xref: /openbsd/gnu/llvm/lld/ELF/Writer.cpp (revision 293d5193)
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Writer.h"
10 #include "AArch64ErrataFix.h"
11 #include "ARMErrataFix.h"
12 #include "CallGraphSort.h"
13 #include "Config.h"
14 #include "InputFiles.h"
15 #include "LinkerScript.h"
16 #include "MapFile.h"
17 #include "OutputSections.h"
18 #include "Relocations.h"
19 #include "SymbolTable.h"
20 #include "Symbols.h"
21 #include "SyntheticSections.h"
22 #include "Target.h"
23 #include "lld/Common/Arrays.h"
24 #include "lld/Common/CommonLinkerContext.h"
25 #include "lld/Common/Filesystem.h"
26 #include "lld/Common/Strings.h"
27 #include "llvm/ADT/StringMap.h"
28 #include "llvm/Support/BLAKE3.h"
29 #include "llvm/Support/Parallel.h"
30 #include "llvm/Support/RandomNumberGenerator.h"
31 #include "llvm/Support/TimeProfiler.h"
32 #include "llvm/Support/xxhash.h"
33 #include <climits>
34 
35 #define DEBUG_TYPE "lld"
36 
37 using namespace llvm;
38 using namespace llvm::ELF;
39 using namespace llvm::object;
40 using namespace llvm::support;
41 using namespace llvm::support::endian;
42 using namespace lld;
43 using namespace lld::elf;
44 
45 namespace {
46 // The writer writes a SymbolTable result to a file.
47 template <class ELFT> class Writer {
48 public:
49   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
50 
Writer()51   Writer() : buffer(errorHandler().outputBuffer) {}
52 
53   void run();
54 
55 private:
56   void copyLocalSymbols();
57   void addSectionSymbols();
58   void sortSections();
59   void resolveShfLinkOrder();
60   void finalizeAddressDependentContent();
61   void optimizeBasicBlockJumps();
62   void sortInputSections();
63   void finalizeSections();
64   void checkExecuteOnly();
65   void setReservedSymbolSections();
66 
67   SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part);
68   void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
69                          unsigned pFlags);
70   void assignFileOffsets();
71   void assignFileOffsetsBinary();
72   void setPhdrs(Partition &part);
73   void checkSections();
74   void fixSectionAlignments();
75   void openFile();
76   void writeTrapInstr();
77   void writeHeader();
78   void writeSections();
79   void writeSectionsBinary();
80   void writeBuildId();
81 
82   std::unique_ptr<FileOutputBuffer> &buffer;
83 
84   void addRelIpltSymbols();
85   void addStartEndSymbols();
86   void addStartStopSymbols(OutputSection &osec);
87 
88   uint64_t fileSize;
89   uint64_t sectionHeaderOff;
90 };
91 } // anonymous namespace
92 
needsInterpSection()93 static bool needsInterpSection() {
94   return !config->relocatable && !config->shared &&
95          !config->dynamicLinker.empty() && script->needsInterpSection();
96 }
97 
writeResult()98 template <class ELFT> void elf::writeResult() {
99   Writer<ELFT>().run();
100 }
101 
removeEmptyPTLoad(SmallVector<PhdrEntry *,0> & phdrs)102 static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) {
103   auto it = std::stable_partition(
104       phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) {
105         if (p->p_type != PT_LOAD)
106           return true;
107         if (!p->firstSec)
108           return false;
109         uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
110         return size != 0;
111       });
112 
113   // Clear OutputSection::ptLoad for sections contained in removed
114   // segments.
115   DenseSet<PhdrEntry *> removed(it, phdrs.end());
116   for (OutputSection *sec : outputSections)
117     if (removed.count(sec->ptLoad))
118       sec->ptLoad = nullptr;
119   phdrs.erase(it, phdrs.end());
120 }
121 
copySectionsIntoPartitions()122 void elf::copySectionsIntoPartitions() {
123   SmallVector<InputSectionBase *, 0> newSections;
124   const size_t ehSize = ctx.ehInputSections.size();
125   for (unsigned part = 2; part != partitions.size() + 1; ++part) {
126     for (InputSectionBase *s : ctx.inputSections) {
127       if (!(s->flags & SHF_ALLOC) || !s->isLive() || s->type != SHT_NOTE)
128         continue;
129       auto *copy = make<InputSection>(cast<InputSection>(*s));
130       copy->partition = part;
131       newSections.push_back(copy);
132     }
133     for (size_t i = 0; i != ehSize; ++i) {
134       assert(ctx.ehInputSections[i]->isLive());
135       auto *copy = make<EhInputSection>(*ctx.ehInputSections[i]);
136       copy->partition = part;
137       ctx.ehInputSections.push_back(copy);
138     }
139   }
140 
141   ctx.inputSections.insert(ctx.inputSections.end(), newSections.begin(),
142                            newSections.end());
143 }
144 
addOptionalRegular(StringRef name,SectionBase * sec,uint64_t val,uint8_t stOther=STV_HIDDEN)145 static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
146                                    uint64_t val, uint8_t stOther = STV_HIDDEN) {
147   Symbol *s = symtab.find(name);
148   if (!s || s->isDefined() || s->isCommon())
149     return nullptr;
150 
151   s->resolve(Defined{nullptr, StringRef(), STB_GLOBAL, stOther, STT_NOTYPE, val,
152                      /*size=*/0, sec});
153   s->isUsedInRegularObj = true;
154   return cast<Defined>(s);
155 }
156 
addAbsolute(StringRef name)157 static Defined *addAbsolute(StringRef name) {
158   Symbol *sym = symtab.addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
159                                          STT_NOTYPE, 0, 0, nullptr});
160   sym->isUsedInRegularObj = true;
161   return cast<Defined>(sym);
162 }
163 
164 // The linker is expected to define some symbols depending on
165 // the linking result. This function defines such symbols.
addReservedSymbols()166 void elf::addReservedSymbols() {
167   if (config->emachine == EM_MIPS) {
168     // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
169     // so that it points to an absolute address which by default is relative
170     // to GOT. Default offset is 0x7ff0.
171     // See "Global Data Symbols" in Chapter 6 in the following document:
172     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
173     ElfSym::mipsGp = addAbsolute("_gp");
174 
175     // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
176     // start of function and 'gp' pointer into GOT.
177     if (symtab.find("_gp_disp"))
178       ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
179 
180     // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
181     // pointer. This symbol is used in the code generated by .cpload pseudo-op
182     // in case of using -mno-shared option.
183     // https://sourceware.org/ml/binutils/2004-12/msg00094.html
184     if (symtab.find("__gnu_local_gp"))
185       ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
186   } else if (config->emachine == EM_PPC) {
187     // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
188     // support Small Data Area, define it arbitrarily as 0.
189     addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
190   } else if (config->emachine == EM_PPC64) {
191     addPPC64SaveRestore();
192   }
193 
194   // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
195   // combines the typical ELF GOT with the small data sections. It commonly
196   // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
197   // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
198   // represent the TOC base which is offset by 0x8000 bytes from the start of
199   // the .got section.
200   // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
201   // correctness of some relocations depends on its value.
202   StringRef gotSymName =
203       (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
204 
205   if (Symbol *s = symtab.find(gotSymName)) {
206     if (s->isDefined()) {
207       error(toString(s->file) + " cannot redefine linker defined symbol '" +
208             gotSymName + "'");
209       return;
210     }
211 
212     uint64_t gotOff = 0;
213     if (config->emachine == EM_PPC64)
214       gotOff = 0x8000;
215 
216     s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN,
217                        STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
218     ElfSym::globalOffsetTable = cast<Defined>(s);
219   }
220 
221   // __ehdr_start is the location of ELF file headers. Note that we define
222   // this symbol unconditionally even when using a linker script, which
223   // differs from the behavior implemented by GNU linker which only define
224   // this symbol if ELF headers are in the memory mapped segment.
225   addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
226 
227   // __executable_start is not documented, but the expectation of at
228   // least the Android libc is that it points to the ELF header.
229   addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
230 
231   // __dso_handle symbol is passed to cxa_finalize as a marker to identify
232   // each DSO. The address of the symbol doesn't matter as long as they are
233   // different in different DSOs, so we chose the start address of the DSO.
234   addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
235 
236   // If linker script do layout we do not need to create any standard symbols.
237   if (script->hasSectionsCommand)
238     return;
239 
240   auto add = [](StringRef s, int64_t pos) {
241     return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
242   };
243 
244   ElfSym::bss = add("__bss_start", 0);
245   ElfSym::data = add("__data_start", 0);
246   ElfSym::end1 = add("end", -1);
247   ElfSym::end2 = add("_end", -1);
248   ElfSym::etext1 = add("etext", -1);
249   ElfSym::etext2 = add("_etext", -1);
250   ElfSym::edata1 = add("edata", -1);
251   ElfSym::edata2 = add("_edata", -1);
252 }
253 
findSection(StringRef name,unsigned partition=1)254 static OutputSection *findSection(StringRef name, unsigned partition = 1) {
255   for (SectionCommand *cmd : script->sectionCommands)
256     if (auto *osd = dyn_cast<OutputDesc>(cmd))
257       if (osd->osec.name == name && osd->osec.partition == partition)
258         return &osd->osec;
259   return nullptr;
260 }
261 
createSyntheticSections()262 template <class ELFT> void elf::createSyntheticSections() {
263   // Initialize all pointers with NULL. This is needed because
264   // you can call lld::elf::main more than once as a library.
265   Out::tlsPhdr = nullptr;
266   Out::preinitArray = nullptr;
267   Out::initArray = nullptr;
268   Out::finiArray = nullptr;
269 
270   // Add the .interp section first because it is not a SyntheticSection.
271   // The removeUnusedSyntheticSections() function relies on the
272   // SyntheticSections coming last.
273   if (needsInterpSection()) {
274     for (size_t i = 1; i <= partitions.size(); ++i) {
275       InputSection *sec = createInterpSection();
276       sec->partition = i;
277       ctx.inputSections.push_back(sec);
278     }
279   }
280 
281   auto add = [](SyntheticSection &sec) { ctx.inputSections.push_back(&sec); };
282 
283   in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false);
284 
285   Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
286   Out::programHeaders->addralign = config->wordsize;
287 
288   if (config->strip != StripPolicy::All) {
289     in.strTab = std::make_unique<StringTableSection>(".strtab", false);
290     in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab);
291     in.symTabShndx = std::make_unique<SymtabShndxSection>();
292   }
293 
294   in.bss = std::make_unique<BssSection>(".bss", 0, 1);
295   add(*in.bss);
296 
297   // If there is a SECTIONS command and a .data.rel.ro section name use name
298   // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
299   // This makes sure our relro is contiguous.
300   bool hasDataRelRo = script->hasSectionsCommand && findSection(".data.rel.ro");
301   in.bssRelRo = std::make_unique<BssSection>(
302       hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
303   add(*in.bssRelRo);
304 
305   // Add MIPS-specific sections.
306   if (config->emachine == EM_MIPS) {
307     if (!config->shared && config->hasDynSymTab) {
308       in.mipsRldMap = std::make_unique<MipsRldMapSection>();
309       add(*in.mipsRldMap);
310     }
311     if ((in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create()))
312       add(*in.mipsAbiFlags);
313     if ((in.mipsOptions = MipsOptionsSection<ELFT>::create()))
314       add(*in.mipsOptions);
315     if ((in.mipsReginfo = MipsReginfoSection<ELFT>::create()))
316       add(*in.mipsReginfo);
317   }
318 
319   StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";
320 
321   const unsigned threadCount = config->threadCount;
322   for (Partition &part : partitions) {
323     auto add = [&](SyntheticSection &sec) {
324       sec.partition = part.getNumber();
325       ctx.inputSections.push_back(&sec);
326     };
327 
328     if (!part.name.empty()) {
329       part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>();
330       part.elfHeader->name = part.name;
331       add(*part.elfHeader);
332 
333       part.programHeaders =
334           std::make_unique<PartitionProgramHeadersSection<ELFT>>();
335       add(*part.programHeaders);
336     }
337 
338     if (config->buildId != BuildIdKind::None) {
339       part.buildId = std::make_unique<BuildIdSection>();
340       add(*part.buildId);
341     }
342 
343     part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true);
344     part.dynSymTab =
345         std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab);
346     part.dynamic = std::make_unique<DynamicSection<ELFT>>();
347 
348     if (config->emachine == EM_AARCH64 &&
349         config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE) {
350       part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>();
351       add(*part.memtagAndroidNote);
352     }
353 
354     if (config->androidPackDynRelocs)
355       part.relaDyn = std::make_unique<AndroidPackedRelocationSection<ELFT>>(
356           relaDynName, threadCount);
357     else
358       part.relaDyn = std::make_unique<RelocationSection<ELFT>>(
359           relaDynName, config->zCombreloc, threadCount);
360 
361     if (config->hasDynSymTab) {
362       add(*part.dynSymTab);
363 
364       part.verSym = std::make_unique<VersionTableSection>();
365       add(*part.verSym);
366 
367       if (!namedVersionDefs().empty()) {
368         part.verDef = std::make_unique<VersionDefinitionSection>();
369         add(*part.verDef);
370       }
371 
372       part.verNeed = std::make_unique<VersionNeedSection<ELFT>>();
373       add(*part.verNeed);
374 
375       if (config->gnuHash) {
376         part.gnuHashTab = std::make_unique<GnuHashTableSection>();
377         add(*part.gnuHashTab);
378       }
379 
380       if (config->sysvHash) {
381         part.hashTab = std::make_unique<HashTableSection>();
382         add(*part.hashTab);
383       }
384 
385       add(*part.dynamic);
386       add(*part.dynStrTab);
387       add(*part.relaDyn);
388     }
389 
390     if (config->relrPackDynRelocs) {
391       part.relrDyn = std::make_unique<RelrSection<ELFT>>(threadCount);
392       add(*part.relrDyn);
393     }
394 
395     if (!config->relocatable) {
396       if (config->ehFrameHdr) {
397         part.ehFrameHdr = std::make_unique<EhFrameHeader>();
398         add(*part.ehFrameHdr);
399       }
400       part.ehFrame = std::make_unique<EhFrameSection>();
401       add(*part.ehFrame);
402 
403       if (config->emachine == EM_ARM) {
404         // This section replaces all the individual .ARM.exidx InputSections.
405         part.armExidx = std::make_unique<ARMExidxSyntheticSection>();
406         add(*part.armExidx);
407       }
408     }
409 
410     if (!config->packageMetadata.empty()) {
411       part.packageMetadataNote = std::make_unique<PackageMetadataNote>();
412       add(*part.packageMetadataNote);
413     }
414   }
415 
416   if (partitions.size() != 1) {
417     // Create the partition end marker. This needs to be in partition number 255
418     // so that it is sorted after all other partitions. It also has other
419     // special handling (see createPhdrs() and combineEhSections()).
