xref: /netbsd/sys/arch/arm/xscale/ixp425_if_npe.c (revision 34c477d0)
1 /*	$NetBSD: ixp425_if_npe.c,v 1.53 2022/09/27 06:13:42 skrll Exp $ */
2 
3 /*-
4  * Copyright (c) 2006 Sam Leffler.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 #if 0
29 __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/if_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
30 #endif
31 __KERNEL_RCSID(0, "$NetBSD: ixp425_if_npe.c,v 1.53 2022/09/27 06:13:42 skrll Exp $");
32 
33 /*
34  * Intel XScale NPE Ethernet driver.
35  *
36  * This driver handles the two ports present on the IXP425.
37  * Packet processing is done by the Network Processing Engines
38  * (NPE's) that work together with a MAC and PHY. The MAC
39  * is also mapped to the XScale cpu; the PHY is accessed via
40  * the MAC. NPE-XScale communication happens through h/w
41  * queues managed by the Q Manager block.
42  *
43  * The code here replaces the ethAcc, ethMii, and ethDB classes
44  * in the Intel Access Library (IAL) and the OS-specific driver.
45  *
46  * XXX add vlan support
47  * XXX NPE-C port doesn't work yet
48  */
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/device.h>
54 #include <sys/callout.h>
55 #include <sys/kmem.h>
56 #include <sys/mbuf.h>
57 #include <sys/socket.h>
58 #include <sys/endian.h>
59 #include <sys/ioctl.h>
60 #include <sys/syslog.h>
61 #include <sys/bus.h>
62 #include <sys/rndsource.h>
63 
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68 #include <net/bpf.h>
69 
70 #include <arm/xscale/ixp425reg.h>
71 #include <arm/xscale/ixp425var.h>
72 #include <arm/xscale/ixp425_qmgr.h>
73 #include <arm/xscale/ixp425_npevar.h>
74 #include <arm/xscale/ixp425_if_npereg.h>
75 
76 #include <dev/mii/miivar.h>
77 
78 #include "locators.h"
79 
80 struct npebuf {
81 	struct npebuf	*ix_next;	/* chain to next buffer */
82 	void		*ix_m;		/* backpointer to mbuf */
83 	bus_dmamap_t	ix_map;		/* bus dma map for associated data */
84 	struct npehwbuf	*ix_hw;		/* associated h/w block */
85 	uint32_t	ix_neaddr;	/* phys address of ix_hw */
86 };
87 
88 struct npedma {
89 	const char*	name;
90 	int		nbuf;		/* # npebuf's allocated */
91 	bus_dmamap_t	m_map;
92 	struct npehwbuf	*hwbuf;		/* NPE h/w buffers */
93 	bus_dmamap_t	buf_map;
94 	bus_addr_t	buf_phys;	/* phys addr of buffers */
95 	struct npebuf	*buf;		/* s/w buffers (1-1 w/ h/w) */
96 };
97 
98 struct npe_softc {
99 	device_t	sc_dev;
100 	struct ethercom	sc_ethercom;
101 	uint8_t		sc_enaddr[ETHER_ADDR_LEN];
102 	struct mii_data	sc_mii;
103 	bus_space_tag_t	sc_iot;
104 	bus_dma_tag_t	sc_dt;
105 	bus_space_handle_t sc_ioh;	/* MAC register window */
106 	bus_space_handle_t sc_miih;	/* MII register window */
107 	struct ixpnpe_softc *sc_npe;	/* NPE support */
108 	int		sc_unit;
109 	int		sc_phy;
110 	struct callout	sc_tick_ch;	/* Tick callout */
111 	struct npedma	txdma;
112 	struct npebuf	*tx_free;	/* list of free tx buffers */
113 	struct npedma	rxdma;
114 	int		rx_qid;		/* rx qid */
115 	int		rx_freeqid;	/* rx free buffers qid */
116 	int		tx_qid;		/* tx qid */
117 	int		tx_doneqid;	/* tx completed qid */
118 	struct npestats	*sc_stats;
119 	bus_dmamap_t	sc_stats_map;
120 	bus_addr_t	sc_stats_phys;	/* phys addr of sc_stats */
121 	u_short		sc_if_flags;	/* keep last if_flags */
122 	krndsource_t rnd_source; /* random source */
123 };
124 
125 /*
126  * Per-unit static configuration for IXP425.  The tx and
127  * rx free Q id's are fixed by the NPE microcode.  The
128  * rx Q id's are programmed to be separate to simplify
129  * multi-port processing.  It may be better to handle
130  * all traffic through one Q (as done by the Intel drivers).
131  *
132  * Note that the PHY's are accessible only from MAC A
133  * on the IXP425.  This and other platform-specific
134  * assumptions probably need to be handled through hints.
135  */
136 static const struct {
137 	const char	*desc;		/* device description */
138 	int		npeid;		/* NPE assignment */
139 	int		macport;	/* Port number of the MAC */
140 	uint32_t	imageid;	/* NPE firmware image id */
141 	uint32_t	regbase;
142 	int		regsize;
143 	uint32_t	miibase;
144 	int		miisize;
145 	uint8_t		rx_qid;
146 	uint8_t		rx_freeqid;
147 	uint8_t		tx_qid;
148 	uint8_t		tx_doneqid;
149 } npeconfig[NPE_PORTS_MAX] = {
150 	{ .desc		= "IXP NPE-B",
151 	  .npeid	= NPE_B,
152 	  .macport	= 0x10,
153 	  .imageid	= IXP425_NPE_B_IMAGEID,
154 	  .regbase	= IXP425_MAC_A_HWBASE,
155 	  .regsize	= IXP425_MAC_A_SIZE,
156 	  .miibase	= IXP425_MAC_A_HWBASE,
157 	  .miisize	= IXP425_MAC_A_SIZE,
158 	  .rx_qid	= 4,
159 	  .rx_freeqid	= 27,
160 	  .tx_qid	= 24,
161 	  .tx_doneqid	= 31
162 	},
163 	{ .desc		= "IXP NPE-C",
164 	  .npeid	= NPE_C,
165 	  .macport	= 0x20,
166 	  .imageid	= IXP425_NPE_C_IMAGEID,
167 	  .regbase	= IXP425_MAC_B_HWBASE,
168 	  .regsize	= IXP425_MAC_B_SIZE,
169 	  .miibase	= IXP425_MAC_A_HWBASE,
170 	  .miisize	= IXP425_MAC_A_SIZE,
171 	  .rx_qid	= 12,
172 	  .rx_freeqid	= 28,
173 	  .tx_qid	= 25,
174 	  .tx_doneqid	= 31
175 	},
176 };
177 static struct npe_softc *npes[NPE_MAX];	/* NB: indexed by npeid */
178 
179 static __inline uint32_t
RD4(struct npe_softc * sc,bus_size_t off)180 RD4(struct npe_softc *sc, bus_size_t off)
181 {
182 	return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
183 }
184 
185 static __inline void
WR4(struct npe_softc * sc,bus_size_t off,uint32_t val)186 WR4(struct npe_softc *sc, bus_size_t off, uint32_t val)
187 {
188 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
189 }
190 
191 static int	npe_activate(struct npe_softc *);
192 #if 0
193 static void	npe_deactivate(struct npe_softc *);
194 #endif
195 static void	npe_setmac(struct npe_softc *, const u_char *);
196 static void	npe_getmac(struct npe_softc *);
197 static void	npe_txdone(int, void *);
198 static int	npe_rxbuf_init(struct npe_softc *, struct npebuf *,
199 			struct mbuf *);
200 static void	npe_rxdone(int, void *);
201 static void	npeinit_macreg(struct npe_softc *);
202 static int	npeinit(struct ifnet *);
203 static void	npeinit_resetcb(void *);
204 static void	npeinit_locked(void *);
205 static void	npestart(struct ifnet *);
206 static void	npestop(struct ifnet *, int);
