xref: /openbsd/usr.bin/vi/common/key.c (revision 75290643)
1 /*	$OpenBSD: key.c,v 1.20 2022/04/21 17:50:29 millert Exp $	*/
2 
3 /*-
4  * Copyright (c) 1991, 1993, 1994
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1991, 1993, 1994, 1995, 1996
7  *	Keith Bostic.  All rights reserved.
8  *
9  * See the LICENSE file for redistribution information.
10  */
11 
12 #include "config.h"
13 
14 #include <sys/queue.h>
15 #include <sys/time.h>
16 
17 #include <bitstring.h>
18 #include <ctype.h>
19 #include <errno.h>
20 #include <limits.h>
21 #include <locale.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <unistd.h>
26 
27 #include "common.h"
28 #include "../vi/vi.h"
29 
30 #define MAXIMUM(a, b)	(((a) > (b)) ? (a) : (b))
31 
32 static int	v_event_append(SCR *, EVENT *);
33 static int	v_event_grow(SCR *, int);
34 static int	v_key_cmp(const void *, const void *);
35 static void	v_keyval(SCR *, int, scr_keyval_t);
36 static void	v_sync(SCR *, int);
37 
38 /*
39  * !!!
40  * Historic vi always used:
41  *
42  *	^D: autoindent deletion
43  *	^H: last character deletion
44  *	^W: last word deletion
45  *	^Q: quote the next character (if not used in flow control).
46  *	^V: quote the next character
47  *
48  * regardless of the user's choices for these characters.  The user's erase
49  * and kill characters worked in addition to these characters.  Nvi wires
50  * down the above characters, but in addition permits the VEOF, VERASE, VKILL
51  * and VWERASE characters described by the user's termios structure.
52  *
53  * Ex was not consistent with this scheme, as it historically ran in tty
54  * cooked mode.  This meant that the scroll command and autoindent erase
55  * characters were mapped to the user's EOF character, and the character
56  * and word deletion characters were the user's tty character and word
57  * deletion characters.  This implementation makes it all consistent, as
58  * described above for vi.
59  *
60  * !!!
61  * This means that all screens share a special key set.
62  */
63 KEYLIST keylist[] = {
64 	{K_BACKSLASH,	  '\\'},	/*  \ */
65 	{K_CARAT,	   '^'},	/*  ^ */
66 	{K_CNTRLD,	'\004'},	/* ^D */
67 	{K_CNTRLR,	'\022'},	/* ^R */
68 	{K_CNTRLT,	'\024'},	/* ^T */
69 	{K_CNTRLZ,	'\032'},	/* ^Z */
70 	{K_COLON,	   ':'},	/*  : */
71 	{K_CR,		  '\r'},	/* \r */
72 	{K_ESCAPE,	'\033'},	/* ^[ */
73 	{K_FORMFEED,	  '\f'},	/* \f */
74 	{K_HEXCHAR,	'\030'},	/* ^X */
75 	{K_NL,		  '\n'},	/* \n */
76 	{K_RIGHTBRACE,	   '}'},	/*  } */
77 	{K_RIGHTPAREN,	   ')'},	/*  ) */
78 	{K_TAB,		  '\t'},	/* \t */
79 	{K_VERASE,	  '\b'},	/* \b */
80 	{K_VKILL,	'\025'},	/* ^U */
81 	{K_VLNEXT,	'\021'},	/* ^Q */
82 	{K_VLNEXT,	'\026'},	/* ^V */
83 	{K_VWERASE,	'\027'},	/* ^W */
84 	{K_ZERO,	   '0'},	/*  0 */
85 
86 #define	ADDITIONAL_CHARACTERS	4
87 	{K_NOTUSED, 0},			/* VEOF, VERASE, VKILL, VWERASE */
88 	{K_NOTUSED, 0},
89 	{K_NOTUSED, 0},
90 	{K_NOTUSED, 0},
91 };
92 static int nkeylist =
93     (sizeof(keylist) / sizeof(keylist[0])) - ADDITIONAL_CHARACTERS;
94 
95 /*
96  * v_key_init --
97  *	Initialize the special key lookup table.