420     in.partEnd =
421         std::make_unique<BssSection>(".part.end", config->maxPageSize, 1);
422     in.partEnd->partition = 255;
423     add(*in.partEnd);
424 
425     in.partIndex = std::make_unique<PartitionIndexSection>();
426     addOptionalRegular("__part_index_begin", in.partIndex.get(), 0);
427     addOptionalRegular("__part_index_end", in.partIndex.get(),
428                        in.partIndex->getSize());
429     add(*in.partIndex);
430   }
431 
432   // Add .got. MIPS' .got is so different from the other archs,
433   // it has its own class.
434   if (config->emachine == EM_MIPS) {
435     in.mipsGot = std::make_unique<MipsGotSection>();
436     add(*in.mipsGot);
437   } else {
438     in.got = std::make_unique<GotSection>();
439     add(*in.got);
440   }
441 
442   if (config->emachine == EM_PPC) {
443     in.ppc32Got2 = std::make_unique<PPC32Got2Section>();
444     add(*in.ppc32Got2);
445   }
446 
447   if (config->emachine == EM_PPC64) {
448     in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>();
449     add(*in.ppc64LongBranchTarget);
450   }
451 
452   in.gotPlt = std::make_unique<GotPltSection>();
453   add(*in.gotPlt);
454   in.igotPlt = std::make_unique<IgotPltSection>();
455   add(*in.igotPlt);
456 
457   // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
458   // it as a relocation and ensure the referenced section is created.
459   if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
460     if (target->gotBaseSymInGotPlt)
461       in.gotPlt->hasGotPltOffRel = true;
462     else
463       in.got->hasGotOffRel = true;
464   }
465 
466   if (config->gdbIndex)
467     add(*GdbIndexSection::create<ELFT>());
468 
469   // We always need to add rel[a].plt to output if it has entries.
470   // Even for static linking it can contain R_[*]_IRELATIVE relocations.
471   in.relaPlt = std::make_unique<RelocationSection<ELFT>>(
472       config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false,
473       /*threadCount=*/1);
474   add(*in.relaPlt);
475 
476   // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
477   // relocations are processed last by the dynamic loader. We cannot place the
478   // iplt section in .rel.dyn when Android relocation packing is enabled because
479   // that would cause a section type mismatch. However, because the Android
480   // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
481   // behaviour by placing the iplt section in .rel.plt.
482   in.relaIplt = std::make_unique<RelocationSection<ELFT>>(
483       config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
484       /*sort=*/false, /*threadCount=*/1);
485   add(*in.relaIplt);
486 
487   if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
488       (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
489     in.ibtPlt = std::make_unique<IBTPltSection>();
490     add(*in.ibtPlt);
491   }
492 #ifdef __OpenBSD__
493   else if (config->emachine == EM_X86_64) {
494     in.ibtPlt = std::make_unique<IBTPltSection>();
495     add(*in.ibtPlt);
496   }
497 #endif
498 
499   if (config->emachine == EM_PPC)
500     in.plt = std::make_unique<PPC32GlinkSection>();
501   else
502     in.plt = std::make_unique<PltSection>();
503   add(*in.plt);
504   in.iplt = std::make_unique<IpltSection>();
505   add(*in.iplt);
506 
507   if (config->andFeatures)
508     add(*make<GnuPropertySection>());
509 
510   // .note.GNU-stack is always added when we are creating a re-linkable
511   // object file. Other linkers are using the presence of this marker
512   // section to control the executable-ness of the stack area, but that
513   // is irrelevant these days. Stack area should always be non-executable
514   // by default. So we emit this section unconditionally.
515   if (config->relocatable)
516     add(*make<GnuStackSection>());
517 
518   if (in.symTab)
519     add(*in.symTab);
520   if (in.symTabShndx)
521     add(*in.symTabShndx);
522   add(*in.shStrTab);
523   if (in.strTab)
524     add(*in.strTab);
525 }
526 
527 // The main function of the writer.
run()528 template <class ELFT> void Writer<ELFT>::run() {
529   copyLocalSymbols();
530 
531   if (config->copyRelocs)
532     addSectionSymbols();
533 
534   // Now that we have a complete set of output sections. This function
535   // completes section contents. For example, we need to add strings
536   // to the string table, and add entries to .got and .plt.
537   // finalizeSections does that.
538   finalizeSections();
539   checkExecuteOnly();
540 
541   // If --compressed-debug-sections is specified, compress .debug_* sections.
542   // Do it right now because it changes the size of output sections.
543   for (OutputSection *sec : outputSections)
544     sec->maybeCompress<ELFT>();
545 
546   if (script->hasSectionsCommand)
547     script->allocateHeaders(mainPart->phdrs);
548 
549   // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
550   // 0 sized region. This has to be done late since only after assignAddresses
551   // we know the size of the sections.
552   for (Partition &part : partitions)
553     removeEmptyPTLoad(part.phdrs);
554 
555   if (!config->oFormatBinary)
556     assignFileOffsets();
557   else
558     assignFileOffsetsBinary();
559 
560   for (Partition &part : partitions)
561     setPhdrs(part);
562 
563   // Handle --print-map(-M)/--Map and --cref. Dump them before checkSections()
564   // because the files may be useful in case checkSections() or openFile()
565   // fails, for example, due to an erroneous file size.
566   writeMapAndCref();
567 
568   if (config->checkSections)
569     checkSections();
570 
571   // It does not make sense try to open the file if we have error already.
572   if (errorCount())
573     return;
574 
575   {
576     llvm::TimeTraceScope timeScope("Write output file");
577     // Write the result down to a file.
578     openFile();
579     if (errorCount())
580       return;
581 
582     if (!config->oFormatBinary) {
583       if (config->zSeparate != SeparateSegmentKind::None)
584         writeTrapInstr();
585       writeHeader();
586       writeSections();
587     } else {
588       writeSectionsBinary();
589     }
590 
591     // Backfill .note.gnu.build-id section content. This is done at last
592     // because the content is usually a hash value of the entire output file.
593     writeBuildId();
594     if (errorCount())
595       return;
596 
597     if (auto e = buffer->commit())
598       fatal("failed to write output '" + buffer->getPath() +
599             "': " + toString(std::move(e)));
600   }
601 }
602 
603 template <class ELFT, class RelTy>
markUsedLocalSymbolsImpl(ObjFile<ELFT> * file,llvm::ArrayRef<RelTy> rels)604 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file,
605                                      llvm::ArrayRef<RelTy> rels) {
606   for (const RelTy &rel : rels) {
607     Symbol &sym = file->getRelocTargetSym(rel);
608     if (sym.isLocal())
609       sym.used = true;
610   }
611 }
612 
613 // The function ensures that the "used" field of local symbols reflects the fact
614 // that the symbol is used in a relocation from a live section.
markUsedLocalSymbols()615 template <class ELFT> static void markUsedLocalSymbols() {
616   // With --gc-sections, the field is already filled.
617   // See MarkLive<ELFT>::resolveReloc().
618   if (config->gcSections)
619     return;
620   for (ELFFileBase *file : ctx.objectFiles) {
621     ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
622     for (InputSectionBase *s : f->getSections()) {
623       InputSection *isec = dyn_cast_or_null<InputSection>(s);
624       if (!isec)
625         continue;
626       if (isec->type == SHT_REL)
627         markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>());
628       else if (isec->type == SHT_RELA)
629         markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>());
630     }
631   }
632 }
633 
shouldKeepInSymtab(const Defined & sym)634 static bool shouldKeepInSymtab(const Defined &sym) {
635   if (sym.isSection())
636     return false;
637 
638   // If --emit-reloc or -r is given, preserve symbols referenced by relocations
639   // from live sections.
640   if (sym.used && config->copyRelocs)
641     return true;
642 
643   // Exclude local symbols pointing to .ARM.exidx sections.
644   // They are probably mapping symbols "$d", which are optional for these
645   // sections. After merging the .ARM.exidx sections, some of these symbols
646   // may become dangling. The easiest way to avoid the issue is not to add
647   // them to the symbol table from the beginning.
648   if (config->emachine == EM_ARM && sym.section &&
649       sym.section->type == SHT_ARM_EXIDX)
650     return false;
651 
652   if (config->discard == DiscardPolicy::None)
653     return true;
654   if (config->discard == DiscardPolicy::All)
655     return false;
656 
657   // In ELF assembly .L symbols are normally discarded by the assembler.
658   // If the assembler fails to do so, the linker discards them if
659   // * --discard-locals is used.
660   // * The symbol is in a SHF_MERGE section, which is normally the reason for
661   //   the assembler keeping the .L symbol.
662   if ((sym.getName().startswith(".L") || sym.getName().empty()) &&
663       (config->discard == DiscardPolicy::Locals ||
664        (sym.section && (sym.section->flags & SHF_MERGE))))
665     return false;
666   return true;
667 }
668 
includeInSymtab(const Symbol & b)669 static bool includeInSymtab(const Symbol &b) {
670   if (auto *d = dyn_cast<Defined>(&b)) {
671     // Always include absolute symbols.
672     SectionBase *sec = d->section;
673     if (!sec)
674       return true;
675 
676     if (auto *s = dyn_cast<MergeInputSection>(sec))
677       return s->getSectionPiece(d->value).live;
678     return sec->isLive();
679   }
680   return b.used || !config->gcSections;
681 }
682 
683 // Local symbols are not in the linker's symbol table. This function scans
684 // each object file's symbol table to copy local symbols to the output.
copyLocalSymbols()685 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
686   if (!in.symTab)
687     return;
688   llvm::TimeTraceScope timeScope("Add local symbols");
689   if (config->copyRelocs && config->discard != DiscardPolicy::None)
690     markUsedLocalSymbols<ELFT>();
691   for (ELFFileBase *file : ctx.objectFiles) {
692     for (Symbol *b : file->getLocalSymbols()) {
693       assert(b->isLocal() && "should have been caught in initializeSymbols()");
694       auto *dr = dyn_cast<Defined>(b);
695 
696       // No reason to keep local undefined symbol in symtab.
697       if (!dr)
698         continue;
699       if (includeInSymtab(*b) && shouldKeepInSymtab(*dr))
700         in.symTab->addSymbol(b);
701     }
702   }
703 }
704 
705 // Create a section symbol for each output section so that we can represent
706 // relocations that point to the section. If we know that no relocation is
707 // referring to a section (that happens if the section is a synthetic one), we
708 // don't create a section symbol for that section.
addSectionSymbols()709 template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
710   for (SectionCommand *cmd : script->sectionCommands) {
711     auto *osd = dyn_cast<OutputDesc>(cmd);
712     if (!osd)
713       continue;
714     OutputSection &osec = osd->osec;
715     InputSectionBase *isec = nullptr;
716     // Iterate over all input sections and add a STT_SECTION symbol if any input
717     // section may be a relocation target.
718     for (SectionCommand *cmd : osec.commands) {
719       auto *isd = dyn_cast<InputSectionDescription>(cmd);
720       if (!isd)
721         continue;
722       for (InputSectionBase *s : isd->sections) {
723         // Relocations are not using REL[A] section symbols.
724         if (s->type == SHT_REL || s->type == SHT_RELA)
725           continue;
726 
727         // Unlike other synthetic sections, mergeable output sections contain
728         // data copied from input sections, and there may be a relocation
729         // pointing to its contents if -r or --emit-reloc is given.
730         if (isa<SyntheticSection>(s) && !(s->flags & SHF_MERGE))
731           continue;
732 
733         isec = s;
734         break;
735       }
736     }
737     if (!isec)
738       continue;
739 
740     // Set the symbol to be relative to the output section so that its st_value
741     // equals the output section address. Note, there may be a gap between the
742     // start of the output section and isec.
743     in.symTab->addSymbol(makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0,
744                                      STT_SECTION,
745                                      /*value=*/0, /*size=*/0, &osec));
746   }
747 }
748 
749 // Today's loaders have a feature to make segments read-only after
750 // processing dynamic relocations to enhance security. PT_GNU_RELRO
751 // is defined for that.
752 //
753 // This function returns true if a section needs to be put into a
754 // PT_GNU_RELRO segment.
isRelroSection(const OutputSection * sec)755 static bool isRelroSection(const OutputSection *sec) {
756   if (!config->zRelro)
757     return false;
758   if (sec->relro)
759     return true;
760 
761   uint64_t flags = sec->flags;
762 
763   // Non-allocatable or non-writable sections don't need RELRO because
764   // they are not writable or not even mapped to memory in the first place.
765   // RELRO is for sections that are essentially read-only but need to
766   // be writable only at process startup to allow dynamic linker to
767   // apply relocations.
768   if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
769     return false;
770 
771   // Once initialized, TLS data segments are used as data templates
772   // for a thread-local storage. For each new thread, runtime
773   // allocates memory for a TLS and copy templates there. No thread
774   // are supposed to use templates directly. Thus, it can be in RELRO.
775   if (flags & SHF_TLS)
776     return true;
777 
778   // .init_array, .preinit_array and .fini_array contain pointers to
779   // functions that are executed on process startup or exit. These
780   // pointers are set by the static linker, and they are not expected
781   // to change at runtime. But if you are an attacker, you could do
782   // interesting things by manipulating pointers in .fini_array, for
783   // example. So they are put into RELRO.
784   uint32_t type = sec->type;
785   if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
786       type == SHT_PREINIT_ARRAY)
787     return true;
788 
789   // .got contains pointers to external symbols. They are resolved by
790   // the dynamic linker when a module is loaded into memory, and after
791   // that they are not expected to change. So, it can be in RELRO.
792   if (in.got && sec == in.got->getParent())
793     return true;
794 
795   // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
796   // through r2 register, which is reserved for that purpose. Since r2 is used
797   // for accessing .got as well, .got and .toc need to be close enough in the
798   // virtual address space. Usually, .toc comes just after .got. Since we place
799   // .got into RELRO, .toc needs to be placed into RELRO too.
800   if (sec->name.equals(".toc"))
801     return true;
802 
803   // .got.plt contains pointers to external function symbols. They are
804   // by default resolved lazily, so we usually cannot put it into RELRO.
805   // However, if "-z now" is given, the lazy symbol resolution is
806   // disabled, which enables us to put it into RELRO.
807   if (sec == in.gotPlt->getParent())
808 #ifndef __OpenBSD__
809     return config->zNow;
810 #else
811     return true;	/* kbind(2) means we can always put these in RELRO */
812 #endif
813 
814   // .dynamic section contains data for the dynamic linker, and
815   // there's no need to write to it at runtime, so it's better to put
816   // it into RELRO.
817   if (sec->name == ".dynamic")
818     return true;
819 
820   // Sections with some special names are put into RELRO. This is a
821   // bit unfortunate because section names shouldn't be significant in
822   // ELF in spirit. But in reality many linker features depend on
823   // magic section names.
824   StringRef s = sec->name;
825   return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
826          s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
827          s == ".fini_array" || s == ".init_array" ||
828          s == ".openbsd.randomdata" || s == ".preinit_array";
829 }
830 
831 // We compute a rank for each section. The rank indicates where the
832 // section should be placed in the file.  Instead of using simple
833 // numbers (0,1,2...), we use a series of flags. One for each decision
834 // point when placing the section.
