1 #include <stdlib.h>
2 #include <string.h>
3 #include <assert.h>
4 #include "../include/cloog/cloog.h"
5
6 #define ALLOC(type) (type*)malloc(sizeof(type))
7 #define ALLOCN(type,n) (type*)malloc((n)*sizeof(type))
8
9 /**
10 * CloogInfos structure:
11 * this structure contains all the informations necessary for pretty printing,
12 * they come from the original CloogProgram structure (language, names), from
13 * genereral options (options) or are built only for pretty printing (stride).
14 * This structure is mainly there to reduce the number of function parameters,
15 * since most pprint.c functions need most of its field.
16 */
17 struct clooginfos {
18 CloogState *state; /**< State. */
19 CloogStride **stride;
20 int stride_level; /**< Number of valid entries in stride array. */
21 int nb_scattdims ; /**< Scattering dimension number. */
22 int * scaldims ; /**< Boolean array saying whether a given
23 * scattering dimension is scalar or not.
24 */
25 CloogNames * names ; /**< Names of iterators and parameters. */
26 CloogOptions * options ; /**< Options on CLooG's behaviour. */
27 CloogEqualities *equal; /**< Matrix of equalities. */
28 } ;
29
30 typedef struct clooginfos CloogInfos ;
31
32 static int clast_expr_cmp(struct clast_expr *e1, struct clast_expr *e2);
33 static int clast_term_cmp(struct clast_term *t1, struct clast_term *t2);
34 static int clast_binary_cmp(struct clast_binary *b1, struct clast_binary *b2);
35 static int clast_reduction_cmp(struct clast_reduction *r1,
36 struct clast_reduction *r2);
37
38 static struct clast_expr *clast_expr_copy(struct clast_expr *e);
39
40 static int clast_equal_add(CloogEqualities *equal,
41 CloogConstraintSet *constraints,
42 int level, CloogConstraint *constraint,
43 CloogInfos *infos);
44
45 static struct clast_stmt *clast_equal(int level, CloogInfos *infos);
46 static struct clast_expr *clast_minmax(CloogConstraintSet *constraints,
47 int level, int max, int guard,
48 int lower_bound, int no_earlier,
49 CloogInfos *infos);
50 static void insert_guard(CloogConstraintSet *constraints, int level,
51 struct clast_stmt ***next, CloogInfos *infos);
52 static int insert_modulo_guard(CloogConstraint *upper,
53 CloogConstraint *lower, int level,
54 struct clast_stmt ***next, CloogInfos *infos);
55 static int insert_equation(CloogDomain *domain, CloogConstraint *upper,
56 CloogConstraint *lower, int level,
57 struct clast_stmt ***next, CloogInfos *infos);
58 static int insert_for(CloogDomain *domain, CloogConstraintSet *constraints,
59 int level, int otl, struct clast_stmt ***next,
60 CloogInfos *infos);
61 static void insert_block(CloogDomain *domain, CloogBlock *block, int level,
62 struct clast_stmt ***next, CloogInfos *infos);
63 static void insert_loop(CloogLoop * loop, int level,
64 struct clast_stmt ***next, CloogInfos *infos);
65
66
new_clast_name(const char * name)67 struct clast_name *new_clast_name(const char *name)
68 {
69 struct clast_name *n = malloc(sizeof(struct clast_name));
70 n->expr.type = clast_expr_name;
71 n->name = name;
72 return n;
73 }
74
new_clast_term(cloog_int_t c,struct clast_expr * v)75 struct clast_term *new_clast_term(cloog_int_t c, struct clast_expr *v)
76 {
77 struct clast_term *t = malloc(sizeof(struct clast_term));
78 t->expr.type = clast_expr_term;
79 cloog_int_init(t->val);
80 cloog_int_set(t->val, c);
81 t->var = v;
82 return t;
83 }
84
new_clast_binary(enum clast_bin_type t,struct clast_expr * lhs,cloog_int_t rhs)85 struct clast_binary *new_clast_binary(enum clast_bin_type t,
86 struct clast_expr *lhs, cloog_int_t rhs)
87 {
88 struct clast_binary *b = malloc(sizeof(struct clast_binary));
89 b->expr.type = clast_expr_bin;
90 b->type = t;
91 b->LHS = lhs;
92 cloog_int_init(b->RHS);
93 cloog_int_set(b->RHS, rhs);
94 return b;
95 }
96
new_clast_reduction(enum clast_red_type t,int n)97 struct clast_reduction *new_clast_reduction(enum clast_red_type t, int n)
98 {
99 int i;
100 struct clast_reduction *r;
101 r = malloc(sizeof(struct clast_reduction)+(n-1)*sizeof(struct clast_expr *));
102 r->expr.type = clast_expr_red;
103 r->type = t;
104 r->n = n;
105 for (i = 0; i < n; ++i)
106 r->elts[i] = NULL;
107 return r;
108 }
109
110 static void free_clast_root(struct clast_stmt *s);
111
112 const struct clast_stmt_op stmt_root = { free_clast_root };
113
free_clast_root(struct clast_stmt * s)114 static void free_clast_root(struct clast_stmt *s)
115 {
116 struct clast_root *r = (struct clast_root *)s;
117 assert(CLAST_STMT_IS_A(s, stmt_root));
118 cloog_names_free(r->names);
119 free(r);
120 }
121
new_clast_root(CloogNames * names)122 struct clast_root *new_clast_root(CloogNames *names)
123 {
124 struct clast_root *r = malloc(sizeof(struct clast_root));
125 r->stmt.op = &stmt_root;
126 r->stmt.next = NULL;
127 r->names = cloog_names_copy(names);
128 return r;
129 }
130
131 static void free_clast_assignment(struct clast_stmt *s);
132
133 const struct clast_stmt_op stmt_ass = { free_clast_assignment };
134
free_clast_assignment(struct clast_stmt * s)135 static void free_clast_assignment(struct clast_stmt *s)
136 {
137 struct clast_assignment *a = (struct clast_assignment *)s;
138 assert(CLAST_STMT_IS_A(s, stmt_ass));
139 free_clast_expr(a->RHS);
140 free(a);
141 }
142
new_clast_assignment(const char * lhs,struct clast_expr * rhs)143 struct clast_assignment *new_clast_assignment(const char *lhs,
144 struct clast_expr *rhs)
145 {
146 struct clast_assignment *a = malloc(sizeof(struct clast_assignment));
147 a->stmt.op = &stmt_ass;
148 a->stmt.next = NULL;
149 a->LHS = lhs;
150 a->RHS = rhs;
151 return a;
152 }
153
154 static void free_clast_user_stmt(struct clast_stmt *s);
155
156 const struct clast_stmt_op stmt_user = { free_clast_user_stmt };
157
free_clast_user_stmt(struct clast_stmt * s)158 static void free_clast_user_stmt(struct clast_stmt *s)
159 {
160 struct clast_user_stmt *u = (struct clast_user_stmt *)s;
161 assert(CLAST_STMT_IS_A(s, stmt_user));
162 cloog_domain_free(u->domain);
163 cloog_statement_free(u->statement);
164 cloog_clast_free(u->substitutions);
165 free(u);
166 }
167
new_clast_user_stmt(CloogDomain * domain,CloogStatement * stmt,struct clast_stmt * subs)168 struct clast_user_stmt *new_clast_user_stmt(CloogDomain *domain,
169 CloogStatement *stmt, struct clast_stmt *subs)
170 {
171 struct clast_user_stmt *u = malloc(sizeof(struct clast_user_stmt));
172 u->stmt.op = &stmt_user;
173 u->stmt.next = NULL;
174 u->domain = cloog_domain_copy(domain);
175 u->statement = cloog_statement_copy(stmt);
176 u->substitutions = subs;
177 return u;
178 }
179
180 static void free_clast_block(struct clast_stmt *b);
181
182 const struct clast_stmt_op stmt_block = { free_clast_block };
183
free_clast_block(struct clast_stmt * s)184 static void free_clast_block(struct clast_stmt *s)
185 {
186 struct clast_block *b = (struct clast_block *)s;
187 assert(CLAST_STMT_IS_A(s, stmt_block));
188 cloog_clast_free(b->body);
189 free(b);
190 }
191
new_clast_block()192 struct clast_block *new_clast_block()
193 {
194 struct clast_block *b = malloc(sizeof(struct clast_block));
195 b->stmt.op = &stmt_block;
196 b->stmt.next = NULL;
197 b->body = NULL;
198 return b;
199 }
200
201 static void free_clast_for(struct clast_stmt *s);
202
203 const struct clast_stmt_op stmt_for = { free_clast_for };
204
free_clast_for(struct clast_stmt * s)205 static void free_clast_for(struct clast_stmt *s)
206 {
207 struct clast_for *f = (struct clast_for *)s;
208 assert(CLAST_STMT_IS_A(s, stmt_for));
209 cloog_domain_free(f->domain);
210 free_clast_expr(f->LB);
211 free_clast_expr(f->UB);
212 cloog_int_clear(f->stride);
213 cloog_clast_free(f->body);
214 if (f->private_vars) free(f->private_vars);
215 if (f->reduction_vars) free(f->reduction_vars);
216 if (f->time_var_name) free(f->time_var_name);
217 if (f->user_directive) free(f->user_directive);
218 free(f);
219 }
220
new_clast_for(CloogDomain * domain,const char * it,struct clast_expr * LB,struct clast_expr * UB,CloogStride * stride)221 struct clast_for *new_clast_for(CloogDomain *domain, const char *it,
222 struct clast_expr *LB, struct clast_expr *UB,
223 CloogStride *stride)
224 {
225 struct clast_for *f = malloc(sizeof(struct clast_for));
226 f->stmt.op = &stmt_for;
227 f->stmt.next = NULL;
228 f->domain = cloog_domain_copy(domain);
229 f->iterator = it;
230 f->LB = LB;
231 f->UB = UB;
232 f->body = NULL;
233 f->parallel = CLAST_PARALLEL_NOT;
234 f->private_vars = NULL;
235 f->reduction_vars = NULL;
236 f->time_var_name = NULL;
237 f->user_directive = NULL;
238 cloog_int_init(f->stride);
239 if (stride)
240 cloog_int_set(f->stride, stride->stride);
241 else
242 cloog_int_set_si(f->stride, 1);
243 return f;
244 }
245
