1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50
51 #include <drm/amdgpu_drm.h>
52
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63
64 MODULE_IMPORT_NS(DMA_BUF);
65
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
67
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 struct ttm_tt *ttm,
70 struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 struct ttm_tt *ttm);
73
amdgpu_ttm_init_on_chip(struct amdgpu_device * adev,unsigned int type,uint64_t size_in_page)74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 unsigned int type,
76 uint64_t size_in_page)
77 {
78 return ttm_range_man_init(&adev->mman.bdev, type,
79 false, size_in_page);
80 }
81
82 /**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
92 {
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = TTM_PL_SYSTEM,
99 .flags = 0
100 };
101
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
105 placement->num_busy_placement = 0;
106 return;
107 }
108
109 /* Object isn't an AMDGPU object so ignore */
110 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
111 placement->placement = &placements;
112 placement->busy_placement = &placements;
113 placement->num_placement = 1;
114 placement->num_busy_placement = 1;
115 return;
116 }
117
118 abo = ttm_to_amdgpu_bo(bo);
119 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
120 placement->num_placement = 0;
121 placement->num_busy_placement = 0;
122 return;
123 }
124
125 switch (bo->resource->mem_type) {
126 case AMDGPU_PL_GDS:
127 case AMDGPU_PL_GWS:
128 case AMDGPU_PL_OA:
129 case AMDGPU_PL_DOORBELL:
130 placement->num_placement = 0;
131 placement->num_busy_placement = 0;
132 return;
133
134 case TTM_PL_VRAM:
135 if (!adev->mman.buffer_funcs_enabled) {
136 /* Move to system memory */
137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 amdgpu_res_cpu_visible(adev, bo->resource)) {
141
142 /* Try evicting to the CPU inaccessible part of VRAM
143 * first, but only set GTT as busy placement, so this
144 * BO will be evicted to GTT rather than causing other
145 * BOs to be evicted from VRAM
146 */
147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 AMDGPU_GEM_DOMAIN_GTT |
149 AMDGPU_GEM_DOMAIN_CPU);
150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 abo->placements[0].lpfn = 0;
152 abo->placement.busy_placement = &abo->placements[1];
153 abo->placement.num_busy_placement = 1;
154 } else {
155 /* Move to GTT memory */
156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 AMDGPU_GEM_DOMAIN_CPU);
158 }
159 break;
160 case TTM_PL_TT:
161 case AMDGPU_PL_PREEMPT:
162 default:
163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 break;
165 }
166 *placement = abo->placement;
167 }
168
169 /**
170 * amdgpu_ttm_map_buffer - Map memory into the GART windows
171 * @bo: buffer object to map
172 * @mem: memory object to map
173 * @mm_cur: range to map
174 * @window: which GART window to use
175 * @ring: DMA ring to use for the copy
176 * @tmz: if we should setup a TMZ enabled mapping
177 * @size: in number of bytes to map, out number of bytes mapped
178 * @addr: resulting address inside the MC address space
179 *
180 * Setup one of the GART windows to access a specific piece of memory or return
181 * the physical address for local memory.
182 */
amdgpu_ttm_map_buffer(struct ttm_buffer_object * bo,struct ttm_resource * mem,struct amdgpu_res_cursor * mm_cur,unsigned int window,struct amdgpu_ring * ring,bool tmz,uint64_t * size,uint64_t * addr)183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 struct ttm_resource *mem,
185 struct amdgpu_res_cursor *mm_cur,
186 unsigned int window, struct amdgpu_ring *ring,
187 bool tmz, uint64_t *size, uint64_t *addr)
188 {
189 struct amdgpu_device *adev = ring->adev;
190 unsigned int offset, num_pages, num_dw, num_bytes;
191 uint64_t src_addr, dst_addr;
192 struct amdgpu_job *job;
193 void *cpu_addr;
194 uint64_t flags;
195 unsigned int i;
196 int r;
197
198 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
200
201 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
202 return -EINVAL;
203
204 /* Map only what can't be accessed directly */
205 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207 mm_cur->start;
208 return 0;
209 }
210
211
212 /*
213 * If start begins at an offset inside the page, then adjust the size
214 * and addr accordingly
215 */
216 offset = mm_cur->start & ~LINUX_PAGE_MASK;
217
218 num_pages = PFN_UP(*size + offset);
219 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
220
221 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
222
223 *addr = adev->gmc.gart_start;
224 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
225 AMDGPU_GPU_PAGE_SIZE;
226 *addr += offset;
227
228 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
229 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
230
231 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
232 AMDGPU_FENCE_OWNER_UNDEFINED,
233 num_dw * 4 + num_bytes,
234 AMDGPU_IB_POOL_DELAYED, &job);
235 if (r)
236 return r;
237
238 src_addr = num_dw * 4;
239 src_addr += job->ibs[0].gpu_addr;
240
241 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
242 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
243 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
244 dst_addr, num_bytes, false);
245
246 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
247 WARN_ON(job->ibs[0].length_dw > num_dw);
248
249 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
250 if (tmz)
251 flags |= AMDGPU_PTE_TMZ;
252
253 cpu_addr = &job->ibs[0].ptr[num_dw];
254
255 if (mem->mem_type == TTM_PL_TT) {
256 dma_addr_t *dma_addr;
257
258 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
259 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
260 } else {
261 dma_addr_t dma_address;
262
263 dma_address = mm_cur->start;
264 dma_address += adev->vm_manager.vram_base_offset;
265
266 for (i = 0; i < num_pages; ++i) {
267 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
268 flags, cpu_addr);
269 dma_address += PAGE_SIZE;
270 }
271 }
272
273 dma_fence_put(amdgpu_job_submit(job));
274 return 0;
275 }
276
277 /**
278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279 * @adev: amdgpu device
280 * @src: buffer/address where to read from
281 * @dst: buffer/address where to write to
282 * @size: number of bytes to copy
283 * @tmz: if a secure copy should be used
284 * @resv: resv object to sync to
285 * @f: Returns the last fence if multiple jobs are submitted.
286 *
287 * The function copies @size bytes from {src->mem + src->offset} to
288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289 * move and different for a BO to BO copy.
290 *
291 */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,const struct amdgpu_copy_mem * src,const struct amdgpu_copy_mem * dst,uint64_t size,bool tmz,struct dma_resv * resv,struct dma_fence ** f)292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293 const struct amdgpu_copy_mem *src,
294 const struct amdgpu_copy_mem *dst,
295 uint64_t size, bool tmz,
296 struct dma_resv *resv,
297 struct dma_fence **f)
298 {
299 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
300 struct amdgpu_res_cursor src_mm, dst_mm;
301 struct dma_fence *fence = NULL;
302 int r = 0;
303
304 if (!adev->mman.buffer_funcs_enabled) {
305 DRM_ERROR("Trying to move memory with ring turned off.\n");
306 return -EINVAL;
307 }
308
309 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
310 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
311
312 mutex_lock(&adev->mman.gtt_window_lock);
313 while (src_mm.remaining) {
314 uint64_t from, to, cur_size;
315 struct dma_fence *next;
316
317 /* Never copy more than 256MiB at once to avoid a timeout */
318 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
319
320 /* Map src to window 0 and dst to window 1. */
321 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
322 0, ring, tmz, &cur_size, &from);
323 if (r)
324 goto error;
325
326 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
327 1, ring, tmz, &cur_size, &to);
328 if (r)
329 goto error;
330
331 r = amdgpu_copy_buffer(ring, from, to, cur_size,
332 resv, &next, false, true, tmz);
333 if (r)
334 goto error;
335
336 dma_fence_put(fence);
337 fence = next;
338
339 amdgpu_res_next(&src_mm, cur_size);
340 amdgpu_res_next(&dst_mm, cur_size);
341 }
342 error:
343 mutex_unlock(&adev->mman.gtt_window_lock);
344 if (f)
345 *f = dma_fence_get(fence);
346 dma_fence_put(fence);
347 return r;
348 }
349
350 /*
351 * amdgpu_move_blit - Copy an entire buffer to another buffer
352 *
353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354 * help move buffers to and from VRAM.
355 */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,struct ttm_resource * new_mem,struct ttm_resource * old_mem)356 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
357 bool evict,
358 struct ttm_resource *new_mem,
359 struct ttm_resource *old_mem)
360 {
361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363 struct amdgpu_copy_mem src, dst;
364 struct dma_fence *fence = NULL;
365 int r;
366
367 src.bo = bo;
368 dst.bo = bo;
369 src.mem = old_mem;
370 dst.mem = new_mem;
371 src.offset = 0;
372 dst.offset = 0;
373
374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
375 new_mem->size,
376 amdgpu_bo_encrypted(abo),
377 bo->base.resv, &fence);
378 if (r)
379 goto error;
380
381 /* clear the space being freed */
382 if (old_mem->mem_type == TTM_PL_VRAM &&
383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384 struct dma_fence *wipe_fence = NULL;
385
386 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
387 false);
388 if (r) {
389 goto error;
390 } else if (wipe_fence) {
391 dma_fence_put(fence);
392 fence = wipe_fence;
393 }
394 }
395
396 /* Always block for VM page tables before committing the new location */
397 if (bo->type == ttm_bo_type_kernel)
398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399 else
400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401 dma_fence_put(fence);
402 return r;
403
404 error:
405 if (fence)
406 dma_fence_wait(fence, false);
407 dma_fence_put(fence);
408 return r;
409 }
410
411 /**
412 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
413 * @adev: amdgpu device
414 * @res: the resource to check
415 *
416 * Returns: true if the full resource is CPU visible, false otherwise.
