xref: /freebsd/sys/amd64/amd64/pmap.c (revision 46bb2dca)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2003 Peter Wemm
11  * All rights reserved.
12  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
13  * All rights reserved.
14  *
15  * This code is derived from software contributed to Berkeley by
16  * the Systems Programming Group of the University of Utah Computer
17  * Science Department and William Jolitz of UUNET Technologies Inc.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 3. All advertising materials mentioning features or use of this software
28  *    must display the following acknowledgement:
29  *	This product includes software developed by the University of
30  *	California, Berkeley and its contributors.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  */
47 /*-
48  * Copyright (c) 2003 Networks Associates Technology, Inc.
49  * Copyright (c) 2014-2020 The FreeBSD Foundation
50  * All rights reserved.
51  *
52  * This software was developed for the FreeBSD Project by Jake Burkholder,
53  * Safeport Network Services, and Network Associates Laboratories, the
54  * Security Research Division of Network Associates, Inc. under
55  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
56  * CHATS research program.
57  *
58  * Portions of this software were developed by
59  * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
60  * the FreeBSD Foundation.
61  *
62  * Redistribution and use in source and binary forms, with or without
63  * modification, are permitted provided that the following conditions
64  * are met:
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in the
69  *    documentation and/or other materials provided with the distribution.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  */
83 
84 #define	AMD64_NPT_AWARE
85 
86 #include <sys/cdefs.h>
87 /*
88  *	Manages physical address maps.
89  *
90  *	Since the information managed by this module is
91  *	also stored by the logical address mapping module,
92  *	this module may throw away valid virtual-to-physical
93  *	mappings at almost any time.  However, invalidations
94  *	of virtual-to-physical mappings must be done as
95  *	requested.
96  *
97  *	In order to cope with hardware architectures which
98  *	make virtual-to-physical map invalidates expensive,
99  *	this module may delay invalidate or reduced protection
100  *	operations until such time as they are actually
101  *	necessary.  This module is given full information as
102  *	to which processors are currently using which maps,
103  *	and to when physical maps must be made correct.
104  */
105 
106 #include "opt_ddb.h"
107 #include "opt_pmap.h"
108 #include "opt_vm.h"
109 
110 #include <sys/param.h>
111 #include <sys/asan.h>
112 #include <sys/bitstring.h>
113 #include <sys/bus.h>
114 #include <sys/systm.h>
115 #include <sys/counter.h>
116 #include <sys/kernel.h>
117 #include <sys/ktr.h>
118 #include <sys/lock.h>
119 #include <sys/malloc.h>
120 #include <sys/mman.h>
121 #include <sys/msan.h>
122 #include <sys/mutex.h>
123 #include <sys/proc.h>
124 #include <sys/rangeset.h>
125 #include <sys/rwlock.h>
126 #include <sys/sbuf.h>
127 #include <sys/smr.h>
128 #include <sys/sx.h>
129 #include <sys/turnstile.h>
130 #include <sys/vmem.h>
131 #include <sys/vmmeter.h>
132 #include <sys/sched.h>
133 #include <sys/sysctl.h>
134 #include <sys/smp.h>
135 #ifdef DDB
136 #include <sys/kdb.h>
137 #include <ddb/ddb.h>
138 #endif
139 
140 #include <vm/vm.h>
141 #include <vm/vm_param.h>
142 #include <vm/vm_kern.h>
143 #include <vm/vm_page.h>
144 #include <vm/vm_map.h>
145 #include <vm/vm_object.h>
146 #include <vm/vm_extern.h>
147 #include <vm/vm_pageout.h>
148 #include <vm/vm_pager.h>
149 #include <vm/vm_phys.h>
150 #include <vm/vm_radix.h>
151 #include <vm/vm_reserv.h>
152 #include <vm/vm_dumpset.h>
153 #include <vm/uma.h>
154 
155 #include <machine/asan.h>
156 #include <machine/intr_machdep.h>
157 #include <x86/apicvar.h>
158 #include <x86/ifunc.h>
159 #include <machine/cpu.h>
160 #include <machine/cputypes.h>
161 #include <machine/md_var.h>
162 #include <machine/msan.h>
163 #include <machine/pcb.h>
164 #include <machine/specialreg.h>
165 #ifdef SMP
166 #include <machine/smp.h>
167 #endif
168 #include <machine/sysarch.h>
169 #include <machine/tss.h>
170 
171 #ifdef NUMA
172 #define	PMAP_MEMDOM	MAXMEMDOM
173 #else
174 #define	PMAP_MEMDOM	1
175 #endif
176 
177 static __inline bool
pmap_type_guest(pmap_t pmap)178 pmap_type_guest(pmap_t pmap)
179 {
180 
181 	return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
182 }
183 
184 static __inline bool
pmap_emulate_ad_bits(pmap_t pmap)185 pmap_emulate_ad_bits(pmap_t pmap)
186 {
187 
188 	return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
189 }
190 
191 static __inline pt_entry_t
pmap_valid_bit(pmap_t pmap)192 pmap_valid_bit(pmap_t pmap)
193 {
194 	pt_entry_t mask;
195 
196 	switch (pmap->pm_type) {
197 	case PT_X86:
198 	case PT_RVI:
199 		mask = X86_PG_V;
200 		break;
201 	case PT_EPT:
202 		if (pmap_emulate_ad_bits(pmap))
203 			mask = EPT_PG_EMUL_V;
204 		else
205 			mask = EPT_PG_READ;
206 		break;
207 	default:
208 		panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
209 	}
210 
211 	return (mask);
212 }
213 
214 static __inline pt_entry_t
pmap_rw_bit(pmap_t pmap)215 pmap_rw_bit(pmap_t pmap)
216 {
217 	pt_entry_t mask;
218 
219 	switch (pmap->pm_type) {
220 	case PT_X86:
221 	case PT_RVI:
222 		mask = X86_PG_RW;
223 		break;
224 	case PT_EPT:
225 		if (pmap_emulate_ad_bits(pmap))
226 			mask = EPT_PG_EMUL_RW;
227 		else
228 			mask = EPT_PG_WRITE;
229 		break;
230 	default:
231 		panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
232 	}
233 
234 	return (mask);
235 }
236 
237 static pt_entry_t pg_g;
238 
239 static __inline pt_entry_t
pmap_global_bit(pmap_t pmap)240 pmap_global_bit(pmap_t pmap)
241 {
242 	pt_entry_t mask;
243 
244 	switch (pmap->pm_type) {
245 	case PT_X86:
246 		mask = pg_g;
247 		break;
248 	case PT_RVI:
249 	case PT_EPT:
250 		mask = 0;
251 		break;
252 	default:
253 		panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
254 	}
255 
256 	return (mask);
257 }
258 
259 static __inline pt_entry_t
pmap_accessed_bit(pmap_t pmap)260 pmap_accessed_bit(pmap_t pmap)
261 {
262 	pt_entry_t mask;
263 
264 	switch (pmap->pm_type) {
265 	case PT_X86:
266 	case PT_RVI:
267 		mask = X86_PG_A;
268 		break;
269 	case PT_EPT:
270 		if (pmap_emulate_ad_bits(pmap))
271 			mask = EPT_PG_READ;
272 		else
273 			mask = EPT_PG_A;
274 		break;
275 	default:
276 		panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
277 	}
278 
279 	return (mask);
280 }
281 
282 static __inline pt_entry_t
pmap_modified_bit(pmap_t pmap)283 pmap_modified_bit(pmap_t pmap)
284 {
285 	pt_entry_t mask;
286 
287 	switch (pmap->pm_type) {
288 	case PT_X86:
289 	case PT_RVI:
290 		mask = X86_PG_M;
291 		break;
292 	case PT_EPT:
293 		if (pmap_emulate_ad_bits(pmap))
294 			mask = EPT_PG_WRITE;
295 		else
296 			mask = EPT_PG_M;
297 		break;
298 	default:
299 		panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
300 	}
301 
302 	return (mask);
303 }
304 
305 static __inline pt_entry_t
pmap_pku_mask_bit(pmap_t pmap)306 pmap_pku_mask_bit(pmap_t pmap)
307 {
308 
309 	return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
310 }
311 
312 static __inline bool
safe_to_clear_referenced(pmap_t pmap,pt_entry_t pte)313 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
314 {
315 
316 	if (!pmap_emulate_ad_bits(pmap))
317 		return (true);
318 
319 	KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
320 
321 	/*
322 	 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
323 	 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
324 	 * if the EPT_PG_WRITE bit is set.