246 static void free_clast_guard(struct clast_stmt *s);
247
248 const struct clast_stmt_op stmt_guard = { free_clast_guard };
249
free_clast_guard(struct clast_stmt * s)250 static void free_clast_guard(struct clast_stmt *s)
251 {
252 int i;
253 struct clast_guard *g = (struct clast_guard *)s;
254 assert(CLAST_STMT_IS_A(s, stmt_guard));
255 cloog_clast_free(g->then);
256 for (i = 0; i < g->n; ++i) {
257 free_clast_expr(g->eq[i].LHS);
258 free_clast_expr(g->eq[i].RHS);
259 }
260 free(g);
261 }
262
new_clast_guard(int n)263 struct clast_guard *new_clast_guard(int n)
264 {
265 int i;
266 struct clast_guard *g = malloc(sizeof(struct clast_guard) +
267 (n-1) * sizeof(struct clast_equation));
268 g->stmt.op = &stmt_guard;
269 g->stmt.next = NULL;
270 g->then = NULL;
271 g->n = n;
272 for (i = 0; i < n; ++i) {
273 g->eq[i].LHS = NULL;
274 g->eq[i].RHS = NULL;
275 }
276 return g;
277 }
278
free_clast_name(struct clast_name * n)279 void free_clast_name(struct clast_name *n)
280 {
281 free(n);
282 }
283
free_clast_term(struct clast_term * t)284 void free_clast_term(struct clast_term *t)
285 {
286 cloog_int_clear(t->val);
287 free_clast_expr(t->var);
288 free(t);
289 }
290
free_clast_binary(struct clast_binary * b)291 void free_clast_binary(struct clast_binary *b)
292 {
293 cloog_int_clear(b->RHS);
294 free_clast_expr(b->LHS);
295 free(b);
296 }
297
free_clast_reduction(struct clast_reduction * r)298 void free_clast_reduction(struct clast_reduction *r)
299 {
300 int i;
301 for (i = 0; i < r->n; ++i)
302 free_clast_expr(r->elts[i]);
303 free(r);
304 }
305
free_clast_expr(struct clast_expr * e)306 void free_clast_expr(struct clast_expr *e)
307 {
308 if (!e)
309 return;
310 switch (e->type) {
311 case clast_expr_name:
312 free_clast_name((struct clast_name*) e);
313 break;
314 case clast_expr_term:
315 free_clast_term((struct clast_term*) e);
316 break;
317 case clast_expr_red:
318 free_clast_reduction((struct clast_reduction*) e);
319 break;
320 case clast_expr_bin:
321 free_clast_binary((struct clast_binary*) e);
322 break;
323 default:
324 assert(0);
325 }
326 }
327
free_clast_stmt(struct clast_stmt * s)328 void free_clast_stmt(struct clast_stmt *s)
329 {
330 assert(s->op);
331 assert(s->op->free);
332 s->op->free(s);
333 }
334
cloog_clast_free(struct clast_stmt * s)335 void cloog_clast_free(struct clast_stmt *s)
336 {
337 struct clast_stmt *next;
338 while (s) {
339 next = s->next;
340 free_clast_stmt(s);
341 s = next;
342 }
343 }
344
clast_name_cmp(struct clast_name * n1,struct clast_name * n2)345 static int clast_name_cmp(struct clast_name *n1, struct clast_name *n2)
346 {
347 return n1->name == n2->name ? 0 : strcmp(n1->name, n2->name);
348 }
349
clast_term_cmp(struct clast_term * t1,struct clast_term * t2)350 static int clast_term_cmp(struct clast_term *t1, struct clast_term *t2)
351 {
352 int c;
353 if (!t1->var && t2->var)
354 return -1;
355 if (t1->var && !t2->var)
356 return 1;
357 c = clast_expr_cmp(t1->var, t2->var);
358 if (c)
359 return c;
360 return cloog_int_cmp(t1->val, t2->val);
361 }
362
clast_binary_cmp(struct clast_binary * b1,struct clast_binary * b2)363 static int clast_binary_cmp(struct clast_binary *b1, struct clast_binary *b2)
364 {
365 int c;
366
367 if (b1->type != b2->type)
368 return b1->type - b2->type;
369 if ((c = cloog_int_cmp(b1->RHS, b2->RHS)))
370 return c;
371 return clast_expr_cmp(b1->LHS, b2->LHS);
372 }
373
clast_reduction_cmp(struct clast_reduction * r1,struct clast_reduction * r2)374 static int clast_reduction_cmp(struct clast_reduction *r1, struct clast_reduction *r2)
375 {
376 int i;
377 int c;
378
379 if (r1->n == 1 && r2->n == 1)
380 return clast_expr_cmp(r1->elts[0], r2->elts[0]);
381 if (r1->type != r2->type)
382 return r1->type - r2->type;
383 if (r1->n != r2->n)
384 return r1->n - r2->n;
385 for (i = 0; i < r1->n; ++i)
386 if ((c = clast_expr_cmp(r1->elts[i], r2->elts[i])))
387 return c;
388 return 0;
389 }
390
clast_expr_cmp(struct clast_expr * e1,struct clast_expr * e2)391 static int clast_expr_cmp(struct clast_expr *e1, struct clast_expr *e2)
392 {
393 if (!e1 && !e2)
394 return 0;
395 if (!e1)
396 return -1;
397 if (!e2)
398 return 1;
399 if (e1->type != e2->type)
400 return e1->type - e2->type;
401 switch (e1->type) {
402 case clast_expr_name:
403 return clast_name_cmp((struct clast_name*) e1,
404 (struct clast_name*) e2);
405 case clast_expr_term:
406 return clast_term_cmp((struct clast_term*) e1,
407 (struct clast_term*) e2);
408 case clast_expr_bin:
409 return clast_binary_cmp((struct clast_binary*) e1,
410 (struct clast_binary*) e2);
411 case clast_expr_red:
412 return clast_reduction_cmp((struct clast_reduction*) e1,
413 (struct clast_reduction*) e2);
414 default:
415 assert(0);
416 }
417 }
418
clast_expr_equal(struct clast_expr * e1,struct clast_expr * e2)419 int clast_expr_equal(struct clast_expr *e1, struct clast_expr *e2)
420 {
421 return clast_expr_cmp(e1, e2) == 0;
422 }
423
424 /**
425 * Return 1 is both expressions are constant terms and e1 is bigger than e2.
426 */
clast_expr_is_bigger_constant(struct clast_expr * e1,struct clast_expr * e2)427 int clast_expr_is_bigger_constant(struct clast_expr *e1, struct clast_expr *e2)
428 {
429 struct clast_term *t1, *t2;
430 struct clast_reduction *r;
431
432 if (!e1 || !e2)
433 return 0;
434 if (e1->type == clast_expr_red) {
435 r = (struct clast_reduction *)e1;
436 return r->n == 1 && clast_expr_is_bigger_constant(r->elts[0], e2);
437 }
438 if (e2->type == clast_expr_red) {
439 r = (struct clast_reduction *)e2;
440 return r->n == 1 && clast_expr_is_bigger_constant(e1, r->elts[0]);
441 }
442 if (e1->type != clast_expr_term || e2->type != clast_expr_term)
443 return 0;
444 t1 = (struct clast_term *)e1;
445 t2 = (struct clast_term *)e2;
446 if (t1->var || t2->var)
447 return 0;
448 return cloog_int_gt(t1->val, t2->val);
449 }
450
qsort_expr_cmp(const void * p1,const void * p2)451 static int qsort_expr_cmp(const void *p1, const void *p2)
452 {
453 return clast_expr_cmp(*(struct clast_expr **)p1, *(struct clast_expr **)p2);
454 }
455
clast_reduction_sort(struct clast_reduction * r)456 static void clast_reduction_sort(struct clast_reduction *r)
457 {
458 qsort(&r->elts[0], r->n, sizeof(struct clast_expr *), qsort_expr_cmp);
459 }
460
qsort_eq_cmp(const void * p1,const void * p2)461 static int qsort_eq_cmp(const void *p1, const void *p2)
462 {
463 struct clast_equation *eq1 = (struct clast_equation *)p1;
464 struct clast_equation *eq2 = (struct clast_equation *)p2;
465 int cmp;
466
467 cmp = clast_expr_cmp(eq1->LHS, eq2->LHS);
468 if (cmp)
469 return cmp;
470
471 cmp = clast_expr_cmp(eq1->RHS, eq2->RHS);
472 if (cmp)
473 return cmp;
474
475 return eq1->sign - eq2->sign;
476 }
477
478 /**
479 * Sort equations in a clast_guard.
480 */
clast_guard_sort(struct clast_guard * g)481 static void clast_guard_sort(struct clast_guard *g)
482 {
483 qsort(&g->eq[0], g->n, sizeof(struct clast_equation), qsort_eq_cmp);
484 }
485
486
487 /**
488 * Construct a (deep) copy of an expression clast.
489 */
clast_expr_copy(struct clast_expr * e)490 static struct clast_expr *clast_expr_copy(struct clast_expr *e)
491 {
492 if (!e)
493 return NULL;
494 switch (e->type) {
495 case clast_expr_name: {
496 struct clast_name* n = (struct clast_name*) e;
497 return &new_clast_name(n->name)->expr;
498 }
499 case clast_expr_term: {
500 struct clast_term* t = (struct clast_term*) e;
501 return &new_clast_term(t->val, clast_expr_copy(t->var))->expr;
502 }
503 case clast_expr_red: {
504 int i;
505 struct clast_reduction *r = (struct clast_reduction*) e;
506 struct clast_reduction *r2 = new_clast_reduction(r->type, r->n);
507 for (i = 0; i < r->n; ++i)
508 r2->elts[i] = clast_expr_copy(r->elts[i]);
509 return &r2->expr;
510 }
511 case clast_expr_bin: {
512 struct clast_binary *b = (struct clast_binary*) e;
513 return &new_clast_binary(b->type, clast_expr_copy(b->LHS), b->RHS)->expr;
514 }
515 default:
516 assert(0);
517 }
518 }
519
520
521 /******************************************************************************
522 * Equalities spreading functions *
523 ******************************************************************************/
524
525
526 /**
527 * clast_equal_allow function:
528 * This function checks whether the options allow us to spread the equality or
529 * not. It returns 1 if so, 0 otherwise.
530 * - equal is the matrix of equalities,
531 * - level is the column number in equal of the element which is 'equal to',
532 * - line is the line number in equal of the constraint we want to study,
533 * - the infos structure gives the user all options on code printing and more.
534 **
535 * - October 27th 2005: first version (extracted from old pprint_equal_add).
