1 /*
2  * Copyright (c) 2014 - 2018, Nordic Semiconductor ASA
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice, this
9  *    list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * 3. Neither the name of the copyright holder nor the names of its
16  *    contributors may be used to endorse or promote products derived from this
17  *    software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #ifndef NRF_RTC_H
33 #define NRF_RTC_H
34 
35 #include <nrfx.h>
36 
37 #ifdef __cplusplus
38 extern "C" {
39 #endif
40 
41 /**
42  * @defgroup nrf_rtc_hal RTC HAL
43  * @{
44  * @ingroup nrf_rtc
45  * @brief   Hardware access layer for managing the Real Time Counter (RTC) peripheral.
46  */
47 
48 /**
49  * @brief Macro for getting the number of compare channels available
50  *        in a given RTC instance.
51  */
52 
53 #define NRF_RTC_CC_CHANNEL_COUNT(id)    NRFX_CONCAT_3(RTC, id, _CC_NUM)
54 
55 #define RTC_INPUT_FREQ 32768 /**< Input frequency of the RTC instance. */
56 
57 /**
58  * @brief Macro for converting expected frequency to prescaler setting.
59  */
60 #define RTC_FREQ_TO_PRESCALER(FREQ) (uint16_t)(((RTC_INPUT_FREQ) / (FREQ)) - 1)
61 
62 /**< Macro for wrapping values to RTC capacity. */
63 #define RTC_WRAP(val) ((val) & RTC_COUNTER_COUNTER_Msk)
64 
65 #define RTC_CHANNEL_INT_MASK(ch)    ((uint32_t)(NRF_RTC_INT_COMPARE0_MASK) << (ch))
66 #define RTC_CHANNEL_EVENT_ADDR(ch)  (nrf_rtc_event_t)((NRF_RTC_EVENT_COMPARE_0) + (ch) * sizeof(uint32_t))
67 /**
68  * @enum nrf_rtc_task_t
69  * @brief RTC tasks.
70  */
71 typedef enum
72 {
73     /*lint -save -e30*/
74     NRF_RTC_TASK_START            = offsetof(NRF_RTC_Type,TASKS_START),     /**< Start. */
75     NRF_RTC_TASK_STOP             = offsetof(NRF_RTC_Type,TASKS_STOP),      /**< Stop. */
76     NRF_RTC_TASK_CLEAR            = offsetof(NRF_RTC_Type,TASKS_CLEAR),     /**< Clear. */
77     NRF_RTC_TASK_TRIGGER_OVERFLOW = offsetof(NRF_RTC_Type,TASKS_TRIGOVRFLW),/**< Trigger overflow. */
78     /*lint -restore*/
79 } nrf_rtc_task_t;
80 
81 /**
82  * @enum nrf_rtc_event_t
83  * @brief RTC events.
84  */
85 typedef enum
86 {
87     /*lint -save -e30*/
88     NRF_RTC_EVENT_TICK        = offsetof(NRF_RTC_Type,EVENTS_TICK),       /**< Tick event. */
89     NRF_RTC_EVENT_OVERFLOW    = offsetof(NRF_RTC_Type,EVENTS_OVRFLW),     /**< Overflow event. */
90     NRF_RTC_EVENT_COMPARE_0   = offsetof(NRF_RTC_Type,EVENTS_COMPARE[0]), /**< Compare 0 event. */
91     NRF_RTC_EVENT_COMPARE_1   = offsetof(NRF_RTC_Type,EVENTS_COMPARE[1]), /**< Compare 1 event. */
92     NRF_RTC_EVENT_COMPARE_2   = offsetof(NRF_RTC_Type,EVENTS_COMPARE[2]), /**< Compare 2 event. */
93     NRF_RTC_EVENT_COMPARE_3   = offsetof(NRF_RTC_Type,EVENTS_COMPARE[3])  /**< Compare 3 event. */
94     /*lint -restore*/
95 } nrf_rtc_event_t;
96 
97 /**
98  * @enum nrf_rtc_int_t
99  * @brief RTC interrupts.