325 	 */
326 	if ((pte & EPT_PG_WRITE) != 0)
327 		return (false);
328 
329 	/*
330 	 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
331 	 */
332 	if ((pte & EPT_PG_EXECUTE) == 0 ||
333 	    ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
334 		return (true);
335 	else
336 		return (false);
337 }
338 
339 #ifdef PV_STATS
340 #define PV_STAT(x)	do { x ; } while (0)
341 #else
342 #define PV_STAT(x)	do { } while (0)
343 #endif
344 
345 #undef pa_index
346 #ifdef NUMA
347 #define	pa_index(pa)	({					\
348 	KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end,	\
349 	    ("address %lx beyond the last segment", (pa)));	\
350 	(pa) >> PDRSHIFT;					\
351 })
352 #define	pa_to_pmdp(pa)	(&pv_table[pa_index(pa)])
353 #define	pa_to_pvh(pa)	(&(pa_to_pmdp(pa)->pv_page))
354 #define	PHYS_TO_PV_LIST_LOCK(pa)	({			\
355 	struct rwlock *_lock;					\
356 	if (__predict_false((pa) > pmap_last_pa))		\
357 		_lock = &pv_dummy_large.pv_lock;		\
358 	else							\
359 		_lock = &(pa_to_pmdp(pa)->pv_lock);		\
360 	_lock;							\
361 })
362 #else
363 #define	pa_index(pa)	((pa) >> PDRSHIFT)
364 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
365 
366 #define	NPV_LIST_LOCKS	MAXCPU
367 
368 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
369 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
370 #endif
371 
372 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
373 	struct rwlock **_lockp = (lockp);		\
374 	struct rwlock *_new_lock;			\
375 							\
376 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
377 	if (_new_lock != *_lockp) {			\
378 		if (*_lockp != NULL)			\
379 			rw_wunlock(*_lockp);		\
380 		*_lockp = _new_lock;			\
381 		rw_wlock(*_lockp);			\
382 	}						\
383 } while (0)
384 
385 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
386 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
387 
388 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
389 	struct rwlock **_lockp = (lockp);		\
390 							\
391 	if (*_lockp != NULL) {				\
392 		rw_wunlock(*_lockp);			\
393 		*_lockp = NULL;				\
394 	}						\
395 } while (0)
396 
397 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
398 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
399 
400 /*
401  * Statically allocate kernel pmap memory.  However, memory for
402  * pm_pcids is obtained after the dynamic allocator is operational.
403  * Initialize it with a non-canonical pointer to catch early accesses
404  * regardless of the active mapping.
405  */
406 struct pmap kernel_pmap_store = {
407 	.pm_pcidp = (void *)0xdeadbeefdeadbeef,
408 };
409 
410 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
411 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
412 
413 int nkpt;
414 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
415     "Number of kernel page table pages allocated on bootup");
416 
417 static int ndmpdp;
418 vm_paddr_t dmaplimit;
419 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
420 pt_entry_t pg_nx;
421 
422 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
423     "VM/pmap parameters");
424 
425 static int __read_frequently pg_ps_enabled = 1;
426 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
427     &pg_ps_enabled, 0, "Are large page mappings enabled?");
428 
429 int __read_frequently la57 = 0;
430 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
431     &la57, 0,
432     "5-level paging for host is enabled");
433 
434 static bool
pmap_is_la57(pmap_t pmap)435 pmap_is_la57(pmap_t pmap)
436 {
437 	if (pmap->pm_type == PT_X86)
438 		return (la57);
439 	return (false);		/* XXXKIB handle EPT */
440 }
441 
442 #define	PAT_INDEX_SIZE	8
443 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
444 
445 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
446 static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
447 static u_int64_t	KPDPphys;	/* phys addr of kernel level 3 */
448 u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
449 u_int64_t		KPML5phys;	/* phys addr of kernel level 5,
450 					   if supported */
451 
452 #ifdef KASAN
453 static uint64_t		KASANPDPphys;
454 #endif
455 #ifdef KMSAN
456 static uint64_t		KMSANSHADPDPphys;
457 static uint64_t		KMSANORIGPDPphys;
458 
459 /*
460  * To support systems with large amounts of memory, it is necessary to extend
461  * the maximum size of the direct map.  This could eat into the space reserved
462  * for the shadow map.
463  */
464 _Static_assert(DMPML4I + NDMPML4E <= KMSANSHADPML4I, "direct map overflow");
465 #endif
466 
467 static pml4_entry_t	*kernel_pml4;
468 static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
469 static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
470 static int		ndmpdpphys;	/* number of DMPDPphys pages */
471 
472 vm_paddr_t		kernphys;	/* phys addr of start of bootstrap data */
473 vm_paddr_t		KERNend;	/* and the end */
474 
475 /*
476  * pmap_mapdev support pre initialization (i.e. console)
477  */
478 #define	PMAP_PREINIT_MAPPING_COUNT	8
479 static struct pmap_preinit_mapping {
480 	vm_paddr_t	pa;
481 	vm_offset_t	va;
482 	vm_size_t	sz;
483 	int		mode;
484 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
485 static int pmap_initialized;
486 
487 /*
488  * Data for the pv entry allocation mechanism.
