xref: /reactos/dll/3rdparty/libjpeg/jmemmgr.c (revision 1d574191)
1 /*
2  * jmemmgr.c
3  *
4  * Copyright (C) 1991-1997, Thomas G. Lane.
5  * Modified 2011-2019 by Guido Vollbeding.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains the JPEG system-independent memory management
10  * routines.  This code is usable across a wide variety of machines; most
11  * of the system dependencies have been isolated in a separate file.
12  * The major functions provided here are:
13  *   * pool-based allocation and freeing of memory;
14  *   * policy decisions about how to divide available memory among the
15  *     virtual arrays;
16  *   * control logic for swapping virtual arrays between main memory and
17  *     backing storage.
18  * The separate system-dependent file provides the actual backing-storage
19  * access code, and it contains the policy decision about how much total
20  * main memory to use.
21  * This file is system-dependent in the sense that some of its functions
22  * are unnecessary in some systems.  For example, if there is enough virtual
23  * memory so that backing storage will never be used, much of the virtual
24  * array control logic could be removed.  (Of course, if you have that much
25  * memory then you shouldn't care about a little bit of unused code...)
26  */
27 
28 #define JPEG_INTERNALS
29 #define AM_MEMORY_MANAGER	/* we define jvirt_Xarray_control structs */
30 #include "jinclude.h"
31 #include "jpeglib.h"
32 #include "jmemsys.h"		/* import the system-dependent declarations */
33 
34 #ifndef NO_GETENV
35 #ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare getenv() */
36 extern char * getenv JPP((const char * name));
37 #endif
38 #endif
39 
40 
41 /*
42  * Some important notes:
43  *   The allocation routines provided here must never return NULL.
44  *   They should exit to error_exit if unsuccessful.
45  *
46  *   It's not a good idea to try to merge the sarray and barray routines,
47  *   even though they are textually almost the same, because samples are
48  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
49  *   in machines where byte pointers have a different representation from
50  *   word pointers, the resulting machine code could not be the same.
51  */
52 
53 
54 /*
55  * Many machines require storage alignment: longs must start on 4-byte
56  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
57  * always returns pointers that are multiples of the worst-case alignment
58  * requirement, and we had better do so too.
59  * There isn't any really portable way to determine the worst-case alignment
60  * requirement.  This module assumes that the alignment requirement is
61  * multiples of sizeof(ALIGN_TYPE).
62  * By default, we define ALIGN_TYPE as double.  This is necessary on some
63  * workstations (where doubles really do need 8-byte alignment) and will work
64  * fine on nearly everything.  If your machine has lesser alignment needs,
65  * you can save a few bytes by making ALIGN_TYPE smaller.
66  * The only place I know of where this will NOT work is certain Macintosh
67  * 680x0 compilers that define double as a 10-byte IEEE extended float.
68  * Doing 10-byte alignment is counterproductive because longwords won't be
69  * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
70  * such a compiler.
71  */
72 
73 #ifndef ALIGN_TYPE		/* so can override from jconfig.h */
74 #define ALIGN_TYPE  double
75 #endif
76 
77 
78 /*
79  * We allocate objects from "pools", where each pool is gotten with a single
80  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
81  * overhead within a pool, except for alignment padding.  Each pool has a
82  * header with a link to the next pool of the same class.
83  * Small and large pool headers are identical except that the latter's
84  * link pointer must be FAR on 80x86 machines.
85  * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
86  * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
87  * of the alignment requirement of ALIGN_TYPE.
88  */
89 
90 typedef union small_pool_struct * small_pool_ptr;
91 
92 typedef union small_pool_struct {
93   struct {
94     small_pool_ptr next;	/* next in list of pools */
95     size_t bytes_used;		/* how many bytes already used within pool */
96     size_t bytes_left;		/* bytes still available in this pool */
97   } hdr;
98   ALIGN_TYPE dummy;		/* included in union to ensure alignment */
99 } small_pool_hdr;
100 
101 typedef union large_pool_struct FAR * large_pool_ptr;
102 
103 typedef union large_pool_struct {
104   struct {
105     large_pool_ptr next;	/* next in list of pools */
106     size_t bytes_used;		/* how many bytes already used within pool */
107     size_t bytes_left;		/* bytes still available in this pool */
108   } hdr;
109   ALIGN_TYPE dummy;		/* included in union to ensure alignment */
110 } large_pool_hdr;
111 
112 
113 /*
114  * Here is the full definition of a memory manager object.
115  */
116 
117 typedef struct {
118   struct jpeg_memory_mgr pub;	/* public fields */
119 
120   /* Each pool identifier (lifetime class) names a linked list of pools. */
121   small_pool_ptr small_list[JPOOL_NUMPOOLS];
122   large_pool_ptr large_list[JPOOL_NUMPOOLS];
123 
124   /* Since we only have one lifetime class of virtual arrays, only one
125    * linked list is necessary (for each datatype).  Note that the virtual
126    * array control blocks being linked together are actually stored somewhere
127    * in the small-pool list.
128    */
129   jvirt_sarray_ptr virt_sarray_list;
130   jvirt_barray_ptr virt_barray_list;
131 
132   /* This counts total space obtained from jpeg_get_small/large */
133   size_t total_space_allocated;
134 
135   /* alloc_sarray and alloc_barray set this value for use by virtual
136    * array routines.
