xref: /linux/drivers/of/base.c (revision 40b0f174)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/cleanup.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31 
32 #include "of_private.h"
33 
34 LIST_HEAD(aliases_lookup);
35 
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 EXPORT_SYMBOL(of_chosen);
40 struct device_node *of_aliases;
41 struct device_node *of_stdout;
42 static const char *of_stdout_options;
43 
44 struct kset *of_kset;
45 
46 /*
47  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
48  * This mutex must be held whenever modifications are being made to the
49  * device tree. The of_{attach,detach}_node() and
50  * of_{add,remove,update}_property() helpers make sure this happens.
51  */
52 DEFINE_MUTEX(of_mutex);
53 
54 /* use when traversing tree through the child, sibling,
55  * or parent members of struct device_node.
56  */
57 DEFINE_RAW_SPINLOCK(devtree_lock);
58 
of_node_name_eq(const struct device_node * np,const char * name)59 bool of_node_name_eq(const struct device_node *np, const char *name)
60 {
61 	const char *node_name;
62 	size_t len;
63 
64 	if (!np)
65 		return false;
66 
67 	node_name = kbasename(np->full_name);
68 	len = strchrnul(node_name, '@') - node_name;
69 
70 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
71 }
72 EXPORT_SYMBOL(of_node_name_eq);
73 
of_node_name_prefix(const struct device_node * np,const char * prefix)74 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
75 {
76 	if (!np)
77 		return false;
78 
79 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
80 }
81 EXPORT_SYMBOL(of_node_name_prefix);
82 
__of_node_is_type(const struct device_node * np,const char * type)83 static bool __of_node_is_type(const struct device_node *np, const char *type)
84 {
85 	const char *match = __of_get_property(np, "device_type", NULL);
86 
87 	return np && match && type && !strcmp(match, type);
88 }
89 
of_bus_n_addr_cells(struct device_node * np)90 int of_bus_n_addr_cells(struct device_node *np)
91 {
92 	u32 cells;
93 
94 	for (; np; np = np->parent)
95 		if (!of_property_read_u32(np, "#address-cells", &cells))
96 			return cells;
97 
98 	/* No #address-cells property for the root node */
99 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
100 }
101 
of_n_addr_cells(struct device_node * np)102 int of_n_addr_cells(struct device_node *np)
103 {
104 	if (np->parent)
105 		np = np->parent;
106 
107 	return of_bus_n_addr_cells(np);
108 }
109 EXPORT_SYMBOL(of_n_addr_cells);
110 
of_bus_n_size_cells(struct device_node * np)111 int of_bus_n_size_cells(struct device_node *np)
112 {
113 	u32 cells;
114 
115 	for (; np; np = np->parent)
116 		if (!of_property_read_u32(np, "#size-cells", &cells))
117 			return cells;
118 
119 	/* No #size-cells property for the root node */
120 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
121 }
122 
of_n_size_cells(struct device_node * np)123 int of_n_size_cells(struct device_node *np)
124 {
125 	if (np->parent)
126 		np = np->parent;
127 
128 	return of_bus_n_size_cells(np);
129 }
130 EXPORT_SYMBOL(of_n_size_cells);
131 
132 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)133 int __weak of_node_to_nid(struct device_node *np)
134 {
135 	return NUMA_NO_NODE;
136 }
137 #endif
138 
139 #define OF_PHANDLE_CACHE_BITS	7
140 #define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
141 
142 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
143 
of_phandle_cache_hash(phandle handle)144 static u32 of_phandle_cache_hash(phandle handle)
145 {
146 	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
147 }
148 
149 /*
150  * Caller must hold devtree_lock.
151  */
__of_phandle_cache_inv_entry(phandle handle)152 void __of_phandle_cache_inv_entry(phandle handle)
153 {
154 	u32 handle_hash;
155 	struct device_node *np;
156 
157 	if (!handle)
158 		return;
159 
160 	handle_hash = of_phandle_cache_hash(handle);
161 
162 	np = phandle_cache[handle_hash];
163 	if (np && handle == np->phandle)
164 		phandle_cache[handle_hash] = NULL;
165 }
166 
of_core_init(void)167 void __init of_core_init(void)
168 {
169 	struct device_node *np;
170 
171 	of_platform_register_reconfig_notifier();
172 
173 	/* Create the kset, and register existing nodes */
174 	mutex_lock(&of_mutex);
175 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
176 	if (!of_kset) {
177 		mutex_unlock(&of_mutex);
178 		pr_err("failed to register existing nodes\n");
179 		return;
180 	}
181 	for_each_of_allnodes(np) {
182 		__of_attach_node_sysfs(np);
183 		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
184 			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
185 	}
186 	mutex_unlock(&of_mutex);
187 
188 	/* Symlink in /proc as required by userspace ABI */
189 	if (of_root)
190 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
191 }
192 
__of_find_property(const struct device_node * np,const char * name,int * lenp)193 static struct property *__of_find_property(const struct device_node *np,
194 					   const char *name, int *lenp)
195 {
196 	struct property *pp;
197 
198 	if (!np)
199 		return NULL;
200 
201 	for (pp = np->properties; pp; pp = pp->next) {
202 		if (of_prop_cmp(pp->name, name) == 0) {
203 			if (lenp)
204 				*lenp = pp->length;
205 			break;
206 		}
207 	}
208 
209 	return pp;
210 }
211 
of_find_property(const struct device_node * np,const char * name,int * lenp)212 struct property *of_find_property(const struct device_node *np,
213 				  const char *name,
214 				  int *lenp)
215 {
216 	struct property *pp;
217 	unsigned long flags;
218 
219 	raw_spin_lock_irqsave(&devtree_lock, flags);
220 	pp = __of_find_property(np, name, lenp);
221 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
222 
223 	return pp;
224 }
225 EXPORT_SYMBOL(of_find_property);
226 
__of_find_all_nodes(struct device_node * prev)227 struct device_node *__of_find_all_nodes(struct device_node *prev)
228 {
229 	struct device_node *np;
230 	if (!prev) {
231 		np = of_root;
232 	} else if (prev->child) {
233 		np = prev->child;
234 	} else {
235 		/* Walk back up looking for a sibling, or the end of the structure */
236 		np = prev;
237 		while (np->parent && !np->sibling)
238 			np = np->parent;
239 		np = np->sibling; /* Might be null at the end of the tree */
240 	}
241 	return np;
242 }
243 
244 /**
245  * of_find_all_nodes - Get next node in global list
246  * @prev:	Previous node or NULL to start iteration
247  *		of_node_put() will be called on it
248  *
249  * Return: A node pointer with refcount incremented, use
250  * of_node_put() on it when done.
251  */
of_find_all_nodes(struct device_node * prev)252 struct device_node *of_find_all_nodes(struct device_node *prev)
253 {
254 	struct device_node *np;
255 	unsigned long flags;
256 
257 	raw_spin_lock_irqsave(&devtree_lock, flags);
258 	np = __of_find_all_nodes(prev);
259 	of_node_get(np);
260 	of_node_put(prev);
261 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
262 	return np;
263 }
264 EXPORT_SYMBOL(of_find_all_nodes);
265 
266 /*
267  * Find a property with a given name for a given node
268  * and return the value.
269  */
__of_get_property(const struct device_node * np,const char * name,int * lenp)270 const void *__of_get_property(const struct device_node *np,
271 			      const char *name, int *lenp)
272 {
273 	struct property *pp = __of_find_property(np, name, lenp);
274 
275 	return pp ? pp->value : NULL;
276 }
277 
278 /*
279  * Find a property with a given name for a given node
280  * and return the value.
281  */
of_get_property(const struct device_node * np,const char * name,int * lenp)282 const void *of_get_property(const struct device_node *np, const char *name,
283 			    int *lenp)
284 {
285 	struct property *pp = of_find_property(np, name, lenp);
286 
287 	return pp ? pp->value : NULL;
288 }
289 EXPORT_SYMBOL(of_get_property);
290 
291 /**
292  * __of_device_is_compatible() - Check if the node matches given constraints
293  * @device: pointer to node
294  * @compat: required compatible string, NULL or "" for any match
295  * @type: required device_type value, NULL or "" for any match
296  * @name: required node name, NULL or "" for any match
297  *
298  * Checks if the given @compat, @type and @name strings match the
299  * properties of the given @device. A constraints can be skipped by
300  * passing NULL or an empty string as the constraint.
