1 /* Copyright (C) 2000  The PARI group.
2 
3 This file is part of the PARI/GP package.
4 
5 PARI/GP is free software; you can redistribute it and/or modify it under the
6 terms of the GNU General Public License as published by the Free Software
7 Foundation; either version 2 of the License, or (at your option) any later
8 version. It is distributed in the hope that it will be useful, but WITHOUT
9 ANY WARRANTY WHATSOEVER.
10 
11 Check the License for details. You should have received a copy of it, along
12 with the package; see the file 'COPYING'. If not, write to the Free Software
13 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */
14 
15 /*******************************************************************/
16 /*                                                                 */
17 /*                     RNF STRUCTURE AND OPERATIONS                */
18 /*                                                                 */
19 /*******************************************************************/
20 #include "pari.h"
21 #include "paripriv.h"
22 
23 /* eq is an rnfeq; must return a t_POL */
24 GEN
eltreltoabs(GEN eq,GEN x)25 eltreltoabs(GEN eq, GEN x)
26 {
27   GEN Pabs = gel(eq,1), a = gel(eq,2), k = gel(eq,3), T = gel(eq,4), b, s;
28   long i, v = varn(Pabs);
29   pari_sp av = avma;
30 
31   if (varncmp(gvar(x), v) > 0) x = scalarpol(x,v);
32   x = RgX_nffix("eltreltoabs", T, x, 1);
33   /* Mod(X - k a, Pabs(X)) is a root of the relative polynomial */
34   if (signe(k))
35     x = RgXQX_translate(x, deg1pol_shallow(negi(k), gen_0, varn(T)), T);
36   b = pol_x(v);
37   s = gen_0;
38   for (i=lg(x)-1; i>1; i--)
39   {
40     GEN c = gel(x,i);
41     if (typ(c) == t_POL) c = RgX_RgXQ_eval(c, a, Pabs);
42     s = RgX_rem(gadd(c, gmul(b,s)), Pabs);
43   }
44   return gerepileupto(av, s);
45 }
46 GEN
rnfeltreltoabs(GEN rnf,GEN x)47 rnfeltreltoabs(GEN rnf,GEN x)
48 {
49   const char *f = "rnfeltreltoabs";
50   GEN pol;
51   checkrnf(rnf);
52   pol = rnf_get_polabs(rnf);
53   switch(typ(x))
54   {
55     case t_INT: return icopy(x);
56     case t_FRAC: return gcopy(x);
57     case t_POLMOD:
58       if (RgX_equal_var(gel(x,1), pol))
59       { /* already in 'abs' form, unless possibly if nf = Q */
60         if (rnf_get_nfdegree(rnf) == 1)
61         {
62           GEN y = gel(x,2);
63           pari_sp av = avma;
64           y = simplify_shallow(liftpol_shallow(y));
65           return gerepilecopy(av, mkpolmod(y, pol));
66         }
67         return gcopy(x);
68       }
69       x = polmod_nffix(f,rnf,x,0);
70       if (typ(x) == t_POLMOD) return rnfeltup(rnf,x);
71       retmkpolmod(eltreltoabs(rnf_get_map(rnf), x), ZX_copy(pol));
72     case t_POL:
73       if (varn(x) == rnf_get_nfvarn(rnf)) return rnfeltup(rnf,x);
74       retmkpolmod(eltreltoabs(rnf_get_map(rnf), x), ZX_copy(pol));
75   }
76   pari_err_TYPE(f,x);
77   return NULL;/*LCOV_EXCL_LINE*/
78 }
79 
80 GEN
eltabstorel_lift(GEN rnfeq,GEN P)81 eltabstorel_lift(GEN rnfeq, GEN P)
82 {
83   GEN k, T = gel(rnfeq,4), R = gel(rnfeq,5);
84   if (is_scalar_t(typ(P))) return P;
85   k = gel(rnfeq,3);
86   P = lift_shallow(P);
87   if (signe(k))
88     P = RgXQX_translate(P, deg1pol_shallow(k, gen_0, varn(T)), T);
89   P = RgXQX_rem(P, R, T);
90   return QXQX_to_mod_shallow(P, T);
91 }
92 /* rnfeq = [pol,a,k,T,R], P a t_POL or scalar
93  * Return Mod(P(x + k Mod(y, T(y))), pol(x)) */
94 GEN
eltabstorel(GEN rnfeq,GEN P)95 eltabstorel(GEN rnfeq, GEN P)
96 {
97   GEN T = gel(rnfeq,4), R = gel(rnfeq,5);
98   return mkpolmod(eltabstorel_lift(rnfeq,P), QXQX_to_mod_shallow(R,T));
99 }
100 GEN
rnfeltabstorel(GEN rnf,GEN x)101 rnfeltabstorel(GEN rnf,GEN x)
102 {
103   const char *f = "rnfeltabstorel";
104   pari_sp av = avma;
105   GEN pol, T, P, NF;
106   checkrnf(rnf);
107   T = rnf_get_nfpol(rnf);
108   P = rnf_get_pol(rnf);
109   pol = rnf_get_polabs(rnf);
110   switch(typ(x))
111   {
112     case t_INT: return icopy(x);
113     case t_FRAC: return gcopy(x);
114     case t_POLMOD:
115       if (RgX_equal_var(P, gel(x,1)))
116       {
117         x = polmod_nffix(f, rnf, x, 0);
118         P = QXQX_to_mod_shallow(P,T);
119         return gerepilecopy(av, mkpolmod(x,P));
120       }
121       if (RgX_equal_var(T, gel(x,1))) { x = Rg_nffix(f, T, x, 0); goto END; }
122       if (!RgX_equal_var(pol, gel(x,1))) pari_err_MODULUS(f, gel(x,1),pol);
123       x = gel(x,2); break;
124     case t_POL: break;
125     case t_COL:
126       NF = obj_check(rnf, rnf_NFABS);
127       if (!NF) pari_err_TYPE("rnfeltabstorel, apply nfinit(rnf)",x);
128       x = nf_to_scalar_or_alg(NF,x); break;
129     default:
130       pari_err_TYPE(f,x);
131       return NULL;/*LCOV_EXCL_LINE*/
132   }
133   switch(typ(x))
134   {
135     case t_INT: return icopy(x);
136     case t_FRAC: return gcopy(x);
137     case t_POL: break;
138     default: pari_err_TYPE(f, x);
139   }
140   RgX_check_QX(x,f);
141   if (varn(x) != varn(pol))
142   {
143     if (varn(x) == varn(T)) { x = Rg_nffix(f,T,x,0); goto END; }
144     pari_err_VAR(f, x,pol);
145   }
146   switch(lg(x))
147   {
148     case 2: set_avma(av); return gen_0;
149     case 3: return gerepilecopy(av, gel(x,2));
150   }
151 END:
152   return gerepilecopy(av, eltabstorel(rnf_get_map(rnf), x));
153 }
154 
155 /* x a t_VEC of rnf elements in 'alg' form (t_POL). Assume maximal rank or 0 */
156 static GEN
modulereltoabs(GEN rnf,GEN x)157 modulereltoabs(GEN rnf, GEN x)
158 {
159   GEN W=gel(x,1), I=gel(x,2), rnfeq = rnf_get_map(rnf), polabs = gel(rnfeq,1);
160   long i, j, k, m, N = lg(W)-1;
161   GEN zknf, dzknf, M;
162 
163   if (!N) return cgetg(1, t_VEC);
164   zknf = rnf_get_nfzk(rnf);
165   dzknf = gel(zknf,1);
166   m = rnf_get_nfdegree(rnf);
167   M = cgetg(N*m+1, t_VEC);
168   for (k=i=1; i<=N; i++)
169   {
170     GEN c0, cid, w = gel(W,i), id = gel(I,i);
171 
172     if (lg(id) == 1) continue; /* must be a t_MAT */
173     id = Q_primitive_part(id, &cid);
174     w = Q_primitive_part(eltreltoabs(rnfeq,w), &c0);
175     c0 = div_content(mul_content(c0,cid), dzknf);
176     if (typ(id) == t_INT)
177       for (j=1; j<=m; j++)
178       {
179         GEN z = RgX_rem(gmul(w, gel(zknf,j)), polabs);
180         if (c0) z = RgX_Rg_mul(z, c0);
181         gel(M,k++) = z;
182       }
183     else
184       for (j=1; j<=m; j++)
185       {
186         GEN c, z = Q_primitive_part(RgV_RgC_mul(zknf,gel(id,j)), &c);
187         z = RgX_rem(gmul(w, z), polabs);
188         c = mul_content(c, c0); if (c) z = RgX_Rg_mul(z, c);
189         gel(M,k++) = z;
190       }
191   }
192   setlg(M, k); return M;
193 }
194 
195 /* Z-basis for absolute maximal order: [NF.pol, NF.zk] */
196 GEN
rnf_zkabs(GEN rnf)197 rnf_zkabs(GEN rnf)
198 {
199   GEN d, v, M = modulereltoabs(rnf, rnf_get_zk(rnf));
200   GEN T = rnf_get_polabs(rnf);
201   long n = degpol(T);
202   M = Q_remove_denom(M, &d); /* t_VEC of t_POL */
203   if (d)
204   {
205     M = RgXV_to_RgM(M,n);
206     M = ZM_hnfmodall(M, d, hnf_MODID|hnf_CENTER);
207     M = RgM_Rg_div(M, d);
208   }
209   else
210     M = matid(n);
211   v = rnf_get_ramified_primes(rnf);
212   if (lg(v) == 1)
213   {
214     GEN D = gel(rnf_get_disc(rnf),1);
215     if (!isint1(D)) pari_err_TYPE("rnf_zkabs (old style rnf)", rnf);
216   }
217   v = shallowconcat(nf_get_ramified_primes(rnf_get_nf(rnf)), v);
218   return mkvec3(T, RgM_to_RgXV(M, varn(T)), ZV_sort_uniq(v));
219 }
220 
221 static GEN
mknfabs(GEN rnf,long prec)222 mknfabs(GEN rnf, long prec)
223 {
224   GEN NF;
225   if ((NF = obj_check(rnf,rnf_NFABS)))
226   { if (nf_get_prec(NF) < prec) NF = nfnewprec_shallow(NF,prec); }
227   else
228     NF = nfinit(rnf_zkabs(rnf), prec);
229   return NF;
230 }
231 
232 static GEN
mkupdown(GEN rnf)233 mkupdown(GEN rnf)
234 {
235   GEN NF = obj_check(rnf, rnf_NFABS), M, zknf, dzknf;
236   long i, l;
237   zknf = rnf_get_nfzk(rnf);
238   dzknf = gel(zknf,1); if (gequal1(dzknf)) dzknf = NULL;
239   l = lg(zknf); M = cgetg(l, t_MAT);
240   gel(M,1) = vec_ei(nf_get_degree(NF), 1);
241   for (i = 2; i < l; i++)
242   {
