1 /* md5.c - Functions to compute MD5 message digest of files or memory blocks
2    according to the definition of MD5 in RFC 1321 from April 1992.
3    Copyright (C) 1995, 1996, 1997 Free Software Foundation, Inc.
4    This file is part of the GNU C Library.
5 
6    The GNU C Library is free software; you can redistribute it and/or
7    modify it under the terms of the GNU Library General Public License as
8    published by the Free Software Foundation; either version 2 of the
9    License, or (at your option) any later version.
10 
11    The GNU C Library is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14    Library General Public License for more details.
15 
16    You should have received a copy of the GNU Library General Public
17    License along with the GNU C Library; see the file COPYING.LIB.  If not,
18    write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19    Boston, MA 02111-1307, USA.  */
20 
21 /* Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.  */
22 
23 #include "config.h"
24 
25 #include <sys/types.h>
26 
27 #include <stdlib.h>
28 #include <string.h>
29 #ifdef HAVE_LIMITS_H
30 # include <limits.h>
31 #endif
32 
33 #ifdef HAVE_OPENSSL
34 #include <openssl/md5.h>
35 #endif
36 
37 #include "ne_md5.h"
38 #include "ne_string.h" /* for NE_ASC2HEX */
39 
40 #if SIZEOF_INT == 4
41 typedef unsigned int md5_uint32;
42 #elif SIZEOF_LONG == 4
43 typedef unsigned long md5_uint32;
44 #else
45 # error "Cannot determine unsigned 32-bit data type."
46 #endif
47 
48 #define md5_process_block ne_md5_process_block
49 #define md5_process_bytes ne_md5_process_bytes
50 #define md5_finish_ctx ne_md5_finish_ctx
51 #define md5_read_ctx ne_md5_read_ctx
52 #define md5_stream ne_md5_stream
53 #define md5_ctx ne_md5_ctx
54 
55 
56 #ifdef WORDS_BIGENDIAN
57 # define SWAP(n)							\
58     (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
59 #else
60 # define SWAP(n) (n)
61 #endif
62 
63 /* Structure to save state of computation between the single steps.  */
64 struct md5_ctx
65 {
66 #ifdef HAVE_OPENSSL
67   MD5_CTX ctx;
68 #else
69   md5_uint32 A;
70   md5_uint32 B;
71   md5_uint32 C;
72   md5_uint32 D;
73 
74   md5_uint32 total[2];
75   md5_uint32 buflen;
76   char buffer[128];
77 #endif
78 };
79 
80 #ifndef HAVE_OPENSSL
81 /* This array contains the bytes used to pad the buffer to the next
82    64-byte boundary.  (RFC 1321, 3.1: Step 1)  */
83 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };
84 
85 
86 /* Initialize structure containing state of computation.
87    (RFC 1321, 3.3: Step 3)  */
88 static void
md5_init_ctx(struct md5_ctx * ctx)89 md5_init_ctx (struct md5_ctx *ctx)
90 {
91   ctx->A = 0x67452301;
92   ctx->B = 0xefcdab89;
93   ctx->C = 0x98badcfe;
94   ctx->D = 0x10325476;
95 
96   ctx->total[0] = ctx->total[1] = 0;
97   ctx->buflen = 0;
98 }
99 
100 struct ne_md5_ctx *
ne_md5_create_ctx(void)101 ne_md5_create_ctx(void)
102 {
103   struct md5_ctx *ctx = ne_malloc(sizeof *ctx);
104   md5_init_ctx(ctx);
105   return ctx;
106 }
107 
108 extern void
ne_md5_reset_ctx(struct ne_md5_ctx * ctx)109 ne_md5_reset_ctx(struct ne_md5_ctx *ctx)
110 {
111   md5_init_ctx(ctx);
112 }
113 
114 struct ne_md5_ctx *
ne_md5_dup_ctx(struct ne_md5_ctx * ctx)115 ne_md5_dup_ctx(struct ne_md5_ctx *ctx)
116 {
117   return memcpy(ne_malloc(sizeof *ctx), ctx, sizeof *ctx);
118 }
119 
120 void
ne_md5_destroy_ctx(struct ne_md5_ctx * ctx)121 ne_md5_destroy_ctx(struct ne_md5_ctx *ctx)
122 {
123   ne_free(ctx);
124 }
125 
126 /* Process the remaining bytes in the internal buffer and the usual
127    prolog according to the standard and write the result to RESBUF.