100  */
101 typedef enum
102 {
103     NRF_RTC_INT_TICK_MASK     = RTC_INTENSET_TICK_Msk,     /**< RTC interrupt from tick event. */
104     NRF_RTC_INT_OVERFLOW_MASK = RTC_INTENSET_OVRFLW_Msk,   /**< RTC interrupt from overflow event. */
105     NRF_RTC_INT_COMPARE0_MASK = RTC_INTENSET_COMPARE0_Msk, /**< RTC interrupt from compare event on channel 0. */
106     NRF_RTC_INT_COMPARE1_MASK = RTC_INTENSET_COMPARE1_Msk, /**< RTC interrupt from compare event on channel 1. */
107     NRF_RTC_INT_COMPARE2_MASK = RTC_INTENSET_COMPARE2_Msk, /**< RTC interrupt from compare event on channel 2. */
108     NRF_RTC_INT_COMPARE3_MASK = RTC_INTENSET_COMPARE3_Msk  /**< RTC interrupt from compare event on channel 3. */
109 } nrf_rtc_int_t;
110 
111 /**@brief Function for setting a compare value for a channel.
112  *
113  * @param[in]  p_rtc         Pointer to the peripheral registers structure.
114  * @param[in]  ch            Channel.
115  * @param[in]  cc_val        Compare value to set.
116  */
117 __STATIC_INLINE  void nrf_rtc_cc_set(NRF_RTC_Type * p_rtc, uint32_t ch, uint32_t cc_val);
118 
119 /**@brief Function for returning the compare value for a channel.
120  *
121  * @param[in]  p_rtc         Pointer to the peripheral registers structure.
122  * @param[in]  ch            Channel.
123  *
124  * @return                   COMPARE[ch] value.
125  */
126 __STATIC_INLINE  uint32_t nrf_rtc_cc_get(NRF_RTC_Type * p_rtc, uint32_t ch);
127 
128 /**@brief Function for enabling interrupts.
129  *
130  * @param[in]  p_rtc         Pointer to the peripheral registers structure.
131  * @param[in]  mask          Interrupt mask to be enabled.
132  */
133 __STATIC_INLINE void nrf_rtc_int_enable(NRF_RTC_Type * p_rtc, uint32_t mask);
134 
135 /**@brief Function for disabling interrupts.
136  *
137  * @param[in]  p_rtc         Pointer to the peripheral registers structure.
138  * @param[in]  mask          Interrupt mask to be disabled.
139  */
140 __STATIC_INLINE void nrf_rtc_int_disable(NRF_RTC_Type * p_rtc, uint32_t mask);
141 
142 /**@brief Function for checking if interrupts are enabled.
143  *
144  * @param[in]  p_rtc         Pointer to the peripheral registers structure.
145  * @param[in]  mask          Mask of interrupt flags to check.
146  *
147  * @return                   Mask with enabled interrupts.
148  */
149 __STATIC_INLINE uint32_t nrf_rtc_int_is_enabled(NRF_RTC_Type * p_rtc, uint32_t mask);
150 
151 /**@brief Function for returning the status of currently enabled interrupts.
152  *
153  * @param[in]  p_rtc         Pointer to the peripheral registers structure.
154  *
155  * @return                   Value in INTEN register.
156  */
157 __STATIC_INLINE uint32_t nrf_rtc_int_get(NRF_RTC_Type * p_rtc);
158 
159 /**@brief Function for checking if an event is pending.
160  *
161  * @param[in]  p_rtc         Pointer to the peripheral registers structure.
162  * @param[in]  event         Address of the event.
163  *
164  * @return                   Mask of pending events.
165  */
166 __STATIC_INLINE uint32_t nrf_rtc_event_pending(NRF_RTC_Type * p_rtc, nrf_rtc_event_t event);
167 
168 /**@brief Function for clearing an event.
169  *
170  * @param[in]  p_rtc         Pointer to the peripheral registers structure.
171  * @param[in]  event         Event to clear.
172  */
173 __STATIC_INLINE void nrf_rtc_event_clear(NRF_RTC_Type * p_rtc, nrf_rtc_event_t event);
174 
175 /**@brief Function for returning a counter value.