417 */
amdgpu_res_cpu_visible(struct amdgpu_device * adev,struct ttm_resource * res)418 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
419 struct ttm_resource *res)
420 {
421 struct amdgpu_res_cursor cursor;
422
423 if (!res)
424 return false;
425
426 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
427 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
428 return true;
429
430 if (res->mem_type != TTM_PL_VRAM)
431 return false;
432
433 amdgpu_res_first(res, 0, res->size, &cursor);
434 while (cursor.remaining) {
435 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
436 return false;
437 amdgpu_res_next(&cursor, cursor.size);
438 }
439
440 return true;
441 }
442
443 /*
444 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
445 *
446 * Called by amdgpu_bo_move()
447 */
amdgpu_res_copyable(struct amdgpu_device * adev,struct ttm_resource * mem)448 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
449 struct ttm_resource *mem)
450 {
451 if (!amdgpu_res_cpu_visible(adev, mem))
452 return false;
453
454 /* ttm_resource_ioremap only supports contiguous memory */
455 if (mem->mem_type == TTM_PL_VRAM &&
456 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
457 return false;
458
459 return true;
460 }
461
462 /*
463 * amdgpu_bo_move - Move a buffer object to a new memory location
464 *
465 * Called by ttm_bo_handle_move_mem()
466 */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)467 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
468 struct ttm_operation_ctx *ctx,
469 struct ttm_resource *new_mem,
470 struct ttm_place *hop)
471 {
472 struct amdgpu_device *adev;
473 struct amdgpu_bo *abo;
474 struct ttm_resource *old_mem = bo->resource;
475 int r;
476
477 if (new_mem->mem_type == TTM_PL_TT ||
478 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
479 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
480 if (r)
481 return r;
482 }
483
484 abo = ttm_to_amdgpu_bo(bo);
485 adev = amdgpu_ttm_adev(bo->bdev);
486
487 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
488 bo->ttm == NULL)) {
489 amdgpu_bo_move_notify(bo, evict, new_mem);
490 ttm_bo_move_null(bo, new_mem);
491 return 0;
492 }
493 if (old_mem->mem_type == TTM_PL_SYSTEM &&
494 (new_mem->mem_type == TTM_PL_TT ||
495 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
496 amdgpu_bo_move_notify(bo, evict, new_mem);
497 ttm_bo_move_null(bo, new_mem);
498 return 0;
499 }
500 if ((old_mem->mem_type == TTM_PL_TT ||
501 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
502 new_mem->mem_type == TTM_PL_SYSTEM) {
503 r = ttm_bo_wait_ctx(bo, ctx);
504 if (r)
505 return r;
506
507 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
508 amdgpu_bo_move_notify(bo, evict, new_mem);
509 ttm_resource_free(bo, &bo->resource);
510 ttm_bo_assign_mem(bo, new_mem);
511 return 0;
512 }
513
514 if (old_mem->mem_type == AMDGPU_PL_GDS ||
515 old_mem->mem_type == AMDGPU_PL_GWS ||
516 old_mem->mem_type == AMDGPU_PL_OA ||
517 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
518 new_mem->mem_type == AMDGPU_PL_GDS ||
519 new_mem->mem_type == AMDGPU_PL_GWS ||
520 new_mem->mem_type == AMDGPU_PL_OA ||
521 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
522 /* Nothing to save here */
523 amdgpu_bo_move_notify(bo, evict, new_mem);
524 ttm_bo_move_null(bo, new_mem);
525 return 0;
526 }
527
528 if (bo->type == ttm_bo_type_device &&
529 new_mem->mem_type == TTM_PL_VRAM &&
530 old_mem->mem_type != TTM_PL_VRAM) {
531 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
532 * accesses the BO after it's moved.
533 */
534 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
535 }
536
537 if (adev->mman.buffer_funcs_enabled &&
538 ((old_mem->mem_type == TTM_PL_SYSTEM &&
539 new_mem->mem_type == TTM_PL_VRAM) ||
540 (old_mem->mem_type == TTM_PL_VRAM &&
541 new_mem->mem_type == TTM_PL_SYSTEM))) {
542 hop->fpfn = 0;
543 hop->lpfn = 0;
544 hop->mem_type = TTM_PL_TT;
545 hop->flags = TTM_PL_FLAG_TEMPORARY;
546 return -EMULTIHOP;
547 }
548
549 amdgpu_bo_move_notify(bo, evict, new_mem);
550 if (adev->mman.buffer_funcs_enabled)
551 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
552 else
553 r = -ENODEV;
554
555 if (r) {
556 /* Check that all memory is CPU accessible */
557 if (!amdgpu_res_copyable(adev, old_mem) ||
558 !amdgpu_res_copyable(adev, new_mem)) {
559 pr_err("Move buffer fallback to memcpy unavailable\n");
560 return r;
561 }
562
563 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
564 if (r)
565 return r;
566 }
567
568 /* update statistics after the move */
569 if (evict)
570 atomic64_inc(&adev->num_evictions);
571 atomic64_add(bo->base.size, &adev->num_bytes_moved);
572 return 0;
573 }
574
575 /*
576 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
577 *
578 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
579 */
amdgpu_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)580 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
581 struct ttm_resource *mem)
582 {
583 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
584
585 switch (mem->mem_type) {
586 case TTM_PL_SYSTEM:
587 /* system memory */
588 return 0;
589 case TTM_PL_TT:
590 case AMDGPU_PL_PREEMPT:
591 break;
592 case TTM_PL_VRAM:
593 mem->bus.offset = mem->start << PAGE_SHIFT;
594
595 if (adev->mman.aper_base_kaddr &&
596 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
597 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
598 mem->bus.offset;
599
600 mem->bus.offset += adev->gmc.aper_base;
601 mem->bus.is_iomem = true;
602 break;
603 case AMDGPU_PL_DOORBELL:
604 mem->bus.offset = mem->start << PAGE_SHIFT;
605 mem->bus.offset += adev->doorbell.base;
606 mem->bus.is_iomem = true;
607 mem->bus.caching = ttm_uncached;
608 break;
609 default:
610 return -EINVAL;
611 }
612 return 0;
613 }
614
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)615 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
616 unsigned long page_offset)
617 {
618 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
619 struct amdgpu_res_cursor cursor;
620
621 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
622 &cursor);
623
624 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
625 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
626
627 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
628 }
629
630 /**
631 * amdgpu_ttm_domain_start - Returns GPU start address
632 * @adev: amdgpu device object
633 * @type: type of the memory
634 *
635 * Returns:
636 * GPU start address of a memory domain
637 */
638
amdgpu_ttm_domain_start(struct amdgpu_device * adev,uint32_t type)639 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
640 {
641 switch (type) {
642 case TTM_PL_TT:
643 return adev->gmc.gart_start;
644 case TTM_PL_VRAM:
645 return adev->gmc.vram_start;
646 }
647
648 return 0;
649 }
650
651 /*
652 * TTM backend functions.
