1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright 2017 - Free Electrons
4 *
5 * Authors:
6 * Boris Brezillon <boris.brezillon@free-electrons.com>
7 * Peter Pan <peterpandong@micron.com>
8 */
9
10 #ifndef __LINUX_MTD_NAND_H
11 #define __LINUX_MTD_NAND_H
12
13 #include <linux/mtd/mtd.h>
14
15 struct nand_device;
16
17 /**
18 * struct nand_memory_organization - Memory organization structure
19 * @bits_per_cell: number of bits per NAND cell
20 * @pagesize: page size
21 * @oobsize: OOB area size
22 * @pages_per_eraseblock: number of pages per eraseblock
23 * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
24 * @max_bad_eraseblocks_per_lun: maximum number of eraseblocks per LUN
25 * @planes_per_lun: number of planes per LUN
26 * @luns_per_target: number of LUN per target (target is a synonym for die)
27 * @ntargets: total number of targets exposed by the NAND device
28 */
29 struct nand_memory_organization {
30 unsigned int bits_per_cell;
31 unsigned int pagesize;
32 unsigned int oobsize;
33 unsigned int pages_per_eraseblock;
34 unsigned int eraseblocks_per_lun;
35 unsigned int max_bad_eraseblocks_per_lun;
36 unsigned int planes_per_lun;
37 unsigned int luns_per_target;
38 unsigned int ntargets;
39 };
40
41 #define NAND_MEMORG(bpc, ps, os, ppe, epl, mbb, ppl, lpt, nt) \
42 { \
43 .bits_per_cell = (bpc), \
44 .pagesize = (ps), \
45 .oobsize = (os), \
46 .pages_per_eraseblock = (ppe), \
47 .eraseblocks_per_lun = (epl), \
48 .max_bad_eraseblocks_per_lun = (mbb), \
49 .planes_per_lun = (ppl), \
50 .luns_per_target = (lpt), \
51 .ntargets = (nt), \
52 }
53
54 /**
55 * struct nand_row_converter - Information needed to convert an absolute offset
56 * into a row address
57 * @lun_addr_shift: position of the LUN identifier in the row address
58 * @eraseblock_addr_shift: position of the eraseblock identifier in the row
59 * address
60 */
61 struct nand_row_converter {
62 unsigned int lun_addr_shift;
63 unsigned int eraseblock_addr_shift;
64 };
65
66 /**
67 * struct nand_pos - NAND position object
68 * @target: the NAND target/die
69 * @lun: the LUN identifier
70 * @plane: the plane within the LUN
71 * @eraseblock: the eraseblock within the LUN
72 * @page: the page within the LUN
73 *
74 * These information are usually used by specific sub-layers to select the
75 * appropriate target/die and generate a row address to pass to the device.
76 */
77 struct nand_pos {
78 unsigned int target;
79 unsigned int lun;
80 unsigned int plane;
81 unsigned int eraseblock;
82 unsigned int page;
83 };
84
85 /**
86 * enum nand_page_io_req_type - Direction of an I/O request
87 * @NAND_PAGE_READ: from the chip, to the controller
88 * @NAND_PAGE_WRITE: from the controller, to the chip
89 */
90 enum nand_page_io_req_type {
91 NAND_PAGE_READ = 0,
92 NAND_PAGE_WRITE,
93 };
94
95 /**
96 * struct nand_page_io_req - NAND I/O request object
97 * @type: the type of page I/O: read or write
98 * @pos: the position this I/O request is targeting
99 * @dataoffs: the offset within the page
100 * @datalen: number of data bytes to read from/write to this page
101 * @databuf: buffer to store data in or get data from
102 * @ooboffs: the OOB offset within the page
103 * @ooblen: the number of OOB bytes to read from/write to this page
104 * @oobbuf: buffer to store OOB data in or get OOB data from
105 * @mode: one of the %MTD_OPS_XXX mode
106 * @continuous: no need to start over the operation at the end of each page, the
107 * NAND device will automatically prepare the next one
108 *
109 * This object is used to pass per-page I/O requests to NAND sub-layers. This
110 * way all useful information are already formatted in a useful way and
111 * specific NAND layers can focus on translating these information into
112 * specific commands/operations.