207 static void	npewatchdog(struct ifnet *);
208 static int	npeioctl(struct ifnet *, u_long, void *);
209 
210 static int	npe_setrxqosentry(struct npe_softc *, int, int, int);
211 static int	npe_updatestats(struct npe_softc *);
212 #if 0
213 static int	npe_getstats(struct npe_softc *);
214 static uint32_t	npe_getimageid(struct npe_softc *);
215 static int	npe_setloopback(struct npe_softc *, int);
216 #endif
217 
218 static int	npe_miibus_readreg(device_t, int, int, uint16_t *);
219 static int	npe_miibus_writereg(device_t, int, int, uint16_t);
220 static void	npe_miibus_statchg(struct ifnet *);
221 
222 static int	npe_debug;
223 #define DPRINTF(sc, fmt, ...) do {			\
224 	if (npe_debug) printf(fmt, __VA_ARGS__);	\
225 } while (0)
226 #define DPRINTFn(n, sc, fmt, ...) do {			\
227 	if (npe_debug >= n) printf(fmt, __VA_ARGS__);	\
228 } while (0)
229 
230 #define	NPE_TXBUF	128
231 #define	NPE_RXBUF	64
232 
233 #define MAC2UINT64(addr)	(((uint64_t)addr[0] << 40)	\
234 				    + ((uint64_t)addr[1] << 32)	\
235 				    + ((uint64_t)addr[2] << 24)	\
236 				    + ((uint64_t)addr[3] << 16)	\
237 				    + ((uint64_t)addr[4] << 8)	\
238 				    + (uint64_t)addr[5])
239 
240 /* NB: all tx done processing goes through one queue */
241 static int tx_doneqid = -1;
242 
243 void (*npe_getmac_md)(int, uint8_t *);
244 
245 static int npe_match(device_t, cfdata_t, void *);
246 static void npe_attach(device_t, device_t, void *);
247 
248 CFATTACH_DECL_NEW(npe, sizeof(struct npe_softc),
249     npe_match, npe_attach, NULL, NULL);
250 
251 static int
npe_match(device_t parent,cfdata_t cf,void * arg)252 npe_match(device_t parent, cfdata_t cf, void *arg)
253 {
254 	struct ixpnpe_attach_args *na = arg;
255 
256 	return (na->na_unit == NPE_B || na->na_unit == NPE_C);
257 }
258 
259 static void
npe_attach(device_t parent,device_t self,void * arg)260 npe_attach(device_t parent, device_t self, void *arg)
261 {
262 	struct npe_softc *sc = device_private(self);
263 	struct ixpnpe_softc *isc = device_private(parent);
264 	struct ixpnpe_attach_args *na = arg;
265 	struct ifnet *ifp;
266 	struct mii_data * const mii = &sc->sc_mii;
267 
268 	aprint_naive("\n");
269 	aprint_normal(": Ethernet co-processor\n");
270 
271 	sc->sc_dev = self;
272 	sc->sc_iot = na->na_iot;
273 	sc->sc_dt = na->na_dt;
274 	sc->sc_npe = na->na_npe;
275 	sc->sc_unit = (na->na_unit == NPE_B) ? 0 : 1;
276 	sc->sc_phy = na->na_phy;
277 
278 	memset(&sc->sc_ethercom, 0, sizeof(sc->sc_ethercom));
279 	memset(mii, 0, sizeof(*mii));
280 
281 	callout_init(&sc->sc_tick_ch, 0);
282 
283 	if (npe_activate(sc)) {
284 		aprint_error_dev(sc->sc_dev,
285 		    "Failed to activate NPE (missing microcode?)\n");
286 		return;
287 	}
288 
289 	npe_getmac(sc);
290 	npeinit_macreg(sc);
291 
292 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
293 	    ether_sprintf(sc->sc_enaddr));
294 
295 	ifp = &sc->sc_ethercom.ec_if;
296 	mii->mii_ifp = ifp;
297 	mii->mii_readreg = npe_miibus_readreg;
298 	mii->mii_writereg = npe_miibus_writereg;
299 	mii->mii_statchg = npe_miibus_statchg;
300 	sc->sc_ethercom.ec_mii = mii;
301 
302 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
303 	    ether_mediastatus);
304 
305 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
306 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
307 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
308 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
309 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
310 	} else
311 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
312 
313 	ifp->if_softc = sc;
314 	strcpy(ifp->if_xname, device_xname(sc->sc_dev));
315 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
316 	ifp->if_start = npestart;
317 	ifp->if_ioctl = npeioctl;
318 	ifp->if_watchdog = npewatchdog;
319 	ifp->if_init = npeinit;
320 	ifp->if_stop = npestop;
321 	IFQ_SET_READY(&ifp->if_snd);
322 
323 	/* VLAN capable */
324 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
325 
326 	if_attach(ifp);
327 	if_deferred_start_init(ifp, NULL);
328 	ether_ifattach(ifp, sc->sc_enaddr);
329 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
330 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
331 
332 	/* callback function to reset MAC */
333 	isc->macresetcbfunc = npeinit_resetcb;
334 	isc->macresetcbarg = sc;
335 }
336 
337 /*
338  * Compute and install the multicast filter.
339  */
340 static void
npe_setmcast(struct npe_softc * sc)341 npe_setmcast(struct npe_softc *sc)
342 {
343 	struct ethercom *ec = &sc->sc_ethercom;
344 	struct ifnet *ifp = &ec->ec_if;
345 	uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN];
346 	uint32_t reg;
347 	uint32_t msg[2];
348 	int i;
349 
350 	/* Always use filter. Is here a correct position? */
351 	reg = RD4(sc, NPE_MAC_RX_CNTRL1);
352 	WR4(sc, NPE_MAC_RX_CNTRL1, reg | NPE_RX_CNTRL1_ADDR_FLTR_EN);
353 
354 	if (ifp->if_flags & IFF_PROMISC) {
355 		memset(mask, 0, ETHER_ADDR_LEN);
356 		memset(addr, 0, ETHER_ADDR_LEN);
357 	} else if (ifp->if_flags & IFF_ALLMULTI) {
358 		static const uint8_t allmulti[ETHER_ADDR_LEN] =
359 		    { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
360  all_multi:
361 		memcpy(mask, allmulti, ETHER_ADDR_LEN);
362 		memcpy(addr, allmulti, ETHER_ADDR_LEN);
363 	} else {
364 		uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN];
365 		struct ether_multistep step;
366 		struct ether_multi *enm;
367 
368 		memset(clr, 0, ETHER_ADDR_LEN);
369 		memset(set, 0xff, ETHER_ADDR_LEN);
370 
371 		ETHER_LOCK(ec);
372 		ETHER_FIRST_MULTI(step, ec, enm);
373 		while (enm != NULL) {
374 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
375 			    ETHER_ADDR_LEN)) {
376 				ifp->if_flags |= IFF_ALLMULTI;
377 				ETHER_UNLOCK(ec);
378 				goto all_multi;
379 			}
380 
381 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
382 				clr[i] |= enm->enm_addrlo[i];
383 				set[i] &= enm->enm_addrlo[i];
384 			}
385 
386 			ETHER_NEXT_MULTI(step, enm);
387 		}
388 		ETHER_UNLOCK(ec);
389 
390 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
391 			mask[i] = set[i] | ~clr[i];
392 			addr[i] = set[i];
393 		}
394 	}
395 
396 	/*
397 	 * Write the mask and address registers.