98  *
99  * PUBLIC: int v_key_init(SCR *);
100  */
101 int
v_key_init(SCR * sp)102 v_key_init(SCR *sp)
103 {
104 	u_int ch;
105 	GS *gp;
106 	KEYLIST *kp;
107 	int cnt;
108 
109 	gp = sp->gp;
110 
111 	/*
112 	 * XXX
113 	 * 8-bit only, for now.  Recompilation should get you any 8-bit
114 	 * character set, as long as nul isn't a character.
115 	 */
116 	(void)setlocale(LC_ALL, "");
117 	v_key_ilookup(sp);
118 
119 	v_keyval(sp, K_CNTRLD, KEY_VEOF);
120 	v_keyval(sp, K_VERASE, KEY_VERASE);
121 	v_keyval(sp, K_VKILL, KEY_VKILL);
122 	v_keyval(sp, K_VWERASE, KEY_VWERASE);
123 
124 	/* Sort the special key list. */
125 	qsort(keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
126 
127 	/* Initialize the fast lookup table. */
128 	for (gp->max_special = 0, kp = keylist, cnt = nkeylist; cnt--; ++kp) {
129 		if (gp->max_special < kp->value)
130 			gp->max_special = kp->value;
131 		if (kp->ch <= MAX_FAST_KEY)
132 			gp->special_key[kp->ch] = kp->value;
133 	}
134 
135 	/* Find a non-printable character to use as a message separator. */
136 	for (ch = 1; ch <= MAX_CHAR_T; ++ch)
137 		if (!isprint(ch)) {
138 			gp->noprint = ch;
139 			break;
140 		}
141 	if (ch != gp->noprint) {
142 		msgq(sp, M_ERR, "No non-printable character found");
143 		return (1);
144 	}
145 	return (0);
146 }
147 
148 /*
149  * v_keyval --
150  *	Set key values.
151  *
152  * We've left some open slots in the keylist table, and if these values exist,
153  * we put them into place.  Note, they may reset (or duplicate) values already
154  * in the table, so we check for that first.
155  */
156 static void
v_keyval(SCR * sp,int val,scr_keyval_t name)157 v_keyval(SCR *sp, int val, scr_keyval_t name)
158 {
159 	KEYLIST *kp;
160 	CHAR_T ch;
161 	int dne;
162 
163 	/* Get the key's value from the screen. */
164 	if (sp->gp->scr_keyval(sp, name, &ch, &dne))
165 		return;
166 	if (dne)
167 		return;
168 
169 	/* Check for duplication. */
170 	for (kp = keylist; kp->value != K_NOTUSED; ++kp)
171 		if (kp->ch == ch) {
172 			kp->value = val;
173 			return;
174 		}
175 
176 	/* Add a new entry. */
177 	if (kp->value == K_NOTUSED) {
178 		keylist[nkeylist].ch = ch;
179 		keylist[nkeylist].value = val;
180 		++nkeylist;
181 	}
182 }
183 
184 /*
185  * v_key_ilookup --
186  *	Build the fast-lookup key display array.
187  *
188  * PUBLIC: void v_key_ilookup(SCR *);
189  */
190 void
v_key_ilookup(SCR * sp)191 v_key_ilookup(SCR *sp)
192 {
193 	CHAR_T ch, *p, *t;
194 	GS *gp;
195 	size_t len;
196 
197 	for (gp = sp->gp, ch = 0; ch <= MAX_FAST_KEY; ++ch)
198 		for (p = gp->cname[ch].name, t = v_key_name(sp, ch),
199 		    len = gp->cname[ch].len = sp->clen; len--;)
200 			*p++ = *t++;
201 }
202 
203 /*
204  * v_key_len --
205  *	Return the length of the string that will display the key.
206  *	This routine is the backup for the KEY_LEN() macro.
207  *
208  * PUBLIC: size_t v_key_len(SCR *, CHAR_T);
209  */
210 size_t
v_key_len(SCR * sp,CHAR_T ch)211 v_key_len(SCR *sp, CHAR_T ch)
212 {
213 	(void)v_key_name(sp, ch);
214 	return (sp->clen);
215 }
216 
217 /*
218  * v_key_name --
219  *	Return the string that will display the key.  This routine
220  *	is the backup for the KEY_NAME() macro.