243     GEN c = poltobasis(NF, gel(zknf,i));
244     if (dzknf) c = gdiv(c, dzknf);
245     gel(M,i) = c;
246   }
247   return Qevproj_init(M);
248 }
249 GEN
rnf_build_nfabs(GEN rnf,long prec)250 rnf_build_nfabs(GEN rnf, long prec)
251 {
252   GEN NF = obj_checkbuild_prec(rnf, rnf_NFABS, &mknfabs, &nf_get_prec, prec);
253   (void)obj_checkbuild(rnf, rnf_MAPS, &mkupdown);
254   return NF;
255 }
256 
257 void
rnfcomplete(GEN rnf)258 rnfcomplete(GEN rnf)
259 { (void)rnf_build_nfabs(rnf, nf_get_prec(rnf_get_nf(rnf))); }
260 
261 GEN
nf_nfzk(GEN nf,GEN rnfeq)262 nf_nfzk(GEN nf, GEN rnfeq)
263 {
264   GEN pol = gel(rnfeq,1), a = gel(rnfeq,2);
265   return Q_primpart(QXV_QXQ_eval(nf_get_zkprimpart(nf), a, pol));
266 }
267 
268 static GEN
rnfdisc_get_T_i(GEN P,GEN * lim)269 rnfdisc_get_T_i(GEN P, GEN *lim)
270 {
271   *lim = NULL;
272   if (typ(P) == t_VEC && lg(P) == 3)
273   {
274     GEN L = gel(P,2);
275     long i, l;
276     *lim = L;
277     switch(typ(L))
278     {
279       case t_INT:
280         if (signe(L) <= 0) return NULL;
281         break;
282       case t_VEC: case t_COL:
283         l = lg(L);
284         for (i = 1; i < l; i++)
285         {
286           GEN p = gel(L,i);
287           if (typ(p) == t_INT)
288           { if (signe(p) <= 0) return NULL; }
289           else checkprid(p);
290         }
291         break;
292       default: return NULL;
293     }
294     P = gel(P,1);
295   }
296   return (typ(P) == t_POL)? P: NULL;
297 }
298 /* true nf */
299 GEN
rnfdisc_get_T(GEN nf,GEN P,GEN * lim)300 rnfdisc_get_T(GEN nf, GEN P, GEN *lim)
301 {
302   GEN T = rnfdisc_get_T_i(P, lim);
303   if (!T) pari_err_TYPE("rnfdisc",P);
304   return RgX_nffix("rnfdisc", nf_get_pol(nf), T, 1);
305 }
306 
307 GEN
rnfpseudobasis(GEN nf,GEN pol)308 rnfpseudobasis(GEN nf, GEN pol)
309 {
310   pari_sp av = avma;
311   GEN D, z, lim;
312   nf = checknf(nf);
313   pol = rnfdisc_get_T(nf, pol, &lim);
314   z = rnfallbase(nf, pol, lim, NULL, &D, NULL, NULL);
315   return gerepilecopy(av, shallowconcat(z,D));
316 }
317 
318 GEN
rnfinit0(GEN nf,GEN T,long flag)319 rnfinit0(GEN nf, GEN T, long flag)
320 {
321   pari_sp av = avma;
322   GEN lim, bas, D, f, B, DKP, rnfeq, rnf = obj_init(11, 2);
323   nf = checknf(nf);
324   T = rnfdisc_get_T(nf, T, &lim);
325   gel(rnf,11) = rnfeq = nf_rnfeq(nf,T);
326   gel(rnf,2) = nf_nfzk(nf, rnfeq);
327   bas = rnfallbase(nf, T, lim, rnf, &D, &f, &DKP);
328   B = matbasistoalg(nf,gel(bas,1));
329   gel(bas,1) = lift_if_rational( RgM_to_RgXV(B,varn(T)) );
330   gel(rnf,1) = T;
331   gel(rnf,3) = D;
332   gel(rnf,4) = f;
333   gel(rnf,5) = DKP;
334   gel(rnf,6) = cgetg(1, t_VEC); /* dummy */
335   gel(rnf,7) = bas;
336   gel(rnf,8) = lift_if_rational( RgM_inv_upper(B) );
337   gel(rnf,9) = typ(f) == t_INT? powiu(f, nf_get_degree(nf))
338                               : RgM_det_triangular(f);
339   gel(rnf,10)= nf;
340   rnf = gerepilecopy(av, rnf);
341   if (flag) rnfcomplete(rnf);
342   return rnf;
343 }
344 GEN
rnfinit(GEN nf,GEN T)345 rnfinit(GEN nf, GEN T) { return rnfinit0(nf,T,0); }
346 
347 GEN
rnfeltup0(GEN rnf,GEN x,long flag)348 rnfeltup0(GEN rnf, GEN x, long flag)
349 {
350   pari_sp av = avma;
351   GEN zknf, nf, NF, POL;
352   long tx = typ(x);
353   checkrnf(rnf);
354   if (flag) rnfcomplete(rnf);
355   NF = obj_check(rnf,rnf_NFABS);
356   POL = rnf_get_polabs(rnf);
357   if (tx == t_POLMOD && RgX_equal_var(gel(x,1), POL))
358   {
359     if (flag) x = nf_to_scalar_or_basis(NF,x);
360     return gerepilecopy(av, x);
361   }
362   nf = rnf_get_nf(rnf);
363   if (NF && tx == t_COL && lg(x)-1 == degpol(POL) && nf_get_degree(rnf) > 1)
364   {
365     x = flag? nf_to_scalar_or_basis(NF,x)
366             : mkpolmod(nf_to_scalar_or_alg(NF,x), POL);
367     return gerepilecopy(av, x);
368   }
369   if (NF)
370   {
371     GEN d, proj;
372     x = nf_to_scalar_or_basis(nf, x);
373     if (typ(x) != t_COL) return gerepilecopy(av, x);
374     proj = obj_check(rnf,rnf_MAPS);
375     x = Q_remove_denom(x,&d);
376     x = ZM_ZC_mul(gel(proj,1), x);
377     if (d) x = gdiv(x,d);
378     if (!flag) x = basistoalg(NF,x);
379   }
380   else
381   {
382     zknf = rnf_get_nfzk(rnf);
383     x = nfeltup(nf, x, zknf);
384     if (typ(x) == t_POL) x = mkpolmod(x, POL);
385   }
386   return gerepilecopy(av, x);
387 }
388 GEN
rnfeltup(GEN rnf,GEN x)389 rnfeltup(GEN rnf, GEN x) { return rnfeltup0(rnf,x,0); }
390 
391 GEN
nfeltup(GEN nf,GEN x,GEN zknf)392 nfeltup(GEN nf, GEN x, GEN zknf)
393 {
394   GEN c, dzknf = gel(zknf,1);
395   x = nf_to_scalar_or_basis(nf, x);
396   if (typ(x) != t_COL) return x;
397   x = Q_primitive_part(x, &c);
398   if (!RgV_is_ZV(x)) pari_err_TYPE("rnfeltup", x);
399   if (gequal1(dzknf)) dzknf = NULL;
400   c = div_content(c, dzknf);
401   x = RgV_RgC_mul(zknf, x); if (c) x = RgX_Rg_mul(x, c);
402   return x;
403 }
404 
405 static void
fail(const char * f,GEN x)406 fail(const char *f, GEN x)
407 { pari_err_DOMAIN(f,"element","not in", strtoGENstr("the base field"),x); }
408 /* x t_COL of length degabs */
409 static GEN
eltdown(GEN rnf,GEN x,long flag)410 eltdown(GEN rnf, GEN x, long flag)
411 {
412   GEN z,y, d, proj = obj_check(rnf,rnf_MAPS);
413   GEN M= gel(proj,1), iM=gel(proj,2), diM=gel(proj,3), perm=gel(proj,4);
414   x = Q_remove_denom(x,&d);
415   if (!RgV_is_ZV(x)) pari_err_TYPE("rnfeltdown", x);
416   y = ZM_ZC_mul(iM, vecpermute(x, perm));
417   z = ZM_ZC_mul(M,y);
418   if (!isint1(diM)) z = ZC_Z_mul(z,diM);
419   if (!ZV_equal(z,x)) fail("rnfeltdown",x);
420 
421   d = mul_denom(d, diM);
422   if (d) y = gdiv(y,d);
423   if (!flag) y = basistoalg(rnf_get_nf(rnf), y);
424   return y;
425 }
426 GEN
rnfeltdown0(GEN rnf,GEN x,long flag)427 rnfeltdown0(GEN rnf, GEN x, long flag)
428 {
429   const char *f = "rnfeltdown";
430   pari_sp av = avma;
431   GEN z, T, NF, nf;
432   long v;
433 
434   checkrnf(rnf);
435   NF = obj_check(rnf,rnf_NFABS);
436   nf = rnf_get_nf(rnf);
437   T = nf_get_pol(nf);
438   v = varn(T);
439   switch(typ(x))
440   { /* directly belonging to base field ? */
441     case t_INT: return icopy(x);
442     case t_FRAC:return gcopy(x);
443     case t_POLMOD:
444       if (RgX_equal_var(gel(x,1), rnf_get_polabs(rnf)))
445       {
446         if (degpol(T) == 1)
447         {
448           x = simplify_shallow(liftpol_shallow(gel(x,2)));
449           if (typ(x) != t_POL) return gerepilecopy(av,x);
450         }
451         break;
452       }
453       x = polmod_nffix(f,rnf,x,0);
454       /* x was defined mod the relative polynomial & non constant => fail */
455       if (typ(x) == t_POL) fail(f,x);
456       if (flag) x = nf_to_scalar_or_basis(nf,x);
457       return gerepilecopy(av, x);
458 
459     case t_POL:
460       if (varn(x) != v) break;
461       x = Rg_nffix(f,T,x,0);
462       if (flag) x = nf_to_scalar_or_basis(nf,x);
463       return gerepilecopy(av, x);
464     case t_COL:
465     {
466       long n = lg(x)-1;
467       if (n == degpol(T) && RgV_is_QV(x))
468       {
469         if (RgV_isscalar(x)) return gcopy(gel(x,1));
470         if (!flag) return gcopy(x);
471         return basistoalg(nf,x);
472       }
473       if (NF) break;
474     }
475     default: pari_err_TYPE(f, x);
476   }
477   /* x defined mod the absolute equation */
478   if (NF)
479   {
480     x = nf_to_scalar_or_basis(NF, x);
481     if (typ(x) == t_COL) x = eltdown(rnf,x,flag);
482     return gerepilecopy(av, x);
483   }
484   z = rnfeltabstorel(rnf,x);
485   switch(typ(z))
486   {
487     case t_INT:
488     case t_FRAC: return z;
489   }
490   /* typ(z) = t_POLMOD, varn of both components is rnf_get_varn(rnf) */
491   z = gel(z,2);
492   if (typ(z) == t_POL)
493   {
494     if (lg(z) != 3) fail(f,x);
495     z = gel(z,2);
496   }
497   return gerepilecopy(av, z);
498 }
499 GEN
rnfeltdown(GEN rnf,GEN x)500 rnfeltdown(GEN rnf, GEN x) { return rnfeltdown0(rnf,x,0); }
501 
502 /* vector of rnf elt -> matrix of nf elts */
503 static GEN
rnfV_to_nfM(GEN rnf,GEN x)504 rnfV_to_nfM(GEN rnf, GEN x)
505 {
506   long i, l = lg(x);
507   GEN y = cgetg(l, t_MAT);