398 	 */
399 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
400 		WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]);
401 		WR4(sc, NPE_MAC_ADDR(i), addr[i]);
402 	}
403 
404 	msg[0] = NPE_ADDRESSFILTERCONFIG << NPE_MAC_MSGID_SHL
405 	    | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
406 	msg[1] = ((ifp->if_flags & IFF_PROMISC) ? 1 : 0) << 24
407 	    | ((RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff) << 16)
408 	    | (addr[5] << 8) | mask[5];
409 	ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
410 }
411 
412 static int
npe_dma_setup(struct npe_softc * sc,struct npedma * dma,const char * name,int nbuf,int maxseg)413 npe_dma_setup(struct npe_softc *sc, struct npedma *dma,
414 	const char *name, int nbuf, int maxseg)
415 {
416 	bus_dma_segment_t seg;
417 	int rseg, error, i;
418 	void *hwbuf;
419 	size_t size;
420 
421 	memset(dma, 0, sizeof(*dma));
422 
423 	dma->name = name;
424 	dma->nbuf = nbuf;
425 
426 	size = nbuf * sizeof(struct npehwbuf);
427 
428 	/* XXX COHERENT for now */
429 	error = bus_dmamem_alloc(sc->sc_dt, size, sizeof(uint32_t), 0, &seg,
430 	    1, &rseg, BUS_DMA_NOWAIT);
431 	if (error) {
432 		aprint_error_dev(sc->sc_dev,
433 		    "unable to %s for %s %s buffers, error %u\n",
434 		    "allocate memory", dma->name, "h/w", error);
435 	}
436 
437 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, size, &hwbuf,
438 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_NOCACHE);
439 	if (error) {
440 		aprint_error_dev(sc->sc_dev,
441 		    "unable to %s for %s %s buffers, error %u\n",
442 		    "map memory", dma->name, "h/w", error);
443  free_dmamem:
444 		bus_dmamem_free(sc->sc_dt, &seg, rseg);
445 		return error;
446 	}
447 	dma->hwbuf = (void *)hwbuf;
448 
449 	error = bus_dmamap_create(sc->sc_dt, size, 1, size, 0,
450 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dma->buf_map);
451 	if (error) {
452 		aprint_error_dev(sc->sc_dev,
453 		    "unable to %s for %s %s buffers, error %u\n",
454 		    "create map", dma->name, "h/w", error);
455  unmap_dmamem:
456 		dma->hwbuf = NULL;
457 		bus_dmamem_unmap(sc->sc_dt, hwbuf, size);
458 		goto free_dmamem;
459 	}
460 
461 	error = bus_dmamap_load(sc->sc_dt, dma->buf_map, hwbuf, size, NULL,
462 	    BUS_DMA_NOWAIT);
463 	if (error) {
464 		aprint_error_dev(sc->sc_dev,
465 		    "unable to %s for %s %s buffers, error %u\n",
466 		    "load map", dma->name, "h/w", error);
467 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
468 		goto unmap_dmamem;
469 	}
470 
471 	dma->buf = kmem_zalloc(nbuf * sizeof(struct npebuf), KM_SLEEP);
472 	dma->buf_phys = dma->buf_map->dm_segs[0].ds_addr;
473 	for (i = 0; i < dma->nbuf; i++) {
474 		struct npebuf *npe = &dma->buf[i];
475 		struct npehwbuf *hw = &dma->hwbuf[i];
476 
477 		/* Calculate offset to shared area */
478 		npe->ix_neaddr = dma->buf_phys +
479 			((uintptr_t)hw - (uintptr_t)dma->hwbuf);
480 		KASSERT((npe->ix_neaddr & 0x1f) == 0);
481 		error = bus_dmamap_create(sc->sc_dt, MCLBYTES, maxseg,
482 		    MCLBYTES, 0, 0, &npe->ix_map);
483 		if (error != 0) {
484 			aprint_error_dev(sc->sc_dev,
485 			    "unable to %s for %s buffer %u, error %u\n",
486 			    "create dmamap", dma->name, i, error);
487 			/* XXXSCW: Free up maps... */
488 			return error;
489 		}
490 		npe->ix_hw = hw;
491 	}
492 	bus_dmamap_sync(sc->sc_dt, dma->buf_map, 0, dma->buf_map->dm_mapsize,
493 	    BUS_DMASYNC_PREWRITE);
494 	return 0;
495 }
496 
497 #if 0
498 static void
499 npe_dma_destroy(struct npe_softc *sc, struct npedma *dma)
500 {
501 	int i;
502 
503 /* XXXSCW: Clean this up */
504 
505 	if (dma->hwbuf != NULL) {
506 		for (i = 0; i < dma->nbuf; i++) {
507 			struct npebuf *npe = &dma->buf[i];
508 			bus_dmamap_destroy(sc->sc_dt, npe->ix_map);
509 		}
510 		bus_dmamap_unload(sc->sc_dt, dma->buf_map);
511 		bus_dmamem_free(sc->sc_dt, (void *)dma->hwbuf, dma->buf_map);
512 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
513 	}
514 	if (dma->buf != NULL)
515 		kmem_free(dma->buf, dma->nbuf * sizeof(struct npebuf));
516 	memset(dma, 0, sizeof(*dma));
517 }
518 #endif
519 
520 static int
npe_activate(struct npe_softc * sc)521 npe_activate(struct npe_softc *sc)
522 {
523 	bus_dma_segment_t seg;
524 	int unit = sc->sc_unit;
525 	int error, i, rseg;
526 	void *statbuf;
527 
528 	/* load NPE firmware and start it running */
529 	error = ixpnpe_init(sc->sc_npe, "npe_fw", npeconfig[unit].imageid);
530 	if (error != 0)
531 		return error;
532 
533 	if (bus_space_map(sc->sc_iot, npeconfig[unit].regbase,
534 	    npeconfig[unit].regsize, 0, &sc->sc_ioh)) {
535 		aprint_error_dev(sc->sc_dev, "Cannot map registers 0x%x:0x%x\n",
536 		    npeconfig[unit].regbase, npeconfig[unit].regsize);
537 		return ENOMEM;
538 	}
539 
540 	if (npeconfig[unit].miibase != npeconfig[unit].regbase) {
541 		/*
542 		 * The PHY's are only accessible from one MAC (it appears)
543 		 * so for other MAC's setup an additional mapping for
544 		 * frobbing the PHY registers.
545 		 */
546 		if (bus_space_map(sc->sc_iot, npeconfig[unit].miibase,
547 		    npeconfig[unit].miisize, 0, &sc->sc_miih)) {
548 			aprint_error_dev(sc->sc_dev,
549 			    "Cannot map MII registers 0x%x:0x%x\n",
550 			    npeconfig[unit].miibase, npeconfig[unit].miisize);
551 			return ENOMEM;
552 		}
553 	} else
554 		sc->sc_miih = sc->sc_ioh;
555 	error = npe_dma_setup(sc, &sc->txdma, "tx", NPE_TXBUF, NPE_MAXSEG);
556 	if (error != 0)
557 		return error;
558 	error = npe_dma_setup(sc, &sc->rxdma, "rx", NPE_RXBUF, 1);
559 	if (error != 0)
560 		return error;
561 
562 	/* setup statistics block */
563 	error = bus_dmamem_alloc(sc->sc_dt, sizeof(struct npestats),
564 	    sizeof(uint32_t), 0, &seg, 1, &rseg, BUS_DMA_NOWAIT);
565 	if (error) {
566 		aprint_error_dev(sc->sc_dev,
567 		    "unable to %s for %s, error %u\n",
568 		    "allocate memory", "stats block", error);
569 		return error;
570 	}
571 
572 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, sizeof(struct npestats),
573 	    &statbuf, BUS_DMA_NOWAIT);
574 	if (error) {
575 		aprint_error_dev(sc->sc_dev,
576 		    "unable to %s for %s, error %u\n",
577 		    "map memory", "stats block", error);
578 		return error;
579 	}
580 	sc->sc_stats = (void *)statbuf;
581 
582 	error = bus_dmamap_create(sc->sc_dt, sizeof(struct npestats), 1,
583 	    sizeof(struct npestats), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
584 	    &sc->sc_stats_map);
585 	if (error) {
586 		aprint_error_dev(sc->sc_dev,
587 		    "unable to %s for %s, error %u\n",
588 		    "create map", "stats block", error);
589 		return error;
590 	}
591 
592 	error = bus_dmamap_load(sc->sc_dt, sc->sc_stats_map, sc->sc_stats,
593 	    sizeof(struct npestats), NULL, BUS_DMA_NOWAIT);
594 	if (error) {
595 		aprint_error_dev(sc->sc_dev,
596 		    "unable to %s for %s, error %u\n",
597 		    "load map", "stats block", error);
598 		return error;
599 	}
600 	sc->sc_stats_phys = sc->sc_stats_map->dm_segs[0].ds_addr;
601 
602 	/* XXX disable half-bridge LEARNING+FILTERING feature */
603 
604 	/*
605 	 * Setup h/w rx/tx queues.  There are four q's:
606 	 *   rx		inbound q of rx'd frames
607 	 *   rx_free	pool of ixpbuf's for receiving frames
608 	 *   tx		outbound q of frames to send
609 	 *   tx_done	q of tx frames that have been processed
610 	 *
611 	 * The NPE handles the actual tx/rx process and the q manager
612 	 * handles the queues.  The driver just writes entries to the
613 	 * q manager mailbox's and gets callbacks when there are rx'd
614 	 * frames to process or tx'd frames to reap.  These callbacks
615 	 * are controlled by the q configurations; e.g. we get a
616 	 * callback when tx_done has 2 or more frames to process and
617 	 * when the rx q has at least one frame.  These settings can
618 	 * changed at the time the q is configured.