835 // Using flags has two key properties:
836 // * It is easy to check if a give branch was taken.
837 // * It is easy two see how similar two ranks are (see getRankProximity).
838 enum RankFlags {
839   RF_NOT_ADDR_SET = 1 << 27,
840   RF_NOT_ALLOC = 1 << 26,
841   RF_PARTITION = 1 << 18, // Partition number (8 bits)
842   RF_NOT_PART_EHDR = 1 << 17,
843   RF_NOT_PART_PHDR = 1 << 16,
844   RF_NOT_INTERP = 1 << 15,
845   RF_NOT_NOTE = 1 << 14,
846   RF_WRITE = 1 << 13,
847   RF_EXEC_WRITE = 1 << 12,
848   RF_EXEC = 1 << 11,
849   RF_RODATA = 1 << 10,
850   RF_NOT_RELRO = 1 << 9,
851   RF_NOT_TLS = 1 << 8,
852   RF_BSS = 1 << 7,
853   RF_PPC_NOT_TOCBSS = 1 << 6,
854   RF_PPC_TOCL = 1 << 5,
855   RF_PPC_TOC = 1 << 4,
856   RF_PPC_GOT = 1 << 3,
857   RF_PPC_BRANCH_LT = 1 << 2,
858   RF_MIPS_GPREL = 1 << 1,
859   RF_MIPS_NOT_GOT = 1 << 0
860 };
861 
getSectionRank(const OutputSection & osec)862 static unsigned getSectionRank(const OutputSection &osec) {
863   unsigned rank = osec.partition * RF_PARTITION;
864 
865   // We want to put section specified by -T option first, so we
866   // can start assigning VA starting from them later.
867   if (config->sectionStartMap.count(osec.name))
868     return rank;
869   rank |= RF_NOT_ADDR_SET;
870 
871   // Allocatable sections go first to reduce the total PT_LOAD size and
872   // so debug info doesn't change addresses in actual code.
873   if (!(osec.flags & SHF_ALLOC))
874     return rank | RF_NOT_ALLOC;
875 
876   if (osec.type == SHT_LLVM_PART_EHDR)
877     return rank;
878   rank |= RF_NOT_PART_EHDR;
879 
880   if (osec.type == SHT_LLVM_PART_PHDR)
881     return rank;
882   rank |= RF_NOT_PART_PHDR;
883 
884   // Put .interp first because some loaders want to see that section
885   // on the first page of the executable file when loaded into memory.
886   if (osec.name == ".interp")
887     return rank;
888   rank |= RF_NOT_INTERP;
889 
890   // Put .note sections (which make up one PT_NOTE) at the beginning so that
891   // they are likely to be included in a core file even if core file size is
892   // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
893   // included in a core to match core files with executables.
894   if (osec.type == SHT_NOTE)
895     return rank;
896   rank |= RF_NOT_NOTE;
897 
898   // Sort sections based on their access permission in the following
899   // order: R, RX, RWX, RW.  This order is based on the following
900   // considerations:
901   // * Read-only sections come first such that they go in the
902   //   PT_LOAD covering the program headers at the start of the file.
903   // * Read-only, executable sections come next.
904   // * Writable, executable sections follow such that .plt on
905   //   architectures where it needs to be writable will be placed
906   //   between .text and .data.
907   // * Writable sections come last, such that .bss lands at the very
908   //   end of the last PT_LOAD.
909   bool isExec = osec.flags & SHF_EXECINSTR;
910   bool isWrite = osec.flags & SHF_WRITE;
911 
912   if (isExec) {
913     if (isWrite)
914       rank |= RF_EXEC_WRITE;
915     else
916       rank |= RF_EXEC;
917   } else if (isWrite) {
918     rank |= RF_WRITE;
919   } else if (osec.type == SHT_PROGBITS) {
920     // Make non-executable and non-writable PROGBITS sections (e.g .rodata
921     // .eh_frame) closer to .text. They likely contain PC or GOT relative
922     // relocations and there could be relocation overflow if other huge sections
923     // (.dynstr .dynsym) were placed in between.
924     rank |= RF_RODATA;
925   }
926 
927   // Place RelRo sections first. After considering SHT_NOBITS below, the
928   // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
929   // where | marks where page alignment happens. An alternative ordering is
930   // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
931   // waste more bytes due to 2 alignment places.
932   if (!isRelroSection(&osec))
933     rank |= RF_NOT_RELRO;
934 
935   // If we got here we know that both A and B are in the same PT_LOAD.
936 
937   // The TLS initialization block needs to be a single contiguous block in a R/W
938   // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
939   // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
940   // after PROGBITS.
941   if (!(osec.flags & SHF_TLS))
942     rank |= RF_NOT_TLS;
943 
944   // Within TLS sections, or within other RelRo sections, or within non-RelRo
945   // sections, place non-NOBITS sections first.
946   if (osec.type == SHT_NOBITS)
947     rank |= RF_BSS;
948 
949   // Some architectures have additional ordering restrictions for sections
950   // within the same PT_LOAD.
951   if (config->emachine == EM_PPC64) {
952     // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
953     // that we would like to make sure appear is a specific order to maximize
954     // their coverage by a single signed 16-bit offset from the TOC base
955     // pointer. Conversely, the special .tocbss section should be first among
956     // all SHT_NOBITS sections. This will put it next to the loaded special
957     // PPC64 sections (and, thus, within reach of the TOC base pointer).
958     StringRef name = osec.name;
959     if (name != ".tocbss")
960       rank |= RF_PPC_NOT_TOCBSS;
961 
962     if (name == ".toc1")
963       rank |= RF_PPC_TOCL;
964 
965     if (name == ".toc")
966       rank |= RF_PPC_TOC;
967 
968     if (name == ".got")
969       rank |= RF_PPC_GOT;
970 
971     if (name == ".branch_lt")
972       rank |= RF_PPC_BRANCH_LT;
973   }
974 
975   if (config->emachine == EM_MIPS) {
976     // All sections with SHF_MIPS_GPREL flag should be grouped together
977     // because data in these sections is addressable with a gp relative address.
978     if (osec.flags & SHF_MIPS_GPREL)
979       rank |= RF_MIPS_GPREL;
980 
981     if (osec.name != ".got")
982       rank |= RF_MIPS_NOT_GOT;
983   }
984 
985   return rank;
986 }
987 
compareSections(const SectionCommand * aCmd,const SectionCommand * bCmd)988 static bool compareSections(const SectionCommand *aCmd,
989                             const SectionCommand *bCmd) {
990   const OutputSection *a = &cast<OutputDesc>(aCmd)->osec;
991   const OutputSection *b = &cast<OutputDesc>(bCmd)->osec;
992 
993   if (a->sortRank != b->sortRank)
994     return a->sortRank < b->sortRank;
995 
996   if (!(a->sortRank & RF_NOT_ADDR_SET))
997     return config->sectionStartMap.lookup(a->name) <
998            config->sectionStartMap.lookup(b->name);
999   return false;
1000 }
1001 
add(OutputSection * sec)1002 void PhdrEntry::add(OutputSection *sec) {
1003   lastSec = sec;
1004   if (!firstSec)
1005     firstSec = sec;
1006   p_align = std::max(p_align, sec->addralign);
1007   if (p_type == PT_LOAD)
1008     sec->ptLoad = this;
1009 }
1010 
1011 // The beginning and the ending of .rel[a].plt section are marked
1012 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
1013 // executable. The runtime needs these symbols in order to resolve
1014 // all IRELATIVE relocs on startup. For dynamic executables, we don't
1015 // need these symbols, since IRELATIVE relocs are resolved through GOT
1016 // and PLT. For details, see http://www.airs.com/blog/archives/403.
addRelIpltSymbols()1017 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
1018   if (config->isPic)
1019     return;
1020 
1021   // By default, __rela_iplt_{start,end} belong to a dummy section 0
1022   // because .rela.plt might be empty and thus removed from output.
1023   // We'll override Out::elfHeader with In.relaIplt later when we are
1024   // sure that .rela.plt exists in output.
1025   ElfSym::relaIpltStart = addOptionalRegular(
1026       config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
1027       Out::elfHeader, 0, STV_HIDDEN);
1028 
1029   ElfSym::relaIpltEnd = addOptionalRegular(
1030       config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
1031       Out::elfHeader, 0, STV_HIDDEN);
1032 }
1033 
1034 // This function generates assignments for predefined symbols (e.g. _end or
1035 // _etext) and inserts them into the commands sequence to be processed at the
1036 // appropriate time. This ensures that the value is going to be correct by the
1037 // time any references to these symbols are processed and is equivalent to
1038 // defining these symbols explicitly in the linker script.
setReservedSymbolSections()1039 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
1040   if (ElfSym::globalOffsetTable) {
1041     // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
1042     // to the start of the .got or .got.plt section.
1043     InputSection *sec = in.gotPlt.get();
1044     if (!target->gotBaseSymInGotPlt)
1045       sec = in.mipsGot ? cast<InputSection>(in.mipsGot.get())
1046                        : cast<InputSection>(in.got.get());
1047     ElfSym::globalOffsetTable->section = sec;
1048   }
1049 
1050   // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
1051   if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
1052     ElfSym::relaIpltStart->section = in.relaIplt.get();
1053     ElfSym::relaIpltEnd->section = in.relaIplt.get();
1054     ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
1055   }
1056 
1057   PhdrEntry *last = nullptr;
1058   PhdrEntry *lastRO = nullptr;
1059 
1060   for (Partition &part : partitions) {
1061     for (PhdrEntry *p : part.phdrs) {
1062       if (p->p_type != PT_LOAD)
1063         continue;
1064       last = p;
1065       if (!(p->p_flags & PF_W))
1066         lastRO = p;
1067     }
1068   }
1069 
1070   if (lastRO) {
1071     // _etext is the first location after the last read-only loadable segment.
1072     if (ElfSym::etext1)
1073       ElfSym::etext1->section = lastRO->lastSec;
1074     if (ElfSym::etext2)
1075       ElfSym::etext2->section = lastRO->lastSec;
1076   }
1077 
1078   if (last) {
1079     // _edata points to the end of the last mapped initialized section.
1080     OutputSection *edata = nullptr;
1081     for (OutputSection *os : outputSections) {
1082       if (os->type != SHT_NOBITS)
1083         edata = os;
1084       if (os == last->lastSec)
1085         break;
1086     }
1087 
1088     if (ElfSym::edata1)
1089       ElfSym::edata1->section = edata;
1090     if (ElfSym::edata2)
1091       ElfSym::edata2->section = edata;
1092 
1093     // _end is the first location after the uninitialized data region.
1094     if (ElfSym::end1)
1095       ElfSym::end1->section = last->lastSec;
1096     if (ElfSym::end2)
1097       ElfSym::end2->section = last->lastSec;
1098   }
1099 
1100   if (ElfSym::bss)
1101     ElfSym::bss->section = findSection(".bss");
1102 
1103   if (ElfSym::data)
1104     ElfSym::data->section = findSection(".data");
1105 
1106   // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
1107   // be equal to the _gp symbol's value.
1108   if (ElfSym::mipsGp) {
1109     // Find GP-relative section with the lowest address
1110     // and use this address to calculate default _gp value.
1111     for (OutputSection *os : outputSections) {
1112       if (os->flags & SHF_MIPS_GPREL) {
1113         ElfSym::mipsGp->section = os;
1114         ElfSym::mipsGp->value = 0x7ff0;
1115         break;
1116       }
1117     }
1118   }
1119 }
1120 
1121 // We want to find how similar two ranks are.
1122 // The more branches in getSectionRank that match, the more similar they are.
1123 // Since each branch corresponds to a bit flag, we can just use
1124 // countLeadingZeros.
getRankProximity(OutputSection * a,SectionCommand * b)1125 static int getRankProximity(OutputSection *a, SectionCommand *b) {
1126   auto *osd = dyn_cast<OutputDesc>(b);
1127   return (osd && osd->osec.hasInputSections)
1128              ? countLeadingZeros(a->sortRank ^ osd->osec.sortRank)
1129              : -1;
1130 }
1131 
1132 // When placing orphan sections, we want to place them after symbol assignments
1133 // so that an orphan after
1134 //   begin_foo = .;
1135 //   foo : { *(foo) }
1136 //   end_foo = .;
1137 // doesn't break the intended meaning of the begin/end symbols.
1138 // We don't want to go over sections since findOrphanPos is the
1139 // one in charge of deciding the order of the sections.
1140 // We don't want to go over changes to '.', since doing so in
1141 //  rx_sec : { *(rx_sec) }
1142 //  . = ALIGN(0x1000);
1143 //  /* The RW PT_LOAD starts here*/
1144 //  rw_sec : { *(rw_sec) }
1145 // would mean that the RW PT_LOAD would become unaligned.
shouldSkip(SectionCommand * cmd)1146 static bool shouldSkip(SectionCommand *cmd) {
1147   if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
1148     return assign->name != ".";
1149   return false;
1150 }
1151 
1152 // We want to place orphan sections so that they share as much
1153 // characteristics with their neighbors as possible. For example, if
1154 // both are rw, or both are tls.
1155 static SmallVectorImpl<SectionCommand *>::iterator
findOrphanPos(SmallVectorImpl<SectionCommand * >::iterator b,SmallVectorImpl<SectionCommand * >::iterator e)1156 findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b,
1157               SmallVectorImpl<SectionCommand *>::iterator e) {
1158   OutputSection *sec = &cast<OutputDesc>(*e)->osec;
1159 
1160   // Find the first element that has as close a rank as possible.
1161   auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) {
1162     return getRankProximity(sec, a) < getRankProximity(sec, b);
1163   });
1164   if (i == e)
1165     return e;
1166   if (!isa<OutputDesc>(*i))
1167     return e;
1168   auto foundSec = &cast<OutputDesc>(*i)->osec;
1169 
1170   // Consider all existing sections with the same proximity.
1171   int proximity = getRankProximity(sec, *i);
1172   unsigned sortRank = sec->sortRank;
1173   if (script->hasPhdrsCommands() || !script->memoryRegions.empty())
1174     // Prevent the orphan section to be placed before the found section. If
1175     // custom program headers are defined, that helps to avoid adding it to a
1176     // previous segment and changing flags of that segment, for example, making
1177     // a read-only segment writable. If memory regions are defined, an orphan
1178     // section should continue the same region as the found section to better
1179     // resemble the behavior of GNU ld.
1180     sortRank = std::max(sortRank, foundSec->sortRank);
1181   for (; i != e; ++i) {
1182     auto *curSecDesc = dyn_cast<OutputDesc>(*i);
1183     if (!curSecDesc || !curSecDesc->osec.hasInputSections)
1184       continue;
1185     if (getRankProximity(sec, curSecDesc) != proximity ||
1186         sortRank < curSecDesc->osec.sortRank)
1187       break;
1188   }
1189 
1190   auto isOutputSecWithInputSections = [](SectionCommand *cmd) {
1191     auto *osd = dyn_cast<OutputDesc>(cmd);
1192     return osd && osd->osec.hasInputSections;
1193   };
1194   auto j =
1195       std::find_if(std::make_reverse_iterator(i), std::make_reverse_iterator(b),
1196                    isOutputSecWithInputSections);
1197   i = j.base();
1198 
1199   // As a special case, if the orphan section is the last section, put
1200   // it at the very end, past any other commands.
