1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Core driver for the pin control subsystem
4 *
5 * Copyright (C) 2011-2012 ST-Ericsson SA
6 * Written on behalf of Linaro for ST-Ericsson
7 * Based on bits of regulator core, gpio core and clk core
8 *
9 * Author: Linus Walleij <linus.walleij@linaro.org>
10 *
11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 */
13 #define pr_fmt(fmt) "pinctrl core: " fmt
14
15 #include <linux/array_size.h>
16 #include <linux/cleanup.h>
17 #include <linux/debugfs.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kref.h>
23 #include <linux/list.h>
24 #include <linux/seq_file.h>
25 #include <linux/slab.h>
26
27 #include <linux/gpio.h>
28 #include <linux/gpio/driver.h>
29
30 #include <linux/pinctrl/consumer.h>
31 #include <linux/pinctrl/devinfo.h>
32 #include <linux/pinctrl/machine.h>
33 #include <linux/pinctrl/pinctrl.h>
34
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinconf.h"
38 #include "pinmux.h"
39
40 static bool pinctrl_dummy_state;
41
42 /* Mutex taken to protect pinctrl_list */
43 static DEFINE_MUTEX(pinctrl_list_mutex);
44
45 /* Mutex taken to protect pinctrl_maps */
46 DEFINE_MUTEX(pinctrl_maps_mutex);
47
48 /* Mutex taken to protect pinctrldev_list */
49 static DEFINE_MUTEX(pinctrldev_list_mutex);
50
51 /* Global list of pin control devices (struct pinctrl_dev) */
52 static LIST_HEAD(pinctrldev_list);
53
54 /* List of pin controller handles (struct pinctrl) */
55 static LIST_HEAD(pinctrl_list);
56
57 /* List of pinctrl maps (struct pinctrl_maps) */
58 LIST_HEAD(pinctrl_maps);
59
60
61 /**
62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63 *
64 * Usually this function is called by platforms without pinctrl driver support
65 * but run with some shared drivers using pinctrl APIs.
66 * After calling this function, the pinctrl core will return successfully
67 * with creating a dummy state for the driver to keep going smoothly.
68 */
pinctrl_provide_dummies(void)69 void pinctrl_provide_dummies(void)
70 {
71 pinctrl_dummy_state = true;
72 }
73
pinctrl_dev_get_name(struct pinctrl_dev * pctldev)74 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
75 {
76 /* We're not allowed to register devices without name */
77 return pctldev->desc->name;
78 }
79 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
80
pinctrl_dev_get_devname(struct pinctrl_dev * pctldev)81 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
82 {
83 return dev_name(pctldev->dev);
84 }
85 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
86
pinctrl_dev_get_drvdata(struct pinctrl_dev * pctldev)87 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
88 {
89 return pctldev->driver_data;
90 }
91 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
92
93 /**
94 * get_pinctrl_dev_from_devname() - look up pin controller device
95 * @devname: the name of a device instance, as returned by dev_name()
96 *
97 * Looks up a pin control device matching a certain device name or pure device
98 * pointer, the pure device pointer will take precedence.
99 */
get_pinctrl_dev_from_devname(const char * devname)100 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
101 {
102 struct pinctrl_dev *pctldev;
103
104 if (!devname)
105 return NULL;
106
107 mutex_lock(&pinctrldev_list_mutex);
108
109 list_for_each_entry(pctldev, &pinctrldev_list, node) {
110 if (!strcmp(dev_name(pctldev->dev), devname)) {
111 /* Matched on device name */
112 mutex_unlock(&pinctrldev_list_mutex);
113 return pctldev;
114 }
115 }
116
117 mutex_unlock(&pinctrldev_list_mutex);
118
119 return NULL;
120 }
121
get_pinctrl_dev_from_of_node(struct device_node * np)122 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
123 {
124 struct pinctrl_dev *pctldev;
125
126 mutex_lock(&pinctrldev_list_mutex);
127
128 list_for_each_entry(pctldev, &pinctrldev_list, node)
129 if (device_match_of_node(pctldev->dev, np)) {
130 mutex_unlock(&pinctrldev_list_mutex);
131 return pctldev;
132 }
133
134 mutex_unlock(&pinctrldev_list_mutex);
135
136 return NULL;
137 }
138
139 /**
140 * pin_get_from_name() - look up a pin number from a name
141 * @pctldev: the pin control device to lookup the pin on
142 * @name: the name of the pin to look up
143 */
pin_get_from_name(struct pinctrl_dev * pctldev,const char * name)144 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
145 {
146 unsigned int i, pin;
147
148 /* The pin number can be retrived from the pin controller descriptor */
149 for (i = 0; i < pctldev->desc->npins; i++) {
150 struct pin_desc *desc;
151
152 pin = pctldev->desc->pins[i].number;
153 desc = pin_desc_get(pctldev, pin);
154 /* Pin space may be sparse */
155 if (desc && !strcmp(name, desc->name))
156 return pin;
157 }
158
159 return -EINVAL;
160 }
161
162 /**
163 * pin_get_name() - look up a pin name from a pin id
164 * @pctldev: the pin control device to lookup the pin on
165 * @pin: pin number/id to look up
166 */
pin_get_name(struct pinctrl_dev * pctldev,const unsigned int pin)167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned int pin)
168 {
169 const struct pin_desc *desc;
170
171 desc = pin_desc_get(pctldev, pin);
172 if (!desc) {
173 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
174 pin);
175 return NULL;
176 }
177
178 return desc->name;
179 }
180 EXPORT_SYMBOL_GPL(pin_get_name);
181
182 /* Deletes a range of pin descriptors */
pinctrl_free_pindescs(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned int num_pins)183 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
184 const struct pinctrl_pin_desc *pins,
185 unsigned int num_pins)
186 {
187 int i;
188
189 for (i = 0; i < num_pins; i++) {
190 struct pin_desc *pindesc;
191
192 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
193 pins[i].number);
194 if (pindesc) {
195 radix_tree_delete(&pctldev->pin_desc_tree,
196 pins[i].number);
197 if (pindesc->dynamic_name)
198 kfree(pindesc->name);
199 }
200 kfree(pindesc);
201 }
202 }
203
pinctrl_register_one_pin(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pin)204 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
205 const struct pinctrl_pin_desc *pin)
206 {
207 struct pin_desc *pindesc;
208 int error;
209
210 pindesc = pin_desc_get(pctldev, pin->number);
211 if (pindesc) {
212 dev_err(pctldev->dev, "pin %d already registered\n",
213 pin->number);
214 return -EINVAL;
215 }
216
217 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
218 if (!pindesc)
219 return -ENOMEM;
220
221 /* Set owner */
222 pindesc->pctldev = pctldev;
223
224 /* Copy basic pin info */
225 if (pin->name) {
226 pindesc->name = pin->name;
227 } else {
228 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
229 if (!pindesc->name) {
230 error = -ENOMEM;
231 goto failed;
232 }
233 pindesc->dynamic_name = true;
234 }
235
236 pindesc->drv_data = pin->drv_data;
237
238 error = radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
239 if (error)
240 goto failed;
241
242 pr_debug("registered pin %d (%s) on %s\n",
243 pin->number, pindesc->name, pctldev->desc->name);
244 return 0;
245
246 failed:
247 kfree(pindesc);
248 return error;
249 }
250
pinctrl_register_pins(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned int num_descs)251 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
252 const struct pinctrl_pin_desc *pins,
253 unsigned int num_descs)
254 {
255 unsigned int i;
256 int ret = 0;
257
258 for (i = 0; i < num_descs; i++) {
259 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
260 if (ret)
261 return ret;
262 }
263
264 return 0;
265 }
266
267 /**
268 * gpio_to_pin() - GPIO range GPIO number to pin number translation
269 * @range: GPIO range used for the translation
270 * @gc: GPIO chip structure from the GPIO subsystem
271 * @offset: hardware offset of the GPIO relative to the controller
272 *
273 * Finds the pin number for a given GPIO using the specified GPIO range
274 * as a base for translation. The distinction between linear GPIO ranges
275 * and pin list based GPIO ranges is managed correctly by this function.
276 *
277 * This function assumes the gpio is part of the specified GPIO range, use
278 * only after making sure this is the case (e.g. by calling it on the
279 * result of successful pinctrl_get_device_gpio_range calls)!
280 */
gpio_to_pin(struct pinctrl_gpio_range * range,struct gpio_chip * gc,unsigned int offset)281 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
282 struct gpio_chip *gc, unsigned int offset)
283 {
284 unsigned int pin = gc->base + offset - range->base;
285 if (range->pins)
286 return range->pins[pin];
287 else
288 return range->pin_base + pin;
289 }
290
291 /**
292 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
293 * @pctldev: pin controller device to check
294 * @gc: GPIO chip structure from the GPIO subsystem
295 * @offset: hardware offset of the GPIO relative to the controller
296 *
297 * Tries to match a GPIO pin number to the ranges handled by a certain pin
298 * controller, return the range or NULL
299 */
300 static struct pinctrl_gpio_range *
pinctrl_match_gpio_range(struct pinctrl_dev * pctldev,struct gpio_chip * gc,unsigned int offset)301 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, struct gpio_chip *gc,
302 unsigned int offset)
303 {
304 struct pinctrl_gpio_range *range;
305
306 mutex_lock(&pctldev->mutex);
307 /* Loop over the ranges */
308 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
309 /* Check if we're in the valid range */
310 if ((gc->base + offset) >= range->base &&
311 (gc->base + offset) < range->base + range->npins) {
312 mutex_unlock(&pctldev->mutex);
313 return range;
314 }
315 }
316 mutex_unlock(&pctldev->mutex);
317 return NULL;
318 }
319
320 /**
321 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
322 * the same GPIO chip are in range
323 * @gc: GPIO chip structure from the GPIO subsystem
324 * @offset: hardware offset of the GPIO relative to the controller
325 *
326 * This function is complement of pinctrl_match_gpio_range(). If the return
327 * value of pinctrl_match_gpio_range() is NULL, this function could be used
328 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
329 * of the same GPIO chip don't have back-end pinctrl interface.
