1058 	case SK_YUKON_PRM:
1059 	case SK_YUKON_OPTIMA2:
1060 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1061 		break;
1062 	case SK_YUKON_FE:
1063 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
1064 		break;
1065 	case SK_YUKON_FE_P:
1066 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
1067 		break;
1068 	case SK_YUKON_XL:
1069 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
1070 		break;
1071 	default:
1072 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1073 		break;
1074 	}
1075 
1076 	/* Reset status ring. */
1077 	memset(sc->sk_status_ring, 0,
1078 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1079 	bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
1080 	    sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1081 	sc->sk_status_idx = 0;
1082 
1083 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
1084 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
1085 
1086 	sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
1087 	sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
1088 	    MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr));
1089 	sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
1090 	    MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr));
1091 	if (sc->sk_type == SK_YUKON_EC &&
1092 	    sc->sk_rev == SK_YUKON_EC_REV_A1) {
1093 		/* WA for dev. #4.3 */
1094 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH,
1095 		    SK_STAT_BMU_TXTHIDX_MSK);
1096 		/* WA for dev. #4.18 */
1097 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
1098 		sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
1099 	} else {
1100 		sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
1101 		sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
1102 		if (sc->sk_type == SK_YUKON_XL)
1103 			sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
1104 		else
1105 			sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
1106 		sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
1107 	}
1108 
1109 #if 0
1110 	sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
1111 #endif
1112 	sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1113 
1114 	/* Enable status unit. */
1115 	sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1116 
1117 	sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1118 	sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1119 	sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1120 
1121 	msk_update_int_mod(sc, 0);
1122 }
1123 
1124 static int
msk_probe(device_t parent,cfdata_t match,void * aux)1125 msk_probe(device_t parent, cfdata_t match, void *aux)
1126 {
1127 	struct skc_attach_args *sa = aux;
1128 
1129 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1130 		return 0;
1131 
1132 	switch (sa->skc_type) {
1133 	case SK_YUKON_XL:
1134 	case SK_YUKON_EC_U:
1135 	case SK_YUKON_EX:
1136 	case SK_YUKON_EC:
1137 	case SK_YUKON_FE:
1138 	case SK_YUKON_FE_P:
1139 	case SK_YUKON_SUPR:
1140 	case SK_YUKON_ULTRA2:
1141 	case SK_YUKON_OPTIMA:
1142 	case SK_YUKON_PRM:
1143 	case SK_YUKON_OPTIMA2:
1144 		return 1;
1145 	}
1146 
1147 	return 0;
1148 }
1149 
1150 static void
msk_reset(struct sk_if_softc * sc_if)1151 msk_reset(struct sk_if_softc *sc_if)
1152 {
1153 	/* GMAC and GPHY Reset */
1154 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1155 	SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1156 	DELAY(1000);
1157 	SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1158 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1159 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1160 }
1161 
1162 static bool
msk_resume(device_t dv,const pmf_qual_t * qual)1163 msk_resume(device_t dv, const pmf_qual_t *qual)
1164 {
1165 	struct sk_if_softc *sc_if = device_private(dv);
1166 
1167 	msk_init_yukon(sc_if);
1168 	return true;
1169 }
1170 
1171 /*
1172  * Each XMAC chip is attached as a separate logical IP interface.
1173  * Single port cards will have only one logical interface of course.
1174  */
1175 static void
msk_attach(device_t parent,device_t self,void * aux)1176 msk_attach(device_t parent, device_t self, void *aux)
1177 {
1178 	struct sk_if_softc *sc_if = device_private(self);
1179 	struct sk_softc *sc = device_private(parent);
1180 	struct skc_attach_args *sa = aux;
1181 	bus_dmamap_t dmamap;
1182 	struct ifnet *ifp;
1183 	struct mii_data * const mii = &sc_if->sk_mii;
1184 	void *kva;
1185 	int i;
1186 	uint32_t chunk;
1187 	int mii_flags;
1188 
1189 	sc_if->sk_dev = self;
1190 	sc_if->sk_port = sa->skc_port;
1191 	sc_if->sk_softc = sc;
1192 	sc->sk_if[sa->skc_port] = sc_if;
1193 
1194 	DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1195 
1196 	/*
1197 	 * Get station address for this interface. Note that
1198 	 * dual port cards actually come with three station
1199 	 * addresses: one for each port, plus an extra. The
1200 	 * extra one is used by the SysKonnect driver software
1201 	 * as a 'virtual' station address for when both ports
1202 	 * are operating in failover mode. Currently we don't
1203 	 * use this extra address.
1204 	 */
1205 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1206 		sc_if->sk_enaddr[i] =
1207 		    sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1208 
1209 	aprint_normal(": Ethernet address %s\n",
1210 	    ether_sprintf(sc_if->sk_enaddr));
1211 
1212 	/*
1213 	 * Set up RAM buffer addresses. The Yukon2 has a small amount
1214 	 * of SRAM on it, somewhere between 4K and 48K.  We need to
1215 	 * divide this up between the transmitter and receiver.  We
1216 	 * give the receiver 2/3 of the memory (rounded down), and the
1217 	 * transmitter whatever remains.
1218 	 */
1219 	if (sc->sk_ramsize) {
1220 		chunk = (2 * (sc->sk_ramsize / sizeof(uint64_t)) / 3) & ~0xff;
1221 		sc_if->sk_rx_ramstart = 0;
1222 		sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1223 		chunk = (sc->sk_ramsize / sizeof(uint64_t)) - chunk;
1224 		sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1225 		sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1226 
1227 		DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1228 			     "           tx_ramstart=%#x tx_ramend=%#x\n",
1229 			     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1230 			     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1231 	}
1232 
1233 	/* Allocate the descriptor queues. */
1234 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1235 	    PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1236 	    BUS_DMA_NOWAIT)) {
1237 		aprint_error(": can't alloc rx buffers\n");
1238 		goto fail;
1239 	}
1240 	if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1241 	    sc_if->sk_ring_nseg,
1242 	    sizeof(struct msk_ring_data), &kva,
1243 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) {
1244 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1245 		       sizeof(struct msk_ring_data));
1246 		goto fail_1;
1247 	}
1248 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1249 	    sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1250 	    &sc_if->sk_ring_map)) {
1251 		aprint_error(": can't create dma map\n");
1252 		goto fail_2;
1253 	}
1254 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1255 	    sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1256 		aprint_error(": can't load dma map\n");
1257 		goto fail_3;
1258 	}
1259 
1260 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
1261 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1262 
1263 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1264 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1265 			aprint_error_dev(sc_if->sk_dev,
1266 			    "Can't create TX dmamap\n");
1267 			goto fail_3;
1268 		}
1269 
1270 		sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap = dmamap;
1271 	}
1272 
1273 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
1274 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1275 
1276 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN,
1277 		    howmany(SK_JLEN + 1, NBPG),
1278 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1279 			aprint_error_dev(sc_if->sk_dev,
1280 			    "Can't create RX dmamap\n");
1281 			goto fail_3;
1282 		}
1283 
1284 		sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap = dmamap;
1285 	}
1286 
1287 	sc_if->sk_rdata = (struct msk_ring_data *)kva;
1288 	memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1289 
1290 	if (sc->sk_type != SK_YUKON_FE &&
1291 	    sc->sk_type != SK_YUKON_FE_P)
1292 		sc_if->sk_pktlen = SK_JLEN;
1293 	else
1294 		sc_if->sk_pktlen = MCLBYTES;
1295 
1296 	/* Try to allocate memory for jumbo buffers. */
1297 	if (msk_alloc_jumbo_mem(sc_if)) {
1298 		aprint_error(": jumbo buffer allocation failed\n");
1299 		goto fail_3;
1300 	}
1301 
1302 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1303 	if (sc->sk_type != SK_YUKON_FE &&
1304 	    sc->sk_type != SK_YUKON_FE_P)
1305 		sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1306 
1307 	ifp = &sc_if->sk_ethercom.ec_if;
1308 	ifp->if_softc = sc_if;
1309 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1310 	ifp->if_ioctl = msk_ioctl;
1311 	ifp->if_start = msk_start;
1312 	ifp->if_stop = msk_stop;
1313 	ifp->if_init = msk_init;
1314 	ifp->if_watchdog = msk_watchdog;
1315 	ifp->if_baudrate = 1000000000;
1316 	IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1317 	IFQ_SET_READY(&ifp->if_snd);
1318 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1319 
1320 	msk_reset(sc_if);
1321 
1322 	/*
1323 	 * Do miibus setup.