619 	 */
620 	sc->rx_qid = npeconfig[unit].rx_qid;
621 	ixpqmgr_qconfig(sc->rx_qid, NPE_RXBUF, 0,  1,
622 		IX_QMGR_Q_SOURCE_ID_NOT_E, npe_rxdone, sc);
623 	sc->rx_freeqid = npeconfig[unit].rx_freeqid;
624 	ixpqmgr_qconfig(sc->rx_freeqid,	NPE_RXBUF, 0, NPE_RXBUF/2, 0, NULL, sc);
625 	/* tell the NPE to direct all traffic to rx_qid */
626 #if 0
627 	for (i = 0; i < 8; i++)
628 #else
629 printf("%s: remember to fix rx q setup\n", device_xname(sc->sc_dev));
630 	for (i = 0; i < 4; i++)
631 #endif
632 		npe_setrxqosentry(sc, i, 0, sc->rx_qid);
633 
634 	sc->tx_qid = npeconfig[unit].tx_qid;
635 	sc->tx_doneqid = npeconfig[unit].tx_doneqid;
636 	ixpqmgr_qconfig(sc->tx_qid, NPE_TXBUF, 0, NPE_TXBUF, 0, NULL, sc);
637 	if (tx_doneqid == -1) {
638 		ixpqmgr_qconfig(sc->tx_doneqid,	NPE_TXBUF, 0,  2,
639 			IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc);
640 		tx_doneqid = sc->tx_doneqid;
641 	}
642 
643 	KASSERT(npes[npeconfig[unit].npeid] == NULL);
644 	npes[npeconfig[unit].npeid] = sc;
645 
646 	return 0;
647 }
648 
649 #if 0
650 static void
651 npe_deactivate(struct npe_softc *sc);
652 {
653 	int unit = sc->sc_unit;
654 
655 	npes[npeconfig[unit].npeid] = NULL;
656 
657 	/* XXX disable q's */
658 	if (sc->sc_npe != NULL)
659 		ixpnpe_stop(sc->sc_npe);
660 	if (sc->sc_stats != NULL) {
661 		bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map);
662 		bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats,
663 			sc->sc_stats_map);
664 		bus_dmamap_destroy(sc->sc_stats_tag, sc->sc_stats_map);
665 	}
666 	if (sc->sc_stats_tag != NULL)
667 		bus_dma_tag_destroy(sc->sc_stats_tag);
668 	npe_dma_destroy(sc, &sc->txdma);
669 	npe_dma_destroy(sc, &sc->rxdma);
670 	bus_generic_detach(sc->sc_dev);
671 	XXX ifmedia_fini somewhere
672 	if (sc->sc_mii)
673 		device_delete_child(sc->sc_dev, sc->sc_mii);
674 #if 0
675 	/* XXX sc_ioh and sc_miih */
676 	if (sc->mem_res)
677 		bus_release_resource(dev, SYS_RES_IOPORT,
678 		    rman_get_rid(sc->mem_res), sc->mem_res);
679 	sc->mem_res = 0;
680 #endif
681 }
682 #endif
683 
684 static void
npe_addstats(struct npe_softc * sc)685 npe_addstats(struct npe_softc *sc)
686 {
687 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
688 	struct npestats *ns = sc->sc_stats;
689 
690 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
691 	if_statadd_ref(nsr, if_oerrors,
692 		  be32toh(ns->dot3StatsInternalMacTransmitErrors)
693 		+ be32toh(ns->dot3StatsCarrierSenseErrors)
694 		+ be32toh(ns->TxVLANIdFilterDiscards)
695 		);
696 	if_statadd_ref(nsr, if_ierrors,
697 		  be32toh(ns->dot3StatsFCSErrors)
698 		+ be32toh(ns->dot3StatsInternalMacReceiveErrors)
699 		+ be32toh(ns->RxOverrunDiscards)
700 		+ be32toh(ns->RxUnderflowEntryDiscards)
701 		);
702 	if_statadd_ref(nsr, if_collisions,
703 		  be32toh(ns->dot3StatsSingleCollisionFrames)
704 		+ be32toh(ns->dot3StatsMultipleCollisionFrames)
705 		);
706 	IF_STAT_PUTREF(ifp);
707 }
708 
709 static void
npe_tick(void * xsc)710 npe_tick(void *xsc)
711 {
712 #define	ACK	(NPE_RESETSTATS << NPE_MAC_MSGID_SHL)
713 	struct npe_softc *sc = xsc;
714 	uint32_t msg[2];
715 
716 	/*
717 	 * NB: to avoid sleeping with the softc lock held we
718 	 * split the NPE msg processing into two parts.  The
719 	 * request for statistics is sent w/o waiting for a
720 	 * reply and then on the next tick we retrieve the
721 	 * results.  This works because npe_tick is the only
722 	 * code that talks via the mailbox's (except at setup).
723 	 * This likely can be handled better.
724 	 */
725 	if (ixpnpe_recvmsg(sc->sc_npe, msg) == 0 && msg[0] == ACK) {
726 		bus_dmamap_sync(sc->sc_dt, sc->sc_stats_map, 0,
727 		    sizeof(struct npestats), BUS_DMASYNC_POSTREAD);
728 		npe_addstats(sc);
729 	}
730 	npe_updatestats(sc);
731 	mii_tick(&sc->sc_mii);
732 
733 	/* Schedule next poll */
734 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
735 #undef ACK
736 }
737 
738 static void
npe_setmac(struct npe_softc * sc,const u_char * eaddr)739 npe_setmac(struct npe_softc *sc, const u_char *eaddr)
740 {
741 
742 	WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]);
743 	WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]);
744 	WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]);
745 	WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]);
746 	WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]);
747 	WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]);
748 }
749 
750 static void
npe_getmac(struct npe_softc * sc)751 npe_getmac(struct npe_softc *sc)
752 {
753 	uint8_t *eaddr = sc->sc_enaddr;
754 
755 	if (npe_getmac_md != NULL) {
756 		(*npe_getmac_md)(device_unit(sc->sc_dev), eaddr);
757 	} else {
758 		/*
759 		 * Some system's unicast address appears to be loaded from
760 		 * EEPROM on reset
761 		 */
762 		eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff;
763 		eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff;
764 		eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff;
765 		eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff;
766 		eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff;
767 		eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff;
768 	}
769 }
770 
771 struct txdone {
772 	struct npebuf *head;
773 	struct npebuf **tail;
774 	int count;
775 };
776 
777 static __inline void
npe_txdone_finish(struct npe_softc * sc,const struct txdone * td)778 npe_txdone_finish(struct npe_softc *sc, const struct txdone *td)
779 {
780 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
781 
782 	*td->tail = sc->tx_free;
783 	sc->tx_free = td->head;
784 	/*
785 	 * We're no longer busy, so clear the busy flag and call the
786 	 * start routine to xmit more packets.
