xref: /linux/drivers/gpu/drm/nouveau/nouveau_chan.c (revision d59e75ee)
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include <nvif/push006c.h>
25 
26 #include <nvif/class.h>
27 #include <nvif/cl0002.h>
28 #include <nvif/if0020.h>
29 
30 #include "nouveau_drv.h"
31 #include "nouveau_dma.h"
32 #include "nouveau_bo.h"
33 #include "nouveau_chan.h"
34 #include "nouveau_fence.h"
35 #include "nouveau_abi16.h"
36 #include "nouveau_vmm.h"
37 #include "nouveau_svm.h"
38 
39 MODULE_PARM_DESC(vram_pushbuf, "Create DMA push buffers in VRAM");
40 int nouveau_vram_pushbuf;
41 module_param_named(vram_pushbuf, nouveau_vram_pushbuf, int, 0400);
42 
43 void
nouveau_channel_kill(struct nouveau_channel * chan)44 nouveau_channel_kill(struct nouveau_channel *chan)
45 {
46 	atomic_set(&chan->killed, 1);
47 	if (chan->fence)
48 		nouveau_fence_context_kill(chan->fence, -ENODEV);
49 }
50 
51 static int
nouveau_channel_killed(struct nvif_event * event,void * repv,u32 repc)52 nouveau_channel_killed(struct nvif_event *event, void *repv, u32 repc)
53 {
54 	struct nouveau_channel *chan = container_of(event, typeof(*chan), kill);
55 	struct nouveau_cli *cli = (void *)chan->user.client;
56 
57 	NV_PRINTK(warn, cli, "channel %d killed!\n", chan->chid);
58 
59 	if (unlikely(!atomic_read(&chan->killed)))
60 		nouveau_channel_kill(chan);
61 
62 	return NVIF_EVENT_DROP;
63 }
64 
65 int
nouveau_channel_idle(struct nouveau_channel * chan)66 nouveau_channel_idle(struct nouveau_channel *chan)
67 {
68 	if (likely(chan && chan->fence && !atomic_read(&chan->killed))) {
69 		struct nouveau_cli *cli = (void *)chan->user.client;
70 		struct nouveau_fence *fence = NULL;
71 		int ret;
72 
73 		ret = nouveau_fence_new(&fence, chan);
74 		if (!ret) {
75 			ret = nouveau_fence_wait(fence, false, false);
76 			nouveau_fence_unref(&fence);
77 		}
78 
79 		if (ret) {
80 			NV_PRINTK(err, cli, "failed to idle channel %d [%s]\n",
81 				  chan->chid, nvxx_client(&cli->base)->name);
82 			return ret;
83 		}
84 	}
85 	return 0;
86 }
87 
88 void
nouveau_channel_del(struct nouveau_channel ** pchan)89 nouveau_channel_del(struct nouveau_channel **pchan)
90 {
91 	struct nouveau_channel *chan = *pchan;
92 	if (chan) {
93 		struct nouveau_cli *cli = (void *)chan->user.client;
94 
95 		if (chan->fence)
96 			nouveau_fence(chan->drm)->context_del(chan);
97 
98 		if (cli)
99 			nouveau_svmm_part(chan->vmm->svmm, chan->inst);
100 
101 		nvif_object_dtor(&chan->blit);
102 		nvif_object_dtor(&chan->nvsw);
103 		nvif_object_dtor(&chan->gart);
104 		nvif_object_dtor(&chan->vram);
105 		nvif_event_dtor(&chan->kill);
106 		nvif_object_dtor(&chan->user);
107 		nvif_mem_dtor(&chan->mem_userd);
108 		nvif_object_dtor(&chan->push.ctxdma);
109 		nouveau_vma_del(&chan->push.vma);
110 		nouveau_bo_unmap(chan->push.buffer);
111 		if (chan->push.buffer && chan->push.buffer->bo.pin_count)
112 			nouveau_bo_unpin(chan->push.buffer);
113 		nouveau_bo_ref(NULL, &chan->push.buffer);
114 		kfree(chan);
115 	}
116 	*pchan = NULL;
117 }
118 
119 static void
nouveau_channel_kick(struct nvif_push * push)120 nouveau_channel_kick(struct nvif_push *push)
121 {
122 	struct nouveau_channel *chan = container_of(push, typeof(*chan), chan._push);
123 	chan->dma.cur = chan->dma.cur + (chan->chan._push.cur - chan->chan._push.bgn);
124 	FIRE_RING(chan);