1201   // This matches bfd's behavior and is convenient when the linker script fully
1202   // specifies the start of the file, but doesn't care about the end (the non
1203   // alloc sections for example).
1204   auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
1205   if (nextSec == e)
1206     return e;
1207 
1208   while (i != e && shouldSkip(*i))
1209     ++i;
1210   return i;
1211 }
1212 
1213 // Adds random priorities to sections not already in the map.
maybeShuffle(DenseMap<const InputSectionBase *,int> & order)1214 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) {
1215   if (config->shuffleSections.empty())
1216     return;
1217 
1218   SmallVector<InputSectionBase *, 0> matched, sections = ctx.inputSections;
1219   matched.reserve(sections.size());
1220   for (const auto &patAndSeed : config->shuffleSections) {
1221     matched.clear();
1222     for (InputSectionBase *sec : sections)
1223       if (patAndSeed.first.match(sec->name))
1224         matched.push_back(sec);
1225     const uint32_t seed = patAndSeed.second;
1226     if (seed == UINT32_MAX) {
1227       // If --shuffle-sections <section-glob>=-1, reverse the section order. The
1228       // section order is stable even if the number of sections changes. This is
1229       // useful to catch issues like static initialization order fiasco
1230       // reliably.
1231       std::reverse(matched.begin(), matched.end());
1232     } else {
1233       std::mt19937 g(seed ? seed : std::random_device()());
1234       llvm::shuffle(matched.begin(), matched.end(), g);
1235     }
1236     size_t i = 0;
1237     for (InputSectionBase *&sec : sections)
1238       if (patAndSeed.first.match(sec->name))
1239         sec = matched[i++];
1240   }
1241 
1242   // Existing priorities are < 0, so use priorities >= 0 for the missing
1243   // sections.
1244   int prio = 0;
1245   for (InputSectionBase *sec : sections) {
1246     if (order.try_emplace(sec, prio).second)
1247       ++prio;
1248   }
1249 }
1250 
1251 // Builds section order for handling --symbol-ordering-file.
buildSectionOrder()1252 static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
1253   DenseMap<const InputSectionBase *, int> sectionOrder;
1254   // Use the rarely used option --call-graph-ordering-file to sort sections.
1255   if (!config->callGraphProfile.empty())
1256     return computeCallGraphProfileOrder();
1257 
1258   if (config->symbolOrderingFile.empty())
1259     return sectionOrder;
1260 
1261   struct SymbolOrderEntry {
1262     int priority;
1263     bool present;
1264   };
1265 
1266   // Build a map from symbols to their priorities. Symbols that didn't
1267   // appear in the symbol ordering file have the lowest priority 0.
1268   // All explicitly mentioned symbols have negative (higher) priorities.
1269   DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder;
1270   int priority = -config->symbolOrderingFile.size();
1271   for (StringRef s : config->symbolOrderingFile)
1272     symbolOrder.insert({CachedHashStringRef(s), {priority++, false}});
1273 
1274   // Build a map from sections to their priorities.
1275   auto addSym = [&](Symbol &sym) {
1276     auto it = symbolOrder.find(CachedHashStringRef(sym.getName()));
1277     if (it == symbolOrder.end())
1278       return;
1279     SymbolOrderEntry &ent = it->second;
1280     ent.present = true;
1281 
1282     maybeWarnUnorderableSymbol(&sym);
1283 
1284     if (auto *d = dyn_cast<Defined>(&sym)) {
1285       if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
1286         int &priority = sectionOrder[cast<InputSectionBase>(sec)];
1287         priority = std::min(priority, ent.priority);
1288       }
1289     }
1290   };
1291 
1292   // We want both global and local symbols. We get the global ones from the
1293   // symbol table and iterate the object files for the local ones.
1294   for (Symbol *sym : symtab.getSymbols())
1295     addSym(*sym);
1296 
1297   for (ELFFileBase *file : ctx.objectFiles)
1298     for (Symbol *sym : file->getLocalSymbols())
1299       addSym(*sym);
1300 
1301   if (config->warnSymbolOrdering)
1302     for (auto orderEntry : symbolOrder)
1303       if (!orderEntry.second.present)
1304         warn("symbol ordering file: no such symbol: " + orderEntry.first.val());
1305 
1306   return sectionOrder;
1307 }
1308 
1309 // Sorts the sections in ISD according to the provided section order.
1310 static void
sortISDBySectionOrder(InputSectionDescription * isd,const DenseMap<const InputSectionBase *,int> & order,bool executableOutputSection)1311 sortISDBySectionOrder(InputSectionDescription *isd,
1312                       const DenseMap<const InputSectionBase *, int> &order,
1313                       bool executableOutputSection) {
1314   SmallVector<InputSection *, 0> unorderedSections;
1315   SmallVector<std::pair<InputSection *, int>, 0> orderedSections;
1316   uint64_t unorderedSize = 0;
1317   uint64_t totalSize = 0;
1318 
1319   for (InputSection *isec : isd->sections) {
1320     if (executableOutputSection)
1321       totalSize += isec->getSize();
1322     auto i = order.find(isec);
1323     if (i == order.end()) {
1324       unorderedSections.push_back(isec);
1325       unorderedSize += isec->getSize();
1326       continue;
1327     }
1328     orderedSections.push_back({isec, i->second});
1329   }
1330   llvm::sort(orderedSections, llvm::less_second());
1331 
1332   // Find an insertion point for the ordered section list in the unordered
1333   // section list. On targets with limited-range branches, this is the mid-point
1334   // of the unordered section list. This decreases the likelihood that a range
1335   // extension thunk will be needed to enter or exit the ordered region. If the
1336   // ordered section list is a list of hot functions, we can generally expect
1337   // the ordered functions to be called more often than the unordered functions,
1338   // making it more likely that any particular call will be within range, and
1339   // therefore reducing the number of thunks required.
1340   //
1341   // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1342   // If the layout is:
1343   //
1344   // 8MB hot
1345   // 32MB cold
1346   //
1347   // only the first 8-16MB of the cold code (depending on which hot function it
1348   // is actually calling) can call the hot code without a range extension thunk.
1349   // However, if we use this layout:
1350   //
1351   // 16MB cold
1352   // 8MB hot
1353   // 16MB cold
1354   //
1355   // both the last 8-16MB of the first block of cold code and the first 8-16MB
1356   // of the second block of cold code can call the hot code without a thunk. So
1357   // we effectively double the amount of code that could potentially call into
1358   // the hot code without a thunk.
1359   //
1360   // The above is not necessary if total size of input sections in this "isd"
1361   // is small. Note that we assume all input sections are executable if the
1362   // output section is executable (which is not always true but supposed to
1363   // cover most cases).
1364   size_t insPt = 0;
1365   if (executableOutputSection && !orderedSections.empty() &&
1366       target->getThunkSectionSpacing() &&
1367       totalSize >= target->getThunkSectionSpacing()) {
1368     uint64_t unorderedPos = 0;
1369     for (; insPt != unorderedSections.size(); ++insPt) {
1370       unorderedPos += unorderedSections[insPt]->getSize();
1371       if (unorderedPos > unorderedSize / 2)
1372         break;
1373     }
1374   }
1375 
1376   isd->sections.clear();
1377   for (InputSection *isec : ArrayRef(unorderedSections).slice(0, insPt))
1378     isd->sections.push_back(isec);
1379   for (std::pair<InputSection *, int> p : orderedSections)
1380     isd->sections.push_back(p.first);
1381   for (InputSection *isec : ArrayRef(unorderedSections).slice(insPt))
1382     isd->sections.push_back(isec);
1383 }
1384 
sortSection(OutputSection & osec,const DenseMap<const InputSectionBase *,int> & order)1385 static void sortSection(OutputSection &osec,
1386                         const DenseMap<const InputSectionBase *, int> &order) {
1387   StringRef name = osec.name;
1388 
1389   // Never sort these.
1390   if (name == ".init" || name == ".fini")
1391     return;
1392 
1393   // IRelative relocations that usually live in the .rel[a].dyn section should
1394   // be processed last by the dynamic loader. To achieve that we add synthetic
1395   // sections in the required order from the beginning so that the in.relaIplt
1396   // section is placed last in an output section. Here we just do not apply
1397   // sorting for an output section which holds the in.relaIplt section.
1398   if (in.relaIplt->getParent() == &osec)
1399     return;
1400 
1401   // Sort input sections by priority using the list provided by
1402   // --symbol-ordering-file or --shuffle-sections=. This is a least significant
1403   // digit radix sort. The sections may be sorted stably again by a more
1404   // significant key.
1405   if (!order.empty())
1406     for (SectionCommand *b : osec.commands)
1407       if (auto *isd = dyn_cast<InputSectionDescription>(b))
1408         sortISDBySectionOrder(isd, order, osec.flags & SHF_EXECINSTR);
1409 
1410   if (script->hasSectionsCommand)
1411     return;
1412 
1413   if (name == ".init_array" || name == ".fini_array") {
1414     osec.sortInitFini();
1415   } else if (name == ".ctors" || name == ".dtors") {
1416     osec.sortCtorsDtors();
1417   } else if (config->emachine == EM_PPC64 && name == ".toc") {
1418     // .toc is allocated just after .got and is accessed using GOT-relative
1419     // relocations. Object files compiled with small code model have an
1420     // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1421     // To reduce the risk of relocation overflow, .toc contents are sorted so
1422     // that sections having smaller relocation offsets are at beginning of .toc
1423     assert(osec.commands.size() == 1);
1424     auto *isd = cast<InputSectionDescription>(osec.commands[0]);
1425     llvm::stable_sort(isd->sections,
1426                       [](const InputSection *a, const InputSection *b) -> bool {
1427                         return a->file->ppc64SmallCodeModelTocRelocs &&
1428                                !b->file->ppc64SmallCodeModelTocRelocs;
1429                       });
1430   }
1431 }
1432 
1433 // If no layout was provided by linker script, we want to apply default
1434 // sorting for special input sections. This also handles --symbol-ordering-file.
sortInputSections()1435 template <class ELFT> void Writer<ELFT>::sortInputSections() {
1436   // Build the order once since it is expensive.
1437   DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
1438   maybeShuffle(order);
1439   for (SectionCommand *cmd : script->sectionCommands)
1440     if (auto *osd = dyn_cast<OutputDesc>(cmd))
1441       sortSection(osd->osec, order);
1442 }
1443 
sortSections()1444 template <class ELFT> void Writer<ELFT>::sortSections() {
1445   llvm::TimeTraceScope timeScope("Sort sections");
1446 
1447   // Don't sort if using -r. It is not necessary and we want to preserve the
1448   // relative order for SHF_LINK_ORDER sections.
1449   if (config->relocatable) {
1450     script->adjustOutputSections();
1451     return;
1452   }
1453 
1454   sortInputSections();
1455 
1456   for (SectionCommand *cmd : script->sectionCommands)
1457     if (auto *osd = dyn_cast<OutputDesc>(cmd))
1458       osd->osec.sortRank = getSectionRank(osd->osec);
1459   if (!script->hasSectionsCommand) {
1460     // We know that all the OutputSections are contiguous in this case.
1461     auto isSection = [](SectionCommand *cmd) { return isa<OutputDesc>(cmd); };
1462     std::stable_sort(
1463         llvm::find_if(script->sectionCommands, isSection),
1464         llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
1465         compareSections);
1466   }
1467 
1468   // Process INSERT commands and update output section attributes. From this
1469   // point onwards the order of script->sectionCommands is fixed.
1470   script->processInsertCommands();
1471   script->adjustOutputSections();
1472 
1473   if (!script->hasSectionsCommand)
1474     return;
1475 
1476   // Orphan sections are sections present in the input files which are
1477   // not explicitly placed into the output file by the linker script.
1478   //
1479   // The sections in the linker script are already in the correct
1480   // order. We have to figuere out where to insert the orphan
1481   // sections.
1482   //
1483   // The order of the sections in the script is arbitrary and may not agree with
1484   // compareSections. This means that we cannot easily define a strict weak
1485   // ordering. To see why, consider a comparison of a section in the script and
1486   // one not in the script. We have a two simple options:
1487   // * Make them equivalent (a is not less than b, and b is not less than a).
1488   //   The problem is then that equivalence has to be transitive and we can
1489   //   have sections a, b and c with only b in a script and a less than c
1490   //   which breaks this property.
1491   // * Use compareSectionsNonScript. Given that the script order doesn't have
1492   //   to match, we can end up with sections a, b, c, d where b and c are in the
1493   //   script and c is compareSectionsNonScript less than b. In which case d
1494   //   can be equivalent to c, a to b and d < a. As a concrete example:
1495   //   .a (rx) # not in script
1496   //   .b (rx) # in script
1497   //   .c (ro) # in script
1498   //   .d (ro) # not in script
1499   //
1500   // The way we define an order then is:
1501   // *  Sort only the orphan sections. They are in the end right now.
1502   // *  Move each orphan section to its preferred position. We try
1503   //    to put each section in the last position where it can share
1504   //    a PT_LOAD.
1505   //
1506   // There is some ambiguity as to where exactly a new entry should be
1507   // inserted, because Commands contains not only output section
1508   // commands but also other types of commands such as symbol assignment
1509   // expressions. There's no correct answer here due to the lack of the
1510   // formal specification of the linker script. We use heuristics to
1511   // determine whether a new output command should be added before or
1512   // after another commands. For the details, look at shouldSkip
1513   // function.
1514 
1515   auto i = script->sectionCommands.begin();
1516   auto e = script->sectionCommands.end();
1517   auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) {
1518     if (auto *osd = dyn_cast<OutputDesc>(cmd))
1519       return osd->osec.sectionIndex == UINT32_MAX;
1520     return false;
1521   });
1522 
1523   // Sort the orphan sections.
1524   std::stable_sort(nonScriptI, e, compareSections);
1525 
1526   // As a horrible special case, skip the first . assignment if it is before any
1527   // section. We do this because it is common to set a load address by starting
1528   // the script with ". = 0xabcd" and the expectation is that every section is
1529   // after that.
1530   auto firstSectionOrDotAssignment =
1531       std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); });
1532   if (firstSectionOrDotAssignment != e &&
1533       isa<SymbolAssignment>(**firstSectionOrDotAssignment))
1534     ++firstSectionOrDotAssignment;
1535   i = firstSectionOrDotAssignment;
1536 
1537   while (nonScriptI != e) {
1538     auto pos = findOrphanPos(i, nonScriptI);
1539     OutputSection *orphan = &cast<OutputDesc>(*nonScriptI)->osec;
1540 
1541     // As an optimization, find all sections with the same sort rank
1542     // and insert them with one rotate.