508   for (i = 1; i < l; i++) gel(y,i) = rnfalgtobasis(rnf,gel(x,i));
509   return y;
510 }
511 
512 static GEN
rnfprincipaltohnf(GEN rnf,GEN x)513 rnfprincipaltohnf(GEN rnf,GEN x)
514 {
515   pari_sp av = avma;
516   GEN bas = rnf_get_zk(rnf), nf = rnf_get_nf(rnf);
517   x = rnfbasistoalg(rnf,x);
518   x = gmul(x, gmodulo(gel(bas,1), rnf_get_pol(rnf)));
519   return gerepileupto(av, nfhnf(nf, mkvec2(rnfV_to_nfM(rnf,x), gel(bas,2))));
520 }
521 
522 /* pseudo-basis for the 0 ideal */
523 static GEN
rnfideal0(void)524 rnfideal0(void) { retmkvec2(cgetg(1,t_MAT),cgetg(1,t_VEC)); }
525 
526 GEN
rnfidealhnf(GEN rnf,GEN x)527 rnfidealhnf(GEN rnf, GEN x)
528 {
529   GEN z, nf, bas;
530 
531   checkrnf(rnf); nf = rnf_get_nf(rnf);
532   switch(typ(x))
533   {
534     case t_INT: case t_FRAC:
535       if (isintzero(x)) return rnfideal0();
536       bas = rnf_get_zk(rnf); z = cgetg(3,t_VEC);
537       gel(z,1) = matid(rnf_get_degree(rnf));
538       gel(z,2) = gmul(x, gel(bas,2)); return z;
539 
540     case t_VEC:
541       if (lg(x) == 3 && typ(gel(x,1)) == t_MAT) return nfhnf(nf, x);
542     case t_MAT:
543       return rnfidealabstorel(rnf, x);
544 
545     case t_POLMOD: case t_POL: case t_COL:
546       return rnfprincipaltohnf(rnf,x);
547   }
548   pari_err_TYPE("rnfidealhnf",x);
549   return NULL; /* LCOV_EXCL_LINE */
550 }
551 
552 static GEN
prodidnorm(GEN nf,GEN I)553 prodidnorm(GEN nf, GEN I)
554 {
555   long i, l = lg(I);
556   GEN z;
557   if (l == 1) return gen_1;
558   z = idealnorm(nf, gel(I,1));
559   for (i=2; i<l; i++) z = gmul(z, idealnorm(nf, gel(I,i)));
560   return z;
561 }
562 
563 GEN
rnfidealnormrel(GEN rnf,GEN id)564 rnfidealnormrel(GEN rnf, GEN id)
565 {
566   pari_sp av = avma;
567   GEN nf, z = gel(rnfidealhnf(rnf,id), 2);
568   if (lg(z) == 1) return cgetg(1, t_MAT);
569   nf = rnf_get_nf(rnf); z = idealprod(nf, z);
570   return gerepileupto(av, idealmul(nf,z, rnf_get_index(rnf)));
571 }
572 
573 GEN
rnfidealnormabs(GEN rnf,GEN id)574 rnfidealnormabs(GEN rnf, GEN id)
575 {
576   pari_sp av = avma;
577   GEN nf, z = gel(rnfidealhnf(rnf,id), 2);
578   if (lg(z) == 1) return gen_0;
579   nf = rnf_get_nf(rnf); z = prodidnorm(nf, z);
580   return gerepileupto(av, gmul(z, gel(rnf,9)));
581 }
582 
583 static GEN
rnfidealreltoabs_i(GEN rnf,GEN x)584 rnfidealreltoabs_i(GEN rnf, GEN x)
585 {
586   long i, l;
587   GEN w;
588   x = rnfidealhnf(rnf,x);
589   w = gel(x,1); l = lg(w); settyp(w, t_VEC);
590   for (i=1; i<l; i++) gel(w,i) = lift_shallow( rnfbasistoalg(rnf, gel(w,i)) );
591   return modulereltoabs(rnf, x);
592 }
593 GEN
rnfidealreltoabs(GEN rnf,GEN x)594 rnfidealreltoabs(GEN rnf, GEN x)
595 {
596   pari_sp av = avma;
597   return gerepilecopy(av, rnfidealreltoabs_i(rnf,x));
598 }
599 GEN
rnfidealreltoabs0(GEN rnf,GEN x,long flag)600 rnfidealreltoabs0(GEN rnf, GEN x, long flag)
601 {
602   pari_sp av = avma;
603   long i, l;
604   GEN NF;
605 
606   x = rnfidealreltoabs_i(rnf, x);
607   if (!flag) return gerepilecopy(av,x);
608   rnfcomplete(rnf);
609   NF = obj_check(rnf,rnf_NFABS);
610   l = lg(x); settyp(x, t_MAT);
611   for (i=1; i<l; i++) gel(x,i) = algtobasis(NF, gel(x,i));
612   return gerepileupto(av, idealhnf(NF,x));
613 }
614 
615 GEN
rnfidealabstorel(GEN rnf,GEN x)616 rnfidealabstorel(GEN rnf, GEN x)
617 {
618   long n, N, j, tx = typ(x);
619   pari_sp av = avma;
620   GEN A, I, invbas;
621 
622   checkrnf(rnf);
623   invbas = rnf_get_invzk(rnf);
624   if (tx != t_VEC && tx != t_MAT) pari_err_TYPE("rnfidealabstorel",x);
625   N = lg(x)-1;
626   if (N != rnf_get_absdegree(rnf))
627   {
628     if (!N) return rnfideal0();
629     pari_err_DIM("rnfidealabstorel");
630   }
631   n = rnf_get_degree(rnf);
632   A = cgetg(N+1,t_MAT);
633   I = cgetg(N+1,t_VEC);
634   for (j=1; j<=N; j++)
635   {
636     GEN t = lift_shallow( rnfeltabstorel(rnf, gel(x,j)) );
637     if (typ(t) == t_POL)
638       t = RgM_RgX_mul(invbas, t);
639     else
640       t = scalarcol_shallow(t, n);
641     gel(A,j) = t;
642     gel(I,j) = gen_1;
643   }
644   return gerepileupto(av, nfhnf(rnf_get_nf(rnf), mkvec2(A,I)));
645 }
646 
647 GEN
rnfidealdown(GEN rnf,GEN x)648 rnfidealdown(GEN rnf,GEN x)
649 {
650   pari_sp av = avma;
651   GEN I;
652   if (typ(x) == t_MAT)
653   {
654     GEN d;
655     x = Q_remove_denom(x,&d);
656     if (RgM_is_ZM(x))
657     {
658       GEN NF = obj_check(rnf,rnf_NFABS);
659       if (NF)
660       {
661         GEN z, proj = obj_check(rnf,rnf_MAPS), ZK = gel(proj,1);
662         long i, lz, l;
663         x = idealhnf(NF,x);
664         if (lg(x) == 1) { set_avma(av); return cgetg(1,t_MAT); }
665         z = ZM_lll(shallowconcat(ZK,x), 0.99, LLL_KER);
666         lz = lg(z); l = lg(ZK);
667         for (i = 1; i < lz; i++) setlg(gel(z,i), l);
668         z = ZM_hnfmodid(z, gcoeff(x,1,1));
669         if (d) z = gdiv(z,d);
670         return gerepileupto(av, z);
671       }
672     }
673   }
674   x = rnfidealhnf(rnf,x); I = gel(x,2);
675   if (lg(I) == 1) { set_avma(av); return cgetg(1,t_MAT); }
676   return gerepilecopy(av, gel(I,1));
677 }
678 
679 /* lift ideal x to the relative extension, returns a Z-basis */
680 GEN
rnfidealup(GEN rnf,GEN x)681 rnfidealup(GEN rnf,GEN x)
682 {
683   pari_sp av = avma;
684   long i, n;
685   GEN nf, bas, bas2, I, x2, dx;
686 
687   checkrnf(rnf); nf = rnf_get_nf(rnf);
688   n = rnf_get_degree(rnf);
689   bas = rnf_get_zk(rnf); bas2 = gel(bas,2);
690 
691   (void)idealtyp(&x, &I); /* I is junk */
692   x = Q_remove_denom(x, &dx);
693   x2 = idealtwoelt(nf,x);
694   I = cgetg(n+1,t_VEC);
695   for (i=1; i<=n; i++)
696   {
697     GEN c = gel(bas2,i), d;
698     if (typ(c) == t_MAT)
699     {
700       c = Q_remove_denom(c,&d);
701       d = mul_denom(d, dx);
702       c = idealHNF_mul(nf,c,x2);
703     }
704     else
705     {
706       c = idealmul(nf,c,x);
707       d = dx;
708     }
709     if (d) c = gdiv(c,d);
710     gel(I,i) = c;
711   }
712   return gerepilecopy(av, modulereltoabs(rnf, mkvec2(gel(bas,1), I)));
713 }
714 GEN
rnfidealup0(GEN rnf,GEN x,long flag)715 rnfidealup0(GEN rnf,GEN x, long flag)
716 {
717   pari_sp av = avma;
718   GEN NF, nf, proj, d, x2;
719 
720   if (!flag) return rnfidealup(rnf,x);
721   checkrnf(rnf); nf = rnf_get_nf(rnf);
722   rnfcomplete(rnf);
723   proj = obj_check(rnf,rnf_MAPS);
724   NF = obj_check(rnf,rnf_NFABS);
725 
726   (void)idealtyp(&x, &d); /* d is junk */
727   x2 = idealtwoelt(nf,x);
728   x2 = Q_remove_denom(x2,&d);
729   if (typ(gel(x2,2)) == t_COL) gel(x2,2) = ZM_ZC_mul(gel(proj,1),gel(x2,2));
730   x2 = idealhnf_two(NF, x2);
731   if (d) x2 = gdiv(x2,d);
732   return gerepileupto(av, x2);
733 }
734 
735 /* x a relative HNF => vector of 2 generators (relative polmods) */
736 GEN
rnfidealtwoelement(GEN rnf,GEN x)737 rnfidealtwoelement(GEN rnf, GEN x)
738 {
739   pari_sp av = avma;
740   GEN y, cy, z, NF;
741 
742   y = rnfidealreltoabs_i(rnf,x);
743   rnfcomplete(rnf);
744   NF = obj_check(rnf,rnf_NFABS);
745   y = matalgtobasis(NF, y); settyp(y, t_MAT);
746   y = Q_primitive_part(y, &cy);
747   y = ZM_hnf(y);
748   if (lg(y) == 1) { set_avma(av); return mkvec2(gen_0, gen_0); }
749   y = idealtwoelt(NF, y);
750   if (cy) y = RgV_Rg_mul(y, cy);
751   z = gel(y,2);
752   if (typ(z) == t_COL) z = rnfeltabstorel(rnf, nf_to_scalar_or_alg(NF, z));
753   return gerepilecopy(av, mkvec2(gel(y,1), z));
754 }
755 
756 GEN
rnfidealmul(GEN rnf,GEN x,GEN y)757 rnfidealmul(GEN rnf,GEN x,GEN y)
758 {
759   pari_sp av = avma;
760   GEN nf, z, x1, x2, p1, p2, bas;
761 
762   y = rnfidealtwoelement(rnf,y);
763   if (isintzero(gel(y,1))) { set_avma(av); return rnfideal0(); }
764   nf = rnf_get_nf(rnf);
765   bas = rnf_get_zk(rnf);
766   x = rnfidealhnf(rnf,x);
767   x1 = gmodulo(gmul(gel(bas,1), matbasistoalg(nf,gel(x,1))), rnf_get_pol(rnf));
768   x2 = gel(x,2);
769   p1 = gmul(gel(y,1), gel(x,1));
770   p2 = rnfV_to_nfM(rnf, gmul(gel(y,2), x1));
771   z = mkvec2(shallowconcat(p1, p2), shallowconcat(x2, x2));
772   return gerepileupto(av, nfhnf(nf,z));
773 }
774 
775 /* prK wrt NF ~ Q[x]/(polabs) */
776 static GEN