330 * If the return value is true, it means that pinctrl device is ready & the
331 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
332 * is false, it means that pinctrl device may not be ready.
333 */
334 #ifdef CONFIG_GPIOLIB
pinctrl_ready_for_gpio_range(struct gpio_chip * gc,unsigned int offset)335 static bool pinctrl_ready_for_gpio_range(struct gpio_chip *gc,
336 unsigned int offset)
337 {
338 struct pinctrl_dev *pctldev;
339 struct pinctrl_gpio_range *range = NULL;
340
341 mutex_lock(&pinctrldev_list_mutex);
342
343 /* Loop over the pin controllers */
344 list_for_each_entry(pctldev, &pinctrldev_list, node) {
345 /* Loop over the ranges */
346 mutex_lock(&pctldev->mutex);
347 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
348 /* Check if any gpio range overlapped with gpio chip */
349 if (range->base + range->npins - 1 < gc->base ||
350 range->base > gc->base + gc->ngpio - 1)
351 continue;
352 mutex_unlock(&pctldev->mutex);
353 mutex_unlock(&pinctrldev_list_mutex);
354 return true;
355 }
356 mutex_unlock(&pctldev->mutex);
357 }
358
359 mutex_unlock(&pinctrldev_list_mutex);
360
361 return false;
362 }
363 #else
364 static inline bool
pinctrl_ready_for_gpio_range(struct gpio_chip * gc,unsigned int offset)365 pinctrl_ready_for_gpio_range(struct gpio_chip *gc, unsigned int offset)
366 {
367 return true;
368 }
369 #endif
370
371 /**
372 * pinctrl_get_device_gpio_range() - find device for GPIO range
373 * @gc: GPIO chip structure from the GPIO subsystem
374 * @offset: hardware offset of the GPIO relative to the controller
375 * @outdev: the pin control device if found
376 * @outrange: the GPIO range if found
377 *
378 * Find the pin controller handling a certain GPIO pin from the pinspace of
379 * the GPIO subsystem, return the device and the matching GPIO range. Returns
380 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
381 * may still have not been registered.
382 */
pinctrl_get_device_gpio_range(struct gpio_chip * gc,unsigned int offset,struct pinctrl_dev ** outdev,struct pinctrl_gpio_range ** outrange)383 static int pinctrl_get_device_gpio_range(struct gpio_chip *gc,
384 unsigned int offset,
385 struct pinctrl_dev **outdev,
386 struct pinctrl_gpio_range **outrange)
387 {
388 struct pinctrl_dev *pctldev;
389
390 mutex_lock(&pinctrldev_list_mutex);
391
392 /* Loop over the pin controllers */
393 list_for_each_entry(pctldev, &pinctrldev_list, node) {
394 struct pinctrl_gpio_range *range;
395
396 range = pinctrl_match_gpio_range(pctldev, gc, offset);
397 if (range) {
398 *outdev = pctldev;
399 *outrange = range;
400 mutex_unlock(&pinctrldev_list_mutex);
401 return 0;
402 }
403 }
404
405 mutex_unlock(&pinctrldev_list_mutex);
406
407 return -EPROBE_DEFER;
408 }
409
410 /**
411 * pinctrl_add_gpio_range() - register a GPIO range for a controller
412 * @pctldev: pin controller device to add the range to
413 * @range: the GPIO range to add
414 *
415 * DEPRECATED: Don't use this function in new code. See section 2 of
416 * Documentation/devicetree/bindings/gpio/gpio.txt on how to bind pinctrl and
417 * gpio drivers.
418 *
419 * This adds a range of GPIOs to be handled by a certain pin controller. Call
420 * this to register handled ranges after registering your pin controller.
421 */
pinctrl_add_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)422 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
423 struct pinctrl_gpio_range *range)
424 {
425 mutex_lock(&pctldev->mutex);
426 list_add_tail(&range->node, &pctldev->gpio_ranges);
427 mutex_unlock(&pctldev->mutex);
428 }
429 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
430
pinctrl_add_gpio_ranges(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * ranges,unsigned int nranges)431 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
432 struct pinctrl_gpio_range *ranges,
433 unsigned int nranges)
434 {
435 int i;
436
437 for (i = 0; i < nranges; i++)
438 pinctrl_add_gpio_range(pctldev, &ranges[i]);
439 }
440 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
441
pinctrl_find_and_add_gpio_range(const char * devname,struct pinctrl_gpio_range * range)442 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
443 struct pinctrl_gpio_range *range)
444 {
445 struct pinctrl_dev *pctldev;
446
447 pctldev = get_pinctrl_dev_from_devname(devname);
448
449 /*
450 * If we can't find this device, let's assume that is because
451 * it has not probed yet, so the driver trying to register this
452 * range need to defer probing.
453 */
454 if (!pctldev)
455 return ERR_PTR(-EPROBE_DEFER);
456
457 pinctrl_add_gpio_range(pctldev, range);
458
459 return pctldev;
460 }
461 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
462
pinctrl_get_group_pins(struct pinctrl_dev * pctldev,const char * pin_group,const unsigned int ** pins,unsigned int * num_pins)463 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
464 const unsigned int **pins, unsigned int *num_pins)
465 {
466 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
467 int gs;
468
469 if (!pctlops->get_group_pins)
470 return -EINVAL;
471
472 gs = pinctrl_get_group_selector(pctldev, pin_group);
473 if (gs < 0)
474 return gs;
475
476 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
477 }
478 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
479
480 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev * pctldev,unsigned int pin)481 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
482 unsigned int pin)
483 {
484 struct pinctrl_gpio_range *range;
485
486 /* Loop over the ranges */
487 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
488 /* Check if we're in the valid range */
489 if (range->pins) {
490 int a;
491 for (a = 0; a < range->npins; a++) {
492 if (range->pins[a] == pin)
493 return range;
494 }
495 } else if (pin >= range->pin_base &&
496 pin < range->pin_base + range->npins)
497 return range;
498 }
499
500 return NULL;
501 }
502 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
503
504 /**
505 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
506 * @pctldev: the pin controller device to look in
507 * @pin: a controller-local number to find the range for
508 */
509 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin(struct pinctrl_dev * pctldev,unsigned int pin)510 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
511 unsigned int pin)
512 {
513 struct pinctrl_gpio_range *range;
514
515 mutex_lock(&pctldev->mutex);
516 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
517 mutex_unlock(&pctldev->mutex);
518
519 return range;
520 }
521 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
522
523 /**
524 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
525 * @pctldev: pin controller device to remove the range from
526 * @range: the GPIO range to remove
527 */
pinctrl_remove_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)528 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
529 struct pinctrl_gpio_range *range)
530 {
531 mutex_lock(&pctldev->mutex);
532 list_del(&range->node);
533 mutex_unlock(&pctldev->mutex);
534 }
535 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
536
537 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
538
539 /**
540 * pinctrl_generic_get_group_count() - returns the number of pin groups
541 * @pctldev: pin controller device
542 */
pinctrl_generic_get_group_count(struct pinctrl_dev * pctldev)543 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
544 {
545 return pctldev->num_groups;
546 }
547 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
548
549 /**
550 * pinctrl_generic_get_group_name() - returns the name of a pin group
551 * @pctldev: pin controller device
552 * @selector: group number
553 */
pinctrl_generic_get_group_name(struct pinctrl_dev * pctldev,unsigned int selector)554 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
555 unsigned int selector)
556 {
557 struct group_desc *group;
558
559 group = radix_tree_lookup(&pctldev->pin_group_tree,
560 selector);
561 if (!group)
562 return NULL;
563
564 return group->grp.name;
565 }
566 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
567
568 /**
569 * pinctrl_generic_get_group_pins() - gets the pin group pins
570 * @pctldev: pin controller device
571 * @selector: group number
572 * @pins: pins in the group
573 * @num_pins: number of pins in the group
574 */
pinctrl_generic_get_group_pins(struct pinctrl_dev * pctldev,unsigned int selector,const unsigned int ** pins,unsigned int * num_pins)575 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
576 unsigned int selector,
577 const unsigned int **pins,
578 unsigned int *num_pins)
579 {
580 struct group_desc *group;
581
582 group = radix_tree_lookup(&pctldev->pin_group_tree,
583 selector);
584 if (!group) {
585 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
586 __func__, selector);
587 return -EINVAL;
588 }
589
590 *pins = group->grp.pins;
591 *num_pins = group->grp.npins;
592
593 return 0;
594 }
595 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
596
597 /**
598 * pinctrl_generic_get_group() - returns a pin group based on the number
599 * @pctldev: pin controller device
600 * @selector: group number
601 */
pinctrl_generic_get_group(struct pinctrl_dev * pctldev,unsigned int selector)602 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
603 unsigned int selector)
604 {
605 struct group_desc *group;
606
607 group = radix_tree_lookup(&pctldev->pin_group_tree,
608 selector);
609 if (!group)
610 return NULL;
611
612 return group;
613 }
614 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
615
pinctrl_generic_group_name_to_selector(struct pinctrl_dev * pctldev,const char * function)616 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
617 const char *function)
618 {
619 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
620 int ngroups = ops->get_groups_count(pctldev);
621 int selector = 0;
622
623 /* See if this pctldev has this group */
624 while (selector < ngroups) {
625 const char *gname = ops->get_group_name(pctldev, selector);
626
627 if (gname && !strcmp(function, gname))
628 return selector;
629
630 selector++;
631 }
632
633 return -EINVAL;
634 }
635
636 /**
637 * pinctrl_generic_add_group() - adds a new pin group
638 * @pctldev: pin controller device
639 * @name: name of the pin group
640 * @pins: pins in the pin group
641 * @num_pins: number of pins in the pin group
642 * @data: pin controller driver specific data
643 *
644 * Note that the caller must take care of locking.
