1 /*-
2 * Copyright (c) 2017 Broadcom. All rights reserved.
3 * The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice,
9 * this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright notice,
12 * this list of conditions and the following disclaimer in the documentation
13 * and/or other materials provided with the distribution.
14 *
15 * 3. Neither the name of the copyright holder nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /**
33 * @file
34 * Implementation of common BSD OS abstraction functions
35 */
36
37 #include "ocs.h"
38
39 static MALLOC_DEFINE(M_OCS, "OCS", "OneCore Storage data");
40
41 #include <dev/pci/pcireg.h>
42 #include <dev/pci/pcivar.h>
43
44 #include <machine/bus.h>
45
46 callout_func_t __ocs_callout;
47
48 uint32_t
ocs_config_read32(ocs_os_handle_t os,uint32_t reg)49 ocs_config_read32(ocs_os_handle_t os, uint32_t reg)
50 {
51 return pci_read_config(os->dev, reg, 4);
52 }
53
54 uint16_t
ocs_config_read16(ocs_os_handle_t os,uint32_t reg)55 ocs_config_read16(ocs_os_handle_t os, uint32_t reg)
56 {
57 return pci_read_config(os->dev, reg, 2);
58 }
59
60 uint8_t
ocs_config_read8(ocs_os_handle_t os,uint32_t reg)61 ocs_config_read8(ocs_os_handle_t os, uint32_t reg)
62 {
63 return pci_read_config(os->dev, reg, 1);
64 }
65
66 void
ocs_config_write8(ocs_os_handle_t os,uint32_t reg,uint8_t val)67 ocs_config_write8(ocs_os_handle_t os, uint32_t reg, uint8_t val)
68 {
69 return pci_write_config(os->dev, reg, val, 1);
70 }
71
72 void
ocs_config_write16(ocs_os_handle_t os,uint32_t reg,uint16_t val)73 ocs_config_write16(ocs_os_handle_t os, uint32_t reg, uint16_t val)
74 {
75 return pci_write_config(os->dev, reg, val, 2);
76 }
77
78 void
ocs_config_write32(ocs_os_handle_t os,uint32_t reg,uint32_t val)79 ocs_config_write32(ocs_os_handle_t os, uint32_t reg, uint32_t val)
80 {
81 return pci_write_config(os->dev, reg, val, 4);
82 }
83
84 /**
85 * @ingroup os
86 * @brief Read a 32bit PCI register
87 *
88 * The SLI documentation uses the term "register set" to describe one or more
89 * PCI BARs which form a logical address. For example, a 64-bit address uses
90 * two BARs, and thus constitute a register set.
91 *
92 * @param ocs Pointer to the driver's context
93 * @param rset Register Set to use
94 * @param off Offset from the base address of the Register Set
95 *
96 * @return register value
97 */
98 uint32_t
ocs_reg_read32(ocs_t * ocs,uint32_t rset,uint32_t off)99 ocs_reg_read32(ocs_t *ocs, uint32_t rset, uint32_t off)
100 {
101 ocs_pci_reg_t *reg = NULL;
102
103 reg = &ocs->reg[rset];
104
105 return bus_space_read_4(reg->btag, reg->bhandle, off);
106 }
107
108 /**
109 * @ingroup os
110 * @brief Read a 16bit PCI register
111 *
112 * The SLI documentation uses the term "register set" to describe one or more
113 * PCI BARs which form a logical address. For example, a 64-bit address uses
114 * two BARs, and thus constitute a register set.
115 *
116 * @param ocs Pointer to the driver's context
117 * @param rset Register Set to use
118 * @param off Offset from the base address of the Register Set
119 *
120 * @return register value
121 */
122 uint16_t
ocs_reg_read16(ocs_t * ocs,uint32_t rset,uint32_t off)123 ocs_reg_read16(ocs_t *ocs, uint32_t rset, uint32_t off)
124 {
125 ocs_pci_reg_t *reg = NULL;
126
127 reg = &ocs->reg[rset];
128
129 return bus_space_read_2(reg->btag, reg->bhandle, off);
130 }
131
132 /**
133 * @ingroup os
134 * @brief Read a 8bit PCI register
135 *
136 * The SLI documentation uses the term "register set" to describe one or more
137 * PCI BARs which form a logical address. For example, a 64-bit address uses
138 * two BARs, and thus constitute a register set.