536 */
clast_equal_allow(CloogEqualities * equal,int level,int line,CloogInfos * infos)537 static int clast_equal_allow(CloogEqualities *equal, int level, int line,
538 CloogInfos *infos)
539 {
540 if (level < infos->options->fsp)
541 return 0 ;
542
543 if ((cloog_equal_type(equal, level) == EQTYPE_EXAFFINE) &&
544 !infos->options->esp)
545 return 0 ;
546
547 return 1 ;
548 }
549
550
551 /**
552 * clast_equal_add function:
553 * This function updates the row (level-1) of the equality matrix (equal) with
554 * the row that corresponds to the row (line) of the matrix (matrix). It returns
555 * 1 if the row can be updated, 0 otherwise.
556 * - equal is the matrix of equalities,
557 * - matrix is the matrix of constraints,
558 * - level is the column number in matrix of the element which is 'equal to',
559 * - line is the line number in matrix of the constraint we want to study,
560 * - the infos structure gives the user all options on code printing and more.
561 */
clast_equal_add(CloogEqualities * equal,CloogConstraintSet * constraints,int level,CloogConstraint * constraint,CloogInfos * infos)562 static int clast_equal_add(CloogEqualities *equal,
563 CloogConstraintSet *constraints,
564 int level, CloogConstraint *constraint,
565 CloogInfos *infos)
566 {
567 cloog_equal_add(equal, constraints, level, constraint,
568 infos->names->nb_parameters);
569
570 return clast_equal_allow(equal, level, level-1, infos);
571 }
572
573
574
575 /**
576 * clast_equal function:
577 * This function prints the substitution data of a statement into a clast_stmt.
578 * Using this function instead of pprint_equal is useful for generating
579 * a compilable pseudo-code by using preprocessor macro for each statement.
580 * By opposition to pprint_equal, the result is less human-readable. For
581 * instance this function will print (i,i+3,k,3) where pprint_equal would
582 * return (j=i+3,l=3).
583 * - level is the number of loops enclosing the statement,
584 * - the infos structure gives the user all options on code printing and more.
585 **
586 * - March 12th 2004: first version.
587 * - November 21th 2005: (debug) now works well with GMP version.
588 */
clast_equal(int level,CloogInfos * infos)589 static struct clast_stmt *clast_equal(int level, CloogInfos *infos)
590 {
591 int i ;
592 struct clast_expr *e;
593 struct clast_stmt *a = NULL;
594 struct clast_stmt **next = &a;
595 CloogEqualities *equal = infos->equal;
596 CloogConstraint *equal_constraint;
597
598 for (i=infos->names->nb_scattering;i<level-1;i++)
599 { if (cloog_equal_type(equal, i+1)) {
600 equal_constraint = cloog_equal_constraint(equal, i);
601 e = clast_bound_from_constraint(equal_constraint, i+1, infos->names);
602 cloog_constraint_release(equal_constraint);
603 } else {
604 e = &new_clast_term(infos->state->one, &new_clast_name(
605 cloog_names_name_at_level(infos->names, i+1))->expr)->expr;
606 }
607 *next = &new_clast_assignment(NULL, e)->stmt;
608 next = &(*next)->next;
609 }
610
611 return a;
612 }
613
614
615 /**
616 * clast_bound_from_constraint function:
617 * This function returns a clast_expr containing the printing of the
618 * 'right part' of a constraint according to an element.
619 * For instance, for the constraint -3*i + 2*j - M >=0 and the element j,
620 * we have j >= (3*i + M)/2. As we are looking for integral solutions, this
621 * function should return 'ceild(3*i+M,2)'.
622 * - matrix is the polyhedron containing all the constraints,
623 * - line_num is the line number in domain of the constraint we want to print,
624 * - level is the column number in domain of the element we want to use,
625 * - names structure gives the user some options about code printing,
626 * the number of parameters in domain (nb_par), and the arrays of iterator
627 * names and parameters (iters and params).
628 **
629 * - November 2nd 2001: first version.
630 * - June 27th 2003: 64 bits version ready.
631 */
clast_bound_from_constraint(CloogConstraint * constraint,int level,CloogNames * names)632 struct clast_expr *clast_bound_from_constraint(CloogConstraint *constraint,
633 int level, CloogNames *names)
634 {
635 int i, sign, nb_elts=0, len;
636 cloog_int_t *line, numerator, denominator, temp, division;
637 struct clast_expr *e = NULL;
638 struct cloog_vec *line_vector;
639
640 len = cloog_constraint_total_dimension(constraint) + 2;
641 line_vector = cloog_vec_alloc(len);
642 line = line_vector->p;
643 cloog_constraint_copy_coefficients(constraint, line+1);
644 cloog_int_init(temp);
645 cloog_int_init(numerator);
646 cloog_int_init(denominator);
647
648 if (!cloog_int_is_zero(line[level])) {
649 struct clast_reduction *r;
650 /* Maybe we need to invert signs in such a way that the element sign is>0.*/
651 sign = -cloog_int_sgn(line[level]);
652
653 for (i = 1, nb_elts = 0; i <= len - 1; ++i)
654 if (i != level && !cloog_int_is_zero(line[i]))
655 nb_elts++;
656 r = new_clast_reduction(clast_red_sum, nb_elts);
657 nb_elts = 0;
658
659 /* First, we have to print the iterators and the parameters. */
660 for (i = 1; i <= len - 2; i++) {
661 struct clast_expr *v;
662
663 if (i == level || cloog_int_is_zero(line[i]))
664 continue;
665
666 v = cloog_constraint_variable_expr(constraint, i, names);
667
668 if (sign == -1)
669 cloog_int_neg(temp,line[i]);
670 else
671 cloog_int_set(temp,line[i]);
672
673 r->elts[nb_elts++] = &new_clast_term(temp, v)->expr;
674 }
675
676 if (sign == -1) {
677 cloog_int_neg(numerator, line[len - 1]);
678 cloog_int_set(denominator, line[level]);
679 }
680 else {
681 cloog_int_set(numerator, line[len - 1]);
682 cloog_int_neg(denominator, line[level]);
683 }
684
685 /* Finally, the constant, and the final printing. */
686 if (nb_elts) {
687 if (!cloog_int_is_zero(numerator))
688 r->elts[nb_elts++] = &new_clast_term(numerator, NULL)->expr;
689
690 if (!cloog_int_is_one(line[level]) && !cloog_int_is_neg_one(line[level]))
691 { if (!cloog_constraint_is_equality(constraint))
692 { if (cloog_int_is_pos(line[level]))
693 e = &new_clast_binary(clast_bin_cdiv, &r->expr, denominator)->expr;
694 else
695 e = &new_clast_binary(clast_bin_fdiv, &r->expr, denominator)->expr;
696 } else
697 e = &new_clast_binary(clast_bin_div, &r->expr, denominator)->expr;
698 }
699 else
700 e = &r->expr;
701 } else {
702 free_clast_reduction(r);
703 if (cloog_int_is_zero(numerator))
704 e = &new_clast_term(numerator, NULL)->expr;
705 else
706 { if (!cloog_int_is_one(denominator))
707 { if (!cloog_constraint_is_equality(constraint)) { /* useful? */
708 if (cloog_int_is_divisible_by(numerator, denominator)) {
709 cloog_int_divexact(temp, numerator, denominator);
710 e = &new_clast_term(temp, NULL)->expr;
711 }
712 else {
713 cloog_int_init(division);
714 cloog_int_tdiv_q(division, numerator, denominator);
715 if (cloog_int_is_neg(numerator)) {
716 if (cloog_int_is_pos(line[level])) {
717 /* nb<0 need max */
718 e = &new_clast_term(division, NULL)->expr;
719 } else {
720 /* nb<0 need min */
721 cloog_int_sub_ui(temp, division, 1);
722 e = &new_clast_term(temp, NULL)->expr;
723 }
724 }
725 else
726 { if (cloog_int_is_pos(line[level]))
727 { /* nb>0 need max */
728 cloog_int_add_ui(temp, division, 1);
729 e = &new_clast_term(temp, NULL)->expr;
730 }
731 else
732 /* nb>0 need min */
733 e = &new_clast_term(division, NULL)->expr;
734 }
735 cloog_int_clear(division);
736 }
737 }
738 else
739 e = &new_clast_binary(clast_bin_div,
740 &new_clast_term(numerator, NULL)->expr,
741 denominator)->expr;
742 }
743 else
744 e = &new_clast_term(numerator, NULL)->expr;
745 }
746 }
747 }
748
749 cloog_vec_free(line_vector);
750
751 cloog_int_clear(temp);
752 cloog_int_clear(numerator);
753 cloog_int_clear(denominator);
754
755 return e;
756 }
757
758
759 /* Temporary structure for communication between clast_minmax and
760 * its cloog_constraint_set_foreach_constraint callback functions.
761 */
762 struct clast_minmax_data {
763 int level;
764 int max;
765 int guard;
766 int lower_bound;
767 int no_earlier;
768 CloogInfos *infos;
769 int n;
770 struct clast_reduction *r;
771 };
772
773
774 /* Should constraint "c" be considered by clast_minmax?
775 *
776 * If d->no_earlier is set, then the constraint may not involve
777 * any earlier variables.
778 */
valid_bound(CloogConstraint * c,struct clast_minmax_data * d)779 static int valid_bound(CloogConstraint *c, struct clast_minmax_data *d)
780 {
781 int i;
782
783 if (d->max && !cloog_constraint_is_lower_bound(c, d->level - 1))
784 return 0;
785 if (!d->max && !cloog_constraint_is_upper_bound(c, d->level - 1))
786 return 0;
787 if (cloog_constraint_is_equality(c))
788 return 0;
789 if (d->guard && cloog_constraint_involves(c, d->guard - 1))
790 return 0;
791
792 if (d->no_earlier)
793 for (i = 0; i < d->level - 1; ++i)
794 if (cloog_constraint_involves(c, i))
795 return 0;
796
797 return 1;
798 }
799
800
801 /* Increment n for each bound that should be considered by clast_minmax.
802 */
count_bounds(CloogConstraint * c,void * user)803 static int count_bounds(CloogConstraint *c, void *user)
804 {
805 struct clast_minmax_data *d = (struct clast_minmax_data *) user;
806
807 if (!valid_bound(c, d))
808 return 0;
809
810 d->n++;
811
812 return 0;
813 }
814
815
816 /* Update the given lower bound based on stride information,
817 * for those cases where the stride offset is represented by
818 * a constraint.
819 * Note that cloog_loop_stride may have already performed a
820 * similar update of the lower bounds, but the updated lower
821 * bounds may have been eliminated because they are redundant
822 * by definition. On the other hand, performing the update
823 * on an already updated constraint is an identity operation
824 * and is therefore harmless.