787 	 */
788 	if_statadd(ifp, if_opackets, td->count);
789 	ifp->if_timer = 0;
790 	if_schedule_deferred_start(ifp);
791 }
792 
793 /*
794  * Q manager callback on tx done queue.  Reap mbufs
795  * and return tx buffers to the free list.  Finally
796  * restart output.  Note the microcode has only one
797  * txdone q wired into it so we must use the NPE ID
798  * returned with each npehwbuf to decide where to
799  * send buffers.
800  */
801 static void
npe_txdone(int qid,void * arg)802 npe_txdone(int qid, void *arg)
803 {
804 #define	P2V(a, dma) \
805 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
806 	struct npe_softc *sc;
807 	struct npebuf *npe;
808 	struct txdone *td, q[NPE_MAX];
809 	uint32_t entry;
810 
811 	/* XXX no NPE-A support */
812 	q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0;
813 	q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0;
814 	/* XXX max # at a time? */
815 	while (ixpqmgr_qread(qid, &entry) == 0) {
816 		sc = npes[NPE_QM_Q_NPE(entry)];
817 		DPRINTF(sc, "%s: entry 0x%x NPE %u port %u\n",
818 		    __func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry));
819 		rnd_add_uint32(&sc->rnd_source, entry);
820 
821 		npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma);
822 		m_freem(npe->ix_m);
823 		npe->ix_m = NULL;
824 
825 		td = &q[NPE_QM_Q_NPE(entry)];
826 		*td->tail = npe;
827 		td->tail = &npe->ix_next;
828 		td->count++;
829 	}
830 
831 	if (q[NPE_B].count)
832 		npe_txdone_finish(npes[NPE_B], &q[NPE_B]);
833 	if (q[NPE_C].count)
834 		npe_txdone_finish(npes[NPE_C], &q[NPE_C]);
835 #undef P2V
836 }
837 
838 static __inline struct mbuf *
npe_getcl(void)839 npe_getcl(void)
840 {
841 	struct mbuf *m;
842 
843 	MGETHDR(m, M_DONTWAIT, MT_DATA);
844 	if (m != NULL) {
845 		MCLGET(m, M_DONTWAIT);
846 		if ((m->m_flags & M_EXT) == 0) {
847 			m_freem(m);
848 			m = NULL;
849 		}
850 	}
851 	return m;
852 }
853 
854 static int
npe_rxbuf_init(struct npe_softc * sc,struct npebuf * npe,struct mbuf * m)855 npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m)
856 {
857 	struct npehwbuf *hw;
858 	int error;
859 
860 	if (m == NULL) {
861 		m = npe_getcl();
862 		if (m == NULL)
863 			return ENOBUFS;
864 	}
865 	KASSERT(m->m_ext.ext_size >= (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
866 	m->m_pkthdr.len = m->m_len = NPE_FRAME_SIZE_DEFAULT;
867 	/* backload payload and align ip hdr */
868 	m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size
869 	    - (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
870 	error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
871 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
872 	if (error != 0) {
873 		m_freem(m);
874 		return error;
875 	}
876 	hw = npe->ix_hw;
877 	hw->ix_ne[0].data = htobe32(npe->ix_map->dm_segs[0].ds_addr);
878 	/* NB: NPE requires length be a multiple of 64 */
879 	/* NB: buffer length is shifted in word */
880 	hw->ix_ne[0].len = htobe32(npe->ix_map->dm_segs[0].ds_len << 16);
881 	hw->ix_ne[0].next = 0;
882 	npe->ix_m = m;
883 	/* Flush the memory in the mbuf */
884 	bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, npe->ix_map->dm_mapsize,
885 	    BUS_DMASYNC_PREREAD);
886 	return 0;
887 }
888 
889 /*
890  * RX q processing for a specific NPE.  Claim entries
891  * from the hardware queue and pass the frames up the
892  * stack. Pass the rx buffers to the free list.
893  */
894 static void
npe_rxdone(int qid,void * arg)895 npe_rxdone(int qid, void *arg)
896 {
897 #define	P2V(a, dma) \
898 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
899 	struct npe_softc *sc = arg;
900 	struct npedma *dma = &sc->rxdma;
901 	uint32_t entry;
902 
903 	while (ixpqmgr_qread(qid, &entry) == 0) {
904 		struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma);
905 		struct mbuf *m;
906 
907 		DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n",
908 		    __func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len);
909 		rnd_add_uint32(&sc->rnd_source, entry);
910 		/*
911 		 * Allocate a new mbuf to replenish the rx buffer.
912 		 * If doing so fails we drop the rx'd frame so we
913 		 * can reuse the previous mbuf.  When we're able to
914 		 * allocate a new mbuf dispatch the mbuf w/ rx'd
915 		 * data up the stack and replace it with the newly
916 		 * allocated one.
917 		 */
918 		m = npe_getcl();
919 		if (m != NULL) {
920 			struct mbuf *mrx = npe->ix_m;
921 			struct npehwbuf *hw = npe->ix_hw;
922 			struct ifnet *ifp = &sc->sc_ethercom.ec_if;
923 
924 			/* Flush mbuf memory for rx'd data */
925 			bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
926 			    npe->ix_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
927 
928 			/* XXX flush hw buffer; works now 'cuz coherent */
929 			/* set m_len etc. per rx frame size */
930 			mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff;
931 			mrx->m_pkthdr.len = mrx->m_len;
932 			m_set_rcvif(mrx, ifp);
933 			/* Don't add M_HASFCS. See below */
934 
935 #if 1
936 			if (mrx->m_pkthdr.len < sizeof(struct ether_header)) {
937 				log(LOG_INFO, "%s: too short frame (len=%d)\n",
938 				    device_xname(sc->sc_dev),
939 				    mrx->m_pkthdr.len);
940 				/* Back out "newly allocated" mbuf. */
941 				m_freem(m);
942 				if_statinc(ifp, if_ierrors);
943 				goto fail;
944 			}
945 			if ((ifp->if_flags & IFF_PROMISC) == 0) {
946 				struct ether_header *eh;
947 
948 				/*
949 				 * Workaround for "Non-Intel XScale Technology
950 				 * Eratta" No. 29. AA:BB:CC:DD:EE:xF's packet
951 				 * matches the filter (both unicast and
952 				 * multicast).
953 				 */
954 				eh = mtod(mrx, struct ether_header *);
955 				if (ETHER_IS_MULTICAST(eh->ether_dhost) == 0) {
956 					/* Unicast */
957 
958 					if (sc->sc_enaddr[5] != eh->ether_dhost[5]) {
959 						/* Discard it */
960 #if 0
961 						printf("discard it\n");
962 #endif
963 						/*
964 						 * Back out "newly allocated"
965 						 * mbuf.
966 						 */
967 						m_freem(m);
968 						goto fail;
969 					}
970 				} else if (memcmp(eh->ether_dhost,
971 					etherbroadcastaddr, 6) == 0) {
972 					/* Always accept broadcast packet*/
973 				} else {
974 					struct ethercom *ec = &sc->sc_ethercom;
975 					struct ether_multi *enm;
976 					struct ether_multistep step;
977 					int match = 0;
978 
979 					/* Multicast */
980 
981 					ETHER_LOCK(ec);
982 					ETHER_FIRST_MULTI(step, ec, enm);
983 					while (enm != NULL) {
984 						uint64_t lowint, highint, dest;
985 
986 						lowint = MAC2UINT64(enm->enm_addrlo);
987 						highint = MAC2UINT64(enm->enm_addrhi);
988 						dest = MAC2UINT64(eh->ether_dhost);
989 #if 0
990 						printf("%llx\n", lowint);
991 						printf("%llx\n", dest);
992 						printf("%llx\n", highint);
993 #endif
994 						if ((lowint <= dest) && (dest <= highint)) {
995 							match = 1;
996 							break;
997 						}
998 						ETHER_NEXT_MULTI(step, enm);
999 					}
1000 					ETHER_UNLOCK(ec);
1001 
1002 					if (match == 0) {
1003 						/* Discard it */
1004 #if 0
1005 						printf("discard it(M)\n");
1006 #endif
1007 						/*
1008 						 * Back out "newly allocated"
1009 						 * mbuf.