139 *
140 * @param ocs Pointer to the driver's context
141 * @param rset Register Set to use
142 * @param off Offset from the base address of the Register Set
143 *
144 * @return register value
145 */
146 uint8_t
ocs_reg_read8(ocs_t * ocs,uint32_t rset,uint32_t off)147 ocs_reg_read8(ocs_t *ocs, uint32_t rset, uint32_t off)
148 {
149 ocs_pci_reg_t *reg = NULL;
150
151 reg = &ocs->reg[rset];
152
153 return bus_space_read_1(reg->btag, reg->bhandle, off);
154 }
155
156 /**
157 * @ingroup os
158 * @brief Write a 32bit PCI register
159 *
160 * The SLI documentation uses the term "register set" to describe one or more
161 * PCI BARs which form a logical address. For example, a 64-bit address uses
162 * two BARs, and thus constitute a register set.
163 *
164 * @param ocs Pointer to the driver's context
165 * @param rset Register Set to use
166 * @param off Offset from the base address of the Register Set
167 * @param val Value to write
168 *
169 * @return none
170 */
171 void
ocs_reg_write32(ocs_t * ocs,uint32_t rset,uint32_t off,uint32_t val)172 ocs_reg_write32(ocs_t *ocs, uint32_t rset, uint32_t off, uint32_t val)
173 {
174 ocs_pci_reg_t *reg = NULL;
175
176 reg = &ocs->reg[rset];
177
178 return bus_space_write_4(reg->btag, reg->bhandle, off, val);
179 }
180
181 /**
182 * @ingroup os
183 * @brief Write a 16-bit PCI register
184 *
185 * The SLI documentation uses the term "register set" to describe one or more
186 * PCI BARs which form a logical address. For example, a 64-bit address uses
187 * two BARs, and thus constitute a register set.
188 *
189 * @param ocs Pointer to the driver's context
190 * @param rset Register Set to use
191 * @param off Offset from the base address of the Register Set
192 * @param val Value to write
193 *
194 * @return none
195 */
196 void
ocs_reg_write16(ocs_t * ocs,uint32_t rset,uint32_t off,uint16_t val)197 ocs_reg_write16(ocs_t *ocs, uint32_t rset, uint32_t off, uint16_t val)
198 {
199 ocs_pci_reg_t *reg = NULL;
200
201 reg = &ocs->reg[rset];
202
203 return bus_space_write_2(reg->btag, reg->bhandle, off, val);
204 }
205
206 /**
207 * @ingroup os
208 * @brief Write a 8-bit PCI register
209 *
210 * The SLI documentation uses the term "register set" to describe one or more
211 * PCI BARs which form a logical address. For example, a 64-bit address uses
212 * two BARs, and thus constitute a register set.
213 *
214 * @param ocs Pointer to the driver's context
215 * @param rset Register Set to use
216 * @param off Offset from the base address of the Register Set
217 * @param val Value to write
218 *
219 * @return none
220 */
221 void
ocs_reg_write8(ocs_t * ocs,uint32_t rset,uint32_t off,uint8_t val)222 ocs_reg_write8(ocs_t *ocs, uint32_t rset, uint32_t off, uint8_t val)
223 {
224 ocs_pci_reg_t *reg = NULL;
225
226 reg = &ocs->reg[rset];
227
228 return bus_space_write_1(reg->btag, reg->bhandle, off, val);
229 }
230
231 /**
232 * @ingroup os
233 * @brief Allocate host memory
234 *
235 * @param os OS handle
236 * @param size number of bytes to allocate
237 * @param flags additional options
238 *
239 * @return pointer to allocated memory, NULL otherwise
240 */
241 void *
ocs_malloc(ocs_os_handle_t os,size_t size,int32_t flags)242 ocs_malloc(ocs_os_handle_t os, size_t size, int32_t flags)
243 {
244 if ((flags & OCS_M_NOWAIT) == 0) {
245 flags |= M_WAITOK;
246 }
247
248 #ifndef OCS_DEBUG_MEMORY
249 return malloc(size, M_OCS, flags);
250 #else
251 char nameb[80];
252 long offset = 0;
253 void *addr = malloc(size, M_OCS, flags);
254
255 linker_ddb_search_symbol_name(__builtin_return_address(1), nameb, sizeof(nameb), &offset);
256 printf("A: %p %ld @ %s+%#lx\n", addr, size, nameb, offset);
257
258 return addr;
259 #endif
260 }
261
262 /**
263 * @ingroup os
264 * @brief Free host memory
265 *
266 * @param os OS handle
267 * @param addr pointer to memory
268 * @param size bytes to free
269 *
270 * @note size ignored in BSD
271 */
272 void
ocs_free(ocs_os_handle_t os,void * addr,size_t size)273 ocs_free(ocs_os_handle_t os, void *addr, size_t size)
274 {
275 #ifndef OCS_DEBUG_MEMORY
276 free(addr, M_OCS);
277 #else
278 printf("F: %p %ld\n", addr, size);
279 free(addr, M_OCS);
280 #endif
281 }
282
283 /**
284 * @brief Callback function provided to bus_dmamap_load
285 *
286 * Function loads the physical / bus address into the DMA descriptor. The caller
287 * can detect a mapping failure if a descriptor's phys element is zero.