653 */
654 struct amdgpu_ttm_tt {
655 struct ttm_tt ttm;
656 struct drm_gem_object *gobj;
657 u64 offset;
658 uint64_t userptr;
659 struct task_struct *usertask;
660 uint32_t userflags;
661 bool bound;
662 int32_t pool_id;
663 };
664
665 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
666
667 #ifdef CONFIG_DRM_AMDGPU_USERPTR
668 /*
669 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
670 * memory and start HMM tracking CPU page table update
671 *
672 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
673 * once afterwards to stop HMM tracking
674 */
amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo * bo,struct vm_page ** pages,struct hmm_range ** range)675 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct vm_page **pages,
676 struct hmm_range **range)
677 {
678 struct ttm_tt *ttm = bo->tbo.ttm;
679 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
680 unsigned long start = gtt->userptr;
681 struct vm_area_struct *vma;
682 struct mm_struct *mm;
683 bool readonly;
684 int r = 0;
685
686 /* Make sure get_user_pages_done() can cleanup gracefully */
687 *range = NULL;
688
689 mm = bo->notifier.mm;
690 if (unlikely(!mm)) {
691 DRM_DEBUG_DRIVER("BO is not registered?\n");
692 return -EFAULT;
693 }
694
695 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
696 return -ESRCH;
697
698 mmap_read_lock(mm);
699 vma = vma_lookup(mm, start);
700 if (unlikely(!vma)) {
701 r = -EFAULT;
702 goto out_unlock;
703 }
704 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
705 vma->vm_file)) {
706 r = -EPERM;
707 goto out_unlock;
708 }
709
710 readonly = amdgpu_ttm_tt_is_readonly(ttm);
711 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
712 readonly, NULL, pages, range);
713 out_unlock:
714 mmap_read_unlock(mm);
715 if (r)
716 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
717
718 mmput(mm);
719
720 return r;
721 }
722
723 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
724 */
amdgpu_ttm_tt_discard_user_pages(struct ttm_tt * ttm,struct hmm_range * range)725 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
726 struct hmm_range *range)
727 {
728 struct amdgpu_ttm_tt *gtt = (void *)ttm;
729
730 if (gtt && gtt->userptr && range)
731 amdgpu_hmm_range_get_pages_done(range);
732 }
733
734 /*
735 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
736 * Check if the pages backing this ttm range have been invalidated
737 *
738 * Returns: true if pages are still valid
739 */
amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt * ttm,struct hmm_range * range)740 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
741 struct hmm_range *range)
742 {
743 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
744
745 if (!gtt || !gtt->userptr || !range)
746 return false;
747
748 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
749 gtt->userptr, ttm->num_pages);
750
751 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
752
753 return !amdgpu_hmm_range_get_pages_done(range);
754 }
755 #endif
756
757 /*
758 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
759 *
760 * Called by amdgpu_cs_list_validate(). This creates the page list
761 * that backs user memory and will ultimately be mapped into the device
762 * address space.
763 */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct vm_page ** pages)764 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct vm_page **pages)
765 {
766 unsigned long i;
767
768 for (i = 0; i < ttm->num_pages; ++i)
769 ttm->pages[i] = pages ? pages[i] : NULL;
770 }
771
772 /*
773 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
774 *
775 * Called by amdgpu_ttm_backend_bind()
776 **/
amdgpu_ttm_tt_pin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)777 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
778 struct ttm_tt *ttm)
779 {
780 STUB();
781 return -ENOSYS;
782 #ifdef notyet
783 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
784 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
785 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
786 enum dma_data_direction direction = write ?
787 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
788 int r;
789
790 /* Allocate an SG array and squash pages into it */
791 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
792 (u64)ttm->num_pages << PAGE_SHIFT,
793 GFP_KERNEL);
794 if (r)
795 goto release_sg;
796
797 /* Map SG to device */
798 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
799 if (r)
800 goto release_sg_table;
801
802 /* convert SG to linear array of pages and dma addresses */
803 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
804 ttm->num_pages);
805
806 return 0;
807
808 release_sg_table:
809 sg_free_table(ttm->sg);
810 release_sg:
811 kfree(ttm->sg);
812 ttm->sg = NULL;
813 return r;
814 #endif
815 }
816
817 /*
818 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
819 */
amdgpu_ttm_tt_unpin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)820 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
821 struct ttm_tt *ttm)
822 {
823 STUB();
824 #ifdef notyet
825 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
826 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
827 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
828 enum dma_data_direction direction = write ?
829 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
830
831 /* double check that we don't free the table twice */
832 if (!ttm->sg || !ttm->sg->sgl)
833 return;
834
835 /* unmap the pages mapped to the device */
836 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
837 sg_free_table(ttm->sg);
838 #endif
839 }
840
841 /*
842 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
843 * MQDn+CtrlStackn where n is the number of XCCs per partition.
844 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
845 * and uses memory type default, UC. The rest of pages_per_xcc are
846 * Ctrl stack and modify their memory type to NC.
847 */
amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device * adev,struct ttm_tt * ttm,uint64_t flags)848 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
849 struct ttm_tt *ttm, uint64_t flags)
850 {
851 struct amdgpu_ttm_tt *gtt = (void *)ttm;
852 uint64_t total_pages = ttm->num_pages;
853 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
854 uint64_t page_idx, pages_per_xcc;
855 int i;
856 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
857 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
858
859 pages_per_xcc = total_pages;
860 do_div(pages_per_xcc, num_xcc);
861
862 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
863 /* MQD page: use default flags */
864 amdgpu_gart_bind(adev,
865 gtt->offset + (page_idx << PAGE_SHIFT),
866 1, >t->ttm.dma_address[page_idx], flags);
867 /*
868 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
869 * the second page of the BO onward.
870 */
871 amdgpu_gart_bind(adev,
872 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
873 pages_per_xcc - 1,
874 >t->ttm.dma_address[page_idx + 1],
875 ctrl_flags);
876 }
877 }
878
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)879 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
880 struct ttm_buffer_object *tbo,
881 uint64_t flags)
882 {
883 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
884 struct ttm_tt *ttm = tbo->ttm;
885 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
886
887 if (amdgpu_bo_encrypted(abo))
888 flags |= AMDGPU_PTE_TMZ;
889
890 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
891 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
892 } else {
893 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
894 gtt->ttm.dma_address, flags);
895 }
896 gtt->bound = true;
897 }
898
899 /*
900 * amdgpu_ttm_backend_bind - Bind GTT memory
901 *
902 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
903 * This handles binding GTT memory to the device address space.
904 */
amdgpu_ttm_backend_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)905 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
906 struct ttm_tt *ttm,
907 struct ttm_resource *bo_mem)
908 {
909 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
910 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
911 uint64_t flags;
912 int r;
913
914 if (!bo_mem)
915 return -EINVAL;
916
917 if (gtt->bound)
918 return 0;
919
920 if (gtt->userptr) {
921 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
922 if (r) {
923 DRM_ERROR("failed to pin userptr\n");
924 return r;
925 }
926 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
927 if (!ttm->sg) {
928 struct dma_buf_attachment *attach;
929 struct sg_table *sgt;
930
931 attach = gtt->gobj->import_attach;
932 #ifdef notyet
933 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
934 if (IS_ERR(sgt))
935 return PTR_ERR(sgt);
936 #else
937 STUB();
938 return -ENOSYS;
939 #endif
940
941 ttm->sg = sgt;
942 }
943
944 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
945 ttm->num_pages);
946 }
947
948 if (!ttm->num_pages) {
949 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
950 ttm->num_pages, bo_mem, ttm);
951 }
952
953 if (bo_mem->mem_type != TTM_PL_TT ||
954 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
955 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
956 return 0;
957 }
958
959 /* compute PTE flags relevant to this BO memory */
960 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
961
962 /* bind pages into GART page tables */
963 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
964 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
965 gtt->ttm.dma_address, flags);
966 gtt->bound = true;
967 return 0;
968 }
969
970 /*
971 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
972 * through AGP or GART aperture.
973 *
974 * If bo is accessible through AGP aperture, then use AGP aperture
975 * to access bo; otherwise allocate logical space in GART aperture
976 * and map bo to GART aperture.
977 */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)978 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
979 {
980 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
981 struct ttm_operation_ctx ctx = { false, false };
982 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
983 struct ttm_placement placement;
984 struct ttm_place placements;
985 struct ttm_resource *tmp;
986 uint64_t addr, flags;
987 int r;
988
989 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
990 return 0;
991
992 addr = amdgpu_gmc_agp_addr(bo);
993 if (addr != AMDGPU_BO_INVALID_OFFSET) {
994 bo->resource->start = addr >> PAGE_SHIFT;
995 return 0;
996 }
997
998 /* allocate GART space */
999 placement.num_placement = 1;
1000 placement.placement = &placements;
1001 placement.num_busy_placement = 1;
1002 placement.busy_placement = &placements;
1003 placements.fpfn = 0;
1004 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1005 placements.mem_type = TTM_PL_TT;
1006 placements.flags = bo->resource->placement;
1007
1008 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1009 if (unlikely(r))
1010 return r;
1011
1012 /* compute PTE flags for this buffer object */
1013 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1014
1015 /* Bind pages */
1016 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1017 amdgpu_ttm_gart_bind(adev, bo, flags);
1018 amdgpu_gart_invalidate_tlb(adev);
1019 ttm_resource_free(bo, &bo->resource);
1020 ttm_bo_assign_mem(bo, tmp);
1021
1022 return 0;
1023 }
1024
1025 /*
1026 * amdgpu_ttm_recover_gart - Rebind GTT pages
1027 *
1028 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1029 * rebind GTT pages during a GPU reset.
1030 */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)1031 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1032 {
1033 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1034 uint64_t flags;
1035
1036 if (!tbo->ttm)
1037 return;
1038
1039 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1040 amdgpu_ttm_gart_bind(adev, tbo, flags);
1041 }
1042
1043 /*
1044 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1045 *
1046 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1047 * ttm_tt_destroy().