301  *
302  * Returns 0 for no match, and a positive integer on match. The return
303  * value is a relative score with larger values indicating better
304  * matches. The score is weighted for the most specific compatible value
305  * to get the highest score. Matching type is next, followed by matching
306  * name. Practically speaking, this results in the following priority
307  * order for matches:
308  *
309  * 1. specific compatible && type && name
310  * 2. specific compatible && type
311  * 3. specific compatible && name
312  * 4. specific compatible
313  * 5. general compatible && type && name
314  * 6. general compatible && type
315  * 7. general compatible && name
316  * 8. general compatible
317  * 9. type && name
318  * 10. type
319  * 11. name
320  */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)321 static int __of_device_is_compatible(const struct device_node *device,
322 				     const char *compat, const char *type, const char *name)
323 {
324 	struct property *prop;
325 	const char *cp;
326 	int index = 0, score = 0;
327 
328 	/* Compatible match has highest priority */
329 	if (compat && compat[0]) {
330 		prop = __of_find_property(device, "compatible", NULL);
331 		for (cp = of_prop_next_string(prop, NULL); cp;
332 		     cp = of_prop_next_string(prop, cp), index++) {
333 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
334 				score = INT_MAX/2 - (index << 2);
335 				break;
336 			}
337 		}
338 		if (!score)
339 			return 0;
340 	}
341 
342 	/* Matching type is better than matching name */
343 	if (type && type[0]) {
344 		if (!__of_node_is_type(device, type))
345 			return 0;
346 		score += 2;
347 	}
348 
349 	/* Matching name is a bit better than not */
350 	if (name && name[0]) {
351 		if (!of_node_name_eq(device, name))
352 			return 0;
353 		score++;
354 	}
355 
356 	return score;
357 }
358 
359 /** Checks if the given "compat" string matches one of the strings in
360  * the device's "compatible" property
361  */
of_device_is_compatible(const struct device_node * device,const char * compat)362 int of_device_is_compatible(const struct device_node *device,
363 		const char *compat)
364 {
365 	unsigned long flags;
366 	int res;
367 
368 	raw_spin_lock_irqsave(&devtree_lock, flags);
369 	res = __of_device_is_compatible(device, compat, NULL, NULL);
370 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
371 	return res;
372 }
373 EXPORT_SYMBOL(of_device_is_compatible);
374 
375 /** Checks if the device is compatible with any of the entries in
376  *  a NULL terminated array of strings. Returns the best match
377  *  score or 0.
378  */
of_device_compatible_match(const struct device_node * device,const char * const * compat)379 int of_device_compatible_match(const struct device_node *device,
380 			       const char *const *compat)
381 {
382 	unsigned int tmp, score = 0;
383 
384 	if (!compat)
385 		return 0;
386 
387 	while (*compat) {
388 		tmp = of_device_is_compatible(device, *compat);
389 		if (tmp > score)
390 			score = tmp;
391 		compat++;
392 	}
393 
394 	return score;
395 }
396 EXPORT_SYMBOL_GPL(of_device_compatible_match);
397 
398 /**
399  * of_machine_compatible_match - Test root of device tree against a compatible array
400  * @compats: NULL terminated array of compatible strings to look for in root node's compatible property.
401  *
402  * Returns true if the root node has any of the given compatible values in its
403  * compatible property.
404  */
of_machine_compatible_match(const char * const * compats)405 bool of_machine_compatible_match(const char *const *compats)
406 {
407 	struct device_node *root;
408 	int rc = 0;
409 
410 	root = of_find_node_by_path("/");
411 	if (root) {
412 		rc = of_device_compatible_match(root, compats);
413 		of_node_put(root);
414 	}
415 
416 	return rc != 0;
417 }
418 EXPORT_SYMBOL(of_machine_compatible_match);
419 
__of_device_is_status(const struct device_node * device,const char * const * strings)420 static bool __of_device_is_status(const struct device_node *device,
421 				  const char * const*strings)
422 {
423 	const char *status;
424 	int statlen;
425 
426 	if (!device)
427 		return false;
428 
429 	status = __of_get_property(device, "status", &statlen);
430 	if (status == NULL)
431 		return false;
432 
433 	if (statlen > 0) {
434 		while (*strings) {
435 			unsigned int len = strlen(*strings);
436 
437 			if ((*strings)[len - 1] == '-') {
438 				if (!strncmp(status, *strings, len))
439 					return true;
440 			} else {
441 				if (!strcmp(status, *strings))
442 					return true;
443 			}
444 			strings++;
445 		}
446 	}
447 
448 	return false;
449 }
450 
451 /**
452  *  __of_device_is_available - check if a device is available for use
453  *
454  *  @device: Node to check for availability, with locks already held
455  *
456  *  Return: True if the status property is absent or set to "okay" or "ok",
457  *  false otherwise
458  */
__of_device_is_available(const struct device_node * device)459 static bool __of_device_is_available(const struct device_node *device)
460 {
461 	static const char * const ok[] = {"okay", "ok", NULL};
462 
463 	if (!device)
464 		return false;
465 
466 	return !__of_get_property(device, "status", NULL) ||
467 		__of_device_is_status(device, ok);
468 }
469 
470 /**
471  *  __of_device_is_reserved - check if a device is reserved
472  *
473  *  @device: Node to check for availability, with locks already held
474  *
475  *  Return: True if the status property is set to "reserved", false otherwise
476  */
__of_device_is_reserved(const struct device_node * device)477 static bool __of_device_is_reserved(const struct device_node *device)
478 {
479 	static const char * const reserved[] = {"reserved", NULL};
480 
481 	return __of_device_is_status(device, reserved);
482 }
483 
484 /**
485  *  of_device_is_available - check if a device is available for use
486  *
487  *  @device: Node to check for availability
488  *
489  *  Return: True if the status property is absent or set to "okay" or "ok",
490  *  false otherwise
491  */
of_device_is_available(const struct device_node * device)492 bool of_device_is_available(const struct device_node *device)
493 {
494 	unsigned long flags;
495 	bool res;
496 
497 	raw_spin_lock_irqsave(&devtree_lock, flags);
498 	res = __of_device_is_available(device);
499 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
500 	return res;
501 
502 }
503 EXPORT_SYMBOL(of_device_is_available);
504 
505 /**
506  *  __of_device_is_fail - check if a device has status "fail" or "fail-..."
507  *
508  *  @device: Node to check status for, with locks already held
509  *
510  *  Return: True if the status property is set to "fail" or "fail-..." (for any
511  *  error code suffix), false otherwise
512  */
__of_device_is_fail(const struct device_node * device)513 static bool __of_device_is_fail(const struct device_node *device)
514 {
515 	static const char * const fail[] = {"fail", "fail-", NULL};
516 
517 	return __of_device_is_status(device, fail);
518 }
519 
520 /**
521  *  of_device_is_big_endian - check if a device has BE registers
522  *
523  *  @device: Node to check for endianness
524  *
525  *  Return: True if the device has a "big-endian" property, or if the kernel
526  *  was compiled for BE *and* the device has a "native-endian" property.
527  *  Returns false otherwise.
528  *
529  *  Callers would nominally use ioread32be/iowrite32be if
530  *  of_device_is_big_endian() == true, or readl/writel otherwise.
531  */
of_device_is_big_endian(const struct device_node * device)532 bool of_device_is_big_endian(const struct device_node *device)
533 {
534 	if (of_property_read_bool(device, "big-endian"))
535 		return true;
536 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
537 	    of_property_read_bool(device, "native-endian"))
538 		return true;
539 	return false;
540 }
541 EXPORT_SYMBOL(of_device_is_big_endian);
542 
543 /**
544  * of_get_parent - Get a node's parent if any
545  * @node:	Node to get parent
546  *
547  * Return: A node pointer with refcount incremented, use
548  * of_node_put() on it when done.
549  */
of_get_parent(const struct device_node * node)550 struct device_node *of_get_parent(const struct device_node *node)
551 {
552 	struct device_node *np;
553 	unsigned long flags;
554 
555 	if (!node)
556 		return NULL;
557 
558 	raw_spin_lock_irqsave(&devtree_lock, flags);
559 	np = of_node_get(node->parent);
560 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
561 	return np;
562 }
563 EXPORT_SYMBOL(of_get_parent);
564 
565 /**
566  * of_get_next_parent - Iterate to a node's parent
567  * @node:	Node to get parent of
568  *
569  * This is like of_get_parent() except that it drops the
570  * refcount on the passed node, making it suitable for iterating
571  * through a node's parents.