125 	chan->chan._push.bgn = chan->chan._push.cur;
126 }
127 
128 static int
nouveau_channel_wait(struct nvif_push * push,u32 size)129 nouveau_channel_wait(struct nvif_push *push, u32 size)
130 {
131 	struct nouveau_channel *chan = container_of(push, typeof(*chan), chan._push);
132 	int ret;
133 	chan->dma.cur = chan->dma.cur + (chan->chan._push.cur - chan->chan._push.bgn);
134 	ret = RING_SPACE(chan, size);
135 	if (ret == 0) {
136 		chan->chan._push.bgn = chan->chan._push.mem.object.map.ptr;
137 		chan->chan._push.bgn = chan->chan._push.bgn + chan->dma.cur;
138 		chan->chan._push.cur = chan->chan._push.bgn;
139 		chan->chan._push.end = chan->chan._push.bgn + size;
140 	}
141 	return ret;
142 }
143 
144 static int
nouveau_channel_prep(struct nouveau_drm * drm,struct nvif_device * device,u32 size,struct nouveau_channel ** pchan)145 nouveau_channel_prep(struct nouveau_drm *drm, struct nvif_device *device,
146 		     u32 size, struct nouveau_channel **pchan)
147 {
148 	struct nouveau_cli *cli = (void *)device->object.client;
149 	struct nv_dma_v0 args = {};
150 	struct nouveau_channel *chan;
151 	u32 target;
152 	int ret;
153 
154 	chan = *pchan = kzalloc(sizeof(*chan), GFP_KERNEL);
155 	if (!chan)
156 		return -ENOMEM;
157 
158 	chan->device = device;
159 	chan->drm = drm;
160 	chan->vmm = nouveau_cli_vmm(cli);
161 	atomic_set(&chan->killed, 0);
162 
163 	/* allocate memory for dma push buffer */
164 	target = NOUVEAU_GEM_DOMAIN_GART | NOUVEAU_GEM_DOMAIN_COHERENT;
165 	if (nouveau_vram_pushbuf)
166 		target = NOUVEAU_GEM_DOMAIN_VRAM;
167 
168 	ret = nouveau_bo_new(cli, size, 0, target, 0, 0, NULL, NULL,
169 			    &chan->push.buffer);
170 	if (ret == 0) {
171 		ret = nouveau_bo_pin(chan->push.buffer, target, false);
172 		if (ret == 0)
173 			ret = nouveau_bo_map(chan->push.buffer);
174 	}
175 
176 	if (ret) {
177 		nouveau_channel_del(pchan);
178 		return ret;
179 	}
180 
181 	chan->chan._push.mem.object.parent = cli->base.object.parent;
182 	chan->chan._push.mem.object.client = &cli->base;
183 	chan->chan._push.mem.object.name = "chanPush";
184 	chan->chan._push.mem.object.map.ptr = chan->push.buffer->kmap.virtual;
185 	chan->chan._push.wait = nouveau_channel_wait;
186 	chan->chan._push.kick = nouveau_channel_kick;
187 	chan->chan.push = &chan->chan._push;
188 
189 	/* create dma object covering the *entire* memory space that the
190 	 * pushbuf lives in, this is because the GEM code requires that
191 	 * we be able to call out to other (indirect) push buffers
192 	 */
193 	chan->push.addr = chan->push.buffer->offset;
194 
195 	if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
196 		ret = nouveau_vma_new(chan->push.buffer, chan->vmm,
197 				      &chan->push.vma);
198 		if (ret) {
199 			nouveau_channel_del(pchan);
200 			return ret;
201 		}
202 
203 		chan->push.addr = chan->push.vma->addr;
204 
205 		if (device->info.family >= NV_DEVICE_INFO_V0_FERMI)
206 			return 0;
207 
208 		args.target = NV_DMA_V0_TARGET_VM;
209 		args.access = NV_DMA_V0_ACCESS_VM;
210 		args.start = 0;
211 		args.limit = chan->vmm->vmm.limit - 1;
212 	} else
213 	if (chan->push.buffer->bo.resource->mem_type == TTM_PL_VRAM) {
214 		if (device->info.family == NV_DEVICE_INFO_V0_TNT) {
215 			/* nv04 vram pushbuf hack, retarget to its location in
216 			 * the framebuffer bar rather than direct vram access..