113 */
114 struct nand_page_io_req {
115 enum nand_page_io_req_type type;
116 struct nand_pos pos;
117 unsigned int dataoffs;
118 unsigned int datalen;
119 union {
120 const void *out;
121 void *in;
122 } databuf;
123 unsigned int ooboffs;
124 unsigned int ooblen;
125 union {
126 const void *out;
127 void *in;
128 } oobbuf;
129 int mode;
130 bool continuous;
131 };
132
133 const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void);
134 const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void);
135 const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void);
136
137 /**
138 * enum nand_ecc_engine_type - NAND ECC engine type
139 * @NAND_ECC_ENGINE_TYPE_INVALID: Invalid value
140 * @NAND_ECC_ENGINE_TYPE_NONE: No ECC correction
141 * @NAND_ECC_ENGINE_TYPE_SOFT: Software ECC correction
142 * @NAND_ECC_ENGINE_TYPE_ON_HOST: On host hardware ECC correction
143 * @NAND_ECC_ENGINE_TYPE_ON_DIE: On chip hardware ECC correction
144 */
145 enum nand_ecc_engine_type {
146 NAND_ECC_ENGINE_TYPE_INVALID,
147 NAND_ECC_ENGINE_TYPE_NONE,
148 NAND_ECC_ENGINE_TYPE_SOFT,
149 NAND_ECC_ENGINE_TYPE_ON_HOST,
150 NAND_ECC_ENGINE_TYPE_ON_DIE,
151 };
152
153 /**
154 * enum nand_ecc_placement - NAND ECC bytes placement
155 * @NAND_ECC_PLACEMENT_UNKNOWN: The actual position of the ECC bytes is unknown
156 * @NAND_ECC_PLACEMENT_OOB: The ECC bytes are located in the OOB area
157 * @NAND_ECC_PLACEMENT_INTERLEAVED: Syndrome layout, there are ECC bytes
158 * interleaved with regular data in the main
159 * area
160 */
161 enum nand_ecc_placement {
162 NAND_ECC_PLACEMENT_UNKNOWN,
163 NAND_ECC_PLACEMENT_OOB,
164 NAND_ECC_PLACEMENT_INTERLEAVED,
165 };
166
167 /**
168 * enum nand_ecc_algo - NAND ECC algorithm
169 * @NAND_ECC_ALGO_UNKNOWN: Unknown algorithm
170 * @NAND_ECC_ALGO_HAMMING: Hamming algorithm
171 * @NAND_ECC_ALGO_BCH: Bose-Chaudhuri-Hocquenghem algorithm
172 * @NAND_ECC_ALGO_RS: Reed-Solomon algorithm
173 */
174 enum nand_ecc_algo {
175 NAND_ECC_ALGO_UNKNOWN,
176 NAND_ECC_ALGO_HAMMING,
177 NAND_ECC_ALGO_BCH,
178 NAND_ECC_ALGO_RS,
179 };
180
181 /**
182 * struct nand_ecc_props - NAND ECC properties
183 * @engine_type: ECC engine type
184 * @placement: OOB placement (if relevant)
185 * @algo: ECC algorithm (if relevant)
186 * @strength: ECC strength
187 * @step_size: Number of bytes per step
188 * @flags: Misc properties
189 */
190 struct nand_ecc_props {
191 enum nand_ecc_engine_type engine_type;
192 enum nand_ecc_placement placement;
193 enum nand_ecc_algo algo;
194 unsigned int strength;
195 unsigned int step_size;
196 unsigned int flags;
197 };
198
199 #define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
200
201 /* NAND ECC misc flags */
202 #define NAND_ECC_MAXIMIZE_STRENGTH BIT(0)
203
204 /**
205 * struct nand_bbt - bad block table object
206 * @cache: in memory BBT cache
207 */
208 struct nand_bbt {
209 unsigned long *cache;
210 };
211
212 /**
213 * struct nand_ops - NAND operations
214 * @erase: erase a specific block. No need to check if the block is bad before
215 * erasing, this has been taken care of by the generic NAND layer
216 * @markbad: mark a specific block bad. No need to check if the block is
217 * already marked bad, this has been taken care of by the generic
218 * NAND layer. This method should just write the BBM (Bad Block
219 * Marker) so that future call to struct_nand_ops->isbad() return
220 * true
221 * @isbad: check whether a block is bad or not. This method should just read
222 * the BBM and return whether the block is bad or not based on what it
223 * reads
224 *
225 * These are all low level operations that should be implemented by specialized
226 * NAND layers (SPI NAND, raw NAND, ...).
227 */
228 struct nand_ops {
229 int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
230 int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
231 bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
232 };
233
234 /**
235 * struct nand_ecc_context - Context for the ECC engine
236 * @conf: basic ECC engine parameters
237 * @nsteps: number of ECC steps
238 * @total: total number of bytes used for storing ECC codes, this is used by
239 * generic OOB layouts
240 * @priv: ECC engine driver private data
241 */
242 struct nand_ecc_context {
243 struct nand_ecc_props conf;
244 unsigned int nsteps;
245 unsigned int total;
246 void *priv;
247 };
248
249 /**
250 * struct nand_ecc_engine_ops - ECC engine operations
251 * @init_ctx: given a desired user configuration for the pointed NAND device,
252 * requests the ECC engine driver to setup a configuration with
253 * values it supports.
254 * @cleanup_ctx: clean the context initialized by @init_ctx.
255 * @prepare_io_req: is called before reading/writing a page to prepare the I/O
256 * request to be performed with ECC correction.
257 * @finish_io_req: is called after reading/writing a page to terminate the I/O
258 * request and ensure proper ECC correction.
