xref: /netbsd/sys/fs/nfs/client/nfs_clbio.c (revision a6a895e6)
1 /*	$NetBSD: nfs_clbio.c,v 1.7 2021/03/29 02:13:37 simonb Exp $	*/
2 /*-
3  * Copyright (c) 1989, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Rick Macklem at The University of Guelph.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
34  */
35 
36 #include <sys/cdefs.h>
37 /* __FBSDID("FreeBSD: head/sys/fs/nfsclient/nfs_clbio.c 304026 2016-08-12 22:44:59Z rmacklem "); */
38 __RCSID("$NetBSD: nfs_clbio.c,v 1.7 2021/03/29 02:13:37 simonb Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/buf.h>
43 #include <sys/kernel.h>
44 #include <sys/mount.h>
45 #include <sys/rwlock.h>
46 #include <sys/vmmeter.h>
47 #include <sys/vnode.h>
48 
49 #include <fs/nfs/common/nfsport.h>
50 #include <fs/nfs/client/nfsmount.h>
51 #include <fs/nfs/client/nfs.h>
52 #include <fs/nfs/client/nfsnode.h>
53 #include <fs/nfs/client/nfs_kdtrace.h>
54 
55 extern int newnfs_directio_allow_mmap;
56 extern struct nfsstatsv1 nfsstatsv1;
57 extern struct mtx ncl_iod_mutex;
58 extern int ncl_numasync;
59 extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON];
60 extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON];
61 extern int newnfs_directio_enable;
62 extern int nfs_keep_dirty_on_error;
63 
64 int ncl_pbuf_freecnt = -1;	/* start out unlimited */
65 
66 static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
67     struct thread *td);
68 static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
69     struct ucred *cred, int ioflag);
70 
71 /*
72  * Vnode op for VM getpages.
73  */
74 int
ncl_getpages(struct vop_getpages_args * ap)75 ncl_getpages(struct vop_getpages_args *ap)
76 {
77 	int i, error, nextoff, size, toff, count, npages;
78 	struct uio uio;
79 	struct iovec iov;
80 	vaddr_t kva;
81 	struct buf *bp;
82 	struct vnode *vp;
83 	struct thread *td;
84 	struct ucred *cred;
85 	struct nfsmount *nmp;
86 	vm_object_t object;
87 	vm_page_t *pages;
88 	struct nfsnode *np;
89 
90 	vp = ap->a_vp;
91 	np = VTONFS(vp);
92 	td = curthread;				/* XXX */
93 	cred = curthread->td_ucred;		/* XXX */
94 	nmp = VFSTONFS(vp->v_mount);
95 	pages = ap->a_m;
96 	npages = ap->a_count;
97 
98 	if ((object = vp->v_object) == NULL) {
99 		printf("ncl_getpages: called with non-merged cache vnode\n");
100 		return (VM_PAGER_ERROR);
101 	}
102 
103 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
104 		mtx_lock(&np->n_mtx);
105 		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
106 			mtx_unlock(&np->n_mtx);
107 			printf("ncl_getpages: called on non-cacheable vnode\n");
108 			return (VM_PAGER_ERROR);
109 		} else
110 			mtx_unlock(&np->n_mtx);
111 	}
112 
113 	mtx_lock(&nmp->nm_mtx);
114 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
115 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
116 		mtx_unlock(&nmp->nm_mtx);
117 		/* We'll never get here for v4, because we always have fsinfo */
118 		(void)ncl_fsinfo(nmp, vp, cred, td);
119 	} else
120 		mtx_unlock(&nmp->nm_mtx);
121 
122 	/*
123 	 * If the requested page is partially valid, just return it and
124 	 * allow the pager to zero-out the blanks.  Partially valid pages
125 	 * can only occur at the file EOF.
126 	 *
127 	 * XXXGL: is that true for NFS, where short read can occur???
128 	 */
129 	VM_OBJECT_WLOCK(object);
130 	if (pages[npages - 1]->valid != 0 && --npages == 0)
131 		goto out;
132 	VM_OBJECT_WUNLOCK(object);
133 
134 	/*
135 	 * We use only the kva address for the buffer, but this is extremely
136 	 * convenient and fast.
137 	 */
138 	bp = getpbuf(&ncl_pbuf_freecnt);
139 
140 	kva = (vaddr_t) bp->b_data;
141 	pmap_qenter(kva, pages, npages);
142 	PCPU_INC(cnt.v_vnodein);
143 	PCPU_ADD(cnt.v_vnodepgsin, npages);
144 
145 	count = npages << PAGE_SHIFT;
146 	iov.iov_base = (caddr_t) kva;
147 	iov.iov_len = count;
148 	uio.uio_iov = &iov;
149 	uio.uio_iovcnt = 1;
150 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
151 	uio.uio_resid = count;
152 	uio.uio_segflg = UIO_SYSSPACE;
153 	uio.uio_rw = UIO_READ;
154 	uio.uio_td = td;
155 
156 	error = ncl_readrpc(vp, &uio, cred);
157 	pmap_qremove(kva, npages);
158 
159 	relpbuf(bp, &ncl_pbuf_freecnt);
160 
161 	if (error && (uio.uio_resid == count)) {
162 		printf("ncl_getpages: error %d\n", error);
163 		return (VM_PAGER_ERROR);
164 	}
165 
166 	/*
167 	 * Calculate the number of bytes read and validate only that number
168 	 * of bytes.  Note that due to pending writes, size may be 0.  This
169 	 * does not mean that the remaining data is invalid!
170 	 */
171 
172 	size = count - uio.uio_resid;
173 	VM_OBJECT_WLOCK(object);
174 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
175 		vm_page_t m;
176 		nextoff = toff + PAGE_SIZE;
177 		m = pages[i];
178 
179 		if (nextoff <= size) {
180 			/*
181 			 * Read operation filled an entire page
182 			 */
183 			m->valid = VM_PAGE_BITS_ALL;
184 			KASSERT(m->dirty == 0,
185 			    ("nfs_getpages: page %p is dirty", m));
186 		} else if (size > toff) {
187 			/*
188 			 * Read operation filled a partial page.
189 			 */
190 			m->valid = 0;
191 			vm_page_set_valid_range(m, 0, size - toff);
192 			KASSERT(m->dirty == 0,
193 			    ("nfs_getpages: page %p is dirty", m));
194 		} else {
195 			/*
196 			 * Read operation was short.  If no error
197 			 * occurred we may have hit a zero-fill
198 			 * section.  We leave valid set to 0, and page
199 			 * is freed by vm_page_readahead_finish() if
200 			 * its index is not equal to requested, or
201 			 * page is zeroed and set valid by
202 			 * vm_pager_get_pages() for requested page.
203 			 */
204 			;
205 		}
206 	}
207 out:
208 	VM_OBJECT_WUNLOCK(object);
209 	if (ap->a_rbehind)
210 		*ap->a_rbehind = 0;
211 	if (ap->a_rahead)
212 		*ap->a_rahead = 0;
213 	return (VM_PAGER_OK);
214 }
215 
216 /*
217  * Vnode op for VM putpages.
218  */
219 int
ncl_putpages(struct vop_putpages_args * ap)220 ncl_putpages(struct vop_putpages_args *ap)
221 {
222 	struct uio uio;
223 	struct iovec iov;
224 	vaddr_t kva;
225 	struct buf *bp;
226 	int iomode, must_commit, i, error, npages, count;
227 	off_t offset;
228 	int *rtvals;
229 	struct vnode *vp;
230 	struct thread *td;
231 	struct ucred *cred;
232 	struct nfsmount *nmp;
233 	struct nfsnode *np;
234 	vm_page_t *pages;
235 
236 	vp = ap->a_vp;
237 	np = VTONFS(vp);
238 	td = curthread;				/* XXX */
239 	/* Set the cred to n_writecred for the write rpcs. */
240 	if (np->n_writecred != NULL)
241 		cred = crhold(np->n_writecred);
242 	else
243 		cred = crhold(curthread->td_ucred);	/* XXX */
244 	nmp = VFSTONFS(vp->v_mount);
245 	pages = ap->a_m;
246 	count = ap->a_count;
247 	rtvals = ap->a_rtvals;
248 	npages = btoc(count);
249 	offset = IDX_TO_OFF(pages[0]->pindex);
250 
251 	mtx_lock(&nmp->nm_mtx);
252 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
253 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
254 		mtx_unlock(&nmp->nm_mtx);
255 		(void)ncl_fsinfo(nmp, vp, cred, td);
256 	} else
257 		mtx_unlock(&nmp->nm_mtx);
258 
259 	mtx_lock(&np->n_mtx);
260 	if (newnfs_directio_enable && !newnfs_directio_allow_mmap &&
261 	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
262 		mtx_unlock(&np->n_mtx);
263 		printf("ncl_putpages: called on noncache-able vnode\n");
264 		mtx_lock(&np->n_mtx);
265 	}
266 
267 	for (i = 0; i < npages; i++)
268 		rtvals[i] = VM_PAGER_ERROR;
269 
270 	/*
271 	 * When putting pages, do not extend file past EOF.