217 			 * nfi why this exists, it came from the -nv ddx.
218 			 */
219 			args.target = NV_DMA_V0_TARGET_PCI;
220 			args.access = NV_DMA_V0_ACCESS_RDWR;
221 			args.start = nvxx_device(device)->func->
222 				resource_addr(nvxx_device(device), 1);
223 			args.limit = args.start + device->info.ram_user - 1;
224 		} else {
225 			args.target = NV_DMA_V0_TARGET_VRAM;
226 			args.access = NV_DMA_V0_ACCESS_RDWR;
227 			args.start = 0;
228 			args.limit = device->info.ram_user - 1;
229 		}
230 	} else {
231 		if (chan->drm->agp.bridge) {
232 			args.target = NV_DMA_V0_TARGET_AGP;
233 			args.access = NV_DMA_V0_ACCESS_RDWR;
234 			args.start = chan->drm->agp.base;
235 			args.limit = chan->drm->agp.base +
236 				     chan->drm->agp.size - 1;
237 		} else {
238 			args.target = NV_DMA_V0_TARGET_VM;
239 			args.access = NV_DMA_V0_ACCESS_RDWR;
240 			args.start = 0;
241 			args.limit = chan->vmm->vmm.limit - 1;
242 		}
243 	}
244 
245 	ret = nvif_object_ctor(&device->object, "abi16PushCtxDma", 0,
246 			       NV_DMA_FROM_MEMORY, &args, sizeof(args),
247 			       &chan->push.ctxdma);
248 	if (ret) {
249 		nouveau_channel_del(pchan);
250 		return ret;
251 	}
252 
253 	return 0;
254 }
255 
256 static int
nouveau_channel_ctor(struct nouveau_drm * drm,struct nvif_device * device,bool priv,u64 runm,struct nouveau_channel ** pchan)257 nouveau_channel_ctor(struct nouveau_drm *drm, struct nvif_device *device, bool priv, u64 runm,
258 		     struct nouveau_channel **pchan)
259 {
260 	const struct nvif_mclass hosts[] = {
261 		{  AMPERE_CHANNEL_GPFIFO_B, 0 },
262 		{  AMPERE_CHANNEL_GPFIFO_A, 0 },
263 		{  TURING_CHANNEL_GPFIFO_A, 0 },
264 		{   VOLTA_CHANNEL_GPFIFO_A, 0 },
265 		{  PASCAL_CHANNEL_GPFIFO_A, 0 },
266 		{ MAXWELL_CHANNEL_GPFIFO_A, 0 },
267 		{  KEPLER_CHANNEL_GPFIFO_B, 0 },
268 		{  KEPLER_CHANNEL_GPFIFO_A, 0 },
269 		{   FERMI_CHANNEL_GPFIFO  , 0 },
270 		{     G82_CHANNEL_GPFIFO  , 0 },
271 		{    NV50_CHANNEL_GPFIFO  , 0 },
272 		{    NV40_CHANNEL_DMA     , 0 },
273 		{    NV17_CHANNEL_DMA     , 0 },
274 		{    NV10_CHANNEL_DMA     , 0 },
275 		{    NV03_CHANNEL_DMA     , 0 },
276 		{}
277 	};
278 	struct {
279 		struct nvif_chan_v0 chan;
280 		char name[TASK_COMM_LEN+16];
281 	} args;
282 	struct nouveau_cli *cli = (void *)device->object.client;
283 	struct nouveau_channel *chan;
284 	const u64 plength = 0x10000;
285 	const u64 ioffset = plength;
286 	const u64 ilength = 0x02000;
287 	char name[TASK_COMM_LEN];
288 	int cid, ret;
289 	u64 size;
290 
291 	cid = nvif_mclass(&device->object, hosts);
292 	if (cid < 0)
293 		return cid;
294 
295 	if (hosts[cid].oclass < NV50_CHANNEL_GPFIFO)
296 		size = plength;
297 	else
298 		size = ioffset + ilength;
299 
300 	/* allocate dma push buffer */
301 	ret = nouveau_channel_prep(drm, device, size, &chan);
302 	*pchan = chan;
303 	if (ret)
304 		return ret;
305 
306 	/* create channel object */
307 	args.chan.version = 0;
308 	args.chan.namelen = sizeof(args.name);