572  *
573  * Return: A node pointer with refcount incremented, use
574  * of_node_put() on it when done.
575  */
of_get_next_parent(struct device_node * node)576 struct device_node *of_get_next_parent(struct device_node *node)
577 {
578 	struct device_node *parent;
579 	unsigned long flags;
580 
581 	if (!node)
582 		return NULL;
583 
584 	raw_spin_lock_irqsave(&devtree_lock, flags);
585 	parent = of_node_get(node->parent);
586 	of_node_put(node);
587 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
588 	return parent;
589 }
590 EXPORT_SYMBOL(of_get_next_parent);
591 
__of_get_next_child(const struct device_node * node,struct device_node * prev)592 static struct device_node *__of_get_next_child(const struct device_node *node,
593 						struct device_node *prev)
594 {
595 	struct device_node *next;
596 
597 	if (!node)
598 		return NULL;
599 
600 	next = prev ? prev->sibling : node->child;
601 	of_node_get(next);
602 	of_node_put(prev);
603 	return next;
604 }
605 #define __for_each_child_of_node(parent, child) \
606 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
607 	     child = __of_get_next_child(parent, child))
608 
609 /**
610  * of_get_next_child - Iterate a node childs
611  * @node:	parent node
612  * @prev:	previous child of the parent node, or NULL to get first
613  *
614  * Return: A node pointer with refcount incremented, use of_node_put() on
615  * it when done. Returns NULL when prev is the last child. Decrements the
616  * refcount of prev.
617  */
of_get_next_child(const struct device_node * node,struct device_node * prev)618 struct device_node *of_get_next_child(const struct device_node *node,
619 	struct device_node *prev)
620 {
621 	struct device_node *next;
622 	unsigned long flags;
623 
624 	raw_spin_lock_irqsave(&devtree_lock, flags);
625 	next = __of_get_next_child(node, prev);
626 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
627 	return next;
628 }
629 EXPORT_SYMBOL(of_get_next_child);
630 
of_get_next_status_child(const struct device_node * node,struct device_node * prev,bool (* checker)(const struct device_node *))631 static struct device_node *of_get_next_status_child(const struct device_node *node,
632 						    struct device_node *prev,
633 						    bool (*checker)(const struct device_node *))
634 {
635 	struct device_node *next;
636 	unsigned long flags;
637 
638 	if (!node)
639 		return NULL;
640 
641 	raw_spin_lock_irqsave(&devtree_lock, flags);
642 	next = prev ? prev->sibling : node->child;
643 	for (; next; next = next->sibling) {
644 		if (!checker(next))
645 			continue;
646 		if (of_node_get(next))
647 			break;
648 	}
649 	of_node_put(prev);
650 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
651 	return next;
652 }
653 
654 /**
655  * of_get_next_available_child - Find the next available child node
656  * @node:	parent node
657  * @prev:	previous child of the parent node, or NULL to get first
658  *
659  * This function is like of_get_next_child(), except that it
660  * automatically skips any disabled nodes (i.e. status = "disabled").
661  */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)662 struct device_node *of_get_next_available_child(const struct device_node *node,
663 	struct device_node *prev)
664 {
665 	return of_get_next_status_child(node, prev, __of_device_is_available);
666 }
667 EXPORT_SYMBOL(of_get_next_available_child);
668 
669 /**
670  * of_get_next_reserved_child - Find the next reserved child node
671  * @node:	parent node
672  * @prev:	previous child of the parent node, or NULL to get first
673  *
674  * This function is like of_get_next_child(), except that it
675  * automatically skips any disabled nodes (i.e. status = "disabled").
676  */
of_get_next_reserved_child(const struct device_node * node,struct device_node * prev)677 struct device_node *of_get_next_reserved_child(const struct device_node *node,
678 						struct device_node *prev)
679 {
680 	return of_get_next_status_child(node, prev, __of_device_is_reserved);
681 }
682 EXPORT_SYMBOL(of_get_next_reserved_child);
683 
684 /**
685  * of_get_next_cpu_node - Iterate on cpu nodes
686  * @prev:	previous child of the /cpus node, or NULL to get first
687  *
688  * Unusable CPUs (those with the status property set to "fail" or "fail-...")
689  * will be skipped.
690  *
691  * Return: A cpu node pointer with refcount incremented, use of_node_put()
692  * on it when done. Returns NULL when prev is the last child. Decrements
693  * the refcount of prev.
694  */
of_get_next_cpu_node(struct device_node * prev)695 struct device_node *of_get_next_cpu_node(struct device_node *prev)
696 {
697 	struct device_node *next = NULL;
698 	unsigned long flags;
699 	struct device_node *node;
700 
701 	if (!prev)
702 		node = of_find_node_by_path("/cpus");
703 
704 	raw_spin_lock_irqsave(&devtree_lock, flags);
705 	if (prev)
706 		next = prev->sibling;
707 	else if (node) {
708 		next = node->child;
709 		of_node_put(node);
710 	}
711 	for (; next; next = next->sibling) {
712 		if (__of_device_is_fail(next))
713 			continue;
714 		if (!(of_node_name_eq(next, "cpu") ||
715 		      __of_node_is_type(next, "cpu")))
716 			continue;
717 		if (of_node_get(next))
718 			break;
719 	}
720 	of_node_put(prev);
721 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
722 	return next;
723 }
724 EXPORT_SYMBOL(of_get_next_cpu_node);
725 
726 /**
727  * of_get_compatible_child - Find compatible child node
728  * @parent:	parent node
729  * @compatible:	compatible string
730  *
731  * Lookup child node whose compatible property contains the given compatible
732  * string.
733  *
734  * Return: a node pointer with refcount incremented, use of_node_put() on it
735  * when done; or NULL if not found.
736  */
of_get_compatible_child(const struct device_node * parent,const char * compatible)737 struct device_node *of_get_compatible_child(const struct device_node *parent,
738 				const char *compatible)
739 {
740 	struct device_node *child;
741 
742 	for_each_child_of_node(parent, child) {
743 		if (of_device_is_compatible(child, compatible))
744 			break;
745 	}
746 
747 	return child;
748 }
749 EXPORT_SYMBOL(of_get_compatible_child);
750 
751 /**
752  * of_get_child_by_name - Find the child node by name for a given parent
753  * @node:	parent node
754  * @name:	child name to look for.
755  *
756  * This function looks for child node for given matching name
757  *
758  * Return: A node pointer if found, with refcount incremented, use
759  * of_node_put() on it when done.
760  * Returns NULL if node is not found.
761  */
of_get_child_by_name(const struct device_node * node,const char * name)762 struct device_node *of_get_child_by_name(const struct device_node *node,
763 				const char *name)
764 {
765 	struct device_node *child;
766 
767 	for_each_child_of_node(node, child)
768 		if (of_node_name_eq(child, name))
769 			break;
770 	return child;
771 }
772 EXPORT_SYMBOL(of_get_child_by_name);
773 
__of_find_node_by_path(struct device_node * parent,const char * path)774 struct device_node *__of_find_node_by_path(struct device_node *parent,
775 						const char *path)
776 {
777 	struct device_node *child;
778 	int len;
779 
780 	len = strcspn(path, "/:");
781 	if (!len)
782 		return NULL;
783 
784 	__for_each_child_of_node(parent, child) {
785 		const char *name = kbasename(child->full_name);
786 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
787 			return child;
788 	}
789 	return NULL;
790 }
791 
__of_find_node_by_full_path(struct device_node * node,const char * path)792 struct device_node *__of_find_node_by_full_path(struct device_node *node,
793 						const char *path)
794 {
795 	const char *separator = strchr(path, ':');
796 
797 	while (node && *path == '/') {
798 		struct device_node *tmp = node;
799 
800 		path++; /* Increment past '/' delimiter */
801 		node = __of_find_node_by_path(node, path);
802 		of_node_put(tmp);
803 		path = strchrnul(path, '/');
804 		if (separator && separator < path)
805 			break;
806 	}
807 	return node;
808 }
809 
810 /**
811  * of_find_node_opts_by_path - Find a node matching a full OF path
812  * @path: Either the full path to match, or if the path does not
813  *       start with '/', the name of a property of the /aliases
814  *       node (an alias).  In the case of an alias, the node
815  *       matching the alias' value will be returned.
816  * @opts: Address of a pointer into which to store the start of
817  *       an options string appended to the end of the path with
818  *       a ':' separator.