825 */
update_lower_bound_c(CloogConstraint * c,int level,CloogStride * stride)826 static CloogConstraint *update_lower_bound_c(CloogConstraint *c, int level,
827 CloogStride *stride)
828 {
829 if (!stride->constraint)
830 return c;
831 return cloog_constraint_stride_lower_bound(c, level, stride);
832 }
833
834
835 /* Update the given lower bound based on stride information.
836 * If the stride offset is represented by a constraint,
837 * then we have already performed the update in update_lower_bound_c.
838 * Otherwise, the original lower bound is known to be a constant.
839 * If the bound has already been updated and it just happens
840 * to be a constant, then this function performs an identity
841 * operation on the constant.
842 */
update_lower_bound(struct clast_expr * expr,int level,CloogStride * stride)843 static void update_lower_bound(struct clast_expr *expr, int level,
844 CloogStride *stride)
845 {
846 struct clast_term *t;
847 if (stride->constraint)
848 return;
849 if (expr->type != clast_expr_term)
850 return;
851 t = (struct clast_term *)expr;
852 if (t->var)
853 return;
854 cloog_int_sub(t->val, t->val, stride->offset);
855 cloog_int_cdiv_q(t->val, t->val, stride->stride);
856 cloog_int_mul(t->val, t->val, stride->stride);
857 cloog_int_add(t->val, t->val, stride->offset);
858 }
859
860
861 /* Add all relevant bounds to r->elts and update lower bounds
862 * based on stride information.
863 */
collect_bounds(CloogConstraint * c,void * user)864 static int collect_bounds(CloogConstraint *c, void *user)
865 {
866 struct clast_minmax_data *d = (struct clast_minmax_data *) user;
867
868 if (!valid_bound(c, d))
869 return 0;
870
871 c = cloog_constraint_copy(c);
872
873 if (d->lower_bound && d->infos->stride[d->level - 1])
874 c = update_lower_bound_c(c, d->level, d->infos->stride[d->level - 1]);
875
876 d->r->elts[d->n] = clast_bound_from_constraint(c, d->level,
877 d->infos->names);
878 if (d->lower_bound && d->infos->stride[d->level - 1]) {
879 update_lower_bound(d->r->elts[d->n], d->level,
880 d->infos->stride[d->level - 1]);
881 }
882
883 cloog_constraint_release(c);
884
885 d->n++;
886
887 return 0;
888 }
889
890
891 /**
892 * clast_minmax function:
893 * This function returns a clast_expr containing the printing of a minimum or a
894 * maximum of the 'right parts' of all constraints according to an element.
895 * For instance consider the constraints:
896 * -3*i +2*j -M >= 0
897 * 2*i +j >= 0
898 * -i -j +2*M >= 0
899 * if we are looking for the minimum for the element j, the function should
900 * return 'max(ceild(3*i+M,2),-2*i)'.
901 * - constraints is the constraints,
902 * - level is the column number in domain of the element we want to use,
903 * - max is a boolean set to 1 if we are looking for a maximum, 0 for a minimum,
904 * - guard is set to 0 if there is no guard, and set to the level of the element
905 * with a guard otherwise (then the function gives the max or the min only
906 * for the constraint where the guarded coefficient is 0),
907 * - lower is set to 1 if the maximum is to be used a lower bound on a loop
908 * - no_earlier is set if no constraints should be used that involve
909 * earlier dimensions,
910 * - the infos structure gives the user some options about code printing,
911 * the number of parameters in domain (nb_par), and the arrays of iterator
912 * names and parameters (iters and params).
913 **
914 * - November 2nd 2001: first version.
915 */
clast_minmax(CloogConstraintSet * constraints,int level,int max,int guard,int lower_bound,int no_earlier,CloogInfos * infos)916 static struct clast_expr *clast_minmax(CloogConstraintSet *constraints,
917 int level, int max, int guard,
918 int lower_bound, int no_earlier,
919 CloogInfos *infos)
920 {
921 struct clast_minmax_data data = { level, max, guard, lower_bound,
922 no_earlier, infos };
923
924 data.n = 0;
925
926 cloog_constraint_set_foreach_constraint(constraints, count_bounds, &data);
927
928 if (!data.n)
929 return NULL;
930 data.r = new_clast_reduction(max ? clast_red_max : clast_red_min, data.n);
931
932 data.n = 0;
933 cloog_constraint_set_foreach_constraint(constraints, collect_bounds, &data);
934
935 clast_reduction_sort(data.r);
936 return &data.r->expr;
937 }
938
939
940 /**
941 * Insert modulo guards defined by existentially quantified dimensions,
942 * not involving the given level.
943 *
944 * This function is called from within insert_guard.
945 * Any constraint used in constructing a modulo guard is removed
946 * from the constraint set to avoid insert_guard
947 * adding a duplicate (pair of) constraint(s).
948 *
949 * Return the updated CloogConstraintSet.
950 */
insert_extra_modulo_guards(CloogConstraintSet * constraints,int level,struct clast_stmt *** next,CloogInfos * infos)951 static CloogConstraintSet *insert_extra_modulo_guards(
952 CloogConstraintSet *constraints, int level,
953 struct clast_stmt ***next, CloogInfos *infos)
954 {
955 int i;
956 int nb_iter;
957 int total_dim;
958 CloogConstraint *upper, *lower;
959
960 total_dim = cloog_constraint_set_total_dimension(constraints);
961 nb_iter = cloog_constraint_set_n_iterators(constraints,
962 infos->names->nb_parameters);
963
964 for (i = total_dim - infos->names->nb_parameters; i >= nb_iter + 1; i--) {
965 if (cloog_constraint_is_valid(upper =
966 cloog_constraint_set_defining_equality(constraints, i))) {
967 if (!level || (nb_iter < level) ||
968 !cloog_constraint_involves(upper, level-1)) {
969 insert_modulo_guard(upper,
970 cloog_constraint_invalid(), i, next, infos);
971 constraints = cloog_constraint_set_drop_constraint(constraints,
972 upper);
973 }
974 cloog_constraint_release(upper);
975 } else if (cloog_constraint_is_valid(upper =
976 cloog_constraint_set_defining_inequalities(constraints,
977 i, &lower, infos->names->nb_parameters))) {
978 if (!level || (nb_iter < level) ||
979 !cloog_constraint_involves(upper, level-1)) {
980 insert_modulo_guard(upper, lower, i, next, infos);
981 constraints = cloog_constraint_set_drop_constraint(constraints,
982 upper);
983 constraints = cloog_constraint_set_drop_constraint(constraints,
984 lower);
985 }
986 cloog_constraint_release(upper);
987 cloog_constraint_release(lower);
988 }
989 }
990
991 return constraints;
992 }
993
994
995 /* Temporary structure for communication between insert_guard and
996 * its cloog_constraint_set_foreach_constraint callback function.
997 */
998 struct clast_guard_data {
999 int level;
1000 CloogInfos *infos;
1001 int n;
1002 int i;
1003 int nb_iter;
1004 CloogConstraintSet *copy;
1005 struct clast_guard *g;
1006
1007 int min;
1008 int max;
1009 };
1010
1011
guard_count_bounds(CloogConstraint * c,void * user)1012 static int guard_count_bounds(CloogConstraint *c, void *user)
1013 {
1014 struct clast_guard_data *d = (struct clast_guard_data *) user;
1015
1016 d->n++;
1017
1018 return 0;
1019 }
1020
1021
1022 /* Insert a guard, if necesessary, for constraint j.
1023 *
1024 * If the constraint involves any earlier dimensions, then we have
1025 * already considered it during a previous iteration over the constraints.
1026 *
1027 * If we have already generated a min [max] for the current level d->i
1028 * and if the current constraint is an upper [lower] bound, then we
1029 * can skip the constraint as it will already have been used
1030 * in that previously generated min [max].
1031 */
insert_guard_constraint(CloogConstraint * j,void * user)1032 static int insert_guard_constraint(CloogConstraint *j, void *user)
1033 {
1034 int i;
1035 struct clast_guard_data *d = (struct clast_guard_data *) user;
1036 int minmax = -1;
1037 int individual_constraint;
1038 struct clast_expr *v;
1039 struct clast_term *t;
1040
1041 if (!cloog_constraint_involves(j, d->i - 1))
1042 return 0;
1043
1044 for (i = 0; i < d->i - 1; ++i)
1045 if (cloog_constraint_involves(j, i))
1046 return 0;
1047
1048 if (d->level && d->nb_iter >= d->level &&
1049 cloog_constraint_involves(j, d->level - 1))
1050 return 0;
1051
1052 individual_constraint = !d->level || cloog_constraint_is_equality(j);
1053 if (!individual_constraint) {
1054 if (d->max && cloog_constraint_is_lower_bound(j, d->i - 1))
1055 return 0;
1056 if (d->min && cloog_constraint_is_upper_bound(j, d->i - 1))
1057 return 0;
1058 }
1059
1060 v = cloog_constraint_variable_expr(j, d->i, d->infos->names);
1061 d->g->eq[d->n].LHS = &(t = new_clast_term(d->infos->state->one, v))->expr;
1062 if (individual_constraint) {
1063 /* put the "denominator" in the LHS */
1064 cloog_constraint_coefficient_get(j, d->i - 1, &t->val);
1065 cloog_constraint_coefficient_set(j, d->i - 1, d->infos->state->one);
1066 if (cloog_int_is_neg(t->val)) {
1067 cloog_int_neg(t->val, t->val);
1068 cloog_constraint_coefficient_set(j, d->i - 1, d->infos->state->negone);
1069 }
1070 if (d->level || cloog_constraint_is_equality(j))
1071 d->g->eq[d->n].sign = 0;
1072 else if (cloog_constraint_is_lower_bound(j, d->i - 1))
1073 d->g->eq[d->n].sign = 1;
1074 else
1075 d->g->eq[d->n].sign = -1;
1076 d->g->eq[d->n].RHS = clast_bound_from_constraint(j, d->i, d->infos->names);
1077 } else {
1078 int guarded;
1079
1080 if (cloog_constraint_is_lower_bound(j, d->i - 1)) {
1081 minmax = 1;
1082 d->max = 1;
1083 d->g->eq[d->n].sign = 1;
1084 } else {
1085 minmax = 0;
1086 d->min = 1;
1087 d->g->eq[d->n].sign = -1;
1088 }
1089
1090 guarded = (d->nb_iter >= d->level) ? d->level : 0 ;
1091 d->g->eq[d->n].RHS = clast_minmax(d->copy, d->i, minmax, guarded, 0, 1,
1092 d->infos);
1093 }
1094 d->n++;
1095
1096 return 0;
1097 }
1098
1099
1100 /**
1101 * insert_guard function:
1102 * This function inserts a guard in the clast.