1324 	 */
1325 	DPRINTFN(2, ("msk_attach: 1\n"));
1326 
1327 	mii->mii_ifp = ifp;
1328 	mii->mii_readreg = msk_miibus_readreg;
1329 	mii->mii_writereg = msk_miibus_writereg;
1330 	mii->mii_statchg = msk_miibus_statchg;
1331 
1332 	sc_if->sk_ethercom.ec_mii = mii;
1333 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1334 	mii_flags = MIIF_DOPAUSE;
1335 	if (sc->sk_fibertype)
1336 		mii_flags |= MIIF_HAVEFIBER;
1337 	mii_attach(self, mii, 0xffffffff, 0, MII_OFFSET_ANY, mii_flags);
1338 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
1339 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1340 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
1341 			    0, NULL);
1342 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1343 	} else
1344 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1345 
1346 	callout_init(&sc_if->sk_tick_ch, 0);
1347 	callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1348 	callout_schedule(&sc_if->sk_tick_ch, hz);
1349 
1350 	callout_init(&sc_if->sk_tick_rx, 0);
1351 	callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1352 
1353 	/*
1354 	 * Call MI attach routines.
1355 	 */
1356 	if_attach(ifp);
1357 	if_deferred_start_init(ifp, NULL);
1358 	ether_ifattach(ifp, sc_if->sk_enaddr);
1359 
1360 	if (pmf_device_register(self, NULL, msk_resume))
1361 		pmf_class_network_register(self, ifp);
1362 	else
1363 		aprint_error_dev(self, "couldn't establish power handler\n");
1364 
1365 	if (sc->rnd_attached++ == 0) {
1366 		rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1367 			RND_TYPE_NET, RND_FLAG_DEFAULT);
1368 	}
1369 
1370 	DPRINTFN(2, ("msk_attach: end\n"));
1371 	return;
1372 
1373 fail_3:
1374 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1375 fail_2:
1376 	bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1377 fail_1:
1378 	bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1379 fail:
1380 	sc->sk_if[sa->skc_port] = NULL;
1381 }
1382 
1383 static int
msk_detach(device_t self,int flags)1384 msk_detach(device_t self, int flags)
1385 {
1386 	struct sk_if_softc *sc_if = device_private(self);
1387 	struct sk_softc *sc = sc_if->sk_softc;
1388 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1389 	int i;
1390 
1391 	if (sc->sk_if[sc_if->sk_port] == NULL)
1392 		return 0;
1393 
1394 	msk_stop(ifp, 1);
1395 
1396 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
1397 		bus_dmamap_destroy(sc->sc_dmatag,
1398 		    sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap);
1399 	}
1400 
1401 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
1402 		bus_dmamap_destroy(sc->sc_dmatag,
1403 		    sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap);
1404 	}
1405 
1406 	if (--sc->rnd_attached == 0)
1407 		rnd_detach_source(&sc->rnd_source);
1408 
1409 	callout_halt(&sc_if->sk_tick_ch, NULL);
1410 	callout_destroy(&sc_if->sk_tick_ch);
1411 
1412 	callout_halt(&sc_if->sk_tick_rx, NULL);
1413 	callout_destroy(&sc_if->sk_tick_rx);
1414 
1415 	/* Detach any PHYs we might have. */
1416 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1417 		mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1418 
1419 	pmf_device_deregister(self);
1420 
1421 	ether_ifdetach(ifp);
1422 	if_detach(ifp);
1423 
1424 	/* Delete any remaining media. */
1425 	ifmedia_fini(&sc_if->sk_mii.mii_media);
1426 
1427 	msk_free_jumbo_mem(sc_if);
1428 
1429 	bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1430 	    sizeof(struct msk_ring_data));
1431 	bus_dmamem_free(sc->sc_dmatag,
1432 	    &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1433 	bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1434 	sc->sk_if[sc_if->sk_port] = NULL;
1435 
1436 	return 0;
1437 }
1438 
1439 static int
mskcprint(void * aux,const char * pnp)1440 mskcprint(void *aux, const char *pnp)
1441 {
1442 	struct skc_attach_args *sa = aux;
1443 
1444 	if (pnp)
1445 		aprint_normal("msk port %c at %s",
1446 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1447 	else
1448 		aprint_normal(" port %c",
1449 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1450 	return UNCONF;
1451 }
1452 
1453 /*
1454  * Attach the interface. Allocate softc structures, do ifmedia
1455  * setup and ethernet/BPF attach.
1456  */
1457 static void
mskc_attach(device_t parent,device_t self,void * aux)1458 mskc_attach(device_t parent, device_t self, void *aux)
1459 {
1460 	struct sk_softc *sc = device_private(self);
1461 	struct pci_attach_args *pa = aux;
1462 	struct skc_attach_args skca;
1463 	pci_chipset_tag_t pc = pa->pa_pc;
1464 	pcireg_t command, memtype;
1465 	const char *intrstr = NULL;
1466 	int rc, sk_nodenum;
1467 	uint8_t hw, pmd;
1468 	const char *revstr = NULL;
1469 	const struct sysctlnode *node;
1470 	void *kva;
1471 	char intrbuf[PCI_INTRSTR_LEN];
1472 
1473 	DPRINTFN(2, ("begin mskc_attach\n"));
1474 
1475 	sc->sk_dev = self;
1476 	/*
1477 	 * Handle power management nonsense.
1478 	 */
1479 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1480 
1481 	if (command == 0x01) {
1482 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1483 		if (command & SK_PSTATE_MASK) {
1484 			uint32_t		iobase, membase, irq;
1485 
1486 			/* Save important PCI config data. */
1487 			iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1488 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1489 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1490 
1491 			/* Reset the power state. */
1492 			aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1493 			    "mode -- setting to D0\n",
1494 			    command & SK_PSTATE_MASK);
1495 			command &= 0xFFFFFFFC;
1496 			pci_conf_write(pc, pa->pa_tag,
1497 			    SK_PCI_PWRMGMTCTRL, command);
1498 
1499 			/* Restore PCI config data. */
1500 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1501 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1502 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1503 		}
1504 	}
1505 
1506 	/*
1507 	 * Map control/status registers.