221  *
222  * PUBLIC: CHAR_T *v_key_name(SCR *, CHAR_T);
223  */
224 CHAR_T *
v_key_name(SCR * sp,CHAR_T ch)225 v_key_name(SCR *sp, CHAR_T ch)
226 {
227 	static const CHAR_T hexdigit[] = "0123456789abcdef";
228 	static const CHAR_T octdigit[] = "01234567";
229 	CHAR_T *chp, mask;
230 	size_t len;
231 	int cnt, shift;
232 
233 	/* See if the character was explicitly declared printable or not. */
234 	if ((chp = O_STR(sp, O_PRINT)) != NULL)
235 		for (; *chp != '\0'; ++chp)
236 			if (*chp == ch)
237 				goto pr;
238 	if ((chp = O_STR(sp, O_NOPRINT)) != NULL)
239 		for (; *chp != '\0'; ++chp)
240 			if (*chp == ch)
241 				goto nopr;
242 
243 	/*
244 	 * Historical (ARPA standard) mappings.  Printable characters are left
245 	 * alone.  Control characters less than 0x20 are represented as '^'
246 	 * followed by the character offset from the '@' character in the ASCII
247 	 * character set.  Del (0x7f) is represented as '^' followed by '?'.
248 	 *
249 	 * XXX
250 	 * The following code depends on the current locale being identical to
251 	 * the ASCII map from 0x40 to 0x5f (since 0x1f + 0x40 == 0x5f).  I'm
252 	 * told that this is a reasonable assumption...
253 	 *
254 	 * XXX
255 	 * This code will only work with CHAR_T's that are multiples of 8-bit
256 	 * bytes.
257 	 *
258 	 * XXX
259 	 * NB: There's an assumption here that all printable characters take
260 	 * up a single column on the screen.  This is not always correct.
261 	 */
262 	if (isprint(ch)) {
263 pr:		sp->cname[0] = ch;
264 		len = 1;
265 		goto done;
266 	}
267 nopr:	if (iscntrl(ch) && (ch < 0x20 || ch == 0x7f)) {
268 		sp->cname[0] = '^';
269 		sp->cname[1] = ch == 0x7f ? '?' : '@' + ch;
270 		len = 2;
271 	} else if (O_ISSET(sp, O_OCTAL)) {
272 #define	BITS	(sizeof(CHAR_T) * 8)
273 #define	SHIFT	(BITS - BITS % 3)
274 #define	TOPMASK	(BITS % 3 == 2 ? 3 : 1) << (BITS - BITS % 3)
275 		sp->cname[0] = '\\';
276 		sp->cname[1] = octdigit[(ch & TOPMASK) >> SHIFT];
277 		shift = SHIFT - 3;
278 		for (len = 2, mask = 7 << (SHIFT - 3),
279 		    cnt = BITS / 3; cnt-- > 0; mask >>= 3, shift -= 3)
280 			sp->cname[len++] = octdigit[(ch & mask) >> shift];
281 	} else {
282 		sp->cname[0] = '\\';
283 		sp->cname[1] = 'x';
284 		for (len = 2, chp = (u_int8_t *)&ch,
285 		    cnt = sizeof(CHAR_T); cnt-- > 0; ++chp) {
286 			sp->cname[len++] = hexdigit[(*chp & 0xf0) >> 4];
287 			sp->cname[len++] = hexdigit[*chp & 0x0f];
288 		}
289 	}
290 done:	sp->cname[sp->clen = len] = '\0';
291 	return (sp->cname);
292 }
293 
294 /*
295  * v_key_val --
296  *	Fill in the value for a key.  This routine is the backup
297  *	for the KEY_VAL() macro.
298  *
299  * PUBLIC: int v_key_val(SCR *, CHAR_T);
300  */
301 int
v_key_val(SCR * sp,CHAR_T ch)302 v_key_val(SCR *sp, CHAR_T ch)
303 {
304 	KEYLIST k, *kp;
305 
306 	k.ch = ch;
307 	kp = bsearch(&k, keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
308 	return (kp == NULL ? K_NOTUSED : kp->value);
309 }
310 
311 /*
312  * v_event_push --
313  *	Push events/keys onto the front of the buffer.