309 	args.chan.runlist = __ffs64(runm);
310 	args.chan.runq = 0;
311 	args.chan.priv = priv;
312 	args.chan.devm = BIT(0);
313 	if (hosts[cid].oclass < NV50_CHANNEL_GPFIFO) {
314 		args.chan.vmm = 0;
315 		args.chan.ctxdma = nvif_handle(&chan->push.ctxdma);
316 		args.chan.offset = chan->push.addr;
317 		args.chan.length = 0;
318 	} else {
319 		args.chan.vmm = nvif_handle(&chan->vmm->vmm.object);
320 		if (hosts[cid].oclass < FERMI_CHANNEL_GPFIFO)
321 			args.chan.ctxdma = nvif_handle(&chan->push.ctxdma);
322 		else
323 			args.chan.ctxdma = 0;
324 		args.chan.offset = ioffset + chan->push.addr;
325 		args.chan.length = ilength;
326 	}
327 	args.chan.huserd = 0;
328 	args.chan.ouserd = 0;
329 
330 	/* allocate userd */
331 	if (hosts[cid].oclass >= VOLTA_CHANNEL_GPFIFO_A) {
332 		ret = nvif_mem_ctor(&cli->mmu, "abi16ChanUSERD", NVIF_CLASS_MEM_GF100,
333 				    NVIF_MEM_VRAM | NVIF_MEM_COHERENT | NVIF_MEM_MAPPABLE,
334 				    0, PAGE_SIZE, NULL, 0, &chan->mem_userd);
335 		if (ret)
336 			return ret;
337 
338 		args.chan.huserd = nvif_handle(&chan->mem_userd.object);
339 		args.chan.ouserd = 0;
340 
341 		chan->userd = &chan->mem_userd.object;
342 	} else {
343 		chan->userd = &chan->user;
344 	}
345 
346 	get_task_comm(name, current);
347 	snprintf(args.name, sizeof(args.name), "%s[%d]", name, task_pid_nr(current));
348 
349 	ret = nvif_object_ctor(&device->object, "abi16ChanUser", 0, hosts[cid].oclass,
350 			       &args, sizeof(args), &chan->user);
351 	if (ret) {
352 		nouveau_channel_del(pchan);
353 		return ret;
354 	}
355 
356 	chan->runlist = args.chan.runlist;
357 	chan->chid = args.chan.chid;
358 	chan->inst = args.chan.inst;
359 	chan->token = args.chan.token;
360 	return 0;
361 }
362 
363 static int
nouveau_channel_init(struct nouveau_channel * chan,u32 vram,u32 gart)364 nouveau_channel_init(struct nouveau_channel *chan, u32 vram, u32 gart)
365 {
366 	struct nvif_device *device = chan->device;
367 	struct nouveau_drm *drm = chan->drm;
368 	struct nv_dma_v0 args = {};
369 	int ret, i;
370 
371 	ret = nvif_object_map(chan->userd, NULL, 0);
372 	if (ret)
373 		return ret;
374 
375 	if (chan->user.oclass >= FERMI_CHANNEL_GPFIFO) {
376 		struct {
377 			struct nvif_event_v0 base;
378 			struct nvif_chan_event_v0 host;
379 		} args;
380 
381 		args.host.version = 0;
382 		args.host.type = NVIF_CHAN_EVENT_V0_KILLED;
383 
384 		ret = nvif_event_ctor(&chan->user, "abi16ChanKilled", chan->chid,
385 				      nouveau_channel_killed, false,
386 				      &args.base, sizeof(args), &chan->kill);
387 		if (ret == 0)
388 			ret = nvif_event_allow(&chan->kill);
389 		if (ret) {
390 			NV_ERROR(drm, "Failed to request channel kill "
391 				      "notification: %d\n", ret);
392 			return ret;
393 		}
394 	}
395 
396 	/* allocate dma objects to cover all allowed vram, and gart */
397 	if (device->info.family < NV_DEVICE_INFO_V0_FERMI) {
398 		if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
399 			args.target = NV_DMA_V0_TARGET_VM;