1048 */
amdgpu_ttm_backend_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)1049 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1050 struct ttm_tt *ttm)
1051 {
1052 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1053 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1054
1055 /* if the pages have userptr pinning then clear that first */
1056 if (gtt->userptr) {
1057 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1058 } else if (ttm->sg && gtt->gobj->import_attach) {
1059 struct dma_buf_attachment *attach;
1060
1061 attach = gtt->gobj->import_attach;
1062 #ifdef notyet
1063 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1064 #else
1065 STUB();
1066 #endif
1067 ttm->sg = NULL;
1068 }
1069
1070 if (!gtt->bound)
1071 return;
1072
1073 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1074 return;
1075
1076 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1077 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1078 gtt->bound = false;
1079 }
1080
amdgpu_ttm_backend_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)1081 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1082 struct ttm_tt *ttm)
1083 {
1084 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1085
1086 #ifdef notyet
1087 if (gtt->usertask)
1088 put_task_struct(gtt->usertask);
1089 #endif
1090
1091 ttm_tt_fini(>t->ttm);
1092 kfree(gtt);
1093 }
1094
1095 /**
1096 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1097 *
1098 * @bo: The buffer object to create a GTT ttm_tt object around
1099 * @page_flags: Page flags to be added to the ttm_tt object
1100 *
1101 * Called by ttm_tt_create().
1102 */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1103 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1104 uint32_t page_flags)
1105 {
1106 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1107 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1108 struct amdgpu_ttm_tt *gtt;
1109 enum ttm_caching caching;
1110
1111 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1112 if (!gtt)
1113 return NULL;
1114
1115 gtt->gobj = &bo->base;
1116 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1117 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1118 else
1119 gtt->pool_id = abo->xcp_id;
1120
1121 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1122 caching = ttm_write_combined;
1123 else
1124 caching = ttm_cached;
1125
1126 /* allocate space for the uninitialized page entries */
1127 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1128 kfree(gtt);
1129 return NULL;
1130 }
1131 return >t->ttm;
1132 }
1133
1134 /*
1135 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1136 *
1137 * Map the pages of a ttm_tt object to an address space visible
1138 * to the underlying device.
1139 */
amdgpu_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1140 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1141 struct ttm_tt *ttm,
1142 struct ttm_operation_ctx *ctx)
1143 {
1144 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1145 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1146 struct ttm_pool *pool;
1147 pgoff_t i;
1148 int ret;
1149
1150 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1151 if (gtt->userptr) {
1152 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1153 if (!ttm->sg)
1154 return -ENOMEM;
1155 return 0;
1156 }
1157
1158 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1159 return 0;
1160
1161 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1162 pool = &adev->mman.ttm_pools[gtt->pool_id];
1163 else
1164 pool = &adev->mman.bdev.pool;
1165 ret = ttm_pool_alloc(pool, ttm, ctx);
1166 if (ret)
1167 return ret;
1168
1169 #ifdef notyet
1170 for (i = 0; i < ttm->num_pages; ++i)
1171 ttm->pages[i]->mapping = bdev->dev_mapping;
1172 #endif
1173
1174 return 0;
1175 }
1176
1177 /*
1178 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1179 *
1180 * Unmaps pages of a ttm_tt object from the device address space and
1181 * unpopulates the page array backing it.
1182 */
amdgpu_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)1183 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1184 struct ttm_tt *ttm)
1185 {
1186 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1187 struct amdgpu_device *adev;
1188 struct ttm_pool *pool;
1189 pgoff_t i;
1190 struct vm_page *page;
1191
1192 amdgpu_ttm_backend_unbind(bdev, ttm);
1193
1194 if (gtt->userptr) {
1195 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1196 kfree(ttm->sg);
1197 ttm->sg = NULL;
1198 return;
1199 }
1200
1201 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1202 return;
1203
1204 for (i = 0; i < ttm->num_pages; ++i) {
1205 page = ttm->pages[i];
1206 if (unlikely(page == NULL))
1207 continue;
1208 pmap_page_protect(page, PROT_NONE);
1209 }
1210
1211 adev = amdgpu_ttm_adev(bdev);
1212
1213 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1214 pool = &adev->mman.ttm_pools[gtt->pool_id];
1215 else
1216 pool = &adev->mman.bdev.pool;
1217
1218 return ttm_pool_free(pool, ttm);
1219 }
1220
1221 /**
1222 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1223 * task
1224 *
1225 * @tbo: The ttm_buffer_object that contains the userptr
1226 * @user_addr: The returned value
1227 */
amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object * tbo,uint64_t * user_addr)1228 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1229 uint64_t *user_addr)
1230 {
1231 struct amdgpu_ttm_tt *gtt;
1232
1233 if (!tbo->ttm)
1234 return -EINVAL;
1235
1236 gtt = (void *)tbo->ttm;
1237 *user_addr = gtt->userptr;
1238 return 0;
1239 }
1240
1241 /**
1242 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1243 * task
1244 *
1245 * @bo: The ttm_buffer_object to bind this userptr to
1246 * @addr: The address in the current tasks VM space to use
1247 * @flags: Requirements of userptr object.
1248 *
1249 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1250 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1251 * initialize GPU VM for a KFD process.
1252 */
amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object * bo,uint64_t addr,uint32_t flags)1253 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1254 uint64_t addr, uint32_t flags)
1255 {
1256 struct amdgpu_ttm_tt *gtt;
1257
1258 if (!bo->ttm) {
1259 /* TODO: We want a separate TTM object type for userptrs */
1260 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1261 if (bo->ttm == NULL)
1262 return -ENOMEM;
1263 }
1264
1265 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1266 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1267
1268 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1269 gtt->userptr = addr;
1270 gtt->userflags = flags;
1271
1272 #ifdef notyet
1273 if (gtt->usertask)
1274 put_task_struct(gtt->usertask);
1275 gtt->usertask = current->group_leader;
1276 get_task_struct(gtt->usertask);
1277 #endif
1278
1279 return 0;
1280 }
1281
1282 /*
1283 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1284 */
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1285 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1286 {
1287 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1288
1289 if (gtt == NULL)
1290 return NULL;
1291
1292 if (gtt->usertask == NULL)
1293 return NULL;
1294
1295 #ifdef notyet
1296 return gtt->usertask->mm;
1297 #else
1298 STUB();
1299 return NULL;
1300 #endif
1301 }
1302
1303 /*
1304 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1305 * address range for the current task.
1306 *
1307 */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end,unsigned long * userptr)1308 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1309 unsigned long end, unsigned long *userptr)
1310 {
1311 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1312 unsigned long size;
1313
1314 if (gtt == NULL || !gtt->userptr)
1315 return false;
1316
1317 /* Return false if no part of the ttm_tt object lies within
1318 * the range
1319 */
1320 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1321 if (gtt->userptr > end || gtt->userptr + size <= start)
1322 return false;
1323
1324 if (userptr)
1325 *userptr = gtt->userptr;
1326 return true;
1327 }
1328
1329 /*
1330 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1331 */
amdgpu_ttm_tt_is_userptr(struct ttm_tt * ttm)1332 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1333 {
1334 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1335
1336 if (gtt == NULL || !gtt->userptr)
1337 return false;
1338
1339 return true;
1340 }
1341
1342 /*
1343 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1344 */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1345 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1346 {
1347 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1348
1349 if (gtt == NULL)
1350 return false;
1351
1352 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1353 }
1354
1355 /**
1356 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1357 *
1358 * @ttm: The ttm_tt object to compute the flags for
1359 * @mem: The memory registry backing this ttm_tt object
1360 *
1361 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1362 */
amdgpu_ttm_tt_pde_flags(struct ttm_tt * ttm,struct ttm_resource * mem)1363 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1364 {
1365 uint64_t flags = 0;
1366
1367 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1368 flags |= AMDGPU_PTE_VALID;
1369
1370 if (mem && (mem->mem_type == TTM_PL_TT ||
1371 mem->mem_type == AMDGPU_PL_DOORBELL ||
1372 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1373 flags |= AMDGPU_PTE_SYSTEM;
1374
1375 if (ttm->caching == ttm_cached)
1376 flags |= AMDGPU_PTE_SNOOPED;
1377 }
1378
1379 if (mem && mem->mem_type == TTM_PL_VRAM &&
1380 mem->bus.caching == ttm_cached)
1381 flags |= AMDGPU_PTE_SNOOPED;
1382
1383 return flags;
1384 }
1385
1386 /**
1387 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1388 *
1389 * @adev: amdgpu_device pointer
1390 * @ttm: The ttm_tt object to compute the flags for
1391 * @mem: The memory registry backing this ttm_tt object
1392 *
1393 * Figure out the flags to use for a VM PTE (Page Table Entry).
1394 */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_resource * mem)1395 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1396 struct ttm_resource *mem)
1397 {
1398 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1399
1400 flags |= adev->gart.gart_pte_flags;
1401 flags |= AMDGPU_PTE_READABLE;
1402
1403 if (!amdgpu_ttm_tt_is_readonly(ttm))
1404 flags |= AMDGPU_PTE_WRITEABLE;
1405
1406 return flags;
1407 }
1408
1409 /*
1410 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1411 * object.
1412 *
1413 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1414 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1415 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1416 * used to clean out a memory space.