645 */
pinctrl_generic_add_group(struct pinctrl_dev * pctldev,const char * name,const unsigned int * pins,int num_pins,void * data)646 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
647 const unsigned int *pins, int num_pins, void *data)
648 {
649 struct group_desc *group;
650 int selector, error;
651
652 if (!name)
653 return -EINVAL;
654
655 selector = pinctrl_generic_group_name_to_selector(pctldev, name);
656 if (selector >= 0)
657 return selector;
658
659 selector = pctldev->num_groups;
660
661 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
662 if (!group)
663 return -ENOMEM;
664
665 *group = PINCTRL_GROUP_DESC(name, pins, num_pins, data);
666
667 error = radix_tree_insert(&pctldev->pin_group_tree, selector, group);
668 if (error)
669 return error;
670
671 pctldev->num_groups++;
672
673 return selector;
674 }
675 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
676
677 /**
678 * pinctrl_generic_remove_group() - removes a numbered pin group
679 * @pctldev: pin controller device
680 * @selector: group number
681 *
682 * Note that the caller must take care of locking.
683 */
pinctrl_generic_remove_group(struct pinctrl_dev * pctldev,unsigned int selector)684 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
685 unsigned int selector)
686 {
687 struct group_desc *group;
688
689 group = radix_tree_lookup(&pctldev->pin_group_tree,
690 selector);
691 if (!group)
692 return -ENOENT;
693
694 radix_tree_delete(&pctldev->pin_group_tree, selector);
695 devm_kfree(pctldev->dev, group);
696
697 pctldev->num_groups--;
698
699 return 0;
700 }
701 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
702
703 /**
704 * pinctrl_generic_free_groups() - removes all pin groups
705 * @pctldev: pin controller device
706 *
707 * Note that the caller must take care of locking. The pinctrl groups
708 * are allocated with devm_kzalloc() so no need to free them here.
709 */
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)710 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
711 {
712 struct radix_tree_iter iter;
713 void __rcu **slot;
714
715 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
716 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
717
718 pctldev->num_groups = 0;
719 }
720
721 #else
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)722 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
723 {
724 }
725 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
726
727 /**
728 * pinctrl_get_group_selector() - returns the group selector for a group
729 * @pctldev: the pin controller handling the group
730 * @pin_group: the pin group to look up
731 */
pinctrl_get_group_selector(struct pinctrl_dev * pctldev,const char * pin_group)732 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
733 const char *pin_group)
734 {
735 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
736 unsigned int ngroups = pctlops->get_groups_count(pctldev);
737 unsigned int group_selector = 0;
738
739 while (group_selector < ngroups) {
740 const char *gname = pctlops->get_group_name(pctldev,
741 group_selector);
742 if (gname && !strcmp(gname, pin_group)) {
743 dev_dbg(pctldev->dev,
744 "found group selector %u for %s\n",
745 group_selector,
746 pin_group);
747 return group_selector;
748 }
749
750 group_selector++;
751 }
752
753 dev_err(pctldev->dev, "does not have pin group %s\n",
754 pin_group);
755
756 return -EINVAL;
757 }
758
pinctrl_gpio_can_use_line(struct gpio_chip * gc,unsigned int offset)759 bool pinctrl_gpio_can_use_line(struct gpio_chip *gc, unsigned int offset)
760 {
761 struct pinctrl_dev *pctldev;
762 struct pinctrl_gpio_range *range;
763 bool result;
764 int pin;
765
766 /*
767 * Try to obtain GPIO range, if it fails
768 * we're probably dealing with GPIO driver
769 * without a backing pin controller - bail out.
770 */
771 if (pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range))
772 return true;
773
774 mutex_lock(&pctldev->mutex);
775
776 /* Convert to the pin controllers number space */
777 pin = gpio_to_pin(range, gc, offset);
778
779 result = pinmux_can_be_used_for_gpio(pctldev, pin);
780
781 mutex_unlock(&pctldev->mutex);
782
783 return result;
784 }
785 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
786
787 /**
788 * pinctrl_gpio_request() - request a single pin to be used as GPIO
789 * @gc: GPIO chip structure from the GPIO subsystem
790 * @offset: hardware offset of the GPIO relative to the controller
791 *
792 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
793 * as part of their gpio_request() semantics, platforms and individual drivers
794 * shall *NOT* request GPIO pins to be muxed in.
795 */
pinctrl_gpio_request(struct gpio_chip * gc,unsigned int offset)796 int pinctrl_gpio_request(struct gpio_chip *gc, unsigned int offset)
797 {
798 struct pinctrl_gpio_range *range;
799 struct pinctrl_dev *pctldev;
800 int ret, pin;
801
802 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
803 if (ret) {
804 if (pinctrl_ready_for_gpio_range(gc, offset))
805 ret = 0;
806 return ret;
807 }
808
809 mutex_lock(&pctldev->mutex);
810
811 /* Convert to the pin controllers number space */
812 pin = gpio_to_pin(range, gc, offset);
813
814 ret = pinmux_request_gpio(pctldev, range, pin, gc->base + offset);
815
816 mutex_unlock(&pctldev->mutex);
817
818 return ret;
819 }
820 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
821
822 /**
823 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
824 * @gc: GPIO chip structure from the GPIO subsystem
825 * @offset: hardware offset of the GPIO relative to the controller
826 *
827 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
828 * as part of their gpio_request() semantics, platforms and individual drivers
829 * shall *NOT* request GPIO pins to be muxed in.
830 */
pinctrl_gpio_free(struct gpio_chip * gc,unsigned int offset)831 void pinctrl_gpio_free(struct gpio_chip *gc, unsigned int offset)
832 {
833 struct pinctrl_gpio_range *range;
834 struct pinctrl_dev *pctldev;
835 int ret, pin;
836
837 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
838 if (ret)
839 return;
840
841 mutex_lock(&pctldev->mutex);
842
843 /* Convert to the pin controllers number space */
844 pin = gpio_to_pin(range, gc, offset);
845
846 pinmux_free_gpio(pctldev, pin, range);
847
848 mutex_unlock(&pctldev->mutex);
849 }
850 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
851
pinctrl_gpio_direction(struct gpio_chip * gc,unsigned int offset,bool input)852 static int pinctrl_gpio_direction(struct gpio_chip *gc, unsigned int offset,
853 bool input)
854 {
855 struct pinctrl_dev *pctldev;
856 struct pinctrl_gpio_range *range;
857 int ret;
858 int pin;
859
860 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
861 if (ret) {
862 return ret;
863 }
864
865 mutex_lock(&pctldev->mutex);
866
867 /* Convert to the pin controllers number space */
868 pin = gpio_to_pin(range, gc, offset);
869 ret = pinmux_gpio_direction(pctldev, range, pin, input);
870
871 mutex_unlock(&pctldev->mutex);
872
873 return ret;
874 }
875
876 /**
877 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
878 * @gc: GPIO chip structure from the GPIO subsystem
879 * @offset: hardware offset of the GPIO relative to the controller
880 *
881 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
882 * as part of their gpio_direction_input() semantics, platforms and individual
883 * drivers shall *NOT* touch pin control GPIO calls.
884 */
pinctrl_gpio_direction_input(struct gpio_chip * gc,unsigned int offset)885 int pinctrl_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
886 {
887 return pinctrl_gpio_direction(gc, offset, true);
888 }
889 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
890
891 /**
892 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
893 * @gc: GPIO chip structure from the GPIO subsystem
894 * @offset: hardware offset of the GPIO relative to the controller
895 *
896 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
897 * as part of their gpio_direction_output() semantics, platforms and individual
898 * drivers shall *NOT* touch pin control GPIO calls.
899 */
pinctrl_gpio_direction_output(struct gpio_chip * gc,unsigned int offset)900 int pinctrl_gpio_direction_output(struct gpio_chip *gc, unsigned int offset)
901 {
902 return pinctrl_gpio_direction(gc, offset, false);
903 }
904 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
905
906 /**
907 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
908 * @gc: GPIO chip structure from the GPIO subsystem
909 * @offset: hardware offset of the GPIO relative to the controller
910 * @config: the configuration to apply to the GPIO
911 *
912 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
913 * they need to call the underlying pin controller to change GPIO config
914 * (for example set debounce time).
