xref: /linux/tools/perf/util/mem-events.c (revision 5ad7db2c)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <stddef.h>
3 #include <stdlib.h>
4 #include <string.h>
5 #include <errno.h>
6 #include <sys/types.h>
7 #include <sys/stat.h>
8 #include <unistd.h>
9 #include <api/fs/fs.h>
10 #include <linux/kernel.h>
11 #include "cpumap.h"
12 #include "map_symbol.h"
13 #include "mem-events.h"
14 #include "mem-info.h"
15 #include "debug.h"
16 #include "evsel.h"
17 #include "symbol.h"
18 #include "pmu.h"
19 #include "pmus.h"
20 
21 unsigned int perf_mem_events__loads_ldlat = 30;
22 
23 #define E(t, n, s, l, a) { .tag = t, .name = n, .event_name = s, .ldlat = l, .aux_event = a }
24 
25 struct perf_mem_event perf_mem_events[PERF_MEM_EVENTS__MAX] = {
26 	E("ldlat-loads",	"%s/mem-loads,ldlat=%u/P",	"mem-loads",	true,	0),
27 	E("ldlat-stores",	"%s/mem-stores/P",		"mem-stores",	false,	0),
28 	E(NULL,			NULL,				NULL,		false,	0),
29 };
30 #undef E
31 
32 bool perf_mem_record[PERF_MEM_EVENTS__MAX] = { 0 };
33 
34 static char mem_loads_name[100];
35 static char mem_stores_name[100];
36 
perf_pmu__mem_events_ptr(struct perf_pmu * pmu,int i)37 struct perf_mem_event *perf_pmu__mem_events_ptr(struct perf_pmu *pmu, int i)
38 {
39 	if (i >= PERF_MEM_EVENTS__MAX || !pmu)
40 		return NULL;
41 
42 	return &pmu->mem_events[i];
43 }
44 
perf_pmus__scan_mem(struct perf_pmu * pmu)45 static struct perf_pmu *perf_pmus__scan_mem(struct perf_pmu *pmu)
46 {
47 	while ((pmu = perf_pmus__scan(pmu)) != NULL) {
48 		if (pmu->mem_events)
49 			return pmu;
50 	}
51 	return NULL;
52 }
53 
perf_mem_events_find_pmu(void)54 struct perf_pmu *perf_mem_events_find_pmu(void)
55 {
56 	/*
57 	 * The current perf mem doesn't support per-PMU configuration.
58 	 * The exact same configuration is applied to all the
59 	 * mem_events supported PMUs.
60 	 * Return the first mem_events supported PMU.
61 	 *
62 	 * Notes: The only case which may support multiple mem_events
63 	 * supported PMUs is Intel hybrid. The exact same mem_events
64 	 * is shared among the PMUs. Only configure the first PMU
65 	 * is good enough as well.
66 	 */
67 	return perf_pmus__scan_mem(NULL);
68 }
69 
70 /**
71  * perf_pmu__mem_events_num_mem_pmus - Get the number of mem PMUs since the given pmu
72  * @pmu: Start pmu. If it's NULL, search the entire PMU list.