rnfidealprimedec_1(GEN rnf,GEN SL,GEN prK)777 rnfidealprimedec_1(GEN rnf, GEN SL, GEN prK)
778 {
779   GEN v, piL, piK = pr_get_gen(prK);
780   long i, c, l;
781   if (pr_is_inert(prK)) return SL;
782   piL = rnfeltup0(rnf, piK, 1);
783   v = cgetg_copy(SL, &l);
784   for (i = c = 1; i < l; i++)
785   {
786     GEN P = gel(SL,i);
787     if (ZC_prdvd(piL, P)) gel(v,c++) = P;
788   }
789   setlg(v, c); return v;
790 }
791 GEN
rnfidealprimedec(GEN rnf,GEN pr)792 rnfidealprimedec(GEN rnf, GEN pr)
793 {
794   pari_sp av = avma;
795   GEN p, z, NF, nf, SL;
796   checkrnf(rnf);
797   rnfcomplete(rnf);
798   NF = obj_check(rnf,rnf_NFABS);
799   nf = rnf_get_nf(rnf);
800   if (typ(pr) == t_INT) { p = pr; pr = NULL; }
801   else { checkprid(pr); p = pr_get_p(pr); }
802   SL = idealprimedec(NF, p);
803   if (pr) z = rnfidealprimedec_1(rnf, SL, pr);
804   else
805   {
806     GEN vK = idealprimedec(nf, p), vL;
807     long l = lg(vK), i;
808     vL = cgetg(l, t_VEC);
809     for (i = 1; i < l; i++) gel(vL,i) = rnfidealprimedec_1(rnf, SL, gel(vK,i));
810     z = mkvec2(vK, vL);
811   }
812   return gerepilecopy(av, z);
813 }
814 
815 GEN
rnfidealfactor(GEN rnf,GEN x)816 rnfidealfactor(GEN rnf, GEN x)
817 {
818   pari_sp av = avma;
819   GEN NF;
820   checkrnf(rnf);
821   rnfcomplete(rnf);
822   NF = obj_check(rnf,rnf_NFABS);
823   return gerepileupto(av, idealfactor(NF, rnfidealreltoabs0(rnf, x, 1)));
824 }
825 
826 GEN
rnfequationall(GEN A,GEN B,long * pk,GEN * pLPRS)827 rnfequationall(GEN A, GEN B, long *pk, GEN *pLPRS)
828 {
829   long lA, lB;
830   GEN nf, C;
831 
832   A = get_nfpol(A, &nf); lA = lg(A);
833   if (!nf) {
834     if (lA<=3) pari_err_CONSTPOL("rnfequation");
835     RgX_check_ZX(A,"rnfequation");
836   }
837   B = RgX_nffix("rnfequation", A,B,1); lB = lg(B);
838   if (lB<=3) pari_err_CONSTPOL("rnfequation");
839   B = Q_primpart(B);
840 
841   if (!nfissquarefree(A,B))
842     pari_err_DOMAIN("rnfequation","issquarefree(B)","=",gen_0,B);
843 
844   *pk = 0; C = ZX_ZXY_resultant_all(A, B, pk, pLPRS);
845   if (signe(leading_coeff(C)) < 0) C = ZX_neg(C);
846   *pk = -*pk; return Q_primpart(C);
847 }
848 
849 GEN
rnfequation0(GEN A,GEN B,long flall)850 rnfequation0(GEN A, GEN B, long flall)
851 {
852   pari_sp av = avma;
853   GEN LPRS, C;
854   long k;
855 
856   C = rnfequationall(A, B, &k, flall? &LPRS: NULL);
857   if (flall)
858   { /* a,b,c root of A,B,C = compositum, c = b + k a */
859     GEN a, mH0 = RgX_neg(gel(LPRS,1)), H1 = gel(LPRS,2);
860     a = QXQ_div(mH0, H1, C);
861     C = mkvec3(C, mkpolmod(a, C), stoi(k));
862   }
863   return gerepilecopy(av, C);
864 }
865 GEN
rnfequation(GEN nf,GEN pol)866 rnfequation(GEN nf, GEN pol) { return rnfequation0(nf,pol,0); }
867 GEN
rnfequation2(GEN nf,GEN pol)868 rnfequation2(GEN nf, GEN pol) { return rnfequation0(nf,pol,1); }
869 GEN
nf_rnfeq(GEN nf,GEN R)870 nf_rnfeq(GEN nf, GEN R)
871 {
872   GEN pol, a, k, junk, eq;
873   R = liftpol_shallow(R);
874   eq = rnfequation2(nf, R);
875   pol = gel(eq,1);
876   a = gel(eq,2); if (typ(a) == t_POLMOD) a = gel(a,2);
877   k = gel(eq,3);
878   return mkvec5(pol,a,k,get_nfpol(nf, &junk),R);
879 }
880 /* only allow abstorel */
881 GEN
nf_rnfeqsimple(GEN nf,GEN R)882 nf_rnfeqsimple(GEN nf, GEN R)
883 {
884   long sa;
885   GEN junk, pol;
886   R = liftpol_shallow(R);
887   pol = rnfequationall(nf, R, &sa, NULL);
888   return mkvec5(pol,gen_0/*dummy*/,stoi(sa),get_nfpol(nf, &junk),R);
889 }
890 
891 /*******************************************************************/
892 /*                                                                 */
893 /*                            RELATIVE LLL                         */
894 /*                                                                 */
895 /*******************************************************************/
896 static GEN
nftau(long r1,GEN x)897 nftau(long r1, GEN x)
898 {
899   long i, l = lg(x);
900   GEN s = r1? gel(x,1): gmul2n(real_i(gel(x,1)),1);
901   for (i=2; i<=r1; i++) s = gadd(s, gel(x,i));
902   for (   ; i < l; i++) s = gadd(s, gmul2n(real_i(gel(x,i)),1));
903   return s;
904 }
905 
906 static GEN
initmat(long l)907 initmat(long l)
908 {
909   GEN x = cgetg(l, t_MAT);
910   long i;
911   for (i = 1; i < l; i++) gel(x,i) = cgetg(l, t_COL);
912   return x;
913 }
914 
915 static GEN
nftocomplex(GEN nf,GEN x)916 nftocomplex(GEN nf, GEN x)
917 {
918   GEN M = nf_get_M(nf);
919   x = nf_to_scalar_or_basis(nf,x);
920   if (typ(x) != t_COL) return const_col(nbrows(M), x);
921   return RgM_RgC_mul(M, x);
922 }
923 /* assume x a square t_MAT, return a t_VEC of embeddings of its columns */
924 static GEN
mattocomplex(GEN nf,GEN x)925 mattocomplex(GEN nf, GEN x)
926 {
927   long i,j, l = lg(x);
928   GEN v = cgetg(l, t_VEC);
929   for (j=1; j<l; j++)
930   {
931     GEN c = gel(x,j), b = cgetg(l, t_MAT);
932     for (i=1; i<l; i++) gel(b,i) = nftocomplex(nf, gel(c,i));
933     b = shallowtrans(b); settyp(b, t_COL);
934     gel(v,j) = b;
935   }
936   return v;
937 }
938 
939 static GEN
nf_all_roots(GEN nf,GEN x,long prec)940 nf_all_roots(GEN nf, GEN x, long prec)
941 {
942   long i, j, l = lg(x), ru = lg(nf_get_roots(nf));
943   GEN y = cgetg(l, t_POL), v, z;
944 
945   x = RgX_to_nfX(nf, x);
946   y[1] = x[1];
947   for (i=2; i<l; i++) gel(y,i) = nftocomplex(nf, gel(x,i));
948   i = gprecision(y); if (i && i <= 3) return NULL;
949 
950   v = cgetg(ru, t_VEC);
951   z = cgetg(l, t_POL); z[1] = x[1];
952   for (i=1; i<ru; i++)
953   {
954     for (j = 2; j < l; j++) gel(z,j) = gmael(y,j,i);
955     gel(v,i) = cleanroots(z, prec);
956   }
957   return v;
958 }
959 
960 static GEN
rnfscal(GEN m,GEN x,GEN y)961 rnfscal(GEN m, GEN x, GEN y)
962 {
963   long i, l = lg(m);
964   GEN z = cgetg(l, t_COL);
965   for (i = 1; i < l; i++)
966     gel(z,i) = gmul(conj_i(shallowtrans(gel(x,i))), gmul(gel(m,i), gel(y,i)));
967   return z;
968 }
969 
970 /* x ideal in HNF */
971 static GEN
findmin(GEN nf,GEN x,GEN muf)972 findmin(GEN nf, GEN x, GEN muf)
973 {
974   pari_sp av = avma;
975   long e;
976   GEN cx, y, m, M = nf_get_M(nf);
977 
978   x = Q_primitive_part(x, &cx);
979   if (gequal1(gcoeff(x,1,1))) y = M;
980   else
981   {
982     GEN G = nf_get_G(nf);
983     m = lllfp(RgM_mul(G,x), 0.75, 0);
984     if (typ(m) != t_MAT)
985     {
986       x = ZM_lll(x, 0.75, LLL_INPLACE);
987       m = lllfp(RgM_mul(G,x), 0.75, 0);
988       if (typ(m) != t_MAT) pari_err_PREC("rnflllgram");
989     }
990     x = ZM_mul(x, m);
991     y = RgM_mul(M, x);
992   }
993   m = RgM_solve_realimag(y, muf);
994   if (!m) return NULL; /* precision problem */
995   if (cx) m = RgC_Rg_div(m, cx);
996   m = grndtoi(m, &e);
997   if (e >= 0) return NULL; /* precision problem */
998   m = ZM_ZC_mul(x, m);
999   if (cx) m = ZC_Q_mul(m, cx);
1000   return gerepileupto(av, m);
1001 }
1002 
1003 static int
RED(long k,long l,GEN U,GEN mu,GEN MC,GEN nf,GEN I,GEN * Ik_inv)1004 RED(long k, long l, GEN U, GEN mu, GEN MC, GEN nf, GEN I, GEN *Ik_inv)
1005 {
1006   GEN x, xc, ideal;
1007   long i;
1008 
1009   if (!*Ik_inv) *Ik_inv = idealinv(nf, gel(I,k));
1010   ideal = idealmul(nf,gel(I,l), *Ik_inv);
1011   x = findmin(nf, ideal, gcoeff(mu,k,l));
1012   if (!x) return 0;
1013   if (gequal0(x)) return 1;
1014 
1015   xc = nftocomplex(nf,x);
1016   gel(MC,k) = gsub(gel(MC,k), vecmul(xc,gel(MC,l)));
1017   gel(U,k) = gsub(gel(U,k), gmul(coltoalg(nf,x), gel(U,l)));
1018   gcoeff(mu,k,l) = gsub(gcoeff(mu,k,l), xc);
1019   for (i=1; i<l; i++)
1020     gcoeff(mu,k,i) = gsub(gcoeff(mu,k,i), vecmul(xc,gcoeff(mu,l,i)));
1021   return 1;
1022 }
1023 
1024 static int
check_0(GEN B)1025 check_0(GEN B)
1026 {
1027   long i, l = lg(B);
1028   for (i = 1; i < l; i++)
1029     if (gsigne(gel(B,i)) <= 0) return 1;
1030   return 0;
1031 }
1032 
1033 static int
do_SWAP(GEN I,GEN MC,GEN MCS,GEN h,GEN mu,GEN B,long kmax,long k,const long alpha,long r1)1034 do_SWAP(GEN I, GEN MC, GEN MCS, GEN h, GEN mu, GEN B, long kmax, long k,
1035         const long alpha, long r1)
1036 {
1037   GEN p1, p2, muf, mufc, Bf, temp;