288 *
289 * @param arg Argument provided to bus_dmamap_load is a ocs_dma_t
290 * @param seg Array of DMA segment(s), each describing segment's address and length
291 * @param nseg Number of elements in array
292 * @param error Indicates success (0) or failure of mapping
293 */
294 static void
ocs_dma_load(void * arg,bus_dma_segment_t * seg,int nseg,int error)295 ocs_dma_load(void *arg, bus_dma_segment_t *seg, int nseg, int error)
296 {
297 ocs_dma_t *dma = arg;
298
299 if (error) {
300 printf("%s: error=%d\n", __func__, error);
301 dma->phys = 0;
302 } else {
303 dma->phys = seg->ds_addr;
304 }
305 }
306
307 /**
308 * @ingroup os
309 * @brief Free a DMA capable block of memory
310 *
311 * @param os Device abstraction
312 * @param dma DMA descriptor for memory to be freed
313 *
314 * @return 0 if memory is de-allocated, -1 otherwise
315 */
316 int32_t
ocs_dma_free(ocs_os_handle_t os,ocs_dma_t * dma)317 ocs_dma_free(ocs_os_handle_t os, ocs_dma_t *dma)
318 {
319 struct ocs_softc *ocs = os;
320
321 if (!dma) {
322 device_printf(ocs->dev, "%s: bad parameter(s) dma=%p\n", __func__, dma);
323 return -1;
324 }
325
326 if (dma->size == 0) {
327 return 0;
328 }
329
330 if (dma->map) {
331 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_POSTREAD |
332 BUS_DMASYNC_POSTWRITE);
333 bus_dmamap_unload(dma->tag, dma->map);
334 }
335
336 if (dma->virt) {
337 bus_dmamem_free(dma->tag, dma->virt, dma->map);
338 bus_dmamap_destroy(dma->tag, dma->map);
339 }
340 bus_dma_tag_destroy(dma->tag);
341
342 bzero(dma, sizeof(ocs_dma_t));
343
344 return 0;
345 }
346
347 /**
348 * @ingroup os
349 * @brief Allocate a DMA capable block of memory
350 *
351 * @param os Device abstraction
352 * @param dma DMA descriptor containing results of memory allocation
353 * @param size Size in bytes of desired allocation
354 * @param align Alignment in bytes
355 *
356 * @return 0 on success, ENOMEM otherwise
357 */
358 int32_t
ocs_dma_alloc(ocs_os_handle_t os,ocs_dma_t * dma,size_t size,size_t align)359 ocs_dma_alloc(ocs_os_handle_t os, ocs_dma_t *dma, size_t size, size_t align)
360 {
361 struct ocs_softc *ocs = os;
362
363 if (!dma || !size) {
364 device_printf(ocs->dev, "%s bad parameter(s) dma=%p size=%zd\n",
365 __func__, dma, size);
366 return ENOMEM;
367 }
368
369 bzero(dma, sizeof(ocs_dma_t));
370
371 /* create a "tag" that describes the desired memory allocation */
372 if (bus_dma_tag_create(ocs->dmat, align, 0, BUS_SPACE_MAXADDR,
373 BUS_SPACE_MAXADDR, NULL, NULL,
374 size, 1, size, 0, NULL, NULL, &dma->tag)) {
375 device_printf(ocs->dev, "DMA tag allocation failed\n");
376 return ENOMEM;
377 }
378
379 dma->size = size;
380
381 /* allocate the memory */
382 if (bus_dmamem_alloc(dma->tag, &dma->virt, BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
383 &dma->map)) {
384 device_printf(ocs->dev, "DMA memory allocation failed s=%zd a=%zd\n", size, align);
385 ocs_dma_free(ocs, dma);
386 return ENOMEM;
387 }
388
389 dma->alloc = dma->virt;
390
391 /* map virtual address to device visible address */
392 if (bus_dmamap_load(dma->tag, dma->map, dma->virt, dma->size, ocs_dma_load,
393 dma, 0)) {
394 device_printf(ocs->dev, "DMA memory load failed\n");
395 ocs_dma_free(ocs, dma);
396 return ENOMEM;
397 }
398
399 /* if the DMA map load callback fails, it sets the physical address to zero */
400 if (0 == dma->phys) {
401 device_printf(ocs->dev, "ocs_dma_load failed\n");
402 ocs_dma_free(ocs, dma);
403 return ENOMEM;
404 }
405
406 return 0;
407 }
408
409 /**
410 * @ingroup os
411 * @brief Synchronize the DMA buffer memory