272 	 */
273 	if (offset + count > np->n_size) {
274 		count = np->n_size - offset;
275 		if (count < 0)
276 			count = 0;
277 	}
278 	mtx_unlock(&np->n_mtx);
279 
280 	/*
281 	 * We use only the kva address for the buffer, but this is extremely
282 	 * convenient and fast.
283 	 */
284 	bp = getpbuf(&ncl_pbuf_freecnt);
285 
286 	kva = (vaddr_t) bp->b_data;
287 	pmap_qenter(kva, pages, npages);
288 	PCPU_INC(cnt.v_vnodeout);
289 	PCPU_ADD(cnt.v_vnodepgsout, count);
290 
291 	iov.iov_base = (caddr_t) kva;
292 	iov.iov_len = count;
293 	uio.uio_iov = &iov;
294 	uio.uio_iovcnt = 1;
295 	uio.uio_offset = offset;
296 	uio.uio_resid = count;
297 	uio.uio_segflg = UIO_SYSSPACE;
298 	uio.uio_rw = UIO_WRITE;
299 	uio.uio_td = td;
300 
301 	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
302 	    iomode = NFSWRITE_UNSTABLE;
303 	else
304 	    iomode = NFSWRITE_FILESYNC;
305 
306 	error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0);
307 	crfree(cred);
308 
309 	pmap_qremove(kva, npages);
310 	relpbuf(bp, &ncl_pbuf_freecnt);
311 
312 	if (error == 0 || !nfs_keep_dirty_on_error) {
313 		vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid);
314 		if (must_commit)
315 			ncl_clearcommit(vp->v_mount);
316 	}
317 	return rtvals[0];
318 }
319 
320 /*
321  * For nfs, cache consistency can only be maintained approximately.
322  * Although RFC1094 does not specify the criteria, the following is
323  * believed to be compatible with the reference port.
324  * For nfs:
325  * If the file's modify time on the server has changed since the
326  * last read rpc or you have written to the file,
327  * you may have lost data cache consistency with the
328  * server, so flush all of the file's data out of the cache.
329  * Then force a getattr rpc to ensure that you have up to date
330  * attributes.
331  * NB: This implies that cache data can be read when up to
332  * NFS_ATTRTIMEO seconds out of date. If you find that you need current
333  * attributes this could be forced by setting n_attrstamp to 0 before
334  * the VOP_GETATTR() call.
335  */
336 static inline int
nfs_bioread_check_cons(struct vnode * vp,struct thread * td,struct ucred * cred)337 nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
338 {
339 	int error = 0;
340 	struct vattr vattr;
341 	struct nfsnode *np = VTONFS(vp);
342 	int old_lock;
343 
344 	/*
345 	 * Grab the exclusive lock before checking whether the cache is
346 	 * consistent.
347 	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
348 	 * But for now, this suffices.
349 	 */
350 	old_lock = ncl_upgrade_vnlock(vp);
351 	if (vp->v_iflag & VI_DOOMED) {
352 		ncl_downgrade_vnlock(vp, old_lock);
353 		return (EBADF);
354 	}
355 
356 	mtx_lock(&np->n_mtx);
357 	if (np->n_flag & NMODIFIED) {
358 		mtx_unlock(&np->n_mtx);
359 		if (vp->v_type != VREG) {
360 			if (vp->v_type != VDIR)
361 				panic("nfs: bioread, not dir");
362 			ncl_invaldir(vp);
363 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
364 			if (error)
365 				goto out;
366 		}
367 		np->n_attrstamp = 0;
368 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
369 		error = VOP_GETATTR(vp, &vattr, cred);
370 		if (error)
371 			goto out;
372 		mtx_lock(&np->n_mtx);
373 		np->n_mtime = vattr.va_mtime;
374 		mtx_unlock(&np->n_mtx);
375 	} else {
376 		mtx_unlock(&np->n_mtx);
377 		error = VOP_GETATTR(vp, &vattr, cred);
378 		if (error)
379 			return (error);
380 		mtx_lock(&np->n_mtx);
381 		if ((np->n_flag & NSIZECHANGED)
382 		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
383 			mtx_unlock(&np->n_mtx);
384 			if (vp->v_type == VDIR)
385 				ncl_invaldir(vp);
386 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
387 			if (error)
388 				goto out;
389 			mtx_lock(&np->n_mtx);
390 			np->n_mtime = vattr.va_mtime;
391 			np->n_flag &= ~NSIZECHANGED;
392 		}
393 		mtx_unlock(&np->n_mtx);
394 	}
395 out:
396 	ncl_downgrade_vnlock(vp, old_lock);
397 	return error;
398 }
399 
400 /*
401  * Vnode op for read using bio
402  */
403 int
ncl_bioread(struct vnode * vp,struct uio * uio,int ioflag,struct ucred * cred)404 ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
405 {
406 	struct nfsnode *np = VTONFS(vp);
407 	int biosize, i;
408 	struct buf *bp, *rabp;
409 	struct thread *td;
410 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
411 	daddr_t lbn, rabn;
412 	int bcount;
413 	int seqcount;
414 	int nra, error = 0, n = 0, on = 0;
415 	off_t tmp_off;
416 
417 	KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode"));
418 	if (uio->uio_resid == 0)
419 		return (0);
420 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
421 		return (EINVAL);
422 	td = uio->uio_td;
423 
424 	mtx_lock(&nmp->nm_mtx);
425 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
426 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
427 		mtx_unlock(&nmp->nm_mtx);
428 		(void)ncl_fsinfo(nmp, vp, cred, td);
429 		mtx_lock(&nmp->nm_mtx);
430 	}
431 	if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
432 		(void) newnfs_iosize(nmp);
433 
434 	tmp_off = uio->uio_offset + uio->uio_resid;
435 	if (vp->v_type != VDIR &&
436 	    (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) {
437 		mtx_unlock(&nmp->nm_mtx);
438 		return (EFBIG);
439 	}
440 	mtx_unlock(&nmp->nm_mtx);
441 
442 	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
443 		/* No caching/ no readaheads. Just read data into the user buffer */
444 		return ncl_readrpc(vp, uio, cred);
445 
446 	biosize = vp->v_bufobj.bo_bsize;
447 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
448 
449 	error = nfs_bioread_check_cons(vp, td, cred);
450 	if (error)
451 		return error;
452 
453 	do {
454 	    u_quad_t nsize;
455 
456 	    mtx_lock(&np->n_mtx);
457 	    nsize = np->n_size;
458 	    mtx_unlock(&np->n_mtx);
459 
460 	    switch (vp->v_type) {
461 	    case VREG:
462 		NFSINCRGLOBAL(nfsstatsv1.biocache_reads);
463 		lbn = uio->uio_offset / biosize;
464 		on = uio->uio_offset - (lbn * biosize);
465 
466 		/*
467 		 * Start the read ahead(s), as required.
468 		 */
469 		if (nmp->nm_readahead > 0) {
470 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
471 			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
472 			rabn = lbn + 1 + nra;
473 			if (incore(&vp->v_bufobj, rabn) == NULL) {
474 			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
475 			    if (!rabp) {
476 				error = newnfs_sigintr(nmp, td);
477 				return (error ? error : EINTR);
478 			    }
479 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
480 				rabp->b_flags |= B_ASYNC;
481 				rabp->b_iocmd = BIO_READ;
482 				vfs_busy_pages(rabp, 0);
483 				if (ncl_asyncio(nmp, rabp, cred, td)) {
484 				    rabp->b_flags |= B_INVAL;
485 				    rabp->b_ioflags |= BIO_ERROR;
486 				    vfs_unbusy_pages(rabp);
487 				    brelse(rabp);
488 				    break;
489 				}
490 			    } else {
491 				brelse(rabp);
492 			    }
493 			}
494 		    }
495 		}
496 
497 		/* Note that bcount is *not* DEV_BSIZE aligned. */
498 		bcount = biosize;
499 		if ((off_t)lbn * biosize >= nsize) {
500 			bcount = 0;
501 		} else if ((off_t)(lbn + 1) * biosize > nsize) {
502 			bcount = nsize - (off_t)lbn * biosize;
503 		}
504 		bp = nfs_getcacheblk(vp, lbn, bcount, td);
505 
506 		if (!bp) {
507 			error = newnfs_sigintr(nmp, td);
508 			return (error ? error : EINTR);
509 		}
510 
511 		/*
512 		 * If B_CACHE is not set, we must issue the read.  If this
513 		 * fails, we return an error.