1103 * A guard on an element (level) is :
1104 * -> the conjunction of all the existing constraints where the coefficient of
1105 * this element is 0 if the element is an iterator,
1106 * -> the conjunction of all the existing constraints if the element isn't an
1107 * iterator.
1108 * For instance, considering these constraints and the element j:
1109 * -3*i +2*j -M >= 0
1110 * 2*i +M >= 0
1111 * this function should return 'if (2*i+M>=0) {'.
1112 * - matrix is the polyhedron containing all the constraints,
1113 * - level is the column number of the element in matrix we want to use,
1114 * - the infos structure gives the user some options about code printing,
1115 * the number of parameters in matrix (nb_par), and the arrays of iterator
1116 * names and parameters (iters and params).
1117 **
1118 * - November 3rd 2001: first version.
1119 * - November 14th 2001: a lot of 'purifications'.
1120 * - July 31th 2002: (debug) some guard parts are no more redundants.
1121 * - August 12th 2002: polyhedra union ('or' conditions) are now supported.
1122 * - October 27th 2005: polyhedra union ('or' conditions) are no more supported
1123 * (the need came from loop_simplify that may result in
1124 * domain unions, now it should be fixed directly in
1125 * cloog_loop_simplify).
1126 */
insert_guard(CloogConstraintSet * constraints,int level,struct clast_stmt *** next,CloogInfos * infos)1127 static void insert_guard(CloogConstraintSet *constraints, int level,
1128 struct clast_stmt ***next, CloogInfos *infos)
1129 {
1130 int total_dim;
1131 struct clast_guard_data data = { level, infos, 0 };
1132
1133 if (!constraints)
1134 return;
1135
1136 data.copy = cloog_constraint_set_copy(constraints);
1137
1138 data.copy = insert_extra_modulo_guards(data.copy, level, next, infos);
1139
1140 cloog_constraint_set_foreach_constraint(constraints,
1141 guard_count_bounds, &data);
1142
1143 data.g = new_clast_guard(data.n);
1144 data.n = 0;
1145
1146 /* Well, it looks complicated because I wanted to have a particular, more
1147 * readable, ordering, obviously this function may be far much simpler !
1148 */
1149 data.nb_iter = cloog_constraint_set_n_iterators(constraints,
1150 infos->names->nb_parameters);
1151
1152 /* We search for guard parts. */
1153 total_dim = cloog_constraint_set_total_dimension(constraints);
1154 for (data.i = 1; data.i <= total_dim; data.i++) {
1155 data.min = 0;
1156 data.max = 0;
1157 cloog_constraint_set_foreach_constraint(data.copy,
1158 insert_guard_constraint, &data);
1159 }
1160
1161 cloog_constraint_set_free(data.copy);
1162
1163 data.g->n = data.n;
1164 if (data.n) {
1165 clast_guard_sort(data.g);
1166 **next = &data.g->stmt;
1167 *next = &data.g->then;
1168 } else
1169 free_clast_stmt(&data.g->stmt);
1170 }
1171
1172 /**
1173 * Check if the constant "cst" satisfies the modulo guard that
1174 * would be introduced by insert_computed_modulo_guard.
1175 * The constant is assumed to have been reduced prior to calling
1176 * this function.
1177 */
constant_modulo_guard_is_satisfied(CloogConstraint * lower,cloog_int_t bound,cloog_int_t cst)1178 static int constant_modulo_guard_is_satisfied(CloogConstraint *lower,
1179 cloog_int_t bound, cloog_int_t cst)
1180 {
1181 if (cloog_constraint_is_valid(lower))
1182 return cloog_int_le(cst, bound);
1183 else
1184 return cloog_int_is_zero(cst);
1185 }
1186
1187 /**
1188 * Insert a modulo guard "r % mod == 0" or "r % mod <= bound",
1189 * depending on whether lower represents a valid constraint.
1190 */
insert_computed_modulo_guard(struct clast_reduction * r,CloogConstraint * lower,cloog_int_t mod,cloog_int_t bound,struct clast_stmt *** next)1191 static void insert_computed_modulo_guard(struct clast_reduction *r,
1192 CloogConstraint *lower, cloog_int_t mod, cloog_int_t bound,
1193 struct clast_stmt ***next)
1194 {
1195 struct clast_expr *e;
1196 struct clast_guard *g;
1197
1198 e = &new_clast_binary(clast_bin_mod, &r->expr, mod)->expr;
1199 g = new_clast_guard(1);
1200 if (!cloog_constraint_is_valid(lower)) {
1201 g->eq[0].LHS = e;
1202 cloog_int_set_si(bound, 0);
1203 g->eq[0].RHS = &new_clast_term(bound, NULL)->expr;
1204 g->eq[0].sign = 0;
1205 } else {
1206 g->eq[0].LHS = e;
1207 g->eq[0].RHS = &new_clast_term(bound, NULL)->expr;
1208 g->eq[0].sign = -1;
1209 }
1210
1211 **next = &g->stmt;
1212 *next = &g->then;
1213 }
1214
1215
1216 /* Try and eliminate coefficients from a modulo constraint based on
1217 * stride information of an earlier level.
1218 * The modulo of the constraint being constructed is "m".
1219 * The stride information at level "level" is given by "stride"
1220 * and indicated that the iterator i at level "level" is equal to
1221 * some expression modulo stride->stride.
1222 * If stride->stride is a multiple of "m' then i is also equal to
1223 * the expression modulo m and so we can eliminate the coefficient of i.
1224 *
1225 * If stride->constraint is NULL, then i has a constant value modulo m, stored
1226 * stride->offset. We simply multiply this constant with the coefficient
1227 * of i and add the result to the constant term, reducing it modulo m.
1228 *
1229 * If stride->constraint is not NULL, then it is a constraint of the form
1230 *
1231 * e + k i = s a
1232 *
1233 * with s equal to stride->stride, e an expression in terms of the
1234 * parameters and earlier iterators and a some arbitrary expression
1235 * in terms of existentially quantified variables.
1236 * stride->factor is a value f such that f * k = -1 mod s.
1237 * Adding stride->constraint f * c times to the current modulo constraint,
1238 * with c the coefficient of i eliminates i in favor of parameters and
1239 * earlier variables.
1240 */
eliminate_using_stride_constraint(cloog_int_t * line,int len,int nb_iter,CloogStride * stride,int level,cloog_int_t m)1241 static void eliminate_using_stride_constraint(cloog_int_t *line, int len,
1242 int nb_iter, CloogStride *stride, int level, cloog_int_t m)
1243 {
1244 if (!stride)
1245 return;
1246 if (!cloog_int_is_divisible_by(stride->stride, m))
1247 return;
1248
1249 if (stride->constraint) {
1250 int i, s_len;
1251 cloog_int_t t, v;
1252
1253 cloog_int_init(t);
1254 cloog_int_init(v);
1255 cloog_int_mul(t, line[level], stride->factor);
1256 for (i = 1; i < level; ++i) {
1257 cloog_constraint_coefficient_get(stride->constraint,
1258 i - 1, &v);
1259 cloog_int_addmul(line[i], t, v);
1260 cloog_int_fdiv_r(line[i], line[i], m);
1261 }
1262 s_len = cloog_constraint_total_dimension(stride->constraint)+2;
1263 for (i = nb_iter + 1; i <= len - 2; ++i) {
1264 cloog_constraint_coefficient_get(stride->constraint,
1265 i - (len - s_len) - 1, &v);
1266 cloog_int_addmul(line[i], t, v);
1267 cloog_int_fdiv_r(line[i], line[i], m);
1268 }
1269 cloog_constraint_constant_get(stride->constraint, &v);
1270 cloog_int_addmul(line[len - 1], t, v);
1271 cloog_int_fdiv_r(line[len - 1], line[len - 1], m);
1272 cloog_int_clear(v);
1273 cloog_int_clear(t);
1274 } else {
1275 cloog_int_addmul(line[len - 1], line[level], stride->offset);
1276 cloog_int_fdiv_r(line[len - 1], line[len - 1], m);
1277 }
1278
1279 cloog_int_set_si(line[level], 0);
1280 }
1281
1282
1283 /* Temporary structure for communication between insert_modulo_guard and
1284 * its cloog_constraint_set_foreach_constraint callback function.
1285 */
1286 struct clast_modulo_guard_data {
1287 CloogConstraint *lower;
1288 int level;
1289 struct clast_stmt ***next;
1290 CloogInfos *infos;
1291 int empty;
1292 cloog_int_t val, bound;
1293 };
1294
1295
1296 /* Insert a modulo guard for constraint c.
1297 * The constraint may be either an equality or an inequality.
1298 * Since this function returns -1, it is only called on a single constraint.
1299 * In case of an inequality, the constraint is usually an upper bound
1300 * on d->level. However, if this variable is an existentially
1301 * quantified variable, the upper bound constraint may get removed
1302 * as trivially holding and then this function is called with
1303 * a lower bound instead. In this case, we need to adjust the constraint
1304 * based on the sum of the constant terms of the lower and upper bound
1305 * stored in d->bound.