1508 	 */
1509 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1510 	if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1511 	    &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1512 		aprint_error(": can't map mem space\n");
1513 		return;
1514 	}
1515 
1516 	if (pci_dma64_available(pa))
1517 		sc->sc_dmatag = pa->pa_dmat64;
1518 	else
1519 		sc->sc_dmatag = pa->pa_dmat;
1520 
1521 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1522 	command |= PCI_COMMAND_MASTER_ENABLE;
1523 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1524 
1525 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1526 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1527 
1528 	/* bail out here if chip is not recognized */
1529 	if (!(SK_IS_YUKON2(sc))) {
1530 		aprint_error(": unknown chip type: %d\n", sc->sk_type);
1531 		goto fail_1;
1532 	}
1533 	DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1534 
1535 	/* Allocate interrupt */
1536 	if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) {
1537 		aprint_error(": couldn't map interrupt\n");
1538 		goto fail_1;
1539 	}
1540 
1541 	intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf));
1542 	sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET,
1543 	    msk_intr, sc, device_xname(sc->sk_dev));
1544 	if (sc->sk_intrhand == NULL) {
1545 		aprint_error(": couldn't establish interrupt");
1546 		if (intrstr != NULL)
1547 			aprint_error(" at %s", intrstr);
1548 		aprint_error("\n");
1549 		goto fail_1;
1550 	}
1551 	sc->sk_pc = pc;
1552 
1553 	if (bus_dmamem_alloc(sc->sc_dmatag,
1554 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1555 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1556 	    0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1557 		aprint_error(": can't alloc status buffers\n");
1558 		goto fail_2;
1559 	}
1560 
1561 	if (bus_dmamem_map(sc->sc_dmatag,
1562 	    &sc->sk_status_seg, sc->sk_status_nseg,
1563 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1564 	    &kva, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) {
1565 		aprint_error(": can't map dma buffers (%zu bytes)\n",
1566 		    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1567 		goto fail_3;
1568 	}
1569 	if (bus_dmamap_create(sc->sc_dmatag,
1570 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1571 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1572 	    BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1573 		aprint_error(": can't create dma map\n");
1574 		goto fail_4;
1575 	}
1576 	if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1577 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1578 	    NULL, BUS_DMA_NOWAIT)) {
1579 		aprint_error(": can't load dma map\n");
1580 		goto fail_5;
1581 	}
1582 	sc->sk_status_ring = (struct msk_status_desc *)kva;
1583 
1584 	sc->sk_int_mod = SK_IM_DEFAULT;
1585 	sc->sk_int_mod_pending = 0;
1586 
1587 	/* Reset the adapter. */
1588 	mskc_reset(sc);
1589 
1590 	sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1591 	DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1592 
1593 	pmd = sk_win_read_1(sc, SK_PMDTYPE);
1594 	if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1595 		sc->sk_fibertype = 1;
1596 
1597 	switch (sc->sk_type) {
1598 	case SK_YUKON_XL:
1599 		sc->sk_name = "Yukon-2 XL";
1600 		break;
1601 	case SK_YUKON_EC_U:
1602 		sc->sk_name = "Yukon-2 EC Ultra";
1603 		break;
1604 	case SK_YUKON_EX:
1605 		sc->sk_name = "Yukon-2 Extreme";
1606 		break;
1607 	case SK_YUKON_EC:
1608 		sc->sk_name = "Yukon-2 EC";
1609 		break;
1610 	case SK_YUKON_FE:
1611 		sc->sk_name = "Yukon-2 FE";
1612 		break;
1613 	case SK_YUKON_FE_P:
1614 		sc->sk_name = "Yukon-2 FE+";
1615 		break;
1616 	case SK_YUKON_SUPR:
1617 		sc->sk_name = "Yukon-2 Supreme";
1618 		break;
1619 	case SK_YUKON_ULTRA2:
1620 		sc->sk_name = "Yukon-2 Ultra 2";
1621 		break;
1622 	case SK_YUKON_OPTIMA:
1623 		sc->sk_name = "Yukon-2 Optima";
1624 		break;
1625 	case SK_YUKON_PRM:
1626 		sc->sk_name = "Yukon-2 Optima Prime";
1627 		break;
1628 	case SK_YUKON_OPTIMA2:
1629 		sc->sk_name = "Yukon-2 Optima 2";
1630 		break;
1631 	default:
1632 		sc->sk_name = "Yukon (Unknown)";
1633 	}
1634 
1635 	if (sc->sk_type == SK_YUKON_XL) {
1636 		switch (sc->sk_rev) {
1637 		case SK_YUKON_XL_REV_A0:
1638 			revstr = "A0";
1639 			break;
1640 		case SK_YUKON_XL_REV_A1:
1641 			revstr = "A1";
1642 			break;
1643 		case SK_YUKON_XL_REV_A2:
1644 			revstr = "A2";
1645 			break;
1646 		case SK_YUKON_XL_REV_A3:
1647 			revstr = "A3";
1648 			break;
1649 		default:
1650 			break;
1651 		}
1652 	}
1653 
1654 	if (sc->sk_type == SK_YUKON_EC) {
1655 		switch (sc->sk_rev) {
1656 		case SK_YUKON_EC_REV_A1:
1657 			revstr = "A1";
1658 			break;
1659 		case SK_YUKON_EC_REV_A2:
1660 			revstr = "A2";
1661 			break;
1662 		case SK_YUKON_EC_REV_A3:
1663 			revstr = "A3";
1664 			break;
1665 		default:
1666 			break;
1667 		}
1668 	}
1669 
1670 	if (sc->sk_type == SK_YUKON_FE) {
1671 		switch (sc->sk_rev) {
1672 		case SK_YUKON_FE_REV_A1:
1673 			revstr = "A1";
1674 			break;
1675 		case SK_YUKON_FE_REV_A2:
1676 			revstr = "A2";
1677 			break;
1678 		default:
1679 			break;
1680 		}
1681 	}
1682 
1683 	if (sc->sk_type == SK_YUKON_EC_U) {
1684 		switch (sc->sk_rev) {
1685 		case SK_YUKON_EC_U_REV_A0:
1686 			revstr = "A0";
1687 			break;
1688 		case SK_YUKON_EC_U_REV_A1:
1689 			revstr = "A1";
1690 			break;
1691 		case SK_YUKON_EC_U_REV_B0:
1692 			revstr = "B0";
1693 			break;
1694 		case SK_YUKON_EC_U_REV_B1:
1695 			revstr = "B1";
1696 			break;
1697 		default:
1698 			break;
1699 		}
1700 	}
1701 
1702 	if (sc->sk_type == SK_YUKON_FE) {
1703 		switch (sc->sk_rev) {
1704 		case SK_YUKON_FE_REV_A1:
1705 			revstr = "A1";
1706 			break;
1707 		case SK_YUKON_FE_REV_A2:
1708 			revstr = "A2";
1709 			break;
1710 		default:
1711 			;
1712 		}
1713 	}
1714 
1715 	if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1716 		revstr = "A0";
1717 
1718 	if (sc->sk_type == SK_YUKON_EX) {
1719 		switch (sc->sk_rev) {
1720 		case SK_YUKON_EX_REV_A0:
1721 			revstr = "A0";
1722 			break;
1723 		case SK_YUKON_EX_REV_B0:
1724 			revstr = "B0";
1725 			break;
1726 		default:
1727 			;
1728 		}
1729 	}
1730 
1731 	if (sc->sk_type == SK_YUKON_SUPR) {
1732 		switch (sc->sk_rev) {
1733 		case SK_YUKON_SUPR_REV_A0:
1734 			revstr = "A0";
1735 			break;
1736 		case SK_YUKON_SUPR_REV_B0:
1737 			revstr = "B0";
1738 			break;
1739 		case SK_YUKON_SUPR_REV_B1:
1740 			revstr = "B1";
1741 			break;
1742 		default:
1743 			;
1744 		}
1745 	}
1746 
1747 	if (sc->sk_type == SK_YUKON_PRM) {
1748 		switch (sc->sk_rev) {
1749 		case SK_YUKON_PRM_REV_Z1:
1750 			revstr = "Z1";
1751 			break;
1752 		case SK_YUKON_PRM_REV_A0:
1753 			revstr = "A0";
1754 			break;
1755 		default:
1756 			;
1757 		}
1758 	}
1759 
1760 	/* Announce the product name. */
1761 	aprint_normal(", %s", sc->sk_name);
1762 	if (revstr != NULL)
1763 		aprint_normal(" rev. %s", revstr);
1764 	aprint_normal(" (0x%x)\n", sc->sk_rev);
1765 
1766 	aprint_normal_dev(sc->sk_dev, "interrupting at %s\n", intrstr);
1767 
1768 	sc->sk_macs = 1;
1769 
1770 	hw = sk_win_read_1(sc, SK_Y2_HWRES);
1771 	if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1772 		if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1773 		    SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1774 			sc->sk_macs++;
1775 	}
1776 
1777 	skca.skc_port = SK_PORT_A;
1778 	skca.skc_type = sc->sk_type;
1779 	skca.skc_rev = sc->sk_rev;
1780 	(void)config_found(sc->sk_dev, &skca, mskcprint, CFARGS_NONE);
1781 
1782 	if (sc->sk_macs > 1) {
1783 		skca.skc_port = SK_PORT_B;
1784 		skca.skc_type = sc->sk_type;
1785 		skca.skc_rev = sc->sk_rev;
1786 		(void)config_found(sc->sk_dev, &skca, mskcprint, CFARGS_NONE);
1787 	}
1788 
1789 	/* Turn on the 'driver is loaded' LED. */
1790 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1791 
1792 	/* skc sysctl setup */
1793 
1794 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1795 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1796 	    SYSCTL_DESCR("mskc per-controller controls"),
1797 	    NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1798 	    CTL_EOL)) != 0) {
1799 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1800 		goto fail_6;
1801 	}
1802 
1803 	sk_nodenum = node->sysctl_num;
1804 
1805 	/* interrupt moderation time in usecs */
1806 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1807 	    CTLFLAG_READWRITE,
1808 	    CTLTYPE_INT, "int_mod",
1809 	    SYSCTL_DESCR("msk interrupt moderation timer"),
1810 	    msk_sysctl_handler, 0, (void *)sc,
1811 	    0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1812 	    CTL_EOL)) != 0) {
1813 		aprint_normal_dev(sc->sk_dev,
1814 		    "couldn't create int_mod sysctl node\n");
1815 		goto fail_6;
1816 	}
1817 
1818 	if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1819 		aprint_error_dev(self, "couldn't establish power handler\n");
1820 
1821 	return;
1822 
1823 fail_6:
1824 	bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1825 fail_4:
1826 	bus_dmamem_unmap(sc->sc_dmatag, kva,
1827 	    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1828 fail_3:
1829 	bus_dmamem_free(sc->sc_dmatag,
1830 	    &sc->sk_status_seg, sc->sk_status_nseg);
1831 	sc->sk_status_nseg = 0;
1832 fail_5:
1833 	bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1834 fail_2:
1835 	pci_intr_disestablish(pc, sc->sk_intrhand);
1836 	sc->sk_intrhand = NULL;
1837 fail_1:
1838 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1839 	sc->sk_bsize = 0;
1840 }
1841 
1842 static int
mskc_detach(device_t self,int flags)1843 mskc_detach(device_t self, int flags)
1844 {
1845 	struct sk_softc *sc = device_private(self);
1846 	int rv;
1847 
1848 	if (sc->sk_intrhand) {
1849 		pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1850 		sc->sk_intrhand = NULL;
1851 	}
1852 
1853 	if (sc->sk_pihp != NULL) {
1854 		pci_intr_release(sc->sk_pc, sc->sk_pihp, 1);
1855 		sc->sk_pihp = NULL;
1856 	}
1857 
1858 	rv = config_detach_children(self, flags);
1859 	if (rv != 0)
1860 		return rv;
1861 
1862 	sysctl_teardown(&sc->sk_clog);
1863 
1864 	if (sc->sk_status_nseg > 0) {
1865 		bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1866 		bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1867 		    MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1868 		bus_dmamem_free(sc->sc_dmatag,
1869 		    &sc->sk_status_seg, sc->sk_status_nseg);
1870 	}
1871 
1872 	if (sc->sk_bsize > 0)
1873 		bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1874 
1875 	return 0;
1876 }
1877 
1878 static int
msk_encap(struct sk_if_softc * sc_if,struct mbuf * m_head,uint32_t * txidx)1879 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1880 {
1881 	struct sk_softc		*sc = sc_if->sk_softc;
1882 	struct msk_tx_desc		*f = NULL;
1883 	uint32_t		frag, cur, hiaddr, total;
1884 	uint32_t		entries = 0;
1885 	uint8_t			own = 0;
1886 	size_t			i;
1887 	bus_dmamap_t		txmap;
1888 	bus_addr_t		addr;
1889 
1890 	DPRINTFN(2, ("msk_encap\n"));
1891 
1892 	txmap = sc_if->sk_cdata.sk_tx_chain[*txidx].sk_dmamap;
1893 
1894 	cur = frag = *txidx;
1895 
1896 #ifdef MSK_DEBUG
1897 	if (mskdebug >= 2)
1898 		msk_dump_mbuf(m_head);
1899 #endif
1900 
1901 	/*
1902 	 * Start packing the mbufs in this chain into
1903 	 * the fragment pointers. Stop when we run out
1904 	 * of fragments or hit the end of the mbuf chain.