514 		 */
515 
516 		if ((bp->b_flags & B_CACHE) == 0) {
517 		    bp->b_iocmd = BIO_READ;
518 		    vfs_busy_pages(bp, 0);
519 		    error = ncl_doio(vp, bp, cred, td, 0);
520 		    if (error) {
521 			brelse(bp);
522 			return (error);
523 		    }
524 		}
525 
526 		/*
527 		 * on is the offset into the current bp.  Figure out how many
528 		 * bytes we can copy out of the bp.  Note that bcount is
529 		 * NOT DEV_BSIZE aligned.
530 		 *
531 		 * Then figure out how many bytes we can copy into the uio.
532 		 */
533 
534 		n = 0;
535 		if (on < bcount)
536 			n = MIN((unsigned)(bcount - on), uio->uio_resid);
537 		break;
538 	    case VLNK:
539 		NFSINCRGLOBAL(nfsstatsv1.biocache_readlinks);
540 		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
541 		if (!bp) {
542 			error = newnfs_sigintr(nmp, td);
543 			return (error ? error : EINTR);
544 		}
545 		if ((bp->b_flags & B_CACHE) == 0) {
546 		    bp->b_iocmd = BIO_READ;
547 		    vfs_busy_pages(bp, 0);
548 		    error = ncl_doio(vp, bp, cred, td, 0);
549 		    if (error) {
550 			bp->b_ioflags |= BIO_ERROR;
551 			brelse(bp);
552 			return (error);
553 		    }
554 		}
555 		n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
556 		on = 0;
557 		break;
558 	    case VDIR:
559 		NFSINCRGLOBAL(nfsstatsv1.biocache_readdirs);
560 		if (np->n_direofoffset
561 		    && uio->uio_offset >= np->n_direofoffset) {
562 		    return (0);
563 		}
564 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
565 		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
566 		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
567 		if (!bp) {
568 		    error = newnfs_sigintr(nmp, td);
569 		    return (error ? error : EINTR);
570 		}
571 		if ((bp->b_flags & B_CACHE) == 0) {
572 		    bp->b_iocmd = BIO_READ;
573 		    vfs_busy_pages(bp, 0);
574 		    error = ncl_doio(vp, bp, cred, td, 0);
575 		    if (error) {
576 			    brelse(bp);
577 		    }
578 		    while (error == NFSERR_BAD_COOKIE) {
579 			ncl_invaldir(vp);
580 			error = ncl_vinvalbuf(vp, 0, td, 1);
581 			/*
582 			 * Yuck! The directory has been modified on the
583 			 * server. The only way to get the block is by
584 			 * reading from the beginning to get all the
585 			 * offset cookies.
586 			 *
587 			 * Leave the last bp intact unless there is an error.
588 			 * Loop back up to the while if the error is another
589 			 * NFSERR_BAD_COOKIE (double yuch!).
590 			 */
591 			for (i = 0; i <= lbn && !error; i++) {
592 			    if (np->n_direofoffset
593 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
594 				    return (0);
595 			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
596 			    if (!bp) {
597 				error = newnfs_sigintr(nmp, td);
598 				return (error ? error : EINTR);
599 			    }
600 			    if ((bp->b_flags & B_CACHE) == 0) {
601 				    bp->b_iocmd = BIO_READ;
602 				    vfs_busy_pages(bp, 0);
603 				    error = ncl_doio(vp, bp, cred, td, 0);
604 				    /*
605 				     * no error + B_INVAL == directory EOF,
606 				     * use the block.
607 				     */
608 				    if (error == 0 && (bp->b_flags & B_INVAL))
609 					    break;
610 			    }
611 			    /*
612 			     * An error will throw away the block and the
613 			     * for loop will break out.  If no error and this
614 			     * is not the block we want, we throw away the
615 			     * block and go for the next one via the for loop.
616 			     */
617 			    if (error || i < lbn)
618 				    brelse(bp);
619 			}
620 		    }
621 		    /*
622 		     * The above while is repeated if we hit another cookie
623 		     * error.  If we hit an error and it wasn't a cookie error,
624 		     * we give up.
625 		     */
626 		    if (error)
627 			    return (error);
628 		}
629 
630 		/*
631 		 * If not eof and read aheads are enabled, start one.
632 		 * (You need the current block first, so that you have the
633 		 *  directory offset cookie of the next block.)
634 		 */
635 		if (nmp->nm_readahead > 0 &&
636 		    (bp->b_flags & B_INVAL) == 0 &&
637 		    (np->n_direofoffset == 0 ||
638 		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
639 		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
640 			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
641 			if (rabp) {
642 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
643 				rabp->b_flags |= B_ASYNC;
644 				rabp->b_iocmd = BIO_READ;
645 				vfs_busy_pages(rabp, 0);
646 				if (ncl_asyncio(nmp, rabp, cred, td)) {
647 				    rabp->b_flags |= B_INVAL;
648 				    rabp->b_ioflags |= BIO_ERROR;
649 				    vfs_unbusy_pages(rabp);
650 				    brelse(rabp);
651 				}
652 			    } else {
653 				brelse(rabp);
654 			    }
655 			}
656 		}
657 		/*
658 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
659 		 * chopped for the EOF condition, we cannot tell how large
660 		 * NFS directories are going to be until we hit EOF.  So
661 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
662 		 * it just so happens that b_resid will effectively chop it
663 		 * to EOF.  *BUT* this information is lost if the buffer goes
664 		 * away and is reconstituted into a B_CACHE state ( due to
665 		 * being VMIO ) later.  So we keep track of the directory eof
666 		 * in np->n_direofoffset and chop it off as an extra step
667 		 * right here.
668 		 */
669 		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
670 		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
671 			n = np->n_direofoffset - uio->uio_offset;
672 		break;
673 	    default:
674 		printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
675 		bp = NULL;
676 		break;
677 	    }
678 
679 	    if (n > 0) {
680 		    error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio);
681 	    }
682 	    if (vp->v_type == VLNK)
683 		n = 0;
684 	    if (bp != NULL)
685 		brelse(bp);
686 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
687 	return (error);
688 }
689 
690 /*
691  * The NFS write path cannot handle iovecs with len > 1. So we need to
692  * break up iovecs accordingly (restricting them to wsize).
693  * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
694  * For the ASYNC case, 2 copies are needed. The first a copy from the
695  * user buffer to a staging buffer and then a second copy from the staging
696  * buffer to mbufs. This can be optimized by copying from the user buffer
697  * directly into mbufs and passing the chain down, but that requires a
698  * fair amount of re-working of the relevant codepaths (and can be done
699  * later).
700  */
701 static int
nfs_directio_write(vp,uiop,cred,ioflag)702 nfs_directio_write(vp, uiop, cred, ioflag)
703 	struct vnode *vp;
704 	struct uio *uiop;
705 	struct ucred *cred;
706 	int ioflag;
707 {
708 	int error;
709 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
710 	struct thread *td = uiop->uio_td;
711 	int size;
712 	int wsize;
713 
714 	mtx_lock(&nmp->nm_mtx);
715 	wsize = nmp->nm_wsize;
716 	mtx_unlock(&nmp->nm_mtx);
717 	if (ioflag & IO_SYNC) {
718 		int iomode, must_commit;
719 		struct uio uio;
720 		struct iovec iov;
721 do_sync:
722 		while (uiop->uio_resid > 0) {
723 			size = MIN(uiop->uio_resid, wsize);
724 			size = MIN(uiop->uio_iov->iov_len, size);
725 			iov.iov_base = uiop->uio_iov->iov_base;
726 			iov.iov_len = size;
727 			uio.uio_iov = &iov;
728 			uio.uio_iovcnt = 1;
729 			uio.uio_offset = uiop->uio_offset;
730 			uio.uio_resid = size;
731 			uio.uio_segflg = UIO_USERSPACE;
732 			uio.uio_rw = UIO_WRITE;
733 			uio.uio_td = td;
734 			iomode = NFSWRITE_FILESYNC;
735 			error = ncl_writerpc(vp, &uio, cred, &iomode,
736 			    &must_commit, 0);
737 			KASSERT((must_commit == 0),
738 				("ncl_directio_write: Did not commit write"));
739 			if (error)
740 				return (error);
741 			uiop->uio_offset += size;
742 			uiop->uio_resid -= size;
743 			if (uiop->uio_iov->iov_len <= size) {
744 				uiop->uio_iovcnt--;
745 				uiop->uio_iov++;
746 			} else {
747 				uiop->uio_iov->iov_base =
748 					(char *)uiop->uio_iov->iov_base + size;
749 				uiop->uio_iov->iov_len -= size;
750 			}
751 		}
752 	} else {
753 		struct uio *t_uio;
754 		struct iovec *t_iov;
755 		struct buf *bp;
756 
757 		/*
758 		 * Break up the write into blocksize chunks and hand these
759 		 * over to nfsiod's for write back.