1306 */
insert_modulo_guard_constraint(CloogConstraint * c,void * user)1307 static int insert_modulo_guard_constraint(CloogConstraint *c, void *user)
1308 {
1309 struct clast_modulo_guard_data *d = (struct clast_modulo_guard_data *) user;
1310 int level = d->level;
1311 CloogInfos *infos = d->infos;
1312 int i, nb_elts = 0, len, nb_iter, nb_par;
1313 int constant;
1314 struct cloog_vec *line_vector;
1315 cloog_int_t *line;
1316
1317 len = cloog_constraint_total_dimension(c) + 2;
1318 nb_par = infos->names->nb_parameters;
1319 nb_iter = len - 2 - nb_par;
1320
1321 line_vector = cloog_vec_alloc(len);
1322 line = line_vector->p;
1323 cloog_constraint_copy_coefficients(c, line + 1);
1324
1325 if (cloog_int_is_pos(line[level])) {
1326 cloog_seq_neg(line + 1, line + 1, len - 1);
1327 if (!cloog_constraint_is_equality(c))
1328 cloog_int_add(line[len - 1], line[len - 1], d->bound);
1329 }
1330 cloog_int_neg(line[level], line[level]);
1331 assert(cloog_int_is_pos(line[level]));
1332
1333 nb_elts = 0;
1334 for (i = 1; i <= len-1; ++i) {
1335 if (i == level)
1336 continue;
1337 cloog_int_fdiv_r(line[i], line[i], line[level]);
1338 if (cloog_int_is_zero(line[i]))
1339 continue;
1340 if (i == len-1)
1341 continue;
1342
1343 nb_elts++;
1344 }
1345
1346 if (nb_elts || !cloog_int_is_zero(line[len-1])) {
1347 struct clast_reduction *r;
1348 const char *name;
1349
1350 r = new_clast_reduction(clast_red_sum, nb_elts + 1);
1351 nb_elts = 0;
1352
1353 /* First, the modulo guard : the iterators... */
1354 i = level - 1;
1355 if (i > infos->stride_level)
1356 i = infos->stride_level;
1357 for (; i >= 1; --i)
1358 eliminate_using_stride_constraint(line, len, nb_iter,
1359 infos->stride[i - 1], i, line[level]);
1360 for (i=1;i<=nb_iter;i++) {
1361 if (i == level || cloog_int_is_zero(line[i]))
1362 continue;
1363
1364 name = cloog_names_name_at_level(infos->names, i);
1365
1366 r->elts[nb_elts++] = &new_clast_term(line[i],
1367 &new_clast_name(name)->expr)->expr;
1368 }
1369
1370 /* ...the parameters... */
1371 for (i=nb_iter+1;i<=len-2;i++) {
1372 if (cloog_int_is_zero(line[i]))
1373 continue;
1374
1375 name = infos->names->parameters[i-nb_iter-1] ;
1376 r->elts[nb_elts++] = &new_clast_term(line[i],
1377 &new_clast_name(name)->expr)->expr;
1378 }
1379
1380 constant = nb_elts == 0;
1381 /* ...the constant. */
1382 if (!cloog_int_is_zero(line[len-1]))
1383 r->elts[nb_elts++] = &new_clast_term(line[len-1], NULL)->expr;
1384
1385 /* our initial computation may have been an overestimate */
1386 r->n = nb_elts;
1387
1388 if (constant) {
1389 d->empty = !constant_modulo_guard_is_satisfied(d->lower, d->bound,
1390 line[len - 1]);
1391 free_clast_reduction(r);
1392 } else
1393 insert_computed_modulo_guard(r, d->lower, line[level], d->bound,
1394 d->next);
1395 }
1396
1397 cloog_vec_free(line_vector);
1398
1399 return -1;
1400 }
1401
1402
1403 /**
1404 * insert_modulo_guard:
1405 * This function inserts a modulo guard corresponding to an equality
1406 * or a pair of inequalities.
1407 * Returns 0 if the modulo guard is discovered to be unsatisfiable.
1408 *
1409 * See insert_equation.
1410 * - matrix is the polyhedron containing all the constraints,
1411 * - upper and lower are the line numbers of the constraint in matrix
1412 * we want to print; in particular, if we want to print an equality,
1413 * then lower == -1 and upper is the row of the equality; if we want
1414 * to print an inequality, then upper is the row of the upper bound
1415 * and lower in the row of the lower bound
1416 * - level is the column number of the element in matrix we want to use,
1417 * - the infos structure gives the user some options about code printing,
1418 * the number of parameters in matrix (nb_par), and the arrays of iterator
1419 * names and parameters (iters and params).
1420 */
insert_modulo_guard(CloogConstraint * upper,CloogConstraint * lower,int level,struct clast_stmt *** next,CloogInfos * infos)1421 static int insert_modulo_guard(CloogConstraint *upper,
1422 CloogConstraint *lower, int level,
1423 struct clast_stmt ***next, CloogInfos *infos)
1424 {
1425 int nb_par;
1426 CloogConstraintSet *set;
1427 struct clast_modulo_guard_data data = { lower, level, next, infos, 0 };
1428
1429 cloog_int_init(data.val);
1430 cloog_constraint_coefficient_get(upper, level-1, &data.val);
1431 if (cloog_int_is_one(data.val) || cloog_int_is_neg_one(data.val)) {
1432 cloog_int_clear(data.val);
1433 return 1;
1434 }
1435
1436 nb_par = infos->names->nb_parameters;
1437
1438 cloog_int_init(data.bound);
1439 /* Check if would be emitting the redundant constraint mod(e,m) <= m-1 */
1440 if (cloog_constraint_is_valid(lower)) {
1441 cloog_constraint_constant_get(upper, &data.val);
1442 cloog_constraint_constant_get(lower, &data.bound);
1443 cloog_int_add(data.bound, data.val, data.bound);
1444 cloog_constraint_coefficient_get(lower, level-1, &data.val);
1445 cloog_int_sub_ui(data.val, data.val, 1);
1446 if (cloog_int_eq(data.val, data.bound)) {
1447 cloog_int_clear(data.val);
1448 cloog_int_clear(data.bound);
1449 return 1;
1450 }
1451 }
1452
1453 if (cloog_constraint_needs_reduction(upper, level)) {
1454 set = cloog_constraint_set_for_reduction(upper, lower);
1455 set = cloog_constraint_set_reduce(set, level, infos->equal,
1456 nb_par, &data.bound);
1457 cloog_constraint_set_foreach_constraint(set,
1458 insert_modulo_guard_constraint, &data);
1459 cloog_constraint_set_free(set);
1460 } else
1461 insert_modulo_guard_constraint(upper, &data);
1462
1463 cloog_int_clear(data.val);
1464 cloog_int_clear(data.bound);
1465
1466 return !data.empty;
1467 }
1468
1469
1470 /**
1471 * We found an equality or a pair of inequalities identifying
1472 * a loop with a single iteration, but the user wants us to generate
1473 * a loop anyway, so we do it here.
1474 */
insert_equation_as_loop(CloogDomain * domain,CloogConstraint * upper,CloogConstraint * lower,int level,struct clast_stmt *** next,CloogInfos * infos)1475 static int insert_equation_as_loop(CloogDomain *domain, CloogConstraint *upper,
1476 CloogConstraint *lower, int level, struct clast_stmt ***next,
1477 CloogInfos *infos)
1478 {
1479 const char *iterator = cloog_names_name_at_level(infos->names, level);
1480 struct clast_expr *e1, *e2;
1481 struct clast_for *f;
1482
1483 e2 = clast_bound_from_constraint(upper, level, infos->names);
1484 if (!cloog_constraint_is_valid(lower))
1485 e1 = clast_expr_copy(e2);
1486 else
1487 e1 = clast_bound_from_constraint(lower, level, infos->names);
1488
1489 f = new_clast_for(domain, iterator, e1, e2, infos->stride[level-1]);
1490 **next = &f->stmt;
1491 *next = &f->body;
1492
1493 cloog_constraint_release(lower);
1494 cloog_constraint_release(upper);
1495 return 1;
1496 }
1497
1498
1499 /**
1500 * insert_equation function:
1501 * This function inserts an equality
1502 * constraint according to an element in the clast.
1503 * Returns 1 if the calling function should recurse into inner loops.
1504 *
1505 * An equality can be preceded by a 'modulo guard'.
1506 * For instance, consider the constraint i -2*j = 0 and the
1507 * element j: pprint_equality should return 'if(i%2==0) { j = i/2 ;'.
1508 * - matrix is the polyhedron containing all the constraints,
1509 * - num is the line number of the constraint in matrix we want to print,
1510 * - level is the column number of the element in matrix we want to use,
1511 * - the infos structure gives the user some options about code printing,
1512 * the number of parameters in matrix (nb_par), and the arrays of iterator
1513 * names and parameters (iters and params).
1514 **
1515 * - November 13th 2001: first version.
1516 * - June 26th 2003: simplification of the modulo guards (remove parts such as
1517 * modulo is 0, compare vivien or vivien2 with a previous
1518 * version for an idea).
1519 * - June 29th 2003: non-unit strides support.
1520 * - July 14th 2003: (debug) no more print the constant in the modulo guard when
1521 * it was previously included in a stride calculation.
1522 */
insert_equation(CloogDomain * domain,CloogConstraint * upper,CloogConstraint * lower,int level,struct clast_stmt *** next,CloogInfos * infos)1523 static int insert_equation(CloogDomain *domain, CloogConstraint *upper,
1524 CloogConstraint *lower, int level, struct clast_stmt
1525 ***next, CloogInfos *infos)
1526 {
1527 struct clast_expr *e;
1528 struct clast_assignment *ass;
1529
1530 if (!infos->options->otl)
1531 return insert_equation_as_loop(domain, upper, lower, level, next, infos);
1532
1533 if (!insert_modulo_guard(upper, lower, level, next, infos)) {
1534 cloog_constraint_release(lower);
1535 cloog_constraint_release(upper);
1536
1537 return 0;
1538 }
1539
1540 if (cloog_constraint_is_valid(lower) ||
1541 !clast_equal_add(infos->equal, NULL, level, upper, infos))
1542 { /* Finally, the equality. */
1543
1544 /* If we have to make a block by dimension, we start the block. Function
1545 * pprint knows if there is an equality, if this is the case, it checks
1546 * for the same following condition to close the brace.
1547 */
1548 if (infos->options->block) {
1549 struct clast_block *b = new_clast_block();
1550 **next = &b->stmt;
1551 *next = &b->body;
1552 }
1553
1554 e = clast_bound_from_constraint(upper, level, infos->names);
1555 ass = new_clast_assignment(cloog_names_name_at_level(infos->names, level), e);
1556
1557 **next = &ass->stmt;
1558 *next = &(**next)->next;
1559 }
1560
1561 cloog_constraint_release(lower);
1562 cloog_constraint_release(upper);
1563
1564 return 1;
1565 }
1566
1567
1568 /**
1569 * Insert a loop that is executed exactly once as an assignment.