1010 						 */
1011 						m_freem(m);
1012 						goto fail;
1013 					}
1014 				}
1015 			}
1016 			if (mrx->m_pkthdr.len > NPE_FRAME_SIZE_DEFAULT) {
1017 				log(LOG_INFO, "%s: oversized frame (len=%d)\n",
1018 				    device_xname(sc->sc_dev), mrx->m_pkthdr.len);
1019 				/* Back out "newly allocated" mbuf. */
1020 				m_freem(m);
1021 				if_statinc(ifp, if_ierrors);
1022 				goto fail;
1023 			}
1024 #endif
1025 
1026 			/*
1027 			 * Trim FCS!
1028 			 * NPE always adds the FCS by this driver's setting,
1029 			 * so we always trim it here and not add M_HASFCS.
1030 			 */
1031 			m_adj(mrx, -ETHER_CRC_LEN);
1032 
1033 			/*
1034 			 * Tap off here if there is a bpf listener.
1035 			 */
1036 
1037 			if_percpuq_enqueue(ifp->if_percpuq, mrx);
1038 		} else {
1039 fail:
1040 			/* discard frame and re-use mbuf */
1041 			m = npe->ix_m;
1042 		}
1043 		if (npe_rxbuf_init(sc, npe, m) == 0) {
1044 			/* return npe buf to rx free list */
1045 			ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
1046 		} else {
1047 			/* XXX should not happen */
1048 		}
1049 	}
1050 #undef P2V
1051 }
1052 
1053 static void
npe_startxmit(struct npe_softc * sc)1054 npe_startxmit(struct npe_softc *sc)
1055 {
1056 	struct npedma *dma = &sc->txdma;
1057 	int i;
1058 
1059 	sc->tx_free = NULL;
1060 	for (i = 0; i < dma->nbuf; i++) {
1061 		struct npebuf *npe = &dma->buf[i];
1062 		if (npe->ix_m != NULL) {
1063 			/* NB: should not happen */
1064 			printf("%s: %s: free mbuf at entry %u\n",
1065 			    device_xname(sc->sc_dev), __func__, i);
1066 			m_freem(npe->ix_m);
1067 		}
1068 		npe->ix_m = NULL;
1069 		npe->ix_next = sc->tx_free;
1070 		sc->tx_free = npe;
1071 	}
1072 }
1073 
1074 static void
npe_startrecv(struct npe_softc * sc)1075 npe_startrecv(struct npe_softc *sc)
1076 {
1077 	struct npedma *dma = &sc->rxdma;
1078 	struct npebuf *npe;
1079 	int i;
1080 
1081 	for (i = 0; i < dma->nbuf; i++) {
1082 		npe = &dma->buf[i];
1083 		npe_rxbuf_init(sc, npe, npe->ix_m);
1084 		/* Set npe buf on rx free list */
1085 		ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
1086 	}
1087 }
1088 
1089 static void
npeinit_macreg(struct npe_softc * sc)1090 npeinit_macreg(struct npe_softc *sc)
1091 {
1092 
1093 	/*
1094 	 * Reset MAC core.
1095 	 */
1096 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
1097 	DELAY(NPE_MAC_RESET_DELAY);
1098 	/* Configure MAC to generate MDC clock */
1099 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
1100 
1101 	/* Disable transmitter and receiver in the MAC */
1102 	WR4(sc, NPE_MAC_RX_CNTRL1,
1103 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
1104 	WR4(sc, NPE_MAC_TX_CNTRL1,
1105 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
1106 
1107 	/*
1108 	 * Set the MAC core registers.
1109 	 */
1110 	WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1);	/* clock ratio: for ipx4xx */
1111 	WR4(sc, NPE_MAC_TX_CNTRL2,	0xf);	/* max retries */
1112 	WR4(sc, NPE_MAC_RANDOM_SEED,	0x8);	/* LFSR back-off seed */
1113 	/* Thresholds determined by NPE firmware FS */
1114 	WR4(sc, NPE_MAC_THRESH_P_EMPTY,	0x12);
1115 	WR4(sc, NPE_MAC_THRESH_P_FULL,	0x30);
1116 	WR4(sc, NPE_MAC_BUF_SIZE_TX, NPE_MAC_BUF_SIZE_TX_DEFAULT);
1117 						/* tx fifo threshold (bytes) */
1118 	WR4(sc, NPE_MAC_TX_DEFER,	0x15);	/* for single deferral */
1119 	WR4(sc, NPE_MAC_RX_DEFER,	0x16);	/* deferral on inter-frame gap*/
1120 	WR4(sc, NPE_MAC_TX_TWO_DEFER_1,	0x8);	/* for 2-part deferral */
1121 	WR4(sc, NPE_MAC_TX_TWO_DEFER_2,	0x7);	/* for 2-part deferral */
1122 	WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
1123 						/* assumes MII mode */
1124 	WR4(sc, NPE_MAC_TX_CNTRL1,
1125 		  NPE_TX_CNTRL1_RETRY		/* retry failed xmits */
1126 		| NPE_TX_CNTRL1_FCS_EN		/* append FCS */
1127 		| NPE_TX_CNTRL1_2DEFER		/* 2-part deferal */
1128 		| NPE_TX_CNTRL1_PAD_EN);	/* pad runt frames */
1129 	/* XXX pad strip? */
1130 	WR4(sc, NPE_MAC_RX_CNTRL1,
1131 		  NPE_RX_CNTRL1_CRC_EN		/* include CRC/FCS */
1132 		| NPE_RX_CNTRL1_PAUSE_EN);	/* ena pause frame handling */
1133 	WR4(sc, NPE_MAC_RX_CNTRL2, 0);
1134 }
1135 
1136 static void
npeinit_resetcb(void * xsc)1137 npeinit_resetcb(void *xsc)
1138 {
1139 	struct npe_softc *sc = xsc;
1140 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1141 	uint32_t msg[2];
1142 
1143 	if_statinc(ifp, if_oerrors);
1144 	npeinit_locked(sc);
1145 
1146 	msg[0] = NPE_NOTIFYMACRECOVERYDONE << NPE_MAC_MSGID_SHL
1147 	    | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
1148 	msg[1] = 0;
1149 	ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1150 }
1151 
1152 /*
1153  * Reset and initialize the chip
1154  */
1155 static void
npeinit_locked(void * xsc)1156 npeinit_locked(void *xsc)
1157 {
1158 	struct npe_softc *sc = xsc;
1159 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1160 
1161 	/* Cancel any pending I/O. */
1162 	npestop(ifp, 0);
1163 
1164 	/* Reset the chip to a known state. */
1165 	npeinit_macreg(sc);
1166 	npe_setmac(sc, CLLADDR(ifp->if_sadl));
1167 	ether_mediachange(ifp);
1168 	npe_setmcast(sc);
1169 
1170 	npe_startxmit(sc);
1171 	npe_startrecv(sc);
1172 
1173 	ifp->if_flags |= IFF_RUNNING;
1174 	ifp->if_timer = 0;		/* just in case */
1175 
1176 	/* Enable transmitter and receiver in the MAC */
1177 	WR4(sc, NPE_MAC_RX_CNTRL1,
1178 	    RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN);
1179 	WR4(sc, NPE_MAC_TX_CNTRL1,
1180 	    RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN);
1181 
1182 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
1183 }
1184 
1185 static int
npeinit(struct ifnet * ifp)1186 npeinit(struct ifnet *ifp)
1187 {
1188 	struct npe_softc *sc = ifp->if_softc;
1189 	int s;
1190 
1191 	s = splnet();
1192 	npeinit_locked(sc);
1193 	splx(s);
1194 
1195 	return 0;
1196 }
1197 
1198 /*
1199  * Defragment an mbuf chain, returning at most maxfrags separate
1200  * mbufs+clusters.  If this is not possible NULL is returned and
1201  * the original mbuf chain is left in its present (potentially
1202  * modified) state.  We use two techniques: collapsing consecutive
1203  * mbufs and replacing consecutive mbufs by a cluster.