137    */
138   JDIMENSION last_rowsperchunk;	/* from most recent alloc_sarray/barray */
139 } my_memory_mgr;
140 
141 typedef my_memory_mgr * my_mem_ptr;
142 
143 
144 /*
145  * The control blocks for virtual arrays.
146  * Note that these blocks are allocated in the "small" pool area.
147  * System-dependent info for the associated backing store (if any) is hidden
148  * inside the backing_store_info struct.
149  */
150 
151 struct jvirt_sarray_control {
152   JSAMPARRAY mem_buffer;	/* => the in-memory buffer */
153   JDIMENSION rows_in_array;	/* total virtual array height */
154   JDIMENSION samplesperrow;	/* width of array (and of memory buffer) */
155   JDIMENSION maxaccess;		/* max rows accessed by access_virt_sarray */
156   JDIMENSION rows_in_mem;	/* height of memory buffer */
157   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
158   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
159   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
160   boolean pre_zero;		/* pre-zero mode requested? */
161   boolean dirty;		/* do current buffer contents need written? */
162   boolean b_s_open;		/* is backing-store data valid? */
163   jvirt_sarray_ptr next;	/* link to next virtual sarray control block */
164   backing_store_info b_s_info;	/* System-dependent control info */
165 };
166 
167 struct jvirt_barray_control {
168   JBLOCKARRAY mem_buffer;	/* => the in-memory buffer */
169   JDIMENSION rows_in_array;	/* total virtual array height */
170   JDIMENSION blocksperrow;	/* width of array (and of memory buffer) */
171   JDIMENSION maxaccess;		/* max rows accessed by access_virt_barray */
172   JDIMENSION rows_in_mem;	/* height of memory buffer */
173   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
174   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
175   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
176   boolean pre_zero;		/* pre-zero mode requested? */
177   boolean dirty;		/* do current buffer contents need written? */
178   boolean b_s_open;		/* is backing-store data valid? */
179   jvirt_barray_ptr next;	/* link to next virtual barray control block */
180   backing_store_info b_s_info;	/* System-dependent control info */
181 };
182 
183 
184 #ifdef MEM_STATS		/* optional extra stuff for statistics */
185 
186 LOCAL(void)
print_mem_stats(j_common_ptr cinfo,int pool_id)187 print_mem_stats (j_common_ptr cinfo, int pool_id)
188 {
189   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
190   small_pool_ptr shdr_ptr;
191   large_pool_ptr lhdr_ptr;
192 
193   /* Since this is only a debugging stub, we can cheat a little by using
194    * fprintf directly rather than going through the trace message code.
195    * This is helpful because message parm array can't handle longs.
196    */
197   fprintf(stderr, "Freeing pool %d, total space = %ld\n",
198 	  pool_id, (long) mem->total_space_allocated);
199 
200   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
201        lhdr_ptr = lhdr_ptr->hdr.next) {
202     fprintf(stderr, "  Large chunk used %ld\n",
203 	    (long) lhdr_ptr->hdr.bytes_used);
204   }
205 
206   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
207        shdr_ptr = shdr_ptr->hdr.next) {
208     fprintf(stderr, "  Small chunk used %ld free %ld\n",
209 	    (long) shdr_ptr->hdr.bytes_used,
210 	    (long) shdr_ptr->hdr.bytes_left);
211   }
212 }
213 
214 #endif /* MEM_STATS */
215 
216 
217 LOCAL(noreturn_t)
out_of_memory(j_common_ptr cinfo,int which)218 out_of_memory (j_common_ptr cinfo, int which)
219 /* Report an out-of-memory error and stop execution */
220 /* If we compiled MEM_STATS support, report alloc requests before dying */
221 {
222 #ifdef MEM_STATS
223   cinfo->err->trace_level = 2;	/* force self_destruct to report stats */
224 #endif
225   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
226 }
227 
228 
229 /*
230  * Allocation of "small" objects.
231  *
232  * For these, we use pooled storage.  When a new pool must be created,
233  * we try to get enough space for the current request plus a "slop" factor,
234  * where the slop will be the amount of leftover space in the new pool.
235  * The speed vs. space tradeoff is largely determined by the slop values.
236  * A different slop value is provided for each pool class (lifetime),
237  * and we also distinguish the first pool of a class from later ones.
238  * NOTE: the values given work fairly well on both 16- and 32-bit-int
239  * machines, but may be too small if longs are 64 bits or more.