819  *
820  * Valid paths:
821  *  * /foo/bar	Full path
822  *  * foo	Valid alias
823  *  * foo/bar	Valid alias + relative path
824  *
825  * Return: A node pointer with refcount incremented, use
826  * of_node_put() on it when done.
827  */
of_find_node_opts_by_path(const char * path,const char ** opts)828 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
829 {
830 	struct device_node *np = NULL;
831 	struct property *pp;
832 	unsigned long flags;
833 	const char *separator = strchr(path, ':');
834 
835 	if (opts)
836 		*opts = separator ? separator + 1 : NULL;
837 
838 	if (strcmp(path, "/") == 0)
839 		return of_node_get(of_root);
840 
841 	/* The path could begin with an alias */
842 	if (*path != '/') {
843 		int len;
844 		const char *p = separator;
845 
846 		if (!p)
847 			p = strchrnul(path, '/');
848 		len = p - path;
849 
850 		/* of_aliases must not be NULL */
851 		if (!of_aliases)
852 			return NULL;
853 
854 		for_each_property_of_node(of_aliases, pp) {
855 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
856 				np = of_find_node_by_path(pp->value);
857 				break;
858 			}
859 		}
860 		if (!np)
861 			return NULL;
862 		path = p;
863 	}
864 
865 	/* Step down the tree matching path components */
866 	raw_spin_lock_irqsave(&devtree_lock, flags);
867 	if (!np)
868 		np = of_node_get(of_root);
869 	np = __of_find_node_by_full_path(np, path);
870 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
871 	return np;
872 }
873 EXPORT_SYMBOL(of_find_node_opts_by_path);
874 
875 /**
876  * of_find_node_by_name - Find a node by its "name" property
877  * @from:	The node to start searching from or NULL; the node
878  *		you pass will not be searched, only the next one
879  *		will. Typically, you pass what the previous call
880  *		returned. of_node_put() will be called on @from.
881  * @name:	The name string to match against
882  *
883  * Return: A node pointer with refcount incremented, use
884  * of_node_put() on it when done.
885  */
of_find_node_by_name(struct device_node * from,const char * name)886 struct device_node *of_find_node_by_name(struct device_node *from,
887 	const char *name)
888 {
889 	struct device_node *np;
890 	unsigned long flags;
891 
892 	raw_spin_lock_irqsave(&devtree_lock, flags);
893 	for_each_of_allnodes_from(from, np)
894 		if (of_node_name_eq(np, name) && of_node_get(np))
895 			break;
896 	of_node_put(from);
897 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
898 	return np;
899 }
900 EXPORT_SYMBOL(of_find_node_by_name);
901 
902 /**
903  * of_find_node_by_type - Find a node by its "device_type" property
904  * @from:	The node to start searching from, or NULL to start searching
905  *		the entire device tree. The node you pass will not be
906  *		searched, only the next one will; typically, you pass
907  *		what the previous call returned. of_node_put() will be
908  *		called on from for you.
909  * @type:	The type string to match against
910  *
911  * Return: A node pointer with refcount incremented, use
912  * of_node_put() on it when done.
913  */
of_find_node_by_type(struct device_node * from,const char * type)914 struct device_node *of_find_node_by_type(struct device_node *from,
915 	const char *type)
916 {
917 	struct device_node *np;
918 	unsigned long flags;
919 
920 	raw_spin_lock_irqsave(&devtree_lock, flags);
921 	for_each_of_allnodes_from(from, np)
922 		if (__of_node_is_type(np, type) && of_node_get(np))
923 			break;
924 	of_node_put(from);
925 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
926 	return np;
927 }
928 EXPORT_SYMBOL(of_find_node_by_type);
929 
930 /**
931  * of_find_compatible_node - Find a node based on type and one of the
932  *                                tokens in its "compatible" property
933  * @from:	The node to start searching from or NULL, the node
934  *		you pass will not be searched, only the next one
935  *		will; typically, you pass what the previous call
936  *		returned. of_node_put() will be called on it
937  * @type:	The type string to match "device_type" or NULL to ignore
938  * @compatible:	The string to match to one of the tokens in the device
939  *		"compatible" list.
940  *
941  * Return: A node pointer with refcount incremented, use
942  * of_node_put() on it when done.
943  */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)944 struct device_node *of_find_compatible_node(struct device_node *from,
945 	const char *type, const char *compatible)
946 {
947 	struct device_node *np;
948 	unsigned long flags;
949 
950 	raw_spin_lock_irqsave(&devtree_lock, flags);
951 	for_each_of_allnodes_from(from, np)
952 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
953 		    of_node_get(np))
954 			break;
955 	of_node_put(from);
956 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
957 	return np;
958 }
959 EXPORT_SYMBOL(of_find_compatible_node);
960 
961 /**
962  * of_find_node_with_property - Find a node which has a property with
963  *                              the given name.
964  * @from:	The node to start searching from or NULL, the node
965  *		you pass will not be searched, only the next one
966  *		will; typically, you pass what the previous call
967  *		returned. of_node_put() will be called on it
968  * @prop_name:	The name of the property to look for.
969  *
970  * Return: A node pointer with refcount incremented, use
971  * of_node_put() on it when done.
972  */
of_find_node_with_property(struct device_node * from,const char * prop_name)973 struct device_node *of_find_node_with_property(struct device_node *from,
974 	const char *prop_name)
975 {
976 	struct device_node *np;
977 	struct property *pp;
978 	unsigned long flags;
979 
980 	raw_spin_lock_irqsave(&devtree_lock, flags);
981 	for_each_of_allnodes_from(from, np) {
982 		for (pp = np->properties; pp; pp = pp->next) {
983 			if (of_prop_cmp(pp->name, prop_name) == 0) {
984 				of_node_get(np);
985 				goto out;
986 			}
987 		}
988 	}
989 out:
990 	of_node_put(from);
991 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
992 	return np;
993 }
994 EXPORT_SYMBOL(of_find_node_with_property);
995 
996 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)997 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
998 					   const struct device_node *node)
999 {
1000 	const struct of_device_id *best_match = NULL;
1001 	int score, best_score = 0;
1002 
1003 	if (!matches)
1004 		return NULL;
1005 
1006 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1007 		score = __of_device_is_compatible(node, matches->compatible,
1008 						  matches->type, matches->name);
1009 		if (score > best_score) {
1010 			best_match = matches;
1011 			best_score = score;
1012 		}
1013 	}
1014 
1015 	return best_match;
1016 }
1017 
1018 /**
1019  * of_match_node - Tell if a device_node has a matching of_match structure
1020  * @matches:	array of of device match structures to search in
1021  * @node:	the of device structure to match against
1022  *
1023  * Low level utility function used by device matching.
1024  */
of_match_node(const struct of_device_id * matches,const struct device_node * node)1025 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1026 					 const struct device_node *node)
1027 {
1028 	const struct of_device_id *match;
1029 	unsigned long flags;
1030 
1031 	raw_spin_lock_irqsave(&devtree_lock, flags);
1032 	match = __of_match_node(matches, node);
1033 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1034 	return match;
1035 }
1036 EXPORT_SYMBOL(of_match_node);
1037 
1038 /**
1039  * of_find_matching_node_and_match - Find a node based on an of_device_id
1040  *				     match table.
1041  * @from:	The node to start searching from or NULL, the node
1042  *		you pass will not be searched, only the next one
1043  *		will; typically, you pass what the previous call
1044  *		returned. of_node_put() will be called on it
1045  * @matches:	array of of device match structures to search in
1046  * @match:	Updated to point at the matches entry which matched
1047  *
1048  * Return: A node pointer with refcount incremented, use
1049  * of_node_put() on it when done.
1050  */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)1051 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1052 					const struct of_device_id *matches,
1053 					const struct of_device_id **match)
1054 {
1055 	struct device_node *np;
1056 	const struct of_device_id *m;
1057 	unsigned long flags;
1058 
1059 	if (match)
1060 		*match = NULL;
1061 
1062 	raw_spin_lock_irqsave(&devtree_lock, flags);
1063 	for_each_of_allnodes_from(from, np) {
1064 		m = __of_match_node(matches, np);
1065 		if (m && of_node_get(np)) {
1066 			if (match)
1067 				*match = m;
1068 			break;
1069 		}
1070 	}
1071 	of_node_put(from);
1072 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1073 	return np;
1074 }
1075 EXPORT_SYMBOL(of_find_matching_node_and_match);
1076 
1077 /**
1078  * of_alias_from_compatible - Lookup appropriate alias for a device node
1079  *			      depending on compatible
1080  * @node:	pointer to a device tree node
1081  * @alias:	Pointer to buffer that alias value will be copied into
1082  * @len:	Length of alias value
1083  *
1084  * Based on the value of the compatible property, this routine will attempt
1085  * to choose an appropriate alias value for a particular device tree node.