1204  */
1205 static __inline struct mbuf *
npe_defrag(struct mbuf * m0)1206 npe_defrag(struct mbuf *m0)
1207 {
1208 	struct mbuf *m;
1209 
1210 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1211 	if (m == NULL)
1212 		return NULL;
1213 	m_copy_pkthdr(m, m0);
1214 
1215 	if ((m->m_len = m0->m_pkthdr.len) > MHLEN) {
1216 		MCLGET(m, M_DONTWAIT);
1217 		if ((m->m_flags & M_EXT) == 0) {
1218 			m_freem(m);
1219 			return NULL;
1220 		}
1221 	}
1222 
1223 	m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1224 	m_freem(m0);
1225 
1226 	return m;
1227 }
1228 
1229 /*
1230  * Dequeue packets and place on the h/w transmit queue.
1231  */
1232 static void
npestart(struct ifnet * ifp)1233 npestart(struct ifnet *ifp)
1234 {
1235 	struct npe_softc *sc = ifp->if_softc;
1236 	struct npebuf *npe;
1237 	struct npehwbuf *hw;
1238 	struct mbuf *m, *n;
1239 	bus_dma_segment_t *segs;
1240 	int nseg, len, error, i;
1241 	uint32_t next;
1242 
1243 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1244 		return;
1245 
1246 	while (sc->tx_free != NULL) {
1247 		IFQ_DEQUEUE(&ifp->if_snd, m);
1248 		if (m == NULL)
1249 			break;
1250 		npe = sc->tx_free;
1251 		error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
1252 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1253 		if (error == EFBIG) {
1254 			n = npe_defrag(m);
1255 			if (n == NULL) {
1256 				printf("%s: %s: too many fragments\n",
1257 				    device_xname(sc->sc_dev), __func__);
1258 				m_freem(m);
1259 				return;	/* XXX? */
1260 			}
1261 			m = n;
1262 			error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map,
1263 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1264 		}
1265 		if (error != 0) {
1266 			printf("%s: %s: error %u\n",
1267 			    device_xname(sc->sc_dev), __func__, error);
1268 			m_freem(m);
1269 			return;	/* XXX? */
1270 		}
1271 		sc->tx_free = npe->ix_next;
1272 
1273 		/*
1274 		 * Tap off here if there is a bpf listener.
1275 		 */
1276 		bpf_mtap(ifp, m, BPF_D_OUT);
1277 
1278 		bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
1279 		    npe->ix_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1280 
1281 		npe->ix_m = m;
1282 		hw = npe->ix_hw;
1283 		len = m->m_pkthdr.len;
1284 		nseg = npe->ix_map->dm_nsegs;
1285 		segs = npe->ix_map->dm_segs;
1286 		next = npe->ix_neaddr + sizeof(hw->ix_ne[0]);
1287 		for (i = 0; i < nseg; i++) {
1288 			hw->ix_ne[i].data = htobe32(segs[i].ds_addr);
1289 			hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len);
1290 			hw->ix_ne[i].next = htobe32(next);
1291 
1292 			len = 0;		/* zero for segments > 1 */
1293 			next += sizeof(hw->ix_ne[0]);
1294 		}
1295 		hw->ix_ne[i-1].next = 0;	/* zero last in chain */
1296 		/* XXX flush descriptor instead of using uncached memory */
1297 
1298 		DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n",
1299 		    __func__, sc->tx_qid, npe->ix_neaddr,
1300 		    hw->ix_ne[0].data, hw->ix_ne[0].len);
1301 		/* stick it on the tx q */
1302 		/* XXX add vlan priority */
1303 		ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr);
1304 
1305 		ifp->if_timer = 5;
1306 	}
1307 }
1308 
1309 static void
npe_stopxmit(struct npe_softc * sc)1310 npe_stopxmit(struct npe_softc *sc)
1311 {
1312 	struct npedma *dma = &sc->txdma;
1313 	int i;
1314 
1315 	/* XXX qmgr */
1316 	for (i = 0; i < dma->nbuf; i++) {
1317 		struct npebuf *npe = &dma->buf[i];
1318 
1319 		if (npe->ix_m != NULL) {
1320 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1321 			m_freem(npe->ix_m);
1322 			npe->ix_m = NULL;
1323 		}
1324 	}
1325 }
1326 
1327 static void
npe_stoprecv(struct npe_softc * sc)1328 npe_stoprecv(struct npe_softc *sc)
1329 {
1330 	struct npedma *dma = &sc->rxdma;
1331 	int i;
1332 
1333 	/* XXX qmgr */
1334 	for (i = 0; i < dma->nbuf; i++) {
1335 		struct npebuf *npe = &dma->buf[i];
1336 
1337 		if (npe->ix_m != NULL) {
1338 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1339 			m_freem(npe->ix_m);
1340 			npe->ix_m = NULL;
1341 		}
1342 	}
1343 }
1344 
1345 /*
1346  * Turn off interrupts, and stop the nic.
1347  */
1348 void
npestop(struct ifnet * ifp,int disable)1349 npestop(struct ifnet *ifp, int disable)
1350 {
1351 	struct npe_softc *sc = ifp->if_softc;
1352 
1353 	/* Disable transmitter and receiver in the MAC */
1354 	WR4(sc, NPE_MAC_RX_CNTRL1,
1355 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
1356 	WR4(sc, NPE_MAC_TX_CNTRL1,
1357 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
1358 
1359 	callout_stop(&sc->sc_tick_ch);
1360 
1361 	npe_stopxmit(sc);
1362 	npe_stoprecv(sc);
1363 	/* XXX go into loopback & drain q's? */
1364 	/* XXX but beware of disabling tx above */
1365 
1366 	/*
1367 	 * The MAC core rx/tx disable may leave the MAC hardware in an
1368 	 * unpredictable state. A hw reset is executed before resetting
1369 	 * all the MAC parameters to a known value.
1370 	 */
1371 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
1372 	DELAY(NPE_MAC_RESET_DELAY);
1373 	WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT);
1374 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
1375 
1376 	ifp->if_timer = 0;
1377 	ifp->if_flags &= ~IFF_RUNNING;
1378 }
1379 
1380 void
npewatchdog(struct ifnet * ifp)1381 npewatchdog(struct ifnet *ifp)
1382 {
1383 	struct npe_softc *sc = ifp->if_softc;
1384 	int s;
1385 
1386 	aprint_error_dev(sc->sc_dev, "device timeout\n");
1387 	s = splnet();
1388 	if_statinc(ifp, if_oerrors);
1389 	npeinit_locked(sc);
1390 	splx(s);
1391 }
1392 
1393 static int
npeioctl(struct ifnet * ifp,u_long cmd,void * data)1394 npeioctl(struct ifnet *ifp, u_long cmd, void *data)
1395 {
1396 	struct npe_softc *sc = ifp->if_softc;
1397 	struct ifreq *ifr = (struct ifreq *) data;
1398 	int s, error = 0;
1399 
1400 	s = splnet();
1401 
1402 	switch (cmd) {
1403 	case SIOCSIFMEDIA:
1404 #if 0 /* not yet */
1405 		/* Flow control requires full-duplex mode. */
1406 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1407 		    (ifr->ifr_media & IFM_FDX) == 0)
1408 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1409 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1410 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1411 				/* We can do both TXPAUSE and RXPAUSE. */
1412 				ifr->ifr_media |=
1413 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1414 			}
1415 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1416 		}
1417 #endif
1418 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1419 		break;
1420 	case SIOCSIFFLAGS:
1421 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_RUNNING) {
1422 			/*
1423 			 * If interface is marked down and it is running,
1424 			 * then stop and disable it.
1425 			 */
1426 			if_stop(ifp, 1);
1427 		} else if ((ifp->if_flags & (IFF_UP |IFF_RUNNING)) == IFF_UP) {
1428 			/*
1429 			 * If interface is marked up and it is stopped, then
1430 			 * start it.