259 */
260 struct nand_ecc_engine_ops {
261 int (*init_ctx)(struct nand_device *nand);
262 void (*cleanup_ctx)(struct nand_device *nand);
263 int (*prepare_io_req)(struct nand_device *nand,
264 struct nand_page_io_req *req);
265 int (*finish_io_req)(struct nand_device *nand,
266 struct nand_page_io_req *req);
267 };
268
269 /**
270 * enum nand_ecc_engine_integration - How the NAND ECC engine is integrated
271 * @NAND_ECC_ENGINE_INTEGRATION_INVALID: Invalid value
272 * @NAND_ECC_ENGINE_INTEGRATION_PIPELINED: Pipelined engine, performs on-the-fly
273 * correction, does not need to copy
274 * data around
275 * @NAND_ECC_ENGINE_INTEGRATION_EXTERNAL: External engine, needs to bring the
276 * data into its own area before use
277 */
278 enum nand_ecc_engine_integration {
279 NAND_ECC_ENGINE_INTEGRATION_INVALID,
280 NAND_ECC_ENGINE_INTEGRATION_PIPELINED,
281 NAND_ECC_ENGINE_INTEGRATION_EXTERNAL,
282 };
283
284 /**
285 * struct nand_ecc_engine - ECC engine abstraction for NAND devices
286 * @dev: Host device
287 * @node: Private field for registration time
288 * @ops: ECC engine operations
289 * @integration: How the engine is integrated with the host
290 * (only relevant on %NAND_ECC_ENGINE_TYPE_ON_HOST engines)
291 * @priv: Private data
292 */
293 struct nand_ecc_engine {
294 struct device *dev;
295 struct list_head node;
296 struct nand_ecc_engine_ops *ops;
297 enum nand_ecc_engine_integration integration;
298 void *priv;
299 };
300
301 void of_get_nand_ecc_user_config(struct nand_device *nand);
302 int nand_ecc_init_ctx(struct nand_device *nand);
303 void nand_ecc_cleanup_ctx(struct nand_device *nand);
304 int nand_ecc_prepare_io_req(struct nand_device *nand,
305 struct nand_page_io_req *req);
306 int nand_ecc_finish_io_req(struct nand_device *nand,
307 struct nand_page_io_req *req);
308 bool nand_ecc_is_strong_enough(struct nand_device *nand);
309
310 #if IS_REACHABLE(CONFIG_MTD_NAND_CORE)
311 int nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine);
312 int nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine);
313 #else
314 static inline int
nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine * engine)315 nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine)
316 {
317 return -ENOTSUPP;
318 }
319 static inline int
nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine * engine)320 nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine)
321 {
322 return -ENOTSUPP;
323 }
324 #endif
325
326 struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand);
327 struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand);
328 struct nand_ecc_engine *nand_ecc_get_on_host_hw_engine(struct nand_device *nand);
329 void nand_ecc_put_on_host_hw_engine(struct nand_device *nand);
330 struct device *nand_ecc_get_engine_dev(struct device *host);
331
332 #if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING)
333 struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void);
334 #else
nand_ecc_sw_hamming_get_engine(void)335 static inline struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void)
336 {
337 return NULL;
338 }
339 #endif /* CONFIG_MTD_NAND_ECC_SW_HAMMING */
340
341 #if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)
342 struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void);
343 #else
nand_ecc_sw_bch_get_engine(void)344 static inline struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void)
345 {
346 return NULL;
347 }
348 #endif /* CONFIG_MTD_NAND_ECC_SW_BCH */
349
350 /**
351 * struct nand_ecc_req_tweak_ctx - Help for automatically tweaking requests
352 * @orig_req: Pointer to the original IO request
353 * @nand: Related NAND device, to have access to its memory organization
354 * @page_buffer_size: Real size of the page buffer to use (can be set by the
355 * user before the tweaking mechanism initialization)
356 * @oob_buffer_size: Real size of the OOB buffer to use (can be set by the
357 * user before the tweaking mechanism initialization)
358 * @spare_databuf: Data bounce buffer
359 * @spare_oobbuf: OOB bounce buffer
360 * @bounce_data: Flag indicating a data bounce buffer is used
361 * @bounce_oob: Flag indicating an OOB bounce buffer is used
362 */
363 struct nand_ecc_req_tweak_ctx {
364 struct nand_page_io_req orig_req;
365 struct nand_device *nand;
366 unsigned int page_buffer_size;
367 unsigned int oob_buffer_size;
368 void *spare_databuf;
369 void *spare_oobbuf;
370 bool bounce_data;
371 bool bounce_oob;
372 };
373
374 int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx,
375 struct nand_device *nand);
376 void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx);
377 void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx,
378 struct nand_page_io_req *req);
379 void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx,
380 struct nand_page_io_req *req);
381
382 /**
383 * struct nand_ecc - Information relative to the ECC
384 * @defaults: Default values, depend on the underlying subsystem
385 * @requirements: ECC requirements from the NAND chip perspective
386 * @user_conf: User desires in terms of ECC parameters
387 * @ctx: ECC context for the ECC engine, derived from the device @requirements
388 * the @user_conf and the @defaults
389 * @ondie_engine: On-die ECC engine reference, if any
390 * @engine: ECC engine actually bound
391 */
392 struct nand_ecc {
393 struct nand_ecc_props defaults;
394 struct nand_ecc_props requirements;
395 struct nand_ecc_props user_conf;
396 struct nand_ecc_context ctx;
397 struct nand_ecc_engine *ondie_engine;
398 struct nand_ecc_engine *engine;
399 };
400
401 /**
402 * struct nand_device - NAND device
403 * @mtd: MTD instance attached to the NAND device
404 * @memorg: memory layout
405 * @ecc: NAND ECC object attached to the NAND device
406 * @rowconv: position to row address converter
407 * @bbt: bad block table info
408 * @ops: NAND operations attached to the NAND device
409 *
410 * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
411 * should declare their own NAND object embedding a nand_device struct (that's
412 * how inheritance is done).