1038   long i, j;
1039 
1040   p1 = nftau(r1, gadd(gel(B,k),
1041                       gmul(gnorml2(gcoeff(mu,k,k-1)), gel(B,k-1))));
1042   p2 = nftau(r1, gel(B,k-1));
1043   if (gcmp(gmulsg(alpha,p1), gmulsg(alpha-1,p2)) > 0) return 0;
1044 
1045   swap(gel(MC,k-1),gel(MC,k));
1046   swap(gel(h,k-1), gel(h,k));
1047   swap(gel(I,k-1), gel(I,k));
1048   for (j=1; j<=k-2; j++) swap(gcoeff(mu,k-1,j),gcoeff(mu,k,j));
1049   muf = gcoeff(mu,k,k-1);
1050   mufc = conj_i(muf);
1051   Bf = gadd(gel(B,k), vecmul(real_i(vecmul(muf,mufc)), gel(B,k-1)));
1052   if (check_0(Bf)) return 1; /* precision problem */
1053 
1054   p1 = vecdiv(gel(B,k-1),Bf);
1055   gcoeff(mu,k,k-1) = vecmul(mufc,p1);
1056   temp = gel(MCS,k-1);
1057   gel(MCS,k-1) = gadd(gel(MCS,k), vecmul(muf,gel(MCS,k-1)));
1058   gel(MCS,k) = gsub(vecmul(vecdiv(gel(B,k),Bf), temp),
1059                     vecmul(gcoeff(mu,k,k-1), gel(MCS,k)));
1060   gel(B,k) = vecmul(gel(B,k),p1);
1061   gel(B,k-1) = Bf;
1062   for (i=k+1; i<=kmax; i++)
1063   {
1064     temp = gcoeff(mu,i,k);
1065     gcoeff(mu,i,k) = gsub(gcoeff(mu,i,k-1), vecmul(muf, gcoeff(mu,i,k)));
1066     gcoeff(mu,i,k-1) = gadd(temp, vecmul(gcoeff(mu,k,k-1),gcoeff(mu,i,k)));
1067   }
1068   return 1;
1069 }
1070 
1071 static GEN
rel_T2(GEN nf,GEN pol,long lx,long prec)1072 rel_T2(GEN nf, GEN pol, long lx, long prec)
1073 {
1074   long ru, i, j, k, l;
1075   GEN T2, s, unro, roorder, powreorder;
1076 
1077   roorder = nf_all_roots(nf, pol, prec);
1078   if (!roorder) return NULL;
1079   ru = lg(roorder);
1080   unro = cgetg(lx,t_COL); for (i=1; i<lx; i++) gel(unro,i) = gen_1;
1081   powreorder = cgetg(lx,t_MAT); gel(powreorder,1) = unro;
1082   T2 = cgetg(ru, t_VEC);
1083   for (i = 1; i < ru; i++)
1084   {
1085     GEN ro = gel(roorder,i);
1086     GEN m = initmat(lx);
1087     for (k=2; k<lx; k++)
1088     {
1089       GEN c = cgetg(lx, t_COL); gel(powreorder,k) = c;
1090       for (j=1; j < lx; j++)
1091         gel(c,j) = gmul(gel(ro,j), gmael(powreorder,k-1,j));
1092     }
1093     for (l = 1; l < lx; l++)
1094       for (k = 1; k <= l; k++)
1095       {
1096         s = gen_0;
1097         for (j = 1; j < lx; j++)
1098           s = gadd(s, gmul(conj_i(gmael(powreorder,k,j)),
1099                                   gmael(powreorder,l,j)));
1100         if (l == k)
1101           gcoeff(m, l, l) = real_i(s);
1102         else
1103         {
1104           gcoeff(m, k, l) = s;
1105           gcoeff(m, l, k) = conj_i(s);
1106         }
1107       }
1108     gel(T2,i) = m;
1109   }
1110   return T2;
1111 }
1112 
1113 /* given a base field nf (e.g main variable y), a polynomial pol with
1114  * coefficients in nf    (e.g main variable x), and an order as output
1115  * by rnfpseudobasis, outputs a reduced order. */
1116 GEN
rnflllgram(GEN nf,GEN pol,GEN order,long prec)1117 rnflllgram(GEN nf, GEN pol, GEN order,long prec)
1118 {
1119   pari_sp av = avma;
1120   long j, k, l, kmax, r1, lx, count = 0;
1121   GEN M, I, h, H, mth, MC, MPOL, MCS, B, mu;
1122   const long alpha = 10, MAX_COUNT = 4;
1123 
1124   nf = checknf(nf); r1 = nf_get_r1(nf);
1125   check_ZKmodule(order, "rnflllgram");
1126   M = gel(order,1);
1127   I = gel(order,2); lx = lg(I);
1128   if (lx < 3) return gcopy(order);
1129   if (lx-1 != degpol(pol)) pari_err_DIM("rnflllgram");
1130   I = leafcopy(I);
1131   H = NULL;
1132   MPOL = matbasistoalg(nf, M);
1133   MCS = matid(lx-1); /* dummy for gerepile */
1134 PRECNF:
1135   if (count == MAX_COUNT)
1136   {
1137     prec = precdbl(prec); count = 0;
1138     if (DEBUGLEVEL) pari_warn(warnprec,"rnflllgram",prec);
1139     nf = nfnewprec_shallow(nf,prec);
1140   }
1141   mth = rel_T2(nf, pol, lx, prec);
1142   if (!mth) { count = MAX_COUNT; goto PRECNF; }
1143   h = NULL;
1144 PRECPB:
1145   if (h)
1146   { /* precision problem, recompute. If no progress, increase nf precision */
1147     if (++count == MAX_COUNT || RgM_isidentity(h)) {count = MAX_COUNT; goto PRECNF;}
1148     H = H? gmul(H, h): h;
1149     MPOL = gmul(MPOL, h);
1150   }
1151   h = matid(lx-1);
1152   MC = mattocomplex(nf, MPOL);
1153   mu = cgetg(lx,t_MAT);
1154   B  = cgetg(lx,t_COL);
1155   for (j=1; j<lx; j++)
1156   {
1157     gel(mu,j) = zerocol(lx - 1);
1158     gel(B,j) = gen_0;
1159   }
1160   if (DEBUGLEVEL) err_printf("k = ");
1161   gel(B,1) = real_i(rnfscal(mth,gel(MC,1),gel(MC,1)));
1162   gel(MCS,1) = gel(MC,1);
1163   kmax = 1; k = 2;
1164   do
1165   {
1166     GEN Ik_inv = NULL;
1167     if (DEBUGLEVEL) err_printf("%ld ",k);
1168     if (k > kmax)
1169     { /* Incremental Gram-Schmidt */
1170       kmax = k; gel(MCS,k) = gel(MC,k);
1171       for (j=1; j<k; j++)
1172       {
1173         gcoeff(mu,k,j) = vecdiv(rnfscal(mth,gel(MCS,j),gel(MC,k)),
1174                                 gel(B,j));
1175         gel(MCS,k) = gsub(gel(MCS,k), vecmul(gcoeff(mu,k,j),gel(MCS,j)));
1176       }
1177       gel(B,k) = real_i(rnfscal(mth,gel(MCS,k),gel(MCS,k)));
1178       if (check_0(gel(B,k))) goto PRECPB;
1179     }
1180     if (!RED(k, k-1, h, mu, MC, nf, I, &Ik_inv)) goto PRECPB;
1181     if (do_SWAP(I,MC,MCS,h,mu,B,kmax,k,alpha, r1))
1182     {
1183       if (!B[k]) goto PRECPB;
1184       if (k > 2) k--;
1185     }
1186     else
1187     {
1188       for (l=k-2; l; l--)
1189         if (!RED(k, l, h, mu, MC, nf, I, &Ik_inv)) goto PRECPB;
1190       k++;
1191     }
1192     if (gc_needed(av,2))
1193     {
1194       if(DEBUGMEM>1) pari_warn(warnmem,"rnflllgram");
1195       gerepileall(av, H?10:9, &nf,&mth,&h,&MPOL,&B,&MC,&MCS,&mu,&I,&H);
1196     }
1197   }
1198   while (k < lx);
1199   MPOL = gmul(MPOL,h);
1200   if (H) h = gmul(H, h);
1201   if (DEBUGLEVEL) err_printf("\n");
1202   MPOL = RgM_to_nfM(nf,MPOL);
1203   h = RgM_to_nfM(nf,h);
1204   return gerepilecopy(av, mkvec2(mkvec2(MPOL,I), h));
1205 }
1206 
1207 GEN
rnfpolred(GEN nf,GEN pol,long prec)1208 rnfpolred(GEN nf, GEN pol, long prec)
1209 {
1210   pari_sp av = avma;
1211   long i, j, n, v = varn(pol);
1212   GEN id, w, I, O, bnf, nfpol;
1213 
1214   if (typ(pol)!=t_POL) pari_err_TYPE("rnfpolred",pol);
1215   bnf = nf; nf = checknf(bnf);
1216   bnf = (nf == bnf)? NULL: checkbnf(bnf);
1217   if (degpol(pol) <= 1) { w = cgetg(2, t_VEC); gel(w,1) = pol_x(v); return w; }
1218   nfpol = nf_get_pol(nf);
1219 
1220   id = rnfpseudobasis(nf,pol);
1221   if (bnf && is_pm1( bnf_get_no(bnf) )) /* if bnf is principal */
1222   {
1223     GEN newI, newO;
1224     O = gel(id,1);
1225     I = gel(id,2); n = lg(I)-1;
1226     newI = cgetg(n+1,t_VEC);
1227     newO = cgetg(n+1,t_MAT);
1228     for (j=1; j<=n; j++)
1229     {
1230       GEN al = gen_if_principal(bnf,gel(I,j));
1231       gel(newI,j) = gen_1;
1232       gel(newO,j) = nfC_nf_mul(nf, gel(O,j), al);
1233     }
1234     id = mkvec2(newO, newI);
1235   }
1236 
1237   id = gel(rnflllgram(nf,pol,id,prec),1);
1238   O = gel(id,1);
1239   I = gel(id,2); n = lg(I)-1;
1240   w = cgetg(n+1,t_VEC);
1241   pol = lift_shallow(pol);
1242   for (j=1; j<=n; j++)
1243   {
1244     GEN newpol, L, a, Ij = gel(I,j);
1245     a = RgC_Rg_mul(gel(O,j), (typ(Ij) == t_MAT)? gcoeff(Ij,1,1): Ij);
1246     for (i=n; i; i--) gel(a,i) = nf_to_scalar_or_alg(nf, gel(a,i));
1247     a = RgV_to_RgX(a, v);
1248     newpol = RgXQX_red(RgXQ_charpoly(a, pol, v), nfpol);
1249     newpol = Q_primpart(newpol);
1250 
1251     (void)nfgcd_all(newpol, RgX_deriv(newpol), nfpol, nf_get_index(nf), &newpol);
1252     L = leading_coeff(newpol);
1253     gel(w,j) = (typ(L) == t_POL)? RgXQX_div(newpol, L, nfpol)
1254                                 : RgX_Rg_div(newpol, L);
1255   }
1256   return gerepilecopy(av,w);
1257 }
1258 
1259 /*******************************************************************/
1260 /*                                                                 */
1261 /*                  LINEAR ALGEBRA OVER Z_K  (HNF,SNF)             */
1262 /*                                                                 */
1263 /*******************************************************************/
1264 /* A torsion-free module M over Z_K is given by [A,I].