1086  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1087  * from the first entry in the compatible list property.
1088  *
1089  * Note: The matching on just the "product" side of the compatible is a relic
1090  * from I2C and SPI. Please do not add any new user.
1091  *
1092  * Return: This routine returns 0 on success, <0 on failure.
1093  */
of_alias_from_compatible(const struct device_node * node,char * alias,int len)1094 int of_alias_from_compatible(const struct device_node *node, char *alias, int len)
1095 {
1096 	const char *compatible, *p;
1097 	int cplen;
1098 
1099 	compatible = of_get_property(node, "compatible", &cplen);
1100 	if (!compatible || strlen(compatible) > cplen)
1101 		return -ENODEV;
1102 	p = strchr(compatible, ',');
1103 	strscpy(alias, p ? p + 1 : compatible, len);
1104 	return 0;
1105 }
1106 EXPORT_SYMBOL_GPL(of_alias_from_compatible);
1107 
1108 /**
1109  * of_find_node_by_phandle - Find a node given a phandle
1110  * @handle:	phandle of the node to find
1111  *
1112  * Return: A node pointer with refcount incremented, use
1113  * of_node_put() on it when done.
1114  */
of_find_node_by_phandle(phandle handle)1115 struct device_node *of_find_node_by_phandle(phandle handle)
1116 {
1117 	struct device_node *np = NULL;
1118 	unsigned long flags;
1119 	u32 handle_hash;
1120 
1121 	if (!handle)
1122 		return NULL;
1123 
1124 	handle_hash = of_phandle_cache_hash(handle);
1125 
1126 	raw_spin_lock_irqsave(&devtree_lock, flags);
1127 
1128 	if (phandle_cache[handle_hash] &&
1129 	    handle == phandle_cache[handle_hash]->phandle)
1130 		np = phandle_cache[handle_hash];
1131 
1132 	if (!np) {
1133 		for_each_of_allnodes(np)
1134 			if (np->phandle == handle &&
1135 			    !of_node_check_flag(np, OF_DETACHED)) {
1136 				phandle_cache[handle_hash] = np;
1137 				break;
1138 			}
1139 	}
1140 
1141 	of_node_get(np);
1142 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1143 	return np;
1144 }
1145 EXPORT_SYMBOL(of_find_node_by_phandle);
1146 
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1147 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1148 {
1149 	int i;
1150 	printk("%s %pOF", msg, args->np);
1151 	for (i = 0; i < args->args_count; i++) {
1152 		const char delim = i ? ',' : ':';
1153 
1154 		pr_cont("%c%08x", delim, args->args[i]);
1155 	}
1156 	pr_cont("\n");
1157 }
1158 
of_phandle_iterator_init(struct of_phandle_iterator * it,const struct device_node * np,const char * list_name,const char * cells_name,int cell_count)1159 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1160 		const struct device_node *np,
1161 		const char *list_name,
1162 		const char *cells_name,
1163 		int cell_count)
1164 {
1165 	const __be32 *list;
1166 	int size;
1167 
1168 	memset(it, 0, sizeof(*it));
1169 
1170 	/*
1171 	 * one of cell_count or cells_name must be provided to determine the
1172 	 * argument length.
1173 	 */
1174 	if (cell_count < 0 && !cells_name)
1175 		return -EINVAL;
1176 
1177 	list = of_get_property(np, list_name, &size);
1178 	if (!list)
1179 		return -ENOENT;
1180 
1181 	it->cells_name = cells_name;
1182 	it->cell_count = cell_count;
1183 	it->parent = np;
1184 	it->list_end = list + size / sizeof(*list);
1185 	it->phandle_end = list;
1186 	it->cur = list;
1187 
1188 	return 0;
1189 }
1190 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1191 
of_phandle_iterator_next(struct of_phandle_iterator * it)1192 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1193 {
1194 	uint32_t count = 0;
1195 
1196 	if (it->node) {
1197 		of_node_put(it->node);
1198 		it->node = NULL;
1199 	}
1200 
1201 	if (!it->cur || it->phandle_end >= it->list_end)
1202 		return -ENOENT;
1203 
1204 	it->cur = it->phandle_end;
1205 
1206 	/* If phandle is 0, then it is an empty entry with no arguments. */
1207 	it->phandle = be32_to_cpup(it->cur++);
1208 
1209 	if (it->phandle) {
1210 
1211 		/*
1212 		 * Find the provider node and parse the #*-cells property to
1213 		 * determine the argument length.
1214 		 */
1215 		it->node = of_find_node_by_phandle(it->phandle);
1216 
1217 		if (it->cells_name) {
1218 			if (!it->node) {
1219 				pr_err("%pOF: could not find phandle %d\n",
1220 				       it->parent, it->phandle);
1221 				goto err;
1222 			}
1223 
1224 			if (of_property_read_u32(it->node, it->cells_name,
1225 						 &count)) {
1226 				/*
1227 				 * If both cell_count and cells_name is given,
1228 				 * fall back to cell_count in absence
1229 				 * of the cells_name property
1230 				 */
1231 				if (it->cell_count >= 0) {
1232 					count = it->cell_count;
1233 				} else {
1234 					pr_err("%pOF: could not get %s for %pOF\n",
1235 					       it->parent,
1236 					       it->cells_name,
1237 					       it->node);
1238 					goto err;
1239 				}
1240 			}
1241 		} else {
1242 			count = it->cell_count;
1243 		}
1244 
1245 		/*
1246 		 * Make sure that the arguments actually fit in the remaining
1247 		 * property data length
1248 		 */
1249 		if (it->cur + count > it->list_end) {
1250 			if (it->cells_name)
1251 				pr_err("%pOF: %s = %d found %td\n",
1252 					it->parent, it->cells_name,
1253 					count, it->list_end - it->cur);
1254 			else
1255 				pr_err("%pOF: phandle %s needs %d, found %td\n",
1256 					it->parent, of_node_full_name(it->node),
1257 					count, it->list_end - it->cur);
1258 			goto err;
1259 		}
1260 	}
1261 
1262 	it->phandle_end = it->cur + count;
1263 	it->cur_count = count;
1264 
1265 	return 0;
1266 
1267 err:
1268 	if (it->node) {
1269 		of_node_put(it->node);
1270 		it->node = NULL;
1271 	}
1272 
1273 	return -EINVAL;
1274 }
1275 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1276 
of_phandle_iterator_args(struct of_phandle_iterator * it,uint32_t * args,int size)1277 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1278 			     uint32_t *args,
1279 			     int size)
1280 {
1281 	int i, count;
1282 
1283 	count = it->cur_count;
1284 
1285 	if (WARN_ON(size < count))
1286 		count = size;
1287 
1288 	for (i = 0; i < count; i++)
1289 		args[i] = be32_to_cpup(it->cur++);
1290 
1291 	return count;
1292 }
1293 
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1294 int __of_parse_phandle_with_args(const struct device_node *np,
1295 				 const char *list_name,
1296 				 const char *cells_name,
1297 				 int cell_count, int index,
1298 				 struct of_phandle_args *out_args)
1299 {
1300 	struct of_phandle_iterator it;
1301 	int rc, cur_index = 0;
1302 
1303 	if (index < 0)
1304 		return -EINVAL;
1305 
1306 	/* Loop over the phandles until all the requested entry is found */
1307 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1308 		/*
1309 		 * All of the error cases bail out of the loop, so at
1310 		 * this point, the parsing is successful. If the requested
1311 		 * index matches, then fill the out_args structure and return,
1312 		 * or return -ENOENT for an empty entry.