314  *
315  * There is a single input buffer in ex/vi.  Characters are put onto the
316  * end of the buffer by the terminal input routines, and pushed onto the
317  * front of the buffer by various other functions in ex/vi.  Each key has
318  * an associated flag value, which indicates if it has already been quoted,
319  * and if it is the result of a mapping or an abbreviation.
320  *
321  * PUBLIC: int v_event_push(SCR *, EVENT *, CHAR_T *, size_t, u_int);
322  */
323 int
v_event_push(SCR * sp,EVENT * p_evp,CHAR_T * p_s,size_t nitems,u_int flags)324 v_event_push(SCR *sp, EVENT *p_evp, CHAR_T *p_s, size_t nitems, u_int flags)
325 {
326 	EVENT *evp;
327 	GS *gp;
328 	size_t total;
329 
330 	/* If we have room, stuff the items into the buffer. */
331 	gp = sp->gp;
332 	if (nitems <= gp->i_next ||
333 	    (gp->i_event != NULL && gp->i_cnt == 0 && nitems <= gp->i_nelem)) {
334 		if (gp->i_cnt != 0)
335 			gp->i_next -= nitems;
336 		goto copy;
337 	}
338 
339 	/*
340 	 * If there are currently items in the queue, shift them up,
341 	 * leaving some extra room.  Get enough space plus a little
342 	 * extra.
343 	 */
344 #define	TERM_PUSH_SHIFT	30
345 	total = gp->i_cnt + gp->i_next + nitems + TERM_PUSH_SHIFT;
346 	if (total >= gp->i_nelem && v_event_grow(sp, MAXIMUM(total, 64)))
347 		return (1);
348 	if (gp->i_cnt)
349 		MEMMOVE(gp->i_event + TERM_PUSH_SHIFT + nitems,
350 		    gp->i_event + gp->i_next, gp->i_cnt);
351 	gp->i_next = TERM_PUSH_SHIFT;
352 
353 	/* Put the new items into the queue. */
354 copy:	gp->i_cnt += nitems;
355 	for (evp = gp->i_event + gp->i_next; nitems--; ++evp) {
356 		if (p_evp != NULL)
357 			*evp = *p_evp++;
358 		else {
359 			evp->e_event = E_CHARACTER;
360 			evp->e_c = *p_s++;
361 			evp->e_value = KEY_VAL(sp, evp->e_c);
362 			F_INIT(&evp->e_ch, flags);
363 		}
364 	}
365 	return (0);
366 }
367 
368 /*
369  * v_event_append --
370  *	Append events onto the tail of the buffer.
371  */
372 static int
v_event_append(SCR * sp,EVENT * argp)373 v_event_append(SCR *sp, EVENT *argp)
374 {
375 	CHAR_T *s;			/* Characters. */
376 	EVENT *evp;
377 	GS *gp;
378 	size_t nevents;			/* Number of events. */
379 
380 	/* Grow the buffer as necessary. */
381 	nevents = argp->e_event == E_STRING ? argp->e_len : 1;
382 	gp = sp->gp;
383 	if (gp->i_event == NULL ||
384 	    nevents > gp->i_nelem - (gp->i_next + gp->i_cnt))
385 		v_event_grow(sp, MAXIMUM(nevents, 64));
386 	evp = gp->i_event + gp->i_next + gp->i_cnt;
387 	gp->i_cnt += nevents;
388 
389 	/* Transform strings of characters into single events. */
390 	if (argp->e_event == E_STRING)
391 		for (s = argp->e_csp; nevents--; ++evp) {
392 			evp->e_event = E_CHARACTER;
393 			evp->e_c = *s++;
394 			evp->e_value = KEY_VAL(sp, evp->e_c);
395 			evp->e_flags = 0;
396 		}
397 	else
398 		*evp = *argp;
399 	return (0);
400 }
401 
402 /* Remove events from the queue. */
403 #define	QREM(len) {							\
404 	if ((gp->i_cnt -= (len)) == 0)					\
405 		gp->i_next = 0;						\
406 	else								\
407 		gp->i_next += (len);					\
408 }
409 
410 /*
411  * v_event_get --
412  *	Return the next event.
413  *
414  * !!!
415  * The flag EC_NODIGIT probably needs some explanation.  First, the idea of
416  * mapping keys is that one or more keystrokes act like a function key.