1905 	 */
1906 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1907 	    BUS_DMA_NOWAIT)) {
1908 		DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1909 		return ENOBUFS;
1910 	}
1911 
1912 	/* Count how many tx descriptors needed. */
1913 	hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1914 	for (total = i = 0; i < txmap->dm_nsegs; i++) {
1915 		if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) {
1916 			hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr);
1917 			total++;
1918 		}
1919 		total++;
1920 	}
1921 
1922 	if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) {
1923 		DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1924 		bus_dmamap_unload(sc->sc_dmatag, txmap);
1925 		return ENOBUFS;
1926 	}
1927 
1928 	DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n",
1929 	    txmap->dm_nsegs, total));
1930 
1931 	/* Sync the DMA map. */
1932 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1933 	    BUS_DMASYNC_PREWRITE);
1934 
1935 	for (i = 0; i < txmap->dm_nsegs; i++) {
1936 		addr = txmap->dm_segs[i].ds_addr;
1937 		DPRINTFN(2, ("msk_encap: addr %llx\n",
1938 		    (unsigned long long)addr));
1939 		hiaddr = MSK_ADDR_HI(addr);
1940 
1941 		if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1942 			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1943 			f->sk_addr = htole32(hiaddr);
1944 			f->sk_len = 0;
1945 			f->sk_ctl = 0;
1946 			f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | own;
1947 			own = SK_Y2_TXOPC_OWN;
1948 			sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1949 			SK_INC(frag, MSK_TX_RING_CNT);
1950 			entries++;
1951 			DPRINTFN(10, ("%s: tx ADDR64: %#x\n",
1952 			    sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
1953 		}
1954 
1955 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1956 		f->sk_addr = htole32(MSK_ADDR_LO(addr));
1957 		f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1958 		f->sk_ctl = 0;
1959 		if (i == 0) {
1960 			f->sk_opcode = SK_Y2_TXOPC_PACKET | own;
1961 		} else
1962 			f->sk_opcode = SK_Y2_TXOPC_BUFFER | own;
1963 		own = SK_Y2_TXOPC_OWN;
1964 		cur = frag;
1965 		SK_INC(frag, MSK_TX_RING_CNT);
1966 		entries++;
1967 	}
1968 	KASSERTMSG(entries == total, "entries %u total %u", entries, total);
1969 
1970 	sc_if->sk_cdata.sk_tx_chain[*txidx].sk_dmamap =
1971 		sc_if->sk_cdata.sk_tx_chain[cur].sk_dmamap;
1972 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1973 	sc_if->sk_cdata.sk_tx_chain[cur].sk_dmamap = txmap;
1974 
1975 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1976 
1977 	/* Sync descriptors before handing to chip */
1978 	MSK_CDTXSYNC(sc_if, *txidx, entries,
1979 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1980 
1981 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1982 
1983 	/* Sync first descriptor to hand it off */
1984 	MSK_CDTXSYNC(sc_if, *txidx, 1,
1985 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1986 
1987 	sc_if->sk_cdata.sk_tx_cnt += entries;
1988 
1989 #ifdef MSK_DEBUG
1990 	if (mskdebug >= 2) {
1991 		struct msk_tx_desc *le;
1992 		uint32_t idx;
1993 		for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1994 			le = &sc_if->sk_rdata->sk_tx_ring[idx];
1995 			msk_dump_txdesc(le, idx);
1996 		}
1997 	}
1998 #endif
1999 
2000 	*txidx = frag;
2001 
2002 	DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries));
2003 
2004 	return 0;
2005 }
2006 
2007 static void
msk_start(struct ifnet * ifp)2008 msk_start(struct ifnet *ifp)
2009 {
2010 	struct sk_if_softc	*sc_if = ifp->if_softc;
2011 	struct mbuf		*m_head = NULL;
2012 	uint32_t		idx = sc_if->sk_cdata.sk_tx_prod;
2013 	int			pkts = 0;
2014 
2015 	DPRINTFN(2, ("msk_start\n"));
2016 
2017 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
2018 		IFQ_POLL(&ifp->if_snd, m_head);
2019 		if (m_head == NULL)
2020 			break;
2021 
2022 		/*
2023 		 * Pack the data into the transmit ring. If we
2024 		 * don't have room, set the OACTIVE flag and wait
2025 		 * for the NIC to drain the ring.
2026 		 */
2027 		if (msk_encap(sc_if, m_head, &idx)) {
2028 			ifp->if_flags |= IFF_OACTIVE;
2029 			break;
2030 		}
2031 
2032 		/* now we are committed to transmit the packet */
2033 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2034 		pkts++;
2035 
2036 		/*
2037 		 * If there's a BPF listener, bounce a copy of this frame
2038 		 * to him.
2039 		 */
2040 		bpf_mtap(ifp, m_head, BPF_D_OUT);
2041 	}
2042 	if (pkts == 0)
2043 		return;
2044 
2045 	/* Transmit */
2046 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
2047 		sc_if->sk_cdata.sk_tx_prod = idx;
2048 		SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
2049 
2050 		/* Set a timeout in case the chip goes out to lunch. */
2051 		ifp->if_timer = 5;
2052 	}
2053 }
2054 
2055 static void
msk_watchdog(struct ifnet * ifp)2056 msk_watchdog(struct ifnet *ifp)
2057 {
2058 	struct sk_if_softc *sc_if = ifp->if_softc;
2059 
2060 	/*
2061 	 * Reclaim first as there is a possibility of losing Tx completion
2062 	 * interrupts.
2063 	 */
2064 	msk_txeof(sc_if);
2065 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2066 		device_printf(sc_if->sk_dev, "watchdog timeout\n");
2067 
2068 		if_statinc(ifp, if_oerrors);
2069 
2070 		/* XXX Resets both ports; we shouldn't do that. */
2071 		mskc_reset(sc_if->sk_softc);
2072 		msk_reset(sc_if);
2073 		msk_init(ifp);
2074 	}
2075 }
2076 
2077 static bool
mskc_suspend(device_t dv,const pmf_qual_t * qual)2078 mskc_suspend(device_t dv, const pmf_qual_t *qual)
2079 {
2080 	struct sk_softc *sc = device_private(dv);
2081 
2082 	DPRINTFN(2, ("mskc_suspend\n"));
2083 
2084 	/* Turn off the 'driver is loaded' LED. */
2085 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2086 
2087 	return true;
2088 }
2089 
2090 static bool
mskc_resume(device_t dv,const pmf_qual_t * qual)2091 mskc_resume(device_t dv, const pmf_qual_t *qual)
2092 {
2093 	struct sk_softc *sc = device_private(dv);
2094 
2095 	DPRINTFN(2, ("mskc_resume\n"));
2096 
2097 	mskc_reset(sc);
2098 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2099 
2100 	return true;
2101 }
2102 
2103 static __inline int
msk_rxvalid(struct sk_softc * sc,uint32_t stat,uint32_t len)2104 msk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
2105 {
2106 	if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2107 	    YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2108 	    YU_RXSTAT_JABBER)) != 0 ||
2109 	    (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2110 	    YU_RXSTAT_BYTES(stat) != len)
2111 		return 0;
2112 
2113 	return 1;
2114 }
2115 
2116 static void
msk_rxeof(struct sk_if_softc * sc_if,uint16_t len,uint32_t rxstat)2117 msk_rxeof(struct sk_if_softc *sc_if, uint16_t len, uint32_t rxstat)
2118 {
2119 	struct sk_softc		*sc = sc_if->sk_softc;
2120 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2121 	struct mbuf		*m;
2122 	unsigned		cur, prod, tail, total_len = len;
2123 	bus_dmamap_t		dmamap;
2124 
2125 	cur = sc_if->sk_cdata.sk_rx_cons;
2126 	prod = sc_if->sk_cdata.sk_rx_prod;
2127 
2128 	DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod,
2129 		sc_if->sk_cdata.sk_rx_cnt));
2130 
2131 	while (prod != cur) {
2132 		MSK_CDRXSYNC(sc_if, cur,
2133 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2134 
2135 		tail = cur;
2136 		SK_INC(cur, MSK_RX_RING_CNT);
2137 
2138 		sc_if->sk_cdata.sk_rx_cnt--;
2139 		m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf;
2140 		sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL;
2141 		if (m != NULL)
2142 			break;	/* found it */
2143 	}
2144 	sc_if->sk_cdata.sk_rx_cons = cur;
2145 	DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur,
2146 		sc_if->sk_cdata.sk_rx_cnt, m));
2147 
2148 	if (m == NULL)
2149 		return;
2150 
2151 	dmamap = sc_if->sk_cdata.sk_rx_chain[tail].sk_dmamap;
2152 
2153 	bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2154 	    uimin(dmamap->dm_mapsize, total_len), BUS_DMASYNC_POSTREAD);
2155 	bus_dmamap_unload(sc->sc_dmatag, dmamap);
2156 
2157 	if (total_len < SK_MIN_FRAMELEN ||
2158 	    total_len > ETHER_MAX_LEN_JUMBO ||
2159 	    msk_rxvalid(sc, rxstat, total_len) == 0) {
2160 		if_statinc(ifp, if_ierrors);
2161 		m_freem(m);
2162 		return;
2163 	}
2164 
2165 	m_set_rcvif(m, ifp);
2166 	m->m_pkthdr.len = m->m_len = total_len;
2167 
2168 	/* pass it on. */
2169 	if_percpuq_enqueue(ifp->if_percpuq, m);
2170 }
2171 
2172 static void
msk_txeof(struct sk_if_softc * sc_if)2173 msk_txeof(struct sk_if_softc *sc_if)
2174 {
2175 	struct sk_softc		*sc = sc_if->sk_softc;
2176 	struct msk_tx_desc	*cur_tx;
2177 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2178 	uint32_t		idx, reg, sk_ctl;
2179 	bus_dmamap_t		dmamap;
2180 
2181 	DPRINTFN(2, ("msk_txeof\n"));
2182 
2183 	if (sc_if->sk_port == SK_PORT_A)
2184 		reg = SK_STAT_BMU_TXA1_RIDX;
2185 	else
2186 		reg = SK_STAT_BMU_TXA2_RIDX;
2187 
2188 	/*
2189 	 * Go through our tx ring and free mbufs for those
2190 	 * frames that have been sent.