413 * struct_nand_device->memorg and struct_nand_device->ecc.requirements should
414 * be filled at device detection time to reflect the NAND device
415 * capabilities/requirements. Once this is done nanddev_init() can be called.
416 * It will take care of converting NAND information into MTD ones, which means
417 * the specialized NAND layers should never manually tweak
418 * struct_nand_device->mtd except for the ->_read/write() hooks.
419 */
420 struct nand_device {
421 struct mtd_info mtd;
422 struct nand_memory_organization memorg;
423 struct nand_ecc ecc;
424 struct nand_row_converter rowconv;
425 struct nand_bbt bbt;
426 const struct nand_ops *ops;
427 };
428
429 /**
430 * struct nand_io_iter - NAND I/O iterator
431 * @req: current I/O request
432 * @oobbytes_per_page: maximum number of OOB bytes per page
433 * @dataleft: remaining number of data bytes to read/write
434 * @oobleft: remaining number of OOB bytes to read/write
435 *
436 * Can be used by specialized NAND layers to iterate over all pages covered
437 * by an MTD I/O request, which should greatly simplifies the boiler-plate
438 * code needed to read/write data from/to a NAND device.
439 */
440 struct nand_io_iter {
441 struct nand_page_io_req req;
442 unsigned int oobbytes_per_page;
443 unsigned int dataleft;
444 unsigned int oobleft;
445 };
446
447 /**
448 * mtd_to_nanddev() - Get the NAND device attached to the MTD instance
449 * @mtd: MTD instance
450 *
451 * Return: the NAND device embedding @mtd.
452 */
mtd_to_nanddev(struct mtd_info * mtd)453 static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
454 {
455 return container_of(mtd, struct nand_device, mtd);
456 }
457
458 /**
459 * nanddev_to_mtd() - Get the MTD device attached to a NAND device
460 * @nand: NAND device
461 *
462 * Return: the MTD device embedded in @nand.
463 */
nanddev_to_mtd(struct nand_device * nand)464 static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
465 {
466 return &nand->mtd;
467 }
468
469 /*
470 * nanddev_bits_per_cell() - Get the number of bits per cell
471 * @nand: NAND device
472 *
473 * Return: the number of bits per cell.
474 */
nanddev_bits_per_cell(const struct nand_device * nand)475 static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
476 {
477 return nand->memorg.bits_per_cell;
478 }
479
480 /**
481 * nanddev_page_size() - Get NAND page size
482 * @nand: NAND device
483 *
484 * Return: the page size.
485 */
nanddev_page_size(const struct nand_device * nand)486 static inline size_t nanddev_page_size(const struct nand_device *nand)
487 {
488 return nand->memorg.pagesize;
489 }
490
491 /**
492 * nanddev_per_page_oobsize() - Get NAND OOB size
493 * @nand: NAND device
494 *
495 * Return: the OOB size.
496 */
497 static inline unsigned int
nanddev_per_page_oobsize(const struct nand_device * nand)498 nanddev_per_page_oobsize(const struct nand_device *nand)
499 {
500 return nand->memorg.oobsize;
501 }
502
503 /**
504 * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
505 * @nand: NAND device
506 *
507 * Return: the number of pages per eraseblock.
508 */
509 static inline unsigned int
nanddev_pages_per_eraseblock(const struct nand_device * nand)510 nanddev_pages_per_eraseblock(const struct nand_device *nand)
511 {
512 return nand->memorg.pages_per_eraseblock;
513 }
514
515 /**
516 * nanddev_pages_per_target() - Get the number of pages per target
517 * @nand: NAND device
518 *
519 * Return: the number of pages per target.
520 */
521 static inline unsigned int
nanddev_pages_per_target(const struct nand_device * nand)522 nanddev_pages_per_target(const struct nand_device *nand)
523 {
524 return nand->memorg.pages_per_eraseblock *
525 nand->memorg.eraseblocks_per_lun *
526 nand->memorg.luns_per_target;
527 }
528
529 /**
530 * nanddev_per_page_oobsize() - Get NAND erase block size
531 * @nand: NAND device
532 *
533 * Return: the eraseblock size.
534 */
nanddev_eraseblock_size(const struct nand_device * nand)535 static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
536 {
537 return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
538 }
539
540 /**
541 * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
542 * @nand: NAND device
543 *
544 * Return: the number of eraseblocks per LUN.
545 */
546 static inline unsigned int
nanddev_eraseblocks_per_lun(const struct nand_device * nand)547 nanddev_eraseblocks_per_lun(const struct nand_device *nand)
548 {
549 return nand->memorg.eraseblocks_per_lun;
550 }
551
552 /**
553 * nanddev_eraseblocks_per_target() - Get the number of eraseblocks per target
554 * @nand: NAND device
555 *
556 * Return: the number of eraseblocks per target.
557 */
558 static inline unsigned int
nanddev_eraseblocks_per_target(const struct nand_device * nand)559 nanddev_eraseblocks_per_target(const struct nand_device *nand)
560 {
561 return nand->memorg.eraseblocks_per_lun * nand->memorg.luns_per_target;
562 }
563
564 /**
565 * nanddev_target_size() - Get the total size provided by a single target/die
566 * @nand: NAND device
567 *
568 * Return: the total size exposed by a single target/die in bytes.
