xref: /netbsd/sys/dev/raidframe/rf_layout.h (revision c60754bf)
1 /*	$NetBSD: rf_layout.h,v 1.18 2018/06/09 21:18:41 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /* rf_layout.h -- header file defining layout data structures
30  */
31 
32 #ifndef _RF__RF_LAYOUT_H_
33 #define _RF__RF_LAYOUT_H_
34 
35 #include <dev/raidframe/raidframevar.h>
36 #include "rf_archs.h"
37 #include "rf_alloclist.h"
38 
39 /* enables remapping to spare location under dist sparing */
40 #define RF_REMAP       1
41 #define RF_DONT_REMAP  0
42 
43 /*
44  * Flags values for RF_AccessStripeMapFlags_t
45  */
46 #define RF_NO_STRIPE_LOCKS   0x0001	/* suppress stripe locks */
47 #define RF_DISTRIBUTE_SPARE  0x0002	/* distribute spare space in archs
48 					 * that support it */
49 #define RF_BD_DECLUSTERED    0x0004	/* declustering uses block designs */
50 
51 /*************************************************************************
52  *
53  * this structure forms the layout component of the main Raid
54  * structure.  It describes everything needed to define and perform
55  * the mapping of logical RAID addresses <-> physical disk addresses.
56  *
57  *************************************************************************/
58 struct RF_RaidLayout_s {
59 	/* configuration parameters */
60 	RF_SectorCount_t sectorsPerStripeUnit;	/* number of sectors in one
61 						 * stripe unit */
62 	RF_StripeCount_t SUsPerPU;	/* stripe units per parity unit */
63 	RF_StripeCount_t SUsPerRU;	/* stripe units per reconstruction
64 					 * unit */
65 
66 	/* redundant-but-useful info computed from the above, used in all
67 	 * layouts */
68 	RF_StripeCount_t numStripe;	/* total number of stripes in the
69 					 * array */
70 	RF_SectorCount_t dataSectorsPerStripe;
71 	RF_StripeCount_t dataStripeUnitsPerDisk;
72 	RF_StripeCount_t numDataCol;	/* number of SUs of data per stripe
73 					 * (name here is a la RAID4) */
74 	RF_StripeCount_t numParityCol;	/* number of SUs of parity per stripe.
75 					 * Always 1 for now */
76 	RF_StripeCount_t numParityLogCol;	/* number of SUs of parity log
77 						 * per stripe.  Always 1 for
78 						 * now */
79 	RF_StripeCount_t stripeUnitsPerDisk;
80 
81 	const RF_LayoutSW_t *map;	/* ptr to struct holding mapping fns and
82 					 * information */
83 	void   *layoutSpecificInfo;	/* ptr to a structure holding
84 					 * layout-specific params */
85 };
86 /*****************************************************************************************
87  *
88  * The mapping code returns a pointer to a list of AccessStripeMap structures, which
89  * describes all the mapping information about an access.  The list contains one
90  * AccessStripeMap structure per stripe touched by the access.  Each element in the list
91  * contains a stripe identifier and a pointer to a list of PhysDiskAddr structures.  Each
92  * element in this latter list describes the physical location of a stripe unit accessed
93  * within the corresponding stripe.
94  *
95  ****************************************************************************************/
96 
97 #define RF_PDA_TYPE_DATA   0
98 #define RF_PDA_TYPE_PARITY 1
99 #define RF_PDA_TYPE_Q      2
100 
101 struct RF_PhysDiskAddr_s {
102 	RF_RowCol_t col;	/* disk identifier */
103 	RF_SectorNum_t startSector;	/* sector offset into the disk */
104 	RF_SectorCount_t numSector;	/* number of sectors accessed */
105 	int     type;		/* used by higher levels: currently, data,
106 				 * parity, or q */
107 	void *bufPtr;		/* pointer to buffer supplying/receiving data */
108 	RF_RaidAddr_t raidAddress;	/* raid address corresponding to this
109 					 * physical disk address */
110 	RF_PhysDiskAddr_t *next;
111 };
112 #define RF_MAX_FAILED_PDA RF_MAXCOL
113 
114 struct RF_AccessStripeMap_s {
115 	RF_StripeNum_t stripeID;/* the stripe index */
116 	RF_RaidAddr_t raidAddress;	/* the starting raid address within
117 					 * this stripe */
118 	RF_RaidAddr_t endRaidAddress;	/* raid address one sector past the
119 					 * end of the access */
120 	RF_SectorCount_t totalSectorsAccessed;	/* total num sectors