1543     unsigned rank = orphan->sortRank;
1544     auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) {
1545       return cast<OutputDesc>(cmd)->osec.sortRank != rank;
1546     });
1547     std::rotate(pos, nonScriptI, end);
1548     nonScriptI = end;
1549   }
1550 
1551   script->adjustSectionsAfterSorting();
1552 }
1553 
compareByFilePosition(InputSection * a,InputSection * b)1554 static bool compareByFilePosition(InputSection *a, InputSection *b) {
1555   InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr;
1556   InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr;
1557   // SHF_LINK_ORDER sections with non-zero sh_link are ordered before
1558   // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link.
1559   if (!la || !lb)
1560     return la && !lb;
1561   OutputSection *aOut = la->getParent();
1562   OutputSection *bOut = lb->getParent();
1563 
1564   if (aOut != bOut)
1565     return aOut->addr < bOut->addr;
1566   return la->outSecOff < lb->outSecOff;
1567 }
1568 
resolveShfLinkOrder()1569 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
1570   llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER");
1571   for (OutputSection *sec : outputSections) {
1572     if (!(sec->flags & SHF_LINK_ORDER))
1573       continue;
1574 
1575     // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1576     // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1577     if (!config->relocatable && config->emachine == EM_ARM &&
1578         sec->type == SHT_ARM_EXIDX)
1579       continue;
1580 
1581     // Link order may be distributed across several InputSectionDescriptions.
1582     // Sorting is performed separately.
1583     SmallVector<InputSection **, 0> scriptSections;
1584     SmallVector<InputSection *, 0> sections;
1585     for (SectionCommand *cmd : sec->commands) {
1586       auto *isd = dyn_cast<InputSectionDescription>(cmd);
1587       if (!isd)
1588         continue;
1589       bool hasLinkOrder = false;
1590       scriptSections.clear();
1591       sections.clear();
1592       for (InputSection *&isec : isd->sections) {
1593         if (isec->flags & SHF_LINK_ORDER) {
1594           InputSection *link = isec->getLinkOrderDep();
1595           if (link && !link->getParent())
1596             error(toString(isec) + ": sh_link points to discarded section " +
1597                   toString(link));
1598           hasLinkOrder = true;
1599         }
1600         scriptSections.push_back(&isec);
1601         sections.push_back(isec);
1602       }
1603       if (hasLinkOrder && errorCount() == 0) {
1604         llvm::stable_sort(sections, compareByFilePosition);
1605         for (int i = 0, n = sections.size(); i != n; ++i)
1606           *scriptSections[i] = sections[i];
1607       }
1608     }
1609   }
1610 }
1611 
finalizeSynthetic(SyntheticSection * sec)1612 static void finalizeSynthetic(SyntheticSection *sec) {
1613   if (sec && sec->isNeeded() && sec->getParent()) {
1614     llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name);
1615     sec->finalizeContents();
1616   }
1617 }
1618 
1619 // We need to generate and finalize the content that depends on the address of
1620 // InputSections. As the generation of the content may also alter InputSection
1621 // addresses we must converge to a fixed point. We do that here. See the comment
1622 // in Writer<ELFT>::finalizeSections().
finalizeAddressDependentContent()1623 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
1624   llvm::TimeTraceScope timeScope("Finalize address dependent content");
1625   ThunkCreator tc;
1626   AArch64Err843419Patcher a64p;
1627   ARMErr657417Patcher a32p;
1628   script->assignAddresses();
1629   // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they
1630   // do require the relative addresses of OutputSections because linker scripts
1631   // can assign Virtual Addresses to OutputSections that are not monotonically
1632   // increasing.
1633   for (Partition &part : partitions)
1634     finalizeSynthetic(part.armExidx.get());
1635   resolveShfLinkOrder();
1636 
1637   // Converts call x@GDPLT to call __tls_get_addr
1638   if (config->emachine == EM_HEXAGON)
1639     hexagonTLSSymbolUpdate(outputSections);
1640 
1641   uint32_t pass = 0, assignPasses = 0;
1642   for (;;) {
1643     bool changed = target->needsThunks ? tc.createThunks(pass, outputSections)
1644                                        : target->relaxOnce(pass);
1645     ++pass;
1646 
1647     // With Thunk Size much smaller than branch range we expect to
1648     // converge quickly; if we get to 15 something has gone wrong.
1649     if (changed && pass >= 15) {
1650       error(target->needsThunks ? "thunk creation not converged"
1651                                 : "relaxation not converged");
1652       break;
1653     }
1654 
1655     if (config->fixCortexA53Errata843419) {
1656       if (changed)
1657         script->assignAddresses();
1658       changed |= a64p.createFixes();
1659     }
1660     if (config->fixCortexA8) {
1661       if (changed)
1662         script->assignAddresses();
1663       changed |= a32p.createFixes();
1664     }
1665 
1666     if (in.mipsGot)
1667       in.mipsGot->updateAllocSize();
1668 
1669     for (Partition &part : partitions) {
1670       changed |= part.relaDyn->updateAllocSize();
1671       if (part.relrDyn)
1672         changed |= part.relrDyn->updateAllocSize();
1673     }
1674 
1675     const Defined *changedSym = script->assignAddresses();
1676     if (!changed) {
1677       // Some symbols may be dependent on section addresses. When we break the
1678       // loop, the symbol values are finalized because a previous
1679       // assignAddresses() finalized section addresses.
1680       if (!changedSym)
1681         break;
1682       if (++assignPasses == 5) {
1683         errorOrWarn("assignment to symbol " + toString(*changedSym) +
1684                     " does not converge");
1685         break;
1686       }
1687     }
1688   }
1689   if (!config->relocatable && config->emachine == EM_RISCV)
1690     riscvFinalizeRelax(pass);
1691 
1692   if (config->relocatable)
1693     for (OutputSection *sec : outputSections)
1694       sec->addr = 0;
1695 
1696   // If addrExpr is set, the address may not be a multiple of the alignment.
1697   // Warn because this is error-prone.
1698   for (SectionCommand *cmd : script->sectionCommands)
1699     if (auto *osd = dyn_cast<OutputDesc>(cmd)) {
1700       OutputSection *osec = &osd->osec;
1701       if (osec->addr % osec->addralign != 0)
1702         warn("address (0x" + Twine::utohexstr(osec->addr) + ") of section " +
1703              osec->name + " is not a multiple of alignment (" +
1704              Twine(osec->addralign) + ")");
1705     }
1706 }
1707 
1708 // If Input Sections have been shrunk (basic block sections) then
1709 // update symbol values and sizes associated with these sections.  With basic
1710 // block sections, input sections can shrink when the jump instructions at
1711 // the end of the section are relaxed.
fixSymbolsAfterShrinking()1712 static void fixSymbolsAfterShrinking() {
1713   for (InputFile *File : ctx.objectFiles) {
1714     parallelForEach(File->getSymbols(), [&](Symbol *Sym) {
1715       auto *def = dyn_cast<Defined>(Sym);
1716       if (!def)
1717         return;
1718 
1719       const SectionBase *sec = def->section;
1720       if (!sec)
1721         return;
1722 
1723       const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec);
1724       if (!inputSec || !inputSec->bytesDropped)
1725         return;
1726 
1727       const size_t OldSize = inputSec->content().size();
1728       const size_t NewSize = OldSize - inputSec->bytesDropped;
1729 
1730       if (def->value > NewSize && def->value <= OldSize) {
1731         LLVM_DEBUG(llvm::dbgs()
1732                    << "Moving symbol " << Sym->getName() << " from "
1733                    << def->value << " to "
1734                    << def->value - inputSec->bytesDropped << " bytes\n");
1735         def->value -= inputSec->bytesDropped;
1736         return;
1737       }
1738 
1739       if (def->value + def->size > NewSize && def->value <= OldSize &&
1740           def->value + def->size <= OldSize) {
1741         LLVM_DEBUG(llvm::dbgs()
1742                    << "Shrinking symbol " << Sym->getName() << " from "
1743                    << def->size << " to " << def->size - inputSec->bytesDropped
1744                    << " bytes\n");
1745         def->size -= inputSec->bytesDropped;
1746       }
1747     });
1748   }
1749 }
1750 
1751 // If basic block sections exist, there are opportunities to delete fall thru
1752 // jumps and shrink jump instructions after basic block reordering.  This
1753 // relaxation pass does that.  It is only enabled when --optimize-bb-jumps
1754 // option is used.
optimizeBasicBlockJumps()1755 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() {
1756   assert(config->optimizeBBJumps);
1757   SmallVector<InputSection *, 0> storage;
1758 
1759   script->assignAddresses();
1760   // For every output section that has executable input sections, this
1761   // does the following:
1762   //   1. Deletes all direct jump instructions in input sections that
1763   //      jump to the following section as it is not required.
1764   //   2. If there are two consecutive jump instructions, it checks
1765   //      if they can be flipped and one can be deleted.
1766   for (OutputSection *osec : outputSections) {
1767     if (!(osec->flags & SHF_EXECINSTR))
1768       continue;
1769     ArrayRef<InputSection *> sections = getInputSections(*osec, storage);
1770     size_t numDeleted = 0;
1771     // Delete all fall through jump instructions.  Also, check if two
1772     // consecutive jump instructions can be flipped so that a fall
1773     // through jmp instruction can be deleted.
1774     for (size_t i = 0, e = sections.size(); i != e; ++i) {
1775       InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr;
1776       InputSection &sec = *sections[i];
1777       numDeleted += target->deleteFallThruJmpInsn(sec, sec.file, next);
1778     }
1779     if (numDeleted > 0) {
1780       script->assignAddresses();
1781       LLVM_DEBUG(llvm::dbgs()
1782                  << "Removing " << numDeleted << " fall through jumps\n");
1783     }
1784   }
1785 
1786   fixSymbolsAfterShrinking();
1787 
1788   for (OutputSection *osec : outputSections)
1789     for (InputSection *is : getInputSections(*osec, storage))
1790       is->trim();
1791 }
1792 
1793 // In order to allow users to manipulate linker-synthesized sections,
1794 // we had to add synthetic sections to the input section list early,
1795 // even before we make decisions whether they are needed. This allows
1796 // users to write scripts like this: ".mygot : { .got }".
1797 //
1798 // Doing it has an unintended side effects. If it turns out that we
1799 // don't need a .got (for example) at all because there's no
1800 // relocation that needs a .got, we don't want to emit .got.
1801 //
1802 // To deal with the above problem, this function is called after
1803 // scanRelocations is called to remove synthetic sections that turn
1804 // out to be empty.
removeUnusedSyntheticSections()1805 static void removeUnusedSyntheticSections() {
1806   // All input synthetic sections that can be empty are placed after
1807   // all regular ones. Reverse iterate to find the first synthetic section
1808   // after a non-synthetic one which will be our starting point.
1809   auto start =
1810       llvm::find_if(llvm::reverse(ctx.inputSections), [](InputSectionBase *s) {
1811         return !isa<SyntheticSection>(s);
1812       }).base();
1813 
1814   // Remove unused synthetic sections from ctx.inputSections;
1815   DenseSet<InputSectionBase *> unused;
1816   auto end =
1817       std::remove_if(start, ctx.inputSections.end(), [&](InputSectionBase *s) {
1818         auto *sec = cast<SyntheticSection>(s);
1819         if (sec->getParent() && sec->isNeeded())
1820           return false;
1821         unused.insert(sec);
1822         return true;
1823       });
1824   ctx.inputSections.erase(end, ctx.inputSections.end());
1825 
1826   // Remove unused synthetic sections from the corresponding input section
1827   // description and orphanSections.
1828   for (auto *sec : unused)
1829     if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent())
1830       for (SectionCommand *cmd : osec->commands)
1831         if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
1832           llvm::erase_if(isd->sections, [&](InputSection *isec) {
1833             return unused.count(isec);
1834           });
1835   llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) {
1836     return unused.count(sec);
1837   });
1838 }
1839 
1840 // Create output section objects and add them to OutputSections.
finalizeSections()1841 template <class ELFT> void Writer<ELFT>::finalizeSections() {
1842   if (!config->relocatable) {
1843     Out::preinitArray = findSection(".preinit_array");
1844     Out::initArray = findSection(".init_array");
1845     Out::finiArray = findSection(".fini_array");
1846 
1847     // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1848     // symbols for sections, so that the runtime can get the start and end
1849     // addresses of each section by section name. Add such symbols.
1850     addStartEndSymbols();
1851     for (SectionCommand *cmd : script->sectionCommands)
1852       if (auto *osd = dyn_cast<OutputDesc>(cmd))
1853         addStartStopSymbols(osd->osec);
1854 
1855     // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1856     // It should be okay as no one seems to care about the type.
1857     // Even the author of gold doesn't remember why gold behaves that way.
1858     // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1859     if (mainPart->dynamic->parent) {
1860       Symbol *s = symtab.addSymbol(Defined{
1861           /*file=*/nullptr, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE,
1862           /*value=*/0, /*size=*/0, mainPart->dynamic.get()});
1863       s->isUsedInRegularObj = true;
1864     }
1865 
1866     // Define __rel[a]_iplt_{start,end} symbols if needed.
1867     addRelIpltSymbols();
1868 
1869     // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1870     // should only be defined in an executable. If .sdata does not exist, its
1871     // value/section does not matter but it has to be relative, so set its
1872     // st_shndx arbitrarily to 1 (Out::elfHeader).
1873     if (config->emachine == EM_RISCV && !config->shared) {
1874       OutputSection *sec = findSection(".sdata");
1875       addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 0x800,
1876                          STV_DEFAULT);
1877     }
1878 
1879     if (config->emachine == EM_386 || config->emachine == EM_X86_64) {
1880       // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1881       // way that:
1882       //
1883       // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1884       // computes 0.
1885       // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address
1886       // in the TLS block).
1887       //
1888       // 2) is special cased in @tpoff computation. To satisfy 1), we define it
1889       // as an absolute symbol of zero. This is different from GNU linkers which
1890       // define _TLS_MODULE_BASE_ relative to the first TLS section.
1891       Symbol *s = symtab.find("_TLS_MODULE_BASE_");
1892       if (s && s->isUndefined()) {
1893         s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL,
1894                            STV_HIDDEN, STT_TLS, /*value=*/0, 0,
1895                            /*section=*/nullptr});
1896         ElfSym::tlsModuleBase = cast<Defined>(s);
1897       }
1898     }
1899 
1900     // This responsible for splitting up .eh_frame section into
1901     // pieces. The relocation scan uses those pieces, so this has to be
1902     // earlier.
1903     {
1904       llvm::TimeTraceScope timeScope("Finalize .eh_frame");
1905       for (Partition &part : partitions)
1906         finalizeSynthetic(part.ehFrame.get());
1907     }
1908 
1909     if (config->hasDynSymTab) {
1910       parallelForEach(symtab.getSymbols(), [](Symbol *sym) {
1911         sym->isPreemptible = computeIsPreemptible(*sym);
1912       });
1913     }
1914   }
1915 
1916   // Change values of linker-script-defined symbols from placeholders (assigned
1917   // by declareSymbols) to actual definitions.