489  * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
490  */
491 #ifdef NUMA
492 static __inline int
pc_to_domain(struct pv_chunk * pc)493 pc_to_domain(struct pv_chunk *pc)
494 {
495 
496 	return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
497 }
498 #else
499 static __inline int
pc_to_domain(struct pv_chunk * pc __unused)500 pc_to_domain(struct pv_chunk *pc __unused)
501 {
502 
503 	return (0);
504 }
505 #endif
506 
507 struct pv_chunks_list {
508 	struct mtx pvc_lock;
509 	TAILQ_HEAD(pch, pv_chunk) pvc_list;
510 	int active_reclaims;
511 } __aligned(CACHE_LINE_SIZE);
512 
513 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
514 
515 #ifdef	NUMA
516 struct pmap_large_md_page {
517 	struct rwlock   pv_lock;
518 	struct md_page  pv_page;
519 	u_long pv_invl_gen;
520 };
521 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
522 #define pv_dummy pv_dummy_large.pv_page
523 __read_mostly static struct pmap_large_md_page *pv_table;
524 __read_mostly vm_paddr_t pmap_last_pa;
525 #else
526 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
527 static u_long pv_invl_gen[NPV_LIST_LOCKS];
528 static struct md_page *pv_table;
529 static struct md_page pv_dummy;
530 #endif
531 
532 /*
533  * All those kernel PT submaps that BSD is so fond of
534  */
535 pt_entry_t *CMAP1 = NULL;
536 caddr_t CADDR1 = 0;
537 static vm_offset_t qframe = 0;
538 static struct mtx qframe_mtx;
539 
540 static int pmap_flags = PMAP_PDE_SUPERPAGE;	/* flags for x86 pmaps */
541 
542 static vmem_t *large_vmem;
543 static u_int lm_ents;
544 #define	PMAP_ADDRESS_IN_LARGEMAP(va)	((va) >= LARGEMAP_MIN_ADDRESS && \
545 	(va) < LARGEMAP_MIN_ADDRESS + NBPML4 * (u_long)lm_ents)
546 
547 int pmap_pcid_enabled = 1;
548 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
549     &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
550 int invpcid_works = 0;
551 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
552     "Is the invpcid instruction available ?");
553 int pmap_pcid_invlpg_workaround = 0;
554 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_invlpg_workaround,
555     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
556     &pmap_pcid_invlpg_workaround, 0,
557     "Enable small core PCID/INVLPG workaround");
558 int pmap_pcid_invlpg_workaround_uena = 1;
559 
560 int __read_frequently pti = 0;
561 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
562     &pti, 0,
563     "Page Table Isolation enabled");
564 static vm_object_t pti_obj;
565 static pml4_entry_t *pti_pml4;
566 static vm_pindex_t pti_pg_idx;
567 static bool pti_finalized;
568 
569 struct pmap_pkru_range {
570 	struct rs_el	pkru_rs_el;
571 	u_int		pkru_keyidx;
572 	int		pkru_flags;
573 };
574 
575 static uma_zone_t pmap_pkru_ranges_zone;
576 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
577 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
578 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
579 static void *pkru_dup_range(void *ctx, void *data);
580 static void pkru_free_range(void *ctx, void *node);
581 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
582 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
583 static void pmap_pkru_deassign_all(pmap_t pmap);
584 
585 static COUNTER_U64_DEFINE_EARLY(pcid_save_cnt);
586 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLFLAG_RD,
587     &pcid_save_cnt, "Count of saved TLB context on switch");
588 
589 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
590     LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
591 static struct mtx invl_gen_mtx;
592 /* Fake lock object to satisfy turnstiles interface. */
593 static struct lock_object invl_gen_ts = {
594 	.lo_name = "invlts",
595 };
596 static struct pmap_invl_gen pmap_invl_gen_head = {
597 	.gen = 1,
598 	.next = NULL,
599 };
600 static u_long pmap_invl_gen = 1;
601 static int pmap_invl_waiters;
602 static struct callout pmap_invl_callout;
603 static bool pmap_invl_callout_inited;
604 
605 #define	PMAP_ASSERT_NOT_IN_DI() \
606     KASSERT(pmap_not_in_di(), ("DI already started"))
607 
608 static bool
pmap_di_locked(void)609 pmap_di_locked(void)
610 {
611 	int tun;
612 
613 	if ((cpu_feature2 & CPUID2_CX16) == 0)
614 		return (true);
615 	tun = 0;
616 	TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
617 	return (tun != 0);
618 }
619 
620 static int
sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)621 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
622 {
623 	int locked;
624 
625 	locked = pmap_di_locked();
626 	return (sysctl_handle_int(oidp, &locked, 0, req));
627 }
628 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
629     CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
630     "Locked delayed invalidation");
631 
632 static bool pmap_not_in_di_l(void);
633 static bool pmap_not_in_di_u(void);
634 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
635 {
636 
637 	return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
638 }
639 
640 static bool
pmap_not_in_di_l(void)641 pmap_not_in_di_l(void)
642 {
643 	struct pmap_invl_gen *invl_gen;
644 
645 	invl_gen = &curthread->td_md.md_invl_gen;
646 	return (invl_gen->gen == 0);
647 }
648 
649 static void
pmap_thread_init_invl_gen_l(struct thread * td)650 pmap_thread_init_invl_gen_l(struct thread *td)
651 {
652 	struct pmap_invl_gen *invl_gen;
653 
654 	invl_gen = &td->td_md.md_invl_gen;
655 	invl_gen->gen = 0;
656 }
657 
658 static void
pmap_delayed_invl_wait_block(u_long * m_gen,u_long * invl_gen)659 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
660 {
661 	struct turnstile *ts;
662 
663 	ts = turnstile_trywait(&invl_gen_ts);
664 	if (*m_gen > atomic_load_long(invl_gen))
665 		turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
666 	else
667 		turnstile_cancel(ts);
668 }
669 
670 static void
pmap_delayed_invl_finish_unblock(u_long new_gen)671 pmap_delayed_invl_finish_unblock(u_long new_gen)
672 {
673 	struct turnstile *ts;
674 
675 	turnstile_chain_lock(&invl_gen_ts);
676 	ts = turnstile_lookup(&invl_gen_ts);
677 	if (new_gen != 0)
678 		pmap_invl_gen = new_gen;
679 	if (ts != NULL) {
680 		turnstile_broadcast(ts, TS_SHARED_QUEUE);
681 		turnstile_unpend(ts);
682 	}
683 	turnstile_chain_unlock(&invl_gen_ts);
684 }
685 
686 /*
687  * Start a new Delayed Invalidation (DI) block of code, executed by
688  * the current thread.  Within a DI block, the current thread may
689  * destroy both the page table and PV list entries for a mapping and
690  * then release the corresponding PV list lock before ensuring that
691  * the mapping is flushed from the TLBs of any processors with the
692  * pmap active.
693  */
694 static void
pmap_delayed_invl_start_l(void)695 pmap_delayed_invl_start_l(void)
696 {
697 	struct pmap_invl_gen *invl_gen;
698 	u_long currgen;
699 
700 	invl_gen = &curthread->td_md.md_invl_gen;
701 	PMAP_ASSERT_NOT_IN_DI();
702 	mtx_lock(&invl_gen_mtx);
703 	if (LIST_EMPTY(&pmap_invl_gen_tracker))
704 		currgen = pmap_invl_gen;
705 	else
706 		currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
707 	invl_gen->gen = currgen + 1;
708 	LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
709 	mtx_unlock(&invl_gen_mtx);
710 }
711 
712 /*
713  * Finish the DI block, previously started by the current thread.  All
714  * required TLB flushes for the pages marked by
715  * pmap_delayed_invl_page() must be finished before this function is
716  * called.
717  *
718  * This function works by bumping the global DI generation number to
719  * the generation number of the current thread's DI, unless there is a
720  * pending DI that started earlier.  In the latter case, bumping the
721  * global DI generation number would incorrectly signal that the
722  * earlier DI had finished.  Instead, this function bumps the earlier
723  * DI's generation number to match the generation number of the
724  * current thread's DI.