73  */
perf_pmu__mem_events_num_mem_pmus(struct perf_pmu * pmu)74 int perf_pmu__mem_events_num_mem_pmus(struct perf_pmu *pmu)
75 {
76 	int num = 0;
77 
78 	while ((pmu = perf_pmus__scan_mem(pmu)) != NULL)
79 		num++;
80 
81 	return num;
82 }
83 
perf_pmu__mem_events_name(int i,struct perf_pmu * pmu)84 static const char *perf_pmu__mem_events_name(int i, struct perf_pmu *pmu)
85 {
86 	struct perf_mem_event *e;
87 
88 	if (i >= PERF_MEM_EVENTS__MAX || !pmu)
89 		return NULL;
90 
91 	e = &pmu->mem_events[i];
92 	if (!e || !e->name)
93 		return NULL;
94 
95 	if (i == PERF_MEM_EVENTS__LOAD || i == PERF_MEM_EVENTS__LOAD_STORE) {
96 		if (e->ldlat) {
97 			if (!e->aux_event) {
98 				/* ARM and Most of Intel */
99 				scnprintf(mem_loads_name, sizeof(mem_loads_name),
100 					  e->name, pmu->name,
101 					  perf_mem_events__loads_ldlat);
102 			} else {
103 				/* Intel with mem-loads-aux event */
104 				scnprintf(mem_loads_name, sizeof(mem_loads_name),
105 					  e->name, pmu->name, pmu->name,
106 					  perf_mem_events__loads_ldlat);
107 			}
108 		} else {
109 			if (!e->aux_event) {
110 				/* AMD and POWER */
111 				scnprintf(mem_loads_name, sizeof(mem_loads_name),
112 					  e->name, pmu->name);
113 			} else
114 				return NULL;
115 		}
116 
117 		return mem_loads_name;
118 	}
119 
120 	if (i == PERF_MEM_EVENTS__STORE) {
121 		scnprintf(mem_stores_name, sizeof(mem_stores_name),
122 			  e->name, pmu->name);
123 		return mem_stores_name;
124 	}
125 
126 	return NULL;
127 }
128 
is_mem_loads_aux_event(struct evsel * leader)129 bool is_mem_loads_aux_event(struct evsel *leader)
130 {
131 	struct perf_pmu *pmu = leader->pmu;
132 	struct perf_mem_event *e;
133 
134 	if (!pmu || !pmu->mem_events)
135 		return false;
136 
137 	e = &pmu->mem_events[PERF_MEM_EVENTS__LOAD];
138 	if (!e->aux_event)
139 		return false;
140 
141 	return leader->core.attr.config == e->aux_event;
142 }
143 
perf_pmu__mem_events_parse(struct perf_pmu * pmu,const char * str)144 int perf_pmu__mem_events_parse(struct perf_pmu *pmu, const char *str)
145 {
146 	char *tok, *saveptr = NULL;
147 	bool found = false;
148 	char *buf;
149 	int j;
150 
151 	/* We need buffer that we know we can write to. */
152 	buf = malloc(strlen(str) + 1);
153 	if (!buf)
154 		return -ENOMEM;
155 
156 	strcpy(buf, str);
157 
158 	tok = strtok_r((char *)buf, ",", &saveptr);
159 
160 	while (tok) {
161 		for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
162 			struct perf_mem_event *e = perf_pmu__mem_events_ptr(pmu, j);
163 
164 			if (!e->tag)
165 				continue;
166 
167 			if (strstr(e->tag, tok))
168 				perf_mem_record[j] = found = true;
169 		}
170 
171 		tok = strtok_r(NULL, ",", &saveptr);
172 	}
173 
174 	free(buf);
175 
176 	if (found)
177 		return 0;
178 
179 	pr_err("failed: event '%s' not found, use '-e list' to get list of available events\n", str);
180 	return -1;
181 }
182 
perf_pmu__mem_events_supported(const char * mnt,struct perf_pmu * pmu,struct perf_mem_event * e)183 static bool perf_pmu__mem_events_supported(const char *mnt, struct perf_pmu *pmu,
184 				      struct perf_mem_event *e)
185 {
186 	char path[PATH_MAX];
187 	struct stat st;
188 
189 	if (!e->event_name)
190 		return true;
191 
192 	scnprintf(path, PATH_MAX, "%s/devices/%s/events/%s", mnt, pmu->name, e->event_name);
193 
194 	return !stat(path, &st);
195 }
196 
__perf_pmu__mem_events_init(struct perf_pmu * pmu)197 static int __perf_pmu__mem_events_init(struct perf_pmu *pmu)
198 {
199 	const char *mnt = sysfs__mount();
200 	bool found = false;
201 	int j;
202 
203 	if (!mnt)
204 		return -ENOENT;
205 
206 	for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
207 		struct perf_mem_event *e = perf_pmu__mem_events_ptr(pmu, j);
208 
209 		/*
210 		 * If the event entry isn't valid, skip initialization
211 		 * and "e->supported" will keep false.