1918   script->processSymbolAssignments();
1919 
1920   if (!config->relocatable) {
1921     llvm::TimeTraceScope timeScope("Scan relocations");
1922     // Scan relocations. This must be done after every symbol is declared so
1923     // that we can correctly decide if a dynamic relocation is needed. This is
1924     // called after processSymbolAssignments() because it needs to know whether
1925     // a linker-script-defined symbol is absolute.
1926     ppc64noTocRelax.clear();
1927     scanRelocations<ELFT>();
1928     reportUndefinedSymbols();
1929     postScanRelocations();
1930 
1931     if (in.plt && in.plt->isNeeded())
1932       in.plt->addSymbols();
1933     if (in.iplt && in.iplt->isNeeded())
1934       in.iplt->addSymbols();
1935 
1936     if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) {
1937       auto diagnose =
1938           config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError
1939               ? errorOrWarn
1940               : warn;
1941       // Error on undefined symbols in a shared object, if all of its DT_NEEDED
1942       // entries are seen. These cases would otherwise lead to runtime errors
1943       // reported by the dynamic linker.
1944       //
1945       // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker
1946       // to catch more cases. That is too much for us. Our approach resembles
1947       // the one used in ld.gold, achieves a good balance to be useful but not
1948       // too smart.
1949       for (SharedFile *file : ctx.sharedFiles) {
1950         bool allNeededIsKnown =
1951             llvm::all_of(file->dtNeeded, [&](StringRef needed) {
1952               return symtab.soNames.count(CachedHashStringRef(needed));
1953             });
1954         if (!allNeededIsKnown)
1955           continue;
1956         for (Symbol *sym : file->requiredSymbols)
1957           if (sym->isUndefined() && !sym->isWeak())
1958             diagnose("undefined reference due to --no-allow-shlib-undefined: " +
1959                      toString(*sym) + "\n>>> referenced by " + toString(file));
1960       }
1961     }
1962   }
1963 
1964   {
1965     llvm::TimeTraceScope timeScope("Add symbols to symtabs");
1966     // Now that we have defined all possible global symbols including linker-
1967     // synthesized ones. Visit all symbols to give the finishing touches.
1968     for (Symbol *sym : symtab.getSymbols()) {
1969       if (!sym->isUsedInRegularObj || !includeInSymtab(*sym))
1970         continue;
1971       if (!config->relocatable)
1972         sym->binding = sym->computeBinding();
1973       if (in.symTab)
1974         in.symTab->addSymbol(sym);
1975 
1976       if (sym->includeInDynsym()) {
1977         partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
1978         if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
1979           if (file->isNeeded && !sym->isUndefined())
1980             addVerneed(sym);
1981       }
1982     }
1983 
1984     // We also need to scan the dynamic relocation tables of the other
1985     // partitions and add any referenced symbols to the partition's dynsym.
1986     for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
1987       DenseSet<Symbol *> syms;
1988       for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
1989         syms.insert(e.sym);
1990       for (DynamicReloc &reloc : part.relaDyn->relocs)
1991         if (reloc.sym && reloc.needsDynSymIndex() &&
1992             syms.insert(reloc.sym).second)
1993           part.dynSymTab->addSymbol(reloc.sym);
1994     }
1995   }
1996 
1997   if (in.mipsGot)
1998     in.mipsGot->build();
1999 
2000   removeUnusedSyntheticSections();
2001   script->diagnoseOrphanHandling();
2002 
2003   sortSections();
2004 
2005   // Create a list of OutputSections, assign sectionIndex, and populate
2006   // in.shStrTab.
2007   for (SectionCommand *cmd : script->sectionCommands)
2008     if (auto *osd = dyn_cast<OutputDesc>(cmd)) {
2009       OutputSection *osec = &osd->osec;
2010       outputSections.push_back(osec);
2011       osec->sectionIndex = outputSections.size();
2012       osec->shName = in.shStrTab->addString(osec->name);
2013     }
2014 
2015   // Prefer command line supplied address over other constraints.
2016   for (OutputSection *sec : outputSections) {
2017     auto i = config->sectionStartMap.find(sec->name);
2018     if (i != config->sectionStartMap.end())
2019       sec->addrExpr = [=] { return i->second; };
2020   }
2021 
2022   // With the outputSections available check for GDPLT relocations
2023   // and add __tls_get_addr symbol if needed.
2024   if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) {
2025     Symbol *sym = symtab.addSymbol(Undefined{
2026         nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE});
2027     sym->isPreemptible = true;
2028     partitions[0].dynSymTab->addSymbol(sym);
2029   }
2030 
2031   // This is a bit of a hack. A value of 0 means undef, so we set it
2032   // to 1 to make __ehdr_start defined. The section number is not
2033   // particularly relevant.
2034   Out::elfHeader->sectionIndex = 1;
2035   Out::elfHeader->size = sizeof(typename ELFT::Ehdr);
2036 
2037   // Binary and relocatable output does not have PHDRS.
2038   // The headers have to be created before finalize as that can influence the
2039   // image base and the dynamic section on mips includes the image base.
2040   if (!config->relocatable && !config->oFormatBinary) {
2041     for (Partition &part : partitions) {
2042       part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
2043                                               : createPhdrs(part);
2044       if (config->emachine == EM_ARM) {
2045         // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
2046         addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
2047       }
2048       if (config->emachine == EM_MIPS) {
2049         // Add separate segments for MIPS-specific sections.
2050         addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
2051         addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
2052         addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
2053       }
2054     }
2055     Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
2056 
2057     // Find the TLS segment. This happens before the section layout loop so that
2058     // Android relocation packing can look up TLS symbol addresses. We only need
2059     // to care about the main partition here because all TLS symbols were moved
2060     // to the main partition (see MarkLive.cpp).
2061     for (PhdrEntry *p : mainPart->phdrs)
2062       if (p->p_type == PT_TLS)
2063         Out::tlsPhdr = p;
2064   }
2065 
2066   // Some symbols are defined in term of program headers. Now that we
2067   // have the headers, we can find out which sections they point to.
2068   setReservedSymbolSections();
2069 
2070   {
2071     llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2072 
2073     finalizeSynthetic(in.bss.get());
2074     finalizeSynthetic(in.bssRelRo.get());
2075     finalizeSynthetic(in.symTabShndx.get());
2076     finalizeSynthetic(in.shStrTab.get());
2077     finalizeSynthetic(in.strTab.get());
2078     finalizeSynthetic(in.got.get());
2079     finalizeSynthetic(in.mipsGot.get());
2080     finalizeSynthetic(in.igotPlt.get());
2081     finalizeSynthetic(in.gotPlt.get());
2082     finalizeSynthetic(in.relaIplt.get());
2083     finalizeSynthetic(in.relaPlt.get());
2084     finalizeSynthetic(in.plt.get());
2085     finalizeSynthetic(in.iplt.get());
2086     finalizeSynthetic(in.ppc32Got2.get());
2087     finalizeSynthetic(in.partIndex.get());
2088 
2089     // Dynamic section must be the last one in this list and dynamic
2090     // symbol table section (dynSymTab) must be the first one.
2091     for (Partition &part : partitions) {
2092       if (part.relaDyn) {
2093         part.relaDyn->mergeRels();
2094         // Compute DT_RELACOUNT to be used by part.dynamic.
2095         part.relaDyn->partitionRels();
2096         finalizeSynthetic(part.relaDyn.get());
2097       }
2098       if (part.relrDyn) {
2099         part.relrDyn->mergeRels();
2100         finalizeSynthetic(part.relrDyn.get());
2101       }
2102 
2103       finalizeSynthetic(part.dynSymTab.get());
2104       finalizeSynthetic(part.gnuHashTab.get());
2105       finalizeSynthetic(part.hashTab.get());
2106       finalizeSynthetic(part.verDef.get());
2107       finalizeSynthetic(part.ehFrameHdr.get());
2108       finalizeSynthetic(part.verSym.get());
2109       finalizeSynthetic(part.verNeed.get());
2110       finalizeSynthetic(part.dynamic.get());
2111     }
2112   }
2113 
2114   if (!script->hasSectionsCommand && !config->relocatable)
2115     fixSectionAlignments();
2116 
2117   // This is used to:
2118   // 1) Create "thunks":
2119   //    Jump instructions in many ISAs have small displacements, and therefore
2120   //    they cannot jump to arbitrary addresses in memory. For example, RISC-V
2121   //    JAL instruction can target only +-1 MiB from PC. It is a linker's
2122   //    responsibility to create and insert small pieces of code between
2123   //    sections to extend the ranges if jump targets are out of range. Such
2124   //    code pieces are called "thunks".
2125   //
2126   //    We add thunks at this stage. We couldn't do this before this point
2127   //    because this is the earliest point where we know sizes of sections and
2128   //    their layouts (that are needed to determine if jump targets are in
2129   //    range).
2130   //
2131   // 2) Update the sections. We need to generate content that depends on the
2132   //    address of InputSections. For example, MIPS GOT section content or
2133   //    android packed relocations sections content.
2134   //
2135   // 3) Assign the final values for the linker script symbols. Linker scripts
2136   //    sometimes using forward symbol declarations. We want to set the correct
2137   //    values. They also might change after adding the thunks.
2138   finalizeAddressDependentContent();
2139 
2140   // All information needed for OutputSection part of Map file is available.
2141   if (errorCount())
2142     return;
2143 
2144   {
2145     llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2146     // finalizeAddressDependentContent may have added local symbols to the
2147     // static symbol table.
2148     finalizeSynthetic(in.symTab.get());
2149     finalizeSynthetic(in.ppc64LongBranchTarget.get());
2150   }
2151 
2152   // Relaxation to delete inter-basic block jumps created by basic block
2153   // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps
2154   // can relax jump instructions based on symbol offset.
2155   if (config->optimizeBBJumps)
2156     optimizeBasicBlockJumps();
2157 
2158   // Fill other section headers. The dynamic table is finalized
2159   // at the end because some tags like RELSZ depend on result
2160   // of finalizing other sections.
2161   for (OutputSection *sec : outputSections)
2162     sec->finalize();
2163 }
2164 
2165 // Ensure data sections are not mixed with executable sections when
2166 // --execute-only is used. --execute-only make pages executable but not
2167 // readable.
checkExecuteOnly()2168 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
2169   if (!config->executeOnly)
2170     return;
2171 
2172   SmallVector<InputSection *, 0> storage;
2173   for (OutputSection *osec : outputSections)
2174     if (osec->flags & SHF_EXECINSTR)
2175       for (InputSection *isec : getInputSections(*osec, storage))
2176         if (!(isec->flags & SHF_EXECINSTR))
2177           error("cannot place " + toString(isec) + " into " +
2178                 toString(osec->name) +
2179                 ": --execute-only does not support intermingling data and code");
2180 }
2181 
2182 // The linker is expected to define SECNAME_start and SECNAME_end
2183 // symbols for a few sections. This function defines them.
addStartEndSymbols()2184 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
2185   // If a section does not exist, there's ambiguity as to how we
2186   // define _start and _end symbols for an init/fini section. Since
2187   // the loader assume that the symbols are always defined, we need to
2188   // always define them. But what value? The loader iterates over all
2189   // pointers between _start and _end to run global ctors/dtors, so if
2190   // the section is empty, their symbol values don't actually matter
2191   // as long as _start and _end point to the same location.
2192   //
2193   // That said, we don't want to set the symbols to 0 (which is
2194   // probably the simplest value) because that could cause some
2195   // program to fail to link due to relocation overflow, if their
2196   // program text is above 2 GiB. We use the address of the .text
2197   // section instead to prevent that failure.
2198   //
2199   // In rare situations, the .text section may not exist. If that's the
2200   // case, use the image base address as a last resort.
2201   OutputSection *Default = findSection(".text");
2202   if (!Default)
2203     Default = Out::elfHeader;
2204 
2205   auto define = [=](StringRef start, StringRef end, OutputSection *os) {
2206     if (os && !script->isDiscarded(os)) {
2207       addOptionalRegular(start, os, 0);
2208       addOptionalRegular(end, os, -1);
2209     } else {
2210       addOptionalRegular(start, Default, 0);
2211       addOptionalRegular(end, Default, 0);
2212     }
2213   };
2214 
2215   define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
2216   define("__init_array_start", "__init_array_end", Out::initArray);
2217   define("__fini_array_start", "__fini_array_end", Out::finiArray);
2218 
2219   if (OutputSection *sec = findSection(".ARM.exidx"))
2220     define("__exidx_start", "__exidx_end", sec);
2221 }
2222 
2223 // If a section name is valid as a C identifier (which is rare because of
2224 // the leading '.'), linkers are expected to define __start_<secname> and
2225 // __stop_<secname> symbols. They are at beginning and end of the section,
2226 // respectively. This is not requested by the ELF standard, but GNU ld and
2227 // gold provide the feature, and used by many programs.
2228 template <class ELFT>
addStartStopSymbols(OutputSection & osec)2229 void Writer<ELFT>::addStartStopSymbols(OutputSection &osec) {
2230   StringRef s = osec.name;
2231   if (!isValidCIdentifier(s))
2232     return;
2233   addOptionalRegular(saver().save("__start_" + s), &osec, 0,
2234                      config->zStartStopVisibility);
2235   addOptionalRegular(saver().save("__stop_" + s), &osec, -1,
2236                      config->zStartStopVisibility);
2237 }
2238 
needsPtLoad(OutputSection * sec)2239 static bool needsPtLoad(OutputSection *sec) {
2240   if (!(sec->flags & SHF_ALLOC))
2241     return false;
2242 
2243   // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
2244   // responsible for allocating space for them, not the PT_LOAD that
2245   // contains the TLS initialization image.
2246   if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
2247     return false;
2248   return true;
2249 }
2250 
2251 // Linker scripts are responsible for aligning addresses. Unfortunately, most
2252 // linker scripts are designed for creating two PT_LOADs only, one RX and one
2253 // RW. This means that there is no alignment in the RO to RX transition and we
2254 // cannot create a PT_LOAD there.
computeFlags(uint64_t flags)2255 static uint64_t computeFlags(uint64_t flags) {
2256   if (config->omagic)
2257     return PF_R | PF_W | PF_X;
2258   if (config->executeOnly && (flags & PF_X))
2259     return flags & ~PF_R;
2260   if (config->singleRoRx && !(flags & PF_W))
2261     return flags | PF_X;
2262   return flags;
2263 }
2264 
2265 // Decide which program headers to create and which sections to include in each
2266 // one.
2267 template <class ELFT>
createPhdrs(Partition & part)2268 SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) {
2269   SmallVector<PhdrEntry *, 0> ret;
2270   auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
2271     ret.push_back(make<PhdrEntry>(type, flags));
2272     return ret.back();
2273   };
2274 
2275   unsigned partNo = part.getNumber();
2276   bool isMain = partNo == 1;
2277 
2278   // Add the first PT_LOAD segment for regular output sections.