760 		 * Unfortunately, this incurs a copy of the data. Since
761 		 * the user could modify the buffer before the write is
762 		 * initiated.
763 		 *
764 		 * The obvious optimization here is that one of the 2 copies
765 		 * in the async write path can be eliminated by copying the
766 		 * data here directly into mbufs and passing the mbuf chain
767 		 * down. But that will require a fair amount of re-working
768 		 * of the code and can be done if there's enough interest
769 		 * in NFS directio access.
770 		 */
771 		while (uiop->uio_resid > 0) {
772 			size = MIN(uiop->uio_resid, wsize);
773 			size = MIN(uiop->uio_iov->iov_len, size);
774 			bp = getpbuf(&ncl_pbuf_freecnt);
775 			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
776 			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
777 			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
778 			t_iov->iov_len = size;
779 			t_uio->uio_iov = t_iov;
780 			t_uio->uio_iovcnt = 1;
781 			t_uio->uio_offset = uiop->uio_offset;
782 			t_uio->uio_resid = size;
783 			t_uio->uio_segflg = UIO_SYSSPACE;
784 			t_uio->uio_rw = UIO_WRITE;
785 			t_uio->uio_td = td;
786 			KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
787 			    uiop->uio_segflg == UIO_SYSSPACE,
788 			    ("nfs_directio_write: Bad uio_segflg"));
789 			if (uiop->uio_segflg == UIO_USERSPACE) {
790 				error = copyin(uiop->uio_iov->iov_base,
791 				    t_iov->iov_base, size);
792 				if (error != 0)
793 					goto err_free;
794 			} else
795 				/*
796 				 * UIO_SYSSPACE may never happen, but handle
797 				 * it just in case it does.
798 				 */
799 				bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
800 				    size);
801 			bp->b_flags |= B_DIRECT;
802 			bp->b_iocmd = BIO_WRITE;
803 			if (cred != NOCRED) {
804 				crhold(cred);
805 				bp->b_wcred = cred;
806 			} else
807 				bp->b_wcred = NOCRED;
808 			bp->b_caller1 = (void *)t_uio;
809 			bp->b_vp = vp;
810 			error = ncl_asyncio(nmp, bp, NOCRED, td);
811 err_free:
812 			if (error) {
813 				free(t_iov->iov_base, M_NFSDIRECTIO);
814 				free(t_iov, M_NFSDIRECTIO);
815 				free(t_uio, M_NFSDIRECTIO);
816 				bp->b_vp = NULL;
817 				relpbuf(bp, &ncl_pbuf_freecnt);
818 				if (error == EINTR)
819 					return (error);
820 				goto do_sync;
821 			}
822 			uiop->uio_offset += size;
823 			uiop->uio_resid -= size;
824 			if (uiop->uio_iov->iov_len <= size) {
825 				uiop->uio_iovcnt--;
826 				uiop->uio_iov++;
827 			} else {
828 				uiop->uio_iov->iov_base =
829 					(char *)uiop->uio_iov->iov_base + size;
830 				uiop->uio_iov->iov_len -= size;
831 			}
832 		}
833 	}
834 	return (0);
835 }
836 
837 /*
838  * Vnode op for write using bio
839  */
840 int
ncl_write(struct vop_write_args * ap)841 ncl_write(struct vop_write_args *ap)
842 {
843 	int biosize;
844 	struct uio *uio = ap->a_uio;
845 	struct thread *td = uio->uio_td;
846 	struct vnode *vp = ap->a_vp;
847 	struct nfsnode *np = VTONFS(vp);
848 	struct ucred *cred = ap->a_cred;
849 	int ioflag = ap->a_ioflag;
850 	struct buf *bp;
851 	struct vattr vattr;
852 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
853 	daddr_t lbn;
854 	int bcount, noncontig_write, obcount;
855 	int bp_cached, n, on, error = 0, error1, wouldcommit;
856 	size_t orig_resid, local_resid;
857 	off_t orig_size, tmp_off;
858 
859 	KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode"));
860 	KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
861 	    ("ncl_write proc"));
862 	if (vp->v_type != VREG)
863 		return (EIO);
864 	mtx_lock(&np->n_mtx);
865 	if (np->n_flag & NWRITEERR) {
866 		np->n_flag &= ~NWRITEERR;
867 		mtx_unlock(&np->n_mtx);
868 		return (np->n_error);
869 	} else
870 		mtx_unlock(&np->n_mtx);
871 	mtx_lock(&nmp->nm_mtx);
872 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
873 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
874 		mtx_unlock(&nmp->nm_mtx);
875 		(void)ncl_fsinfo(nmp, vp, cred, td);
876 		mtx_lock(&nmp->nm_mtx);
877 	}
878 	if (nmp->nm_wsize == 0)
879 		(void) newnfs_iosize(nmp);
880 	mtx_unlock(&nmp->nm_mtx);
881 
882 	/*
883 	 * Synchronously flush pending buffers if we are in synchronous
884 	 * mode or if we are appending.
885 	 */
886 	if (ioflag & (IO_APPEND | IO_SYNC)) {
887 		mtx_lock(&np->n_mtx);
888 		if (np->n_flag & NMODIFIED) {
889 			mtx_unlock(&np->n_mtx);
890 #ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
891 			/*
892 			 * Require non-blocking, synchronous writes to
893 			 * dirty files to inform the program it needs
894 			 * to fsync(2) explicitly.
895 			 */
896 			if (ioflag & IO_NDELAY)
897 				return (EAGAIN);
898 #endif
899 			np->n_attrstamp = 0;
900 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
901 			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
902 			if (error)
903 				return (error);
904 		} else
905 			mtx_unlock(&np->n_mtx);
906 	}
907 
908 	orig_resid = uio->uio_resid;
909 	mtx_lock(&np->n_mtx);
910 	orig_size = np->n_size;
911 	mtx_unlock(&np->n_mtx);
912 
913 	/*
914 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
915 	 * get the append lock.
916 	 */
917 	if (ioflag & IO_APPEND) {
918 		np->n_attrstamp = 0;
919 		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
920 		error = VOP_GETATTR(vp, &vattr, cred);
921 		if (error)
922 			return (error);
923 		mtx_lock(&np->n_mtx);
924 		uio->uio_offset = np->n_size;
925 		mtx_unlock(&np->n_mtx);
926 	}
927 
928 	if (uio->uio_offset < 0)
929 		return (EINVAL);
930 	tmp_off = uio->uio_offset + uio->uio_resid;
931 	if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)
932 		return (EFBIG);
933 	if (uio->uio_resid == 0)
934 		return (0);
935 
936 	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
937 		return nfs_directio_write(vp, uio, cred, ioflag);
938 
939 	/*
940 	 * Maybe this should be above the vnode op call, but so long as
941 	 * file servers have no limits, i don't think it matters
942 	 */
943 	if (vn_rlimit_fsize(vp, uio, td))
944 		return (EFBIG);
945 
946 	biosize = vp->v_bufobj.bo_bsize;
947 	/*
948 	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
949 	 * would exceed the local maximum per-file write commit size when
950 	 * combined with those, we must decide whether to flush,
951 	 * go synchronous, or return error.  We don't bother checking
952 	 * IO_UNIT -- we just make all writes atomic anyway, as there's
953 	 * no point optimizing for something that really won't ever happen.