915 */
pinctrl_gpio_set_config(struct gpio_chip * gc,unsigned int offset,unsigned long config)916 int pinctrl_gpio_set_config(struct gpio_chip *gc, unsigned int offset,
917 unsigned long config)
918 {
919 unsigned long configs[] = { config };
920 struct pinctrl_gpio_range *range;
921 struct pinctrl_dev *pctldev;
922 int ret, pin;
923
924 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
925 if (ret)
926 return ret;
927
928 mutex_lock(&pctldev->mutex);
929 pin = gpio_to_pin(range, gc, offset);
930 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
931 mutex_unlock(&pctldev->mutex);
932
933 return ret;
934 }
935 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
936
find_state(struct pinctrl * p,const char * name)937 static struct pinctrl_state *find_state(struct pinctrl *p,
938 const char *name)
939 {
940 struct pinctrl_state *state;
941
942 list_for_each_entry(state, &p->states, node)
943 if (!strcmp(state->name, name))
944 return state;
945
946 return NULL;
947 }
948
create_state(struct pinctrl * p,const char * name)949 static struct pinctrl_state *create_state(struct pinctrl *p,
950 const char *name)
951 {
952 struct pinctrl_state *state;
953
954 state = kzalloc(sizeof(*state), GFP_KERNEL);
955 if (!state)
956 return ERR_PTR(-ENOMEM);
957
958 state->name = name;
959 INIT_LIST_HEAD(&state->settings);
960
961 list_add_tail(&state->node, &p->states);
962
963 return state;
964 }
965
add_setting(struct pinctrl * p,struct pinctrl_dev * pctldev,const struct pinctrl_map * map)966 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
967 const struct pinctrl_map *map)
968 {
969 struct pinctrl_state *state;
970 struct pinctrl_setting *setting;
971 int ret;
972
973 state = find_state(p, map->name);
974 if (!state)
975 state = create_state(p, map->name);
976 if (IS_ERR(state))
977 return PTR_ERR(state);
978
979 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
980 return 0;
981
982 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
983 if (!setting)
984 return -ENOMEM;
985
986 setting->type = map->type;
987
988 if (pctldev)
989 setting->pctldev = pctldev;
990 else
991 setting->pctldev =
992 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
993 if (!setting->pctldev) {
994 kfree(setting);
995 /* Do not defer probing of hogs (circular loop) */
996 if (!strcmp(map->ctrl_dev_name, map->dev_name))
997 return -ENODEV;
998 /*
999 * OK let us guess that the driver is not there yet, and
1000 * let's defer obtaining this pinctrl handle to later...
1001 */
1002 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
1003 map->ctrl_dev_name);
1004 return -EPROBE_DEFER;
1005 }
1006
1007 setting->dev_name = map->dev_name;
1008
1009 switch (map->type) {
1010 case PIN_MAP_TYPE_MUX_GROUP:
1011 ret = pinmux_map_to_setting(map, setting);
1012 break;
1013 case PIN_MAP_TYPE_CONFIGS_PIN:
1014 case PIN_MAP_TYPE_CONFIGS_GROUP:
1015 ret = pinconf_map_to_setting(map, setting);
1016 break;
1017 default:
1018 ret = -EINVAL;
1019 break;
1020 }
1021 if (ret < 0) {
1022 kfree(setting);
1023 return ret;
1024 }
1025
1026 list_add_tail(&setting->node, &state->settings);
1027
1028 return 0;
1029 }
1030
find_pinctrl(struct device * dev)1031 static struct pinctrl *find_pinctrl(struct device *dev)
1032 {
1033 struct pinctrl *p;
1034
1035 mutex_lock(&pinctrl_list_mutex);
1036 list_for_each_entry(p, &pinctrl_list, node)
1037 if (p->dev == dev) {
1038 mutex_unlock(&pinctrl_list_mutex);
1039 return p;
1040 }
1041
1042 mutex_unlock(&pinctrl_list_mutex);
1043 return NULL;
1044 }
1045
1046 static void pinctrl_free(struct pinctrl *p, bool inlist);
1047
create_pinctrl(struct device * dev,struct pinctrl_dev * pctldev)1048 static struct pinctrl *create_pinctrl(struct device *dev,
1049 struct pinctrl_dev *pctldev)
1050 {
1051 struct pinctrl *p;
1052 const char *devname;
1053 struct pinctrl_maps *maps_node;
1054 const struct pinctrl_map *map;
1055 int ret;
1056
1057 /*
1058 * create the state cookie holder struct pinctrl for each
1059 * mapping, this is what consumers will get when requesting
1060 * a pin control handle with pinctrl_get()
1061 */
1062 p = kzalloc(sizeof(*p), GFP_KERNEL);
1063 if (!p)
1064 return ERR_PTR(-ENOMEM);
1065 p->dev = dev;
1066 INIT_LIST_HEAD(&p->states);
1067 INIT_LIST_HEAD(&p->dt_maps);
1068
1069 ret = pinctrl_dt_to_map(p, pctldev);
1070 if (ret < 0) {
1071 kfree(p);
1072 return ERR_PTR(ret);
1073 }
1074
1075 devname = dev_name(dev);
1076
1077 mutex_lock(&pinctrl_maps_mutex);
1078 /* Iterate over the pin control maps to locate the right ones */
1079 for_each_pin_map(maps_node, map) {
1080 /* Map must be for this device */
1081 if (strcmp(map->dev_name, devname))
1082 continue;
1083 /*
1084 * If pctldev is not null, we are claiming hog for it,
1085 * that means, setting that is served by pctldev by itself.
1086 *
1087 * Thus we must skip map that is for this device but is served
1088 * by other device.
1089 */
1090 if (pctldev &&
1091 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1092 continue;
1093
1094 ret = add_setting(p, pctldev, map);
1095 /*
1096 * At this point the adding of a setting may:
1097 *
1098 * - Defer, if the pinctrl device is not yet available
1099 * - Fail, if the pinctrl device is not yet available,
1100 * AND the setting is a hog. We cannot defer that, since
1101 * the hog will kick in immediately after the device
1102 * is registered.
1103 *
1104 * If the error returned was not -EPROBE_DEFER then we
1105 * accumulate the errors to see if we end up with
1106 * an -EPROBE_DEFER later, as that is the worst case.
1107 */
1108 if (ret == -EPROBE_DEFER) {
1109 mutex_unlock(&pinctrl_maps_mutex);
1110 pinctrl_free(p, false);
1111 return ERR_PTR(ret);
1112 }
1113 }
1114 mutex_unlock(&pinctrl_maps_mutex);
1115
1116 if (ret < 0) {
1117 /* If some other error than deferral occurred, return here */
1118 pinctrl_free(p, false);
1119 return ERR_PTR(ret);
1120 }
1121
1122 kref_init(&p->users);
1123
1124 /* Add the pinctrl handle to the global list */
1125 mutex_lock(&pinctrl_list_mutex);
1126 list_add_tail(&p->node, &pinctrl_list);
1127 mutex_unlock(&pinctrl_list_mutex);
1128
1129 return p;
1130 }
1131
1132 /**
1133 * pinctrl_get() - retrieves the pinctrl handle for a device
1134 * @dev: the device to obtain the handle for
1135 */
pinctrl_get(struct device * dev)1136 struct pinctrl *pinctrl_get(struct device *dev)
1137 {
1138 struct pinctrl *p;
1139
1140 if (WARN_ON(!dev))
1141 return ERR_PTR(-EINVAL);
1142
1143 /*
1144 * See if somebody else (such as the device core) has already
1145 * obtained a handle to the pinctrl for this device. In that case,
1146 * return another pointer to it.