212 		 */
213 		if (!e->tag)
214 			continue;
215 
216 		e->supported |= perf_pmu__mem_events_supported(mnt, pmu, e);
217 		if (e->supported)
218 			found = true;
219 	}
220 
221 	return found ? 0 : -ENOENT;
222 }
223 
perf_pmu__mem_events_init(void)224 int perf_pmu__mem_events_init(void)
225 {
226 	struct perf_pmu *pmu = NULL;
227 
228 	while ((pmu = perf_pmus__scan_mem(pmu)) != NULL) {
229 		if (__perf_pmu__mem_events_init(pmu))
230 			return -ENOENT;
231 	}
232 
233 	return 0;
234 }
235 
perf_pmu__mem_events_list(struct perf_pmu * pmu)236 void perf_pmu__mem_events_list(struct perf_pmu *pmu)
237 {
238 	int j;
239 
240 	for (j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
241 		struct perf_mem_event *e = perf_pmu__mem_events_ptr(pmu, j);
242 
243 		fprintf(stderr, "%-*s%-*s%s",
244 			e->tag ? 13 : 0,
245 			e->tag ? : "",
246 			e->tag && verbose > 0 ? 25 : 0,
247 			e->tag && verbose > 0 ? perf_pmu__mem_events_name(j, pmu) : "",
248 			e->supported ? ": available\n" : "");
249 	}
250 }
251 
perf_mem_events__record_args(const char ** rec_argv,int * argv_nr)252 int perf_mem_events__record_args(const char **rec_argv, int *argv_nr)
253 {
254 	const char *mnt = sysfs__mount();
255 	struct perf_pmu *pmu = NULL;
256 	struct perf_mem_event *e;
257 	int i = *argv_nr;
258 	const char *s;
259 	char *copy;
260 	struct perf_cpu_map *cpu_map = NULL;
261 
262 	while ((pmu = perf_pmus__scan_mem(pmu)) != NULL) {
263 		for (int j = 0; j < PERF_MEM_EVENTS__MAX; j++) {
264 			e = perf_pmu__mem_events_ptr(pmu, j);
265 
266 			if (!perf_mem_record[j])
267 				continue;
268 
269 			if (!e->supported) {
270 				pr_err("failed: event '%s' not supported\n",
271 					perf_pmu__mem_events_name(j, pmu));
272 				return -1;
273 			}
274 
275 			s = perf_pmu__mem_events_name(j, pmu);
276 			if (!s || !perf_pmu__mem_events_supported(mnt, pmu, e))
277 				continue;
278 
279 			copy = strdup(s);
280 			if (!copy)
281 				return -1;
282 
283 			rec_argv[i++] = "-e";
284 			rec_argv[i++] = copy;
285 
286 			cpu_map = perf_cpu_map__merge(cpu_map, pmu->cpus);
287 		}
288 	}
289 
290 	if (cpu_map) {
291 		if (!perf_cpu_map__equal(cpu_map, cpu_map__online())) {
292 			char buf[200];
293 
294 			cpu_map__snprint(cpu_map, buf, sizeof(buf));
295 			pr_warning("Memory events are enabled on a subset of CPUs: %s\n", buf);
296 		}
297 		perf_cpu_map__put(cpu_map);
298 	}
299 
300 	*argv_nr = i;
301 	return 0;
302 }
303 
304 static const char * const tlb_access[] = {
305 	"N/A",
306 	"HIT",
307 	"MISS",
308 	"L1",
309 	"L2",
310 	"Walker",
311 	"Fault",
312 };
313 
perf_mem__tlb_scnprintf(char * out,size_t sz,const struct mem_info * mem_info)314 int perf_mem__tlb_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
315 {
316 	size_t l = 0, i;
317 	u64 m = PERF_MEM_TLB_NA;
318 	u64 hit, miss;
319 
320 	sz -= 1; /* -1 for null termination */
321 	out[0] = '\0';
322 
323 	if (mem_info)
324 		m = mem_info__const_data_src(mem_info)->mem_dtlb;
325 
326 	hit = m & PERF_MEM_TLB_HIT;
327 	miss = m & PERF_MEM_TLB_MISS;
328 
329 	/* already taken care of */
330 	m &= ~(PERF_MEM_TLB_HIT|PERF_MEM_TLB_MISS);