240  */
241 
242 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
243 {
244 	1600,			/* first PERMANENT pool */
245 	16000			/* first IMAGE pool */
246 };
247 
248 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
249 {
250 	0,			/* additional PERMANENT pools */
251 	5000			/* additional IMAGE pools */
252 };
253 
254 #define MIN_SLOP  50		/* greater than 0 to avoid futile looping */
255 
256 
257 METHODDEF(void *)
alloc_small(j_common_ptr cinfo,int pool_id,size_t sizeofobject)258 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
259 /* Allocate a "small" object */
260 {
261   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
262   small_pool_ptr hdr_ptr, prev_hdr_ptr;
263   size_t odd_bytes, min_request, slop;
264   char * data_ptr;
265 
266   /* Check for unsatisfiable request (do now to ensure no overflow below) */
267   if (sizeofobject > (size_t) MAX_ALLOC_CHUNK - SIZEOF(small_pool_hdr))
268     out_of_memory(cinfo, 1);	/* request exceeds malloc's ability */
269 
270   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
271   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
272   if (odd_bytes > 0)
273     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
274 
275   /* See if space is available in any existing pool */
276   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
277     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
278   prev_hdr_ptr = NULL;
279   hdr_ptr = mem->small_list[pool_id];
280   while (hdr_ptr != NULL) {
281     if (hdr_ptr->hdr.bytes_left >= sizeofobject)
282       break;			/* found pool with enough space */
283     prev_hdr_ptr = hdr_ptr;
284     hdr_ptr = hdr_ptr->hdr.next;
285   }
286 
287   /* Time to make a new pool? */
288   if (hdr_ptr == NULL) {
289     /* min_request is what we need now, slop is what will be leftover */
290     min_request = sizeofobject + SIZEOF(small_pool_hdr);
291     if (prev_hdr_ptr == NULL)	/* first pool in class? */
292       slop = first_pool_slop[pool_id];
293     else
294       slop = extra_pool_slop[pool_id];
295     /* Don't ask for more than MAX_ALLOC_CHUNK */
296     if (slop > (size_t) MAX_ALLOC_CHUNK - min_request)
297       slop = (size_t) MAX_ALLOC_CHUNK - min_request;
298     /* Try to get space, if fail reduce slop and try again */
299     for (;;) {
300       hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
301       if (hdr_ptr != NULL)
302 	break;
303       slop /= 2;
304       if (slop < MIN_SLOP)	/* give up when it gets real small */
305 	out_of_memory(cinfo, 2); /* jpeg_get_small failed */
306     }
307     mem->total_space_allocated += min_request + slop;
308     /* Success, initialize the new pool header and add to end of list */
309     hdr_ptr->hdr.next = NULL;
310     hdr_ptr->hdr.bytes_used = 0;
311     hdr_ptr->hdr.bytes_left = sizeofobject + slop;
312     if (prev_hdr_ptr == NULL)	/* first pool in class? */
313       mem->small_list[pool_id] = hdr_ptr;
314     else
315       prev_hdr_ptr->hdr.next = hdr_ptr;
316   }
317 
318   /* OK, allocate the object from the current pool */
319   data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
320   data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
321   hdr_ptr->hdr.bytes_used += sizeofobject;
322   hdr_ptr->hdr.bytes_left -= sizeofobject;
323 
324   return (void *) data_ptr;
325 }
326 
327 
328 /*
329  * Allocation of "large" objects.
330  *
331  * The external semantics of these are the same as "small" objects,
332  * except that FAR pointers are used on 80x86.  However the pool
333  * management heuristics are quite different.  We assume that each
334  * request is large enough that it may as well be passed directly to
335  * jpeg_get_large; the pool management just links everything together
336  * so that we can free it all on demand.
337  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
338  * structures.  The routines that create these structures (see below)
339  * deliberately bunch rows together to ensure a large request size.
340  */
341 
342 METHODDEF(void FAR *)
alloc_large(j_common_ptr cinfo,int pool_id,size_t sizeofobject)343 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
344 /* Allocate a "large" object */
345 {
346   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
347   large_pool_ptr hdr_ptr;
348   size_t odd_bytes;
349 
350   /* Check for unsatisfiable request (do now to ensure no overflow below) */
351   if (sizeofobject > (size_t) MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr))
352     out_of_memory(cinfo, 3);	/* request exceeds malloc's ability */
353 
354   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
355   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
356   if (odd_bytes > 0)
357     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
358 
359   /* Always make a new pool */
360   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
361     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
362 
363   hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
364 					    SIZEOF(large_pool_hdr));
365   if (hdr_ptr == NULL)
366     out_of_memory(cinfo, 4);	/* jpeg_get_large failed */
367   mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
368 
369   /* Success, initialize the new pool header and add to list */
370   hdr_ptr->hdr.next = mem->large_list[pool_id];
371   /* We maintain space counts in each pool header for statistical purposes,
372    * even though they are not needed for allocation.
373    */
374   hdr_ptr->hdr.bytes_used = sizeofobject;
375   hdr_ptr->hdr.bytes_left = 0;
376   mem->large_list[pool_id] = hdr_ptr;
377 
378   return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
379 }
380 
381 
382 /*
383  * Creation of 2-D sample arrays.
384  * The pointers are in near heap, the samples themselves in FAR heap.
385  *
386  * To minimize allocation overhead and to allow I/O of large contiguous
387  * blocks, we allocate the sample rows in groups of as many rows as possible
388  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
389  * NB: the virtual array control routines, later in this file, know about
390  * this chunking of rows.  The rowsperchunk value is left in the mem manager
391  * object so that it can be saved away if this sarray is the workspace for
392  * a virtual array.