128 
129    IMPORTANT: On some systems it is required that RESBUF is correctly
130    aligned for a 32 bits value.  */
131 void *
md5_finish_ctx(struct md5_ctx * ctx,void * resbuf)132 md5_finish_ctx (struct md5_ctx *ctx, void *resbuf)
133 {
134   /* Take yet unprocessed bytes into account.  */
135   md5_uint32 bytes = ctx->buflen;
136   md5_uint32 swap_bytes;
137   size_t pad;
138 
139   /* Now count remaining bytes.  */
140   ctx->total[0] += bytes;
141   if (ctx->total[0] < bytes)
142     ++ctx->total[1];
143 
144   pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
145   memcpy (&ctx->buffer[bytes], fillbuf, pad);
146 
147   /* Put the 64-bit file length in *bits* at the end of the buffer.
148      Use memcpy to avoid aliasing problems.  On most systems, this
149      will be optimized away to the same code.  */
150   swap_bytes = SWAP (ctx->total[0] << 3);
151   memcpy (&ctx->buffer[bytes + pad], &swap_bytes, sizeof (swap_bytes));
152   swap_bytes = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
153   memcpy (&ctx->buffer[bytes + pad + 4], &swap_bytes, sizeof (swap_bytes));
154 
155   /* Process last bytes.  */
156   md5_process_block (ctx->buffer, bytes + pad + 8, ctx);
157 
158   return md5_read_ctx (ctx, resbuf);
159 }
160 
161 void
md5_process_bytes(const void * buffer,size_t len,struct md5_ctx * ctx)162 md5_process_bytes (const void *buffer, size_t len, struct md5_ctx *ctx)
163 {
164   /* When we already have some bits in our internal buffer concatenate
165      both inputs first.  */
166   if (ctx->buflen != 0)
167     {
168       size_t left_over = ctx->buflen;
169       size_t add = 128 - left_over > len ? len : 128 - left_over;
170 
171       memcpy (&ctx->buffer[left_over], buffer, add);
172       ctx->buflen += add;
173 
174       if (left_over + add > 64)
175 	{
176 	  md5_process_block (ctx->buffer, (left_over + add) & ~63, ctx);
177 	  /* The regions in the following copy operation cannot overlap.  */
178 	  memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
179 		  (left_over + add) & 63);
180 	  ctx->buflen = (left_over + add) & 63;
181 	}
182 
183       buffer = (const char *) buffer + add;
184       len -= add;
185     }
186 
187   /* Process available complete blocks.  */
188   if (len > 64)
189     {
190       md5_process_block (buffer, len & ~63, ctx);
191       buffer = (const char *) buffer + (len & ~63);
192       len &= 63;
193     }
194 
195   /* Move remaining bytes in internal buffer.  */
196   if (len > 0)
197     {
198       memcpy (ctx->buffer, buffer, len);
199       ctx->buflen = len;
200     }
201 }
202 
203 
204 /* These are the four functions used in the four steps of the MD5 algorithm
205    and defined in the RFC 1321.  The first function is a little bit optimized
206    (as found in Colin Plumbs public domain implementation).  */
207 /* #define FF(b, c, d) ((b & c) | (~b & d)) */
208 #define FF(b, c, d) (d ^ (b & (c ^ d)))
209 #define FG(b, c, d) FF (d, b, c)
210 #define FH(b, c, d) (b ^ c ^ d)
211 #define FI(b, c, d) (c ^ (b | ~d))
212 
213 /* Process LEN bytes of BUFFER, accumulating context into CTX.
214    It is assumed that LEN % 64 == 0.  */
215 
216 void
md5_process_block(const void * buffer,size_t len,struct md5_ctx * ctx)217 md5_process_block (const void *buffer, size_t len, struct md5_ctx *ctx)
218 {
219   md5_uint32 correct_words[16];
220   const unsigned char *words = buffer;
221   const unsigned char *endp = words + len;
222   md5_uint32 A = ctx->A;
223   md5_uint32 B = ctx->B;
224   md5_uint32 C = ctx->C;
225   md5_uint32 D = ctx->D;
226 
227   /* First increment the byte count.  RFC 1321 specifies the possible
228      length of the file up to 2^64 bits.  Here we only compute the
229      number of bytes.  Do a double word increment.  */
230   ctx->total[0] += len;
231   if (ctx->total[0] < len)
232     ++ctx->total[1];
233 
234   /* Process all bytes in the buffer with 64 bytes in each round of
235      the loop.  */
236   while (words < endp)
237     {
238       md5_uint32 *cwp = correct_words;
239       md5_uint32 A_save = A;
240       md5_uint32 B_save = B;
241       md5_uint32 C_save = C;
242       md5_uint32 D_save = D;
243 
244       /* First round: using the given function, the context and a constant
245 	 the next context is computed.  Because the algorithms processing
246 	 unit is a 32-bit word and it is determined to work on words in
247 	 little endian byte order we perhaps have to change the byte order
248 	 before the computation.  To reduce the work for the next steps
249 	 we store the swapped words in the array CORRECT_WORDS.  */
250 
251 #define OP(a, b, c, d, s, T)						\
252       do								\
253         {								\
254 	  md5_uint32 WORD_ = (md5_uint32)words[0] | ((md5_uint32)words[1] << 8) \
255 	       | ((md5_uint32)words[2] << 16) | ((md5_uint32)words[3] << 24); \
256 	  a += FF (b, c, d) + (*cwp++ = WORD_) + T;		\
257 	  words += 4;							\
258 	  CYCLIC (a, s);						\
259 	  a += b;							\
260         }								\
261       while (0)
262 
263       /* It is unfortunate that C does not provide an operator for
264 	 cyclic rotation.  Hope the C compiler is smart enough.  */
265 #define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
266 
267       /* Before we start, one word to the strange constants.