417  * What's going on is that vi is reading a number, and the character following
418  * the number may or may not be mapped (EC_MAPCOMMAND).  For example, if the
419  * user is entering the z command, a valid command is "z40+", and we don't want
420  * to map the '+', i.e. if '+' is mapped to "xxx", we don't want to change it
421  * into "z40xxx".  However, if the user enters "35x", we want to put all of the
422  * characters through the mapping code.
423  *
424  * Historical practice is a bit muddled here.  (Surprise!)  It always permitted
425  * mapping digits as long as they weren't the first character of the map, e.g.
426  * ":map ^A1 xxx" was okay.  It also permitted the mapping of the digits 1-9
427  * (the digit 0 was a special case as it doesn't indicate the start of a count)
428  * as the first character of the map, but then ignored those mappings.  While
429  * it's probably stupid to map digits, vi isn't your mother.
430  *
431  * The way this works is that the EC_MAPNODIGIT causes term_key to return the
432  * end-of-digit without "looking" at the next character, i.e. leaving it as the
433  * user entered it.  Presumably, the next term_key call will tell us how the
434  * user wants it handled.
435  *
436  * There is one more complication.  Users might map keys to digits, and, as
437  * it's described above, the commands:
438  *
439  *	:map g 1G
440  *	d2g
441  *
442  * would return the keys "d2<end-of-digits>1G", when the user probably wanted
443  * "d21<end-of-digits>G".  So, if a map starts off with a digit we continue as
444  * before, otherwise, we pretend we haven't mapped the character, and return
445  * <end-of-digits>.
446  *
447  * Now that that's out of the way, let's talk about Energizer Bunny macros.
448  * It's easy to create macros that expand to a loop, e.g. map x 3x.  It's
449  * fairly easy to detect this example, because it's all internal to term_key.
450  * If we're expanding a macro and it gets big enough, at some point we can
451  * assume it's looping and kill it.  The examples that are tough are the ones
452  * where the parser is involved, e.g. map x "ayyx"byy.  We do an expansion
453  * on 'x', and get "ayyx"byy.  We then return the first 4 characters, and then
454  * find the looping macro again.  There is no way that we can detect this
455  * without doing a full parse of the command, because the character that might
456  * cause the loop (in this case 'x') may be a literal character, e.g. the map
457  * map x "ayy"xyy"byy is perfectly legal and won't cause a loop.
458  *
459  * Historic vi tried to detect looping macros by disallowing obvious cases in
460  * the map command, maps that that ended with the same letter as they started
461  * (which wrongly disallowed "map x 'x"), and detecting macros that expanded
462  * too many times before keys were returned to the command parser.  It didn't
463  * get many (most?) of the tricky cases right, however, and it was certainly
464  * possible to create macros that ran forever.  And, even if it did figure out
465  * what was going on, the user was usually tossed into ex mode.  Finally, any
466  * changes made before vi realized that the macro was recursing were left in
467  * place.  We recover gracefully, but the only recourse the user has in an
468  * infinite macro loop is to interrupt.
469  *
470  * !!!
471  * It is historic practice that mapping characters to themselves as the first
472  * part of the mapped string was legal, and did not cause infinite loops, i.e.
473  * ":map! { {^M^T" and ":map n nz." were known to work.  The initial, matching
474  * characters were returned instead of being remapped.
475  *
476  * !!!
477  * It is also historic practice that the macro "map ] ]]^" caused a single ]
478  * keypress to behave as the command ]] (the ^ got the map past the vi check
479  * for "tail recursion").  Conversely, the mapping "map n nn^" went recursive.
480  * What happened was that, in the historic vi, maps were expanded as the keys
481  * were retrieved, but not all at once and not centrally.  So, the keypress ]
482  * pushed ]]^ on the stack, and then the first ] from the stack was passed to
483  * the ]] command code.  The ]] command then retrieved a key without entering
484  * the mapping code.  This could bite us anytime a user has a map that depends
485  * on secondary keys NOT being mapped.  I can't see any possible way to make
486  * this work in here without the complete abandonment of Rationality Itself.