1265  * I=[a_1,...,a_k] is a row vector of k fractional ideals given in HNF.
1266  * A is an n x k matrix (same k) such that if A_j is the j-th column of A then
1267  * M=a_1 A_1+...+a_k A_k. We say that [A,I] is a pseudo-basis if k=n */
1268 
1269 /* Given an element x and an ideal I in HNF, gives an r such that x-r is in H
1270  * and r is small */
1271 GEN
nfreduce(GEN nf,GEN x,GEN I)1272 nfreduce(GEN nf, GEN x, GEN I)
1273 {
1274   pari_sp av = avma;
1275   GEN aI;
1276   x = nf_to_scalar_or_basis(checknf(nf), x);
1277   if (idealtyp(&I,&aI) != id_MAT || lg(I)==1) pari_err_TYPE("nfreduce",I);
1278   if (typ(x) != t_COL) x = scalarcol( gmod(x, gcoeff(I,1,1)), lg(I)-1 );
1279   else x = reducemodinvertible(x, I);
1280   return gerepileupto(av, x);
1281 }
1282 /* Given an element x and an ideal in HNF, gives an a in ideal such that
1283  * x-a is small. No checks */
1284 static GEN
element_close(GEN nf,GEN x,GEN ideal)1285 element_close(GEN nf, GEN x, GEN ideal)
1286 {
1287   pari_sp av = avma;
1288   GEN y = gcoeff(ideal,1,1);
1289   x = nf_to_scalar_or_basis(nf, x);
1290   if (typ(y) == t_INT && is_pm1(y)) return ground(x);
1291   if (typ(x) == t_COL)
1292     x = closemodinvertible(x, ideal);
1293   else
1294     x = gmul(y, gdivround(x,y));
1295   return gerepileupto(av, x);
1296 }
1297 
1298 /* A + v B */
1299 static GEN
colcomb1(GEN nf,GEN v,GEN A,GEN B)1300 colcomb1(GEN nf, GEN v, GEN A, GEN B)
1301 {
1302   if (isintzero(v)) return A;
1303   return RgC_to_nfC(nf, RgC_add(A, nfC_nf_mul(nf,B,v)));
1304 }
1305 /* u A + v B */
1306 static GEN
colcomb(GEN nf,GEN u,GEN v,GEN A,GEN B)1307 colcomb(GEN nf, GEN u, GEN v, GEN A, GEN B)
1308 {
1309   if (isintzero(u)) return nfC_nf_mul(nf,B,v);
1310   if (u != gen_1) A = nfC_nf_mul(nf,A,u);
1311   return colcomb1(nf, v, A, B);
1312 }
1313 
1314 /* return m[i,1..lim] * x */
1315 static GEN
element_mulvecrow(GEN nf,GEN x,GEN m,long i,long lim)1316 element_mulvecrow(GEN nf, GEN x, GEN m, long i, long lim)
1317 {
1318   long j, l = minss(lg(m), lim+1);
1319   GEN dx, y = cgetg(l, t_VEC);
1320   x = nf_to_scalar_or_basis(nf, x);
1321   if (typ(x) == t_COL)
1322   {
1323     x = zk_multable(nf, Q_remove_denom(x, &dx));
1324     for (j=1; j<l; j++)
1325     {
1326       GEN t = gcoeff(m,i,j);
1327       if (!isintzero(t))
1328       {
1329         if (typ(t) == t_COL)
1330           t = RgM_RgC_mul(x, t);
1331         else
1332           t = ZC_Q_mul(gel(x,1), t);
1333         if (dx) t = gdiv(t, dx);
1334         t = nf_to_scalar_or_basis(nf,t);
1335       }
1336       gel(y,j) = t;
1337     }
1338   }
1339   else
1340   {
1341     for (j=1; j<l; j++) gel(y,j) = gmul(x, gcoeff(m,i,j));
1342   }
1343   return y;
1344 }
1345 
1346 /* u Z[s,] + v Z[t,], limitied to the first lim entries */
1347 static GEN
rowcomb(GEN nf,GEN u,GEN v,long s,long t,GEN Z,long lim)1348 rowcomb(GEN nf, GEN u, GEN v, long s, long t, GEN Z, long lim)
1349 {
1350   GEN z;
1351   if (gequal0(u))
1352     z = element_mulvecrow(nf,v,Z,t, lim);
1353   else
1354   {
1355     z = element_mulvecrow(nf,u,Z,s, lim);
1356     if (!gequal0(v)) z = gadd(z, element_mulvecrow(nf,v,Z,t, lim));
1357   }
1358   return z;
1359 }
1360 
1361 /* nfbezout(0,b,A,B). Either bB = NULL or b*B */
1362 static GEN
zero_nfbezout(GEN nf,GEN bB,GEN b,GEN A,GEN B,GEN * u,GEN * v,GEN * w,GEN * di)1363 zero_nfbezout(GEN nf,GEN bB, GEN b, GEN A,GEN B,GEN *u,GEN *v,GEN *w,GEN *di)
1364 {
1365   GEN d;
1366   if (isint1(b))
1367   {
1368     *v = gen_1;
1369     *w = A;
1370     d = B;
1371     *di = idealinv(nf,d);
1372   }
1373   else
1374   {
1375     *v = nfinv(nf,b);
1376     *w = idealmul(nf,A,*v);
1377     d = bB? bB: idealmul(nf,b,B);
1378     *di = idealHNF_inv(nf,d);
1379   }
1380   *u = gen_0; return d;
1381 }
1382 
1383 /* Given elements a,b and ideals A, B, outputs d = a.A+b.B and gives
1384  * di=d^-1, w=A.B.di, u, v such that au+bv=1 and u in A.di, v in B.di.