121 						 * identified in physInfo list */
122 	RF_StripeCount_t numStripeUnitsAccessed;	/* total num elements in
123 							 * physInfo list */
124 	int     numDataFailed;	/* number of failed data disks accessed */
125 	int     numParityFailed;/* number of failed parity disks accessed (0
126 				 * or 1) */
127 	int     numQFailed;	/* number of failed Q units accessed (0 or 1) */
128 	RF_AccessStripeMapFlags_t flags;	/* various flags */
129 	int     numFailedPDAs;	/* number of failed phys addrs */
130 	RF_PhysDiskAddr_t *failedPDAs[RF_MAX_FAILED_PDA];	/* array of failed phys
131 								 * addrs */
132 	RF_PhysDiskAddr_t *physInfo;	/* a list of PhysDiskAddr structs */
133 	RF_PhysDiskAddr_t *parityInfo;	/* list of physical addrs for the
134 					 * parity (P of P + Q ) */
135 	RF_PhysDiskAddr_t *qInfo;	/* list of physical addrs for the Q of
136 					 * P + Q */
137 	RF_LockReqDesc_t lockReqDesc;	/* used for stripe locking */
138 	RF_AccessStripeMap_t *next;
139 };
140 /* flag values */
141 #define RF_ASM_REDIR_LARGE_WRITE   0x00000001	/* allows large-write creation
142 						 * code to redirect failed
143 						 * accs */
144 #define RF_ASM_BAILOUT_DAG_USED    0x00000002	/* allows us to detect
145 						 * recursive calls to the
146 						 * bailout write dag */
147 #define RF_ASM_FLAGS_LOCK_TRIED    0x00000004	/* we've acquired the lock on
148 						 * the first parity range in
149 						 * this parity stripe */
150 #define RF_ASM_FLAGS_LOCK_TRIED2   0x00000008	/* we've acquired the lock on
151 						 * the 2nd   parity range in
152 						 * this parity stripe */
153 #define RF_ASM_FLAGS_FORCE_TRIED   0x00000010	/* we've done the force-recon
154 						 * call on this parity stripe */
155 #define RF_ASM_FLAGS_RECON_BLOCKED 0x00000020	/* we blocked recon => we must
156 						 * unblock it later */
157 
158 struct RF_AccessStripeMapHeader_s {
159 	RF_StripeCount_t numStripes;	/* total number of stripes touched by
160 					 * this acc */
161 	RF_AccessStripeMap_t *stripeMap;	/* pointer to the actual map.
162 						 * Also used for making lists */
163 	RF_AccessStripeMapHeader_t *next;
164 };
165 
166 /* A structure to be used in a linked list to keep track of function pointers. */
167 typedef struct RF_VoidFunctionPointerListElem_s RF_VoidFunctionPointerListElem_t;
168 struct RF_VoidFunctionPointerListElem_s {
169 	RF_VoidFuncPtr fn;
170 	RF_VoidFunctionPointerListElem_t *next;
171 };
172 
173 /* We need something to just be a linked list of anonymous pointers
174    to stuff */
175 typedef struct RF_VoidPointerListElem_s RF_VoidPointerListElem_t;
176 struct RF_VoidPointerListElem_s {
177 	void *p;
178 	RF_VoidPointerListElem_t *next;
179 };
180 
181 /* A structure to be used in a linked list to keep track of ASM Headers */
182 typedef struct RF_ASMHeaderListElem_s RF_ASMHeaderListElem_t;
183 struct RF_ASMHeaderListElem_s {
184 	RF_AccessStripeMapHeader_t *asmh;
185 	RF_ASMHeaderListElem_t *next;
186 };
187 
188 /* A structure to keep track of all the data structures associated with
189 a failed stripe.  Used for constructing the appropriate DAGs in
190 rf_SelectAlgorithm() in rf_aselect.c */
191 typedef struct RF_FailedStripe_s RF_FailedStripe_t;
192 struct RF_FailedStripe_s {
193 	RF_VoidFunctionPointerListElem_t *vfple;   /* linked list of pointers to DAG creation
194 						      functions for stripes */
195 	RF_VoidFunctionPointerListElem_t *bvfple;  /* linked list of pointers to DAG creation
196 						      functions for blocks */
197 	RF_ASMHeaderListElem_t *asmh_u;            /* Access Stripe Map Headers for regular
198 						      stripes */
199 	RF_ASMHeaderListElem_t *asmh_b;            /* Access Stripe Map Headers used for the
200 						      block functions */
201 	RF_FailedStripe_t *next;
202 };
203 
204 
205 
206 /*****************************************************************************************
207  *
208  * various routines mapping addresses in the RAID address space.  These work across
209  * all layouts.  DON'T PUT ANY LAYOUT-SPECIFIC CODE HERE.