176  *
177  * @param[in]  p_rtc         Pointer to the peripheral registers structure.
178  *
179  * @return                   Counter value.
180  */
181 __STATIC_INLINE uint32_t nrf_rtc_counter_get(NRF_RTC_Type * p_rtc);
182 
183 /**@brief Function for setting a prescaler value.
184  *
185  * @param[in]  p_rtc         Pointer to the peripheral registers structure.
186  * @param[in]  val           Value to set the prescaler to.
187  */
188 __STATIC_INLINE void nrf_rtc_prescaler_set(NRF_RTC_Type * p_rtc, uint32_t val);
189 
190 /**@brief Function for returning the address of an event.
191  *
192  * @param[in]  p_rtc         Pointer to the peripheral registers structure.
193  * @param[in]  event         Requested event.
194  *
195  * @return     Address of the requested event register.
196  */
197 __STATIC_INLINE uint32_t nrf_rtc_event_address_get(NRF_RTC_Type * p_rtc, nrf_rtc_event_t event);
198 
199 /**@brief Function for returning the address of a task.
200  *
201  * @param[in]  p_rtc         Pointer to the peripheral registers structure.
202  * @param[in]  task          Requested task.
203  *
204  * @return     Address of the requested task register.
205  */
206 __STATIC_INLINE uint32_t nrf_rtc_task_address_get(NRF_RTC_Type * p_rtc, nrf_rtc_task_t task);
207 
208 /**@brief Function for starting a task.
209  *
210  * @param[in]  p_rtc         Pointer to the peripheral registers structure.
211  * @param[in]  task          Requested task.
212  */
213 __STATIC_INLINE void nrf_rtc_task_trigger(NRF_RTC_Type * p_rtc, nrf_rtc_task_t task);
214 
215 /**@brief Function for enabling events.
216  *
217  * @param[in]  p_rtc         Pointer to the peripheral registers structure.
218  * @param[in]  mask          Mask of event flags to enable.
219  */
220 __STATIC_INLINE void nrf_rtc_event_enable(NRF_RTC_Type * p_rtc, uint32_t mask);
221 
222 /**@brief Function for disabling an event.
223  *
224  * @param[in]  p_rtc         Pointer to the peripheral registers structure.
225  * @param[in]  event         Requested event.
226  */
227 __STATIC_INLINE void nrf_rtc_event_disable(NRF_RTC_Type * p_rtc, uint32_t event);
228 
229 #ifndef SUPPRESS_INLINE_IMPLEMENTATION
230 
nrf_rtc_cc_set(NRF_RTC_Type * p_rtc,uint32_t ch,uint32_t cc_val)231 __STATIC_INLINE  void nrf_rtc_cc_set(NRF_RTC_Type * p_rtc, uint32_t ch, uint32_t cc_val)
232 {
233     p_rtc->CC[ch] = cc_val;
234 }
235 
nrf_rtc_cc_get(NRF_RTC_Type * p_rtc,uint32_t ch)236 __STATIC_INLINE  uint32_t nrf_rtc_cc_get(NRF_RTC_Type * p_rtc, uint32_t ch)
237 {
238     return p_rtc->CC[ch];
239 }
240 
nrf_rtc_int_enable(NRF_RTC_Type * p_rtc,uint32_t mask)241 __STATIC_INLINE void nrf_rtc_int_enable(NRF_RTC_Type * p_rtc, uint32_t mask)
242 {
243     p_rtc->INTENSET = mask;
244 }
245 
nrf_rtc_int_disable(NRF_RTC_Type * p_rtc,uint32_t mask)246 __STATIC_INLINE void nrf_rtc_int_disable(NRF_RTC_Type * p_rtc, uint32_t mask)