2191 	 */
2192 	idx = sc_if->sk_cdata.sk_tx_cons;
2193 	while (idx != sk_win_read_2(sc, reg)) {
2194 		MSK_CDTXSYNC(sc_if, idx, 1,
2195 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2196 
2197 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2198 		sk_ctl = cur_tx->sk_ctl;
2199 #ifdef MSK_DEBUG
2200 		if (mskdebug >= 2)
2201 			msk_dump_txdesc(cur_tx, idx);
2202 #endif
2203 		if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2204 			if_statinc(ifp, if_opackets);
2205 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2206 			dmamap = sc_if->sk_cdata.sk_tx_chain[idx].sk_dmamap;
2207 
2208 			bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2209 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2210 
2211 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
2212 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2213 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2214 		}
2215 		sc_if->sk_cdata.sk_tx_cnt--;
2216 		SK_INC(idx, MSK_TX_RING_CNT);
2217 	}
2218 	if (idx == sc_if->sk_cdata.sk_tx_cons)
2219 		return;
2220 
2221 	ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2222 
2223 	if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2224 		ifp->if_flags &= ~IFF_OACTIVE;
2225 
2226 	sc_if->sk_cdata.sk_tx_cons = idx;
2227 }
2228 
2229 static void
msk_fill_rx_ring(struct sk_if_softc * sc_if)2230 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2231 {
2232 	/* Make sure to not completely wrap around */
2233 	while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2234 		if (msk_newbuf(sc_if) == ENOBUFS) {
2235 			goto schedretry;
2236 		}
2237 	}
2238 
2239 	return;
2240 
2241 schedretry:
2242 	/* Try later */
2243 	callout_schedule(&sc_if->sk_tick_rx, hz/2);
2244 }
2245 
2246 static void
msk_fill_rx_tick(void * xsc_if)2247 msk_fill_rx_tick(void *xsc_if)
2248 {
2249 	struct sk_if_softc *sc_if = xsc_if;
2250 	int s, rx_prod;
2251 
2252 	KASSERT(KERNEL_LOCKED_P());	/* XXXSMP */
2253 
2254 	s = splnet();
2255 	rx_prod = sc_if->sk_cdata.sk_rx_prod;
2256 	msk_fill_rx_ring(sc_if);
2257 	if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2258 		SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2259 		    sc_if->sk_cdata.sk_rx_prod);
2260 	}
2261 	splx(s);
2262 }
2263 
2264 static void
msk_tick(void * xsc_if)2265 msk_tick(void *xsc_if)
2266 {
2267 	struct sk_if_softc *sc_if = xsc_if;
2268 	struct mii_data *mii = &sc_if->sk_mii;
2269 	int s;
2270 
2271 	s = splnet();
2272 	mii_tick(mii);
2273 	splx(s);
2274 
2275 	callout_schedule(&sc_if->sk_tick_ch, hz);
2276 }
2277 
2278 static void
msk_intr_yukon(struct sk_if_softc * sc_if)2279 msk_intr_yukon(struct sk_if_softc *sc_if)
2280 {
2281 	uint8_t status;
2282 
2283 	status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2284 	/* RX overrun */
2285 	if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2286 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2287 		    SK_RFCTL_RX_FIFO_OVER);
2288 	}
2289 	/* TX underrun */
2290 	if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2291 		SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2292 		    SK_TFCTL_TX_FIFO_UNDER);
2293 	}
2294 
2295 	DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2296 }
2297 
2298 static int
msk_intr(void * xsc)2299 msk_intr(void *xsc)
2300 {
2301 	struct sk_softc		*sc = xsc;
2302 	struct sk_if_softc	*sc_if;
2303 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2304 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2305 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2306 	uint32_t		status;
2307 	struct msk_status_desc	*cur_st;
2308 	bool			retried = false;
2309 
2310 	status = CSR_READ_4(sc, SK_Y2_ISSR2);
2311 	if (status == 0xffffffff)
2312 		return 0;
2313 	if (status == 0) {
2314 		CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2315 		return 0;
2316 	}
2317 
2318 	status = CSR_READ_4(sc, SK_ISR);
2319 
2320 	if (sc_if0 != NULL)
2321 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2322 	if (sc_if1 != NULL)
2323 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2324 
2325 	if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2326 	    (ifp0->if_flags & IFF_RUNNING)) {
2327 		msk_intr_yukon(sc_if0);
2328 	}
2329 
2330 	if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2331 	    (ifp1->if_flags & IFF_RUNNING)) {
2332 		msk_intr_yukon(sc_if1);
2333 	}
2334 
2335 again:
2336 	MSK_CDSTSYNC(sc, sc->sk_status_idx,
2337 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2338 	cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2339 
2340 	while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2341 		cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2342 		switch (cur_st->sk_opcode) {
2343 		case SK_Y2_STOPC_RXSTAT:
2344 			sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2345 			if (sc_if) {
2346 				msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2347 				    letoh32(cur_st->sk_status));
2348 				if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2349 					msk_fill_rx_tick(sc_if);
2350 			}
2351 			break;
2352 		case SK_Y2_STOPC_TXSTAT:
2353 			if (sc_if0)
2354 				msk_txeof(sc_if0);
2355 			if (sc_if1)
2356 				msk_txeof(sc_if1);
2357 			break;
2358 		default:
2359 			aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2360 			break;
2361 		}
2362 		SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2363 
2364 		MSK_CDSTSYNC(sc, sc->sk_status_idx,
2365 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2366 		cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2367 	}
2368 
2369 	if (CSR_READ_2(sc, SK_STAT_BMU_PUTIDX) == sc->sk_status_idx) {
2370 		CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2371 	} else if (!retried) {
2372 		retried = true;
2373 		goto again;
2374 	}
2375 
2376 	CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2377 
2378 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2379 		if_schedule_deferred_start(ifp0);
2380 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2381 		if_schedule_deferred_start(ifp1);
2382 
2383 	KASSERT(sc->rnd_attached > 0);
2384 	rnd_add_uint32(&sc->rnd_source, status);
2385 
2386 	if (sc->sk_int_mod_pending)
2387 		msk_update_int_mod(sc, 1);
2388 
2389 	return (status & sc->sk_intrmask) != 0;
2390 }
2391 
2392 static void
msk_init_yukon(struct sk_if_softc * sc_if)2393 msk_init_yukon(struct sk_if_softc *sc_if)
2394 {
2395 	uint32_t		v;
2396 	uint16_t		reg;
2397 	struct sk_softc		*sc;
2398 	int			i;
2399 
2400 	sc = sc_if->sk_softc;
2401 
2402 	DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2403 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2404 
2405 	DPRINTFN(6, ("msk_init_yukon: 1\n"));
2406 
2407 	DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2408 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2409 
2410 	DPRINTFN(6, ("msk_init_yukon: 3\n"));
2411 
2412 	/* unused read of the interrupt source register */
2413 	DPRINTFN(6, ("msk_init_yukon: 4\n"));
2414 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2415 
2416 	DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2417 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2418 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2419 
2420 	/* MIB Counter Clear Mode set */
2421 	reg |= YU_PAR_MIB_CLR;
2422 	DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2423 	DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2424 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2425 
2426 	/* MIB Counter Clear Mode clear */
2427 	DPRINTFN(6, ("msk_init_yukon: 5\n"));
2428 	reg &= ~YU_PAR_MIB_CLR;
2429 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2430 
2431 	/* receive control reg */
2432 	DPRINTFN(6, ("msk_init_yukon: 7\n"));
2433 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2434 
2435 	/* transmit control register */
2436 	SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2437 
2438 	/* transmit flow control register */
2439 	SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2440 
2441 	/* transmit parameter register */
2442 	DPRINTFN(6, ("msk_init_yukon: 8\n"));
2443 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2444 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2445 
2446 	/* serial mode register */
2447 	DPRINTFN(6, ("msk_init_yukon: 9\n"));
2448 	reg = YU_SMR_DATA_BLIND(0x1c) |
2449 	      YU_SMR_MFL_VLAN |
2450 	      YU_SMR_IPG_DATA(0x1e);
2451 
2452 	if (sc->sk_type != SK_YUKON_FE &&
2453 	    sc->sk_type != SK_YUKON_FE_P)
2454 		reg |= YU_SMR_MFL_JUMBO;
2455 
2456 	SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2457 
2458 	DPRINTFN(6, ("msk_init_yukon: 10\n"));
2459 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2460 	/* msk_attach calls me before ether_ifattach so check null */