1147 */
1148 p = find_pinctrl(dev);
1149 if (p) {
1150 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1151 kref_get(&p->users);
1152 return p;
1153 }
1154
1155 return create_pinctrl(dev, NULL);
1156 }
1157 EXPORT_SYMBOL_GPL(pinctrl_get);
1158
pinctrl_free_setting(bool disable_setting,struct pinctrl_setting * setting)1159 static void pinctrl_free_setting(bool disable_setting,
1160 struct pinctrl_setting *setting)
1161 {
1162 switch (setting->type) {
1163 case PIN_MAP_TYPE_MUX_GROUP:
1164 if (disable_setting)
1165 pinmux_disable_setting(setting);
1166 pinmux_free_setting(setting);
1167 break;
1168 case PIN_MAP_TYPE_CONFIGS_PIN:
1169 case PIN_MAP_TYPE_CONFIGS_GROUP:
1170 pinconf_free_setting(setting);
1171 break;
1172 default:
1173 break;
1174 }
1175 }
1176
pinctrl_free(struct pinctrl * p,bool inlist)1177 static void pinctrl_free(struct pinctrl *p, bool inlist)
1178 {
1179 struct pinctrl_state *state, *n1;
1180 struct pinctrl_setting *setting, *n2;
1181
1182 mutex_lock(&pinctrl_list_mutex);
1183 list_for_each_entry_safe(state, n1, &p->states, node) {
1184 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1185 pinctrl_free_setting(state == p->state, setting);
1186 list_del(&setting->node);
1187 kfree(setting);
1188 }
1189 list_del(&state->node);
1190 kfree(state);
1191 }
1192
1193 pinctrl_dt_free_maps(p);
1194
1195 if (inlist)
1196 list_del(&p->node);
1197 kfree(p);
1198 mutex_unlock(&pinctrl_list_mutex);
1199 }
1200
1201 /**
1202 * pinctrl_release() - release the pinctrl handle
1203 * @kref: the kref in the pinctrl being released
1204 */
pinctrl_release(struct kref * kref)1205 static void pinctrl_release(struct kref *kref)
1206 {
1207 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1208
1209 pinctrl_free(p, true);
1210 }
1211
1212 /**
1213 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1214 * @p: the pinctrl handle to release
1215 */
pinctrl_put(struct pinctrl * p)1216 void pinctrl_put(struct pinctrl *p)
1217 {
1218 kref_put(&p->users, pinctrl_release);
1219 }
1220 EXPORT_SYMBOL_GPL(pinctrl_put);
1221
1222 /**
1223 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1224 * @p: the pinctrl handle to retrieve the state from
1225 * @name: the state name to retrieve
1226 */
pinctrl_lookup_state(struct pinctrl * p,const char * name)1227 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1228 const char *name)
1229 {
1230 struct pinctrl_state *state;
1231
1232 state = find_state(p, name);
1233 if (!state) {
1234 if (pinctrl_dummy_state) {
1235 /* create dummy state */
1236 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1237 name);
1238 state = create_state(p, name);
1239 } else
1240 state = ERR_PTR(-ENODEV);
1241 }
1242
1243 return state;
1244 }
1245 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1246
pinctrl_link_add(struct pinctrl_dev * pctldev,struct device * consumer)1247 static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1248 struct device *consumer)
1249 {
1250 if (pctldev->desc->link_consumers)
1251 device_link_add(consumer, pctldev->dev,
1252 DL_FLAG_PM_RUNTIME |
1253 DL_FLAG_AUTOREMOVE_CONSUMER);
1254 }
1255
1256 /**
1257 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1258 * @p: the pinctrl handle for the device that requests configuration
1259 * @state: the state handle to select/activate/program
1260 */
pinctrl_commit_state(struct pinctrl * p,struct pinctrl_state * state)1261 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1262 {
1263 struct pinctrl_setting *setting, *setting2;
1264 struct pinctrl_state *old_state = READ_ONCE(p->state);
1265 int ret;
1266
1267 if (old_state) {
1268 /*
1269 * For each pinmux setting in the old state, forget SW's record
1270 * of mux owner for that pingroup. Any pingroups which are
1271 * still owned by the new state will be re-acquired by the call
1272 * to pinmux_enable_setting() in the loop below.
1273 */
1274 list_for_each_entry(setting, &old_state->settings, node) {
1275 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1276 continue;
1277 pinmux_disable_setting(setting);
1278 }
1279 }
1280
1281 p->state = NULL;
1282
1283 /* Apply all the settings for the new state - pinmux first */
1284 list_for_each_entry(setting, &state->settings, node) {
1285 switch (setting->type) {
1286 case PIN_MAP_TYPE_MUX_GROUP:
1287 ret = pinmux_enable_setting(setting);
1288 break;
1289 case PIN_MAP_TYPE_CONFIGS_PIN:
1290 case PIN_MAP_TYPE_CONFIGS_GROUP:
1291 ret = 0;
1292 break;
1293 default:
1294 ret = -EINVAL;
1295 break;
1296 }
1297
1298 if (ret < 0)
1299 goto unapply_new_state;
1300
1301 /* Do not link hogs (circular dependency) */
1302 if (p != setting->pctldev->p)
1303 pinctrl_link_add(setting->pctldev, p->dev);
1304 }
1305
1306 /* Apply all the settings for the new state - pinconf after */
1307 list_for_each_entry(setting, &state->settings, node) {
1308 switch (setting->type) {
1309 case PIN_MAP_TYPE_MUX_GROUP:
1310 ret = 0;
1311 break;
1312 case PIN_MAP_TYPE_CONFIGS_PIN:
1313 case PIN_MAP_TYPE_CONFIGS_GROUP:
1314 ret = pinconf_apply_setting(setting);
1315 break;
1316 default:
1317 ret = -EINVAL;
1318 break;
1319 }
1320
1321 if (ret < 0) {
1322 goto unapply_new_state;
1323 }
1324
1325 /* Do not link hogs (circular dependency) */
1326 if (p != setting->pctldev->p)
1327 pinctrl_link_add(setting->pctldev, p->dev);
1328 }
1329
1330 p->state = state;
1331
1332 return 0;
1333
1334 unapply_new_state:
1335 dev_err(p->dev, "Error applying setting, reverse things back\n");
1336
1337 list_for_each_entry(setting2, &state->settings, node) {
1338 if (&setting2->node == &setting->node)
1339 break;
1340 /*
1341 * All we can do here is pinmux_disable_setting.
1342 * That means that some pins are muxed differently now
1343 * than they were before applying the setting (We can't
1344 * "unmux a pin"!), but it's not a big deal since the pins
1345 * are free to be muxed by another apply_setting.
1346 */
1347 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1348 pinmux_disable_setting(setting2);
1349 }
1350
1351 /* There's no infinite recursive loop here because p->state is NULL */
1352 if (old_state)
1353 pinctrl_select_state(p, old_state);
1354
1355 return ret;
1356 }
1357
1358 /**
1359 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1360 * @p: the pinctrl handle for the device that requests configuration
1361 * @state: the state handle to select/activate/program
1362 */
pinctrl_select_state(struct pinctrl * p,struct pinctrl_state * state)1363 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1364 {
1365 if (p->state == state)
1366 return 0;
1367
1368 return pinctrl_commit_state(p, state);
1369 }
1370 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1371
devm_pinctrl_release(struct device * dev,void * res)1372 static void devm_pinctrl_release(struct device *dev, void *res)
1373 {
1374 pinctrl_put(*(struct pinctrl **)res);
1375 }
1376
1377 /**
1378 * devm_pinctrl_get() - Resource managed pinctrl_get()
1379 * @dev: the device to obtain the handle for
1380 *
1381 * If there is a need to explicitly destroy the returned struct pinctrl,
1382 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1383 */
devm_pinctrl_get(struct device * dev)1384 struct pinctrl *devm_pinctrl_get(struct device *dev)
1385 {
1386 struct pinctrl **ptr, *p;
1387
1388 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1389 if (!ptr)
1390 return ERR_PTR(-ENOMEM);
1391
1392 p = pinctrl_get(dev);
1393 if (!IS_ERR(p)) {
1394 *ptr = p;
1395 devres_add(dev, ptr);
1396 } else {
1397 devres_free(ptr);
1398 }
1399
1400 return p;
1401 }
1402 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1403
devm_pinctrl_match(struct device * dev,void * res,void * data)1404 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1405 {
1406 struct pinctrl **p = res;
1407
1408 return *p == data;
1409 }
1410
1411 /**
1412 * devm_pinctrl_put() - Resource managed pinctrl_put()
1413 * @p: the pinctrl handle to release
1414 *
1415 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1416 * this function will not need to be called and the resource management
1417 * code will ensure that the resource is freed.
1418 */
devm_pinctrl_put(struct pinctrl * p)1419 void devm_pinctrl_put(struct pinctrl *p)
1420 {
1421 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1422 devm_pinctrl_match, p));
1423 }
1424 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1425
1426 /**
1427 * pinctrl_register_mappings() - register a set of pin controller mappings
1428 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1429 * keeps a reference to the passed in maps, so they should _not_ be
1430 * marked with __initdata.
1431 * @num_maps: the number of maps in the mapping table
1432 */
pinctrl_register_mappings(const struct pinctrl_map * maps,unsigned int num_maps)1433 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1434 unsigned int num_maps)
1435 {
1436 int i, ret;
1437 struct pinctrl_maps *maps_node;
1438
1439 pr_debug("add %u pinctrl maps\n", num_maps);
1440
1441 /* First sanity check the new mapping */
1442 for (i = 0; i < num_maps; i++) {
1443 if (!maps[i].dev_name) {
1444 pr_err("failed to register map %s (%d): no device given\n",
1445 maps[i].name, i);
1446 return -EINVAL;
1447 }
1448
1449 if (!maps[i].name) {
1450 pr_err("failed to register map %d: no map name given\n",
1451 i);
1452 return -EINVAL;
1453 }
1454
1455 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1456 !maps[i].ctrl_dev_name) {
1457 pr_err("failed to register map %s (%d): no pin control device given\n",
1458 maps[i].name, i);
1459 return -EINVAL;
1460 }
1461
1462 switch (maps[i].type) {
1463 case PIN_MAP_TYPE_DUMMY_STATE:
1464 break;
1465 case PIN_MAP_TYPE_MUX_GROUP:
1466 ret = pinmux_validate_map(&maps[i], i);
1467 if (ret < 0)
1468 return ret;
1469 break;
1470 case PIN_MAP_TYPE_CONFIGS_PIN:
1471 case PIN_MAP_TYPE_CONFIGS_GROUP:
1472 ret = pinconf_validate_map(&maps[i], i);
1473 if (ret < 0)
1474 return ret;
1475 break;
1476 default:
1477 pr_err("failed to register map %s (%d): invalid type given\n",
1478 maps[i].name, i);
1479 return -EINVAL;
1480 }
1481 }
1482
1483 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1484 if (!maps_node)
1485 return -ENOMEM;
1486
1487 maps_node->maps = maps;
1488 maps_node->num_maps = num_maps;
1489
1490 mutex_lock(&pinctrl_maps_mutex);
1491 list_add_tail(&maps_node->node, &pinctrl_maps);
1492 mutex_unlock(&pinctrl_maps_mutex);
1493
1494 return 0;
1495 }
1496 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1497
1498 /**
1499 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1500 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1501 * when registering the mappings.
