1 /*	$NetBSD: subr_percpu.c,v 1.17 2014/11/27 15:00:00 uebayasi Exp $	*/
2 
3 /*-
4  * Copyright (c)2007,2008 YAMAMOTO Takashi,
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * per-cpu storage.
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: subr_percpu.c,v 1.17 2014/11/27 15:00:00 uebayasi Exp $");
35 
36 #include <sys/param.h>
37 #include <sys/cpu.h>
38 #include <sys/kmem.h>
39 #include <sys/kernel.h>
40 #include <sys/mutex.h>
41 #include <sys/percpu.h>
42 #include <sys/rwlock.h>
43 #include <sys/vmem.h>
44 #include <sys/xcall.h>
45 
46 #define	PERCPU_QUANTUM_SIZE	(ALIGNBYTES + 1)
47 #define	PERCPU_QCACHE_MAX	0
48 #define	PERCPU_IMPORT_SIZE	2048
49 
50 #if defined(DIAGNOSTIC)
51 #define	MAGIC	0x50435055	/* "PCPU" */
52 #define	percpu_encrypt(pc)	((pc) ^ MAGIC)
53 #define	percpu_decrypt(pc)	((pc) ^ MAGIC)
54 #else /* defined(DIAGNOSTIC) */
55 #define	percpu_encrypt(pc)	(pc)
56 #define	percpu_decrypt(pc)	(pc)
57 #endif /* defined(DIAGNOSTIC) */
58 
59 static krwlock_t	percpu_swap_lock	__cacheline_aligned;
60 static kmutex_t		percpu_allocation_lock	__cacheline_aligned;
61 static vmem_t *		percpu_offset_arena	__cacheline_aligned;
62 static unsigned int	percpu_nextoff		__cacheline_aligned;
63 
64 static percpu_cpu_t *
cpu_percpu(struct cpu_info * ci)65 cpu_percpu(struct cpu_info *ci)
66 {
67 
68 	return &ci->ci_data.cpu_percpu;
69 }
70 
71 static unsigned int
percpu_offset(percpu_t * pc)72 percpu_offset(percpu_t *pc)
73 {
74 	const unsigned int off = percpu_decrypt((uintptr_t)pc);
75 
76 	KASSERT(off < percpu_nextoff);
77 	return off;
78 }
79 
80 /*
81  * percpu_cpu_swap: crosscall handler for percpu_cpu_enlarge
82  */
83 
84 static void
percpu_cpu_swap(void * p1,void * p2)85 percpu_cpu_swap(void *p1, void *p2)
86 {
87 	struct cpu_info * const ci = p1;
88 	percpu_cpu_t * const newpcc = p2;
89 	percpu_cpu_t * const pcc = cpu_percpu(ci);
90 
91 	KASSERT(ci == curcpu() || !mp_online);
92 
93 	/*
94 	 * swap *pcc and *newpcc unless anyone has beaten us.
95 	 */
96 	rw_enter(&percpu_swap_lock, RW_WRITER);
97 	if (newpcc->pcc_size > pcc->pcc_size) {
98 		percpu_cpu_t tmp;
99 		int s;
100 
101 		tmp = *pcc;
102 
103 		/*
104 		 * block interrupts so that we don't lose their modifications.
105 		 */
106 
107 		s = splhigh();
108 
109 		/*
110 		 * copy data to new storage.
111 		 */
112 
113 		memcpy(newpcc->pcc_data, pcc->pcc_data, pcc->pcc_size);
114 
115 		/*
116 		 * this assignment needs to be atomic for percpu_getptr_remote.