412 *
413 * Ensures memory coherency between the CPU and device
414 *
415 * @param dma DMA descriptor of memory to synchronize
416 * @param flags Describes direction of synchronization
417 * See BUS_DMA(9) for details
418 * - BUS_DMASYNC_PREWRITE
419 * - BUS_DMASYNC_POSTREAD
420 */
421 void
ocs_dma_sync(ocs_dma_t * dma,uint32_t flags)422 ocs_dma_sync(ocs_dma_t *dma, uint32_t flags)
423 {
424 bus_dmamap_sync(dma->tag, dma->map, flags);
425 }
426
427 int32_t
ocs_dma_copy_in(ocs_dma_t * dma,void * buffer,uint32_t buffer_length)428 ocs_dma_copy_in(ocs_dma_t *dma, void *buffer, uint32_t buffer_length)
429 {
430 if (!dma)
431 return -1;
432 if (!buffer)
433 return -1;
434 if (buffer_length == 0)
435 return 0;
436 if (buffer_length > dma->size)
437 buffer_length = dma->size;
438 ocs_memcpy(dma->virt, buffer, buffer_length);
439 dma->len = buffer_length;
440 return buffer_length;
441 }
442
443 int32_t
ocs_dma_copy_out(ocs_dma_t * dma,void * buffer,uint32_t buffer_length)444 ocs_dma_copy_out(ocs_dma_t *dma, void *buffer, uint32_t buffer_length)
445 {
446 if (!dma)
447 return -1;
448 if (!buffer)
449 return -1;
450 if (buffer_length == 0)
451 return 0;
452 if (buffer_length > dma->len)
453 buffer_length = dma->len;
454 ocs_memcpy(buffer, dma->virt, buffer_length);
455 return buffer_length;
456 }
457
458 /**
459 * @ingroup os
460 * @brief Initialize a lock
461 *
462 * @param lock lock to initialize
463 * @param name string identifier for the lock
464 */
465 void
ocs_lock_init(void * os,ocs_lock_t * lock,const char * name,...)466 ocs_lock_init(void *os, ocs_lock_t *lock, const char *name, ...)
467 {
468 va_list ap;
469
470 va_start(ap, name);
471 ocs_vsnprintf(lock->name, MAX_LOCK_DESC_LEN, name, ap);
472 va_end(ap);
473
474 mtx_init(&lock->lock, lock->name, NULL, MTX_DEF);
475 }
476
477 /**
478 * @brief Allocate a bit map
479 *
480 * For BSD, this is a simple character string
481 *
482 * @param n_bits number of bits in bit map
483 *
484 * @return pointer to the bit map, NULL on error
485 */
486 ocs_bitmap_t *
ocs_bitmap_alloc(uint32_t n_bits)487 ocs_bitmap_alloc(uint32_t n_bits)
488 {
489
490 return malloc(bitstr_size(n_bits), M_OCS, M_ZERO | M_NOWAIT);
491 }
492
493 /**
494 * @brief Free a bit map
495 *
496 * @param bitmap pointer to previously allocated bit map
497 */
498 void
ocs_bitmap_free(ocs_bitmap_t * bitmap)499 ocs_bitmap_free(ocs_bitmap_t *bitmap)
500 {
501
502 free(bitmap, M_OCS);
503 }
504
505 /**
506 * @brief find next unset bit and set it
507 *
508 * @param bitmap bit map to search
509 * @param n_bits number of bits in map
510 *
511 * @return bit position or -1 if map is full
512 */
513 int32_t
ocs_bitmap_find(ocs_bitmap_t * bitmap,uint32_t n_bits)514 ocs_bitmap_find(ocs_bitmap_t *bitmap, uint32_t n_bits)
515 {
516 int32_t position = -1;
517
518 bit_ffc(bitmap, n_bits, &position);
519
520 if (-1 != position) {
521 bit_set(bitmap, position);
522 }
523
524 return position;
525 }
526
527 /**
528 * @brief search for next (un)set bit
529 *
530 * @param bitmap bit map to search
531 * @param set search for a set or unset bit
532 * @param n_bits number of bits in map
533 *
534 * @return bit position or -1
535 */
536 int32_t
ocs_bitmap_search(ocs_bitmap_t * bitmap,uint8_t set,uint32_t n_bits)537 ocs_bitmap_search(ocs_bitmap_t *bitmap, uint8_t set, uint32_t n_bits)
538 {
539 int32_t position;
540
541 if (!bitmap) {
542 return -1;
543 }
544
545 if (set) {
546 bit_ffs(bitmap, n_bits, &position);
547 } else {
548 bit_ffc(bitmap, n_bits, &position);
549 }
550