331 
332 	for (i = 0; m && i < ARRAY_SIZE(tlb_access); i++, m >>= 1) {
333 		if (!(m & 0x1))
334 			continue;
335 		if (l) {
336 			strcat(out, " or ");
337 			l += 4;
338 		}
339 		l += scnprintf(out + l, sz - l, tlb_access[i]);
340 	}
341 	if (*out == '\0')
342 		l += scnprintf(out, sz - l, "N/A");
343 	if (hit)
344 		l += scnprintf(out + l, sz - l, " hit");
345 	if (miss)
346 		l += scnprintf(out + l, sz - l, " miss");
347 
348 	return l;
349 }
350 
351 static const char * const mem_lvl[] = {
352 	"N/A",
353 	"HIT",
354 	"MISS",
355 	"L1",
356 	"LFB/MAB",
357 	"L2",
358 	"L3",
359 	"Local RAM",
360 	"Remote RAM (1 hop)",
361 	"Remote RAM (2 hops)",
362 	"Remote Cache (1 hop)",
363 	"Remote Cache (2 hops)",
364 	"I/O",
365 	"Uncached",
366 };
367 
368 static const char * const mem_lvlnum[] = {
369 	[PERF_MEM_LVLNUM_UNC] = "Uncached",
370 	[PERF_MEM_LVLNUM_CXL] = "CXL",
371 	[PERF_MEM_LVLNUM_IO] = "I/O",
372 	[PERF_MEM_LVLNUM_ANY_CACHE] = "Any cache",
373 	[PERF_MEM_LVLNUM_LFB] = "LFB/MAB",
374 	[PERF_MEM_LVLNUM_RAM] = "RAM",
375 	[PERF_MEM_LVLNUM_PMEM] = "PMEM",
376 	[PERF_MEM_LVLNUM_NA] = "N/A",
377 };
378 
379 static const char * const mem_hops[] = {
380 	"N/A",
381 	/*
382 	 * While printing, 'Remote' will be added to represent
383 	 * 'Remote core, same node' accesses as remote field need
384 	 * to be set with mem_hops field.
385 	 */
386 	"core, same node",
387 	"node, same socket",
388 	"socket, same board",
389 	"board",
390 };
391 
perf_mem__op_scnprintf(char * out,size_t sz,const struct mem_info * mem_info)392 static int perf_mem__op_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
393 {
394 	u64 op = PERF_MEM_LOCK_NA;
395 	int l;
396 
397 	if (mem_info)
398 		op = mem_info__const_data_src(mem_info)->mem_op;
399 
400 	if (op & PERF_MEM_OP_NA)
401 		l = scnprintf(out, sz, "N/A");
402 	else if (op & PERF_MEM_OP_LOAD)
403 		l = scnprintf(out, sz, "LOAD");
404 	else if (op & PERF_MEM_OP_STORE)
405 		l = scnprintf(out, sz, "STORE");
406 	else if (op & PERF_MEM_OP_PFETCH)
407 		l = scnprintf(out, sz, "PFETCH");
408 	else if (op & PERF_MEM_OP_EXEC)
409 		l = scnprintf(out, sz, "EXEC");
410 	else
411 		l = scnprintf(out, sz, "No");
412 
413 	return l;
414 }
415 
perf_mem__lvl_scnprintf(char * out,size_t sz,const struct mem_info * mem_info)416 int perf_mem__lvl_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
417 {
418 	union perf_mem_data_src data_src;
419 	int printed = 0;
420 	size_t l = 0;
421 	size_t i;
422 	int lvl;
423 	char hit_miss[5] = {0};
424 
425 	sz -= 1; /* -1 for null termination */
426 	out[0] = '\0';
427 
428 	if (!mem_info)
429 		goto na;
430 
431 	data_src = *mem_info__const_data_src(mem_info);
432 
433 	if (data_src.mem_lvl & PERF_MEM_LVL_HIT)
434 		memcpy(hit_miss, "hit", 3);
435 	else if (data_src.mem_lvl & PERF_MEM_LVL_MISS)
436 		memcpy(hit_miss, "miss", 4);
437 
438 	lvl = data_src.mem_lvl_num;
439 	if (lvl && lvl != PERF_MEM_LVLNUM_NA) {
440 		if (data_src.mem_remote) {
441 			strcat(out, "Remote ");
442 			l += 7;
443 		}
444 
445 		if (data_src.mem_hops)