1502 */
pinctrl_unregister_mappings(const struct pinctrl_map * map)1503 void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1504 {
1505 struct pinctrl_maps *maps_node;
1506
1507 mutex_lock(&pinctrl_maps_mutex);
1508 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1509 if (maps_node->maps == map) {
1510 list_del(&maps_node->node);
1511 kfree(maps_node);
1512 mutex_unlock(&pinctrl_maps_mutex);
1513 return;
1514 }
1515 }
1516 mutex_unlock(&pinctrl_maps_mutex);
1517 }
1518 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1519
1520 /**
1521 * pinctrl_force_sleep() - turn a given controller device into sleep state
1522 * @pctldev: pin controller device
1523 */
pinctrl_force_sleep(struct pinctrl_dev * pctldev)1524 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1525 {
1526 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1527 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1528 return 0;
1529 }
1530 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1531
1532 /**
1533 * pinctrl_force_default() - turn a given controller device into default state
1534 * @pctldev: pin controller device
1535 */
pinctrl_force_default(struct pinctrl_dev * pctldev)1536 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1537 {
1538 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1539 return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1540 return 0;
1541 }
1542 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1543
1544 /**
1545 * pinctrl_init_done() - tell pinctrl probe is done
1546 *
1547 * We'll use this time to switch the pins from "init" to "default" unless the
1548 * driver selected some other state.
1549 *
1550 * @dev: device to that's done probing
1551 */
pinctrl_init_done(struct device * dev)1552 int pinctrl_init_done(struct device *dev)
1553 {
1554 struct dev_pin_info *pins = dev->pins;
1555 int ret;
1556
1557 if (!pins)
1558 return 0;
1559
1560 if (IS_ERR(pins->init_state))
1561 return 0; /* No such state */
1562
1563 if (pins->p->state != pins->init_state)
1564 return 0; /* Not at init anyway */
1565
1566 if (IS_ERR(pins->default_state))
1567 return 0; /* No default state */
1568
1569 ret = pinctrl_select_state(pins->p, pins->default_state);
1570 if (ret)
1571 dev_err(dev, "failed to activate default pinctrl state\n");
1572
1573 return ret;
1574 }
1575
pinctrl_select_bound_state(struct device * dev,struct pinctrl_state * state)1576 static int pinctrl_select_bound_state(struct device *dev,
1577 struct pinctrl_state *state)
1578 {
1579 struct dev_pin_info *pins = dev->pins;
1580 int ret;
1581
1582 if (IS_ERR(state))
1583 return 0; /* No such state */
1584 ret = pinctrl_select_state(pins->p, state);
1585 if (ret)
1586 dev_err(dev, "failed to activate pinctrl state %s\n",
1587 state->name);
1588 return ret;
1589 }
1590
1591 /**
1592 * pinctrl_select_default_state() - select default pinctrl state
1593 * @dev: device to select default state for
1594 */
pinctrl_select_default_state(struct device * dev)1595 int pinctrl_select_default_state(struct device *dev)
1596 {
1597 if (!dev->pins)
1598 return 0;
1599
1600 return pinctrl_select_bound_state(dev, dev->pins->default_state);
1601 }
1602 EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1603
1604 #ifdef CONFIG_PM
1605
1606 /**
1607 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1608 * @dev: device to select default state for
1609 */
pinctrl_pm_select_default_state(struct device * dev)1610 int pinctrl_pm_select_default_state(struct device *dev)
1611 {
1612 return pinctrl_select_default_state(dev);
1613 }
1614 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1615
1616 /**
1617 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1618 * @dev: device to select sleep state for
1619 */
pinctrl_pm_select_sleep_state(struct device * dev)1620 int pinctrl_pm_select_sleep_state(struct device *dev)
1621 {
1622 if (!dev->pins)
1623 return 0;
1624
1625 return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1626 }
1627 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1628
1629 /**
1630 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1631 * @dev: device to select idle state for
1632 */
pinctrl_pm_select_idle_state(struct device * dev)1633 int pinctrl_pm_select_idle_state(struct device *dev)
1634 {
1635 if (!dev->pins)
1636 return 0;
1637
1638 return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1639 }
1640 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1641 #endif
1642
1643 #ifdef CONFIG_DEBUG_FS
1644
pinctrl_pins_show(struct seq_file * s,void * what)1645 static int pinctrl_pins_show(struct seq_file *s, void *what)
1646 {
1647 struct pinctrl_dev *pctldev = s->private;
1648 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1649 unsigned int i, pin;
1650 #ifdef CONFIG_GPIOLIB
1651 struct gpio_device *gdev = NULL;
1652 struct pinctrl_gpio_range *range;
1653 int gpio_num;
1654 #endif
1655
1656 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1657
1658 mutex_lock(&pctldev->mutex);
1659
1660 /* The pin number can be retrived from the pin controller descriptor */
1661 for (i = 0; i < pctldev->desc->npins; i++) {
1662 struct pin_desc *desc;
1663
1664 pin = pctldev->desc->pins[i].number;
1665 desc = pin_desc_get(pctldev, pin);
1666 /* Pin space may be sparse */
1667 if (!desc)
1668 continue;
1669
1670 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1671
1672 #ifdef CONFIG_GPIOLIB
1673 gdev = NULL;
1674 gpio_num = -1;
1675 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1676 if (range->pins != NULL) {
1677 for (int i = 0; i < range->npins; ++i) {
1678 if (range->pins[i] == pin) {
1679 gpio_num = range->base + i;
1680 break;
1681 }
1682 }
1683 } else if ((pin >= range->pin_base) &&
1684 (pin < (range->pin_base + range->npins))) {
1685 gpio_num =
1686 range->base + (pin - range->pin_base);
1687 }
1688 if (gpio_num != -1)
1689 break;
1690 }
1691 if (gpio_num >= 0)
1692 /*
1693 * FIXME: gpio_num comes from the global GPIO numberspace.
1694 * we need to get rid of the range->base eventually and
1695 * get the descriptor directly from the gpio_chip.
1696 */
1697 gdev = gpiod_to_gpio_device(gpio_to_desc(gpio_num));
1698 if (gdev)
1699 seq_printf(s, "%u:%s ",
1700 gpio_num - gpio_device_get_base(gdev),
1701 gpio_device_get_label(gdev));
1702 else
1703 seq_puts(s, "0:? ");
1704 #endif
1705
1706 /* Driver-specific info per pin */
1707 if (ops->pin_dbg_show)
1708 ops->pin_dbg_show(pctldev, s, pin);
1709
1710 seq_puts(s, "\n");
1711 }
1712
1713 mutex_unlock(&pctldev->mutex);
1714
1715 return 0;
1716 }
1717 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1718
pinctrl_groups_show(struct seq_file * s,void * what)1719 static int pinctrl_groups_show(struct seq_file *s, void *what)
1720 {
1721 struct pinctrl_dev *pctldev = s->private;
1722 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1723 unsigned int ngroups, selector = 0;
1724
1725 mutex_lock(&pctldev->mutex);
1726
1727 ngroups = ops->get_groups_count(pctldev);
1728
1729 seq_puts(s, "registered pin groups:\n");
1730 while (selector < ngroups) {
1731 const unsigned int *pins = NULL;
1732 unsigned int num_pins = 0;
1733 const char *gname = ops->get_group_name(pctldev, selector);
1734 const char *pname;
1735 int ret = 0;
1736 int i;
1737
1738 if (ops->get_group_pins)
1739 ret = ops->get_group_pins(pctldev, selector,
1740 &pins, &num_pins);
1741 if (ret)
1742 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1743 gname);
1744 else {
1745 seq_printf(s, "group: %s\n", gname);
1746 for (i = 0; i < num_pins; i++) {
1747 pname = pin_get_name(pctldev, pins[i]);
1748 if (WARN_ON(!pname)) {
1749 mutex_unlock(&pctldev->mutex);
1750 return -EINVAL;
1751 }
1752 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1753 }
1754 seq_puts(s, "\n");
1755 }
1756 selector++;
1757 }
1758
1759 mutex_unlock(&pctldev->mutex);
1760
1761 return 0;
1762 }
1763 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1764
pinctrl_gpioranges_show(struct seq_file * s,void * what)1765 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1766 {
1767 struct pinctrl_dev *pctldev = s->private;
1768 struct pinctrl_gpio_range *range;
1769
1770 seq_puts(s, "GPIO ranges handled:\n");
1771
1772 mutex_lock(&pctldev->mutex);
1773
1774 /* Loop over the ranges */
1775 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1776 if (range->pins) {
1777 int a;
1778 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1779 range->id, range->name,
1780 range->base, (range->base + range->npins - 1));
1781 for (a = 0; a < range->npins - 1; a++)
1782 seq_printf(s, "%u, ", range->pins[a]);
1783 seq_printf(s, "%u}\n", range->pins[a]);
1784 }
1785 else
1786 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1787 range->id, range->name,
1788 range->base, (range->base + range->npins - 1),
1789 range->pin_base,
1790 (range->pin_base + range->npins - 1));
1791 }
1792
1793 mutex_unlock(&pctldev->mutex);
1794