569 */
nanddev_target_size(const struct nand_device * nand)570 static inline u64 nanddev_target_size(const struct nand_device *nand)
571 {
572 return (u64)nand->memorg.luns_per_target *
573 nand->memorg.eraseblocks_per_lun *
574 nand->memorg.pages_per_eraseblock *
575 nand->memorg.pagesize;
576 }
577
578 /**
579 * nanddev_ntarget() - Get the total of targets
580 * @nand: NAND device
581 *
582 * Return: the number of targets/dies exposed by @nand.
583 */
nanddev_ntargets(const struct nand_device * nand)584 static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
585 {
586 return nand->memorg.ntargets;
587 }
588
589 /**
590 * nanddev_neraseblocks() - Get the total number of eraseblocks
591 * @nand: NAND device
592 *
593 * Return: the total number of eraseblocks exposed by @nand.
594 */
nanddev_neraseblocks(const struct nand_device * nand)595 static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
596 {
597 return nand->memorg.ntargets * nand->memorg.luns_per_target *
598 nand->memorg.eraseblocks_per_lun;
599 }
600
601 /**
602 * nanddev_size() - Get NAND size
603 * @nand: NAND device
604 *
605 * Return: the total size (in bytes) exposed by @nand.
606 */
nanddev_size(const struct nand_device * nand)607 static inline u64 nanddev_size(const struct nand_device *nand)
608 {
609 return nanddev_target_size(nand) * nanddev_ntargets(nand);
610 }
611
612 /**
613 * nanddev_get_memorg() - Extract memory organization info from a NAND device
614 * @nand: NAND device
615 *
616 * This can be used by the upper layer to fill the memorg info before calling
617 * nanddev_init().
618 *
619 * Return: the memorg object embedded in the NAND device.
620 */
621 static inline struct nand_memory_organization *
nanddev_get_memorg(struct nand_device * nand)622 nanddev_get_memorg(struct nand_device *nand)
623 {
624 return &nand->memorg;
625 }
626
627 /**
628 * nanddev_get_ecc_conf() - Extract the ECC configuration from a NAND device
629 * @nand: NAND device
630 */
631 static inline const struct nand_ecc_props *
nanddev_get_ecc_conf(struct nand_device * nand)632 nanddev_get_ecc_conf(struct nand_device *nand)
633 {
634 return &nand->ecc.ctx.conf;
635 }
636
637 /**
638 * nanddev_get_ecc_nsteps() - Extract the number of ECC steps
639 * @nand: NAND device
640 */
641 static inline unsigned int
nanddev_get_ecc_nsteps(struct nand_device * nand)642 nanddev_get_ecc_nsteps(struct nand_device *nand)
643 {
644 return nand->ecc.ctx.nsteps;
645 }
646
647 /**
648 * nanddev_get_ecc_bytes_per_step() - Extract the number of ECC bytes per step
649 * @nand: NAND device
650 */
651 static inline unsigned int
nanddev_get_ecc_bytes_per_step(struct nand_device * nand)652 nanddev_get_ecc_bytes_per_step(struct nand_device *nand)
653 {
654 return nand->ecc.ctx.total / nand->ecc.ctx.nsteps;
655 }
656
657 /**
658 * nanddev_get_ecc_requirements() - Extract the ECC requirements from a NAND
659 * device
660 * @nand: NAND device
661 */
662 static inline const struct nand_ecc_props *
nanddev_get_ecc_requirements(struct nand_device * nand)663 nanddev_get_ecc_requirements(struct nand_device *nand)
664 {
665 return &nand->ecc.requirements;
666 }
667
668 /**
669 * nanddev_set_ecc_requirements() - Assign the ECC requirements of a NAND
670 * device
671 * @nand: NAND device
672 * @reqs: Requirements
673 */
674 static inline void
nanddev_set_ecc_requirements(struct nand_device * nand,const struct nand_ecc_props * reqs)675 nanddev_set_ecc_requirements(struct nand_device *nand,
676 const struct nand_ecc_props *reqs)
677 {
678 nand->ecc.requirements = *reqs;
679 }
680
681 int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
682 struct module *owner);
683 void nanddev_cleanup(struct nand_device *nand);
684
685 /**
686 * nanddev_register() - Register a NAND device
687 * @nand: NAND device
688 *
689 * Register a NAND device.
690 * This function is just a wrapper around mtd_device_register()
691 * registering the MTD device embedded in @nand.
692 *
693 * Return: 0 in case of success, a negative error code otherwise.
694 */
nanddev_register(struct nand_device * nand)695 static inline int nanddev_register(struct nand_device *nand)
696 {
697 return mtd_device_register(&nand->mtd, NULL, 0);
698 }
699
700 /**
701 * nanddev_unregister() - Unregister a NAND device
702 * @nand: NAND device
703 *
704 * Unregister a NAND device.
705 * This function is just a wrapper around mtd_device_unregister()
706 * unregistering the MTD device embedded in @nand.
707 *
708 * Return: 0 in case of success, a negative error code otherwise.
709 */
nanddev_unregister(struct nand_device * nand)710 static inline int nanddev_unregister(struct nand_device *nand)
711 {
712 return mtd_device_unregister(&nand->mtd);
713 }
714
715 /**
716 * nanddev_set_of_node() - Attach a DT node to a NAND device
717 * @nand: NAND device
718 * @np: DT node
719 *
720 * Attach a DT node to a NAND device.