446 			l += scnprintf(out + l, sz - l, "%s ", mem_hops[data_src.mem_hops]);
447 
448 		if (mem_lvlnum[lvl])
449 			l += scnprintf(out + l, sz - l, mem_lvlnum[lvl]);
450 		else
451 			l += scnprintf(out + l, sz - l, "L%d", lvl);
452 
453 		l += scnprintf(out + l, sz - l, " %s", hit_miss);
454 		return l;
455 	}
456 
457 	lvl = data_src.mem_lvl;
458 	if (!lvl)
459 		goto na;
460 
461 	lvl &= ~(PERF_MEM_LVL_NA | PERF_MEM_LVL_HIT | PERF_MEM_LVL_MISS);
462 	if (!lvl)
463 		goto na;
464 
465 	for (i = 0; lvl && i < ARRAY_SIZE(mem_lvl); i++, lvl >>= 1) {
466 		if (!(lvl & 0x1))
467 			continue;
468 		if (printed++) {
469 			strcat(out, " or ");
470 			l += 4;
471 		}
472 		l += scnprintf(out + l, sz - l, mem_lvl[i]);
473 	}
474 
475 	if (printed) {
476 		l += scnprintf(out + l, sz - l, " %s", hit_miss);
477 		return l;
478 	}
479 
480 na:
481 	strcat(out, "N/A");
482 	return 3;
483 }
484 
485 static const char * const snoop_access[] = {
486 	"N/A",
487 	"None",
488 	"Hit",
489 	"Miss",
490 	"HitM",
491 };
492 
493 static const char * const snoopx_access[] = {
494 	"Fwd",
495 	"Peer",
496 };
497 
perf_mem__snp_scnprintf(char * out,size_t sz,const struct mem_info * mem_info)498 int perf_mem__snp_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
499 {
500 	size_t i, l = 0;
501 	u64 m = PERF_MEM_SNOOP_NA;
502 
503 	sz -= 1; /* -1 for null termination */
504 	out[0] = '\0';
505 
506 	if (mem_info)
507 		m = mem_info__const_data_src(mem_info)->mem_snoop;
508 
509 	for (i = 0; m && i < ARRAY_SIZE(snoop_access); i++, m >>= 1) {
510 		if (!(m & 0x1))
511 			continue;
512 		if (l) {
513 			strcat(out, " or ");
514 			l += 4;
515 		}
516 		l += scnprintf(out + l, sz - l, snoop_access[i]);
517 	}
518 
519 	m = 0;
520 	if (mem_info)
521 		m = mem_info__const_data_src(mem_info)->mem_snoopx;
522 
523 	for (i = 0; m && i < ARRAY_SIZE(snoopx_access); i++, m >>= 1) {
524 		if (!(m & 0x1))
525 			continue;
526 
527 		if (l) {
528 			strcat(out, " or ");
529 			l += 4;
530 		}
531 		l += scnprintf(out + l, sz - l, snoopx_access[i]);
532 	}
533 
534 	if (*out == '\0')
535 		l += scnprintf(out, sz - l, "N/A");
536 
537 	return l;
538 }
539 
perf_mem__lck_scnprintf(char * out,size_t sz,const struct mem_info * mem_info)540 int perf_mem__lck_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
541 {
542 	u64 mask = PERF_MEM_LOCK_NA;
543 	int l;
544 
545 	if (mem_info)
546 		mask = mem_info__const_data_src(mem_info)->mem_lock;
547 
548 	if (mask & PERF_MEM_LOCK_NA)
549 		l = scnprintf(out, sz, "N/A");
550 	else if (mask & PERF_MEM_LOCK_LOCKED)
551 		l = scnprintf(out, sz, "Yes");
552 	else
553 		l = scnprintf(out, sz, "No");
554 
555 	return l;
556 }
557 
perf_mem__blk_scnprintf(char * out,size_t sz,const struct mem_info * mem_info)558 int perf_mem__blk_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
559 {
560 	size_t l = 0;
561 	u64 mask = PERF_MEM_BLK_NA;
562 
563 	sz -= 1; /* -1 for null termination */
564 	out[0] = '\0';
565 
566 	if (mem_info)
567 		mask = mem_info__const_data_src(mem_info)->mem_blk;
568 
569 	if (!mask || (mask & PERF_MEM_BLK_NA)) {