1570 * In particular, the loop
1571 *
1572 * for (i = e; i <= e; ++i) {
1573 * S;
1574 * }
1575 *
1576 * is generated as
1577 *
1578 * i = e;
1579 * S;
1580 *
1581 */
insert_otl_for(CloogConstraintSet * constraints,int level,struct clast_expr * e,struct clast_stmt *** next,CloogInfos * infos)1582 static void insert_otl_for(CloogConstraintSet *constraints, int level,
1583 struct clast_expr *e, struct clast_stmt ***next, CloogInfos *infos)
1584 {
1585 const char *iterator;
1586
1587 iterator = cloog_names_name_at_level(infos->names, level);
1588
1589 if (!clast_equal_add(infos->equal, constraints, level,
1590 cloog_constraint_invalid(), infos)) {
1591 struct clast_assignment *ass;
1592 if (infos->options->block) {
1593 struct clast_block *b = new_clast_block();
1594 **next = &b->stmt;
1595 *next = &b->body;
1596 }
1597 ass = new_clast_assignment(iterator, e);
1598 **next = &ass->stmt;
1599 *next = &(**next)->next;
1600 } else {
1601 free_clast_expr(e);
1602 }
1603 }
1604
1605
1606 /**
1607 * Insert a loop that is executed at most once as an assignment followed
1608 * by a guard. In particular, the loop
1609 *
1610 * for (i = e1; i <= e2; ++i) {
1611 * S;
1612 * }
1613 *
1614 * is generated as
1615 *
1616 * i = e1;
1617 * if (i <= e2) {
1618 * S;
1619 * }
1620 *
1621 */
insert_guarded_otl_for(CloogConstraintSet * constraints,int level,struct clast_expr * e1,struct clast_expr * e2,struct clast_stmt *** next,CloogInfos * infos)1622 static void insert_guarded_otl_for(CloogConstraintSet *constraints, int level,
1623 struct clast_expr *e1, struct clast_expr *e2,
1624 struct clast_stmt ***next, CloogInfos *infos)
1625 {
1626 const char *iterator;
1627 struct clast_assignment *ass;
1628 struct clast_guard *guard;
1629
1630 iterator = cloog_names_name_at_level(infos->names, level);
1631
1632 if (infos->options->block) {
1633 struct clast_block *b = new_clast_block();
1634 **next = &b->stmt;
1635 *next = &b->body;
1636 }
1637 ass = new_clast_assignment(iterator, e1);
1638 **next = &ass->stmt;
1639 *next = &(**next)->next;
1640
1641 guard = new_clast_guard(1);
1642 guard->eq[0].sign = -1;
1643 guard->eq[0].LHS = &new_clast_term(infos->state->one,
1644 &new_clast_name(iterator)->expr)->expr;
1645 guard->eq[0].RHS = e2;
1646
1647 **next = &guard->stmt;
1648 *next = &guard->then;
1649 }
1650
1651
1652 /**
1653 * insert_for function:
1654 * This function inserts a for loop in the clast.
1655 * Returns 1 if the calling function should recurse into inner loops.
1656 *
1657 * A loop header according to an element is the conjunction of a minimum and a
1658 * maximum on a given element (they give the loop bounds).
1659 * For instance, considering these constraints and the element j:
1660 * i + j -9*M >= 0
1661 * -j +5*M >= 0
1662 * j -4*M >= 0
1663 * this function should return 'for (j=max(-i+9*M,4*M),j<=5*M;j++) {'.
1664 * - constraints contains all constraints,
1665 * - level is the column number of the element in matrix we want to use,
1666 * - otl is set if the loop is executed at most once,
1667 * - the infos structure gives the user some options about code printing,
1668 * the number of parameters in matrix (nb_par), and the arrays of iterator
1669 * names and parameters (iters and params).
1670 */
insert_for(CloogDomain * domain,CloogConstraintSet * constraints,int level,int otl,struct clast_stmt *** next,CloogInfos * infos)1671 static int insert_for(CloogDomain *domain, CloogConstraintSet *constraints,
1672 int level, int otl, struct clast_stmt ***next,
1673 CloogInfos *infos)
1674 {
1675 const char *iterator;
1676 struct clast_expr *e1;
1677 struct clast_expr *e2;
1678
1679 e1 = clast_minmax(constraints, level, 1, 0, 1, 0, infos);
1680 e2 = clast_minmax(constraints, level, 0, 0, 0, 0, infos);
1681
1682 if (clast_expr_is_bigger_constant(e1, e2)) {
1683 free_clast_expr(e1);
1684 free_clast_expr(e2);
1685 return 0;
1686 }
1687
1688 /* If min and max are not equal there is a 'for' else, there is a '='.
1689 * In the special case e1 = e2 = NULL, this is an infinite loop
1690 * so this is not a '='.
1691 */
1692 if (e1 && e2 && infos->options->otl && clast_expr_equal(e1, e2)) {
1693 free_clast_expr(e2);
1694 insert_otl_for(constraints, level, e1, next, infos);
1695 } else if (otl) {
1696 insert_guarded_otl_for(constraints, level, e1, e2, next, infos);
1697 } else {
1698 struct clast_for *f;
1699 iterator = cloog_names_name_at_level(infos->names, level);
1700
1701 f = new_clast_for(domain, iterator, e1, e2, infos->stride[level-1]);
1702 **next = &f->stmt;
1703 *next = &f->body;
1704 }
1705
1706 return 1;
1707 }
1708
1709
1710 /**
1711 * insert_block function:
1712 * This function inserts a statement block.
1713 * - block is the statement block,
1714 * - level is the number of loops enclosing the statement,
1715 * - the infos structure gives the user some options about code printing,
1716 * the number of parameters in domain (nb_par), and the arrays of iterator
1717 * names and parameters (iters and params).
1718 **
1719 * - September 21th 2003: first version (pick from pprint function).
1720 */
insert_block(CloogDomain * domain,CloogBlock * block,int level,struct clast_stmt *** next,CloogInfos * infos)1721 static void insert_block(CloogDomain *domain, CloogBlock *block, int level,
1722 struct clast_stmt ***next, CloogInfos *infos)
1723 {
1724 CloogStatement * statement ;
1725 struct clast_stmt *subs;
1726
1727 if (!block)
1728 return;
1729
1730 for (statement = block->statement; statement; statement = statement->next) {
1731 CloogStatement *s_next = statement->next;
1732
1733 subs = clast_equal(level,infos);
1734
1735 statement->next = NULL;
1736 **next = &new_clast_user_stmt(domain, statement, subs)->stmt;
1737 statement->next = s_next;
1738 *next = &(**next)->next;
1739 }
1740 }
1741
1742
1743 /**
1744 * insert_loop function:
1745 * This function converts the content of a CloogLoop structure (loop) into a
1746 * clast_stmt (inserted at **next).
1747 * The iterator (level) of
1748 * the current loop is given by 'level': this is the column number of the
1749 * domain corresponding to the current loop iterator. The data of a loop are
1750 * written in this order:
1751 * 1. The guard of the loop, i.e. each constraint in the domain that does not
1752 * depend on the iterator (when the entry in the column 'level' is 0).
1753 * 2. The iteration domain of the iterator, given by the constraints in the
1754 * domain depending on the iterator, i.e.:
1755 * * an equality if the iterator has only one value (possibly preceded by
1756 * a guard verifying if this value is integral), *OR*
1757 * * a loop from the minimum possible value of the iterator to the maximum
1758 * possible value.
1759 * 3. The included statement block.
1760 * 4. The inner loops (recursive call).
1761 * 5. The following loops (recursive call).
1762 * - level is the recursion level or the iteration level that we are printing,
1763 * - the infos structure gives the user some options about code printing,
1764 * the number of parameters in domain (nb_par), and the arrays of iterator
1765 * names and parameters (iters and params).
1766 **
1767 * - November 2nd 2001: first version.
1768 * - March 6th 2003: infinite domain support.
1769 * - April 19th 2003: (debug) NULL loop support.
1770 * - June 29th 2003: non-unit strides support.
1771 * - April 28th 2005: (debug) level is level+equality when print statement!
1772 * - June 16th 2005: (debug) the N. Vasilache normalization step has been
1773 * added to avoid iteration duplication (see DaeGon Kim
1774 * bug in cloog_program_generate). Try vasilache.cloog
1775 * with and without the call to cloog_polylib_matrix_normalize,
1776 * using -f 8 -l 9 options for an idea.
1777 * - September 15th 2005: (debug) don't close equality braces when unnecessary.
1778 * - October 16th 2005: (debug) scalar value is saved for next loops.
1779 */
insert_loop(CloogLoop * loop,int level,struct clast_stmt *** next,CloogInfos * infos)1780 static void insert_loop(CloogLoop * loop, int level,
1781 struct clast_stmt ***next, CloogInfos *infos)
1782 {
1783 int equality = 0;
1784 CloogConstraintSet *constraints, *temp;
1785 struct clast_stmt **top = *next;
1786 CloogConstraint *i, *j;
1787 int empty_loop = 0;
1788
1789 /* It can happen that loop be NULL when an input polyhedron is empty. */
1790 if (loop == NULL)
1791 return;
1792
1793 /* The constraints do not always have a shape that allows us to generate code from it,
1794 * thus we normalize it, we also simplify it with the equalities.
1795 */
1796 temp = cloog_domain_constraints(loop->domain);
1797 cloog_constraint_set_normalize(temp,level);
1798 constraints = cloog_constraint_set_simplify(temp,infos->equal,level,
1799 infos->names->nb_parameters);
1800 cloog_constraint_set_free(temp);
1801 if (level) {
1802 infos->stride[level - 1] = loop->stride;
1803 infos->stride_level++;
1804 }
1805
1806 /* First of all we have to print the guard. */
1807 insert_guard(constraints,level, next, infos);
1808
1809 if (level && cloog_constraint_set_contains_level(constraints, level,
1810 infos->names->nb_parameters)) {
1811 /* We scan all the constraints to know in which case we are :
1812 * [[if] equation] or [for].