1795 return 0;
1796 }
1797 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1798
pinctrl_devices_show(struct seq_file * s,void * what)1799 static int pinctrl_devices_show(struct seq_file *s, void *what)
1800 {
1801 struct pinctrl_dev *pctldev;
1802
1803 seq_puts(s, "name [pinmux] [pinconf]\n");
1804
1805 mutex_lock(&pinctrldev_list_mutex);
1806
1807 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1808 seq_printf(s, "%s ", pctldev->desc->name);
1809 if (pctldev->desc->pmxops)
1810 seq_puts(s, "yes ");
1811 else
1812 seq_puts(s, "no ");
1813 if (pctldev->desc->confops)
1814 seq_puts(s, "yes");
1815 else
1816 seq_puts(s, "no");
1817 seq_puts(s, "\n");
1818 }
1819
1820 mutex_unlock(&pinctrldev_list_mutex);
1821
1822 return 0;
1823 }
1824 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1825
map_type(enum pinctrl_map_type type)1826 static inline const char *map_type(enum pinctrl_map_type type)
1827 {
1828 static const char * const names[] = {
1829 "INVALID",
1830 "DUMMY_STATE",
1831 "MUX_GROUP",
1832 "CONFIGS_PIN",
1833 "CONFIGS_GROUP",
1834 };
1835
1836 if (type >= ARRAY_SIZE(names))
1837 return "UNKNOWN";
1838
1839 return names[type];
1840 }
1841
pinctrl_maps_show(struct seq_file * s,void * what)1842 static int pinctrl_maps_show(struct seq_file *s, void *what)
1843 {
1844 struct pinctrl_maps *maps_node;
1845 const struct pinctrl_map *map;
1846
1847 seq_puts(s, "Pinctrl maps:\n");
1848
1849 mutex_lock(&pinctrl_maps_mutex);
1850 for_each_pin_map(maps_node, map) {
1851 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1852 map->dev_name, map->name, map_type(map->type),
1853 map->type);
1854
1855 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1856 seq_printf(s, "controlling device %s\n",
1857 map->ctrl_dev_name);
1858
1859 switch (map->type) {
1860 case PIN_MAP_TYPE_MUX_GROUP:
1861 pinmux_show_map(s, map);
1862 break;
1863 case PIN_MAP_TYPE_CONFIGS_PIN:
1864 case PIN_MAP_TYPE_CONFIGS_GROUP:
1865 pinconf_show_map(s, map);
1866 break;
1867 default:
1868 break;
1869 }
1870
1871 seq_putc(s, '\n');
1872 }
1873 mutex_unlock(&pinctrl_maps_mutex);
1874
1875 return 0;
1876 }
1877 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1878
pinctrl_show(struct seq_file * s,void * what)1879 static int pinctrl_show(struct seq_file *s, void *what)
1880 {
1881 struct pinctrl *p;
1882 struct pinctrl_state *state;
1883 struct pinctrl_setting *setting;
1884
1885 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1886
1887 mutex_lock(&pinctrl_list_mutex);
1888
1889 list_for_each_entry(p, &pinctrl_list, node) {
1890 seq_printf(s, "device: %s current state: %s\n",
1891 dev_name(p->dev),
1892 p->state ? p->state->name : "none");
1893
1894 list_for_each_entry(state, &p->states, node) {
1895 seq_printf(s, " state: %s\n", state->name);
1896
1897 list_for_each_entry(setting, &state->settings, node) {
1898 struct pinctrl_dev *pctldev = setting->pctldev;
1899
1900 seq_printf(s, " type: %s controller %s ",
1901 map_type(setting->type),
1902 pinctrl_dev_get_name(pctldev));
1903
1904 switch (setting->type) {
1905 case PIN_MAP_TYPE_MUX_GROUP:
1906 pinmux_show_setting(s, setting);
1907 break;
1908 case PIN_MAP_TYPE_CONFIGS_PIN:
1909 case PIN_MAP_TYPE_CONFIGS_GROUP:
1910 pinconf_show_setting(s, setting);
1911 break;
1912 default:
1913 break;
1914 }
1915 }
1916 }
1917 }
1918
1919 mutex_unlock(&pinctrl_list_mutex);
1920
1921 return 0;
1922 }
1923 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1924
1925 static struct dentry *debugfs_root;
1926
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1927 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1928 {
1929 struct dentry *device_root;
1930 const char *debugfs_name;
1931
1932 if (pctldev->desc->name &&
1933 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1934 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1935 "%s-%s", dev_name(pctldev->dev),
1936 pctldev->desc->name);
1937 if (!debugfs_name) {
1938 pr_warn("failed to determine debugfs dir name for %s\n",
1939 dev_name(pctldev->dev));
1940 return;
1941 }
1942 } else {
1943 debugfs_name = dev_name(pctldev->dev);
1944 }
1945
1946 device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1947 pctldev->device_root = device_root;
1948
1949 if (IS_ERR(device_root) || !device_root) {
1950 pr_warn("failed to create debugfs directory for %s\n",
1951 dev_name(pctldev->dev));
1952 return;
1953 }
1954 debugfs_create_file("pins", 0444,
1955 device_root, pctldev, &pinctrl_pins_fops);
1956 debugfs_create_file("pingroups", 0444,
1957 device_root, pctldev, &pinctrl_groups_fops);
1958 debugfs_create_file("gpio-ranges", 0444,
1959 device_root, pctldev, &pinctrl_gpioranges_fops);
1960 if (pctldev->desc->pmxops)
1961 pinmux_init_device_debugfs(device_root, pctldev);
1962 if (pctldev->desc->confops)
1963 pinconf_init_device_debugfs(device_root, pctldev);
1964 }
1965
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1966 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1967 {
1968 debugfs_remove_recursive(pctldev->device_root);
1969 }
1970
pinctrl_init_debugfs(void)1971 static void pinctrl_init_debugfs(void)
1972 {
1973 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1974 if (IS_ERR(debugfs_root)) {
1975 pr_warn("failed to create debugfs directory\n");
1976 debugfs_root = NULL;
1977 return;
1978 }
1979
1980 debugfs_create_file("pinctrl-devices", 0444,
1981 debugfs_root, NULL, &pinctrl_devices_fops);
1982 debugfs_create_file("pinctrl-maps", 0444,
1983 debugfs_root, NULL, &pinctrl_maps_fops);
1984 debugfs_create_file("pinctrl-handles", 0444,
1985 debugfs_root, NULL, &pinctrl_fops);
1986 }
1987
1988 #else /* CONFIG_DEBUG_FS */
1989
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1990 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1991 {
1992 }
1993
pinctrl_init_debugfs(void)1994 static void pinctrl_init_debugfs(void)
1995 {
1996 }
1997
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1998 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1999 {
2000 }
2001
2002 #endif
2003
pinctrl_check_ops(struct pinctrl_dev * pctldev)2004 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
2005 {
2006 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
2007
2008 if (!ops ||
2009 !ops->get_groups_count ||
2010 !ops->get_group_name)
2011 return -EINVAL;
2012
2013 return 0;
2014 }
2015
2016 /**
2017 * pinctrl_init_controller() - init a pin controller device
2018 * @pctldesc: descriptor for this pin controller
2019 * @dev: parent device for this pin controller
2020 * @driver_data: private pin controller data for this pin controller
2021 */
2022 static struct pinctrl_dev *
pinctrl_init_controller(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)2023 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
2024 void *driver_data)
2025 {
2026 struct pinctrl_dev *pctldev;
2027 int ret;
2028
2029 if (!pctldesc)
2030 return ERR_PTR(-EINVAL);
2031 if (!pctldesc->name)
2032 return ERR_PTR(-EINVAL);
2033
2034 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
2035 if (!pctldev)
2036 return ERR_PTR(-ENOMEM);
2037
2038 /* Initialize pin control device struct */
2039 pctldev->owner = pctldesc->owner;
2040 pctldev->desc = pctldesc;
2041 pctldev->driver_data = driver_data;
2042 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2043 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2044 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2045 #endif
2046 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2047 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2048 #endif
2049 INIT_LIST_HEAD(&pctldev->gpio_ranges);
2050 INIT_LIST_HEAD(&pctldev->node);
2051 pctldev->dev = dev;
2052 mutex_init(&pctldev->mutex);
2053
2054 /* check core ops for sanity */
2055 ret = pinctrl_check_ops(pctldev);
2056 if (ret) {
2057 dev_err(dev, "pinctrl ops lacks necessary functions\n");
2058 goto out_err;
2059 }
2060
2061 /* If we're implementing pinmuxing, check the ops for sanity */
2062 if (pctldesc->pmxops) {
2063 ret = pinmux_check_ops(pctldev);
2064 if (ret)
2065 goto out_err;
2066 }
2067
2068 /* If we're implementing pinconfig, check the ops for sanity */
2069 if (pctldesc->confops) {
2070 ret = pinconf_check_ops(pctldev);
2071 if (ret)
2072 goto out_err;
2073 }
2074
2075 /* Register all the pins */
2076 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
2077 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2078 if (ret) {
2079 dev_err(dev, "error during pin registration\n");
2080 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2081 pctldesc->npins);
2082 goto out_err;
2083 }
2084
2085 return pctldev;
2086
2087 out_err:
2088 mutex_destroy(&pctldev->mutex);
2089 kfree(pctldev);
2090 return ERR_PTR(ret);
2091 }
2092
pinctrl_uninit_controller(struct pinctrl_dev * pctldev,struct pinctrl_desc * pctldesc)2093 static void pinctrl_uninit_controller(struct pinctrl_dev *pctldev, struct pinctrl_desc *pctldesc)
2094 {