393  */
394 
395 METHODDEF(JSAMPARRAY)
alloc_sarray(j_common_ptr cinfo,int pool_id,JDIMENSION samplesperrow,JDIMENSION numrows)396 alloc_sarray (j_common_ptr cinfo, int pool_id,
397 	      JDIMENSION samplesperrow, JDIMENSION numrows)
398 /* Allocate a 2-D sample array */
399 {
400   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
401   JSAMPARRAY result;
402   JSAMPROW workspace;
403   JDIMENSION rowsperchunk, currow, i;
404   long ltemp;
405 
406   /* Calculate max # of rows allowed in one allocation chunk */
407   ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) /
408 	  ((long) samplesperrow * SIZEOF(JSAMPLE));
409   if (ltemp <= 0)
410     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
411   if (ltemp < (long) numrows)
412     rowsperchunk = (JDIMENSION) ltemp;
413   else
414     rowsperchunk = numrows;
415   mem->last_rowsperchunk = rowsperchunk;
416 
417   /* Get space for row pointers (small object) */
418   result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
419 				    (size_t) numrows * SIZEOF(JSAMPROW));
420 
421   /* Get the rows themselves (large objects) */
422   currow = 0;
423   while (currow < numrows) {
424     rowsperchunk = MIN(rowsperchunk, numrows - currow);
425     workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
426       (size_t) rowsperchunk * (size_t) samplesperrow * SIZEOF(JSAMPLE));
427     for (i = rowsperchunk; i > 0; i--) {
428       result[currow++] = workspace;
429       workspace += samplesperrow;
430     }
431   }
432 
433   return result;
434 }
435 
436 
437 /*
438  * Creation of 2-D coefficient-block arrays.
439  * This is essentially the same as the code for sample arrays, above.
440  */
441 
442 METHODDEF(JBLOCKARRAY)
alloc_barray(j_common_ptr cinfo,int pool_id,JDIMENSION blocksperrow,JDIMENSION numrows)443 alloc_barray (j_common_ptr cinfo, int pool_id,
444 	      JDIMENSION blocksperrow, JDIMENSION numrows)
445 /* Allocate a 2-D coefficient-block array */
446 {
447   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
448   JBLOCKARRAY result;
449   JBLOCKROW workspace;
450   JDIMENSION rowsperchunk, currow, i;
451   long ltemp;
452 
453   /* Calculate max # of rows allowed in one allocation chunk */
454   ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) /
455 	  ((long) blocksperrow * SIZEOF(JBLOCK));
456   if (ltemp <= 0)
457     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
458   if (ltemp < (long) numrows)
459     rowsperchunk = (JDIMENSION) ltemp;
460   else
461     rowsperchunk = numrows;
462   mem->last_rowsperchunk = rowsperchunk;
463 
464   /* Get space for row pointers (small object) */
465   result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
466 				     (size_t) numrows * SIZEOF(JBLOCKROW));
467 
468   /* Get the rows themselves (large objects) */
469   currow = 0;
470   while (currow < numrows) {
471     rowsperchunk = MIN(rowsperchunk, numrows - currow);
472     workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
473       (size_t) rowsperchunk * (size_t) blocksperrow * SIZEOF(JBLOCK));
474     for (i = rowsperchunk; i > 0; i--) {
475       result[currow++] = workspace;
476       workspace += blocksperrow;
477     }
478   }
479 
480   return result;
481 }
482 
483 
484 /*
485  * About virtual array management:
486  *
487  * The above "normal" array routines are only used to allocate strip buffers
488  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
489  * are handled as "virtual" arrays.  The array is still accessed a strip at a
490  * time, but the memory manager must save the whole array for repeated
491  * accesses.  The intended implementation is that there is a strip buffer in
492  * memory (as high as is possible given the desired memory limit), plus a
493  * backing file that holds the rest of the array.
494  *
495  * The request_virt_array routines are told the total size of the image and
496  * the maximum number of rows that will be accessed at once.  The in-memory
497  * buffer must be at least as large as the maxaccess value.
498  *
499  * The request routines create control blocks but not the in-memory buffers.
500  * That is postponed until realize_virt_arrays is called.  At that time the
501  * total amount of space needed is known (approximately, anyway), so free
502  * memory can be divided up fairly.
503  *
504  * The access_virt_array routines are responsible for making a specific strip
505  * area accessible (after reading or writing the backing file, if necessary).
506  * Note that the access routines are told whether the caller intends to modify
507  * the accessed strip; during a read-only pass this saves having to rewrite
508  * data to disk.  The access routines are also responsible for pre-zeroing
509  * any newly accessed rows, if pre-zeroing was requested.
510  *
511  * In current usage, the access requests are usually for nonoverlapping
512  * strips; that is, successive access start_row numbers differ by exactly
513  * num_rows = maxaccess.  This means we can get good performance with simple
514  * buffer dump/reload logic, by making the in-memory buffer be a multiple
515  * of the access height; then there will never be accesses across bufferload
516  * boundaries.  The code will still work with overlapping access requests,
517  * but it doesn't handle bufferload overlaps very efficiently.