954 	 */
955 	wouldcommit = 0;
956 	if (!(ioflag & IO_SYNC)) {
957 		int nflag;
958 
959 		mtx_lock(&np->n_mtx);
960 		nflag = np->n_flag;
961 		mtx_unlock(&np->n_mtx);
962 		if (nflag & NMODIFIED) {
963 			BO_LOCK(&vp->v_bufobj);
964 			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
965 				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
966 				    b_bobufs) {
967 					if (bp->b_flags & B_NEEDCOMMIT)
968 						wouldcommit += bp->b_bcount;
969 				}
970 			}
971 			BO_UNLOCK(&vp->v_bufobj);
972 		}
973 	}
974 
975 	do {
976 		if (!(ioflag & IO_SYNC)) {
977 			wouldcommit += biosize;
978 			if (wouldcommit > nmp->nm_wcommitsize) {
979 				np->n_attrstamp = 0;
980 				KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
981 				error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
982 				if (error)
983 					return (error);
984 				wouldcommit = biosize;
985 			}
986 		}
987 
988 		NFSINCRGLOBAL(nfsstatsv1.biocache_writes);
989 		lbn = uio->uio_offset / biosize;
990 		on = uio->uio_offset - (lbn * biosize);
991 		n = MIN((unsigned)(biosize - on), uio->uio_resid);
992 again:
993 		/*
994 		 * Handle direct append and file extension cases, calculate
995 		 * unaligned buffer size.
996 		 */
997 		mtx_lock(&np->n_mtx);
998 		if ((np->n_flag & NHASBEENLOCKED) == 0 &&
999 		    (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0)
1000 			noncontig_write = 1;
1001 		else
1002 			noncontig_write = 0;
1003 		if ((uio->uio_offset == np->n_size ||
1004 		    (noncontig_write != 0 &&
1005 		    lbn == (np->n_size / biosize) &&
1006 		    uio->uio_offset + n > np->n_size)) && n) {
1007 			mtx_unlock(&np->n_mtx);
1008 			/*
1009 			 * Get the buffer (in its pre-append state to maintain
1010 			 * B_CACHE if it was previously set).  Resize the
1011 			 * nfsnode after we have locked the buffer to prevent
1012 			 * readers from reading garbage.
1013 			 */
1014 			obcount = np->n_size - (lbn * biosize);
1015 			bp = nfs_getcacheblk(vp, lbn, obcount, td);
1016 
1017 			if (bp != NULL) {
1018 				long save;
1019 
1020 				mtx_lock(&np->n_mtx);
1021 				np->n_size = uio->uio_offset + n;
1022 				np->n_flag |= NMODIFIED;
1023 				vnode_pager_setsize(vp, np->n_size);
1024 				mtx_unlock(&np->n_mtx);
1025 
1026 				save = bp->b_flags & B_CACHE;
1027 				bcount = on + n;
1028 				allocbuf(bp, bcount);
1029 				bp->b_flags |= save;
1030 				if (noncontig_write != 0 && on > obcount)
1031 					vfs_bio_bzero_buf(bp, obcount, on -
1032 					    obcount);
1033 			}
1034 		} else {
1035 			/*
1036 			 * Obtain the locked cache block first, and then
1037 			 * adjust the file's size as appropriate.
1038 			 */
1039 			bcount = on + n;
1040 			if ((off_t)lbn * biosize + bcount < np->n_size) {
1041 				if ((off_t)(lbn + 1) * biosize < np->n_size)
1042 					bcount = biosize;
1043 				else
1044 					bcount = np->n_size - (off_t)lbn * biosize;
1045 			}
1046 			mtx_unlock(&np->n_mtx);
1047 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1048 			mtx_lock(&np->n_mtx);
1049 			if (uio->uio_offset + n > np->n_size) {
1050 				np->n_size = uio->uio_offset + n;
1051 				np->n_flag |= NMODIFIED;
1052 				vnode_pager_setsize(vp, np->n_size);
1053 			}
1054 			mtx_unlock(&np->n_mtx);
1055 		}
1056 
1057 		if (!bp) {
1058 			error = newnfs_sigintr(nmp, td);
1059 			if (!error)
1060 				error = EINTR;
1061 			break;
1062 		}
1063 
1064 		/*
1065 		 * Issue a READ if B_CACHE is not set.  In special-append
1066 		 * mode, B_CACHE is based on the buffer prior to the write
1067 		 * op and is typically set, avoiding the read.  If a read
1068 		 * is required in special append mode, the server will
1069 		 * probably send us a short-read since we extended the file
1070 		 * on our end, resulting in b_resid == 0 and, thusly,
1071 		 * B_CACHE getting set.
1072 		 *
1073 		 * We can also avoid issuing the read if the write covers
1074 		 * the entire buffer.  We have to make sure the buffer state
1075 		 * is reasonable in this case since we will not be initiating
1076 		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1077 		 * more information.
1078 		 *
1079 		 * B_CACHE may also be set due to the buffer being cached
1080 		 * normally.
1081 		 */
1082 
1083 		bp_cached = 1;
1084 		if (on == 0 && n == bcount) {
1085 			if ((bp->b_flags & B_CACHE) == 0)
1086 				bp_cached = 0;
1087 			bp->b_flags |= B_CACHE;
1088 			bp->b_flags &= ~B_INVAL;
1089 			bp->b_ioflags &= ~BIO_ERROR;
1090 		}
1091 
1092 		if ((bp->b_flags & B_CACHE) == 0) {
1093 			bp->b_iocmd = BIO_READ;
1094 			vfs_busy_pages(bp, 0);
1095 			error = ncl_doio(vp, bp, cred, td, 0);
1096 			if (error) {
1097 				brelse(bp);
1098 				break;
1099 			}
1100 		}
1101 		if (bp->b_wcred == NOCRED)
1102 			bp->b_wcred = crhold(cred);
1103 		mtx_lock(&np->n_mtx);
1104 		np->n_flag |= NMODIFIED;
1105 		mtx_unlock(&np->n_mtx);
1106 
1107 		/*
1108 		 * If dirtyend exceeds file size, chop it down.  This should
1109 		 * not normally occur but there is an append race where it
1110 		 * might occur XXX, so we log it.
1111 		 *
1112 		 * If the chopping creates a reverse-indexed or degenerate
1113 		 * situation with dirtyoff/end, we 0 both of them.
1114 		 */
1115 
1116 		if (bp->b_dirtyend > bcount) {
1117 			printf("NFS append race @%lx:%d\n",
1118 			    (long)bp->b_blkno * DEV_BSIZE,
1119 			    bp->b_dirtyend - bcount);
1120 			bp->b_dirtyend = bcount;
1121 		}
1122 
1123 		if (bp->b_dirtyoff >= bp->b_dirtyend)
1124 			bp->b_dirtyoff = bp->b_dirtyend = 0;
1125 
1126 		/*
1127 		 * If the new write will leave a contiguous dirty
1128 		 * area, just update the b_dirtyoff and b_dirtyend,
1129 		 * otherwise force a write rpc of the old dirty area.
1130 		 *
1131 		 * If there has been a file lock applied to this file
1132 		 * or vfs.nfs.old_noncontig_writing is set, do the following:
1133 		 * While it is possible to merge discontiguous writes due to
1134 		 * our having a B_CACHE buffer ( and thus valid read data
1135 		 * for the hole), we don't because it could lead to
1136 		 * significant cache coherency problems with multiple clients,
1137 		 * especially if locking is implemented later on.
1138 		 *
1139 		 * If vfs.nfs.old_noncontig_writing is not set and there has
1140 		 * not been file locking done on this file:
1141 		 * Relax coherency a bit for the sake of performance and
1142 		 * expand the current dirty region to contain the new
1143 		 * write even if it means we mark some non-dirty data as
1144 		 * dirty.
1145 		 */
1146 
1147 		if (noncontig_write == 0 && bp->b_dirtyend > 0 &&
1148 		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1149 			if (bwrite(bp) == EINTR) {
1150 				error = EINTR;
1151 				break;
1152 			}
1153 			goto again;
1154 		}
1155 
1156 		local_resid = uio->uio_resid;
1157 		error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio);
1158 
1159 		if (error != 0 && !bp_cached) {
1160 			/*
1161 			 * This block has no other content than what
1162 			 * possibly was written by the faulty uiomove.
1163 			 * Release it, forgetting the data pages, to
1164 			 * prevent the leak of uninitialized data to
1165 			 * usermode.
1166 			 */
1167 			bp->b_ioflags |= BIO_ERROR;
1168 			brelse(bp);
1169 			uio->uio_offset -= local_resid - uio->uio_resid;
1170 			uio->uio_resid = local_resid;
1171 			break;
1172 		}
1173 
1174 		/*
1175 		 * Since this block is being modified, it must be written
1176 		 * again and not just committed.  Since write clustering does
1177 		 * not work for the stage 1 data write, only the stage 2
1178 		 * commit rpc, we have to clear B_CLUSTEROK as well.