551 return position;
552 }
553
554 /**
555 * @brief clear the specified bit
556 *
557 * @param bitmap pointer to bit map
558 * @param bit bit number to clear
559 */
560 void
ocs_bitmap_clear(ocs_bitmap_t * bitmap,uint32_t bit)561 ocs_bitmap_clear(ocs_bitmap_t *bitmap, uint32_t bit)
562 {
563 bit_clear(bitmap, bit);
564 }
565
_ocs_log(ocs_t * ocs,const char * func_name,int line,const char * fmt,...)566 void _ocs_log(ocs_t *ocs, const char *func_name, int line, const char *fmt, ...)
567 {
568 va_list ap;
569 char buf[256];
570 char *p = buf;
571
572 va_start(ap, fmt);
573
574 /* TODO: Add Current PID info here. */
575
576 p += snprintf(p, sizeof(buf) - (p - buf), "%s: ", DRV_NAME);
577 p += snprintf(p, sizeof(buf) - (p - buf), "%s:", func_name);
578 p += snprintf(p, sizeof(buf) - (p - buf), "%i:", line);
579 p += snprintf(p, sizeof(buf) - (p - buf), "%s:", (ocs != NULL) ? device_get_nameunit(ocs->dev) : "");
580 p += vsnprintf(p, sizeof(buf) - (p - buf), fmt, ap);
581
582 va_end(ap);
583
584 printf("%s", buf);
585 }
586
587 /**
588 * @brief Common thread call function
589 *
590 * This is the common function called whenever a thread instantiated by ocs_thread_create() is started.
591 * It captures the return value from the actual thread function and stashes it in the thread object, to
592 * be later retrieved by ocs_thread_get_retval(), and calls kthread_exit(), the proscribed method to terminate
593 * a thread.
594 *
595 * @param arg a pointer to the thread object
596 *
597 * @return none
598 */
599
600 static void
ocs_thread_call_fctn(void * arg)601 ocs_thread_call_fctn(void *arg)
602 {
603 ocs_thread_t *thread = arg;
604 thread->retval = (*thread->fctn)(thread->arg);
605 ocs_free(NULL, thread->name, ocs_strlen(thread->name+1));
606 kthread_exit();
607 }
608
609 /**
610 * @brief Create a kernel thread
611 *
612 * Creates a kernel thread and optionally starts it. If the thread is not immediately
613 * started, ocs_thread_start() should be called at some later point.
614 *
615 * @param os OS handle
616 * @param thread pointer to thread object
617 * @param fctn function for thread to be begin executing
618 * @param name text name to identify thread
619 * @param arg application specific argument passed to thread function
620 * @param start start option, OCS_THREAD_RUN will start the thread immediately,
621 * OCS_THREAD_CREATE will create but not start the thread
622 *
623 * @return returns 0 for success, a negative error code value for failure.
624 */
625
626 int32_t
ocs_thread_create(ocs_os_handle_t os,ocs_thread_t * thread,ocs_thread_fctn fctn,const char * name,void * arg,ocs_thread_start_e start)627 ocs_thread_create(ocs_os_handle_t os, ocs_thread_t *thread, ocs_thread_fctn fctn, const char *name, void *arg, ocs_thread_start_e start)
628 {
629 int32_t rc = 0;
630
631 ocs_memset(thread, 0, sizeof(*thread));
632
633 thread->fctn = fctn;
634 thread->name = ocs_strdup(name);
635 if (thread->name == NULL) {
636 thread->name = "unknown";
637 }
638 thread->arg = arg;
639
640 ocs_atomic_set(&thread->terminate, 0);
641
642 rc = kthread_add(ocs_thread_call_fctn, thread, NULL, &thread->tcb, (start == OCS_THREAD_CREATE) ? RFSTOPPED : 0,
643 OCS_THREAD_DEFAULT_STACK_SIZE_PAGES, "%s", name);
644
645 return rc;
646 }
647
648 /**
649 * @brief Start a thread
650 *
651 * Starts a thread that was created with OCS_THREAD_CREATE rather than OCS_THREAD_RUN
652 *
653 * @param thread pointer to thread object
654 *
655 * @return returns 0 for success, a negative error code value for failure.