268 	 They are defined in RFC 1321 as
269 
270 	 T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
271        */
272 
273       /* Round 1.  */
274       OP (A, B, C, D,  7, 0xd76aa478);
275       OP (D, A, B, C, 12, 0xe8c7b756);
276       OP (C, D, A, B, 17, 0x242070db);
277       OP (B, C, D, A, 22, 0xc1bdceee);
278       OP (A, B, C, D,  7, 0xf57c0faf);
279       OP (D, A, B, C, 12, 0x4787c62a);
280       OP (C, D, A, B, 17, 0xa8304613);
281       OP (B, C, D, A, 22, 0xfd469501);
282       OP (A, B, C, D,  7, 0x698098d8);
283       OP (D, A, B, C, 12, 0x8b44f7af);
284       OP (C, D, A, B, 17, 0xffff5bb1);
285       OP (B, C, D, A, 22, 0x895cd7be);
286       OP (A, B, C, D,  7, 0x6b901122);
287       OP (D, A, B, C, 12, 0xfd987193);
288       OP (C, D, A, B, 17, 0xa679438e);
289       OP (B, C, D, A, 22, 0x49b40821);
290 
291       /* For the second to fourth round we have the possibly swapped words
292 	 in CORRECT_WORDS.  Redefine the macro to take an additional first
293 	 argument specifying the function to use.  */
294 #undef OP
295 #define OP(f, a, b, c, d, k, s, T)					\
296       do 								\
297 	{								\
298 	  a += f (b, c, d) + correct_words[k] + T;			\
299 	  CYCLIC (a, s);						\
300 	  a += b;							\
301 	}								\
302       while (0)
303 
304       /* Round 2.  */
305       OP (FG, A, B, C, D,  1,  5, 0xf61e2562);
306       OP (FG, D, A, B, C,  6,  9, 0xc040b340);
307       OP (FG, C, D, A, B, 11, 14, 0x265e5a51);
308       OP (FG, B, C, D, A,  0, 20, 0xe9b6c7aa);
309       OP (FG, A, B, C, D,  5,  5, 0xd62f105d);
310       OP (FG, D, A, B, C, 10,  9, 0x02441453);
311       OP (FG, C, D, A, B, 15, 14, 0xd8a1e681);
312       OP (FG, B, C, D, A,  4, 20, 0xe7d3fbc8);
313       OP (FG, A, B, C, D,  9,  5, 0x21e1cde6);
314       OP (FG, D, A, B, C, 14,  9, 0xc33707d6);
315       OP (FG, C, D, A, B,  3, 14, 0xf4d50d87);
316       OP (FG, B, C, D, A,  8, 20, 0x455a14ed);
317       OP (FG, A, B, C, D, 13,  5, 0xa9e3e905);
318       OP (FG, D, A, B, C,  2,  9, 0xfcefa3f8);
319       OP (FG, C, D, A, B,  7, 14, 0x676f02d9);
320       OP (FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
321 
322       /* Round 3.  */
323       OP (FH, A, B, C, D,  5,  4, 0xfffa3942);
324       OP (FH, D, A, B, C,  8, 11, 0x8771f681);
325       OP (FH, C, D, A, B, 11, 16, 0x6d9d6122);
326       OP (FH, B, C, D, A, 14, 23, 0xfde5380c);
327       OP (FH, A, B, C, D,  1,  4, 0xa4beea44);
328       OP (FH, D, A, B, C,  4, 11, 0x4bdecfa9);
329       OP (FH, C, D, A, B,  7, 16, 0xf6bb4b60);
330       OP (FH, B, C, D, A, 10, 23, 0xbebfbc70);
331       OP (FH, A, B, C, D, 13,  4, 0x289b7ec6);
332       OP (FH, D, A, B, C,  0, 11, 0xeaa127fa);
333       OP (FH, C, D, A, B,  3, 16, 0xd4ef3085);
334       OP (FH, B, C, D, A,  6, 23, 0x04881d05);
335       OP (FH, A, B, C, D,  9,  4, 0xd9d4d039);
336       OP (FH, D, A, B, C, 12, 11, 0xe6db99e5);