2461 	if (ifp != NULL && ifp->if_sadl != NULL)
2462 		memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2463 		    sizeof(sc_if->sk_enaddr));
2464 	/* Setup Yukon's address */
2465 	for (i = 0; i < 3; i++) {
2466 		/* Write Source Address 1 (unicast filter) */
2467 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2468 			      sc_if->sk_enaddr[i * 2] |
2469 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2470 	}
2471 
2472 	for (i = 0; i < 3; i++) {
2473 		reg = sk_win_read_2(sc_if->sk_softc,
2474 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2475 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2476 	}
2477 
2478 	/* Set promiscuous mode */
2479 	msk_setpromisc(sc_if);
2480 
2481 	/* Set multicast filter */
2482 	DPRINTFN(6, ("msk_init_yukon: 11\n"));
2483 	msk_setmulti(sc_if);
2484 
2485 	/* enable interrupt mask for counter overflows */
2486 	DPRINTFN(6, ("msk_init_yukon: 12\n"));
2487 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2488 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2489 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2490 
2491 	/* Configure RX MAC FIFO Flush Mask */
2492 	v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2493 	    YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2494 	    YU_RXSTAT_JABBER;
2495 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2496 
2497 	/* Configure RX MAC FIFO */
2498 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2499 	v =  SK_RFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
2500 	if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_FE_P))
2501 		v |= SK_RFCTL_RX_OVER_ON;
2502 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
2503 
2504 	if ((sc->sk_type == SK_YUKON_FE_P) &&
2505 	    (sc->sk_rev == SK_YUKON_FE_P_REV_A0))
2506 		v = 0x178; /* Magic value */
2507 	else {
2508 		/* Increase flush threshold to 64 bytes */
2509 		v = SK_RFCTL_FIFO_THRESHOLD + 1;
2510 	}
2511 	SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, v);
2512 
2513 	/* Configure TX MAC FIFO */
2514 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2515 	SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2516 
2517 	if ((sc->sk_type == SK_YUKON_FE_P) &&
2518 	    (sc->sk_rev == SK_YUKON_FE_P_REV_A0)) {
2519 		v = SK_IF_READ_2(sc_if, 0, SK_TXMF1_END);
2520 		v &= ~SK_TXEND_WM_ON;
2521 		SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_END, v);
2522 	}
2523 
2524 #if 1
2525 	SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2526 #endif
2527 	DPRINTFN(6, ("msk_init_yukon: end\n"));
2528 }
2529 
2530 /*
2531  * Note that to properly initialize any part of the GEnesis chip,
2532  * you first have to take it out of reset mode.
2533  */
2534 static int
msk_init(struct ifnet * ifp)2535 msk_init(struct ifnet *ifp)
2536 {
2537 	struct sk_if_softc	*sc_if = ifp->if_softc;
2538 	struct sk_softc		*sc = sc_if->sk_softc;
2539 	int			rc = 0, s;
2540 	uint32_t		imr, imtimer_ticks;
2541 
2542 
2543 	DPRINTFN(2, ("msk_init\n"));
2544 
2545 	s = splnet();
2546 
2547 	/* Cancel pending I/O and free all RX/TX buffers. */
2548 	msk_stop(ifp, 1);
2549 
2550 	/* Configure I2C registers */
2551 
2552 	/* Configure XMAC(s) */
2553 	msk_init_yukon(sc_if);
2554 	if ((rc = ether_mediachange(ifp)) != 0)
2555 		goto out;
2556 
2557 	/* Configure transmit arbiter(s) */
2558 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2559 #if 0
2560 /*	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON); */
2561 #endif
2562 
2563 	if (sc->sk_ramsize) {
2564 		/* Configure RAMbuffers */
2565 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2566 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2567 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2568 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2569 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2570 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2571 
2572 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2573 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2574 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2575 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2576 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2577 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2578 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2579 	}
2580 
2581 	/* Configure BMUs */
2582 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2583 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2584 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2585 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600);	/* XXX ??? */
2586 
2587 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2588 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2589 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2590 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600);	/* XXX ??? */
2591 
2592 	/* Make sure the sync transmit queue is disabled. */
2593 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2594 
2595 	/* Init descriptors */
2596 	if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2597 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2598 		    "memory for rx buffers\n");
2599 		msk_stop(ifp, 1);
2600 		splx(s);
2601 		return ENOBUFS;
2602 	}
2603 
2604 	if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2605 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2606 		    "memory for tx buffers\n");
2607 		msk_stop(ifp, 1);
2608 		splx(s);
2609 		return ENOBUFS;
2610 	}
2611 
2612 	/* Set interrupt moderation if changed via sysctl. */
2613 	switch (sc->sk_type) {
2614 	case SK_YUKON_EC:
2615 	case SK_YUKON_EC_U:
2616 	case SK_YUKON_EX:
2617 	case SK_YUKON_SUPR:
2618 	case SK_YUKON_ULTRA2:
2619 	case SK_YUKON_OPTIMA:
2620 	case SK_YUKON_PRM:
2621 	case SK_YUKON_OPTIMA2:
2622 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2623 		break;
2624 	case SK_YUKON_FE:
2625 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2626 		break;
2627 	case SK_YUKON_FE_P:
2628 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2629 		break;
2630 	case SK_YUKON_XL:
2631 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2632 		break;
2633 	default:
2634 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2635 	}
2636 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2637 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2638 		sk_win_write_4(sc, SK_IMTIMERINIT,
2639 		    SK_IM_USECS(sc->sk_int_mod));
2640 		aprint_verbose_dev(sc->sk_dev,
2641 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
2642 	}
2643 
2644 	/* Initialize prefetch engine. */
2645 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2646 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2647 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2648 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2649 	    MSK_RX_RING_ADDR(sc_if, 0));
2650 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2651 	    (uint64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2652 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2653 	SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2654 
2655 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2656 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2657 	SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2658 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2659 	    MSK_TX_RING_ADDR(sc_if, 0));
2660 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2661 	    (uint64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2662 	SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2663 	SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2664 
2665 	SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2666 	    sc_if->sk_cdata.sk_rx_prod);
2667 
2668 
2669 	if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
2670 		/* Disable flushing of non-ASF packets. */
2671 		SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST,
2672 		    SK_RFCTL_RX_MACSEC_FLUSH_OFF);
2673 	}
2674 
2675 	/* Configure interrupt handling */
2676 	if (sc_if->sk_port == SK_PORT_A)
2677 		sc->sk_intrmask |= SK_Y2_INTRS1;
2678 	else
2679 		sc->sk_intrmask |= SK_Y2_INTRS2;
2680 	sc->sk_intrmask |= SK_Y2_IMR_BMU;
2681 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2682 
2683 	ifp->if_flags |= IFF_RUNNING;
2684 	ifp->if_flags &= ~IFF_OACTIVE;
2685 
2686 	callout_schedule(&sc_if->sk_tick_ch, hz);
2687 
2688 out:
2689 	splx(s);
2690 	return rc;
2691 }
2692 
2693 /*
2694  * Note: the logic of second parameter is inverted compared to OpenBSD
2695  * code, since this code uses the function as if_stop hook too.