2279   uint64_t flags = computeFlags(PF_R);
2280   PhdrEntry *load = nullptr;
2281 
2282   // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2283   // PT_LOAD.
2284   if (!config->nmagic && !config->omagic) {
2285     // The first phdr entry is PT_PHDR which describes the program header
2286     // itself.
2287     if (isMain)
2288       addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
2289     else
2290       addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
2291 
2292     // PT_INTERP must be the second entry if exists.
2293     if (OutputSection *cmd = findSection(".interp", partNo))
2294       addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
2295 
2296     // Add the headers. We will remove them if they don't fit.
2297     // In the other partitions the headers are ordinary sections, so they don't
2298     // need to be added here.
2299     if (isMain) {
2300       load = addHdr(PT_LOAD, flags);
2301       load->add(Out::elfHeader);
2302       load->add(Out::programHeaders);
2303     }
2304   }
2305 
2306   // PT_GNU_RELRO includes all sections that should be marked as
2307   // read-only by dynamic linker after processing relocations.
2308   // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2309   // an error message if more than one PT_GNU_RELRO PHDR is required.
2310   PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
2311   bool inRelroPhdr = false;
2312   OutputSection *relroEnd = nullptr;
2313   for (OutputSection *sec : outputSections) {
2314     if (sec->partition != partNo || !needsPtLoad(sec))
2315       continue;
2316     if (isRelroSection(sec)) {
2317       inRelroPhdr = true;
2318       if (!relroEnd)
2319         relRo->add(sec);
2320       else
2321         error("section: " + sec->name + " is not contiguous with other relro" +
2322               " sections");
2323     } else if (inRelroPhdr) {
2324       inRelroPhdr = false;
2325       relroEnd = sec;
2326     }
2327   }
2328 
2329   for (OutputSection *sec : outputSections) {
2330     if (!needsPtLoad(sec))
2331       continue;
2332 
2333     // Normally, sections in partitions other than the current partition are
2334     // ignored. But partition number 255 is a special case: it contains the
2335     // partition end marker (.part.end). It needs to be added to the main
2336     // partition so that a segment is created for it in the main partition,
2337     // which will cause the dynamic loader to reserve space for the other
2338     // partitions.
2339     if (sec->partition != partNo) {
2340       if (isMain && sec->partition == 255)
2341         addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
2342       continue;
2343     }
2344 
2345     // Segments are contiguous memory regions that has the same attributes
2346     // (e.g. executable or writable). There is one phdr for each segment.
2347     // Therefore, we need to create a new phdr when the next section has
2348     // different flags or is loaded at a discontiguous address or memory
2349     // region using AT or AT> linker script command, respectively. At the same
2350     // time, we don't want to create a separate load segment for the headers,
2351     // even if the first output section has an AT or AT> attribute.
2352     uint64_t newFlags = computeFlags(sec->getPhdrFlags());
2353     bool sameLMARegion =
2354         load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion;
2355     if (!(load && newFlags == flags && sec != relroEnd &&
2356           sec->memRegion == load->firstSec->memRegion &&
2357           (sameLMARegion || load->lastSec == Out::programHeaders))) {
2358       load = addHdr(PT_LOAD, newFlags);
2359       flags = newFlags;
2360     }
2361 
2362     load->add(sec);
2363   }
2364 
2365   // Add a TLS segment if any.
2366   PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
2367   for (OutputSection *sec : outputSections)
2368     if (sec->partition == partNo && sec->flags & SHF_TLS)
2369       tlsHdr->add(sec);
2370   if (tlsHdr->firstSec)
2371     ret.push_back(tlsHdr);
2372 
2373   // Add an entry for .dynamic.
2374   if (OutputSection *sec = part.dynamic->getParent())
2375     addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
2376 
2377   if (relRo->firstSec)
2378     ret.push_back(relRo);
2379 
2380   // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2381   if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
2382       part.ehFrame->getParent() && part.ehFrameHdr->getParent())
2383     addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
2384         ->add(part.ehFrameHdr->getParent());
2385 
2386   // PT_OPENBSD_MUTABLE is an OpenBSD-specific feature. That makes
2387   // the dynamic linker fill the segment with zero data, like bss, but
2388   // it can be treated differently.
2389   if (OutputSection *cmd = findSection(".openbsd.mutable", partNo))
2390     addHdr(PT_OPENBSD_MUTABLE, cmd->getPhdrFlags())->add(cmd);
2391 
2392   // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
2393   // the dynamic linker fill the segment with random data.
2394   if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
2395     addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
2396 
2397   // PT_OPENBSD_SYSCALLS is an OpenBSD-specific feature. That makes
2398   // the kernel and dynamic linker register system call sites.
2399   if (OutputSection *cmd = findSection(".openbsd.syscalls", partNo))
2400     addHdr(PT_OPENBSD_SYSCALLS, cmd->getPhdrFlags())->add(cmd);
2401 
2402   if (config->zGnustack != GnuStackKind::None) {
2403     // PT_GNU_STACK is a special section to tell the loader to make the
2404     // pages for the stack non-executable. If you really want an executable
2405     // stack, you can pass -z execstack, but that's not recommended for
2406     // security reasons.
2407     unsigned perm = PF_R | PF_W;
2408     if (config->zGnustack == GnuStackKind::Exec)
2409       perm |= PF_X;
2410     addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
2411   }
2412 
2413   // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2414   // is expected to perform W^X violations, such as calling mprotect(2) or
2415   // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2416   // OpenBSD.
2417   if (config->zWxneeded)
2418     addHdr(PT_OPENBSD_WXNEEDED, PF_X);
2419 
2420   // PT_OPENBSD_NOBTCFI is an OpenBSD-specific header to mark that the
2421   // executable is expected to violate branch-target CFI checks.
2422   if (config->zNoBtCfi)
2423     addHdr(PT_OPENBSD_NOBTCFI, PF_X);
2424 
2425   if (OutputSection *cmd = findSection(".note.gnu.property", partNo))
2426     addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd);
2427 
2428   // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2429   // same alignment.
2430   PhdrEntry *note = nullptr;
2431   for (OutputSection *sec : outputSections) {
2432     if (sec->partition != partNo)
2433       continue;
2434     if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
2435       if (!note || sec->lmaExpr || note->lastSec->addralign != sec->addralign)
2436         note = addHdr(PT_NOTE, PF_R);
2437       note->add(sec);
2438     } else {
2439       note = nullptr;
2440     }
2441   }
2442   return ret;
2443 }
2444 
2445 template <class ELFT>
addPhdrForSection(Partition & part,unsigned shType,unsigned pType,unsigned pFlags)2446 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
2447                                      unsigned pType, unsigned pFlags) {
2448   unsigned partNo = part.getNumber();
2449   auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
2450     return cmd->partition == partNo && cmd->type == shType;
2451   });
2452   if (i == outputSections.end())
2453     return;
2454 
2455   PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
2456   entry->add(*i);
2457   part.phdrs.push_back(entry);
2458 }
2459 
2460 // Place the first section of each PT_LOAD to a different page (of maxPageSize).
2461 // This is achieved by assigning an alignment expression to addrExpr of each
2462 // such section.
fixSectionAlignments()2463 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
2464   const PhdrEntry *prev;
2465   auto pageAlign = [&](const PhdrEntry *p) {
2466     OutputSection *cmd = p->firstSec;
2467     if (!cmd)
2468       return;
2469     cmd->alignExpr = [align = cmd->addralign]() { return align; };
2470     if (!cmd->addrExpr) {
2471       // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2472       // padding in the file contents.
2473       //
2474       // When -z separate-code is used we must not have any overlap in pages
2475       // between an executable segment and a non-executable segment. We align to
2476       // the next maximum page size boundary on transitions between executable
2477       // and non-executable segments.
2478       //
2479       // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2480       // sections will be extracted to a separate file. Align to the next
2481       // maximum page size boundary so that we can find the ELF header at the
2482       // start. We cannot benefit from overlapping p_offset ranges with the
2483       // previous segment anyway.
2484       if (config->zSeparate == SeparateSegmentKind::Loadable ||
2485           (config->zSeparate == SeparateSegmentKind::Code && prev &&
2486            (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
2487           cmd->type == SHT_LLVM_PART_EHDR)
2488         cmd->addrExpr = [] {
2489           return alignToPowerOf2(script->getDot(), config->maxPageSize);
2490         };
2491       // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2492       // it must be the RW. Align to p_align(PT_TLS) to make sure
2493       // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2494       // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2495       // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2496       // be congruent to 0 modulo p_align(PT_TLS).
2497       //
2498       // Technically this is not required, but as of 2019, some dynamic loaders
2499       // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2500       // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2501       // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2502       // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2503       // blocks correctly. We need to keep the workaround for a while.
2504       else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
2505         cmd->addrExpr = [] {
2506           return alignToPowerOf2(script->getDot(), config->maxPageSize) +
2507                  alignToPowerOf2(script->getDot() % config->maxPageSize,
2508                                  Out::tlsPhdr->p_align);
2509         };
2510       else
2511         cmd->addrExpr = [] {
2512           return alignToPowerOf2(script->getDot(), config->maxPageSize) +
2513                  script->getDot() % config->maxPageSize;
2514         };
2515     }
2516   };
2517 
2518 #ifdef __OpenBSD__
2519   // On i386, produce binaries that are compatible with our W^X implementation
2520   if (config->emachine == EM_386) {
2521     auto NXAlign = [](OutputSection *Cmd) {
2522       if (Cmd && !Cmd->addrExpr)
2523         Cmd->addrExpr = [=] {
2524           return alignTo(script->getDot(), 0x20000000);
2525         };
2526     };
2527 
2528     for (Partition &part : partitions) {
2529       PhdrEntry *firstRW = nullptr;
2530       for (PhdrEntry *P : part.phdrs) {
2531         if (P->p_type == PT_LOAD && (P->p_flags & PF_W)) {
2532           firstRW = P;
2533           break;
2534         }
2535       }
2536 
2537       if (firstRW)
2538         NXAlign(firstRW->firstSec);
2539     }
2540   }
2541 #endif
2542 
2543   for (Partition &part : partitions) {
2544     prev = nullptr;
2545     for (const PhdrEntry *p : part.phdrs)
2546       if (p->p_type == PT_LOAD && p->firstSec) {
2547         pageAlign(p);
2548         prev = p;
2549       }
2550   }
2551 }
2552 
2553 // Compute an in-file position for a given section. The file offset must be the
2554 // same with its virtual address modulo the page size, so that the loader can
2555 // load executables without any address adjustment.
computeFileOffset(OutputSection * os,uint64_t off)2556 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
2557   // The first section in a PT_LOAD has to have congruent offset and address
2558   // modulo the maximum page size.
2559   if (os->ptLoad && os->ptLoad->firstSec == os)
2560     return alignTo(off, os->ptLoad->p_align, os->addr);
2561 
2562   // File offsets are not significant for .bss sections other than the first one
2563   // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically
2564   // increasing rather than setting to zero.
2565   if (os->type == SHT_NOBITS &&
2566       (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os))
2567      return off;
2568 
2569   // If the section is not in a PT_LOAD, we just have to align it.
2570   if (!os->ptLoad)
2571      return alignToPowerOf2(off, os->addralign);
2572 
2573   // If two sections share the same PT_LOAD the file offset is calculated
2574   // using this formula: Off2 = Off1 + (VA2 - VA1).
2575   OutputSection *first = os->ptLoad->firstSec;
2576   return first->offset + os->addr - first->addr;
2577 }
2578 
assignFileOffsetsBinary()2579 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
2580   // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr.
2581   auto needsOffset = [](OutputSection &sec) {
2582     return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0;
2583   };
2584   uint64_t minAddr = UINT64_MAX;
2585   for (OutputSection *sec : outputSections)
2586     if (needsOffset(*sec)) {
2587       sec->offset = sec->getLMA();
2588       minAddr = std::min(minAddr, sec->offset);
2589     }
2590 
2591   // Sections are laid out at LMA minus minAddr.
2592   fileSize = 0;
2593   for (OutputSection *sec : outputSections)
2594     if (needsOffset(*sec)) {
2595       sec->offset -= minAddr;
2596       fileSize = std::max(fileSize, sec->offset + sec->size);
2597     }
2598 }
2599 
rangeToString(uint64_t addr,uint64_t len)2600 static std::string rangeToString(uint64_t addr, uint64_t len) {
2601   return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
2602 }
2603 
2604 // Assign file offsets to output sections.
assignFileOffsets()2605 template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
2606   Out::programHeaders->offset = Out::elfHeader->size;
2607   uint64_t off = Out::elfHeader->size + Out::programHeaders->size;
2608 
2609   PhdrEntry *lastRX = nullptr;
2610   for (Partition &part : partitions)
2611     for (PhdrEntry *p : part.phdrs)
2612       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2613         lastRX = p;
2614 
2615   // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC
2616   // will not occupy file offsets contained by a PT_LOAD.
2617   for (OutputSection *sec : outputSections) {
2618     if (!(sec->flags & SHF_ALLOC))
2619       continue;
2620     off = computeFileOffset(sec, off);
2621     sec->offset = off;
2622     if (sec->type != SHT_NOBITS)
2623       off += sec->size;
2624 
2625     // If this is a last section of the last executable segment and that
2626     // segment is the last loadable segment, align the offset of the
2627     // following section to avoid loading non-segments parts of the file.
2628     if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
2629         lastRX->lastSec == sec)
2630       off = alignToPowerOf2(off, config->maxPageSize);
2631   }
2632   for (OutputSection *osec : outputSections)
2633     if (!(osec->flags & SHF_ALLOC)) {
2634       osec->offset = alignToPowerOf2(off, osec->addralign);
2635       off = osec->offset + osec->size;
2636     }
2637 
2638   sectionHeaderOff = alignToPowerOf2(off, config->wordsize);
2639   fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
2640 
2641   // Our logic assumes that sections have rising VA within the same segment.
2642   // With use of linker scripts it is possible to violate this rule and get file
2643   // offset overlaps or overflows. That should never happen with a valid script
2644   // which does not move the location counter backwards and usually scripts do
2645   // not do that. Unfortunately, there are apps in the wild, for example, Linux
2646   // kernel, which control segment distribution explicitly and move the counter
2647   // backwards, so we have to allow doing that to support linking them. We
2648   // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2649   // we want to prevent file size overflows because it would crash the linker.
2650   for (OutputSection *sec : outputSections) {
2651     if (sec->type == SHT_NOBITS)
2652       continue;
2653     if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
2654       error("unable to place section " + sec->name + " at file offset " +
2655             rangeToString(sec->offset, sec->size) +
2656             "; check your linker script for overflows");
2657   }
2658 }
2659 
2660 // Finalize the program headers. We call this function after we assign
2661 // file offsets and VAs to all sections.
setPhdrs(Partition & part)2662 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
2663   for (PhdrEntry *p : part.phdrs) {
2664     OutputSection *first = p->firstSec;
2665     OutputSection *last = p->lastSec;
2666 
2667     if (first) {
2668       p->p_filesz = last->offset - first->offset;
2669       if (last->type != SHT_NOBITS)
2670         p->p_filesz += last->size;
2671 
2672       p->p_memsz = last->addr + last->size - first->addr;
2673       p->p_offset = first->offset;
2674       p->p_vaddr = first->addr;
2675 
2676       // File offsets in partitions other than the main partition are relative
2677       // to the offset of the ELF headers. Perform that adjustment now.