337       OP (FH, C, D, A, B, 15, 16, 0x1fa27cf8);
338       OP (FH, B, C, D, A,  2, 23, 0xc4ac5665);
339 
340       /* Round 4.  */
341       OP (FI, A, B, C, D,  0,  6, 0xf4292244);
342       OP (FI, D, A, B, C,  7, 10, 0x432aff97);
343       OP (FI, C, D, A, B, 14, 15, 0xab9423a7);
344       OP (FI, B, C, D, A,  5, 21, 0xfc93a039);
345       OP (FI, A, B, C, D, 12,  6, 0x655b59c3);
346       OP (FI, D, A, B, C,  3, 10, 0x8f0ccc92);
347       OP (FI, C, D, A, B, 10, 15, 0xffeff47d);
348       OP (FI, B, C, D, A,  1, 21, 0x85845dd1);
349       OP (FI, A, B, C, D,  8,  6, 0x6fa87e4f);
350       OP (FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
351       OP (FI, C, D, A, B,  6, 15, 0xa3014314);
352       OP (FI, B, C, D, A, 13, 21, 0x4e0811a1);
353       OP (FI, A, B, C, D,  4,  6, 0xf7537e82);
354       OP (FI, D, A, B, C, 11, 10, 0xbd3af235);
355       OP (FI, C, D, A, B,  2, 15, 0x2ad7d2bb);
356       OP (FI, B, C, D, A,  9, 21, 0xeb86d391);
357 
358       /* Add the starting values of the context.  */
359       A += A_save;
360       B += B_save;
361       C += C_save;
362       D += D_save;
363     }
364 
365   /* Put checksum in context given as argument.  */
366   ctx->A = A;
367   ctx->B = B;
368   ctx->C = C;
369   ctx->D = D;
370 }
371 #else /* HAVE_OPENSSL */
372 
ne_md5_create_ctx(void)373 struct ne_md5_ctx *ne_md5_create_ctx(void)
374 {
375     struct ne_md5_ctx *ctx = ne_malloc(sizeof *ctx);
376 
377     if (MD5_Init(&ctx->ctx) != 1) {
378         ne_free(ctx);
379         return NULL;
380     }
381 
382     return ctx;
383 }
384 
ne_md5_process_block(const void * buffer,size_t len,struct ne_md5_ctx * ctx)385 void ne_md5_process_block(const void *buffer, size_t len,
386                           struct ne_md5_ctx *ctx)
387 {
388     MD5_Update(&ctx->ctx, buffer, len);
389 }
390 
ne_md5_process_bytes(const void * buffer,size_t len,struct ne_md5_ctx * ctx)391 void ne_md5_process_bytes(const void *buffer, size_t len,
392                           struct ne_md5_ctx *ctx)
393 {
394     MD5_Update(&ctx->ctx, buffer, len);
395 }
396 
ne_md5_finish_ctx(struct ne_md5_ctx * ctx,void * resbuf)397 void *ne_md5_finish_ctx(struct ne_md5_ctx *ctx, void *resbuf)
398 {
399     MD5_Final(resbuf, &ctx->ctx);
400 
401     return resbuf;
402 }
403 
ne_md5_dup_ctx(struct ne_md5_ctx * ctx)404 struct ne_md5_ctx *ne_md5_dup_ctx(struct ne_md5_ctx *ctx)
405 {
406     return memcpy(ne_malloc(sizeof *ctx), ctx, sizeof *ctx);
407 }
408 
ne_md5_reset_ctx(struct ne_md5_ctx * ctx)409 void ne_md5_reset_ctx(struct ne_md5_ctx *ctx)
410 {
411     MD5_Init(&ctx->ctx);
412 }
413 
ne_md5_destroy_ctx(struct ne_md5_ctx * ctx)414 void ne_md5_destroy_ctx(struct ne_md5_ctx *ctx)
415 {
416     ne_free(ctx);
417 }
418 #endif /* HAVE_OPENSSL */
419 
420 /* Put result from CTX in first 16 bytes following RESBUF.  The result
421    must be in little endian byte order.