400 			args.access = NV_DMA_V0_ACCESS_VM;
401 			args.start = 0;
402 			args.limit = chan->vmm->vmm.limit - 1;
403 		} else {
404 			args.target = NV_DMA_V0_TARGET_VRAM;
405 			args.access = NV_DMA_V0_ACCESS_RDWR;
406 			args.start = 0;
407 			args.limit = device->info.ram_user - 1;
408 		}
409 
410 		ret = nvif_object_ctor(&chan->user, "abi16ChanVramCtxDma", vram,
411 				       NV_DMA_IN_MEMORY, &args, sizeof(args),
412 				       &chan->vram);
413 		if (ret)
414 			return ret;
415 
416 		if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
417 			args.target = NV_DMA_V0_TARGET_VM;
418 			args.access = NV_DMA_V0_ACCESS_VM;
419 			args.start = 0;
420 			args.limit = chan->vmm->vmm.limit - 1;
421 		} else
422 		if (chan->drm->agp.bridge) {
423 			args.target = NV_DMA_V0_TARGET_AGP;
424 			args.access = NV_DMA_V0_ACCESS_RDWR;
425 			args.start = chan->drm->agp.base;
426 			args.limit = chan->drm->agp.base +
427 				     chan->drm->agp.size - 1;
428 		} else {
429 			args.target = NV_DMA_V0_TARGET_VM;
430 			args.access = NV_DMA_V0_ACCESS_RDWR;
431 			args.start = 0;
432 			args.limit = chan->vmm->vmm.limit - 1;
433 		}
434 
435 		ret = nvif_object_ctor(&chan->user, "abi16ChanGartCtxDma", gart,
436 				       NV_DMA_IN_MEMORY, &args, sizeof(args),
437 				       &chan->gart);
438 		if (ret)
439 			return ret;
440 	}
441 
442 	/* initialise dma tracking parameters */
443 	switch (chan->user.oclass) {
444 	case NV03_CHANNEL_DMA:
445 	case NV10_CHANNEL_DMA:
446 	case NV17_CHANNEL_DMA:
447 	case NV40_CHANNEL_DMA:
448 		chan->user_put = 0x40;
449 		chan->user_get = 0x44;
450 		chan->dma.max = (0x10000 / 4) - 2;
451 		break;
452 	default:
453 		chan->user_put = 0x40;
454 		chan->user_get = 0x44;
455 		chan->user_get_hi = 0x60;
456 		chan->dma.ib_base =  0x10000 / 4;
457 		chan->dma.ib_max  = NV50_DMA_IB_MAX;
458 		chan->dma.ib_put  = 0;
459 		chan->dma.ib_free = chan->dma.ib_max - chan->dma.ib_put;
460 		chan->dma.max = chan->dma.ib_base;
461 		break;
462 	}
463 
464 	chan->dma.put = 0;
465 	chan->dma.cur = chan->dma.put;
466 	chan->dma.free = chan->dma.max - chan->dma.cur;
467 
468 	ret = PUSH_WAIT(chan->chan.push, NOUVEAU_DMA_SKIPS);
469 	if (ret)
470 		return ret;
471 
472 	for (i = 0; i < NOUVEAU_DMA_SKIPS; i++)
473 		PUSH_DATA(chan->chan.push, 0x00000000);
474 
475 	/* allocate software object class (used for fences on <= nv05) */
476 	if (device->info.family < NV_DEVICE_INFO_V0_CELSIUS) {
477 		ret = nvif_object_ctor(&chan->user, "abi16NvswFence", 0x006e,
478 				       NVIF_CLASS_SW_NV04,
479 				       NULL, 0, &chan->nvsw);
480 		if (ret)
481 			return ret;
482 
483 		ret = PUSH_WAIT(chan->chan.push, 2);
484 		if (ret)
485 			return ret;
486 
487 		PUSH_NVSQ(chan->chan.push, NV_SW, 0x0000, chan->nvsw.handle);
488 		PUSH_KICK(chan->chan.push);
489 	}
490 
491 	/* initialise synchronisation */
492 	return nouveau_fence(chan->drm)->context_new(chan);
493 }
494 
495 int