1385  * Assume A, B nonzero, but a or b can be zero (not both) */
1386 static GEN
nfbezout(GEN nf,GEN a,GEN b,GEN A,GEN B,GEN * pu,GEN * pv,GEN * pw,GEN * pdi,int red)1387 nfbezout(GEN nf,GEN a,GEN b, GEN A,GEN B, GEN *pu,GEN *pv,GEN *pw,GEN *pdi,
1388          int red)
1389 {
1390   GEN w, u, v, d, di, aA, bB;
1391 
1392   if (isintzero(a)) return zero_nfbezout(nf,NULL,b,A,B,pu,pv,pw,pdi);
1393   if (isintzero(b)) return zero_nfbezout(nf,NULL,a,B,A,pv,pu,pw,pdi);
1394 
1395   if (a != gen_1) /* frequently called with a = gen_1 */
1396   {
1397     a = nf_to_scalar_or_basis(nf,a);
1398     if (isint1(a)) a = gen_1;
1399   }
1400   aA = (a == gen_1)? idealhnf_shallow(nf,A): idealmul(nf,a,A);
1401   bB = idealmul(nf,b,B);
1402   d = idealadd(nf,aA,bB);
1403   if (gequal(aA, d)) return zero_nfbezout(nf,d, a,B,A,pv,pu,pw,pdi);
1404   if (gequal(bB, d)) return zero_nfbezout(nf,d, b,A,B,pu,pv,pw,pdi);
1405   /* general case is slow */
1406   di = idealHNF_inv(nf,d);
1407   aA = idealmul(nf,aA,di); /* integral */
1408   bB = idealmul(nf,bB,di); /* integral */
1409 
1410   u = red? idealaddtoone_i(nf, aA, bB): idealaddtoone_raw(nf, aA, bB);
1411   w = idealmul(nf,aA,B);
1412   v = nfdiv(nf, nfsub(nf, gen_1, u), b);
1413   if (a != gen_1)
1414   {
1415     GEN inva = nfinv(nf, a);
1416     u =  nfmul(nf,u,inva);
1417     w = idealmul(nf, inva, w); /* AB/d */
1418   }
1419   *pu = u; *pv = v; *pw = w; *pdi = di; return d;
1420 }
1421 /* v a vector of ideals, simplify in place the ones generated by elts of Q */
1422 static void
idV_simplify(GEN v)1423 idV_simplify(GEN v)
1424 {
1425   long i, l = lg(v);
1426   for (i = 1; i < l; i++)
1427   {
1428     GEN M = gel(v,i);
1429     if (typ(M)==t_MAT && RgM_isscalar(M,NULL))
1430       gel(v,i) = Q_abs_shallow(gcoeff(M,1,1));
1431   }
1432 }
1433 /* Given a torsion-free module x outputs a pseudo-basis for x in HNF */
1434 GEN
nfhnf0(GEN nf,GEN x,long flag)1435 nfhnf0(GEN nf, GEN x, long flag)
1436 {
1437   long i, j, def, idef, m, n;
1438   pari_sp av0 = avma, av;
1439   GEN y, A, I, J, U;
1440 
1441   nf = checknf(nf);
1442   check_ZKmodule(x, "nfhnf");
1443   A = gel(x,1); RgM_dimensions(A, &m, &n);
1444   I = gel(x,2);
1445   if (!n) {
1446     if (!flag) return gcopy(x);
1447     retmkvec2(gcopy(x), cgetg(1,t_MAT));
1448   }
1449   U = flag? matid(n): NULL;
1450   idef = (n < m)? m-n : 0;
1451   av = avma;
1452   A = RgM_to_nfM(nf,A);
1453   I = leafcopy(I);
1454   J = zerovec(n); def = n;
1455   for (i=m; i>idef; i--)
1456   {
1457     GEN d, di = NULL;
1458 
1459     j=def; while (j>=1 && isintzero(gcoeff(A,i,j))) j--;
1460     if (!j)
1461     { /* no pivot on line i */
1462       if (idef) idef--;
1463       continue;
1464     }
1465     if (j==def) j--;
1466     else {
1467       swap(gel(A,j), gel(A,def));
1468       swap(gel(I,j), gel(I,def));
1469       if (U) swap(gel(U,j), gel(U,def));
1470     }
1471     for (  ; j; j--)
1472     {
1473       GEN a,b, u,v,w, S, T, S0, T0 = gel(A,j);
1474       b = gel(T0,i); if (isintzero(b)) continue;
1475 
1476       S0 = gel(A,def); a = gel(S0,i);
1477       d = nfbezout(nf, a,b, gel(I,def),gel(I,j), &u,&v,&w,&di,1);
1478       S = colcomb(nf, u,v, S0,T0);
1479       T = colcomb(nf, a,gneg(b), T0,S0);
1480       gel(A,def) = S; gel(A,j) = T;
1481       gel(I,def) = d; gel(I,j) = w;
1482       if (U)
1483       {
1484         S0 = gel(U,def);
1485         T0 = gel(U,j);
1486         gel(U,def) = colcomb(nf, u,v, S0,T0);
1487         gel(U,j) = colcomb(nf, a,gneg(b), T0,S0);
1488       }
1489     }
1490     y = gcoeff(A,i,def);
1491     if (!isint1(y))
1492     {
1493       GEN yi = nfinv(nf,y);
1494       gel(A,def) = nfC_nf_mul(nf, gel(A,def), yi);
1495       gel(I,def) = idealmul(nf, y, gel(I,def));
1496       if (U) gel(U,def) = nfC_nf_mul(nf, gel(U,def), yi);
1497       di = NULL;
1498     }
1499     if (!di) di = idealinv(nf,gel(I,def));
1500     d = gel(I,def);
1501     gel(J,def) = di;
1502     for (j=def+1; j<=n; j++)
1503     {
1504       GEN mc, c = gcoeff(A,i,j); if (isintzero(c)) continue;
1505       c = element_close(nf, c, idealmul(nf,d,gel(J,j)));
1506       mc = gneg(c);
1507       gel(A,j) = colcomb1(nf, mc, gel(A,j),gel(A,def));
1508       if (U) gel(U,j) = colcomb1(nf, mc, gel(U,j),gel(U,def));
1509     }
1510     def--;
1511     if (gc_needed(av,2))
1512     {
1513       if(DEBUGMEM>1) pari_warn(warnmem,"nfhnf, i = %ld", i);
1514       gerepileall(av,U?4:3, &A,&I,&J,&U);
1515     }
1516   }
1517   n -= def;
1518   A += def; A[0] = evaltyp(t_MAT)|evallg(n+1);
1519   I += def; I[0] = evaltyp(t_VEC)|evallg(n+1);
1520   idV_simplify(I);
1521   x = mkvec2(A,I);
1522   if (U) x = mkvec2(x,U);
1523   return gerepilecopy(av0, x);
1524 }
1525 
1526 GEN
nfhnf(GEN nf,GEN x)1527 nfhnf(GEN nf, GEN x) { return nfhnf0(nf, x, 0); }
1528 
1529 static GEN
RgV_find_denom(GEN x)1530 RgV_find_denom(GEN x)
1531 {
1532   long i, l = lg(x);
1533   for (i = 1; i < l; i++)
1534     if (Q_denom(gel(x,i)) != gen_1) return gel(x,i);
1535   return NULL;
1536 }
1537 /* A torsion module M over Z_K will be given by a row vector [A,I,J] with
1538  * three components. I=[b_1,...,b_n] is a row vector of n fractional ideals
1539  * given in HNF, J=[a_1,...,a_n] is a row vector of n fractional ideals in
1540  * HNF. A is an nxn matrix (same n) such that if A_j is the j-th column of A
1541  * and e_n is the canonical basis of K^n, then
1542  * M=(b_1e_1+...+b_ne_n)/(a_1A_1+...a_nA_n) */
1543 
1544 /* x=[A,I,J] a torsion module as above. Output the
1545  * smith normal form as K=[c_1,...,c_n] such that x = Z_K/c_1+...+Z_K/c_n */
1546 GEN
nfsnf0(GEN nf,GEN x,long flag)1547 nfsnf0(GEN nf, GEN x, long flag)
1548 {
1549   long i, j, k, l, n, m;
1550   pari_sp av;
1551   GEN z,u,v,w,d,dinv,A,I,J, U,V;
1552 
1553   nf = checknf(nf);
1554   if (typ(x)!=t_VEC || lg(x)!=4) pari_err_TYPE("nfsnf",x);
1555   A = gel(x,1);
1556   I = gel(x,2);
1557   J = gel(x,3);
1558   if (typ(A)!=t_MAT) pari_err_TYPE("nfsnf",A);
1559   n = lg(A)-1;
1560   if (typ(I)!=t_VEC) pari_err_TYPE("nfsnf",I);
1561   if (typ(J)!=t_VEC) pari_err_TYPE("nfsnf",J);
1562   if (lg(I)!=n+1 || lg(J)!=n+1) pari_err_DIM("nfsnf");
1563   RgM_dimensions(A, &m, &n);
1564   if (!n || n != m) pari_err_IMPL("nfsnf for empty or non square matrices");
1565 
1566   av = avma;
1567   if (!flag) U = V = NULL;
1568   else
1569   {
1570     U = matid(m);
1571     V = matid(n);
1572   }
1573   A = RgM_to_nfM(nf, A);
1574   I = leafcopy(I);
1575   J = leafcopy(J);
1576   for (i = 1; i <= n; i++) gel(J,i) = idealinv(nf, gel(J,i));
1577   z = zerovec(n);
1578   for (i=n; i>=1; i--)
1579   {
1580     GEN Aii, a, b, db;
1581     long c = 0;
1582     for (j=i-1; j>=1; j--)
1583     {
1584       GEN S, T, S0, T0 = gel(A,j);
1585       b = gel(T0,i); if (gequal0(b)) continue;
1586 
1587       S0 = gel(A,i); a = gel(S0,i);
1588       d = nfbezout(nf, a,b, gel(J,i),gel(J,j), &u,&v,&w,&dinv,1);
1589       S = colcomb(nf, u,v, S0,T0);
1590       T = colcomb(nf, a,gneg(b), T0,S0);
1591       gel(A,i) = S; gel(A,j) = T;
1592       gel(J,i) = d; gel(J,j) = w;
1593       if (V)
1594       {
1595         T0 = gel(V,j);
1596         S0 = gel(V,i);
1597         gel(V,i) = colcomb(nf, u,v, S0,T0);
1598         gel(V,j) = colcomb(nf, a,gneg(b), T0,S0);
1599       }
1600     }
1601     for (j=i-1; j>=1; j--)
1602     {
1603       GEN ri, rj;
1604       b = gcoeff(A,j,i); if (gequal0(b)) continue;
1605 
1606       a = gcoeff(A,i,i);
1607       d = nfbezout(nf, a,b, gel(I,i),gel(I,j), &u,&v,&w,&dinv,1);
1608       ri = rowcomb(nf, u,v,       i,j, A, i);
1609       rj = rowcomb(nf, a,gneg(b), j,i, A, i);
1610       for (k=1; k<=i; k++) {
1611         gcoeff(A,j,k) = gel(rj,k);
1612         gcoeff(A,i,k) = gel(ri,k);
1613       }
1614       if (U)
1615       {
1616         ri = rowcomb(nf, u,v,       i,j, U, m);
1617         rj = rowcomb(nf, a,gneg(b), j,i, U, m);
1618         for (k=1; k<=m; k++) {
1619           gcoeff(U,j,k) = gel(rj,k);
1620           gcoeff(U,i,k) = gel(ri,k);
1621         }
1622       }
1623       gel(I,i) = d; gel(I,j) = w; c = 1;
1624     }
1625     if (c) { i++; continue; }
1626 
1627     Aii = gcoeff(A,i,i); if (gequal0(Aii)) continue;
1628     gel(J,i) = idealmul(nf, gel(J,i), Aii);
1629     gcoeff(A,i,i) = gen_1;
1630     if (V) gel(V,i) = nfC_nf_mul(nf, gel(V,i), nfinv(nf,Aii));
1631     gel(z,i) = idealmul(nf,gel(J,i),gel(I,i));
1632     b = Q_remove_denom(gel(z,i), &db);
1633     for (k=1; k<i; k++)