725  */
726 static void
pmap_delayed_invl_finish_l(void)727 pmap_delayed_invl_finish_l(void)
728 {
729 	struct pmap_invl_gen *invl_gen, *next;
730 
731 	invl_gen = &curthread->td_md.md_invl_gen;
732 	KASSERT(invl_gen->gen != 0, ("missed invl_start"));
733 	mtx_lock(&invl_gen_mtx);
734 	next = LIST_NEXT(invl_gen, link);
735 	if (next == NULL)
736 		pmap_delayed_invl_finish_unblock(invl_gen->gen);
737 	else
738 		next->gen = invl_gen->gen;
739 	LIST_REMOVE(invl_gen, link);
740 	mtx_unlock(&invl_gen_mtx);
741 	invl_gen->gen = 0;
742 }
743 
744 static bool
pmap_not_in_di_u(void)745 pmap_not_in_di_u(void)
746 {
747 	struct pmap_invl_gen *invl_gen;
748 
749 	invl_gen = &curthread->td_md.md_invl_gen;
750 	return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
751 }
752 
753 static void
pmap_thread_init_invl_gen_u(struct thread * td)754 pmap_thread_init_invl_gen_u(struct thread *td)
755 {
756 	struct pmap_invl_gen *invl_gen;
757 
758 	invl_gen = &td->td_md.md_invl_gen;
759 	invl_gen->gen = 0;
760 	invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
761 }
762 
763 static bool
pmap_di_load_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * out)764 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
765 {
766 	uint64_t new_high, new_low, old_high, old_low;
767 	char res;
768 
769 	old_low = new_low = 0;
770 	old_high = new_high = (uintptr_t)0;
771 
772 	__asm volatile("lock;cmpxchg16b\t%1"
773 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
774 	    : "b"(new_low), "c" (new_high)
775 	    : "memory", "cc");
776 	if (res == 0) {
777 		if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
778 			return (false);
779 		out->gen = old_low;
780 		out->next = (void *)old_high;
781 	} else {
782 		out->gen = new_low;
783 		out->next = (void *)new_high;
784 	}
785 	return (true);
786 }
787 
788 static bool
pmap_di_store_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * old_val,struct pmap_invl_gen * new_val)789 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
790     struct pmap_invl_gen *new_val)
791 {
792 	uint64_t new_high, new_low, old_high, old_low;
793 	char res;
794 
795 	new_low = new_val->gen;
796 	new_high = (uintptr_t)new_val->next;
797 	old_low = old_val->gen;
798 	old_high = (uintptr_t)old_val->next;
799 
800 	__asm volatile("lock;cmpxchg16b\t%1"
801 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
802 	    : "b"(new_low), "c" (new_high)
803 	    : "memory", "cc");
804 	return (res);
805 }
806 
807 static COUNTER_U64_DEFINE_EARLY(pv_page_count);
808 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_page_count, CTLFLAG_RD,
809     &pv_page_count, "Current number of allocated pv pages");
810 
811 static COUNTER_U64_DEFINE_EARLY(user_pt_page_count);
812 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, user_pt_page_count, CTLFLAG_RD,
813     &user_pt_page_count,
814     "Current number of allocated page table pages for userspace");
815 
816 static COUNTER_U64_DEFINE_EARLY(kernel_pt_page_count);
817 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, kernel_pt_page_count, CTLFLAG_RD,
818     &kernel_pt_page_count,
819     "Current number of allocated page table pages for the kernel");
820 
821 #ifdef PV_STATS
822 
823 static COUNTER_U64_DEFINE_EARLY(invl_start_restart);
824 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_start_restart,
825     CTLFLAG_RD, &invl_start_restart,
826     "Number of delayed TLB invalidation request restarts");
827 
828 static COUNTER_U64_DEFINE_EARLY(invl_finish_restart);
829 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
830     &invl_finish_restart,
831     "Number of delayed TLB invalidation completion restarts");
832 
833 static int invl_max_qlen;
834 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
835     &invl_max_qlen, 0,
836     "Maximum delayed TLB invalidation request queue length");
837 #endif
838 
839 #define di_delay	locks_delay
840 
841 static void
pmap_delayed_invl_start_u(void)842 pmap_delayed_invl_start_u(void)
843 {
844 	struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
845 	struct thread *td;
846 	struct lock_delay_arg lda;
847 	uintptr_t prevl;
848 	u_char pri;
849 #ifdef PV_STATS
850 	int i, ii;
851 #endif
852 
853 	td = curthread;
854 	invl_gen = &td->td_md.md_invl_gen;
855 	PMAP_ASSERT_NOT_IN_DI();
856 	lock_delay_arg_init(&lda, &di_delay);
857 	invl_gen->saved_pri = 0;
858 	pri = td->td_base_pri;
859 	if (pri > PVM) {
860 		thread_lock(td);
861 		pri = td->td_base_pri;
862 		if (pri > PVM) {
863 			invl_gen->saved_pri = pri;
864 			sched_prio(td, PVM);
865 		}
866 		thread_unlock(td);
867 	}
868 again:
869 	PV_STAT(i = 0);
870 	for (p = &pmap_invl_gen_head;; p = prev.next) {
871 		PV_STAT(i++);
872 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
873 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
874 			PV_STAT(counter_u64_add(invl_start_restart, 1));
875 			lock_delay(&lda);
876 			goto again;
877 		}
878 		if (prevl == 0)
879 			break;
880 		prev.next = (void *)prevl;
881 	}
882 #ifdef PV_STATS
883 	if ((ii = invl_max_qlen) < i)
884 		atomic_cmpset_int(&invl_max_qlen, ii, i);
885 #endif
886 
887 	if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
888 		PV_STAT(counter_u64_add(invl_start_restart, 1));
889 		lock_delay(&lda);
890 		goto again;
891 	}
892 
893 	new_prev.gen = prev.gen;
894 	new_prev.next = invl_gen;
895 	invl_gen->gen = prev.gen + 1;
896 
897 	/* Formal fence between store to invl->gen and updating *p. */
898 	atomic_thread_fence_rel();
899 
900 	/*
901 	 * After inserting an invl_gen element with invalid bit set,
902 	 * this thread blocks any other thread trying to enter the
903 	 * delayed invalidation block.  Do not allow to remove us from
904 	 * the CPU, because it causes starvation for other threads.
905 	 */
906 	critical_enter();
907 
908 	/*
909 	 * ABA for *p is not possible there, since p->gen can only
910 	 * increase.  So if the *p thread finished its di, then
911 	 * started a new one and got inserted into the list at the
912 	 * same place, its gen will appear greater than the previously
913 	 * read gen.
914 	 */
915 	if (!pmap_di_store_invl(p, &prev, &new_prev)) {
916 		critical_exit();
917 		PV_STAT(counter_u64_add(invl_start_restart, 1));
918 		lock_delay(&lda);
919 		goto again;
920 	}
921 
922 	/*
923 	 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
924 	 * invl_gen->next, allowing other threads to iterate past us.
925 	 * pmap_di_store_invl() provides fence between the generation
926 	 * write and the update of next.