210  *
211  ****************************************************************************************/
212 
213 /* return the identifier of the stripe containing the given address */
214 #define rf_RaidAddressToStripeID(_layoutPtr_, _addr_) \
215   ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) / (_layoutPtr_)->numDataCol )
216 
217 /* return the raid address of the start of the indicates stripe ID */
218 #define rf_StripeIDToRaidAddress(_layoutPtr_, _sid_) \
219   ( ((_sid_) * (_layoutPtr_)->sectorsPerStripeUnit) * (_layoutPtr_)->numDataCol )
220 
221 /* return the identifier of the stripe containing the given stripe unit id */
222 #define rf_StripeUnitIDToStripeID(_layoutPtr_, _addr_) \
223   ( (_addr_) / (_layoutPtr_)->numDataCol )
224 
225 /* return the identifier of the stripe unit containing the given address */
226 #define rf_RaidAddressToStripeUnitID(_layoutPtr_, _addr_) \
227   ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) )
228 
229 /* return the RAID address of next stripe boundary beyond the given address */
230 #define rf_RaidAddressOfNextStripeBoundary(_layoutPtr_, _addr_) \
231   ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+1) * (_layoutPtr_)->dataSectorsPerStripe )
232 
233 /* return the RAID address of the start of the stripe containing the given address */
234 #define rf_RaidAddressOfPrevStripeBoundary(_layoutPtr_, _addr_) \
235   ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+0) * (_layoutPtr_)->dataSectorsPerStripe )
236 
237 /* return the RAID address of next stripe unit boundary beyond the given address */
238 #define rf_RaidAddressOfNextStripeUnitBoundary(_layoutPtr_, _addr_) \
239   ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+1L)*(_layoutPtr_)->sectorsPerStripeUnit )
240 
241 /* return the RAID address of the start of the stripe unit containing RAID address _addr_ */
242 #define rf_RaidAddressOfPrevStripeUnitBoundary(_layoutPtr_, _addr_) \
243   ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+0)*(_layoutPtr_)->sectorsPerStripeUnit )
244 
245 /* returns the offset into the stripe.  used by RaidAddressStripeAligned */
246 #define rf_RaidAddressStripeOffset(_layoutPtr_, _addr_) \
247   ( (_addr_) % ((_layoutPtr_)->dataSectorsPerStripe) )
248 
249 /* returns the offset into the stripe unit.  */
250 #define rf_StripeUnitOffset(_layoutPtr_, _addr_) \
251   ( (_addr_) % ((_layoutPtr_)->sectorsPerStripeUnit) )
252 
253 /* returns nonzero if the given RAID address is stripe-aligned */
254 #define rf_RaidAddressStripeAligned( __layoutPtr__, __addr__ ) \
255   ( rf_RaidAddressStripeOffset(__layoutPtr__, __addr__) == 0 )
256 
257 /* returns nonzero if the given address is stripe-unit aligned */
258 #define rf_StripeUnitAligned( __layoutPtr__, __addr__ ) \
259   ( rf_StripeUnitOffset(__layoutPtr__, __addr__) == 0 )
260 
261 /* convert an address expressed in RAID blocks to/from an addr expressed in bytes */
262 #define rf_RaidAddressToByte(_raidPtr_, _addr_) \
263   ( (_addr_) << ( (_raidPtr_)->logBytesPerSector ) )
264 
265 #define rf_ByteToRaidAddress(_raidPtr_, _addr_) \
266   ( (_addr_) >> ( (_raidPtr_)->logBytesPerSector ) )
267 
268 /* convert a raid address to/from a parity stripe ID.  Conversion to raid address is easy,
269  * since we're asking for the address of the first sector in the parity stripe.  Conversion to a
270  * parity stripe ID is more complex, since stripes are not contiguously allocated in
271  * parity stripes.
272  */
273 #define rf_RaidAddressToParityStripeID(_layoutPtr_, _addr_, _ru_num_) \
274   rf_MapStripeIDToParityStripeID( (_layoutPtr_), rf_RaidAddressToStripeID( (_layoutPtr_), (_addr_) ), (_ru_num_) )
275 
276 #define rf_ParityStripeIDToRaidAddress(_layoutPtr_, _psid_) \
277   ( (_psid_) * (_layoutPtr_)->SUsPerPU * (_layoutPtr_)->numDataCol * (_layoutPtr_)->sectorsPerStripeUnit )
278 
279 const RF_LayoutSW_t *rf_GetLayout(RF_ParityConfig_t parityConfig);
280 int
281 rf_ConfigureLayout(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
282     RF_Config_t * cfgPtr);
283 RF_StripeNum_t
284 rf_MapStripeIDToParityStripeID(RF_RaidLayout_t * layoutPtr,
285     RF_StripeNum_t stripeID, RF_ReconUnitNum_t * which_ru);
286 
287 #endif				/* !_RF__RF_LAYOUT_H_ */
288