1179 		 */
1180 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1181 
1182 		/*
1183 		 * Get the partial update on the progress made from
1184 		 * uiomove, if an error occurred.
1185 		 */
1186 		if (error != 0)
1187 			n = local_resid - uio->uio_resid;
1188 
1189 		/*
1190 		 * Only update dirtyoff/dirtyend if not a degenerate
1191 		 * condition.
1192 		 */
1193 		if (n > 0) {
1194 			if (bp->b_dirtyend > 0) {
1195 				bp->b_dirtyoff = uimin(on, bp->b_dirtyoff);
1196 				bp->b_dirtyend = uimax((on + n), bp->b_dirtyend);
1197 			} else {
1198 				bp->b_dirtyoff = on;
1199 				bp->b_dirtyend = on + n;
1200 			}
1201 			vfs_bio_set_valid(bp, on, n);
1202 		}
1203 
1204 		/*
1205 		 * If IO_SYNC do bwrite().
1206 		 *
1207 		 * IO_INVAL appears to be unused.  The idea appears to be
1208 		 * to turn off caching in this case.  Very odd.  XXX
1209 		 */
1210 		if ((ioflag & IO_SYNC)) {
1211 			if (ioflag & IO_INVAL)
1212 				bp->b_flags |= B_NOCACHE;
1213 			error1 = bwrite(bp);
1214 			if (error1 != 0) {
1215 				if (error == 0)
1216 					error = error1;
1217 				break;
1218 			}
1219 		} else if ((n + on) == biosize) {
1220 			bp->b_flags |= B_ASYNC;
1221 			(void) ncl_writebp(bp, 0, NULL);
1222 		} else {
1223 			bdwrite(bp);
1224 		}
1225 
1226 		if (error != 0)
1227 			break;
1228 	} while (uio->uio_resid > 0 && n > 0);
1229 
1230 	if (error != 0) {
1231 		if (ioflag & IO_UNIT) {
1232 			VATTR_NULL(&vattr);
1233 			vattr.va_size = orig_size;
1234 			/* IO_SYNC is handled implicitly */
1235 			(void)VOP_SETATTR(vp, &vattr, cred);
1236 			uio->uio_offset -= orig_resid - uio->uio_resid;
1237 			uio->uio_resid = orig_resid;
1238 		}
1239 	}
1240 
1241 	return (error);
1242 }
1243 
1244 /*
1245  * Get an nfs cache block.
1246  *
1247  * Allocate a new one if the block isn't currently in the cache
1248  * and return the block marked busy. If the calling process is
1249  * interrupted by a signal for an interruptible mount point, return
1250  * NULL.
1251  *
1252  * The caller must carefully deal with the possible B_INVAL state of
1253  * the buffer.  ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
1254  * indirectly), so synchronous reads can be issued without worrying about
1255  * the B_INVAL state.  We have to be a little more careful when dealing
1256  * with writes (see comments in nfs_write()) when extending a file past
1257  * its EOF.
1258  */
1259 static struct buf *
nfs_getcacheblk(struct vnode * vp,daddr_t bn,int size,struct thread * td)1260 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1261 {
1262 	struct buf *bp;
1263 	struct mount *mp;
1264 	struct nfsmount *nmp;
1265 
1266 	mp = vp->v_mount;
1267 	nmp = VFSTONFS(mp);
1268 
1269 	if (nmp->nm_flag & NFSMNT_INT) {
1270 		sigset_t oldset;
1271 
1272 		newnfs_set_sigmask(td, &oldset);
1273 		bp = getblk(vp, bn, size, PCATCH, 0, 0);
1274 		newnfs_restore_sigmask(td, &oldset);
1275 		while (bp == NULL) {
1276 			if (newnfs_sigintr(nmp, td))
1277 				return (NULL);
1278 			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1279 		}
1280 	} else {
1281 		bp = getblk(vp, bn, size, 0, 0, 0);
1282 	}
1283 
1284 	if (vp->v_type == VREG)
1285 		bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
1286 	return (bp);
1287 }
1288 
1289 /*
1290  * Flush and invalidate all dirty buffers. If another process is already
1291  * doing the flush, just wait for completion.
1292  */
1293 int
ncl_vinvalbuf(struct vnode * vp,int flags,struct thread * td,int intrflg)1294 ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1295 {
1296 	struct nfsnode *np = VTONFS(vp);
1297 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1298 	int error = 0, slpflag, slptimeo;
1299 	int old_lock = 0;
1300 
1301 	ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
1302 
1303 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1304 		intrflg = 0;
1305 	if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF))
1306 		intrflg = 1;
1307 	if (intrflg) {
1308 		slpflag = PCATCH;
1309 		slptimeo = 2 * hz;
1310 	} else {
1311 		slpflag = 0;
1312 		slptimeo = 0;
1313 	}
1314 
1315 	old_lock = ncl_upgrade_vnlock(vp);
1316 	if (vp->v_iflag & VI_DOOMED) {
1317 		/*
1318 		 * Since vgonel() uses the generic vinvalbuf() to flush
1319 		 * dirty buffers and it does not call this function, it
1320 		 * is safe to just return OK when VI_DOOMED is set.
1321 		 */
1322 		ncl_downgrade_vnlock(vp, old_lock);
1323 		return (0);
1324 	}
1325 
1326 	/*
1327 	 * Now, flush as required.
1328 	 */
1329 	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
1330 		VM_OBJECT_WLOCK(vp->v_bufobj.bo_object);
1331 		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1332 		VM_OBJECT_WUNLOCK(vp->v_bufobj.bo_object);
1333 		/*
1334 		 * If the page clean was interrupted, fail the invalidation.
1335 		 * Not doing so, we run the risk of losing dirty pages in the
1336 		 * vinvalbuf() call below.
1337 		 */
1338 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
1339 			goto out;
1340 	}
1341 
1342 	error = vinvalbuf(vp, flags, slpflag, 0);
1343 	while (error) {
1344 		if (intrflg && (error = newnfs_sigintr(nmp, td)))
1345 			goto out;
1346 		error = vinvalbuf(vp, flags, 0, slptimeo);
1347 	}
1348 	if (NFSHASPNFS(nmp)) {
1349 		nfscl_layoutcommit(vp, td);
1350 		/*
1351 		 * Invalidate the attribute cache, since writes to a DS
1352 		 * won't update the size attribute.
1353 		 */
1354 		mtx_lock(&np->n_mtx);
1355 		np->n_attrstamp = 0;
1356 	} else
1357 		mtx_lock(&np->n_mtx);
1358 	if (np->n_directio_asyncwr == 0)
1359 		np->n_flag &= ~NMODIFIED;
1360 	mtx_unlock(&np->n_mtx);
1361 out:
1362 	ncl_downgrade_vnlock(vp, old_lock);
1363 	return error;
1364 }
1365 
1366 /*
1367  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1368  * This is mainly to avoid queueing async I/O requests when the nfsiods
1369  * are all hung on a dead server.
1370  *
1371  * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1372  * is eventually dequeued by the async daemon, ncl_doio() *will*.
1373  */
1374 int
ncl_asyncio(struct nfsmount * nmp,struct buf * bp,struct ucred * cred,struct thread * td)1375 ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1376 {
1377 	int iod;
1378 	int gotiod;
1379 	int slpflag = 0;
1380 	int slptimeo = 0;
1381 	int error, error2;
1382 
1383 	/*
1384 	 * Commits are usually short and sweet so lets save some cpu and
1385 	 * leave the async daemons for more important rpc's (such as reads
1386 	 * and writes).
1387 	 *
1388 	 * Readdirplus RPCs do vget()s to acquire the vnodes for entries
1389 	 * in the directory in order to update attributes. This can deadlock
1390 	 * with another thread that is waiting for async I/O to be done by
1391 	 * an nfsiod thread while holding a lock on one of these vnodes.
1392 	 * To avoid this deadlock, don't allow the async nfsiod threads to
1393 	 * perform Readdirplus RPCs.
1394 	 */
1395 	mtx_lock(&ncl_iod_mutex);
1396 	if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1397 	     (nmp->nm_bufqiods > ncl_numasync / 2)) ||
1398 	    (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) {
1399 		mtx_unlock(&ncl_iod_mutex);
1400 		return(EIO);
1401 	}
1402 again:
1403 	if (nmp->nm_flag & NFSMNT_INT)
1404 		slpflag = PCATCH;
1405 	gotiod = FALSE;
1406 
1407 	/*
1408 	 * Find a free iod to process this request.