927 	 */
928 	invl_gen->next = NULL;
929 	critical_exit();
930 }
931 
932 static bool
pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen * invl_gen,struct pmap_invl_gen * p)933 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
934     struct pmap_invl_gen *p)
935 {
936 	struct pmap_invl_gen prev, new_prev;
937 	u_long mygen;
938 
939 	/*
940 	 * Load invl_gen->gen after setting invl_gen->next
941 	 * PMAP_INVL_GEN_NEXT_INVALID.  This prevents larger
942 	 * generations to propagate to our invl_gen->gen.  Lock prefix
943 	 * in atomic_set_ptr() worked as seq_cst fence.
944 	 */
945 	mygen = atomic_load_long(&invl_gen->gen);
946 
947 	if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
948 		return (false);
949 
950 	KASSERT(prev.gen < mygen,
951 	    ("invalid di gen sequence %lu %lu", prev.gen, mygen));
952 	new_prev.gen = mygen;
953 	new_prev.next = (void *)((uintptr_t)invl_gen->next &
954 	    ~PMAP_INVL_GEN_NEXT_INVALID);
955 
956 	/* Formal fence between load of prev and storing update to it. */
957 	atomic_thread_fence_rel();
958 
959 	return (pmap_di_store_invl(p, &prev, &new_prev));
960 }
961 
962 static void
pmap_delayed_invl_finish_u(void)963 pmap_delayed_invl_finish_u(void)
964 {
965 	struct pmap_invl_gen *invl_gen, *p;
966 	struct thread *td;
967 	struct lock_delay_arg lda;
968 	uintptr_t prevl;
969 
970 	td = curthread;
971 	invl_gen = &td->td_md.md_invl_gen;
972 	KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
973 	KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
974 	    ("missed invl_start: INVALID"));
975 	lock_delay_arg_init(&lda, &di_delay);
976 
977 again:
978 	for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
979 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
980 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
981 			PV_STAT(counter_u64_add(invl_finish_restart, 1));
982 			lock_delay(&lda);
983 			goto again;
984 		}
985 		if ((void *)prevl == invl_gen)
986 			break;
987 	}
988 
989 	/*
990 	 * It is legitimate to not find ourself on the list if a
991 	 * thread before us finished its DI and started it again.
992 	 */
993 	if (__predict_false(p == NULL)) {
994 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
995 		lock_delay(&lda);
996 		goto again;
997 	}
998 
999 	critical_enter();
1000 	atomic_set_ptr((uintptr_t *)&invl_gen->next,
1001 	    PMAP_INVL_GEN_NEXT_INVALID);
1002 	if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
1003 		atomic_clear_ptr((uintptr_t *)&invl_gen->next,
1004 		    PMAP_INVL_GEN_NEXT_INVALID);
1005 		critical_exit();
1006 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
1007 		lock_delay(&lda);
1008 		goto again;
1009 	}
1010 	critical_exit();
1011 	if (atomic_load_int(&pmap_invl_waiters) > 0)
1012 		pmap_delayed_invl_finish_unblock(0);
1013 	if (invl_gen->saved_pri != 0) {
1014 		thread_lock(td);
1015 		sched_prio(td, invl_gen->saved_pri);
1016 		thread_unlock(td);
1017 	}
1018 }
1019 
1020 #ifdef DDB
DB_SHOW_COMMAND(di_queue,pmap_di_queue)1021 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
1022 {
1023 	struct pmap_invl_gen *p, *pn;
1024 	struct thread *td;
1025 	uintptr_t nextl;
1026 	bool first;
1027 
1028 	for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
1029 	    first = false) {
1030 		nextl = (uintptr_t)atomic_load_ptr(&p->next);
1031 		pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
1032 		td = first ? NULL : __containerof(p, struct thread,
1033 		    td_md.md_invl_gen);
1034 		db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
1035 		    (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
1036 		    td != NULL ? td->td_tid : -1);
1037 	}
1038 }
1039 #endif
1040 
1041 #ifdef PV_STATS
1042 static COUNTER_U64_DEFINE_EARLY(invl_wait);
1043 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait,
1044     CTLFLAG_RD, &invl_wait,
1045     "Number of times DI invalidation blocked pmap_remove_all/write");
1046 
1047 static COUNTER_U64_DEFINE_EARLY(invl_wait_slow);
1048 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD,
1049      &invl_wait_slow, "Number of slow invalidation waits for lockless DI");
1050 
1051 #endif
1052 
1053 #ifdef NUMA
1054 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1055 pmap_delayed_invl_genp(vm_page_t m)
1056 {
1057 	vm_paddr_t pa;
1058 	u_long *gen;
1059 
1060 	pa = VM_PAGE_TO_PHYS(m);
1061 	if (__predict_false((pa) > pmap_last_pa))
1062 		gen = &pv_dummy_large.pv_invl_gen;
1063 	else
1064 		gen = &(pa_to_pmdp(pa)->pv_invl_gen);
1065 
1066 	return (gen);
1067 }
1068 #else
1069 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1070 pmap_delayed_invl_genp(vm_page_t m)
1071 {
1072 
1073 	return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
1074 }
1075 #endif
1076 
1077 static void
pmap_delayed_invl_callout_func(void * arg __unused)1078 pmap_delayed_invl_callout_func(void *arg __unused)
1079 {
1080 
1081 	if (atomic_load_int(&pmap_invl_waiters) == 0)
1082 		return;
1083 	pmap_delayed_invl_finish_unblock(0);
1084 }
1085 
1086 static void
pmap_delayed_invl_callout_init(void * arg __unused)1087 pmap_delayed_invl_callout_init(void *arg __unused)
1088 {
1089 
1090 	if (pmap_di_locked())
1091 		return;
1092 	callout_init(&pmap_invl_callout, 1);
1093 	pmap_invl_callout_inited = true;
1094 }
1095 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
1096     pmap_delayed_invl_callout_init, NULL);
1097 
1098 /*
1099  * Ensure that all currently executing DI blocks, that need to flush
1100  * TLB for the given page m, actually flushed the TLB at the time the
1101  * function returned.  If the page m has an empty PV list and we call
1102  * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
1103  * valid mapping for the page m in either its page table or TLB.
1104  *
1105  * This function works by blocking until the global DI generation
1106  * number catches up with the generation number associated with the
1107  * given page m and its PV list.  Since this function's callers
1108  * typically own an object lock and sometimes own a page lock, it
1109  * cannot sleep.  Instead, it blocks on a turnstile to relinquish the
1110  * processor.