1634       for (l=1; l<i; l++)
1635       {
1636         GEN d, D, p1, p2, p3, Akl = gcoeff(A,k,l);
1637         long t;
1638         if (gequal0(Akl)) continue;
1639 
1640         p1 = idealmul(nf,Akl,gel(J,l));
1641         p3 = idealmul(nf, p1, gel(I,k));
1642         if (db) p3 = RgM_Rg_mul(p3, db);
1643         if (RgM_is_ZM(p3) && hnfdivide(b, p3)) continue;
1644 
1645         /* find d in D = I[k]/I[i] not in J[i]/(A[k,l] J[l]) */
1646         D = idealdiv(nf,gel(I,k),gel(I,i));
1647         p2 = idealdiv(nf,gel(J,i), p1);
1648         d = RgV_find_denom(QM_gauss(p2, D));
1649         if (!d) pari_err_BUG("nfsnf");
1650         p1 = element_mulvecrow(nf,d,A,k,i);
1651         for (t=1; t<=i; t++) gcoeff(A,i,t) = gadd(gcoeff(A,i,t),gel(p1,t));
1652         if (U)
1653         {
1654           p1 = element_mulvecrow(nf,d,U,k,i);
1655           for (t=1; t<=i; t++) gcoeff(U,i,t) = gadd(gcoeff(U,i,t),gel(p1,t));
1656         }
1657 
1658         k = i; c = 1; break;
1659       }
1660     if (gc_needed(av,1))
1661     {
1662       if(DEBUGMEM>1) pari_warn(warnmem,"nfsnf");
1663       gerepileall(av,U?6:4, &A,&I,&J,&z,&U,&V);
1664     }
1665     if (c) i++; /* iterate on row/column i */
1666   }
1667   if (U) z = mkvec3(z,U,V);
1668   return gerepilecopy(av, z);
1669 }
1670 GEN
nfsnf(GEN nf,GEN x)1671 nfsnf(GEN nf, GEN x) { return nfsnf0(nf,x,0); }
1672 
1673 /* Given a pseudo-basis x, outputs a multiple of its ideal determinant */
1674 GEN
nfdetint(GEN nf,GEN x)1675 nfdetint(GEN nf, GEN x)
1676 {
1677   GEN pass,c,v,det1,piv,pivprec,vi,p1,A,I,id,idprod;
1678   long i, j, k, rg, n, m, m1, cm=0, N;
1679   pari_sp av = avma, av1;
1680 
1681   nf = checknf(nf); N = nf_get_degree(nf);
1682   check_ZKmodule(x, "nfdetint");
1683   A = gel(x,1);
1684   I = gel(x,2);
1685   n = lg(A)-1; if (!n) return gen_1;
1686 
1687   m1 = lgcols(A); m = m1-1;
1688   id = matid(N);
1689   c = new_chunk(m1); for (k=1; k<=m; k++) c[k] = 0;
1690   piv = pivprec = gen_1;
1691 
1692   av1 = avma;
1693   det1 = idprod = gen_0; /* dummy for gerepileall */
1694   pass = cgetg(m1,t_MAT);
1695   v = cgetg(m1,t_COL);
1696   for (j=1; j<=m; j++)
1697   {
1698     gel(pass,j) = zerocol(m);
1699     gel(v,j) = gen_0; /* dummy */
1700   }
1701   for (rg=0,k=1; k<=n; k++)
1702   {
1703     long t = 0;
1704     for (i=1; i<=m; i++)
1705       if (!c[i])
1706       {
1707         vi=nfmul(nf,piv,gcoeff(A,i,k));
1708         for (j=1; j<=m; j++)
1709           if (c[j]) vi=gadd(vi,nfmul(nf,gcoeff(pass,i,j),gcoeff(A,j,k)));
1710         gel(v,i) = vi; if (!t && !gequal0(vi)) t=i;
1711       }
1712     if (t)
1713     {
1714       pivprec = piv;
1715       if (rg == m-1)
1716       {
1717         if (!cm)
1718         {
1719           cm=1; idprod = id;
1720           for (i=1; i<=m; i++)
1721             if (i!=t)
1722               idprod = (idprod==id)? gel(I,c[i])
1723                                    : idealmul(nf,idprod,gel(I,c[i]));
1724         }
1725         p1 = idealmul(nf,gel(v,t),gel(I,k)); c[t]=0;
1726         det1 = (typ(det1)==t_INT)? p1: idealadd(nf,p1,det1);
1727       }
1728       else
1729       {
1730         rg++; piv=gel(v,t); c[t]=k;
1731         for (i=1; i<=m; i++)
1732           if (!c[i])
1733           {
1734             for (j=1; j<=m; j++)
1735               if (c[j] && j!=t)
1736               {
1737                 p1 = gsub(nfmul(nf,piv,gcoeff(pass,i,j)),
1738                           nfmul(nf,gel(v,i),gcoeff(pass,t,j)));
1739                 gcoeff(pass,i,j) = rg>1? nfdiv(nf,p1,pivprec)
1740                                        : p1;
1741               }
1742             gcoeff(pass,i,t) = gneg(gel(v,i));
1743           }
1744       }
1745     }
1746     if (gc_needed(av1,1))
1747     {
1748       if(DEBUGMEM>1) pari_warn(warnmem,"nfdetint");
1749       gerepileall(av1,6, &det1,&piv,&pivprec,&pass,&v,&idprod);
1750     }
1751   }
1752   if (!cm) { set_avma(av); return cgetg(1,t_MAT); }
1753   return gerepileupto(av, idealmul(nf,idprod,det1));
1754 }
1755 
1756 /* reduce in place components of x[1..lim] mod D (destroy x). D in HNF */
1757 static void
nfcleanmod(GEN nf,GEN x,long lim,GEN D)1758 nfcleanmod(GEN nf, GEN x, long lim, GEN D)
1759 {
1760   GEN DZ, DZ2, dD;
1761   long i;
1762   D = Q_remove_denom(D, &dD);
1763   DZ = gcoeff(D,1,1); DZ2 = shifti(DZ, -1);
1764   for (i = 1; i <= lim; i++)
1765   {
1766     GEN c = nf_to_scalar_or_basis(nf, gel(x,i));
1767     switch(typ(c)) /* c = centermod(c, D) */
1768     {
1769       case t_INT:
1770         if (!signe(c)) break;
1771         if (dD) c = mulii(c, dD);
1772         c = centermodii(c, DZ, DZ2);
1773         if (dD) c = Qdivii(c,dD);
1774         break;
1775       case t_FRAC: {
1776         GEN dc = gel(c,2), nc = gel(c,1), N = mulii(DZ, dc);
1777         if (dD) nc = mulii(nc, dD);
1778         c = centermodii(nc, N, shifti(N,-1));
1779         c = Qdivii(c, dD ? mulii(dc,dD): dc);
1780         break;
1781       }
1782       case t_COL: {
1783         GEN dc;
1784         c = Q_remove_denom(c, &dc);
1785         if (dD) c = ZC_Z_mul(c, dD);
1786         c = ZC_hnfrem(c, dc? ZM_Z_mul(D,dc): D);
1787         dc = mul_content(dc, dD);
1788         if (ZV_isscalar(c))
1789         {
1790           c = gel(c,1);
1791           if (dc) c = Qdivii(c,dc);
1792         }
1793         else
1794           if (dc) c = RgC_Rg_div(c, dc);
1795         break;
1796       }
1797     }
1798     gel(x,i) = c;
1799   }
1800 }
1801 
1802 GEN
nfhnfmod(GEN nf,GEN x,GEN D)1803 nfhnfmod(GEN nf, GEN x, GEN D)
1804 {
1805   long li, co, i, j, def, ldef;
1806   pari_sp av0=avma, av;
1807   GEN dA, dI, d0, w, p1, d, u, v, A, I, J, di;
1808 
1809   nf = checknf(nf);
1810   check_ZKmodule(x, "nfhnfmod");
1811   A = gel(x,1);
1812   I = gel(x,2);
1813   co = lg(A); if (co==1) return cgetg(1,t_MAT);
1814 
1815   li = lgcols(A);
1816   if (typ(D)!=t_MAT) D = idealhnf_shallow(nf, D);
1817   D = Q_remove_denom(D, NULL);
1818   RgM_check_ZM(D, "nfhnfmod");
1819 
1820   av = avma;
1821   A = RgM_to_nfM(nf, A);
1822   A = Q_remove_denom(A, &dA);
1823   I = Q_remove_denom(leafcopy(I), &dI);
1824   dA = mul_denom(dA,dI);
1825   if (dA) D = ZM_Z_mul(D, powiu(dA, minss(li,co)));
1826 
1827   def = co; ldef = (li>co)? li-co+1: 1;
1828   for (i=li-1; i>=ldef; i--)
1829   {
1830     def--; j=def; while (j>=1 && isintzero(gcoeff(A,i,j))) j--;
1831     if (!j) continue;
1832     if (j==def) j--;
1833     else {
1834       swap(gel(A,j), gel(A,def));
1835       swap(gel(I,j), gel(I,def));
1836     }
1837     for (  ; j; j--)
1838     {
1839       GEN a, b, S, T, S0, T0 = gel(A,j);
1840       b = gel(T0,i); if (isintzero(b)) continue;
1841 
1842       S0 = gel(A,def); a = gel(S0,i);
1843       d = nfbezout(nf, a,b, gel(I,def),gel(I,j), &u,&v,&w,&di,0);
1844       S = colcomb(nf, u,v, S0,T0);
1845       T = colcomb(nf, a,gneg(b), T0,S0);
1846       if (u != gen_0 && v != gen_0) /* already reduced otherwise */
1847         nfcleanmod(nf, S, i, idealmul(nf,D,di));
1848       nfcleanmod(nf, T, i, idealdiv(nf,D,w));
1849       gel(A,def) = S; gel(A,j) = T;
1850       gel(I,def) = d; gel(I,j) = w;
1851     }
1852     if (gc_needed(av,2))
1853     {
1854       if(DEBUGMEM>1) pari_warn(warnmem,"[1]: nfhnfmod, i = %ld", i);
1855       gerepileall(av,dA? 4: 3, &A,&I,&D,&dA);
1856     }
1857   }
1858   def--; d0 = D;
1859   A += def; A[0] = evaltyp(t_MAT)|evallg(li);
1860   I += def; I[0] = evaltyp(t_VEC)|evallg(li);
1861   J = cgetg(li,t_VEC);
1862   for (i=li-1; i>=1; i--)
1863   {
1864     GEN b = gcoeff(A,i,i);
1865     d = nfbezout(nf, gen_1,b, d0,gel(I,i), &u,&v,&w,&di,0);
1866     p1 = nfC_nf_mul(nf,gel(A,i),v);
1867     if (i > 1)
1868     {
1869       d0 = idealmul(nf,d0,di);
1870       nfcleanmod(nf, p1, i, d0);
1871     }
1872     gel(A,i) = p1; gel(p1,i) = gen_1;
1873     gel(I,i) = d;
1874     gel(J,i) = di;
1875   }
1876   for (i=li-2; i>=1; i--)
1877   {
1878     d = gel(I,i);
1879     for (j=i+1; j<li; j++)
1880     {
1881       GEN c = gcoeff(A,i,j); if (isintzero(c)) continue;
1882       c = element_close(nf, c, idealmul(nf,d,gel(J,j)));
1883       gel(A,j) = colcomb1(nf, gneg(c), gel(A,j),gel(A,i));
1884     }
1885     if (gc_needed(av,2))
1886     {
1887       if(DEBUGMEM>1) pari_warn(warnmem,"[2]: nfhnfmod, i = %ld", i);
1888       gerepileall(av,dA? 4: 3, &A,&I,&J,&dA);
1889     }
1890   }
1891   idV_simplify(I);
1892   if (dA) I = gdiv(I,dA);
1893   return gerepilecopy(av0, mkvec2(A, I));
1894 }
1895