1409 	 */
1410 	for (iod = 0; iod < ncl_numasync; iod++)
1411 		if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) {
1412 			gotiod = TRUE;
1413 			break;
1414 		}
1415 
1416 	/*
1417 	 * Try to create one if none are free.
1418 	 */
1419 	if (!gotiod)
1420 		ncl_nfsiodnew();
1421 	else {
1422 		/*
1423 		 * Found one, so wake it up and tell it which
1424 		 * mount to process.
1425 		 */
1426 		NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
1427 		    iod, nmp));
1428 		ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
1429 		ncl_iodmount[iod] = nmp;
1430 		nmp->nm_bufqiods++;
1431 		wakeup(&ncl_iodwant[iod]);
1432 	}
1433 
1434 	/*
1435 	 * If none are free, we may already have an iod working on this mount
1436 	 * point.  If so, it will process our request.
1437 	 */
1438 	if (!gotiod) {
1439 		if (nmp->nm_bufqiods > 0) {
1440 			NFS_DPF(ASYNCIO,
1441 				("ncl_asyncio: %d iods are already processing mount %p\n",
1442 				 nmp->nm_bufqiods, nmp));
1443 			gotiod = TRUE;
1444 		}
1445 	}
1446 
1447 	/*
1448 	 * If we have an iod which can process the request, then queue
1449 	 * the buffer.
1450 	 */
1451 	if (gotiod) {
1452 		/*
1453 		 * Ensure that the queue never grows too large.  We still want
1454 		 * to asynchronize so we block rather than return EIO.
1455 		 */
1456 		while (nmp->nm_bufqlen >= 2*ncl_numasync) {
1457 			NFS_DPF(ASYNCIO,
1458 				("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
1459 			nmp->nm_bufqwant = TRUE;
1460 			error = newnfs_msleep(td, &nmp->nm_bufq,
1461 			    &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio",
1462 			   slptimeo);
1463 			if (error) {
1464 				error2 = newnfs_sigintr(nmp, td);
1465 				if (error2) {
1466 					mtx_unlock(&ncl_iod_mutex);
1467 					return (error2);
1468 				}
1469 				if (slpflag == PCATCH) {
1470 					slpflag = 0;
1471 					slptimeo = 2 * hz;
1472 				}
1473 			}
1474 			/*
1475 			 * We might have lost our iod while sleeping,
1476 			 * so check and loop if necessary.
1477 			 */
1478 			goto again;
1479 		}
1480 
1481 		/* We might have lost our nfsiod */
1482 		if (nmp->nm_bufqiods == 0) {
1483 			NFS_DPF(ASYNCIO,
1484 				("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1485 			goto again;
1486 		}
1487 
1488 		if (bp->b_iocmd == BIO_READ) {
1489 			if (bp->b_rcred == NOCRED && cred != NOCRED)
1490 				bp->b_rcred = crhold(cred);
1491 		} else {
1492 			if (bp->b_wcred == NOCRED && cred != NOCRED)
1493 				bp->b_wcred = crhold(cred);
1494 		}
1495 
1496 		if (bp->b_flags & B_REMFREE)
1497 			bremfreef(bp);
1498 		BUF_KERNPROC(bp);
1499 		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1500 		nmp->nm_bufqlen++;
1501 		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1502 			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1503 			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1504 			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1505 			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1506 		}
1507 		mtx_unlock(&ncl_iod_mutex);
1508 		return (0);
1509 	}
1510 
1511 	mtx_unlock(&ncl_iod_mutex);
1512 
1513 	/*
1514 	 * All the iods are busy on other mounts, so return EIO to
1515 	 * force the caller to process the i/o synchronously.
1516 	 */
1517 	NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
1518 	return (EIO);
1519 }
1520 
1521 void
ncl_doio_directwrite(struct buf * bp)1522 ncl_doio_directwrite(struct buf *bp)
1523 {
1524 	int iomode, must_commit;
1525 	struct uio *uiop = (struct uio *)bp->b_caller1;
1526 	char *iov_base = uiop->uio_iov->iov_base;
1527 
1528 	iomode = NFSWRITE_FILESYNC;
1529 	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1530 	ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0);
1531 	KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write"));
1532 	free(iov_base, M_NFSDIRECTIO);
1533 	free(uiop->uio_iov, M_NFSDIRECTIO);
1534 	free(uiop, M_NFSDIRECTIO);
1535 	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1536 		struct nfsnode *np = VTONFS(bp->b_vp);
1537 		mtx_lock(&np->n_mtx);
1538 		if (NFSHASPNFS(VFSTONFS(vnode_mount(bp->b_vp)))) {
1539 			/*
1540 			 * Invalidate the attribute cache, since writes to a DS
1541 			 * won't update the size attribute.
1542 			 */
1543 			np->n_attrstamp = 0;
1544 		}
1545 		np->n_directio_asyncwr--;
1546 		if (np->n_directio_asyncwr == 0) {
1547 			np->n_flag &= ~NMODIFIED;
1548 			if ((np->n_flag & NFSYNCWAIT)) {
1549 				np->n_flag &= ~NFSYNCWAIT;
1550 				wakeup((caddr_t)&np->n_directio_asyncwr);
1551 			}
1552 		}
1553 		mtx_unlock(&np->n_mtx);
1554 	}
1555 	bp->b_vp = NULL;
1556 	relpbuf(bp, &ncl_pbuf_freecnt);
1557 }
1558 
1559 /*
1560  * Do an I/O operation to/from a cache block. This may be called
1561  * synchronously or from an nfsiod.
1562  */
1563 int
ncl_doio(struct vnode * vp,struct buf * bp,struct ucred * cr,struct thread * td,int called_from_strategy)1564 ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td,
1565     int called_from_strategy)
1566 {
1567 	struct uio *uiop;
1568 	struct nfsnode *np;
1569 	struct nfsmount *nmp;
1570 	int error = 0, iomode, must_commit = 0;
1571 	struct uio uio;
1572 	struct iovec io;
1573 	struct proc *p = td ? td->td_proc : NULL;
1574 	uint8_t	iocmd;
1575 
1576 	np = VTONFS(vp);
1577 	nmp = VFSTONFS(vp->v_mount);
1578 	uiop = &uio;
1579 	uiop->uio_iov = &io;
1580 	uiop->uio_iovcnt = 1;
1581 	uiop->uio_segflg = UIO_SYSSPACE;
1582 	uiop->uio_td = td;
1583 
1584 	/*
1585 	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1586 	 * do this here so we do not have to do it in all the code that
1587 	 * calls us.
1588 	 */
1589 	bp->b_flags &= ~B_INVAL;
1590 	bp->b_ioflags &= ~BIO_ERROR;
1591 
1592 	KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
1593 	iocmd = bp->b_iocmd;
1594 	if (iocmd == BIO_READ) {
1595 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1596 	    io.iov_base = bp->b_data;
1597 	    uiop->uio_rw = UIO_READ;
1598 
1599 	    switch (vp->v_type) {
1600 	    case VREG:
1601 		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1602 		NFSINCRGLOBAL(nfsstatsv1.read_bios);
1603 		error = ncl_readrpc(vp, uiop, cr);
1604 
1605 		if (!error) {
1606 		    if (uiop->uio_resid) {
1607 			/*
1608 			 * If we had a short read with no error, we must have
1609 			 * hit a file hole.  We should zero-fill the remainder.
1610 			 * This can also occur if the server hits the file EOF.
1611 			 *
1612 			 * Holes used to be able to occur due to pending
1613 			 * writes, but that is not possible any longer.
1614 			 */
1615 			int nread = bp->b_bcount - uiop->uio_resid;
1616 			ssize_t left = uiop->uio_resid;
1617 
1618 			if (left > 0)
1619 				bzero((char *)bp->b_data + nread, left);
1620 			uiop->uio_resid = 0;
1621 		    }
1622 		}
1623 		/* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
1624 		if (p && (vp->v_vflag & VV_TEXT)) {
1625 			mtx_lock(&np->n_mtx);
1626 			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
1627 				mtx_unlock(&np->n_mtx);
1628 				PROC_LOCK(p);
1629 				killproc(p, "text file modification");
1630 				PROC_UNLOCK(p);
1631 			} else
1632 				mtx_unlock(&np->n_mtx);
1633 		}
1634 		break;
1635 	    case VLNK:
1636 		uiop->uio_offset = (off_t)0;
1637 		NFSINCRGLOBAL(nfsstatsv1.readlink_bios);
1638 		error = ncl_readlinkrpc(vp, uiop, cr);
1639 		break;
1640 	    case VDIR:
1641 		NFSINCRGLOBAL(nfsstatsv1.readdir_bios);
1642 		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1643 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1644 			error = ncl_readdirplusrpc(vp, uiop, cr, td);
1645 			if (error == NFSERR_NOTSUPP)
1646 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1647 		}
1648 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1649 			error = ncl_readdirrpc(vp, uiop, cr, td);
1650 		/*
1651 		 * end-of-directory sets B_INVAL but does not generate an
1652 		 * error.