1313 		 */
1314 		rc = -ENOENT;
1315 		if (cur_index == index) {
1316 			if (!it.phandle)
1317 				goto err;
1318 
1319 			if (out_args) {
1320 				int c;
1321 
1322 				c = of_phandle_iterator_args(&it,
1323 							     out_args->args,
1324 							     MAX_PHANDLE_ARGS);
1325 				out_args->np = it.node;
1326 				out_args->args_count = c;
1327 			} else {
1328 				of_node_put(it.node);
1329 			}
1330 
1331 			/* Found it! return success */
1332 			return 0;
1333 		}
1334 
1335 		cur_index++;
1336 	}
1337 
1338 	/*
1339 	 * Unlock node before returning result; will be one of:
1340 	 * -ENOENT : index is for empty phandle
1341 	 * -EINVAL : parsing error on data
1342 	 */
1343 
1344  err:
1345 	of_node_put(it.node);
1346 	return rc;
1347 }
1348 EXPORT_SYMBOL(__of_parse_phandle_with_args);
1349 
1350 /**
1351  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1352  * @np:		pointer to a device tree node containing a list
1353  * @list_name:	property name that contains a list
1354  * @stem_name:	stem of property names that specify phandles' arguments count
1355  * @index:	index of a phandle to parse out
1356  * @out_args:	optional pointer to output arguments structure (will be filled)
1357  *
1358  * This function is useful to parse lists of phandles and their arguments.
1359  * Returns 0 on success and fills out_args, on error returns appropriate errno
1360  * value. The difference between this function and of_parse_phandle_with_args()
1361  * is that this API remaps a phandle if the node the phandle points to has
1362  * a <@stem_name>-map property.
1363  *
1364  * Caller is responsible to call of_node_put() on the returned out_args->np
1365  * pointer.
1366  *
1367  * Example::
1368  *
1369  *  phandle1: node1 {
1370  *  	#list-cells = <2>;
1371  *  };
1372  *
1373  *  phandle2: node2 {
1374  *  	#list-cells = <1>;
1375  *  };
1376  *
1377  *  phandle3: node3 {
1378  *  	#list-cells = <1>;
1379  *  	list-map = <0 &phandle2 3>,
1380  *  		   <1 &phandle2 2>,
1381  *  		   <2 &phandle1 5 1>;
1382  *  	list-map-mask = <0x3>;
1383  *  };
1384  *
1385  *  node4 {
1386  *  	list = <&phandle1 1 2 &phandle3 0>;
1387  *  };
1388  *
1389  * To get a device_node of the ``node2`` node you may call this:
1390  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1391  */
of_parse_phandle_with_args_map(const struct device_node * np,const char * list_name,const char * stem_name,int index,struct of_phandle_args * out_args)1392 int of_parse_phandle_with_args_map(const struct device_node *np,
1393 				   const char *list_name,
1394 				   const char *stem_name,
1395 				   int index, struct of_phandle_args *out_args)
1396 {
1397 	char *cells_name __free(kfree) = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1398 	char *map_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1399 	char *mask_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1400 	char *pass_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1401 	struct device_node *cur, *new = NULL;
1402 	const __be32 *map, *mask, *pass;
1403 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(~0) };
1404 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(0) };
1405 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1406 	const __be32 *match_array = initial_match_array;
1407 	int i, ret, map_len, match;
1408 	u32 list_size, new_size;
1409 
1410 	if (index < 0)
1411 		return -EINVAL;
1412 
1413 	if (!cells_name || !map_name || !mask_name || !pass_name)
1414 		return -ENOMEM;
1415 
1416 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1417 					   out_args);
1418 	if (ret)
1419 		return ret;
1420 
1421 	/* Get the #<list>-cells property */
1422 	cur = out_args->np;
1423 	ret = of_property_read_u32(cur, cells_name, &list_size);
1424 	if (ret < 0)
1425 		goto put;
1426 
1427 	/* Precalculate the match array - this simplifies match loop */
1428 	for (i = 0; i < list_size; i++)
1429 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1430 
1431 	ret = -EINVAL;
1432 	while (cur) {
1433 		/* Get the <list>-map property */
1434 		map = of_get_property(cur, map_name, &map_len);
1435 		if (!map) {
1436 			return 0;
1437 		}
1438 		map_len /= sizeof(u32);
1439 
1440 		/* Get the <list>-map-mask property (optional) */
1441 		mask = of_get_property(cur, mask_name, NULL);
1442 		if (!mask)
1443 			mask = dummy_mask;
1444 		/* Iterate through <list>-map property */
1445 		match = 0;
1446 		while (map_len > (list_size + 1) && !match) {
1447 			/* Compare specifiers */
1448 			match = 1;
1449 			for (i = 0; i < list_size; i++, map_len--)
1450 				match &= !((match_array[i] ^ *map++) & mask[i]);
1451 
1452 			of_node_put(new);
1453 			new = of_find_node_by_phandle(be32_to_cpup(map));
1454 			map++;
1455 			map_len--;
1456 
1457 			/* Check if not found */
1458 			if (!new)
1459 				goto put;
1460 
1461 			if (!of_device_is_available(new))
1462 				match = 0;
1463 
1464 			ret = of_property_read_u32(new, cells_name, &new_size);
1465 			if (ret)
1466 				goto put;
1467 
1468 			/* Check for malformed properties */
1469 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1470 				goto put;
1471 			if (map_len < new_size)
1472 				goto put;
1473 
1474 			/* Move forward by new node's #<list>-cells amount */
1475 			map += new_size;
1476 			map_len -= new_size;
1477 		}
1478 		if (!match)
1479 			goto put;
1480 
1481 		/* Get the <list>-map-pass-thru property (optional) */
1482 		pass = of_get_property(cur, pass_name, NULL);
1483 		if (!pass)
1484 			pass = dummy_pass;
1485 
1486 		/*
1487 		 * Successfully parsed a <list>-map translation; copy new
1488 		 * specifier into the out_args structure, keeping the
1489 		 * bits specified in <list>-map-pass-thru.
1490 		 */
1491 		match_array = map - new_size;
1492 		for (i = 0; i < new_size; i++) {
1493 			__be32 val = *(map - new_size + i);
1494 
1495 			if (i < list_size) {
1496 				val &= ~pass[i];
1497 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1498 			}
1499 
1500 			out_args->args[i] = be32_to_cpu(val);
1501 		}
1502 		out_args->args_count = list_size = new_size;
1503 		/* Iterate again with new provider */
1504 		out_args->np = new;
1505 		of_node_put(cur);
1506 		cur = new;
1507 		new = NULL;
1508 	}
1509 put:
1510 	of_node_put(cur);
1511 	of_node_put(new);
1512 	return ret;
1513 }
1514 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1515 
1516 /**
1517  * of_count_phandle_with_args() - Find the number of phandles references in a property
1518  * @np:		pointer to a device tree node containing a list
1519  * @list_name:	property name that contains a list
1520  * @cells_name:	property name that specifies phandles' arguments count
1521  *
1522  * Return: The number of phandle + argument tuples within a property. It
1523  * is a typical pattern to encode a list of phandle and variable
1524  * arguments into a single property. The number of arguments is encoded
1525  * by a property in the phandle-target node. For example, a gpios
1526  * property would contain a list of GPIO specifies consisting of a
1527  * phandle and 1 or more arguments. The number of arguments are
1528  * determined by the #gpio-cells property in the node pointed to by the
1529  * phandle.
1530  */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1531 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1532 				const char *cells_name)
1533 {
1534 	struct of_phandle_iterator it;
1535 	int rc, cur_index = 0;
1536 
1537 	/*
1538 	 * If cells_name is NULL we assume a cell count of 0. This makes
1539 	 * counting the phandles trivial as each 32bit word in the list is a
1540 	 * phandle and no arguments are to consider. So we don't iterate through
1541 	 * the list but just use the length to determine the phandle count.