518  */
519 
520 
521 METHODDEF(jvirt_sarray_ptr)
request_virt_sarray(j_common_ptr cinfo,int pool_id,boolean pre_zero,JDIMENSION samplesperrow,JDIMENSION numrows,JDIMENSION maxaccess)522 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
523 		     JDIMENSION samplesperrow, JDIMENSION numrows,
524 		     JDIMENSION maxaccess)
525 /* Request a virtual 2-D sample array */
526 {
527   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
528   jvirt_sarray_ptr result;
529 
530   /* Only IMAGE-lifetime virtual arrays are currently supported */
531   if (pool_id != JPOOL_IMAGE)
532     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
533 
534   /* get control block */
535   result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
536 					  SIZEOF(struct jvirt_sarray_control));
537 
538   result->mem_buffer = NULL;	/* marks array not yet realized */
539   result->rows_in_array = numrows;
540   result->samplesperrow = samplesperrow;
541   result->maxaccess = maxaccess;
542   result->pre_zero = pre_zero;
543   result->b_s_open = FALSE;	/* no associated backing-store object */
544   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
545   mem->virt_sarray_list = result;
546 
547   return result;
548 }
549 
550 
551 METHODDEF(jvirt_barray_ptr)
request_virt_barray(j_common_ptr cinfo,int pool_id,boolean pre_zero,JDIMENSION blocksperrow,JDIMENSION numrows,JDIMENSION maxaccess)552 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
553 		     JDIMENSION blocksperrow, JDIMENSION numrows,
554 		     JDIMENSION maxaccess)
555 /* Request a virtual 2-D coefficient-block array */
556 {
557   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
558   jvirt_barray_ptr result;
559 
560   /* Only IMAGE-lifetime virtual arrays are currently supported */
561   if (pool_id != JPOOL_IMAGE)
562     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
563 
564   /* get control block */
565   result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
566 					  SIZEOF(struct jvirt_barray_control));
567 
568   result->mem_buffer = NULL;	/* marks array not yet realized */
569   result->rows_in_array = numrows;
570   result->blocksperrow = blocksperrow;
571   result->maxaccess = maxaccess;
572   result->pre_zero = pre_zero;
573   result->b_s_open = FALSE;	/* no associated backing-store object */
574   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
575   mem->virt_barray_list = result;
576 
577   return result;
578 }
579 
580 
581 METHODDEF(void)
realize_virt_arrays(j_common_ptr cinfo)582 realize_virt_arrays (j_common_ptr cinfo)
583 /* Allocate the in-memory buffers for any unrealized virtual arrays */
584 {
585   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
586   long bytesperrow, space_per_minheight, maximum_space;
587   long avail_mem, minheights, max_minheights;
588   jvirt_sarray_ptr sptr;
589   jvirt_barray_ptr bptr;
590 
591   /* Compute the minimum space needed (maxaccess rows in each buffer)
592    * and the maximum space needed (full image height in each buffer).
593    * These may be of use to the system-dependent jpeg_mem_available routine.
594    */
595   space_per_minheight = 0;
596   maximum_space = 0;
597   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
598     if (sptr->mem_buffer == NULL) { /* if not realized yet */
599       bytesperrow = (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
600       space_per_minheight += (long) sptr->maxaccess * bytesperrow;
601       maximum_space += (long) sptr->rows_in_array * bytesperrow;
602     }
603   }
604   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
605     if (bptr->mem_buffer == NULL) { /* if not realized yet */
606       bytesperrow = (long) bptr->blocksperrow * SIZEOF(JBLOCK);
607       space_per_minheight += (long) bptr->maxaccess * bytesperrow;
608       maximum_space += (long) bptr->rows_in_array * bytesperrow;
609     }
610   }
611 
612   if (space_per_minheight <= 0)
613     return;			/* no unrealized arrays, no work */
614 
615   /* Determine amount of memory to actually use; this is system-dependent. */
616   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
617 				 (long) mem->total_space_allocated);
618 
619   /* If the maximum space needed is available, make all the buffers full
620    * height; otherwise parcel it out with the same number of minheights
621    * in each buffer.
622    */
623   if (avail_mem >= maximum_space)
624     max_minheights = 1000000000L;
625   else {
626     max_minheights = avail_mem / space_per_minheight;
627     /* If there doesn't seem to be enough space, try to get the minimum
628      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
629      */
630     if (max_minheights <= 0)
631       max_minheights = 1;
632   }
633 
634   /* Allocate the in-memory buffers and initialize backing store as needed. */
635 
636   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
637     if (sptr->mem_buffer == NULL) { /* if not realized yet */
638       minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
639       if (minheights <= max_minheights) {
640 	/* This buffer fits in memory */
641 	sptr->rows_in_mem = sptr->rows_in_array;
642       } else {
643 	/* It doesn't fit in memory, create backing store. */
644 	sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
645 	jpeg_open_backing_store(cinfo, & sptr->b_s_info,
646 				(long) sptr->rows_in_array *
647 				(long) sptr->samplesperrow *
648 				(long) SIZEOF(JSAMPLE));
649 	sptr->b_s_open = TRUE;
650       }
651       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
652 				      sptr->samplesperrow, sptr->rows_in_mem);
653       sptr->rowsperchunk = mem->last_rowsperchunk;
654       sptr->cur_start_row = 0;
655       sptr->first_undef_row = 0;
656       sptr->dirty = FALSE;
657     }
658   }
659 
660   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
661     if (bptr->mem_buffer == NULL) { /* if not realized yet */
662       minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
663       if (minheights <= max_minheights) {
664 	/* This buffer fits in memory */
665 	bptr->rows_in_mem = bptr->rows_in_array;