117 		 */
118 
119 		pcc->pcc_data = newpcc->pcc_data;
120 
121 		splx(s);
122 
123 		pcc->pcc_size = newpcc->pcc_size;
124 		*newpcc = tmp;
125 	}
126 	rw_exit(&percpu_swap_lock);
127 }
128 
129 /*
130  * percpu_cpu_enlarge: ensure that percpu_cpu_t of each cpus have enough space
131  */
132 
133 static void
percpu_cpu_enlarge(size_t size)134 percpu_cpu_enlarge(size_t size)
135 {
136 	CPU_INFO_ITERATOR cii;
137 	struct cpu_info *ci;
138 
139 	for (CPU_INFO_FOREACH(cii, ci)) {
140 		percpu_cpu_t pcc;
141 
142 		pcc.pcc_data = kmem_alloc(size, KM_SLEEP); /* XXX cacheline */
143 		pcc.pcc_size = size;
144 		if (!mp_online) {
145 			percpu_cpu_swap(ci, &pcc);
146 		} else {
147 			uint64_t where;
148 
149 			where = xc_unicast(0, percpu_cpu_swap, ci, &pcc, ci);
150 			xc_wait(where);
151 		}
152 		KASSERT(pcc.pcc_size < size);
153 		if (pcc.pcc_data != NULL) {
154 			kmem_free(pcc.pcc_data, pcc.pcc_size);
155 		}
156 	}
157 }
158 
159 /*
160  * percpu_backend_alloc: vmem import callback for percpu_offset_arena
161  */
162 
163 static int
percpu_backend_alloc(vmem_t * dummy,vmem_size_t size,vmem_size_t * resultsize,vm_flag_t vmflags,vmem_addr_t * addrp)164 percpu_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
165     vm_flag_t vmflags, vmem_addr_t *addrp)
166 {
167 	unsigned int offset;
168 	unsigned int nextoff;
169 
170 	ASSERT_SLEEPABLE();
171 	KASSERT(dummy == NULL);
172 
173 	if ((vmflags & VM_NOSLEEP) != 0)
174 		return ENOMEM;
175 
176 	size = roundup(size, PERCPU_IMPORT_SIZE);
177 	mutex_enter(&percpu_allocation_lock);
178 	offset = percpu_nextoff;
179 	percpu_nextoff = nextoff = percpu_nextoff + size;
180 	mutex_exit(&percpu_allocation_lock);
181 
182 	percpu_cpu_enlarge(nextoff);
183 
184 	*resultsize = size;
185 	*addrp = (vmem_addr_t)offset;
186 	return 0;
187 }
188 
189 static void
percpu_zero_cb(void * vp,void * vp2,struct cpu_info * ci)190 percpu_zero_cb(void *vp, void *vp2, struct cpu_info *ci)
191 {
192 	size_t sz = (uintptr_t)vp2;
193 
194 	memset(vp, 0, sz);
195 }
196 
197 /*
198  * percpu_zero: initialize percpu storage with zero.
199  */
200 
201 static void
percpu_zero(percpu_t * pc,size_t sz)202 percpu_zero(percpu_t *pc, size_t sz)
203 {
204 
205 	percpu_foreach(pc, percpu_zero_cb, (void *)(uintptr_t)sz);
206 }
207 
208 /*
209  * percpu_init: subsystem initialization
210  */
211 
212 void
percpu_init(void)213 percpu_init(void)
214 {
215 
216 	ASSERT_SLEEPABLE();
217 	rw_init(&percpu_swap_lock);
218 	mutex_init(&percpu_allocation_lock, MUTEX_DEFAULT, IPL_NONE);
219 	percpu_nextoff = PERCPU_QUANTUM_SIZE;
220 
221 	percpu_offset_arena = vmem_xcreate("percpu", 0, 0, PERCPU_QUANTUM_SIZE,
222 	    percpu_backend_alloc, NULL, NULL, PERCPU_QCACHE_MAX, VM_SLEEP,
223 	    IPL_NONE);
224 }
225 
226 /*
227  * percpu_init_cpu: cpu initialization
228  *
229  * => should be called before the cpu appears on the list for CPU_INFO_FOREACH.
230  */
231 
232 void
percpu_init_cpu(struct cpu_info * ci)233 percpu_init_cpu(struct cpu_info *ci)
234 {
235 	percpu_cpu_t * const pcc = cpu_percpu(ci);
236 	size_t size = percpu_nextoff; /* XXX racy */
237 
238 	ASSERT_SLEEPABLE();
239 	pcc->pcc_size = size;
240 	if (size) {
241 		pcc->pcc_data = kmem_zalloc(pcc->pcc_size, KM_SLEEP);
242 	}
243 }
244 
245 /*
246  * percpu_alloc: allocate percpu storage
247  *
248  * => called in thread context.