656 */
657
ocs_thread_start(ocs_thread_t * thread)658 int32_t ocs_thread_start(ocs_thread_t *thread)
659 {
660
661 thread_lock(thread->tcb);
662 sched_add(thread->tcb, SRQ_BORING);
663 return 0;
664 }
665
666 /**
667 * @brief return thread argument
668 *
669 * Returns a pointer to the thread's application specific argument
670 *
671 * @param mythread pointer to the thread object
672 *
673 * @return pointer to application specific argument
674 */
675
ocs_thread_get_arg(ocs_thread_t * mythread)676 void *ocs_thread_get_arg(ocs_thread_t *mythread)
677 {
678 return mythread->arg;
679 }
680
681 /**
682 * @brief Request thread stop
683 *
684 * A stop request is made to the thread. This is a voluntary call, the thread needs
685 * to periodically query its terminate request using ocs_thread_terminate_requested()
686 *
687 * @param thread pointer to thread object
688 *
689 * @return returns 0 for success, a negative error code value for failure.
690 */
691
692 int32_t
ocs_thread_terminate(ocs_thread_t * thread)693 ocs_thread_terminate(ocs_thread_t *thread)
694 {
695 ocs_atomic_set(&thread->terminate, 1);
696 return 0;
697 }
698
699 /**
700 * @brief See if a terminate request has been made
701 *
702 * Check to see if a stop request has been made to the current thread. This
703 * function would be used by a thread to see if it should terminate.
704 *
705 * @return returns non-zero if a stop has been requested
706 */
707
ocs_thread_terminate_requested(ocs_thread_t * thread)708 int32_t ocs_thread_terminate_requested(ocs_thread_t *thread)
709 {
710 return ocs_atomic_read(&thread->terminate);
711 }
712
713 /**
714 * @brief Retrieve threads return value
715 *
716 * After a thread has terminated, it's return value may be retrieved with this function.
717 *
718 * @param thread pointer to thread object
719 *
720 * @return return value from thread function
721 */
722
723 int32_t
ocs_thread_get_retval(ocs_thread_t * thread)724 ocs_thread_get_retval(ocs_thread_t *thread)
725 {
726 return thread->retval;
727 }
728
729 /**
730 * @brief Request that the currently running thread yield
731 *
732 * The currently running thread yields to the scheduler
733 *
734 * @param thread pointer to thread (ignored)
735 *
736 * @return none
737 */
738
739 void
ocs_thread_yield(ocs_thread_t * thread)740 ocs_thread_yield(ocs_thread_t *thread) {
741 pause("thread yield", 1);
742 }
743
744 ocs_thread_t *
ocs_thread_self(void)745 ocs_thread_self(void)
746 {
747 ocs_printf(">>> %s not implemented\n", __func__);
748 ocs_abort();
749 }
750
751 int32_t
ocs_thread_setcpu(ocs_thread_t * thread,uint32_t cpu)752 ocs_thread_setcpu(ocs_thread_t *thread, uint32_t cpu)
753 {
754 ocs_printf(">>> %s not implemented\n", __func__);
755 return -1;
756 }
757
758 int32_t
ocs_thread_getcpu(void)759 ocs_thread_getcpu(void)
760 {
761 return curcpu;
762 }
763
764 int
ocs_sem_init(ocs_sem_t * sem,int val,const char * name,...)765 ocs_sem_init(ocs_sem_t *sem, int val, const char *name, ...)
766 {
767 va_list ap;
768
769 va_start(ap, name);
770 ocs_vsnprintf(sem->name, sizeof(sem->name), name, ap);
771 va_end(ap);
772
773 sema_init(&sem->sem, val, sem->name);
774 return 0;
775 }
776
777 /**
778 * @ingroup os
779 * @brief Copy user arguments in to kernel space for an ioctl
780 * @par Description
781 * This function is called at the beginning of an ioctl function
782 * to copy the ioctl argument from user space to kernel space.
783 *
784 * BSD handles this for us - arg is already in kernel space,
785 * so we just return it.