721 */
nanddev_set_of_node(struct nand_device * nand,struct device_node * np)722 static inline void nanddev_set_of_node(struct nand_device *nand,
723 struct device_node *np)
724 {
725 mtd_set_of_node(&nand->mtd, np);
726 }
727
728 /**
729 * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
730 * @nand: NAND device
731 *
732 * Return: the DT node attached to @nand.
733 */
nanddev_get_of_node(struct nand_device * nand)734 static inline struct device_node *nanddev_get_of_node(struct nand_device *nand)
735 {
736 return mtd_get_of_node(&nand->mtd);
737 }
738
739 /**
740 * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
741 * @nand: NAND device
742 * @offs: absolute NAND offset (usually passed by the MTD layer)
743 * @pos: a NAND position object to fill in
744 *
745 * Converts @offs into a nand_pos representation.
746 *
747 * Return: the offset within the NAND page pointed by @pos.
748 */
nanddev_offs_to_pos(struct nand_device * nand,loff_t offs,struct nand_pos * pos)749 static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
750 loff_t offs,
751 struct nand_pos *pos)
752 {
753 unsigned int pageoffs;
754 u64 tmp = offs;
755
756 pageoffs = do_div(tmp, nand->memorg.pagesize);
757 pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
758 pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
759 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
760 pos->lun = do_div(tmp, nand->memorg.luns_per_target);
761 pos->target = tmp;
762
763 return pageoffs;
764 }
765
766 /**
767 * nanddev_pos_cmp() - Compare two NAND positions
768 * @a: First NAND position
769 * @b: Second NAND position
770 *
771 * Compares two NAND positions.
772 *
773 * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
774 */
nanddev_pos_cmp(const struct nand_pos * a,const struct nand_pos * b)775 static inline int nanddev_pos_cmp(const struct nand_pos *a,
776 const struct nand_pos *b)
777 {
778 if (a->target != b->target)
779 return a->target < b->target ? -1 : 1;
780
781 if (a->lun != b->lun)
782 return a->lun < b->lun ? -1 : 1;
783
784 if (a->eraseblock != b->eraseblock)
785 return a->eraseblock < b->eraseblock ? -1 : 1;
786
787 if (a->page != b->page)
788 return a->page < b->page ? -1 : 1;
789
790 return 0;
791 }
792
793 /**
794 * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
795 * @nand: NAND device
796 * @pos: the NAND position to convert
797 *
798 * Converts @pos NAND position into an absolute offset.
799 *
800 * Return: the absolute offset. Note that @pos points to the beginning of a
801 * page, if one wants to point to a specific offset within this page
802 * the returned offset has to be adjusted manually.
803 */
nanddev_pos_to_offs(struct nand_device * nand,const struct nand_pos * pos)804 static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
805 const struct nand_pos *pos)
806 {
807 unsigned int npages;
808
809 npages = pos->page +
810 ((pos->eraseblock +
811 (pos->lun +
812 (pos->target * nand->memorg.luns_per_target)) *
813 nand->memorg.eraseblocks_per_lun) *
814 nand->memorg.pages_per_eraseblock);
815
816 return (loff_t)npages * nand->memorg.pagesize;
817 }
818
819 /**
820 * nanddev_pos_to_row() - Extract a row address from a NAND position
821 * @nand: NAND device
822 * @pos: the position to convert
823 *
824 * Converts a NAND position into a row address that can then be passed to the
825 * device.
826 *
827 * Return: the row address extracted from @pos.
828 */
nanddev_pos_to_row(struct nand_device * nand,const struct nand_pos * pos)829 static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
830 const struct nand_pos *pos)
831 {
832 return (pos->lun << nand->rowconv.lun_addr_shift) |
833 (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
834 pos->page;
835 }
836
837 /**
838 * nanddev_pos_next_target() - Move a position to the next target/die
839 * @nand: NAND device
840 * @pos: the position to update
841 *
842 * Updates @pos to point to the start of the next target/die. Useful when you
843 * want to iterate over all targets/dies of a NAND device.
844 */
nanddev_pos_next_target(struct nand_device * nand,struct nand_pos * pos)845 static inline void nanddev_pos_next_target(struct nand_device *nand,
846 struct nand_pos *pos)
847 {
848 pos->page = 0;
849 pos->plane = 0;
850 pos->eraseblock = 0;
851 pos->lun = 0;
852 pos->target++;
853 }
854
855 /**
856 * nanddev_pos_next_lun() - Move a position to the next LUN
857 * @nand: NAND device
858 * @pos: the position to update
859 *
860 * Updates @pos to point to the start of the next LUN. Useful when you want to
861 * iterate over all LUNs of a NAND device.
862 */
nanddev_pos_next_lun(struct nand_device * nand,struct nand_pos * pos)863 static inline void nanddev_pos_next_lun(struct nand_device *nand,
864 struct nand_pos *pos)
865 {
866 if (pos->lun >= nand->memorg.luns_per_target - 1)
867 return nanddev_pos_next_target(nand, pos);
868
869 pos->lun++;
870 pos->page = 0;
871 pos->plane = 0;
872 pos->eraseblock = 0;
873 }
874
875 /**
876 * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
877 * @nand: NAND device
878 * @pos: the position to update
879 *
880 * Updates @pos to point to the start of the next eraseblock. Useful when you
881 * want to iterate over all eraseblocks of a NAND device.