1653 		 */
1654 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1655 			bp->b_flags |= B_INVAL;
1656 		break;
1657 	    default:
1658 		printf("ncl_doio:  type %x unexpected\n", vp->v_type);
1659 		break;
1660 	    }
1661 	    if (error) {
1662 		bp->b_ioflags |= BIO_ERROR;
1663 		bp->b_error = error;
1664 	    }
1665 	} else {
1666 	    /*
1667 	     * If we only need to commit, try to commit
1668 	     */
1669 	    if (bp->b_flags & B_NEEDCOMMIT) {
1670 		    int retv;
1671 		    off_t off;
1672 
1673 		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1674 		    retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1675 			bp->b_wcred, td);
1676 		    if (retv == 0) {
1677 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1678 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1679 			    bp->b_resid = 0;
1680 			    bufdone(bp);
1681 			    return (0);
1682 		    }
1683 		    if (retv == NFSERR_STALEWRITEVERF) {
1684 			    ncl_clearcommit(vp->v_mount);
1685 		    }
1686 	    }
1687 
1688 	    /*
1689 	     * Setup for actual write
1690 	     */
1691 	    mtx_lock(&np->n_mtx);
1692 	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1693 		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1694 	    mtx_unlock(&np->n_mtx);
1695 
1696 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1697 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1698 		    - bp->b_dirtyoff;
1699 		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1700 		    + bp->b_dirtyoff;
1701 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1702 		uiop->uio_rw = UIO_WRITE;
1703 		NFSINCRGLOBAL(nfsstatsv1.write_bios);
1704 
1705 		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1706 		    iomode = NFSWRITE_UNSTABLE;
1707 		else
1708 		    iomode = NFSWRITE_FILESYNC;
1709 
1710 		error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit,
1711 		    called_from_strategy);
1712 
1713 		/*
1714 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1715 		 * to cluster the buffers needing commit.  This will allow
1716 		 * the system to submit a single commit rpc for the whole
1717 		 * cluster.  We can do this even if the buffer is not 100%
1718 		 * dirty (relative to the NFS blocksize), so we optimize the
1719 		 * append-to-file-case.
1720 		 *
1721 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1722 		 * cleared because write clustering only works for commit
1723 		 * rpc's, not for the data portion of the write).
1724 		 */
1725 
1726 		if (!error && iomode == NFSWRITE_UNSTABLE) {
1727 		    bp->b_flags |= B_NEEDCOMMIT;
1728 		    if (bp->b_dirtyoff == 0
1729 			&& bp->b_dirtyend == bp->b_bcount)
1730 			bp->b_flags |= B_CLUSTEROK;
1731 		} else {
1732 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1733 		}
1734 
1735 		/*
1736 		 * For an interrupted write, the buffer is still valid
1737 		 * and the write hasn't been pushed to the server yet,
1738 		 * so we can't set BIO_ERROR and report the interruption
1739 		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1740 		 * is not relevant, so the rpc attempt is essentially
1741 		 * a noop.  For the case of a V3 write rpc not being
1742 		 * committed to stable storage, the block is still
1743 		 * dirty and requires either a commit rpc or another
1744 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1745 		 * the block is reused. This is indicated by setting
1746 		 * the B_DELWRI and B_NEEDCOMMIT flags.
1747 		 *
1748 		 * EIO is returned by ncl_writerpc() to indicate a recoverable
1749 		 * write error and is handled as above, except that
1750 		 * B_EINTR isn't set. One cause of this is a stale stateid
1751 		 * error for the RPC that indicates recovery is required,
1752 		 * when called with called_from_strategy != 0.
1753 		 *
1754 		 * If the buffer is marked B_PAGING, it does not reside on
1755 		 * the vp's paging queues so we cannot call bdirty().  The
1756 		 * bp in this case is not an NFS cache block so we should
1757 		 * be safe. XXX
1758 		 *
1759 		 * The logic below breaks up errors into recoverable and
1760 		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1761 		 * and keep the buffer around for potential write retries.
1762 		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1763 		 * and save the error in the nfsnode. This is less than ideal
1764 		 * but necessary. Keeping such buffers around could potentially
1765 		 * cause buffer exhaustion eventually (they can never be written
1766 		 * out, so will get constantly be re-dirtied). It also causes
1767 		 * all sorts of vfs panics. For non-recoverable write errors,
1768 		 * also invalidate the attrcache, so we'll be forced to go over
1769 		 * the wire for this object, returning an error to user on next
1770 		 * call (most of the time).
1771 		 */
1772 		if (error == EINTR || error == EIO || error == ETIMEDOUT
1773 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1774 			int s;
1775 
1776 			s = splbio();
1777 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1778 			if ((bp->b_flags & B_PAGING) == 0) {
1779 			    bdirty(bp);
1780 			    bp->b_flags &= ~B_DONE;
1781 			}
1782 			if ((error == EINTR || error == ETIMEDOUT) &&
1783 			    (bp->b_flags & B_ASYNC) == 0)
1784 			    bp->b_flags |= B_EINTR;
1785 			splx(s);
1786 		} else {
1787 		    if (error) {
1788 			bp->b_ioflags |= BIO_ERROR;
1789 			bp->b_flags |= B_INVAL;
1790 			bp->b_error = np->n_error = error;
1791 			mtx_lock(&np->n_mtx);
1792 			np->n_flag |= NWRITEERR;
1793 			np->n_attrstamp = 0;
1794 			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1795 			mtx_unlock(&np->n_mtx);
1796 		    }
1797 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1798 		}
1799 	    } else {
1800 		bp->b_resid = 0;
1801 		bufdone(bp);
1802 		return (0);
1803 	    }
1804 	}
1805 	bp->b_resid = uiop->uio_resid;
1806 	if (must_commit)
1807 	    ncl_clearcommit(vp->v_mount);
1808 	bufdone(bp);
1809 	return (error);
1810 }
1811 
1812 /*
1813  * Used to aid in handling ftruncate() operations on the NFS client side.
1814  * Truncation creates a number of special problems for NFS.  We have to
1815  * throw away VM pages and buffer cache buffers that are beyond EOF, and
1816  * we have to properly handle VM pages or (potentially dirty) buffers
1817  * that straddle the truncation point.
1818  */
1819 
1820 int
ncl_meta_setsize(struct vnode * vp,struct ucred * cred,struct thread * td,u_quad_t nsize)1821 ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1822 {
1823 	struct nfsnode *np = VTONFS(vp);
1824 	u_quad_t tsize;
1825 	int biosize = vp->v_bufobj.bo_bsize;
1826 	int error = 0;
1827 
1828 	mtx_lock(&np->n_mtx);
1829 	tsize = np->n_size;
1830 	np->n_size = nsize;
1831 	mtx_unlock(&np->n_mtx);
1832 
1833 	if (nsize < tsize) {
1834 		struct buf *bp;
1835 		daddr_t lbn;
1836 		int bufsize;
1837 
1838 		/*
1839 		 * vtruncbuf() doesn't get the buffer overlapping the
1840 		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1841 		 * buffer that now needs to be truncated.
1842 		 */
1843 		error = vtruncbuf(vp, cred, nsize, biosize);
1844 		lbn = nsize / biosize;
1845 		bufsize = nsize - (lbn * biosize);
1846 		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1847 		if (!bp)
1848 			return EINTR;
1849 		if (bp->b_dirtyoff > bp->b_bcount)
1850 			bp->b_dirtyoff = bp->b_bcount;
1851 		if (bp->b_dirtyend > bp->b_bcount)
1852 			bp->b_dirtyend = bp->b_bcount;
1853 		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1854 		brelse(bp);
1855 	} else {
1856 		vnode_pager_setsize(vp, nsize);
1857 	}
1858 	return(error);
1859 }
1860 
1861