1431 			 */
1432 			error = if_init(ifp);
1433 		} else if ((ifp->if_flags & IFF_UP) != 0) {
1434 			u_short diff;
1435 
1436 			/* Up (AND RUNNING). */
1437 
1438 			diff = (ifp->if_flags ^ sc->sc_if_flags)
1439 			    & (IFF_PROMISC | IFF_ALLMULTI);
1440 			if ((diff & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1441 				/*
1442 				 * If the difference between last flag and
1443 				 * new flag only IFF_PROMISC or IFF_ALLMULTI,
1444 				 * set multicast filter only (don't reset to
1445 				 * prevent link down).
1446 				 */
1447 				npe_setmcast(sc);
1448 			} else {
1449 				/*
1450 				 * Reset the interface to pick up changes in
1451 				 * any other flags that affect the hardware
1452 				 * state.
1453 				 */
1454 				error = if_init(ifp);
1455 			}
1456 		}
1457 		sc->sc_if_flags = ifp->if_flags;
1458 		break;
1459 	default:
1460 		error = ether_ioctl(ifp, cmd, data);
1461 		if (error == ENETRESET) {
1462 			/*
1463 			 * Multicast list has changed; set the hardware filter
1464 			 * accordingly.
1465 			 */
1466 			npe_setmcast(sc);
1467 			error = 0;
1468 		}
1469 	}
1470 
1471 	npestart(ifp);
1472 
1473 	splx(s);
1474 	return error;
1475 }
1476 
1477 /*
1478  * Setup a traffic class -> rx queue mapping.
1479  */
1480 static int
npe_setrxqosentry(struct npe_softc * sc,int classix,int trafclass,int qid)1481 npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid)
1482 {
1483 	int npeid = npeconfig[sc->sc_unit].npeid;
1484 	uint32_t msg[2];
1485 
1486 	msg[0] = (NPE_SETRXQOSENTRY << NPE_MAC_MSGID_SHL) | (npeid << 20)
1487 	    | classix;
1488 	msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4);
1489 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1490 }
1491 
1492 /*
1493  * Update and reset the statistics in the NPE.
1494  */
1495 static int
npe_updatestats(struct npe_softc * sc)1496 npe_updatestats(struct npe_softc *sc)
1497 {
1498 	uint32_t msg[2];
1499 
1500 	msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL;
1501 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
1502 	return ixpnpe_sendmsg(sc->sc_npe, msg);		/* NB: no recv */
1503 }
1504 
1505 #if 0
1506 /*
1507  * Get the current statistics block.
1508  */
1509 static int
1510 npe_getstats(struct npe_softc *sc)
1511 {
1512 	uint32_t msg[2];
1513 
1514 	msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL;
1515 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
1516 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1517 }
1518 
1519 /*
1520  * Query the image id of the loaded firmware.
1521  */
1522 static uint32_t
1523 npe_getimageid(struct npe_softc *sc)
1524 {
1525 	uint32_t msg[2];
1526 
1527 	msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL;
1528 	msg[1] = 0;
1529 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0;
1530 }
1531 
1532 /*
1533  * Enable/disable loopback.
1534  */
1535 static int
1536 npe_setloopback(struct npe_softc *sc, int ena)
1537 {
1538 	uint32_t msg[2];
1539 
1540 	msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0);
1541 	msg[1] = 0;
1542 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1543 }
1544 #endif
1545 
1546 /*
1547  * MII bus support routines.
1548  *
1549  * NB: ixp425 has one PHY per NPE
1550  */
1551 static uint32_t
npe_mii_mdio_read(struct npe_softc * sc,int reg)1552 npe_mii_mdio_read(struct npe_softc *sc, int reg)
1553 {
1554 #define	MII_RD4(sc, reg)	bus_space_read_4(sc->sc_iot, sc->sc_miih, reg)
1555 	uint32_t v;
1556 
1557 	/* NB: registers are known to be sequential */
1558 	v =  (MII_RD4(sc, reg+0) & 0xff) << 0;
1559 	v |= (MII_RD4(sc, reg+4) & 0xff) << 8;
1560 	v |= (MII_RD4(sc, reg+8) & 0xff) << 16;
1561 	v |= (MII_RD4(sc, reg+12) & 0xff) << 24;
1562 	return v;
1563 #undef MII_RD4
1564 }
1565 
1566 static void
npe_mii_mdio_write(struct npe_softc * sc,int reg,uint32_t cmd)1567 npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd)
1568 {
1569 #define	MII_WR4(sc, reg, v) \
1570 	bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v)
1571 
1572 	/* NB: registers are known to be sequential */
1573 	MII_WR4(sc, reg+0, cmd & 0xff);
1574 	MII_WR4(sc, reg+4, (cmd >> 8) & 0xff);
1575 	MII_WR4(sc, reg+8, (cmd >> 16) & 0xff);
1576 	MII_WR4(sc, reg+12, (cmd >> 24) & 0xff);
1577 #undef MII_WR4
1578 }
1579 
1580 static int
npe_mii_mdio_wait(struct npe_softc * sc)1581 npe_mii_mdio_wait(struct npe_softc *sc)
1582 {
1583 #define	MAXTRIES	100	/* XXX */
1584 	uint32_t v;
1585 	int i;
1586 
1587 	for (i = 0; i < MAXTRIES; i++) {
1588 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD);
1589 		if ((v & NPE_MII_GO) == 0)
1590 			return 0;
1591 	}
1592 	return ETIMEDOUT;
1593 #undef MAXTRIES
1594 }
1595 
1596 static int
npe_miibus_readreg(device_t self,int phy,int reg,uint16_t * val)1597 npe_miibus_readreg(device_t self, int phy, int reg, uint16_t *val)
1598 {
1599 	struct npe_softc *sc = device_private(self);
1600 	uint32_t v;
1601 
1602 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1603 		return -1;
1604 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1605 	  | NPE_MII_GO;
1606 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1607 	if (npe_mii_mdio_wait(sc) == 0)
1608 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS);
1609 	else
1610 		v = 0xffff | NPE_MII_READ_FAIL;
1611 
1612 	if ((v & NPE_MII_READ_FAIL) != 0)
1613 		return -1;
1614 
1615 	*val = v & 0xffff;
1616 	return 0;
1617 #undef MAXTRIES
1618 }
1619 
1620 static int
npe_miibus_writereg(device_t self,int phy,int reg,uint16_t val)1621 npe_miibus_writereg(device_t self, int phy, int reg, uint16_t val)
1622 {
1623 	struct npe_softc *sc = device_private(self);
1624 	uint32_t v;
1625 
1626 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1627 		return -1;
1628 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1629 	  | val | NPE_MII_WRITE
1630 	  | NPE_MII_GO;
1631 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1632 
1633 	return npe_mii_mdio_wait(sc);
1634 }
1635 
1636 static void
npe_miibus_statchg(struct ifnet * ifp)1637 npe_miibus_statchg(struct ifnet *ifp)
1638 {
1639 	struct npe_softc *sc = ifp->if_softc;
1640 	uint32_t tx1, rx1;
1641 	uint32_t randoff;
1642 
1643 	/* Sync MAC duplex state */
1644 	tx1 = RD4(sc, NPE_MAC_TX_CNTRL1);
1645 	rx1 = RD4(sc, NPE_MAC_RX_CNTRL1);
1646 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1647 		WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
1648 		tx1 &= ~NPE_TX_CNTRL1_DUPLEX;
1649 		rx1 |= NPE_RX_CNTRL1_PAUSE_EN;
1650 	} else {
1651 		struct timeval now;
1652 		getmicrotime(&now);
1653 		randoff = (RD4(sc, NPE_MAC_UNI_ADDR_6) ^ now.tv_usec)
1654 		    & 0x7f;
1655 		WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT
1656 		    + randoff);
1657 		tx1 |= NPE_TX_CNTRL1_DUPLEX;
1658 		rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN;
1659 	}
1660 	WR4(sc, NPE_MAC_RX_CNTRL1, rx1);
1661 	WR4(sc, NPE_MAC_TX_CNTRL1, tx1);
1662 }
1663