1813 */
1814 if (cloog_constraint_is_valid(i =
1815 cloog_constraint_set_defining_equality(constraints, level))) {
1816 empty_loop = !insert_equation(loop->unsimplified, i,
1817 cloog_constraint_invalid(), level, next,
1818 infos);
1819 equality = 1 ;
1820 } else if (cloog_constraint_is_valid(i =
1821 cloog_constraint_set_defining_inequalities(constraints,
1822 level, &j, infos->names->nb_parameters))) {
1823 empty_loop = !insert_equation(loop->unsimplified, i, j, level, next,
1824 infos);
1825 } else
1826 empty_loop = !insert_for(loop->unsimplified, constraints, level,
1827 loop->otl, next, infos);
1828 }
1829
1830 if (!empty_loop) {
1831 /* Finally, if there is an included statement block, print it. */
1832 insert_block(loop->unsimplified, loop->block, level+equality, next, infos);
1833
1834 /* Go to the next level. */
1835 if (loop->inner != NULL)
1836 insert_loop(loop->inner, level+1, next, infos);
1837 }
1838
1839 if (level) {
1840 cloog_equal_del(infos->equal,level);
1841 infos->stride_level--;
1842 }
1843 cloog_constraint_set_free(constraints);
1844
1845 /* Go to the next loop on the same level. */
1846 while (*top)
1847 top = &(*top)->next;
1848 if (loop->next != NULL)
1849 insert_loop(loop->next, level, &top,infos);
1850 }
1851
1852
cloog_clast_create(CloogProgram * program,CloogOptions * options)1853 struct clast_stmt *cloog_clast_create(CloogProgram *program,
1854 CloogOptions *options)
1855 {
1856 CloogInfos *infos = ALLOC(CloogInfos);
1857 int nb_levels;
1858 struct clast_stmt *root = &new_clast_root(program->names)->stmt;
1859 struct clast_stmt **next = &root->next;
1860
1861 infos->state = options->state;
1862 infos->names = program->names;
1863 infos->options = options;
1864 infos->scaldims = program->scaldims;
1865 infos->nb_scattdims = program->nb_scattdims;
1866
1867 /* Allocation for the array of strides, there is a +1 since the statement can
1868 * be included inside an external loop without iteration domain.
1869 */
1870 nb_levels = program->names->nb_scattering+program->names->nb_iterators+1;
1871 infos->stride = ALLOCN(CloogStride *, nb_levels);
1872 infos->stride_level = 0;
1873
1874 infos->equal = cloog_equal_alloc(nb_levels,
1875 nb_levels, program->names->nb_parameters);
1876
1877 insert_loop(program->loop, 0, &next, infos);
1878
1879 cloog_equal_free(infos->equal);
1880
1881 free(infos->stride);
1882 free(infos);
1883
1884 return root;
1885 }
1886
1887
cloog_clast_create_from_input(CloogInput * input,CloogOptions * options)1888 struct clast_stmt *cloog_clast_create_from_input(CloogInput *input,
1889 CloogOptions *options)
1890 {
1891 CloogProgram *program;
1892 struct clast_stmt *root;
1893
1894 program = cloog_program_alloc(input->context, input->ud, options);
1895 free(input);
1896
1897 program = cloog_program_generate(program, options);
1898
1899 root = cloog_clast_create(program, options);
1900 cloog_program_free(program);
1901
1902 return root;
1903 }
1904
1905 /* Adds to the list if not already in it */
add_if_new(void ** list,int num,void * new,int size)1906 static int add_if_new(void **list, int num, void *new, int size)
1907 {
1908 int i;
1909
1910 for (i=0; i<num; i++) {
1911 if (!memcmp((*list) + i*size, new, size)) break;
1912 }
1913
1914 if (i==num) {
1915 *list = realloc(*list, (num+1)*size);
1916 memcpy(*list + num*size, new, size);
1917 return 1;
1918 }
1919
1920 return 0;
1921 }
1922
1923
1924 /* Concatenates all elements of list2 that are not in list1;
1925 * Returns the new size of the list */
concat_if_new(void ** list1,int num1,void * list2,int num2,int size)1926 int concat_if_new(void **list1, int num1, void *list2, int num2, int size)
1927 {
1928 int i, ret;
1929
1930 for (i=0; i<num2; i++) {
1931 ret = add_if_new(list1, num1, (char *)list2 + i*size, size);
1932 if (ret) num1++;
1933 }
1934
1935 return num1;
1936 }
1937
1938 /* Compares list1 to list2
1939 * Returns 0 if both have the same elements; returns -1 if all elements of
1940 * list1 are strictly contained in list2; 1 otherwise
1941 */
list_compare(const int * list1,int num1,const int * list2,int num2)1942 int list_compare(const int *list1, int num1, const int *list2, int num2)
1943 {
1944 int i, j;
1945
1946 for (i=0; i<num1; i++) {
1947 for (j=0; j<num2; j++) {
1948 if (list1[i] == list2[j]) break;
1949 }
1950 if (j==num2) break;
1951 }
1952 if (i==num1) {
1953 if (num1 == num2) {
1954 return 0;
1955 }
1956 return -1;
1957 }
1958
1959 return 1;
1960 }
1961
1962
1963
1964 /*
1965 * A multi-purpose function to traverse and get information on Clast
1966 * loops
1967 *
1968 * node: clast node where processing should start
1969 *
1970 * Returns:
1971 * A list of loops under clast_stmt 'node' filtered in two ways: (1) it contains
1972 * statements appearing in 'stmts_filter', (2) loop iterator's name is 'iter'
1973 * If iter' is set to NULL, no filtering based on iterator name is done
1974 *
1975 * iter: loop iterator name
1976 * stmts_filter: list of statement numbers for filtering (1-indexed)
1977 * nstmts_filter: number of statements in stmts_filter
1978 *
1979 * FilterType: match exact (i.e., loops containing only and all those statements
1980 * in stmts_filter) or subset, i.e., loops which have only those statements
1981 * that appear in stmts_filter
1982 *
1983 * To disable all filtering, set 'iter' to NULL, provide all statement
1984 * numbers in 'stmts_filter' and set FilterType to subset
1985 *
1986 * Return fields
1987 *
1988 * stmts: an array of statement numbers under node
1989 * nstmts: number of stmt numbers pointed to by stmts
1990 * loops: list of clast loops
1991 * nloops: number of clast loops in loops
1992 *
1993 */
clast_filter(struct clast_stmt * node,ClastFilter filter,struct clast_for *** loops,int * nloops,int ** stmts,int * nstmts)1994 void clast_filter(struct clast_stmt *node,
1995 ClastFilter filter,
1996 struct clast_for ***loops, int *nloops,
1997 int **stmts, int *nstmts)
1998 {
1999 int num_next_stmts, num_next_loops, ret, *stmts_next;
2000 struct clast_for **loops_next;
2001
2002 *loops = NULL;
2003 *nloops = 0;
2004 *nstmts = 0;
2005 *stmts = NULL;
2006
2007 if (node == NULL) {
2008 return;
2009 }
2010
2011 ClastFilterType filter_type = filter.filter_type;
2012 const char *iter = filter.iter;
2013 int nstmts_filter = filter.nstmts_filter;
2014 const int *stmts_filter = filter.stmts_filter;
2015
2016 if (CLAST_STMT_IS_A(node, stmt_root)) {
2017 // printf("root stmt\n");
2018 struct clast_root *root = (struct clast_root *) node;
2019 clast_filter((root->stmt).next, filter, &loops_next,
2020 &num_next_loops, &stmts_next, &num_next_stmts);
2021 *nstmts = concat_if_new((void **)stmts, *nstmts, stmts_next, num_next_stmts, sizeof(int));
2022 *nloops = concat_if_new((void **)loops, *nloops, loops_next, num_next_loops,
2023 sizeof(struct clast_stmt *));
2024 free(loops_next);
2025 free(stmts_next);
2026 }
2027
2028 if (CLAST_STMT_IS_A(node, stmt_guard)) {
2029 // printf("guard stmt\n");
2030 struct clast_guard *guard = (struct clast_guard *) node;
2031 clast_filter(guard->then, filter, &loops_next,
2032 &num_next_loops, &stmts_next, &num_next_stmts);
2033 *nstmts = concat_if_new((void **)stmts, *nstmts, stmts_next, num_next_stmts, sizeof(int));
2034 *nloops = concat_if_new((void **)loops, *nloops, loops_next, num_next_loops,
2035 sizeof(struct clast_stmt *));
2036 free(loops_next);
2037 free(stmts_next);
2038 clast_filter((guard->stmt).next, filter, &loops_next,
2039 &num_next_loops, &stmts_next, &num_next_stmts);
2040 *nstmts = concat_if_new((void **)stmts, *nstmts, stmts_next, num_next_stmts, sizeof(int));
2041 *nloops = concat_if_new((void **)loops, *nloops, loops_next, num_next_loops,
2042 sizeof(struct clast_stmt *));
2043 free(loops_next);
2044 free(stmts_next);
2045 }
2046
2047 if (CLAST_STMT_IS_A(node, stmt_user)) {
2048 struct clast_user_stmt *user_stmt = (struct clast_user_stmt *) node;
2049 // printf("user stmt: S%d\n", user_stmt->statement->number);
2050 ret = add_if_new((void **)stmts, *nstmts, &user_stmt->statement->number, sizeof(int));
2051 if (ret) (*nstmts)++;
2052 clast_filter((user_stmt->stmt).next, filter, &loops_next,
2053 &num_next_loops, &stmts_next, &num_next_stmts);
2054 *nstmts = concat_if_new((void **)stmts, *nstmts, stmts_next, num_next_stmts, sizeof(int));
2055 *nloops = concat_if_new((void **)loops, *nloops, loops_next, num_next_loops,
2056 sizeof(struct clast_stmt *));
2057 free(loops_next);
2058 free(stmts_next);
2059 }
2060 if (CLAST_STMT_IS_A(node, stmt_for)) {
2061 struct clast_for *for_stmt = (struct clast_for *) node;
2062 clast_filter(for_stmt->body, filter, &loops_next,
2063 &num_next_loops, &stmts_next, &num_next_stmts);
2064 *nstmts = concat_if_new((void **)stmts, *nstmts, stmts_next, num_next_stmts, sizeof(int));
2065 *nloops = concat_if_new((void **)loops, *nloops, loops_next, num_next_loops,
2066 sizeof(struct clast_stmt *));
2067
2068 if (iter == NULL || !strcmp(for_stmt->iterator, iter)) {
2069 if (stmts_filter == NULL ||
2070 (filter_type == subset && list_compare(stmts_next, num_next_stmts,
2071 stmts_filter, nstmts_filter) <= 0)
2072 || (filter_type == exact && list_compare(stmts_next, num_next_stmts,
2073 stmts_filter, nstmts_filter) == 0 )) {
2074 ret = add_if_new((void **)loops, *nloops, &for_stmt, sizeof(struct clast_for *));
2075 if (ret) (*nloops)++;
2076 }
2077 }
2078 free(loops_next);
2079 free(stmts_next);
2080
2081 clast_filter((for_stmt->stmt).next, filter, &loops_next,
2082 &num_next_loops, &stmts_next, &num_next_stmts);
2083 *nstmts = concat_if_new((void **)stmts, *nstmts, stmts_next, num_next_stmts, sizeof(int));
2084 *nloops = concat_if_new((void **)loops, *nloops, loops_next, num_next_loops,
2085 sizeof(struct clast_stmt *));
2086 free(loops_next);
2087 free(stmts_next);
2088 }
2089 }
2090