882 */
nanddev_pos_next_eraseblock(struct nand_device * nand,struct nand_pos * pos)883 static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
884 struct nand_pos *pos)
885 {
886 if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
887 return nanddev_pos_next_lun(nand, pos);
888
889 pos->eraseblock++;
890 pos->page = 0;
891 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
892 }
893
894 /**
895 * nanddev_pos_next_page() - Move a position to the next page
896 * @nand: NAND device
897 * @pos: the position to update
898 *
899 * Updates @pos to point to the start of the next page. Useful when you want to
900 * iterate over all pages of a NAND device.
901 */
nanddev_pos_next_page(struct nand_device * nand,struct nand_pos * pos)902 static inline void nanddev_pos_next_page(struct nand_device *nand,
903 struct nand_pos *pos)
904 {
905 if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
906 return nanddev_pos_next_eraseblock(nand, pos);
907
908 pos->page++;
909 }
910
911 /**
912 * nand_io_page_iter_init - Initialize a NAND I/O iterator
913 * @nand: NAND device
914 * @offs: absolute offset
915 * @req: MTD request
916 * @iter: NAND I/O iterator
917 *
918 * Initializes a NAND iterator based on the information passed by the MTD
919 * layer for page jumps.
920 */
nanddev_io_page_iter_init(struct nand_device * nand,enum nand_page_io_req_type reqtype,loff_t offs,struct mtd_oob_ops * req,struct nand_io_iter * iter)921 static inline void nanddev_io_page_iter_init(struct nand_device *nand,
922 enum nand_page_io_req_type reqtype,
923 loff_t offs, struct mtd_oob_ops *req,
924 struct nand_io_iter *iter)
925 {
926 struct mtd_info *mtd = nanddev_to_mtd(nand);
927
928 iter->req.type = reqtype;
929 iter->req.mode = req->mode;
930 iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
931 iter->req.ooboffs = req->ooboffs;
932 iter->oobbytes_per_page = mtd_oobavail(mtd, req);
933 iter->dataleft = req->len;
934 iter->oobleft = req->ooblen;
935 iter->req.databuf.in = req->datbuf;
936 iter->req.datalen = min_t(unsigned int,
937 nand->memorg.pagesize - iter->req.dataoffs,
938 iter->dataleft);
939 iter->req.oobbuf.in = req->oobbuf;
940 iter->req.ooblen = min_t(unsigned int,
941 iter->oobbytes_per_page - iter->req.ooboffs,
942 iter->oobleft);
943 iter->req.continuous = false;
944 }
945
946 /**
947 * nand_io_block_iter_init - Initialize a NAND I/O iterator
948 * @nand: NAND device
949 * @offs: absolute offset
950 * @req: MTD request
951 * @iter: NAND I/O iterator
952 *
953 * Initializes a NAND iterator based on the information passed by the MTD
954 * layer for block jumps (no OOB)
955 *
956 * In practice only reads may leverage this iterator.
957 */
nanddev_io_block_iter_init(struct nand_device * nand,enum nand_page_io_req_type reqtype,loff_t offs,struct mtd_oob_ops * req,struct nand_io_iter * iter)958 static inline void nanddev_io_block_iter_init(struct nand_device *nand,
959 enum nand_page_io_req_type reqtype,
960 loff_t offs, struct mtd_oob_ops *req,
961 struct nand_io_iter *iter)
962 {
963 unsigned int offs_in_eb;
964
965 iter->req.type = reqtype;
966 iter->req.mode = req->mode;
967 iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
968 iter->req.ooboffs = 0;
969 iter->oobbytes_per_page = 0;
970 iter->dataleft = req->len;
971 iter->oobleft = 0;
972 iter->req.databuf.in = req->datbuf;
973 offs_in_eb = (nand->memorg.pagesize * iter->req.pos.page) + iter->req.dataoffs;
974 iter->req.datalen = min_t(unsigned int,
975 nanddev_eraseblock_size(nand) - offs_in_eb,
976 iter->dataleft);
977 iter->req.oobbuf.in = NULL;
978 iter->req.ooblen = 0;
979 iter->req.continuous = true;
980 }
981
982 /**
983 * nand_io_iter_next_page - Move to the next page
984 * @nand: NAND device
985 * @iter: NAND I/O iterator
986 *
987 * Updates the @iter to point to the next page.
988 */
nanddev_io_iter_next_page(struct nand_device * nand,struct nand_io_iter * iter)989 static inline void nanddev_io_iter_next_page(struct nand_device *nand,
990 struct nand_io_iter *iter)
991 {
992 nanddev_pos_next_page(nand, &iter->req.pos);
993 iter->dataleft -= iter->req.datalen;
994 iter->req.databuf.in += iter->req.datalen;
995 iter->oobleft -= iter->req.ooblen;
996 iter->req.oobbuf.in += iter->req.ooblen;
997 iter->req.dataoffs = 0;
998 iter->req.ooboffs = 0;
999 iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
1000 iter->dataleft);
1001 iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
1002 iter->oobleft);
1003 }
1004
1005 /**
1006 * nand_io_iter_next_block - Move to the next block
1007 * @nand: NAND device
1008 * @iter: NAND I/O iterator
1009 *
1010 * Updates the @iter to point to the next block.