1417 */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1418 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1419 const struct ttm_place *place)
1420 {
1421 struct dma_resv_iter resv_cursor;
1422 struct dma_fence *f;
1423
1424 if (!amdgpu_bo_is_amdgpu_bo(bo))
1425 return ttm_bo_eviction_valuable(bo, place);
1426
1427 /* Swapout? */
1428 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1429 return true;
1430
1431 if (bo->type == ttm_bo_type_kernel &&
1432 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1433 return false;
1434
1435 /* If bo is a KFD BO, check if the bo belongs to the current process.
1436 * If true, then return false as any KFD process needs all its BOs to
1437 * be resident to run successfully
1438 */
1439 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1440 DMA_RESV_USAGE_BOOKKEEP, f) {
1441 #ifdef notyet
1442 if (amdkfd_fence_check_mm(f, current->mm))
1443 return false;
1444 #endif
1445 }
1446
1447 /* Preemptible BOs don't own system resources managed by the
1448 * driver (pages, VRAM, GART space). They point to resources
1449 * owned by someone else (e.g. pageable memory in user mode
1450 * or a DMABuf). They are used in a preemptible context so we
1451 * can guarantee no deadlocks and good QoS in case of MMU
1452 * notifiers or DMABuf move notifiers from the resource owner.
1453 */
1454 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1455 return false;
1456
1457 if (bo->resource->mem_type == TTM_PL_TT &&
1458 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1459 return false;
1460
1461 return ttm_bo_eviction_valuable(bo, place);
1462 }
1463
amdgpu_ttm_vram_mm_access(struct amdgpu_device * adev,loff_t pos,void * buf,size_t size,bool write)1464 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1465 void *buf, size_t size, bool write)
1466 {
1467 STUB();
1468 #ifdef notyet
1469 while (size) {
1470 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1471 uint64_t bytes = 4 - (pos & 0x3);
1472 uint32_t shift = (pos & 0x3) * 8;
1473 uint32_t mask = 0xffffffff << shift;
1474 uint32_t value = 0;
1475
1476 if (size < bytes) {
1477 mask &= 0xffffffff >> (bytes - size) * 8;
1478 bytes = size;
1479 }
1480
1481 if (mask != 0xffffffff) {
1482 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1483 if (write) {
1484 value &= ~mask;
1485 value |= (*(uint32_t *)buf << shift) & mask;
1486 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1487 } else {
1488 value = (value & mask) >> shift;
1489 memcpy(buf, &value, bytes);
1490 }
1491 } else {
1492 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1493 }
1494
1495 pos += bytes;
1496 buf += bytes;
1497 size -= bytes;
1498 }
1499 #endif
1500 }
1501
amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1502 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1503 unsigned long offset, void *buf,
1504 int len, int write)
1505 {
1506 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1507 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1508 struct amdgpu_res_cursor src_mm;
1509 struct amdgpu_job *job;
1510 struct dma_fence *fence;
1511 uint64_t src_addr, dst_addr;
1512 unsigned int num_dw;
1513 int r, idx;
1514
1515 if (len != PAGE_SIZE)
1516 return -EINVAL;
1517
1518 if (!adev->mman.sdma_access_ptr)
1519 return -EACCES;
1520
1521 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1522 return -ENODEV;
1523
1524 if (write)
1525 memcpy(adev->mman.sdma_access_ptr, buf, len);
1526
1527 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1528 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1529 AMDGPU_FENCE_OWNER_UNDEFINED,
1530 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1531 &job);
1532 if (r)
1533 goto out;
1534
1535 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1536 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1537 src_mm.start;
1538 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1539 if (write)
1540 swap(src_addr, dst_addr);
1541
1542 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1543 PAGE_SIZE, false);
1544
1545 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1546 WARN_ON(job->ibs[0].length_dw > num_dw);
1547
1548 fence = amdgpu_job_submit(job);
1549
1550 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1551 r = -ETIMEDOUT;
1552 dma_fence_put(fence);
1553
1554 if (!(r || write))
1555 memcpy(buf, adev->mman.sdma_access_ptr, len);
1556 out:
1557 drm_dev_exit(idx);
1558 return r;
1559 }
1560
1561 /**
1562 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1563 *
1564 * @bo: The buffer object to read/write
1565 * @offset: Offset into buffer object
1566 * @buf: Secondary buffer to write/read from
1567 * @len: Length in bytes of access
1568 * @write: true if writing
1569 *
1570 * This is used to access VRAM that backs a buffer object via MMIO
1571 * access for debugging purposes.
1572 */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1573 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1574 unsigned long offset, void *buf, int len,
1575 int write)
1576 {
1577 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1578 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1579 struct amdgpu_res_cursor cursor;
1580 int ret = 0;
1581
1582 if (bo->resource->mem_type != TTM_PL_VRAM)
1583 return -EIO;
1584
1585 if (amdgpu_device_has_timeouts_enabled(adev) &&
1586 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1587 return len;
1588
1589 amdgpu_res_first(bo->resource, offset, len, &cursor);
1590 while (cursor.remaining) {
1591 size_t count, size = cursor.size;
1592 loff_t pos = cursor.start;
1593
1594 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1595 size -= count;
1596 if (size) {
1597 /* using MM to access rest vram and handle un-aligned address */
1598 pos += count;
1599 buf += count;
1600 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1601 }
1602
1603 ret += cursor.size;
1604 buf += cursor.size;
1605 amdgpu_res_next(&cursor, cursor.size);
1606 }
1607
1608 return ret;
1609 }
1610
1611 static void
amdgpu_bo_delete_mem_notify(struct ttm_buffer_object * bo)1612 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1613 {
1614 amdgpu_bo_move_notify(bo, false, NULL);
1615 }
1616
1617 static struct ttm_device_funcs amdgpu_bo_driver = {
1618 .ttm_tt_create = &amdgpu_ttm_tt_create,
1619 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1620 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1621 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1622 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1623 .evict_flags = &amdgpu_evict_flags,
1624 .move = &amdgpu_bo_move,
1625 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1626 .release_notify = &amdgpu_bo_release_notify,
1627 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1628 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1629 .access_memory = &amdgpu_ttm_access_memory,
1630 };
1631
1632 /*
1633 * Firmware Reservation functions
1634 */
1635 /**
1636 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1637 *
1638 * @adev: amdgpu_device pointer
1639 *
1640 * free fw reserved vram if it has been reserved.
1641 */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1642 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1643 {
1644 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1645 NULL, &adev->mman.fw_vram_usage_va);
1646 }
1647
1648 /*
1649 * Driver Reservation functions
1650 */
1651 /**
1652 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1653 *
1654 * @adev: amdgpu_device pointer
1655 *
1656 * free drv reserved vram if it has been reserved.
1657 */
amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device * adev)1658 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1659 {
1660 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1661 NULL,
1662 &adev->mman.drv_vram_usage_va);
1663 }
1664
1665 /**
1666 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1667 *
1668 * @adev: amdgpu_device pointer
1669 *
1670 * create bo vram reservation from fw.
1671 */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1672 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1673 {
1674 uint64_t vram_size = adev->gmc.visible_vram_size;
1675
1676 adev->mman.fw_vram_usage_va = NULL;
1677 adev->mman.fw_vram_usage_reserved_bo = NULL;
1678
1679 if (adev->mman.fw_vram_usage_size == 0 ||
1680 adev->mman.fw_vram_usage_size > vram_size)
1681 return 0;
1682
1683 return amdgpu_bo_create_kernel_at(adev,
1684 adev->mman.fw_vram_usage_start_offset,
1685 adev->mman.fw_vram_usage_size,
1686 &adev->mman.fw_vram_usage_reserved_bo,
1687 &adev->mman.fw_vram_usage_va);
1688 }
1689
1690 /**
1691 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1692 *
1693 * @adev: amdgpu_device pointer
1694 *
1695 * create bo vram reservation from drv.
1696 */
amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device * adev)1697 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1698 {
1699 u64 vram_size = adev->gmc.visible_vram_size;
1700
1701 adev->mman.drv_vram_usage_va = NULL;
1702 adev->mman.drv_vram_usage_reserved_bo = NULL;
1703
1704 if (adev->mman.drv_vram_usage_size == 0 ||
1705 adev->mman.drv_vram_usage_size > vram_size)
1706 return 0;
1707
1708 return amdgpu_bo_create_kernel_at(adev,
1709 adev->mman.drv_vram_usage_start_offset,
1710 adev->mman.drv_vram_usage_size,
1711 &adev->mman.drv_vram_usage_reserved_bo,
1712 &adev->mman.drv_vram_usage_va);
1713 }
1714
1715 /*
1716 * Memoy training reservation functions
1717 */
1718
1719 /**
1720 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1721 *
1722 * @adev: amdgpu_device pointer
1723 *
1724 * free memory training reserved vram if it has been reserved.