570 		l += scnprintf(out + l, sz - l, " N/A");
571 		return l;
572 	}
573 	if (mask & PERF_MEM_BLK_DATA)
574 		l += scnprintf(out + l, sz - l, " Data");
575 	if (mask & PERF_MEM_BLK_ADDR)
576 		l += scnprintf(out + l, sz - l, " Addr");
577 
578 	return l;
579 }
580 
perf_script__meminfo_scnprintf(char * out,size_t sz,const struct mem_info * mem_info)581 int perf_script__meminfo_scnprintf(char *out, size_t sz, const struct mem_info *mem_info)
582 {
583 	int i = 0;
584 
585 	i += scnprintf(out, sz, "|OP ");
586 	i += perf_mem__op_scnprintf(out + i, sz - i, mem_info);
587 	i += scnprintf(out + i, sz - i, "|LVL ");
588 	i += perf_mem__lvl_scnprintf(out + i, sz, mem_info);
589 	i += scnprintf(out + i, sz - i, "|SNP ");
590 	i += perf_mem__snp_scnprintf(out + i, sz - i, mem_info);
591 	i += scnprintf(out + i, sz - i, "|TLB ");
592 	i += perf_mem__tlb_scnprintf(out + i, sz - i, mem_info);
593 	i += scnprintf(out + i, sz - i, "|LCK ");
594 	i += perf_mem__lck_scnprintf(out + i, sz - i, mem_info);
595 	i += scnprintf(out + i, sz - i, "|BLK ");
596 	i += perf_mem__blk_scnprintf(out + i, sz - i, mem_info);
597 
598 	return i;
599 }
600 
c2c_decode_stats(struct c2c_stats * stats,struct mem_info * mi)601 int c2c_decode_stats(struct c2c_stats *stats, struct mem_info *mi)
602 {
603 	union perf_mem_data_src *data_src = mem_info__data_src(mi);
604 	u64 daddr  = mem_info__daddr(mi)->addr;
605 	u64 op     = data_src->mem_op;
606 	u64 lvl    = data_src->mem_lvl;
607 	u64 snoop  = data_src->mem_snoop;
608 	u64 snoopx = data_src->mem_snoopx;
609 	u64 lock   = data_src->mem_lock;
610 	u64 blk    = data_src->mem_blk;
611 	/*
612 	 * Skylake might report unknown remote level via this
613 	 * bit, consider it when evaluating remote HITMs.
614 	 *
615 	 * Incase of power, remote field can also be used to denote cache
616 	 * accesses from the another core of same node. Hence, setting
617 	 * mrem only when HOPS is zero along with set remote field.
618 	 */
619 	bool mrem  = (data_src->mem_remote && !data_src->mem_hops);
620 	int err = 0;
621 
622 #define HITM_INC(__f)		\
623 do {				\
624 	stats->__f++;		\
625 	stats->tot_hitm++;	\
626 } while (0)
627 
628 #define PEER_INC(__f)		\
629 do {				\
630 	stats->__f++;		\
631 	stats->tot_peer++;	\
632 } while (0)
633 
634 #define P(a, b) PERF_MEM_##a##_##b
635 
636 	stats->nr_entries++;
637 
638 	if (lock & P(LOCK, LOCKED)) stats->locks++;
639 
640 	if (blk & P(BLK, DATA)) stats->blk_data++;
641 	if (blk & P(BLK, ADDR)) stats->blk_addr++;
642 
643 	if (op & P(OP, LOAD)) {
644 		/* load */
645 		stats->load++;
646 
647 		if (!daddr) {
648 			stats->ld_noadrs++;
649 			return -1;
650 		}
651 
652 		if (lvl & P(LVL, HIT)) {
653 			if (lvl & P(LVL, UNC)) stats->ld_uncache++;
654 			if (lvl & P(LVL, IO))  stats->ld_io++;
655 			if (lvl & P(LVL, LFB)) stats->ld_fbhit++;
656 			if (lvl & P(LVL, L1 )) stats->ld_l1hit++;
657 			if (lvl & P(LVL, L2)) {
658 				stats->ld_l2hit++;
659 
660 				if (snoopx & P(SNOOPX, PEER))
661 					PEER_INC(lcl_peer);
662 			}
663 			if (lvl & P(LVL, L3 )) {
664 				if (snoop & P(SNOOP, HITM))
665 					HITM_INC(lcl_hitm);