1111  */
1112 static void
pmap_delayed_invl_wait_l(vm_page_t m)1113 pmap_delayed_invl_wait_l(vm_page_t m)
1114 {
1115 	u_long *m_gen;
1116 #ifdef PV_STATS
1117 	bool accounted = false;
1118 #endif
1119 
1120 	m_gen = pmap_delayed_invl_genp(m);
1121 	while (*m_gen > pmap_invl_gen) {
1122 #ifdef PV_STATS
1123 		if (!accounted) {
1124 			counter_u64_add(invl_wait, 1);
1125 			accounted = true;
1126 		}
1127 #endif
1128 		pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
1129 	}
1130 }
1131 
1132 static void
pmap_delayed_invl_wait_u(vm_page_t m)1133 pmap_delayed_invl_wait_u(vm_page_t m)
1134 {
1135 	u_long *m_gen;
1136 	struct lock_delay_arg lda;
1137 	bool fast;
1138 
1139 	fast = true;
1140 	m_gen = pmap_delayed_invl_genp(m);
1141 	lock_delay_arg_init(&lda, &di_delay);
1142 	while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
1143 		if (fast || !pmap_invl_callout_inited) {
1144 			PV_STAT(counter_u64_add(invl_wait, 1));
1145 			lock_delay(&lda);
1146 			fast = false;
1147 		} else {
1148 			/*
1149 			 * The page's invalidation generation number
1150 			 * is still below the current thread's number.
1151 			 * Prepare to block so that we do not waste
1152 			 * CPU cycles or worse, suffer livelock.
1153 			 *
1154 			 * Since it is impossible to block without
1155 			 * racing with pmap_delayed_invl_finish_u(),
1156 			 * prepare for the race by incrementing
1157 			 * pmap_invl_waiters and arming a 1-tick
1158 			 * callout which will unblock us if we lose
1159 			 * the race.
1160 			 */
1161 			atomic_add_int(&pmap_invl_waiters, 1);
1162 
1163 			/*
1164 			 * Re-check the current thread's invalidation
1165 			 * generation after incrementing
1166 			 * pmap_invl_waiters, so that there is no race
1167 			 * with pmap_delayed_invl_finish_u() setting
1168 			 * the page generation and checking
1169 			 * pmap_invl_waiters.  The only race allowed
1170 			 * is for a missed unblock, which is handled
1171 			 * by the callout.
1172 			 */
1173 			if (*m_gen >
1174 			    atomic_load_long(&pmap_invl_gen_head.gen)) {
1175 				callout_reset(&pmap_invl_callout, 1,
1176 				    pmap_delayed_invl_callout_func, NULL);
1177 				PV_STAT(counter_u64_add(invl_wait_slow, 1));
1178 				pmap_delayed_invl_wait_block(m_gen,
1179 				    &pmap_invl_gen_head.gen);
1180 			}
1181 			atomic_add_int(&pmap_invl_waiters, -1);
1182 		}
1183 	}
1184 }
1185 
1186 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
1187 {
1188 
1189 	return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
1190 	    pmap_thread_init_invl_gen_u);
1191 }
1192 
1193 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
1194 {
1195 
1196 	return (pmap_di_locked() ? pmap_delayed_invl_start_l :
1197 	    pmap_delayed_invl_start_u);
1198 }
1199 
1200 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
1201 {
1202 
1203 	return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
1204 	    pmap_delayed_invl_finish_u);
1205 }
1206 
1207 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
1208 {
1209 
1210 	return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
1211 	    pmap_delayed_invl_wait_u);
1212 }
1213 
1214 /*
1215  * Mark the page m's PV list as participating in the current thread's
1216  * DI block.  Any threads concurrently using m's PV list to remove or
1217  * restrict all mappings to m will wait for the current thread's DI
1218  * block to complete before proceeding.
1219  *
1220  * The function works by setting the DI generation number for m's PV
1221  * list to at least the DI generation number of the current thread.
1222  * This forces a caller of pmap_delayed_invl_wait() to block until
1223  * current thread calls pmap_delayed_invl_finish().
1224  */
1225 static void
pmap_delayed_invl_page(vm_page_t m)1226 pmap_delayed_invl_page(vm_page_t m)
1227 {
1228 	u_long gen, *m_gen;
1229 
1230 	rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
1231 	gen = curthread->td_md.md_invl_gen.gen;
1232 	if (gen == 0)
1233 		return;
1234 	m_gen = pmap_delayed_invl_genp(m);
1235 	if (*m_gen < gen)
1236 		*m_gen = gen;
1237 }
1238 
1239 /*
1240  * Crashdump maps.
1241  */
1242 static caddr_t crashdumpmap;
1243 
1244 /*
1245  * Internal flags for pmap_enter()'s helper functions.
1246  */
1247 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
1248 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
1249 
1250 /*
1251  * Internal flags for pmap_mapdev_internal() and
1252  * pmap_change_props_locked().
1253  */
1254 #define	MAPDEV_FLUSHCACHE	0x00000001	/* Flush cache after mapping. */
1255 #define	MAPDEV_SETATTR		0x00000002	/* Modify existing attrs. */
1256 #define	MAPDEV_ASSERTVALID	0x00000004	/* Assert mapping validity. */
1257 
1258 TAILQ_HEAD(pv_chunklist, pv_chunk);
1259 
1260 static void	free_pv_chunk(struct pv_chunk *pc);
1261 static void	free_pv_chunk_batch(struct pv_chunklist *batch);
1262 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
1263 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
1264 static int	popcnt_pc_map_pq(uint64_t *map);
1265 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
1266 static void	reserve_pv_entries(pmap_t pmap, int needed,
1267 		    struct rwlock **lockp);
1268 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1269 		    struct rwlock **lockp);
1270 static bool	pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
1271 		    u_int flags, struct rwlock **lockp);
1272 #if VM_NRESERVLEVEL > 0
1273 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1274 		    struct rwlock **lockp);
1275 #endif
1276 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
1277 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
1278 		    vm_offset_t va);
1279 
1280 static void	pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
1281 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
1282     vm_prot_t prot, int mode, int flags);
1283 static bool	pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
1284 static bool	pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
1285     vm_offset_t va, struct rwlock **lockp);
1286 static bool	pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
1287     vm_offset_t va);
1288 static int	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
1289 		    vm_prot_t prot, struct rwlock **lockp);
1290 static int	pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
1291 		    u_int flags, vm_page_t m, struct rwlock **lockp);
1292 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
1293     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
1294 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
1295 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
1296     bool allpte_PG_A_set);
1297 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
1298     vm_offset_t eva);
1299 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
1300     vm_offset_t eva);
1301 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
1302 		    pd_entry_t pde);
1303 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
1304 static vm_page_t pmap_large_map_getptp_unlocked(void);
1305 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
1306 #if VM_NRESERVLEVEL > 0
1307 static bool pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
1308     vm_page_t mpte, struct rwlock **lockp);
1309 #endif
1310 static bool pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
1311     vm_prot_t prot);
1312 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
1313 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
1314     bool exec);
1315 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
1316 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
1317 static void pmap_pti_wire_pte(void *pte);
1318 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
1319     struct spglist *free, struct rwlock **lockp);
1320 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
1321     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
1322 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
1323 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1324     struct spglist *free);
1325 static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1326 		    pd_entry_t *pde, struct spglist *free,
1327 		    struct rwlock **lockp);
1328 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
1329     vm_page_t m, struct rwlock **lockp);
1330 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1331     pd_entry_t newpde);
1332 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
1333 
1334 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
1335 		struct rwlock **lockp);
1336 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
1337 		struct rwlock **lockp, vm_offset_t va);
1338 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
1339 		struct rwlock **lockp, vm_offset_t va);
1340 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
1341 		struct rwlock **lockp);
1342 
1343 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
1344     struct spglist *free);
1345 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
1346 
1347 static vm_page_t pmap_alloc_pt_page(pmap_t, vm_pindex_t, int);
1348 static void pmap_free_pt_page(pmap_t, vm_page_t, bool);
1349 
1350 /********************/
1351 /* Inline functions */
1352 /********************/
1353 
1354 /*
1355  * Return a non-clipped indexes for a given VA, which are page table
1356  * pages indexes at the corresponding level.