666       } else {
667 	/* It doesn't fit in memory, create backing store. */
668 	bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
669 	jpeg_open_backing_store(cinfo, & bptr->b_s_info,
670 				(long) bptr->rows_in_array *
671 				(long) bptr->blocksperrow *
672 				(long) SIZEOF(JBLOCK));
673 	bptr->b_s_open = TRUE;
674       }
675       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
676 				      bptr->blocksperrow, bptr->rows_in_mem);
677       bptr->rowsperchunk = mem->last_rowsperchunk;
678       bptr->cur_start_row = 0;
679       bptr->first_undef_row = 0;
680       bptr->dirty = FALSE;
681     }
682   }
683 }
684 
685 
686 LOCAL(void)
do_sarray_io(j_common_ptr cinfo,jvirt_sarray_ptr ptr,boolean writing)687 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
688 /* Do backing store read or write of a virtual sample array */
689 {
690   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
691 
692   bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
693   file_offset = (long) ptr->cur_start_row * bytesperrow;
694   /* Loop to read or write each allocation chunk in mem_buffer */
695   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
696     /* One chunk, but check for short chunk at end of buffer */
697     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
698     /* Transfer no more than is currently defined */
699     thisrow = (long) ptr->cur_start_row + i;
700     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
701     /* Transfer no more than fits in file */
702     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
703     if (rows <= 0)		/* this chunk might be past end of file! */
704       break;
705     byte_count = rows * bytesperrow;
706     if (writing)
707       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
708 					    (void FAR *) ptr->mem_buffer[i],
709 					    file_offset, byte_count);
710     else
711       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
712 					   (void FAR *) ptr->mem_buffer[i],
713 					   file_offset, byte_count);
714     file_offset += byte_count;
715   }
716 }
717 
718 
719 LOCAL(void)
do_barray_io(j_common_ptr cinfo,jvirt_barray_ptr ptr,boolean writing)720 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
721 /* Do backing store read or write of a virtual coefficient-block array */
722 {
723   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
724 
725   bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
726   file_offset = (long) ptr->cur_start_row * bytesperrow;
727   /* Loop to read or write each allocation chunk in mem_buffer */
728   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
729     /* One chunk, but check for short chunk at end of buffer */
730     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
731     /* Transfer no more than is currently defined */
732     thisrow = (long) ptr->cur_start_row + i;
733     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
734     /* Transfer no more than fits in file */
735     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
736     if (rows <= 0)		/* this chunk might be past end of file! */
737       break;
738     byte_count = rows * bytesperrow;
739     if (writing)
740       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
741 					    (void FAR *) ptr->mem_buffer[i],
742 					    file_offset, byte_count);
743     else
744       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
745 					   (void FAR *) ptr->mem_buffer[i],
746 					   file_offset, byte_count);
747     file_offset += byte_count;
748   }
749 }
750 
751 
752 METHODDEF(JSAMPARRAY)
access_virt_sarray(j_common_ptr cinfo,jvirt_sarray_ptr ptr,JDIMENSION start_row,JDIMENSION num_rows,boolean writable)753 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
754 		    JDIMENSION start_row, JDIMENSION num_rows,
755 		    boolean writable)
756 /* Access the part of a virtual sample array starting at start_row */
757 /* and extending for num_rows rows.  writable is true if  */
758 /* caller intends to modify the accessed area. */
759 {
760   JDIMENSION end_row = start_row + num_rows;
761   JDIMENSION undef_row;
762 
763   /* debugging check */
764   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
765       ptr->mem_buffer == NULL)
766     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
767 
768   /* Make the desired part of the virtual array accessible */
769   if (start_row < ptr->cur_start_row ||
770       end_row > ptr->cur_start_row + ptr->rows_in_mem) {
771     if (! ptr->b_s_open)
772       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
773     /* Flush old buffer contents if necessary */
774     if (ptr->dirty) {
775       do_sarray_io(cinfo, ptr, TRUE);
776       ptr->dirty = FALSE;
777     }
778     /* Decide what part of virtual array to access.
779      * Algorithm: if target address > current window, assume forward scan,
780      * load starting at target address.  If target address < current window,
781      * assume backward scan, load so that target area is top of window.
782      * Note that when switching from forward write to forward read, will have
783      * start_row = 0, so the limiting case applies and we load from 0 anyway.
784      */
785     if (start_row > ptr->cur_start_row) {
786       ptr->cur_start_row = start_row;
787     } else {
788       /* use long arithmetic here to avoid overflow & unsigned problems */
789       long ltemp;
790 
791       ltemp = (long) end_row - (long) ptr->rows_in_mem;
792       if (ltemp < 0)
793 	ltemp = 0;		/* don't fall off front end of file */
794       ptr->cur_start_row = (JDIMENSION) ltemp;
795     }
796     /* Read in the selected part of the array.
797      * During the initial write pass, we will do no actual read
798      * because the selected part is all undefined.
799      */
800     do_sarray_io(cinfo, ptr, FALSE);
801   }
802   /* Ensure the accessed part of the array is defined; prezero if needed.
803    * To improve locality of access, we only prezero the part of the array
804    * that the caller is about to access, not the entire in-memory array.