1725 */
amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device * adev)1726 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1727 {
1728 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1729
1730 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1731 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1732 ctx->c2p_bo = NULL;
1733
1734 return 0;
1735 }
1736
amdgpu_ttm_training_data_block_init(struct amdgpu_device * adev,uint32_t reserve_size)1737 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1738 uint32_t reserve_size)
1739 {
1740 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1741
1742 memset(ctx, 0, sizeof(*ctx));
1743
1744 ctx->c2p_train_data_offset =
1745 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1746 ctx->p2c_train_data_offset =
1747 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1748 ctx->train_data_size =
1749 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1750
1751 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1752 ctx->train_data_size,
1753 ctx->p2c_train_data_offset,
1754 ctx->c2p_train_data_offset);
1755 }
1756
1757 /*
1758 * reserve TMR memory at the top of VRAM which holds
1759 * IP Discovery data and is protected by PSP.
1760 */
amdgpu_ttm_reserve_tmr(struct amdgpu_device * adev)1761 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1762 {
1763 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1764 bool mem_train_support = false;
1765 uint32_t reserve_size = 0;
1766 int ret;
1767
1768 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1769 if (amdgpu_atomfirmware_mem_training_supported(adev))
1770 mem_train_support = true;
1771 else
1772 DRM_DEBUG("memory training does not support!\n");
1773 }
1774
1775 /*
1776 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1777 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1778 *
1779 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1780 * discovery data and G6 memory training data respectively
1781 */
1782 if (adev->bios)
1783 reserve_size =
1784 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1785
1786 if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3))
1787 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1788 else if (!reserve_size)
1789 reserve_size = DISCOVERY_TMR_OFFSET;
1790
1791 if (mem_train_support) {
1792 /* reserve vram for mem train according to TMR location */
1793 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1794 ret = amdgpu_bo_create_kernel_at(adev,
1795 ctx->c2p_train_data_offset,
1796 ctx->train_data_size,
1797 &ctx->c2p_bo,
1798 NULL);
1799 if (ret) {
1800 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1801 amdgpu_ttm_training_reserve_vram_fini(adev);
1802 return ret;
1803 }
1804 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1805 }
1806
1807 if (!adev->gmc.is_app_apu) {
1808 ret = amdgpu_bo_create_kernel_at(
1809 adev, adev->gmc.real_vram_size - reserve_size,
1810 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1811 if (ret) {
1812 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1813 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1814 NULL, NULL);
1815 return ret;
1816 }
1817 } else {
1818 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1819 }
1820
1821 return 0;
1822 }
1823
amdgpu_ttm_pools_init(struct amdgpu_device * adev)1824 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1825 {
1826 int i;
1827
1828 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1829 return 0;
1830
1831 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1832 sizeof(*adev->mman.ttm_pools),
1833 GFP_KERNEL);
1834 if (!adev->mman.ttm_pools)
1835 return -ENOMEM;
1836
1837 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1838 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1839 adev->gmc.mem_partitions[i].numa.node,
1840 false, false);
1841 }
1842 return 0;
1843 }
1844
amdgpu_ttm_pools_fini(struct amdgpu_device * adev)1845 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1846 {
1847 int i;
1848
1849 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1850 return;
1851
1852 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1853 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1854
1855 kfree(adev->mman.ttm_pools);
1856 adev->mman.ttm_pools = NULL;
1857 }
1858
1859 /*
1860 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1861 * gtt/vram related fields.
1862 *
1863 * This initializes all of the memory space pools that the TTM layer
1864 * will need such as the GTT space (system memory mapped to the device),
1865 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1866 * can be mapped per VMID.
1867 */
amdgpu_ttm_init(struct amdgpu_device * adev)1868 int amdgpu_ttm_init(struct amdgpu_device *adev)
1869 {
1870 uint64_t gtt_size;
1871 int r;
1872
1873 rw_init(&adev->mman.gtt_window_lock, "gttwin");
1874
1875 dma_set_max_seg_size(adev->dev, UINT_MAX);
1876 /* No others user of address space so set it to 0 */
1877 #ifdef notyet
1878 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1879 adev_to_drm(adev)->anon_inode->i_mapping,
1880 adev_to_drm(adev)->vma_offset_manager,
1881 adev->need_swiotlb,
1882 dma_addressing_limited(adev->dev));
1883 #else
1884 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1885 /*adev_to_drm(adev)->anon_inode->i_mapping*/NULL,
1886 adev_to_drm(adev)->vma_offset_manager,
1887 adev->need_swiotlb,
1888 dma_addressing_limited(adev->dev));
1889 #endif
1890 if (r) {
1891 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1892 return r;
1893 }
1894
1895 r = amdgpu_ttm_pools_init(adev);
1896 if (r) {
1897 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1898 return r;
1899 }
1900 adev->mman.bdev.iot = adev->iot;
1901 adev->mman.bdev.memt = adev->memt;
1902 adev->mman.bdev.dmat = adev->dmat;
1903 adev->mman.initialized = true;
1904
1905 /* Initialize VRAM pool with all of VRAM divided into pages */
1906 r = amdgpu_vram_mgr_init(adev);
1907 if (r) {
1908 DRM_ERROR("Failed initializing VRAM heap.\n");
1909 return r;
1910 }
1911
1912 /* Change the size here instead of the init above so only lpfn is affected */
1913 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1914 #if defined(CONFIG_64BIT) && defined(__linux__)
1915 #ifdef CONFIG_X86
1916 if (adev->gmc.xgmi.connected_to_cpu)
1917 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1918 adev->gmc.visible_vram_size);
1919
1920 else if (adev->gmc.is_app_apu)
1921 DRM_DEBUG_DRIVER(
1922 "No need to ioremap when real vram size is 0\n");
1923 else
1924 #endif
1925 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1926 adev->gmc.visible_vram_size);
1927 #else
1928 if (bus_space_map(adev->memt, adev->gmc.aper_base,
1929 adev->gmc.visible_vram_size,
1930 BUS_SPACE_MAP_LINEAR | BUS_SPACE_MAP_PREFETCHABLE,
1931 &adev->mman.aper_bsh)) {
1932 adev->mman.aper_base_kaddr = NULL;
1933 } else {
1934 adev->mman.aper_base_kaddr = bus_space_vaddr(adev->memt,
1935 adev->mman.aper_bsh);
1936 }
1937 #endif
1938
1939 /*
1940 *The reserved vram for firmware must be pinned to the specified
1941 *place on the VRAM, so reserve it early.
1942 */
1943 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1944 if (r)
1945 return r;
1946
1947 /*
1948 *The reserved vram for driver must be pinned to the specified
1949 *place on the VRAM, so reserve it early.
1950 */
1951 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1952 if (r)
1953 return r;
1954
1955 /*
1956 * only NAVI10 and onwards ASIC support for IP discovery.
1957 * If IP discovery enabled, a block of memory should be
1958 * reserved for IP discovey.
1959 */
1960 if (adev->mman.discovery_bin) {
1961 r = amdgpu_ttm_reserve_tmr(adev);
1962 if (r)
1963 return r;
1964 }
1965
1966 /* allocate memory as required for VGA
1967 * This is used for VGA emulation and pre-OS scanout buffers to
1968 * avoid display artifacts while transitioning between pre-OS
1969 * and driver.
1970 */
1971 if (!adev->gmc.is_app_apu) {
1972 r = amdgpu_bo_create_kernel_at(adev, 0,
1973 adev->mman.stolen_vga_size,
1974 &adev->mman.stolen_vga_memory,
1975 NULL);
1976 if (r)
1977 return r;
1978
1979 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1980 adev->mman.stolen_extended_size,
1981 &adev->mman.stolen_extended_memory,
1982 NULL);
1983
1984 if (r)
1985 return r;
1986
1987 r = amdgpu_bo_create_kernel_at(adev,
1988 adev->mman.stolen_reserved_offset,
1989 adev->mman.stolen_reserved_size,
1990 &adev->mman.stolen_reserved_memory,
1991 NULL);
1992 if (r)
1993 return r;
1994 } else {
1995 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1996 }
1997
1998 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1999 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
2000
2001 /* Compute GTT size, either based on TTM limit
2002 * or whatever the user passed on module init.