1011 * No OOB handling available.
1012 */
nanddev_io_iter_next_block(struct nand_device * nand,struct nand_io_iter * iter)1013 static inline void nanddev_io_iter_next_block(struct nand_device *nand,
1014 struct nand_io_iter *iter)
1015 {
1016 nanddev_pos_next_eraseblock(nand, &iter->req.pos);
1017 iter->dataleft -= iter->req.datalen;
1018 iter->req.databuf.in += iter->req.datalen;
1019 iter->req.dataoffs = 0;
1020 iter->req.datalen = min_t(unsigned int, nanddev_eraseblock_size(nand),
1021 iter->dataleft);
1022 }
1023
1024 /**
1025 * nand_io_iter_end - Should end iteration or not
1026 * @nand: NAND device
1027 * @iter: NAND I/O iterator
1028 *
1029 * Check whether @iter has reached the end of the NAND portion it was asked to
1030 * iterate on or not.
1031 *
1032 * Return: true if @iter has reached the end of the iteration request, false
1033 * otherwise.
1034 */
nanddev_io_iter_end(struct nand_device * nand,const struct nand_io_iter * iter)1035 static inline bool nanddev_io_iter_end(struct nand_device *nand,
1036 const struct nand_io_iter *iter)
1037 {
1038 if (iter->dataleft || iter->oobleft)
1039 return false;
1040
1041 return true;
1042 }
1043
1044 /**
1045 * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
1046 * request
1047 * @nand: NAND device
1048 * @start: start address to read/write from
1049 * @req: MTD I/O request
1050 * @iter: NAND I/O iterator
1051 *
1052 * Should be used for iterating over pages that are contained in an MTD request.
1053 */
1054 #define nanddev_io_for_each_page(nand, type, start, req, iter) \
1055 for (nanddev_io_page_iter_init(nand, type, start, req, iter); \
1056 !nanddev_io_iter_end(nand, iter); \
1057 nanddev_io_iter_next_page(nand, iter))
1058
1059 /**
1060 * nand_io_for_each_block - Iterate over all NAND pages contained in an MTD I/O
1061 * request, one block at a time
1062 * @nand: NAND device
1063 * @start: start address to read/write from
1064 * @req: MTD I/O request
1065 * @iter: NAND I/O iterator
1066 *
1067 * Should be used for iterating over blocks that are contained in an MTD request.
1068 */
1069 #define nanddev_io_for_each_block(nand, type, start, req, iter) \
1070 for (nanddev_io_block_iter_init(nand, type, start, req, iter); \
1071 !nanddev_io_iter_end(nand, iter); \
1072 nanddev_io_iter_next_block(nand, iter))
1073
1074 bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
1075 bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
1076 int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
1077
1078 /* ECC related functions */
1079 int nanddev_ecc_engine_init(struct nand_device *nand);
1080 void nanddev_ecc_engine_cleanup(struct nand_device *nand);
1081
nand_to_ecc_ctx(struct nand_device * nand)1082 static inline void *nand_to_ecc_ctx(struct nand_device *nand)
1083 {
1084 return nand->ecc.ctx.priv;
1085 }
1086
1087 /* BBT related functions */
1088 enum nand_bbt_block_status {
1089 NAND_BBT_BLOCK_STATUS_UNKNOWN,
1090 NAND_BBT_BLOCK_GOOD,
1091 NAND_BBT_BLOCK_WORN,
1092 NAND_BBT_BLOCK_RESERVED,
1093 NAND_BBT_BLOCK_FACTORY_BAD,
1094 NAND_BBT_BLOCK_NUM_STATUS,
1095 };
1096
1097 int nanddev_bbt_init(struct nand_device *nand);
1098 void nanddev_bbt_cleanup(struct nand_device *nand);
1099 int nanddev_bbt_update(struct nand_device *nand);
1100 int nanddev_bbt_get_block_status(const struct nand_device *nand,
1101 unsigned int entry);
1102 int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
1103 enum nand_bbt_block_status status);
1104 int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
1105
1106 /**
1107 * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
1108 * @nand: NAND device
1109 * @pos: the NAND position we want to get BBT entry for
1110 *
1111 * Return the BBT entry used to store information about the eraseblock pointed
1112 * by @pos.
1113 *
1114 * Return: the BBT entry storing information about eraseblock pointed by @pos.
1115 */
nanddev_bbt_pos_to_entry(struct nand_device * nand,const struct nand_pos * pos)1116 static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
1117 const struct nand_pos *pos)
1118 {
1119 return pos->eraseblock +
1120 ((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
1121 nand->memorg.eraseblocks_per_lun);
1122 }
1123
1124 /**
1125 * nanddev_bbt_is_initialized() - Check if the BBT has been initialized
1126 * @nand: NAND device
1127 *
1128 * Return: true if the BBT has been initialized, false otherwise.
1129 */
nanddev_bbt_is_initialized(struct nand_device * nand)1130 static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
1131 {
1132 return !!nand->bbt.cache;
1133 }
1134
1135 /* MTD -> NAND helper functions. */
1136 int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
1137 int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len);
1138
1139 #endif /* __LINUX_MTD_NAND_H */
1140