1542 	 */
1543 	if (!cells_name) {
1544 		const __be32 *list;
1545 		int size;
1546 
1547 		list = of_get_property(np, list_name, &size);
1548 		if (!list)
1549 			return -ENOENT;
1550 
1551 		return size / sizeof(*list);
1552 	}
1553 
1554 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1555 	if (rc)
1556 		return rc;
1557 
1558 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1559 		cur_index += 1;
1560 
1561 	if (rc != -ENOENT)
1562 		return rc;
1563 
1564 	return cur_index;
1565 }
1566 EXPORT_SYMBOL(of_count_phandle_with_args);
1567 
__of_remove_property_from_list(struct property ** list,struct property * prop)1568 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop)
1569 {
1570 	struct property **next;
1571 
1572 	for (next = list; *next; next = &(*next)->next) {
1573 		if (*next == prop) {
1574 			*next = prop->next;
1575 			prop->next = NULL;
1576 			return prop;
1577 		}
1578 	}
1579 	return NULL;
1580 }
1581 
1582 /**
1583  * __of_add_property - Add a property to a node without lock operations
1584  * @np:		Caller's Device Node
1585  * @prop:	Property to add
1586  */
__of_add_property(struct device_node * np,struct property * prop)1587 int __of_add_property(struct device_node *np, struct property *prop)
1588 {
1589 	int rc = 0;
1590 	unsigned long flags;
1591 	struct property **next;
1592 
1593 	raw_spin_lock_irqsave(&devtree_lock, flags);
1594 
1595 	__of_remove_property_from_list(&np->deadprops, prop);
1596 
1597 	prop->next = NULL;
1598 	next = &np->properties;
1599 	while (*next) {
1600 		if (strcmp(prop->name, (*next)->name) == 0) {
1601 			/* duplicate ! don't insert it */
1602 			rc = -EEXIST;
1603 			goto out_unlock;
1604 		}
1605 		next = &(*next)->next;
1606 	}
1607 	*next = prop;
1608 
1609 out_unlock:
1610 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1611 	if (rc)
1612 		return rc;
1613 
1614 	__of_add_property_sysfs(np, prop);
1615 	return 0;
1616 }
1617 
1618 /**
1619  * of_add_property - Add a property to a node
1620  * @np:		Caller's Device Node
1621  * @prop:	Property to add
1622  */
of_add_property(struct device_node * np,struct property * prop)1623 int of_add_property(struct device_node *np, struct property *prop)
1624 {
1625 	int rc;
1626 
1627 	mutex_lock(&of_mutex);
1628 	rc = __of_add_property(np, prop);
1629 	mutex_unlock(&of_mutex);
1630 
1631 	if (!rc)
1632 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1633 
1634 	return rc;
1635 }
1636 EXPORT_SYMBOL_GPL(of_add_property);
1637 
__of_remove_property(struct device_node * np,struct property * prop)1638 int __of_remove_property(struct device_node *np, struct property *prop)
1639 {
1640 	unsigned long flags;
1641 	int rc = -ENODEV;
1642 
1643 	raw_spin_lock_irqsave(&devtree_lock, flags);
1644 
1645 	if (__of_remove_property_from_list(&np->properties, prop)) {
1646 		/* Found the property, add it to deadprops list */
1647 		prop->next = np->deadprops;
1648 		np->deadprops = prop;
1649 		rc = 0;
1650 	}
1651 
1652 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1653 	if (rc)
1654 		return rc;
1655 
1656 	__of_remove_property_sysfs(np, prop);
1657 	return 0;
1658 }
1659 
1660 /**
1661  * of_remove_property - Remove a property from a node.
1662  * @np:		Caller's Device Node
1663  * @prop:	Property to remove
1664  *
1665  * Note that we don't actually remove it, since we have given out
1666  * who-knows-how-many pointers to the data using get-property.
1667  * Instead we just move the property to the "dead properties"
1668  * list, so it won't be found any more.
1669  */
of_remove_property(struct device_node * np,struct property * prop)1670 int of_remove_property(struct device_node *np, struct property *prop)
1671 {
1672 	int rc;
1673 
1674 	if (!prop)
1675 		return -ENODEV;
1676 
1677 	mutex_lock(&of_mutex);
1678 	rc = __of_remove_property(np, prop);
1679 	mutex_unlock(&of_mutex);
1680 
1681 	if (!rc)
1682 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1683 
1684 	return rc;
1685 }
1686 EXPORT_SYMBOL_GPL(of_remove_property);
1687 
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1688 int __of_update_property(struct device_node *np, struct property *newprop,
1689 		struct property **oldpropp)
1690 {
1691 	struct property **next, *oldprop;
1692 	unsigned long flags;
1693 
1694 	raw_spin_lock_irqsave(&devtree_lock, flags);
1695 
1696 	__of_remove_property_from_list(&np->deadprops, newprop);
1697 
1698 	for (next = &np->properties; *next; next = &(*next)->next) {
1699 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1700 			break;
1701 	}
1702 	*oldpropp = oldprop = *next;
1703 
1704 	if (oldprop) {
1705 		/* replace the node */
1706 		newprop->next = oldprop->next;
1707 		*next = newprop;
1708 		oldprop->next = np->deadprops;
1709 		np->deadprops = oldprop;
1710 	} else {
1711 		/* new node */
1712 		newprop->next = NULL;
1713 		*next = newprop;
1714 	}
1715 
1716 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1717 
1718 	__of_update_property_sysfs(np, newprop, oldprop);
1719 
1720 	return 0;
1721 }
1722 
1723 /*
1724  * of_update_property - Update a property in a node, if the property does
1725  * not exist, add it.
1726  *
1727  * Note that we don't actually remove it, since we have given out
1728  * who-knows-how-many pointers to the data using get-property.
1729  * Instead we just move the property to the "dead properties" list,
1730  * and add the new property to the property list
1731  */
of_update_property(struct device_node * np,struct property * newprop)1732 int of_update_property(struct device_node *np, struct property *newprop)
1733 {
1734 	struct property *oldprop;
1735 	int rc;
1736 
1737 	if (!newprop->name)
1738 		return -EINVAL;
1739 
1740 	mutex_lock(&of_mutex);
1741 	rc = __of_update_property(np, newprop, &oldprop);
1742 	mutex_unlock(&of_mutex);
1743 
1744 	if (!rc)
1745 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1746 
1747 	return rc;
1748 }
1749 
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1750 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1751 			 int id, const char *stem, int stem_len)
1752 {
1753 	ap->np = np;
1754 	ap->id = id;
1755 	strscpy(ap->stem, stem, stem_len + 1);
1756 	list_add_tail(&ap->link, &aliases_lookup);
1757 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1758 		 ap->alias, ap->stem, ap->id, np);
1759 }
1760 
1761 /**
1762  * of_alias_scan - Scan all properties of the 'aliases' node
1763  * @dt_alloc:	An allocator that provides a virtual address to memory
1764  *		for storing the resulting tree
1765  *
1766  * The function scans all the properties of the 'aliases' node and populates
1767  * the global lookup table with the properties.  It returns the
1768  * number of alias properties found, or an error code in case of failure.
1769  */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1770 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1771 {
1772 	struct property *pp;
1773 
1774 	of_aliases = of_find_node_by_path("/aliases");
1775 	of_chosen = of_find_node_by_path("/chosen");
1776 	if (of_chosen == NULL)
1777 		of_chosen = of_find_node_by_path("/chosen@0");
1778 
1779 	if (of_chosen) {
1780 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1781 		const char *name = NULL;
1782 
1783 		if (of_property_read_string(of_chosen, "stdout-path", &name))
1784 			of_property_read_string(of_chosen, "linux,stdout-path",
1785 						&name);
1786 		if (IS_ENABLED(CONFIG_PPC) && !name)
1787 			of_property_read_string(of_aliases, "stdout", &name);
1788 		if (name)
1789 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1790 		if (of_stdout)
1791 			of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1792 	}
1793 
1794 	if (!of_aliases)
1795 		return;
1796 
1797 	for_each_property_of_node(of_aliases, pp) {
1798 		const char *start = pp->name;
1799 		const char *end = start + strlen(start);
1800 		struct device_node *np;
1801 		struct alias_prop *ap;
1802 		int id, len;
1803 
1804 		/* Skip those we do not want to proceed */
1805 		if (!strcmp(pp->name, "name") ||
1806 		    !strcmp(pp->name, "phandle") ||
1807 		    !strcmp(pp->name, "linux,phandle"))
1808 			continue;
1809 
1810 		np = of_find_node_by_path(pp->value);
1811 		if (!np)
1812 			continue;
1813 
1814 		/* walk the alias backwards to extract the id and work out
1815 		 * the 'stem' string */
1816 		while (isdigit(*(end-1)) && end > start)
1817 			end--;
1818 		len = end - start;
1819 
1820 		if (kstrtoint(end, 10, &id) < 0)
1821 			continue;
1822 
1823 		/* Allocate an alias_prop with enough space for the stem */
1824 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1825 		if (!ap)
1826 			continue;
1827 		memset(ap, 0, sizeof(*ap) + len + 1);
1828 		ap->alias = start;
1829 		of_alias_add(ap, np, id, start, len);
1830 	}
1831 }
1832 
1833 /**
1834  * of_alias_get_id - Get alias id for the given device_node
1835  * @np:		Pointer to the given device_node
1836  * @stem:	Alias stem of the given device_node
1837  *
1838  * The function travels the lookup table to get the alias id for the given
1839  * device_node and alias stem.