1357  */
1358 static __inline vm_pindex_t
pmap_pde_pindex(vm_offset_t va)1359 pmap_pde_pindex(vm_offset_t va)
1360 {
1361 	return (va >> PDRSHIFT);
1362 }
1363 
1364 static __inline vm_pindex_t
pmap_pdpe_pindex(vm_offset_t va)1365 pmap_pdpe_pindex(vm_offset_t va)
1366 {
1367 	return (NUPDE + (va >> PDPSHIFT));
1368 }
1369 
1370 static __inline vm_pindex_t
pmap_pml4e_pindex(vm_offset_t va)1371 pmap_pml4e_pindex(vm_offset_t va)
1372 {
1373 	return (NUPDE + NUPDPE + (va >> PML4SHIFT));
1374 }
1375 
1376 static __inline vm_pindex_t
pmap_pml5e_pindex(vm_offset_t va)1377 pmap_pml5e_pindex(vm_offset_t va)
1378 {
1379 	return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
1380 }
1381 
1382 static __inline pml4_entry_t *
pmap_pml5e(pmap_t pmap,vm_offset_t va)1383 pmap_pml5e(pmap_t pmap, vm_offset_t va)
1384 {
1385 
1386 	MPASS(pmap_is_la57(pmap));
1387 	return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
1388 }
1389 
1390 static __inline pml4_entry_t *
pmap_pml5e_u(pmap_t pmap,vm_offset_t va)1391 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
1392 {
1393 
1394 	MPASS(pmap_is_la57(pmap));
1395 	return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
1396 }
1397 
1398 static __inline pml4_entry_t *
pmap_pml5e_to_pml4e(pml5_entry_t * pml5e,vm_offset_t va)1399 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
1400 {
1401 	pml4_entry_t *pml4e;
1402 
1403 	/* XXX MPASS(pmap_is_la57(pmap); */
1404 	pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1405 	return (&pml4e[pmap_pml4e_index(va)]);
1406 }
1407 
1408 /* Return a pointer to the PML4 slot that corresponds to a VA */
1409 static __inline pml4_entry_t *
pmap_pml4e(pmap_t pmap,vm_offset_t va)1410 pmap_pml4e(pmap_t pmap, vm_offset_t va)
1411 {
1412 	pml5_entry_t *pml5e;
1413 	pml4_entry_t *pml4e;
1414 	pt_entry_t PG_V;
1415 
1416 	if (pmap_is_la57(pmap)) {
1417 		pml5e = pmap_pml5e(pmap, va);
1418 		PG_V = pmap_valid_bit(pmap);
1419 		if ((*pml5e & PG_V) == 0)
1420 			return (NULL);
1421 		pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1422 	} else {
1423 		pml4e = pmap->pm_pmltop;
1424 	}
1425 	return (&pml4e[pmap_pml4e_index(va)]);
1426 }
1427 
1428 static __inline pml4_entry_t *
pmap_pml4e_u(pmap_t pmap,vm_offset_t va)1429 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
1430 {
1431 	MPASS(!pmap_is_la57(pmap));
1432 	return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
1433 }
1434 
1435 /* Return a pointer to the PDP slot that corresponds to a VA */
1436 static __inline pdp_entry_t *
pmap_pml4e_to_pdpe(pml4_entry_t * pml4e,vm_offset_t va)1437 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
1438 {
1439 	pdp_entry_t *pdpe;
1440 
1441 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
1442 	return (&pdpe[pmap_pdpe_index(va)]);
1443 }
1444 
1445 /* Return a pointer to the PDP slot that corresponds to a VA */
1446 static __inline pdp_entry_t *
pmap_pdpe(pmap_t pmap,vm_offset_t va)1447 pmap_pdpe(pmap_t pmap, vm_offset_t va)
1448 {
1449 	pml4_entry_t *pml4e;
1450 	pt_entry_t PG_V;
1451 
1452 	PG_V = pmap_valid_bit(pmap);
1453 	pml4e = pmap_pml4e(pmap, va);
1454 	if (pml4e == NULL || (*pml4e & PG_V) == 0)
1455 		return (NULL);
1456 	return (pmap_pml4e_to_pdpe(pml4e, va));
1457 }
1458 
1459 /* Return a pointer to the PD slot that corresponds to a VA */
1460 static __inline pd_entry_t *
pmap_pdpe_to_pde(pdp_entry_t * pdpe,vm_offset_t va)1461 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
1462 {
1463 	pd_entry_t *pde;
1464 
1465 	KASSERT((*pdpe & PG_PS) == 0,
1466 	    ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
1467 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
1468 	return (&pde[pmap_pde_index(va)]);
1469 }
1470 
1471 /* Return a pointer to the PD slot that corresponds to a VA */
1472 static __inline pd_entry_t *
pmap_pde(pmap_t pmap,vm_offset_t va)1473 pmap_pde(pmap_t pmap, vm_offset_t va)
1474 {
1475 	pdp_entry_t *pdpe;
1476 	pt_entry_t PG_V;
1477 
1478 	PG_V = pmap_valid_bit(pmap);
1479 	pdpe = pmap_pdpe(pmap, va);
1480 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
1481 		return (NULL);
1482 	KASSERT((*pdpe & PG_PS) == 0,
1483 	    ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
1484 	return (pmap_pdpe_to_pde(pdpe, va));
1485 }
1486 
1487 /* Return a pointer to the PT slot that corresponds to a VA */
1488 static __inline pt_entry_t *
pmap_pde_to_pte(pd_entry_t * pde,vm_offset_t va)1489 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
1490 {
1491 	pt_entry_t *pte;
1492 
1493 	KASSERT((*pde & PG_PS) == 0,
1494 	    ("%s: pde %#lx is a leaf", __func__, *pde));
1495 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
1496 	return (&pte[pmap_pte_index(va)]);
1497 }
1498 
1499 /* Return a pointer to the PT slot that corresponds to a VA */
1500 static __inline pt_entry_t *
pmap_pte(pmap_t pmap,vm_offset_t va)1501 pmap_pte(pmap_t pmap, vm_offset_t va)
1502 {
1503 	pd_entry_t *pde;
1504 	pt_entry_t PG_V;
1505 
1506 	PG_V = pmap_valid_bit(pmap);
1507 	pde = pmap_pde(pmap, va);
1508 	if (pde == NULL || (*pde & PG_V) == 0)
1509 		return (NULL);
1510 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
1511 		return ((pt_entry_t *)pde);
1512 	return (pmap_pde_to_pte(pde, va));
1513 }
1514 
1515 static __inline void
pmap_resident_count_adj(pmap_t pmap,int count)1516 pmap_resident_count_adj(pmap_t pmap, int count)
1517 {
1518 
1519 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1520 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1521 	    ("pmap %p resident count underflow %ld %d", pmap,
1522 	    pmap->pm_stats.resident_count, count));
1523 	pmap->pm_stats.resident_count += count;
1524 }
1525 
1526 static __inline void
pmap_pt_page_count_pinit(pmap_t pmap,int count)1527 pmap_pt_page_count_pinit(pmap_t pmap, int count)
1528 {