2003 */
2004 if (amdgpu_gtt_size == -1)
2005 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
2006 else
2007 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
2008
2009 /* Initialize GTT memory pool */
2010 r = amdgpu_gtt_mgr_init(adev, gtt_size);
2011 if (r) {
2012 DRM_ERROR("Failed initializing GTT heap.\n");
2013 return r;
2014 }
2015 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
2016 (unsigned int)(gtt_size / (1024 * 1024)));
2017
2018 /* Initiailize doorbell pool on PCI BAR */
2019 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
2020 if (r) {
2021 DRM_ERROR("Failed initializing doorbell heap.\n");
2022 return r;
2023 }
2024
2025 /* Create a boorbell page for kernel usages */
2026 r = amdgpu_doorbell_create_kernel_doorbells(adev);
2027 if (r) {
2028 DRM_ERROR("Failed to initialize kernel doorbells.\n");
2029 return r;
2030 }
2031
2032 /* Initialize preemptible memory pool */
2033 r = amdgpu_preempt_mgr_init(adev);
2034 if (r) {
2035 DRM_ERROR("Failed initializing PREEMPT heap.\n");
2036 return r;
2037 }
2038
2039 /* Initialize various on-chip memory pools */
2040 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
2041 if (r) {
2042 DRM_ERROR("Failed initializing GDS heap.\n");
2043 return r;
2044 }
2045
2046 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2047 if (r) {
2048 DRM_ERROR("Failed initializing gws heap.\n");
2049 return r;
2050 }
2051
2052 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2053 if (r) {
2054 DRM_ERROR("Failed initializing oa heap.\n");
2055 return r;
2056 }
2057 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2058 AMDGPU_GEM_DOMAIN_GTT,
2059 &adev->mman.sdma_access_bo, NULL,
2060 &adev->mman.sdma_access_ptr))
2061 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2062
2063 return 0;
2064 }
2065
2066 /*
2067 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2068 */
amdgpu_ttm_fini(struct amdgpu_device * adev)2069 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2070 {
2071 int idx;
2072
2073 if (!adev->mman.initialized)
2074 return;
2075
2076 amdgpu_ttm_pools_fini(adev);
2077
2078 amdgpu_ttm_training_reserve_vram_fini(adev);
2079 /* return the stolen vga memory back to VRAM */
2080 if (!adev->gmc.is_app_apu) {
2081 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2082 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2083 /* return the FW reserved memory back to VRAM */
2084 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2085 NULL);
2086 if (adev->mman.stolen_reserved_size)
2087 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2088 NULL, NULL);
2089 }
2090 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2091 &adev->mman.sdma_access_ptr);
2092 amdgpu_ttm_fw_reserve_vram_fini(adev);
2093 amdgpu_ttm_drv_reserve_vram_fini(adev);
2094
2095 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2096
2097 #ifdef __linux__
2098 if (adev->mman.aper_base_kaddr)
2099 iounmap(adev->mman.aper_base_kaddr);
2100 #else
2101 if (adev->mman.aper_base_kaddr)
2102 bus_space_unmap(adev->memt, adev->mman.aper_bsh,
2103 adev->gmc.visible_vram_size);
2104 #endif
2105 adev->mman.aper_base_kaddr = NULL;
2106
2107 drm_dev_exit(idx);
2108 }
2109
2110 amdgpu_vram_mgr_fini(adev);
2111 amdgpu_gtt_mgr_fini(adev);
2112 amdgpu_preempt_mgr_fini(adev);
2113 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2114 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2115 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2116 ttm_device_fini(&adev->mman.bdev);
2117 adev->mman.initialized = false;
2118 DRM_INFO("amdgpu: ttm finalized\n");
2119 }
2120
2121 /**
2122 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2123 *
2124 * @adev: amdgpu_device pointer
2125 * @enable: true when we can use buffer functions.
2126 *
2127 * Enable/disable use of buffer functions during suspend/resume. This should
2128 * only be called at bootup or when userspace isn't running.
2129 */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)2130 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2131 {
2132 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2133 uint64_t size;
2134 int r;
2135
2136 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2137 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2138 return;
2139
2140 if (enable) {
2141 struct amdgpu_ring *ring;
2142 struct drm_gpu_scheduler *sched;
2143
2144 ring = adev->mman.buffer_funcs_ring;
2145 sched = &ring->sched;
2146 r = drm_sched_entity_init(&adev->mman.high_pr,
2147 DRM_SCHED_PRIORITY_KERNEL, &sched,
2148 1, NULL);
2149 if (r) {
2150 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2151 r);
2152 return;
2153 }
2154
2155 r = drm_sched_entity_init(&adev->mman.low_pr,
2156 DRM_SCHED_PRIORITY_NORMAL, &sched,
2157 1, NULL);
2158 if (r) {
2159 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2160 r);
2161 goto error_free_entity;
2162 }
2163 } else {
2164 drm_sched_entity_destroy(&adev->mman.high_pr);
2165 drm_sched_entity_destroy(&adev->mman.low_pr);
2166 dma_fence_put(man->move);
2167 man->move = NULL;
2168 }
2169
2170 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2171 if (enable)
2172 size = adev->gmc.real_vram_size;
2173 else
2174 size = adev->gmc.visible_vram_size;
2175 man->size = size;
2176 adev->mman.buffer_funcs_enabled = enable;
2177
2178 return;
2179
2180 error_free_entity:
2181 drm_sched_entity_destroy(&adev->mman.high_pr);
2182 }
2183
amdgpu_ttm_prepare_job(struct amdgpu_device * adev,bool direct_submit,unsigned int num_dw,struct dma_resv * resv,bool vm_needs_flush,struct amdgpu_job ** job,bool delayed)2184 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2185 bool direct_submit,
2186 unsigned int num_dw,
2187 struct dma_resv *resv,
2188 bool vm_needs_flush,
2189 struct amdgpu_job **job,
2190 bool delayed)
2191 {
2192 enum amdgpu_ib_pool_type pool = direct_submit ?
2193 AMDGPU_IB_POOL_DIRECT :
2194 AMDGPU_IB_POOL_DELAYED;
2195 int r;
2196 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2197 &adev->mman.high_pr;
2198 r = amdgpu_job_alloc_with_ib(adev, entity,
2199 AMDGPU_FENCE_OWNER_UNDEFINED,
2200 num_dw * 4, pool, job);
2201 if (r)
2202 return r;
2203
2204 if (vm_needs_flush) {
2205 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2206 adev->gmc.pdb0_bo :
2207 adev->gart.bo);
2208 (*job)->vm_needs_flush = true;
2209 }
2210 if (!resv)
2211 return 0;
2212
2213 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2214 DMA_RESV_USAGE_BOOKKEEP);
2215 }
2216
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush,bool tmz)2217 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2218 uint64_t dst_offset, uint32_t byte_count,
2219 struct dma_resv *resv,
2220 struct dma_fence **fence, bool direct_submit,
2221 bool vm_needs_flush, bool tmz)
2222 {
2223 struct amdgpu_device *adev = ring->adev;
2224 unsigned int num_loops, num_dw;
2225 struct amdgpu_job *job;
2226 uint32_t max_bytes;
2227 unsigned int i;
2228 int r;
2229
2230 if (!direct_submit && !ring->sched.ready) {
2231 DRM_ERROR("Trying to move memory with ring turned off.\n");
2232 return -EINVAL;
2233 }
2234
2235 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2236 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2237 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2238 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2239 resv, vm_needs_flush, &job, false);
2240 if (r)
2241 return r;
2242
2243 for (i = 0; i < num_loops; i++) {
2244 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2245
2246 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2247 dst_offset, cur_size_in_bytes, tmz);
2248
2249 src_offset += cur_size_in_bytes;
2250 dst_offset += cur_size_in_bytes;
2251 byte_count -= cur_size_in_bytes;
2252 }
2253
2254 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2255 WARN_ON(job->ibs[0].length_dw > num_dw);
2256 if (direct_submit)
2257 r = amdgpu_job_submit_direct(job, ring, fence);
2258 else
2259 *fence = amdgpu_job_submit(job);
2260 if (r)
2261 goto error_free;
2262
2263 return r;
2264
2265 error_free:
2266 amdgpu_job_free(job);
2267 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2268 return r;
2269 }
2270
amdgpu_ttm_fill_mem(struct amdgpu_ring * ring,uint32_t src_data,uint64_t dst_addr,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool vm_needs_flush,bool delayed)2271 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2272 uint64_t dst_addr, uint32_t byte_count,
2273 struct dma_resv *resv,
2274 struct dma_fence **fence,
2275 bool vm_needs_flush, bool delayed)
2276 {
2277 struct amdgpu_device *adev = ring->adev;
2278 unsigned int num_loops, num_dw;
2279 struct amdgpu_job *job;
2280 uint32_t max_bytes;
2281 unsigned int i;
2282 int r;
2283
2284 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2285 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2286 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2287 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2288 &job, delayed);
2289 if (r)
2290 return r;
2291
2292 for (i = 0; i < num_loops; i++) {
2293 uint32_t cur_size = min(byte_count, max_bytes);
2294
2295 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2296 cur_size);
2297
2298 dst_addr += cur_size;
2299 byte_count -= cur_size;
2300 }
2301
2302 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2303 WARN_ON(job->ibs[0].length_dw > num_dw);
2304 *fence = amdgpu_job_submit(job);
2305 return 0;
2306 }
2307
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct dma_resv * resv,struct dma_fence ** f,bool delayed)2308 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2309 uint32_t src_data,
2310 struct dma_resv *resv,
2311 struct dma_fence **f,
2312 bool delayed)
2313 {
2314 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2315 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2316 struct dma_fence *fence = NULL;
2317 struct amdgpu_res_cursor dst;
2318 int r;
2319
2320 if (!adev->mman.buffer_funcs_enabled) {
2321 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2322 return -EINVAL;
2323 }
2324
2325 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2326
2327 mutex_lock(&adev->mman.gtt_window_lock);
2328 while (dst.remaining) {
2329 struct dma_fence *next;
2330 uint64_t cur_size, to;
2331
2332 /* Never fill more than 256MiB at once to avoid timeouts */
2333 cur_size = min(dst.size, 256ULL << 20);
2334
2335 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2336 1, ring, false, &cur_size, &to);
2337 if (r)
2338 goto error;
2339
2340 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2341 &next, true, delayed);
2342 if (r)
2343 goto error;
2344
2345 dma_fence_put(fence);
2346 fence = next;
2347
2348 amdgpu_res_next(&dst, cur_size);
2349 }
2350 error:
2351 mutex_unlock(&adev->mman.gtt_window_lock);
2352 if (f)
2353 *f = dma_fence_get(fence);
2354 dma_fence_put(fence);
2355 return r;
2356 }
2357
2358 /**
2359 * amdgpu_ttm_evict_resources - evict memory buffers
2360 * @adev: amdgpu device object
2361 * @mem_type: evicted BO's memory type
2362 *
2363 * Evicts all @mem_type buffers on the lru list of the memory type.