487  *
488  * XXX
489  * The final issue is recovery.  It would be possible to undo all of the work
490  * that was done by the macro if we entered a record into the log so that we
491  * knew when the macro started, and, in fact, this might be worth doing at some
492  * point.  Given that this might make the log grow unacceptably (consider that
493  * cursor keys are done with maps), for now we leave any changes made in place.
494  *
495  * PUBLIC: int v_event_get(SCR *, EVENT *, int, u_int32_t);
496  */
497 int
v_event_get(SCR * sp,EVENT * argp,int timeout,u_int32_t flags)498 v_event_get(SCR *sp, EVENT *argp, int timeout, u_int32_t flags)
499 {
500 	EVENT *evp, ev;
501 	GS *gp;
502 	SEQ *qp;
503 	int init_nomap, ispartial, istimeout, remap_cnt;
504 
505 	gp = sp->gp;
506 
507 	/* If simply checking for interrupts, argp may be NULL. */
508 	if (argp == NULL)
509 		argp = &ev;
510 
511 retry:	istimeout = remap_cnt = 0;
512 
513 	/*
514 	 * If the queue isn't empty and we're timing out for characters,
515 	 * return immediately.
516 	 */
517 	if (gp->i_cnt != 0 && LF_ISSET(EC_TIMEOUT))
518 		return (0);
519 
520 	/*
521 	 * If the queue is empty, we're checking for interrupts, or we're
522 	 * timing out for characters, get more events.
523 	 */
524 	if (gp->i_cnt == 0 || LF_ISSET(EC_INTERRUPT | EC_TIMEOUT)) {
525 		/*
526 		 * If we're reading new characters, check any scripting
527 		 * windows for input.
528 		 */
529 		if (F_ISSET(gp, G_SCRWIN) && sscr_input(sp))
530 			return (1);
531 loop:		if (gp->scr_event(sp, argp,
532 		    LF_ISSET(EC_INTERRUPT | EC_QUOTED | EC_RAW), timeout))
533 			return (1);
534 		switch (argp->e_event) {
535 		case E_ERR:
536 		case E_SIGHUP:
537 		case E_SIGTERM:
538 			/*
539 			 * Fatal conditions cause the file to be synced to
540 			 * disk immediately.
541 			 */
542 			v_sync(sp, RCV_ENDSESSION | RCV_PRESERVE |
543 			    (argp->e_event == E_SIGTERM ? 0: RCV_EMAIL));
544 			return (1);
545 		case E_TIMEOUT:
546 			istimeout = 1;
547 			break;
548 		case E_INTERRUPT:
549 			/* Set the global interrupt flag. */
550 			F_SET(sp->gp, G_INTERRUPTED);
551 
552 			/*
553 			 * If the caller was interested in interrupts, return
554 			 * immediately.
555 			 */
556 			if (LF_ISSET(EC_INTERRUPT))
557 				return (0);
558 			goto append;
559 		default:
560 append:			if (v_event_append(sp, argp))
561 				return (1);
562 			break;
563 		}
564 	}
565 
566 	/*
567 	 * If the caller was only interested in interrupts or timeouts, return
568 	 * immediately.  (We may have gotten characters, and that's okay, they
569 	 * were queued up for later use.)
570 	 */
571 	if (LF_ISSET(EC_INTERRUPT | EC_TIMEOUT))
572 		return (0);
573 
574 newmap:	evp = &gp->i_event[gp->i_next];
575 
576 	/*
577 	 * If the next event in the queue isn't a character event, return
578 	 * it, we're done.
579 	 */
580 	if (evp->e_event != E_CHARACTER) {
581 		*argp = *evp;
582 		QREM(1);
583 		return (0);
584 	}
585 
586 	/*
587 	 * If the key isn't mappable because:
588 	 *
589 	 *	+ ... the timeout has expired
590 	 *	+ ... it's not a mappable key
591 	 *	+ ... neither the command or input map flags are set
592 	 *	+ ... there are no maps that can apply to it
593 	 *
594 	 * return it forthwith.