2678       if (part.elfHeader)
2679         p->p_offset -= part.elfHeader->getParent()->offset;
2680 
2681       if (!p->hasLMA)
2682         p->p_paddr = first->getLMA();
2683     }
2684 
2685     if (p->p_type == PT_GNU_RELRO) {
2686       p->p_align = 1;
2687       // musl/glibc ld.so rounds the size down, so we need to round up
2688       // to protect the last page. This is a no-op on FreeBSD which always
2689       // rounds up.
2690       p->p_memsz =
2691           alignToPowerOf2(p->p_offset + p->p_memsz, config->commonPageSize) -
2692           p->p_offset;
2693     }
2694   }
2695 }
2696 
2697 // A helper struct for checkSectionOverlap.
2698 namespace {
2699 struct SectionOffset {
2700   OutputSection *sec;
2701   uint64_t offset;
2702 };
2703 } // namespace
2704 
2705 // Check whether sections overlap for a specific address range (file offsets,
2706 // load and virtual addresses).
checkOverlap(StringRef name,std::vector<SectionOffset> & sections,bool isVirtualAddr)2707 static void checkOverlap(StringRef name, std::vector<SectionOffset> &sections,
2708                          bool isVirtualAddr) {
2709   llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
2710     return a.offset < b.offset;
2711   });
2712 
2713   // Finding overlap is easy given a vector is sorted by start position.
2714   // If an element starts before the end of the previous element, they overlap.
2715   for (size_t i = 1, end = sections.size(); i < end; ++i) {
2716     SectionOffset a = sections[i - 1];
2717     SectionOffset b = sections[i];
2718     if (b.offset >= a.offset + a.sec->size)
2719       continue;
2720 
2721     // If both sections are in OVERLAY we allow the overlapping of virtual
2722     // addresses, because it is what OVERLAY was designed for.
2723     if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
2724       continue;
2725 
2726     errorOrWarn("section " + a.sec->name + " " + name +
2727                 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
2728                 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
2729                 b.sec->name + " range is " +
2730                 rangeToString(b.offset, b.sec->size));
2731   }
2732 }
2733 
2734 // Check for overlapping sections and address overflows.
2735 //
2736 // In this function we check that none of the output sections have overlapping
2737 // file offsets. For SHF_ALLOC sections we also check that the load address
2738 // ranges and the virtual address ranges don't overlap
checkSections()2739 template <class ELFT> void Writer<ELFT>::checkSections() {
2740   // First, check that section's VAs fit in available address space for target.
2741   for (OutputSection *os : outputSections)
2742     if ((os->addr + os->size < os->addr) ||
2743         (!ELFT::Is64Bits && os->addr + os->size > uint64_t(UINT32_MAX) + 1))
2744       errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
2745                   " of size 0x" + utohexstr(os->size) +
2746                   " exceeds available address space");
2747 
2748   // Check for overlapping file offsets. In this case we need to skip any
2749   // section marked as SHT_NOBITS. These sections don't actually occupy space in
2750   // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2751   // binary is specified only add SHF_ALLOC sections are added to the output
2752   // file so we skip any non-allocated sections in that case.
2753   std::vector<SectionOffset> fileOffs;
2754   for (OutputSection *sec : outputSections)
2755     if (sec->size > 0 && sec->type != SHT_NOBITS &&
2756         (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
2757       fileOffs.push_back({sec, sec->offset});
2758   checkOverlap("file", fileOffs, false);
2759 
2760   // When linking with -r there is no need to check for overlapping virtual/load
2761   // addresses since those addresses will only be assigned when the final
2762   // executable/shared object is created.
2763   if (config->relocatable)
2764     return;
2765 
2766   // Checking for overlapping virtual and load addresses only needs to take
2767   // into account SHF_ALLOC sections since others will not be loaded.
2768   // Furthermore, we also need to skip SHF_TLS sections since these will be
2769   // mapped to other addresses at runtime and can therefore have overlapping
2770   // ranges in the file.
2771   std::vector<SectionOffset> vmas;
2772   for (OutputSection *sec : outputSections)
2773     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2774       vmas.push_back({sec, sec->addr});
2775   checkOverlap("virtual address", vmas, true);
2776 
2777   // Finally, check that the load addresses don't overlap. This will usually be
2778   // the same as the virtual addresses but can be different when using a linker
2779   // script with AT().
2780   std::vector<SectionOffset> lmas;
2781   for (OutputSection *sec : outputSections)
2782     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2783       lmas.push_back({sec, sec->getLMA()});
2784   checkOverlap("load address", lmas, false);
2785 }
2786 
2787 // The entry point address is chosen in the following ways.
2788 //
2789 // 1. the '-e' entry command-line option;
2790 // 2. the ENTRY(symbol) command in a linker control script;
2791 // 3. the value of the symbol _start, if present;
2792 // 4. the number represented by the entry symbol, if it is a number;
2793 // 5. the address 0.
getEntryAddr()2794 static uint64_t getEntryAddr() {
2795   // Case 1, 2 or 3
2796   if (Symbol *b = symtab.find(config->entry))
2797     return b->getVA();
2798 
2799   // Case 4
2800   uint64_t addr;
2801   if (to_integer(config->entry, addr))
2802     return addr;
2803 
2804   // Case 5
2805   if (config->warnMissingEntry)
2806     warn("cannot find entry symbol " + config->entry +
2807          "; not setting start address");
2808   return 0;
2809 }
2810 
getELFType()2811 static uint16_t getELFType() {
2812   if (config->isPic)
2813     return ET_DYN;
2814   if (config->relocatable)
2815     return ET_REL;
2816   return ET_EXEC;
2817 }
2818 
writeHeader()2819 template <class ELFT> void Writer<ELFT>::writeHeader() {
2820   writeEhdr<ELFT>(Out::bufferStart, *mainPart);
2821   writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
2822 
2823   auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
2824   eHdr->e_type = getELFType();
2825   eHdr->e_entry = getEntryAddr();
2826   eHdr->e_shoff = sectionHeaderOff;
2827 
2828   // Write the section header table.
2829   //
2830   // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2831   // and e_shstrndx fields. When the value of one of these fields exceeds
2832   // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2833   // use fields in the section header at index 0 to store
2834   // the value. The sentinel values and fields are:
2835   // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2836   // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2837   auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
2838   size_t num = outputSections.size() + 1;
2839   if (num >= SHN_LORESERVE)
2840     sHdrs->sh_size = num;
2841   else
2842     eHdr->e_shnum = num;
2843 
2844   uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
2845   if (strTabIndex >= SHN_LORESERVE) {
2846     sHdrs->sh_link = strTabIndex;
2847     eHdr->e_shstrndx = SHN_XINDEX;
2848   } else {
2849     eHdr->e_shstrndx = strTabIndex;
2850   }
2851 
2852   for (OutputSection *sec : outputSections)
2853     sec->writeHeaderTo<ELFT>(++sHdrs);
2854 }
2855 
2856 // Open a result file.
openFile()2857 template <class ELFT> void Writer<ELFT>::openFile() {
2858   uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
2859   if (fileSize != size_t(fileSize) || maxSize < fileSize) {
2860     std::string msg;
2861     raw_string_ostream s(msg);
2862     s << "output file too large: " << Twine(fileSize) << " bytes\n"
2863       << "section sizes:\n";
2864     for (OutputSection *os : outputSections)
2865       s << os->name << ' ' << os->size << "\n";
2866     error(s.str());
2867     return;
2868   }
2869 
2870   unlinkAsync(config->outputFile);
2871   unsigned flags = 0;
2872   if (!config->relocatable)
2873     flags |= FileOutputBuffer::F_executable;
2874   if (!config->mmapOutputFile)
2875     flags |= FileOutputBuffer::F_no_mmap;
2876   Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
2877       FileOutputBuffer::create(config->outputFile, fileSize, flags);
2878 
2879   if (!bufferOrErr) {
2880     error("failed to open " + config->outputFile + ": " +
2881           llvm::toString(bufferOrErr.takeError()));
2882     return;
2883   }
2884   buffer = std::move(*bufferOrErr);
2885   Out::bufferStart = buffer->getBufferStart();
2886 }
2887 
writeSectionsBinary()2888 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
2889   parallel::TaskGroup tg;
2890   for (OutputSection *sec : outputSections)
2891     if (sec->flags & SHF_ALLOC)
2892       sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg);
2893 }
2894 
fillTrap(uint8_t * i,uint8_t * end)2895 static void fillTrap(uint8_t *i, uint8_t *end) {
2896   for (; i + 4 <= end; i += 4)
2897     memcpy(i, &target->trapInstr, 4);
2898 }
2899 
2900 // Fill the last page of executable segments with trap instructions
2901 // instead of leaving them as zero. Even though it is not required by any
2902 // standard, it is in general a good thing to do for security reasons.
2903 //
2904 // We'll leave other pages in segments as-is because the rest will be
2905 // overwritten by output sections.
writeTrapInstr()2906 template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
2907   for (Partition &part : partitions) {
2908     // Fill the last page.
2909     for (PhdrEntry *p : part.phdrs)
2910       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2911         fillTrap(Out::bufferStart +
2912                      alignDown(p->firstSec->offset + p->p_filesz, 4),
2913                  Out::bufferStart +
2914                      alignToPowerOf2(p->firstSec->offset + p->p_filesz,
2915                                      config->maxPageSize));
2916 
2917     // Round up the file size of the last segment to the page boundary iff it is
2918     // an executable segment to ensure that other tools don't accidentally
2919     // trim the instruction padding (e.g. when stripping the file).
2920     PhdrEntry *last = nullptr;
2921     for (PhdrEntry *p : part.phdrs)
2922       if (p->p_type == PT_LOAD)
2923         last = p;
2924 
2925     if (last && (last->p_flags & PF_X))
2926       last->p_memsz = last->p_filesz =
2927           alignToPowerOf2(last->p_filesz, config->maxPageSize);
2928   }
2929 }
2930 
2931 // Write section contents to a mmap'ed file.
writeSections()2932 template <class ELFT> void Writer<ELFT>::writeSections() {
2933   llvm::TimeTraceScope timeScope("Write sections");
2934 
2935   {
2936     // In -r or --emit-relocs mode, write the relocation sections first as in
2937     // ELf_Rel targets we might find out that we need to modify the relocated
2938     // section while doing it.
2939     parallel::TaskGroup tg;
2940     for (OutputSection *sec : outputSections)
2941       if (sec->type == SHT_REL || sec->type == SHT_RELA)
2942         sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg);
2943   }
2944   {
2945     parallel::TaskGroup tg;
2946     for (OutputSection *sec : outputSections)
2947       if (sec->type != SHT_REL && sec->type != SHT_RELA)
2948         sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg);
2949   }
2950 
2951   // Finally, check that all dynamic relocation addends were written correctly.
2952   if (config->checkDynamicRelocs && config->writeAddends) {
2953     for (OutputSection *sec : outputSections)
2954       if (sec->type == SHT_REL || sec->type == SHT_RELA)
2955         sec->checkDynRelAddends(Out::bufferStart);
2956   }
2957 }
2958 
2959 // Computes a hash value of Data using a given hash function.
2960 // In order to utilize multiple cores, we first split data into 1MB
2961 // chunks, compute a hash for each chunk, and then compute a hash value
2962 // of the hash values.
2963 static void
computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,llvm::ArrayRef<uint8_t> data,std::function<void (uint8_t * dest,ArrayRef<uint8_t> arr)> hashFn)2964 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
2965             llvm::ArrayRef<uint8_t> data,
2966             std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
2967   std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
2968   const size_t hashesSize = chunks.size() * hashBuf.size();
2969   std::unique_ptr<uint8_t[]> hashes(new uint8_t[hashesSize]);
2970 
2971   // Compute hash values.
2972   parallelFor(0, chunks.size(), [&](size_t i) {
2973     hashFn(hashes.get() + i * hashBuf.size(), chunks[i]);
2974   });
2975 
2976   // Write to the final output buffer.
2977   hashFn(hashBuf.data(), ArrayRef(hashes.get(), hashesSize));
2978 }
2979 
writeBuildId()2980 template <class ELFT> void Writer<ELFT>::writeBuildId() {
2981   if (!mainPart->buildId || !mainPart->buildId->getParent())
2982     return;
2983 
2984   if (config->buildId == BuildIdKind::Hexstring) {
2985     for (Partition &part : partitions)
2986       part.buildId->writeBuildId(config->buildIdVector);
2987     return;
2988   }
2989 
2990   // Compute a hash of all sections of the output file.
2991   size_t hashSize = mainPart->buildId->hashSize;
2992   std::unique_ptr<uint8_t[]> buildId(new uint8_t[hashSize]);
2993   MutableArrayRef<uint8_t> output(buildId.get(), hashSize);
2994   llvm::ArrayRef<uint8_t> input{Out::bufferStart, size_t(fileSize)};
2995 
2996   // Fedora introduced build ID as "approximation of true uniqueness across all
2997   // binaries that might be used by overlapping sets of people". It does not
2998   // need some security goals that some hash algorithms strive to provide, e.g.
2999   // (second-)preimage and collision resistance. In practice people use 'md5'
3000   // and 'sha1' just for different lengths. Implement them with the more
3001   // efficient BLAKE3.
3002   switch (config->buildId) {
3003   case BuildIdKind::Fast:
3004     computeHash(output, input, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
3005       write64le(dest, xxHash64(arr));
3006     });
3007     break;
3008   case BuildIdKind::Md5:
3009     computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
3010       memcpy(dest, BLAKE3::hash<16>(arr).data(), hashSize);
3011     });
3012     break;
3013   case BuildIdKind::Sha1:
3014     computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
3015       memcpy(dest, BLAKE3::hash<20>(arr).data(), hashSize);
3016     });
3017     break;
3018   case BuildIdKind::Uuid:
3019     if (auto ec = llvm::getRandomBytes(buildId.get(), hashSize))
3020       error("entropy source failure: " + ec.message());
3021     break;
3022   default:
3023     llvm_unreachable("unknown BuildIdKind");
3024   }
3025   for (Partition &part : partitions)
3026     part.buildId->writeBuildId(output);
3027 }
3028 
3029 template void elf::createSyntheticSections<ELF32LE>();
3030 template void elf::createSyntheticSections<ELF32BE>();
3031 template void elf::createSyntheticSections<ELF64LE>();
3032 template void elf::createSyntheticSections<ELF64BE>();
3033 
3034 template void elf::writeResult<ELF32LE>();
3035 template void elf::writeResult<ELF32BE>();
3036 template void elf::writeResult<ELF64LE>();
3037 template void elf::writeResult<ELF64BE>();
3038