nouveau_channel_new(struct nouveau_drm * drm,struct nvif_device * device,bool priv,u64 runm,u32 vram,u32 gart,struct nouveau_channel ** pchan)496 nouveau_channel_new(struct nouveau_drm *drm, struct nvif_device *device,
497 		    bool priv, u64 runm, u32 vram, u32 gart, struct nouveau_channel **pchan)
498 {
499 	struct nouveau_cli *cli = (void *)device->object.client;
500 	int ret;
501 
502 	ret = nouveau_channel_ctor(drm, device, priv, runm, pchan);
503 	if (ret) {
504 		NV_PRINTK(dbg, cli, "channel create, %d\n", ret);
505 		return ret;
506 	}
507 
508 	ret = nouveau_channel_init(*pchan, vram, gart);
509 	if (ret) {
510 		NV_PRINTK(err, cli, "channel failed to initialise, %d\n", ret);
511 		nouveau_channel_del(pchan);
512 		return ret;
513 	}
514 
515 	ret = nouveau_svmm_join((*pchan)->vmm->svmm, (*pchan)->inst);
516 	if (ret)
517 		nouveau_channel_del(pchan);
518 
519 	return ret;
520 }
521 
522 void
nouveau_channels_fini(struct nouveau_drm * drm)523 nouveau_channels_fini(struct nouveau_drm *drm)
524 {
525 	kfree(drm->runl);
526 }
527 
528 int
nouveau_channels_init(struct nouveau_drm * drm)529 nouveau_channels_init(struct nouveau_drm *drm)
530 {
531 	struct {
532 		struct nv_device_info_v1 m;
533 		struct {
534 			struct nv_device_info_v1_data channels;
535 			struct nv_device_info_v1_data runlists;
536 		} v;
537 	} args = {
538 		.m.version = 1,
539 		.m.count = sizeof(args.v) / sizeof(args.v.channels),
540 		.v.channels.mthd = NV_DEVICE_HOST_CHANNELS,
541 		.v.runlists.mthd = NV_DEVICE_HOST_RUNLISTS,
542 	};
543 	struct nvif_object *device = &drm->client.device.object;
544 	int ret, i;
545 
546 	ret = nvif_object_mthd(device, NV_DEVICE_V0_INFO, &args, sizeof(args));
547 	if (ret ||
548 	    args.v.runlists.mthd == NV_DEVICE_INFO_INVALID || !args.v.runlists.data ||
549 	    args.v.channels.mthd == NV_DEVICE_INFO_INVALID)
550 		return -ENODEV;
551 
552 	drm->chan_nr = drm->chan_total = args.v.channels.data;
553 	drm->runl_nr = fls64(args.v.runlists.data);
554 	drm->runl = kcalloc(drm->runl_nr, sizeof(*drm->runl), GFP_KERNEL);
555 	if (!drm->runl)
556 		return -ENOMEM;
557 
558 	if (drm->chan_nr == 0) {
559 		for (i = 0; i < drm->runl_nr; i++) {
560 			if (!(args.v.runlists.data & BIT(i)))
561 				continue;
562 
563 			args.v.channels.mthd = NV_DEVICE_HOST_RUNLIST_CHANNELS;
564 			args.v.channels.data = i;
565 
566 			ret = nvif_object_mthd(device, NV_DEVICE_V0_INFO, &args, sizeof(args));
567 			if (ret || args.v.channels.mthd == NV_DEVICE_INFO_INVALID)
568 				return -ENODEV;
569 
570 			drm->runl[i].chan_nr = args.v.channels.data;
571 			drm->runl[i].chan_id_base = drm->chan_total;
572 			drm->runl[i].context_base = dma_fence_context_alloc(drm->runl[i].chan_nr);
573 
574 			drm->chan_total += drm->runl[i].chan_nr;
575 		}
576 	} else {
577 		drm->runl[0].context_base = dma_fence_context_alloc(drm->chan_nr);
578 		for (i = 1; i < drm->runl_nr; i++)
579 			drm->runl[i].context_base = drm->runl[0].context_base;
580 
581 	}
582 
583 	return 0;
584 }
585