249  * => considered as an expensive and rare operation.
250  * => allocated storage is initialized with zeros.
251  */
252 
253 percpu_t *
percpu_alloc(size_t size)254 percpu_alloc(size_t size)
255 {
256 	vmem_addr_t offset;
257 	percpu_t *pc;
258 
259 	ASSERT_SLEEPABLE();
260 	if (vmem_alloc(percpu_offset_arena, size, VM_SLEEP | VM_BESTFIT,
261 	    &offset) != 0)
262 		return NULL;
263 	pc = (percpu_t *)percpu_encrypt((uintptr_t)offset);
264 	percpu_zero(pc, size);
265 	return pc;
266 }
267 
268 /*
269  * percpu_free: free percpu storage
270  *
271  * => called in thread context.
272  * => considered as an expensive and rare operation.
273  */
274 
275 void
percpu_free(percpu_t * pc,size_t size)276 percpu_free(percpu_t *pc, size_t size)
277 {
278 
279 	ASSERT_SLEEPABLE();
280 	vmem_free(percpu_offset_arena, (vmem_addr_t)percpu_offset(pc), size);
281 }
282 
283 /*
284  * percpu_getref:
285  *
286  * => safe to be used in either thread or interrupt context
287  * => disables preemption; must be bracketed with a percpu_putref()
288  */
289 
290 void *
percpu_getref(percpu_t * pc)291 percpu_getref(percpu_t *pc)
292 {
293 
294 	kpreempt_disable();
295 	return percpu_getptr_remote(pc, curcpu());
296 }
297 
298 /*
299  * percpu_putref:
300  *
301  * => drops the preemption-disabled count after caller is done with per-cpu
302  *    data
303  */
304 
305 void
percpu_putref(percpu_t * pc)306 percpu_putref(percpu_t *pc)
307 {
308 
309 	kpreempt_enable();
310 }
311 
312 /*
313  * percpu_traverse_enter, percpu_traverse_exit, percpu_getptr_remote:
314  * helpers to access remote cpu's percpu data.
315  *
316  * => called in thread context.
317  * => percpu_traverse_enter can block low-priority xcalls.
318  * => typical usage would be:
319  *
320  *	sum = 0;
321  *	percpu_traverse_enter();
322  *	for (CPU_INFO_FOREACH(cii, ci)) {
323  *		unsigned int *p = percpu_getptr_remote(pc, ci);
324  *		sum += *p;
325  *	}
326  *	percpu_traverse_exit();
327  */
328 
329 void
percpu_traverse_enter(void)330 percpu_traverse_enter(void)
331 {
332 
333 	ASSERT_SLEEPABLE();
334 	rw_enter(&percpu_swap_lock, RW_READER);
335 }
336 
337 void
percpu_traverse_exit(void)338 percpu_traverse_exit(void)
339 {
340 
341 	rw_exit(&percpu_swap_lock);
342 }
343 
344 void *
percpu_getptr_remote(percpu_t * pc,struct cpu_info * ci)345 percpu_getptr_remote(percpu_t *pc, struct cpu_info *ci)
346 {
347 
348 	return &((char *)cpu_percpu(ci)->pcc_data)[percpu_offset(pc)];
349 }
350 
351 /*
352  * percpu_foreach: call the specified callback function for each cpus.
353  *
354  * => called in thread context.
355  * => caller should not rely on the cpu iteration order.
356  * => the callback function should be minimum because it is executed with
357  *    holding a global lock, which can block low-priority xcalls.
358  *    eg. it's illegal for a callback function to sleep for memory allocation.
359  */
360 void
percpu_foreach(percpu_t * pc,percpu_callback_t cb,void * arg)361 percpu_foreach(percpu_t *pc, percpu_callback_t cb, void *arg)
362 {
363 	CPU_INFO_ITERATOR cii;
364 	struct cpu_info *ci;
365 
366 	percpu_traverse_enter();
367 	for (CPU_INFO_FOREACH(cii, ci)) {
368 		(*cb)(percpu_getptr_remote(pc, ci), arg, ci);
369 	}
370 	percpu_traverse_exit();
371 }
372