247 {
248     p_rtc->INTENCLR = mask;
249 }
250 
nrf_rtc_int_is_enabled(NRF_RTC_Type * p_rtc,uint32_t mask)251 __STATIC_INLINE uint32_t nrf_rtc_int_is_enabled(NRF_RTC_Type * p_rtc, uint32_t mask)
252 {
253     return (p_rtc->INTENSET & mask);
254 }
255 
nrf_rtc_int_get(NRF_RTC_Type * p_rtc)256 __STATIC_INLINE uint32_t nrf_rtc_int_get(NRF_RTC_Type * p_rtc)
257 {
258     return p_rtc->INTENSET;
259 }
260 
nrf_rtc_event_pending(NRF_RTC_Type * p_rtc,nrf_rtc_event_t event)261 __STATIC_INLINE uint32_t nrf_rtc_event_pending(NRF_RTC_Type * p_rtc, nrf_rtc_event_t event)
262 {
263     return *(volatile uint32_t *)((uint8_t *)p_rtc + (uint32_t)event);
264 }
265 
nrf_rtc_event_clear(NRF_RTC_Type * p_rtc,nrf_rtc_event_t event)266 __STATIC_INLINE void nrf_rtc_event_clear(NRF_RTC_Type * p_rtc, nrf_rtc_event_t event)
267 {
268     *((volatile uint32_t *)((uint8_t *)p_rtc + (uint32_t)event)) = 0;
269 #if __CORTEX_M == 0x04
270     volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)p_rtc + (uint32_t)event));
271     (void)dummy;
272 #endif
273 }
274 
nrf_rtc_counter_get(NRF_RTC_Type * p_rtc)275 __STATIC_INLINE uint32_t nrf_rtc_counter_get(NRF_RTC_Type * p_rtc)
276 {
277      return p_rtc->COUNTER;
278 }
279 
nrf_rtc_prescaler_set(NRF_RTC_Type * p_rtc,uint32_t val)280 __STATIC_INLINE void nrf_rtc_prescaler_set(NRF_RTC_Type * p_rtc, uint32_t val)
281 {
282     NRFX_ASSERT(val <= (RTC_PRESCALER_PRESCALER_Msk >> RTC_PRESCALER_PRESCALER_Pos));
283     p_rtc->PRESCALER = val;
284 }
rtc_prescaler_get(NRF_RTC_Type * p_rtc)285 __STATIC_INLINE uint32_t rtc_prescaler_get(NRF_RTC_Type * p_rtc)
286 {
287     return p_rtc->PRESCALER;
288 }
289 
nrf_rtc_event_address_get(NRF_RTC_Type * p_rtc,nrf_rtc_event_t event)290 __STATIC_INLINE uint32_t nrf_rtc_event_address_get(NRF_RTC_Type * p_rtc, nrf_rtc_event_t event)
291 {
292     return (uint32_t)p_rtc + event;
293 }
294 
nrf_rtc_task_address_get(NRF_RTC_Type * p_rtc,nrf_rtc_task_t task)295 __STATIC_INLINE uint32_t nrf_rtc_task_address_get(NRF_RTC_Type * p_rtc, nrf_rtc_task_t task)
296 {
297     return (uint32_t)p_rtc + task;
298 }
299 
nrf_rtc_task_trigger(NRF_RTC_Type * p_rtc,nrf_rtc_task_t task)300 __STATIC_INLINE void nrf_rtc_task_trigger(NRF_RTC_Type * p_rtc, nrf_rtc_task_t task)
301 {
302     *(__IO uint32_t *)((uint32_t)p_rtc + task) = 1;
303 }
304 
nrf_rtc_event_enable(NRF_RTC_Type * p_rtc,uint32_t mask)305 __STATIC_INLINE void nrf_rtc_event_enable(NRF_RTC_Type * p_rtc, uint32_t mask)
306 {
307     p_rtc->EVTENSET = mask;
308 }
nrf_rtc_event_disable(NRF_RTC_Type * p_rtc,uint32_t mask)309 __STATIC_INLINE void nrf_rtc_event_disable(NRF_RTC_Type * p_rtc, uint32_t mask)
310 {
311     p_rtc->EVTENCLR = mask;
312 }
313 #endif
314 
315 /** @} */
316 
317 #ifdef __cplusplus
318 }
319 #endif
320 
321 #endif  /* NRF_RTC_H */
322