595 	 */
596 	if (istimeout || F_ISSET(&evp->e_ch, CH_NOMAP) ||
597 	    !LF_ISSET(EC_MAPCOMMAND | EC_MAPINPUT) ||
598 	    (evp->e_c < MAX_BIT_SEQ && !bit_test(gp->seqb, evp->e_c)))
599 		goto nomap;
600 
601 	/* Search the map. */
602 	qp = seq_find(sp, NULL, evp, NULL, gp->i_cnt,
603 	    LF_ISSET(EC_MAPCOMMAND) ? SEQ_COMMAND : SEQ_INPUT, &ispartial);
604 
605 	/*
606 	 * If get a partial match, get more characters and retry the map.
607 	 * If time out without further characters, return the characters
608 	 * unmapped.
609 	 *
610 	 * !!!
611 	 * <escape> characters are a problem.  Cursor keys start with <escape>
612 	 * characters, so there's almost always a map in place that begins with
613 	 * an <escape> character.  If we timeout <escape> keys in the same way
614 	 * that we timeout other keys, the user will get a noticeable pause as
615 	 * they enter <escape> to terminate input mode.  If key timeout is set
616 	 * for a slow link, users will get an even longer pause.  Nvi used to
617 	 * simply timeout <escape> characters at 1/10th of a second, but this
618 	 * loses over PPP links where the latency is greater than 100Ms.
619 	 */
620 	if (ispartial) {
621 		if (O_ISSET(sp, O_TIMEOUT))
622 			timeout = (evp->e_value == K_ESCAPE ?
623 			    O_VAL(sp, O_ESCAPETIME) :
624 			    O_VAL(sp, O_KEYTIME)) * 100;
625 		else
626 			timeout = 0;
627 		goto loop;
628 	}
629 
630 	/* If no map, return the character. */
631 	if (qp == NULL) {
632 nomap:		if (!isdigit(evp->e_c) && LF_ISSET(EC_MAPNODIGIT))
633 			goto not_digit;
634 		*argp = *evp;
635 		QREM(1);
636 		return (0);
637 	}
638 
639 	/*
640 	 * If looking for the end of a digit string, and the first character
641 	 * of the map is it, pretend we haven't seen the character.
642 	 */
643 	if (LF_ISSET(EC_MAPNODIGIT) &&
644 	    qp->output != NULL && !isdigit(qp->output[0])) {
645 not_digit:	argp->e_c = CH_NOT_DIGIT;
646 		argp->e_value = K_NOTUSED;
647 		argp->e_event = E_CHARACTER;
648 		F_INIT(&argp->e_ch, 0);
649 		return (0);
650 	}
651 
652 	/* Find out if the initial segments are identical. */
653 	if (qp->output != NULL) {
654 		init_nomap =
655 		    !e_memcmp(qp->output, &gp->i_event[gp->i_next], qp->ilen);
656 	}
657 
658 	/* Delete the mapped characters from the queue. */
659 	QREM(qp->ilen);
660 
661 	/* If keys mapped to nothing, go get more. */
662 	if (qp->output == NULL)
663 		goto retry;
664 
665 	/* If remapping characters... */
666 	if (O_ISSET(sp, O_REMAP)) {
667 		/*
668 		 * Periodically check for interrupts.  Always check the first
669 		 * time through, because it's possible to set up a map that
670 		 * will return a character every time, but will expand to more,
671 		 * e.g. "map! a aaaa" will always return a 'a', but we'll never
672 		 * get anywhere useful.
673 		 */
674 		if ((++remap_cnt == 1 || remap_cnt % 10 == 0) &&
675 		    (gp->scr_event(sp, &ev,
676 		    EC_INTERRUPT, 0) || ev.e_event == E_INTERRUPT)) {
677 			F_SET(sp->gp, G_INTERRUPTED);
678 			argp->e_event = E_INTERRUPT;
679 			return (0);
680 		}
681 
682 		/*
683 		 * If an initial part of the characters mapped, they are not
684 		 * further remapped -- return the first one.  Push the rest
685 		 * of the characters, or all of the characters if no initial
686 		 * part mapped, back on the queue.
687 		 */
688 		if (init_nomap) {
689 			if (v_event_push(sp, NULL, qp->output + qp->ilen,
690 			    qp->olen - qp->ilen, CH_MAPPED))
691 				return (1);
692 			if (v_event_push(sp, NULL,
693 			    qp->output, qp->ilen, CH_NOMAP | CH_MAPPED))
694 				return (1);
695 			evp = &gp->i_event[gp->i_next];
696 			goto nomap;
697 		}
698 		if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED))
699 			return (1);
700 		goto newmap;
701 	}
702 
703 	/* Else, push the characters on the queue and return one. */
704 	if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED | CH_NOMAP))
705 		return (1);
706 
707 	goto nomap;
708 }
709 
710 /*
711  * v_sync --
712  *	Walk the screen lists, sync'ing files to their backup copies.