805    */
806   if (ptr->first_undef_row < end_row) {
807     if (ptr->first_undef_row < start_row) {
808       if (writable)		/* writer skipped over a section of array */
809 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
810       undef_row = start_row;	/* but reader is allowed to read ahead */
811     } else {
812       undef_row = ptr->first_undef_row;
813     }
814     if (writable)
815       ptr->first_undef_row = end_row;
816     if (ptr->pre_zero) {
817       size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
818       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
819       end_row -= ptr->cur_start_row;
820       while (undef_row < end_row) {
821 	FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
822 	undef_row++;
823       }
824     } else {
825       if (! writable)		/* reader looking at undefined data */
826 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
827     }
828   }
829   /* Flag the buffer dirty if caller will write in it */
830   if (writable)
831     ptr->dirty = TRUE;
832   /* Return address of proper part of the buffer */
833   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
834 }
835 
836 
837 METHODDEF(JBLOCKARRAY)
access_virt_barray(j_common_ptr cinfo,jvirt_barray_ptr ptr,JDIMENSION start_row,JDIMENSION num_rows,boolean writable)838 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
839 		    JDIMENSION start_row, JDIMENSION num_rows,
840 		    boolean writable)
841 /* Access the part of a virtual block array starting at start_row */
842 /* and extending for num_rows rows.  writable is true if  */
843 /* caller intends to modify the accessed area. */
844 {
845   JDIMENSION end_row = start_row + num_rows;
846   JDIMENSION undef_row;
847 
848   /* debugging check */
849   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
850       ptr->mem_buffer == NULL)
851     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
852 
853   /* Make the desired part of the virtual array accessible */
854   if (start_row < ptr->cur_start_row ||
855       end_row > ptr->cur_start_row + ptr->rows_in_mem) {
856     if (! ptr->b_s_open)
857       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
858     /* Flush old buffer contents if necessary */
859     if (ptr->dirty) {
860       do_barray_io(cinfo, ptr, TRUE);
861       ptr->dirty = FALSE;
862     }
863     /* Decide what part of virtual array to access.
864      * Algorithm: if target address > current window, assume forward scan,
865      * load starting at target address.  If target address < current window,
866      * assume backward scan, load so that target area is top of window.
867      * Note that when switching from forward write to forward read, will have
868      * start_row = 0, so the limiting case applies and we load from 0 anyway.
869      */
870     if (start_row > ptr->cur_start_row) {
871       ptr->cur_start_row = start_row;
872     } else {
873       /* use long arithmetic here to avoid overflow & unsigned problems */
874       long ltemp;
875 
876       ltemp = (long) end_row - (long) ptr->rows_in_mem;
877       if (ltemp < 0)
878 	ltemp = 0;		/* don't fall off front end of file */
879       ptr->cur_start_row = (JDIMENSION) ltemp;
880     }
881     /* Read in the selected part of the array.
882      * During the initial write pass, we will do no actual read
883      * because the selected part is all undefined.
884      */
885     do_barray_io(cinfo, ptr, FALSE);
886   }
887   /* Ensure the accessed part of the array is defined; prezero if needed.
888    * To improve locality of access, we only prezero the part of the array
889    * that the caller is about to access, not the entire in-memory array.
890    */
891   if (ptr->first_undef_row < end_row) {
892     if (ptr->first_undef_row < start_row) {
893       if (writable)		/* writer skipped over a section of array */
894 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
895       undef_row = start_row;	/* but reader is allowed to read ahead */
896     } else {
897       undef_row = ptr->first_undef_row;
898     }
899     if (writable)
900       ptr->first_undef_row = end_row;
901     if (ptr->pre_zero) {
902       size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
903       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
904       end_row -= ptr->cur_start_row;
905       while (undef_row < end_row) {
906 	FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
907 	undef_row++;
908       }
909     } else {
910       if (! writable)		/* reader looking at undefined data */
911 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
912     }
913   }
914   /* Flag the buffer dirty if caller will write in it */
915   if (writable)
916     ptr->dirty = TRUE;
917   /* Return address of proper part of the buffer */
918   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
919 }
920 
921 
922 /*
923  * Release all objects belonging to a specified pool.
924  */
925 
926 METHODDEF(void)
free_pool(j_common_ptr cinfo,int pool_id)927 free_pool (j_common_ptr cinfo, int pool_id)
928 {
929   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
930   small_pool_ptr shdr_ptr;
931   large_pool_ptr lhdr_ptr;
932   size_t space_freed;
933 
934   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
935     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
936 
937 #ifdef MEM_STATS
938   if (cinfo->err->trace_level > 1)
939     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
940 #endif
941 
942   /* If freeing IMAGE pool, close any virtual arrays first */
943   if (pool_id == JPOOL_IMAGE) {
944     jvirt_sarray_ptr sptr;
945     jvirt_barray_ptr bptr;
946 
947     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
948       if (sptr->b_s_open) {	/* there may be no backing store */
949 	sptr->b_s_open = FALSE;	/* prevent recursive close if error */
950 	(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
951       }
952     }
953     mem->virt_sarray_list = NULL;
954     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
955       if (bptr->b_s_open) {	/* there may be no backing store */
956 	bptr->b_s_open = FALSE;	/* prevent recursive close if error */
957 	(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
958       }
959     }
960     mem->virt_barray_list = NULL;
961   }
962 
963   /* Release large objects */
964   lhdr_ptr = mem->large_list[pool_id];
965   mem->large_list[pool_id] = NULL;
966 
967   while (lhdr_ptr != NULL) {
968     large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
969     space_freed = lhdr_ptr->hdr.bytes_used +
970 		  lhdr_ptr->hdr.bytes_left +
971 		  SIZEOF(large_pool_hdr);
972     jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
973     mem->total_space_allocated -= space_freed;
974     lhdr_ptr = next_lhdr_ptr;
975   }
976 
977   /* Release small objects */
978   shdr_ptr = mem->small_list[pool_id];
979   mem->small_list[pool_id] = NULL;
980 
981   while (shdr_ptr != NULL) {
982     small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
983     space_freed = shdr_ptr->hdr.bytes_used +
984 		  shdr_ptr->hdr.bytes_left +
985 		  SIZEOF(small_pool_hdr);
986     jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
987     mem->total_space_allocated -= space_freed;
988     shdr_ptr = next_shdr_ptr;
989   }
990 }
991 
992 
993 /*
994  * Close up shop entirely.