2095 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2096 pctldesc->npins);
2097 mutex_destroy(&pctldev->mutex);
2098 kfree(pctldev);
2099 }
2100
pinctrl_claim_hogs(struct pinctrl_dev * pctldev)2101 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2102 {
2103 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2104 if (PTR_ERR(pctldev->p) == -ENODEV) {
2105 dev_dbg(pctldev->dev, "no hogs found\n");
2106
2107 return 0;
2108 }
2109
2110 if (IS_ERR(pctldev->p)) {
2111 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2112 PTR_ERR(pctldev->p));
2113
2114 return PTR_ERR(pctldev->p);
2115 }
2116
2117 pctldev->hog_default =
2118 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2119 if (IS_ERR(pctldev->hog_default)) {
2120 dev_dbg(pctldev->dev,
2121 "failed to lookup the default state\n");
2122 } else {
2123 if (pinctrl_select_state(pctldev->p,
2124 pctldev->hog_default))
2125 dev_err(pctldev->dev,
2126 "failed to select default state\n");
2127 }
2128
2129 pctldev->hog_sleep =
2130 pinctrl_lookup_state(pctldev->p,
2131 PINCTRL_STATE_SLEEP);
2132 if (IS_ERR(pctldev->hog_sleep))
2133 dev_dbg(pctldev->dev,
2134 "failed to lookup the sleep state\n");
2135
2136 return 0;
2137 }
2138
pinctrl_enable(struct pinctrl_dev * pctldev)2139 int pinctrl_enable(struct pinctrl_dev *pctldev)
2140 {
2141 int error;
2142
2143 error = pinctrl_claim_hogs(pctldev);
2144 if (error) {
2145 dev_err(pctldev->dev, "could not claim hogs: %i\n", error);
2146 return error;
2147 }
2148
2149 mutex_lock(&pinctrldev_list_mutex);
2150 list_add_tail(&pctldev->node, &pinctrldev_list);
2151 mutex_unlock(&pinctrldev_list_mutex);
2152
2153 pinctrl_init_device_debugfs(pctldev);
2154
2155 return 0;
2156 }
2157 EXPORT_SYMBOL_GPL(pinctrl_enable);
2158
2159 /**
2160 * pinctrl_register() - register a pin controller device
2161 * @pctldesc: descriptor for this pin controller
2162 * @dev: parent device for this pin controller
2163 * @driver_data: private pin controller data for this pin controller
2164 *
2165 * Note that pinctrl_register() is known to have problems as the pin
2166 * controller driver functions are called before the driver has a
2167 * struct pinctrl_dev handle. To avoid issues later on, please use the
2168 * new pinctrl_register_and_init() below instead.
2169 */
pinctrl_register(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)2170 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2171 struct device *dev, void *driver_data)
2172 {
2173 struct pinctrl_dev *pctldev;
2174 int error;
2175
2176 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2177 if (IS_ERR(pctldev))
2178 return pctldev;
2179
2180 error = pinctrl_enable(pctldev);
2181 if (error) {
2182 pinctrl_uninit_controller(pctldev, pctldesc);
2183 return ERR_PTR(error);
2184 }
2185
2186 return pctldev;
2187 }
2188 EXPORT_SYMBOL_GPL(pinctrl_register);
2189
2190 /**
2191 * pinctrl_register_and_init() - register and init pin controller device
2192 * @pctldesc: descriptor for this pin controller
2193 * @dev: parent device for this pin controller
2194 * @driver_data: private pin controller data for this pin controller
2195 * @pctldev: pin controller device
2196 *
2197 * Note that pinctrl_enable() still needs to be manually called after
2198 * this once the driver is ready.
2199 */
pinctrl_register_and_init(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data,struct pinctrl_dev ** pctldev)2200 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2201 struct device *dev, void *driver_data,
2202 struct pinctrl_dev **pctldev)
2203 {
2204 struct pinctrl_dev *p;
2205
2206 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2207 if (IS_ERR(p))
2208 return PTR_ERR(p);
2209
2210 /*
2211 * We have pinctrl_start() call functions in the pin controller
2212 * driver with create_pinctrl() for at least dt_node_to_map(). So
2213 * let's make sure pctldev is properly initialized for the
2214 * pin controller driver before we do anything.
2215 */
2216 *pctldev = p;
2217
2218 return 0;
2219 }
2220 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2221
2222 /**
2223 * pinctrl_unregister() - unregister pinmux
2224 * @pctldev: pin controller to unregister
2225 *
2226 * Called by pinmux drivers to unregister a pinmux.
2227 */
pinctrl_unregister(struct pinctrl_dev * pctldev)2228 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2229 {
2230 struct pinctrl_gpio_range *range, *n;
2231
2232 if (!pctldev)
2233 return;
2234
2235 mutex_lock(&pctldev->mutex);
2236 pinctrl_remove_device_debugfs(pctldev);
2237 mutex_unlock(&pctldev->mutex);
2238
2239 if (!IS_ERR_OR_NULL(pctldev->p))
2240 pinctrl_put(pctldev->p);
2241
2242 mutex_lock(&pinctrldev_list_mutex);
2243 mutex_lock(&pctldev->mutex);
2244 /* TODO: check that no pinmuxes are still active? */
2245 list_del(&pctldev->node);
2246 pinmux_generic_free_functions(pctldev);
2247 pinctrl_generic_free_groups(pctldev);
2248 /* Destroy descriptor tree */
2249 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2250 pctldev->desc->npins);
2251 /* remove gpio ranges map */
2252 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2253 list_del(&range->node);
2254
2255 mutex_unlock(&pctldev->mutex);
2256 mutex_destroy(&pctldev->mutex);
2257 kfree(pctldev);
2258 mutex_unlock(&pinctrldev_list_mutex);
2259 }
2260 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2261
devm_pinctrl_dev_release(struct device * dev,void * res)2262 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2263 {
2264 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2265
2266 pinctrl_unregister(pctldev);
2267 }
2268
devm_pinctrl_dev_match(struct device * dev,void * res,void * data)2269 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2270 {
2271 struct pctldev **r = res;
2272
2273 if (WARN_ON(!r || !*r))
2274 return 0;
2275
2276 return *r == data;
2277 }
2278
2279 /**
2280 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2281 * @dev: parent device for this pin controller
2282 * @pctldesc: descriptor for this pin controller
2283 * @driver_data: private pin controller data for this pin controller
2284 *
2285 * Returns an error pointer if pincontrol register failed. Otherwise
2286 * it returns valid pinctrl handle.
2287 *
2288 * The pinctrl device will be automatically released when the device is unbound.
2289 */
devm_pinctrl_register(struct device * dev,struct pinctrl_desc * pctldesc,void * driver_data)2290 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2291 struct pinctrl_desc *pctldesc,
2292 void *driver_data)
2293 {
2294 struct pinctrl_dev **ptr, *pctldev;
2295
2296 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2297 if (!ptr)
2298 return ERR_PTR(-ENOMEM);
2299
2300 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2301 if (IS_ERR(pctldev)) {
2302 devres_free(ptr);
2303 return pctldev;
2304 }
2305
2306 *ptr = pctldev;
2307 devres_add(dev, ptr);
2308
2309 return pctldev;
2310 }
2311 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2312
2313 /**
2314 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2315 * @dev: parent device for this pin controller
2316 * @pctldesc: descriptor for this pin controller
2317 * @driver_data: private pin controller data for this pin controller
2318 * @pctldev: pin controller device
2319 *
2320 * Returns zero on success or an error number on failure.
2321 *
2322 * The pinctrl device will be automatically released when the device is unbound.
2323 */
devm_pinctrl_register_and_init(struct device * dev,struct pinctrl_desc * pctldesc,void * driver_data,struct pinctrl_dev ** pctldev)2324 int devm_pinctrl_register_and_init(struct device *dev,
2325 struct pinctrl_desc *pctldesc,
2326 void *driver_data,
2327 struct pinctrl_dev **pctldev)
2328 {
2329 struct pinctrl_dev **ptr;
2330 int error;
2331
2332 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2333 if (!ptr)
2334 return -ENOMEM;
2335
2336 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2337 if (error) {
2338 devres_free(ptr);
2339 return error;
2340 }
2341
2342 *ptr = *pctldev;
2343 devres_add(dev, ptr);
2344
2345 return 0;
2346 }
2347 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2348
2349 /**
2350 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2351 * @dev: device for which resource was allocated
2352 * @pctldev: the pinctrl device to unregister.
2353 */
devm_pinctrl_unregister(struct device * dev,struct pinctrl_dev * pctldev)2354 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2355 {
2356 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2357 devm_pinctrl_dev_match, pctldev));
2358 }
2359 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2360
pinctrl_init(void)2361 static int __init pinctrl_init(void)
2362 {
2363 pr_info("initialized pinctrl subsystem\n");
2364 pinctrl_init_debugfs();
2365 return 0;
2366 }
2367
2368 /* init early since many drivers really need to initialized pinmux early */
2369 core_initcall(pinctrl_init);
2370