2696  */
2697 static void
msk_stop(struct ifnet * ifp,int disable)2698 msk_stop(struct ifnet *ifp, int disable)
2699 {
2700 	struct sk_if_softc	*sc_if = ifp->if_softc;
2701 	struct sk_softc		*sc = sc_if->sk_softc;
2702 	bus_dmamap_t		dmamap;
2703 	int			i;
2704 
2705 	DPRINTFN(2, ("msk_stop\n"));
2706 
2707 	callout_stop(&sc_if->sk_tick_ch);
2708 	callout_stop(&sc_if->sk_tick_rx);
2709 
2710 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2711 
2712 	/* Stop transfer of Tx descriptors */
2713 
2714 	/* Stop transfer of Rx descriptors */
2715 
2716 	if (disable) {
2717 		/* Turn off various components of this interface. */
2718 		SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2719 		SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2720 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2721 		SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2722 		SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2723 		SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2724 		SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2725 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2726 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2727 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2728 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2729 
2730 		SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2731 		SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2732 
2733 		/* Disable interrupts */
2734 		if (sc_if->sk_port == SK_PORT_A)
2735 			sc->sk_intrmask &= ~SK_Y2_INTRS1;
2736 		else
2737 			sc->sk_intrmask &= ~SK_Y2_INTRS2;
2738 		CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2739 	}
2740 
2741 	/* Free RX and TX mbufs still in the queues. */
2742 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2743 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2744 			dmamap = sc_if->sk_cdata.sk_rx_chain[i].sk_dmamap;
2745 
2746 			bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2747 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2748 
2749 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
2750 
2751 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2752 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2753 		}
2754 	}
2755 
2756 	sc_if->sk_cdata.sk_rx_prod = 0;
2757 	sc_if->sk_cdata.sk_rx_cons = 0;
2758 	sc_if->sk_cdata.sk_rx_cnt = 0;
2759 
2760 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
2761 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2762 			dmamap = sc_if->sk_cdata.sk_tx_chain[i].sk_dmamap;
2763 
2764 			bus_dmamap_sync(sc->sc_dmatag, dmamap, 0,
2765 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2766 
2767 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
2768 
2769 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2770 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2771 		}
2772 	}
2773 }
2774 
2775 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2776 	mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2777 
2778 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2779 	msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2780 
2781 #ifdef MSK_DEBUG
2782 static void
msk_dump_txdesc(struct msk_tx_desc * le,int idx)2783 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2784 {
2785 #define DESC_PRINT(X)					\
2786 	if (X)						\
2787 		printf("txdesc[%d]." #X "=%#x\n",	\
2788 		       idx, X);
2789 
2790 	DESC_PRINT(letoh32(le->sk_addr));
2791 	DESC_PRINT(letoh16(le->sk_len));
2792 	DESC_PRINT(le->sk_ctl);
2793 	DESC_PRINT(le->sk_opcode);
2794 #undef DESC_PRINT
2795 }
2796 
2797 static void
msk_dump_bytes(const char * data,int len)2798 msk_dump_bytes(const char *data, int len)
2799 {
2800 	int c, i, j;
2801 
2802 	for (i = 0; i < len; i += 16) {
2803 		printf("%08x  ", i);
2804 		c = len - i;
2805 		if (c > 16) c = 16;
2806 
2807 		for (j = 0; j < c; j++) {
2808 			printf("%02x ", data[i + j] & 0xff);
2809 			if ((j & 0xf) == 7 && j > 0)
2810 				printf(" ");
2811 		}
2812 
2813 		for (; j < 16; j++)
2814 			printf("   ");
2815 		printf("  ");
2816 
2817 		for (j = 0; j < c; j++) {
2818 			int ch = data[i + j] & 0xff;
2819 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2820 		}
2821 
2822 		printf("\n");
2823 
2824 		if (c < 16)
2825 			break;
2826 	}
2827 }
2828 
2829 static void
msk_dump_mbuf(struct mbuf * m)2830 msk_dump_mbuf(struct mbuf *m)
2831 {
2832 	int count = m->m_pkthdr.len;
2833 
2834 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2835 
2836 	while (count > 0 && m) {
2837 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2838 		       m, m->m_data, m->m_len);
2839 		if (mskdebug >= 4)
2840 			msk_dump_bytes(mtod(m, char *), m->m_len);
2841 
2842 		count -= m->m_len;
2843 		m = m->m_next;
2844 	}
2845 }
2846 #endif
2847 
2848 static int
msk_sysctl_handler(SYSCTLFN_ARGS)2849 msk_sysctl_handler(SYSCTLFN_ARGS)
2850 {
2851 	int error, t;
2852 	struct sysctlnode node;
2853 	struct sk_softc *sc;
2854 
2855 	node = *rnode;
2856 	sc = node.sysctl_data;
2857 	t = sc->sk_int_mod;
2858 	node.sysctl_data = &t;
2859 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2860 	if (error || newp == NULL)
2861 		return error;
2862 
2863 	if (t < SK_IM_MIN || t > SK_IM_MAX)
2864 		return EINVAL;
2865 
2866 	/* update the softc with sysctl-changed value, and mark
2867 	   for hardware update */
2868 	sc->sk_int_mod = t;
2869 	sc->sk_int_mod_pending = 1;
2870 	return 0;
2871 }
2872 
2873 /*
2874  * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2875  * set up in mskc_attach()
2876  */
2877 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2878 {
2879 	int rc;
2880 	const struct sysctlnode *node;
2881 
2882 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2883 	    0, CTLTYPE_NODE, "msk",
2884 	    SYSCTL_DESCR("msk interface controls"),
2885 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2886 		goto err;
2887 	}
2888 
2889 	msk_root_num = node->sysctl_num;
2890 	return;
2891 
2892 err:
2893 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2894 }
2895