995  * Note that this cannot be called unless cinfo->mem is non-NULL.
996  */
997 
998 METHODDEF(void)
self_destruct(j_common_ptr cinfo)999 self_destruct (j_common_ptr cinfo)
1000 {
1001   int pool;
1002 
1003   /* Close all backing store, release all memory.
1004    * Releasing pools in reverse order might help avoid fragmentation
1005    * with some (brain-damaged) malloc libraries.
1006    */
1007   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1008     free_pool(cinfo, pool);
1009   }
1010 
1011   /* Release the memory manager control block too. */
1012   jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1013   cinfo->mem = NULL;		/* ensures I will be called only once */
1014 
1015   jpeg_mem_term(cinfo);		/* system-dependent cleanup */
1016 }
1017 
1018 
1019 /*
1020  * Memory manager initialization.
1021  * When this is called, only the error manager pointer is valid in cinfo!
1022  */
1023 
1024 GLOBAL(void)
jinit_memory_mgr(j_common_ptr cinfo)1025 jinit_memory_mgr (j_common_ptr cinfo)
1026 {
1027   my_mem_ptr mem;
1028   long max_to_use;
1029   int pool;
1030   size_t test_mac;
1031 
1032   cinfo->mem = NULL;		/* for safety if init fails */
1033 
1034   /* Check for configuration errors.
1035    * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1036    * doesn't reflect any real hardware alignment requirement.
1037    * The test is a little tricky: for X>0, X and X-1 have no one-bits
1038    * in common if and only if X is a power of 2, ie has only one one-bit.
1039    * Some compilers may give an "unreachable code" warning here; ignore it.
1040    */
1041   if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1042     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1043   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1044    * a multiple of SIZEOF(ALIGN_TYPE).
1045    * Again, an "unreachable code" warning may be ignored here.
1046    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1047    */
1048   test_mac = (size_t) MAX_ALLOC_CHUNK;
1049   if ((long) test_mac != MAX_ALLOC_CHUNK ||
1050       (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1051     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1052 
1053   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1054 
1055   /* Attempt to allocate memory manager's control block */
1056   mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1057 
1058   if (mem == NULL) {
1059     jpeg_mem_term(cinfo);	/* system-dependent cleanup */
1060     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1061   }
1062 
1063   /* OK, fill in the method pointers */
1064   mem->pub.alloc_small = alloc_small;
1065   mem->pub.alloc_large = alloc_large;
1066   mem->pub.alloc_sarray = alloc_sarray;
1067   mem->pub.alloc_barray = alloc_barray;
1068   mem->pub.request_virt_sarray = request_virt_sarray;
1069   mem->pub.request_virt_barray = request_virt_barray;
1070   mem->pub.realize_virt_arrays = realize_virt_arrays;
1071   mem->pub.access_virt_sarray = access_virt_sarray;
1072   mem->pub.access_virt_barray = access_virt_barray;
1073   mem->pub.free_pool = free_pool;
1074   mem->pub.self_destruct = self_destruct;
1075 
1076   /* Make MAX_ALLOC_CHUNK accessible to other modules */
1077   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1078 
1079   /* Initialize working state */
1080   mem->pub.max_memory_to_use = max_to_use;
1081 
1082   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1083     mem->small_list[pool] = NULL;
1084     mem->large_list[pool] = NULL;
1085   }
1086   mem->virt_sarray_list = NULL;
1087   mem->virt_barray_list = NULL;
1088 
1089   mem->total_space_allocated = SIZEOF(my_memory_mgr);
1090 
1091   /* Declare ourselves open for business */
1092   cinfo->mem = &mem->pub;
1093 
1094   /* Check for an environment variable JPEGMEM; if found, override the
1095    * default max_memory setting from jpeg_mem_init.  Note that the
1096    * surrounding application may again override this value.
1097    * If your system doesn't support getenv(), define NO_GETENV to disable
1098    * this feature.
1099    */
1100 #ifndef NO_GETENV
1101   { char * memenv;
1102 
1103     if ((memenv = getenv("JPEGMEM")) != NULL) {
1104       char ch = 'x';
1105 
1106       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1107 	if (ch == 'm' || ch == 'M')
1108 	  max_to_use *= 1000L;
1109 	mem->pub.max_memory_to_use = max_to_use * 1000L;
1110       }
1111     }
1112   }
1113 #endif
1114 
1115 }
1116