1840  *
1841  * Return: The alias id if found.
1842  */
of_alias_get_id(struct device_node * np,const char * stem)1843 int of_alias_get_id(struct device_node *np, const char *stem)
1844 {
1845 	struct alias_prop *app;
1846 	int id = -ENODEV;
1847 
1848 	mutex_lock(&of_mutex);
1849 	list_for_each_entry(app, &aliases_lookup, link) {
1850 		if (strcmp(app->stem, stem) != 0)
1851 			continue;
1852 
1853 		if (np == app->np) {
1854 			id = app->id;
1855 			break;
1856 		}
1857 	}
1858 	mutex_unlock(&of_mutex);
1859 
1860 	return id;
1861 }
1862 EXPORT_SYMBOL_GPL(of_alias_get_id);
1863 
1864 /**
1865  * of_alias_get_highest_id - Get highest alias id for the given stem
1866  * @stem:	Alias stem to be examined
1867  *
1868  * The function travels the lookup table to get the highest alias id for the
1869  * given alias stem.  It returns the alias id if found.
1870  */
of_alias_get_highest_id(const char * stem)1871 int of_alias_get_highest_id(const char *stem)
1872 {
1873 	struct alias_prop *app;
1874 	int id = -ENODEV;
1875 
1876 	mutex_lock(&of_mutex);
1877 	list_for_each_entry(app, &aliases_lookup, link) {
1878 		if (strcmp(app->stem, stem) != 0)
1879 			continue;
1880 
1881 		if (app->id > id)
1882 			id = app->id;
1883 	}
1884 	mutex_unlock(&of_mutex);
1885 
1886 	return id;
1887 }
1888 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1889 
1890 /**
1891  * of_console_check() - Test and setup console for DT setup
1892  * @dn: Pointer to device node
1893  * @name: Name to use for preferred console without index. ex. "ttyS"
1894  * @index: Index to use for preferred console.
1895  *
1896  * Check if the given device node matches the stdout-path property in the
1897  * /chosen node. If it does then register it as the preferred console.
1898  *
1899  * Return: TRUE if console successfully setup. Otherwise return FALSE.
1900  */
of_console_check(struct device_node * dn,char * name,int index)1901 bool of_console_check(struct device_node *dn, char *name, int index)
1902 {
1903 	if (!dn || dn != of_stdout || console_set_on_cmdline)
1904 		return false;
1905 
1906 	/*
1907 	 * XXX: cast `options' to char pointer to suppress complication
1908 	 * warnings: printk, UART and console drivers expect char pointer.
1909 	 */
1910 	return !add_preferred_console(name, index, (char *)of_stdout_options);
1911 }
1912 EXPORT_SYMBOL_GPL(of_console_check);
1913 
1914 /**
1915  * of_find_next_cache_node - Find a node's subsidiary cache
1916  * @np:	node of type "cpu" or "cache"
1917  *
1918  * Return: A node pointer with refcount incremented, use
1919  * of_node_put() on it when done.  Caller should hold a reference
1920  * to np.
1921  */
of_find_next_cache_node(const struct device_node * np)1922 struct device_node *of_find_next_cache_node(const struct device_node *np)
1923 {
1924 	struct device_node *child, *cache_node;
1925 
1926 	cache_node = of_parse_phandle(np, "l2-cache", 0);
1927 	if (!cache_node)
1928 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
1929 
1930 	if (cache_node)
1931 		return cache_node;
1932 
1933 	/* OF on pmac has nodes instead of properties named "l2-cache"
1934 	 * beneath CPU nodes.
1935 	 */
1936 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
1937 		for_each_child_of_node(np, child)
1938 			if (of_node_is_type(child, "cache"))
1939 				return child;
1940 
1941 	return NULL;
1942 }
1943 
1944 /**
1945  * of_find_last_cache_level - Find the level at which the last cache is
1946  * 		present for the given logical cpu
1947  *
1948  * @cpu: cpu number(logical index) for which the last cache level is needed
1949  *
1950  * Return: The level at which the last cache is present. It is exactly
1951  * same as  the total number of cache levels for the given logical cpu.
1952  */
of_find_last_cache_level(unsigned int cpu)1953 int of_find_last_cache_level(unsigned int cpu)
1954 {
1955 	u32 cache_level = 0;
1956 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1957 
1958 	while (np) {
1959 		of_node_put(prev);
1960 		prev = np;
1961 		np = of_find_next_cache_node(np);
1962 	}
1963 
1964 	of_property_read_u32(prev, "cache-level", &cache_level);
1965 	of_node_put(prev);
1966 
1967 	return cache_level;
1968 }
1969 
1970 /**
1971  * of_map_id - Translate an ID through a downstream mapping.
1972  * @np: root complex device node.
1973  * @id: device ID to map.
1974  * @map_name: property name of the map to use.
1975  * @map_mask_name: optional property name of the mask to use.
1976  * @target: optional pointer to a target device node.
1977  * @id_out: optional pointer to receive the translated ID.
1978  *
1979  * Given a device ID, look up the appropriate implementation-defined
1980  * platform ID and/or the target device which receives transactions on that
1981  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
1982  * @id_out may be NULL if only the other is required. If @target points to
1983  * a non-NULL device node pointer, only entries targeting that node will be
1984  * matched; if it points to a NULL value, it will receive the device node of
1985  * the first matching target phandle, with a reference held.
1986  *
1987  * Return: 0 on success or a standard error code on failure.
1988  */
of_map_id(struct device_node * np,u32 id,const char * map_name,const char * map_mask_name,struct device_node ** target,u32 * id_out)1989 int of_map_id(struct device_node *np, u32 id,
1990 	       const char *map_name, const char *map_mask_name,
1991 	       struct device_node **target, u32 *id_out)
1992 {
1993 	u32 map_mask, masked_id;
1994 	int map_len;
1995 	const __be32 *map = NULL;
1996 
1997 	if (!np || !map_name || (!target && !id_out))
1998 		return -EINVAL;
1999 
2000 	map = of_get_property(np, map_name, &map_len);
2001 	if (!map) {
2002 		if (target)
2003 			return -ENODEV;
2004 		/* Otherwise, no map implies no translation */
2005 		*id_out = id;
2006 		return 0;
2007 	}
2008 
2009 	if (!map_len || map_len % (4 * sizeof(*map))) {
2010 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2011 			map_name, map_len);
2012 		return -EINVAL;
2013 	}
2014 
2015 	/* The default is to select all bits. */
2016 	map_mask = 0xffffffff;
2017 
2018 	/*
2019 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2020 	 * If of_property_read_u32() fails, the default is used.
2021 	 */
2022 	if (map_mask_name)
2023 		of_property_read_u32(np, map_mask_name, &map_mask);
2024 
2025 	masked_id = map_mask & id;
2026 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2027 		struct device_node *phandle_node;
2028 		u32 id_base = be32_to_cpup(map + 0);
2029 		u32 phandle = be32_to_cpup(map + 1);
2030 		u32 out_base = be32_to_cpup(map + 2);
2031 		u32 id_len = be32_to_cpup(map + 3);
2032 
2033 		if (id_base & ~map_mask) {
2034 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2035 				np, map_name, map_name,
2036 				map_mask, id_base);
2037 			return -EFAULT;
2038 		}
2039 
2040 		if (masked_id < id_base || masked_id >= id_base + id_len)
2041 			continue;
2042 
2043 		phandle_node = of_find_node_by_phandle(phandle);
2044 		if (!phandle_node)
2045 			return -ENODEV;
2046 
2047 		if (target) {
2048 			if (*target)
2049 				of_node_put(phandle_node);
2050 			else
2051 				*target = phandle_node;
2052 
2053 			if (*target != phandle_node)
2054 				continue;
2055 		}
2056 
2057 		if (id_out)
2058 			*id_out = masked_id - id_base + out_base;
2059 
2060 		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2061 			np, map_name, map_mask, id_base, out_base,
2062 			id_len, id, masked_id - id_base + out_base);
2063 		return 0;
2064 	}
2065 
2066 	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2067 		id, target && *target ? *target : NULL);
2068 
2069 	/* Bypasses translation */
2070 	if (id_out)
2071 		*id_out = id;
2072 	return 0;
2073 }
2074 EXPORT_SYMBOL_GPL(of_map_id);
2075