666 				else
667 					stats->ld_llchit++;
668 
669 				if (snoopx & P(SNOOPX, PEER))
670 					PEER_INC(lcl_peer);
671 			}
672 
673 			if (lvl & P(LVL, LOC_RAM)) {
674 				stats->lcl_dram++;
675 				if (snoop & P(SNOOP, HIT))
676 					stats->ld_shared++;
677 				else
678 					stats->ld_excl++;
679 			}
680 
681 			if ((lvl & P(LVL, REM_RAM1)) ||
682 			    (lvl & P(LVL, REM_RAM2)) ||
683 			     mrem) {
684 				stats->rmt_dram++;
685 				if (snoop & P(SNOOP, HIT))
686 					stats->ld_shared++;
687 				else
688 					stats->ld_excl++;
689 			}
690 		}
691 
692 		if ((lvl & P(LVL, REM_CCE1)) ||
693 		    (lvl & P(LVL, REM_CCE2)) ||
694 		     mrem) {
695 			if (snoop & P(SNOOP, HIT)) {
696 				stats->rmt_hit++;
697 			} else if (snoop & P(SNOOP, HITM)) {
698 				HITM_INC(rmt_hitm);
699 			} else if (snoopx & P(SNOOPX, PEER)) {
700 				stats->rmt_hit++;
701 				PEER_INC(rmt_peer);
702 			}
703 		}
704 
705 		if ((lvl & P(LVL, MISS)))
706 			stats->ld_miss++;
707 
708 	} else if (op & P(OP, STORE)) {
709 		/* store */
710 		stats->store++;
711 
712 		if (!daddr) {
713 			stats->st_noadrs++;
714 			return -1;
715 		}
716 
717 		if (lvl & P(LVL, HIT)) {
718 			if (lvl & P(LVL, UNC)) stats->st_uncache++;
719 			if (lvl & P(LVL, L1 )) stats->st_l1hit++;
720 		}
721 		if (lvl & P(LVL, MISS))
722 			if (lvl & P(LVL, L1)) stats->st_l1miss++;
723 		if (lvl & P(LVL, NA))
724 			stats->st_na++;
725 	} else {
726 		/* unparsable data_src? */
727 		stats->noparse++;
728 		return -1;
729 	}
730 
731 	if (!mem_info__daddr(mi)->ms.map || !mem_info__iaddr(mi)->ms.map) {
732 		stats->nomap++;
733 		return -1;
734 	}
735 
736 #undef P
737 #undef HITM_INC
738 	return err;
739 }
740 
c2c_add_stats(struct c2c_stats * stats,struct c2c_stats * add)741 void c2c_add_stats(struct c2c_stats *stats, struct c2c_stats *add)
742 {
743 	stats->nr_entries	+= add->nr_entries;
744 
745 	stats->locks		+= add->locks;
746 	stats->store		+= add->store;
747 	stats->st_uncache	+= add->st_uncache;
748 	stats->st_noadrs	+= add->st_noadrs;
749 	stats->st_l1hit		+= add->st_l1hit;
750 	stats->st_l1miss	+= add->st_l1miss;
751 	stats->st_na		+= add->st_na;
752 	stats->load		+= add->load;
753 	stats->ld_excl		+= add->ld_excl;
754 	stats->ld_shared	+= add->ld_shared;
755 	stats->ld_uncache	+= add->ld_uncache;
756 	stats->ld_io		+= add->ld_io;
757 	stats->ld_miss		+= add->ld_miss;
758 	stats->ld_noadrs	+= add->ld_noadrs;
759 	stats->ld_fbhit		+= add->ld_fbhit;
760 	stats->ld_l1hit		+= add->ld_l1hit;
761 	stats->ld_l2hit		+= add->ld_l2hit;
762 	stats->ld_llchit	+= add->ld_llchit;
763 	stats->lcl_hitm		+= add->lcl_hitm;
764 	stats->rmt_hitm		+= add->rmt_hitm;
765 	stats->tot_hitm		+= add->tot_hitm;
766 	stats->lcl_peer		+= add->lcl_peer;
767 	stats->rmt_peer		+= add->rmt_peer;
768 	stats->tot_peer		+= add->tot_peer;
769 	stats->rmt_hit		+= add->rmt_hit;
770 	stats->lcl_dram		+= add->lcl_dram;
771 	stats->rmt_dram		+= add->rmt_dram;
772 	stats->blk_data		+= add->blk_data;
773 	stats->blk_addr		+= add->blk_addr;
774 	stats->nomap		+= add->nomap;
775 	stats->noparse		+= add->noparse;
776 }
777