786 *
787 * @param os OS handle
788 * @param arg The argument passed to the ioctl function
789 * @param size The size of the structure pointed to by arg
790 *
791 * @return A pointer to a kernel space copy of the argument on
792 * success; NULL on failure
793 */
ocs_ioctl_preprocess(ocs_os_handle_t os,void * arg,size_t size)794 void *ocs_ioctl_preprocess(ocs_os_handle_t os, void *arg, size_t size)
795 {
796 return arg;
797 }
798
799 /**
800 * @ingroup os
801 * @brief Copy results of an ioctl back to user space
802 * @par Description
803 * This function is called at the end of ioctl processing to
804 * copy the argument back to user space.
805 *
806 * BSD handles this for us.
807 *
808 * @param os OS handle
809 * @param arg The argument passed to the ioctl function
810 * @param kern_ptr A pointer to the kernel space copy of the
811 * argument
812 * @param size The size of the structure pointed to by arg.
813 *
814 * @return Returns 0.
815 */
ocs_ioctl_postprocess(ocs_os_handle_t os,void * arg,void * kern_ptr,size_t size)816 int32_t ocs_ioctl_postprocess(ocs_os_handle_t os, void *arg, void *kern_ptr, size_t size)
817 {
818 return 0;
819 }
820
821 /**
822 * @ingroup os
823 * @brief Free memory allocated by ocs_ioctl_preprocess
824 * @par Description
825 * This function is called in the event of an error in ioctl
826 * processing. For operating environments where ocs_ioctlpreprocess
827 * allocates memory, this call frees the memory without copying
828 * results back to user space.
829 *
830 * For BSD, because no memory was allocated in ocs_ioctl_preprocess,
831 * nothing needs to be done here.
832 *
833 * @param os OS handle
834 * @param kern_ptr A pointer to the kernel space copy of the
835 * argument
836 * @param size The size of the structure pointed to by arg.
837 *
838 * @return Returns nothing.
839 */
ocs_ioctl_free(ocs_os_handle_t os,void * kern_ptr,size_t size)840 void ocs_ioctl_free(ocs_os_handle_t os, void *kern_ptr, size_t size)
841 {
842 return;
843 }
844
ocs_intr_disable(ocs_os_handle_t os)845 void ocs_intr_disable(ocs_os_handle_t os)
846 {
847 }
848
ocs_intr_enable(ocs_os_handle_t os)849 void ocs_intr_enable(ocs_os_handle_t os)
850 {
851 }
852
ocs_print_stack(void)853 void ocs_print_stack(void)
854 {
855 #if defined(STACK)
856 struct stack st;
857
858 stack_save(&st);
859 stack_print(&st);
860 #endif
861 }
862
ocs_abort(void)863 void ocs_abort(void)
864 {
865 panic(">>> abort/panic\n");
866 }
867
868 const char *
ocs_pci_model(uint16_t vendor,uint16_t device)869 ocs_pci_model(uint16_t vendor, uint16_t device)
870 {
871 switch (device) {
872 case PCI_PRODUCT_EMULEX_OCE16002: return "OCE16002";
873 case PCI_PRODUCT_EMULEX_OCE1600_VF: return "OCE1600_VF";
874 case PCI_PRODUCT_EMULEX_OCE50102: return "OCE50102";
875 case PCI_PRODUCT_EMULEX_OCE50102_VF: return "OCE50102_VR";
876 default:
877 break;
878 }
879
880 return "unknown";
881 }
882
883 void
ocs_get_bus_dev_func(ocs_t * ocs,uint8_t * bus,uint8_t * dev,uint8_t * func)884 ocs_get_bus_dev_func(ocs_t *ocs, uint8_t* bus, uint8_t* dev, uint8_t* func)
885 {
886 *bus = pci_get_bus(ocs->dev);
887 *dev = pci_get_slot(ocs->dev);
888 *func= pci_get_function(ocs->dev);
889 }
890
891 /**
892 * @brief return CPU information
893 *
894 * This function populates the ocs_cpuinfo_t buffer with CPU information
895 *
896 * @param cpuinfo pointer to ocs_cpuinfo_t buffer
897 *
898 * @return returns 0 for success, a negative error code value for failure.