422 
423    IMPORTANT: On some systems it is required that RESBUF is correctly
424    aligned for a 32 bits value.  */
425 void *
md5_read_ctx(const struct md5_ctx * ctx,void * resbuf)426 md5_read_ctx (const struct md5_ctx *ctx, void *resbuf)
427 {
428 #ifdef HAVE_OPENSSL
429 #define SWAP_CTX(x) SWAP(ctx->ctx.x)
430 #else
431 #define SWAP_CTX(x) SWAP(ctx->x)
432 #endif
433 
434   ((md5_uint32 *) resbuf)[0] = SWAP_CTX (A);
435   ((md5_uint32 *) resbuf)[1] = SWAP_CTX (B);
436   ((md5_uint32 *) resbuf)[2] = SWAP_CTX (C);
437   ((md5_uint32 *) resbuf)[3] = SWAP_CTX (D);
438 
439   return resbuf;
440 }
441 
442 
443 /* Compute MD5 message digest for bytes read from STREAM.  The
444    resulting message digest number will be written into the 16 bytes
445    beginning at RESBLOCK.  */
446 int
md5_stream(FILE * stream,void * resblock)447 md5_stream (FILE *stream, void *resblock)
448 {
449   /* Important: BLOCKSIZE must be a multiple of 64.  */
450 #define BLOCKSIZE 4096
451   struct ne_md5_ctx *ctx;
452   char buffer[BLOCKSIZE + 72];
453   size_t sum;
454 
455   /* Initialize the computation context.  */
456   ctx = ne_md5_create_ctx ();
457 
458   /* Iterate over full file contents.  */
459   while (1)
460     {
461       /* We read the file in blocks of BLOCKSIZE bytes.  One call of the
462 	 computation function processes the whole buffer so that with the
463 	 next round of the loop another block can be read.  */
464       size_t n;
465       sum = 0;
466 
467       /* Read block.  Take care for partial reads.  */
468       do
469 	{
470 	  n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
471 
472 	  sum += n;
473 	}
474       while (sum < BLOCKSIZE && n != 0);
475       if (n == 0 && ferror (stream))
476         return 1;
477 
478       /* If end of file is reached, end the loop.  */
479       if (n == 0)
480 	break;
481 
482       /* Process buffer with BLOCKSIZE bytes.  Note that
483 			BLOCKSIZE % 64 == 0
484        */
485       md5_process_block (buffer, BLOCKSIZE, ctx);
486     }
487 
488   /* Add the last bytes if necessary.  */
489   if (sum > 0)
490     md5_process_bytes (buffer, sum, ctx);
491 
492   /* Construct result in desired memory.  */
493   md5_finish_ctx (ctx, resblock);
494   ne_md5_destroy_ctx (ctx);
495 
496   return 0;
497 }
498 
499 /* Writes the ASCII representation of the MD5 digest into the
500  * given buffer, which must be at least 33 characters long. */
ne_md5_to_ascii(const unsigned char md5_buf[16],char * buffer)501 void ne_md5_to_ascii(const unsigned char md5_buf[16], char *buffer)
502 {
503     int count;
504     for (count = 0; count<16; count++) {
505 	buffer[count*2] = NE_HEX2ASC(md5_buf[count] >> 4);
506 	buffer[count*2+1] = NE_HEX2ASC(md5_buf[count] & 0x0f);
507     }
508     buffer[32] = '\0';
509 }
510 
511 /* Reads the ASCII representation of an MD5 digest. The buffer must
512  * be at least 32 characters long. */
ne_ascii_to_md5(const char * buffer,unsigned char md5_buf[16])513 void ne_ascii_to_md5(const char *buffer, unsigned char md5_buf[16])
514 {
515     int count;
516     for (count = 0; count<16; count++) {
517 	md5_buf[count] = ((NE_ASC2HEX(buffer[count*2])) << 4) |
518 	    NE_ASC2HEX(buffer[count*2+1]);
519     }
520 }
521 
ne_md5_finish_ascii(struct ne_md5_ctx * ctx,char buffer[33])522 char *ne_md5_finish_ascii(struct ne_md5_ctx *ctx, char buffer[33])
523 {
524     md5_uint32 result[4];
525 
526     ne_md5_finish_ctx(ctx, (void *)result);
527     ne_md5_to_ascii((void *)result, buffer);
528 
529     return buffer;
530 }
531 
532