713  */
714 static void
v_sync(SCR * sp,int flags)715 v_sync(SCR *sp, int flags)
716 {
717 	GS *gp;
718 
719 	gp = sp->gp;
720 	TAILQ_FOREACH(sp, &gp->dq, q)
721 		rcv_sync(sp, flags);
722 	TAILQ_FOREACH(sp, &gp->hq, q)
723 		rcv_sync(sp, flags);
724 }
725 
726 /*
727  * v_event_err --
728  *	Unexpected event.
729  *
730  * PUBLIC: void v_event_err(SCR *, EVENT *);
731  */
732 void
v_event_err(SCR * sp,EVENT * evp)733 v_event_err(SCR *sp, EVENT *evp)
734 {
735 	switch (evp->e_event) {
736 	case E_CHARACTER:
737 		msgq(sp, M_ERR, "Unexpected character event");
738 		break;
739 	case E_EOF:
740 		msgq(sp, M_ERR, "Unexpected end-of-file event");
741 		break;
742 	case E_INTERRUPT:
743 		msgq(sp, M_ERR, "Unexpected interrupt event");
744 		break;
745 	case E_QUIT:
746 		msgq(sp, M_ERR, "Unexpected quit event");
747 		break;
748 	case E_REPAINT:
749 		msgq(sp, M_ERR, "Unexpected repaint event");
750 		break;
751 	case E_STRING:
752 		msgq(sp, M_ERR, "Unexpected string event");
753 		break;
754 	case E_TIMEOUT:
755 		msgq(sp, M_ERR, "Unexpected timeout event");
756 		break;
757 	case E_WRESIZE:
758 		msgq(sp, M_ERR, "Unexpected resize event");
759 		break;
760 	case E_WRITE:
761 		msgq(sp, M_ERR, "Unexpected write event");
762 		break;
763 
764 	/*
765 	 * Theoretically, none of these can occur, as they're handled at the
766 	 * top editor level.
767 	 */
768 	case E_ERR:
769 	case E_SIGHUP:
770 	case E_SIGTERM:
771 	default:
772 		abort();
773 	}
774 
775 	/* Free any allocated memory. */
776 	free(evp->e_asp);
777 }
778 
779 /*
780  * v_event_flush --
781  *	Flush any flagged keys, returning if any keys were flushed.
782  *
783  * PUBLIC: int v_event_flush(SCR *, u_int);
784  */
785 int
v_event_flush(SCR * sp,u_int flags)786 v_event_flush(SCR *sp, u_int flags)
787 {
788 	GS *gp;
789 	int rval;
790 
791 	for (rval = 0, gp = sp->gp; gp->i_cnt != 0 &&
792 	    F_ISSET(&gp->i_event[gp->i_next].e_ch, flags); rval = 1)
793 		QREM(1);
794 	return (rval);
795 }
796 
797 /*
798  * v_event_grow --
799  *	Grow the terminal queue.
800  */
801 static int
v_event_grow(SCR * sp,int add)802 v_event_grow(SCR *sp, int add)
803 {
804 	GS *gp;
805 	size_t new_nelem, olen;
806 
807 	gp = sp->gp;
808 	new_nelem = gp->i_nelem + add;
809 	olen = gp->i_nelem * sizeof(gp->i_event[0]);
810 	BINC_RET(sp, gp->i_event, olen, new_nelem * sizeof(gp->i_event[0]));
811 	gp->i_nelem = olen / sizeof(gp->i_event[0]);
812 	return (0);
813 }
814 
815 /*
816  * v_key_cmp --
817  *	Compare two keys for sorting.
818  */
819 static int
v_key_cmp(const void * ap,const void * bp)820 v_key_cmp(const void *ap, const void *bp)
821 {
822 	return (((KEYLIST *)ap)->ch - ((KEYLIST *)bp)->ch);
823 }
824