2364 *
2365 * Returns:
2366 * 0 for success or a negative error code on failure.
2367 */
amdgpu_ttm_evict_resources(struct amdgpu_device * adev,int mem_type)2368 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2369 {
2370 struct ttm_resource_manager *man;
2371
2372 switch (mem_type) {
2373 case TTM_PL_VRAM:
2374 case TTM_PL_TT:
2375 case AMDGPU_PL_GWS:
2376 case AMDGPU_PL_GDS:
2377 case AMDGPU_PL_OA:
2378 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2379 break;
2380 default:
2381 DRM_ERROR("Trying to evict invalid memory type\n");
2382 return -EINVAL;
2383 }
2384
2385 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2386 }
2387
2388 #if defined(CONFIG_DEBUG_FS)
2389
amdgpu_ttm_page_pool_show(struct seq_file * m,void * unused)2390 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2391 {
2392 struct amdgpu_device *adev = m->private;
2393
2394 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2395 }
2396
2397 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2398
2399 /*
2400 * amdgpu_ttm_vram_read - Linear read access to VRAM
2401 *
2402 * Accesses VRAM via MMIO for debugging purposes.
2403 */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2404 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2405 size_t size, loff_t *pos)
2406 {
2407 struct amdgpu_device *adev = file_inode(f)->i_private;
2408 ssize_t result = 0;
2409
2410 if (size & 0x3 || *pos & 0x3)
2411 return -EINVAL;
2412
2413 if (*pos >= adev->gmc.mc_vram_size)
2414 return -ENXIO;
2415
2416 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2417 while (size) {
2418 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2419 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2420
2421 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2422 if (copy_to_user(buf, value, bytes))
2423 return -EFAULT;
2424
2425 result += bytes;
2426 buf += bytes;
2427 *pos += bytes;
2428 size -= bytes;
2429 }
2430
2431 return result;
2432 }
2433
2434 /*
2435 * amdgpu_ttm_vram_write - Linear write access to VRAM
2436 *
2437 * Accesses VRAM via MMIO for debugging purposes.
2438 */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2439 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2440 size_t size, loff_t *pos)
2441 {
2442 struct amdgpu_device *adev = file_inode(f)->i_private;
2443 ssize_t result = 0;
2444 int r;
2445
2446 if (size & 0x3 || *pos & 0x3)
2447 return -EINVAL;
2448
2449 if (*pos >= adev->gmc.mc_vram_size)
2450 return -ENXIO;
2451
2452 while (size) {
2453 uint32_t value;
2454
2455 if (*pos >= adev->gmc.mc_vram_size)
2456 return result;
2457
2458 r = get_user(value, (uint32_t *)buf);
2459 if (r)
2460 return r;
2461
2462 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2463
2464 result += 4;
2465 buf += 4;
2466 *pos += 4;
2467 size -= 4;
2468 }
2469
2470 return result;
2471 }
2472
2473 static const struct file_operations amdgpu_ttm_vram_fops = {
2474 .owner = THIS_MODULE,
2475 .read = amdgpu_ttm_vram_read,
2476 .write = amdgpu_ttm_vram_write,
2477 .llseek = default_llseek,
2478 };
2479
2480 /*
2481 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2482 *
2483 * This function is used to read memory that has been mapped to the
2484 * GPU and the known addresses are not physical addresses but instead
2485 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2486 */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2487 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2488 size_t size, loff_t *pos)
2489 {
2490 struct amdgpu_device *adev = file_inode(f)->i_private;
2491 struct iommu_domain *dom;
2492 ssize_t result = 0;
2493 int r;
2494
2495 /* retrieve the IOMMU domain if any for this device */
2496 dom = iommu_get_domain_for_dev(adev->dev);
2497
2498 while (size) {
2499 phys_addr_t addr = *pos & LINUX_PAGE_MASK;
2500 loff_t off = *pos & ~LINUX_PAGE_MASK;
2501 size_t bytes = PAGE_SIZE - off;
2502 unsigned long pfn;
2503 struct vm_page *p;
2504 void *ptr;
2505
2506 bytes = min(bytes, size);
2507
2508 /* Translate the bus address to a physical address. If
2509 * the domain is NULL it means there is no IOMMU active
2510 * and the address translation is the identity
2511 */
2512 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2513
2514 pfn = addr >> PAGE_SHIFT;
2515 if (!pfn_valid(pfn))
2516 return -EPERM;
2517
2518 p = pfn_to_page(pfn);
2519 #ifdef notyet
2520 if (p->mapping != adev->mman.bdev.dev_mapping)
2521 return -EPERM;
2522 #else
2523 STUB();
2524 #endif
2525
2526 ptr = kmap_local_page(p);
2527 r = copy_to_user(buf, ptr + off, bytes);
2528 kunmap_local(ptr);
2529 if (r)
2530 return -EFAULT;
2531
2532 size -= bytes;
2533 *pos += bytes;
2534 result += bytes;
2535 }
2536
2537 return result;
2538 }
2539
2540 /*
2541 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2542 *
2543 * This function is used to write memory that has been mapped to the
2544 * GPU and the known addresses are not physical addresses but instead
2545 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2546 */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2547 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2548 size_t size, loff_t *pos)
2549 {
2550 struct amdgpu_device *adev = file_inode(f)->i_private;
2551 struct iommu_domain *dom;
2552 ssize_t result = 0;
2553 int r;
2554
2555 dom = iommu_get_domain_for_dev(adev->dev);
2556
2557 while (size) {
2558 phys_addr_t addr = *pos & LINUX_PAGE_MASK;
2559 loff_t off = *pos & ~LINUX_PAGE_MASK;
2560 size_t bytes = PAGE_SIZE - off;
2561 unsigned long pfn;
2562 struct vm_page *p;
2563 void *ptr;
2564
2565 bytes = min(bytes, size);
2566
2567 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2568
2569 pfn = addr >> PAGE_SHIFT;
2570 if (!pfn_valid(pfn))
2571 return -EPERM;
2572
2573 p = pfn_to_page(pfn);
2574 #ifdef notyet
2575 if (p->mapping != adev->mman.bdev.dev_mapping)
2576 return -EPERM;
2577 #else
2578 STUB();
2579 #endif
2580
2581 ptr = kmap_local_page(p);
2582 r = copy_from_user(ptr + off, buf, bytes);
2583 kunmap_local(ptr);
2584 if (r)
2585 return -EFAULT;
2586
2587 size -= bytes;
2588 *pos += bytes;
2589 result += bytes;
2590 }
2591
2592 return result;
2593 }
2594
2595 static const struct file_operations amdgpu_ttm_iomem_fops = {
2596 .owner = THIS_MODULE,
2597 .read = amdgpu_iomem_read,
2598 .write = amdgpu_iomem_write,
2599 .llseek = default_llseek
2600 };
2601
2602 #endif
2603
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2604 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2605 {
2606 #if defined(CONFIG_DEBUG_FS)
2607 struct drm_minor *minor = adev_to_drm(adev)->primary;
2608 struct dentry *root = minor->debugfs_root;
2609
2610 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2611 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2612 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2613 &amdgpu_ttm_iomem_fops);
2614 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2615 &amdgpu_ttm_page_pool_fops);
2616 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2617 TTM_PL_VRAM),
2618 root, "amdgpu_vram_mm");
2619 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2620 TTM_PL_TT),
2621 root, "amdgpu_gtt_mm");
2622 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2623 AMDGPU_PL_GDS),
2624 root, "amdgpu_gds_mm");
2625 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2626 AMDGPU_PL_GWS),
2627 root, "amdgpu_gws_mm");
2628 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2629 AMDGPU_PL_OA),
2630 root, "amdgpu_oa_mm");
2631
2632 #endif
2633 }
2634