899 */
900 extern int mp_ncpus;
901 int32_t
ocs_get_cpuinfo(ocs_cpuinfo_t * cpuinfo)902 ocs_get_cpuinfo(ocs_cpuinfo_t *cpuinfo)
903 {
904 cpuinfo->num_cpus = mp_ncpus;
905 return 0;
906 }
907
908 uint32_t
ocs_get_num_cpus(void)909 ocs_get_num_cpus(void)
910 {
911 static ocs_cpuinfo_t cpuinfo;
912
913 if (cpuinfo.num_cpus == 0) {
914 ocs_get_cpuinfo(&cpuinfo);
915 }
916 return cpuinfo.num_cpus;
917 }
918
919 void
__ocs_callout(void * t)920 __ocs_callout(void *t)
921 {
922 ocs_timer_t *timer = t;
923
924 if (callout_pending(&timer->callout)) {
925 /* Callout was reset */
926 return;
927 }
928
929 if (!callout_active(&timer->callout)) {
930 /* Callout was stopped */
931 return;
932 }
933
934 callout_deactivate(&timer->callout);
935
936 if (timer->func) {
937 timer->func(timer->data);
938 }
939 }
940
941 int32_t
ocs_setup_timer(ocs_os_handle_t os,ocs_timer_t * timer,void (* func)(void * arg),void * data,uint32_t timeout_ms)942 ocs_setup_timer(ocs_os_handle_t os, ocs_timer_t *timer, void(*func)(void *arg), void *data, uint32_t timeout_ms)
943 {
944 struct timeval tv;
945 int hz;
946
947 if (timer == NULL) {
948 ocs_log_err(NULL, "bad parameter\n");
949 return -1;
950 }
951
952 if (!mtx_initialized(&timer->lock)) {
953 mtx_init(&timer->lock, "ocs_timer", NULL, MTX_DEF);
954 }
955
956 callout_init_mtx(&timer->callout, &timer->lock, 0);
957
958 timer->func = func;
959 timer->data = data;
960
961 tv.tv_sec = timeout_ms / 1000;
962 tv.tv_usec = (timeout_ms % 1000) * 1000;
963
964 hz = tvtohz(&tv);
965 if (hz < 0)
966 hz = INT32_MAX;
967 if (hz == 0)
968 hz = 1;
969
970 mtx_lock(&timer->lock);
971 callout_reset(&timer->callout, hz, __ocs_callout, timer);
972 mtx_unlock(&timer->lock);
973
974 return 0;
975 }
976
977 int32_t
ocs_mod_timer(ocs_timer_t * timer,uint32_t timeout_ms)978 ocs_mod_timer(ocs_timer_t *timer, uint32_t timeout_ms)
979 {
980 struct timeval tv;
981 int hz;
982
983 if (timer == NULL) {
984 ocs_log_err(NULL, "bad parameter\n");
985 return -1;
986 }
987
988 tv.tv_sec = timeout_ms / 1000;
989 tv.tv_usec = (timeout_ms % 1000) * 1000;
990
991 hz = tvtohz(&tv);
992 if (hz < 0)
993 hz = INT32_MAX;
994 if (hz == 0)
995 hz = 1;
996
997 mtx_lock(&timer->lock);
998 callout_reset(&timer->callout, hz, __ocs_callout, timer);
999 mtx_unlock(&timer->lock);
1000
1001 return 0;
1002 }
1003
1004 int32_t
ocs_timer_pending(ocs_timer_t * timer)1005 ocs_timer_pending(ocs_timer_t *timer)
1006 {
1007 return callout_active(&timer->callout);
1008 }
1009
1010 int32_t
ocs_del_timer(ocs_timer_t * timer)1011 ocs_del_timer(ocs_timer_t *timer)
1012 {
1013
1014 mtx_lock(&timer->lock);
1015 callout_stop(&timer->callout);
1016 mtx_unlock(&timer->lock);
1017
1018 return 0;
1019 }
1020
1021 char *
ocs_strdup(const char * s)1022 ocs_strdup(const char *s)
1023 {
1024 uint32_t l = strlen(s);
1025 char *d;
1026
1027 d = ocs_malloc(NULL, l+1, OCS_M_NOWAIT);
1028 if (d != NULL) {
1029 ocs_strcpy(d, s);
1030 }
1031 return d;
1032 }
1033
1034 void
_ocs_assert(const char * cond,const char * filename,int linenum)1035 _ocs_assert(const char *cond, const char *filename, int linenum)
1036 {
1037 const char *fn = strrchr(__FILE__, '/');
1038
1039 ocs_log_err(NULL, "%s(%d) assertion (%s) failed\n", (fn ? fn + 1 : filename), linenum, cond);
1040 ocs_print_stack();
1041 ocs_save_ddump_all(OCS_DDUMP_FLAGS_WQES|OCS_DDUMP_FLAGS_CQES|OCS_DDUMP_FLAGS_MQES, -1, TRUE);
1042 }
1043