1529 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1530 	    ("pmap %p resident count underflow %ld %d", pmap,
1531 	    pmap->pm_stats.resident_count, count));
1532 	pmap->pm_stats.resident_count += count;
1533 }
1534 
1535 static __inline void
pmap_pt_page_count_adj(pmap_t pmap,int count)1536 pmap_pt_page_count_adj(pmap_t pmap, int count)
1537 {
1538 	if (pmap == kernel_pmap)
1539 		counter_u64_add(kernel_pt_page_count, count);
1540 	else {
1541 		if (pmap != NULL)
1542 			pmap_resident_count_adj(pmap, count);
1543 		counter_u64_add(user_pt_page_count, count);
1544 	}
1545 }
1546 
1547 pt_entry_t vtoptem __read_mostly = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
1548     NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1) << 3;
1549 vm_offset_t PTmap __read_mostly = (vm_offset_t)P4Tmap;
1550 
1551 pt_entry_t *
vtopte(vm_offset_t va)1552 vtopte(vm_offset_t va)
1553 {
1554 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
1555 
1556 	return ((pt_entry_t *)(PTmap + ((va >> (PAGE_SHIFT - 3)) & vtoptem)));
1557 }
1558 
1559 pd_entry_t vtopdem __read_mostly = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1560     NPML4EPGSHIFT)) - 1) << 3;
1561 vm_offset_t PDmap __read_mostly = (vm_offset_t)P4Dmap;
1562 
1563 static __inline pd_entry_t *
vtopde(vm_offset_t va)1564 vtopde(vm_offset_t va)
1565 {
1566 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
1567 
1568 	return ((pt_entry_t *)(PDmap + ((va >> (PDRSHIFT - 3)) & vtopdem)));
1569 }
1570 
1571 static u_int64_t
allocpages(vm_paddr_t * firstaddr,int n)1572 allocpages(vm_paddr_t *firstaddr, int n)
1573 {
1574 	u_int64_t ret;
1575 
1576 	ret = *firstaddr;
1577 	bzero((void *)ret, n * PAGE_SIZE);
1578 	*firstaddr += n * PAGE_SIZE;
1579 	return (ret);
1580 }
1581 
1582 CTASSERT(powerof2(NDMPML4E));
1583 
1584 /* number of kernel PDP slots */
1585 #define	NKPDPE(ptpgs)		howmany(ptpgs, NPDEPG)
1586 
1587 static void
nkpt_init(vm_paddr_t addr)1588 nkpt_init(vm_paddr_t addr)
1589 {
1590 	int pt_pages;
1591 
1592 #ifdef NKPT
1593 	pt_pages = NKPT;
1594 #else
1595 	pt_pages = howmany(addr - kernphys, NBPDR) + 1; /* +1 for 2M hole @0 */
1596 	pt_pages += NKPDPE(pt_pages);
1597 
1598 	/*
1599 	 * Add some slop beyond the bare minimum required for bootstrapping
1600 	 * the kernel.
1601 	 *
1602 	 * This is quite important when allocating KVA for kernel modules.
1603 	 * The modules are required to be linked in the negative 2GB of
1604 	 * the address space.  If we run out of KVA in this region then
1605 	 * pmap_growkernel() will need to allocate page table pages to map
1606 	 * the entire 512GB of KVA space which is an unnecessary tax on
1607 	 * physical memory.
1608 	 *
1609 	 * Secondly, device memory mapped as part of setting up the low-
1610 	 * level console(s) is taken from KVA, starting at virtual_avail.
1611 	 * This is because cninit() is called after pmap_bootstrap() but
1612 	 * before vm_mem_init() and pmap_init(). 20MB for a frame buffer
1613 	 * is not uncommon.
1614 	 */
1615 	pt_pages += 32;		/* 64MB additional slop. */
1616 #endif
1617 	nkpt = pt_pages;
1618 }
1619 
1620 /*
1621  * Returns the proper write/execute permission for a physical page that is
1622  * part of the initial boot allocations.
1623  *
1624  * If the page has kernel text, it is marked as read-only. If the page has
1625  * kernel read-only data, it is marked as read-only/not-executable. If the
1626  * page has only read-write data, it is marked as read-write/not-executable.
1627  * If the page is below/above the kernel range, it is marked as read-write.
1628  *
1629  * This function operates on 2M pages, since we map the kernel space that
1630  * way.
1631  */
1632 static inline pt_entry_t
bootaddr_rwx(vm_paddr_t pa)1633 bootaddr_rwx(vm_paddr_t pa)
1634 {
1635 	/*
1636 	 * The kernel is loaded at a 2MB-aligned address, and memory below that
1637 	 * need not be executable.  The .bss section is padded to a 2MB
1638 	 * boundary, so memory following the kernel need not be executable
1639 	 * either.  Preloaded kernel modules have their mapping permissions
1640 	 * fixed up by the linker.
1641 	 */
1642 	if (pa < trunc_2mpage(kernphys + btext - KERNSTART) ||
1643 	    pa >= trunc_2mpage(kernphys + _end - KERNSTART))
1644 		return (X86_PG_RW | pg_nx);
1645 
1646 	/*
1647 	 * The linker should ensure that the read-only and read-write
1648 	 * portions don't share the same 2M page, so this shouldn't
1649 	 * impact read-only data. However, in any case, any page with
1650 	 * read-write data needs to be read-write.
1651 	 */
1652 	if (pa >= trunc_2mpage(kernphys + brwsection - KERNSTART))
1653 		return (X86_PG_RW | pg_nx);
1654 
1655 	/*
1656 	 * Mark any 2M page containing kernel text as read-only. Mark
1657 	 * other pages with read-only data as read-only and not executable.
1658 	 * (It is likely a small portion of the read-only data section will
1659 	 * be marked as read-only, but executable. This should be acceptable
1660 	 * since the read-only protection will keep the data from changing.)
1661 	 * Note that fixups to the .text section will still work until we
1662 	 * set CR0.WP.
1663 	 */
1664 	if (pa < round_2mpage(kernphys + etext - KERNSTART))
1665 		return (0);
1666 	return (pg_nx);
1667 }
1668 
1669 static void
create_pagetables(vm_paddr_t * firstaddr)1670 create_pagetables(vm_paddr_t *firstaddr)
1671 {
1672 	pd_entry_t *pd_p;
1673 	pdp_entry_t *pdp_p;
1674 	pml4_entry_t *p4_p;
1675 	uint64_t DMPDkernphys;
1676 	vm_paddr_t pax;
1677 #ifdef KASAN
1678 	pt_entry_t *pt_p;
1679 	uint64_t KASANPDphys, KASANPTphys, KASANphys;
1680 	vm_offset_t kasankernbase;
1681 	int kasankpdpi, kasankpdi, nkasanpte;
1682 #endif
1683 	int i, j, ndm1g, nkpdpe, nkdmpde;
1684 
1685 	TSENTER();
1686 	/* Allocate page table pages for the direct map */
1687 	ndmpdp = howmany(ptoa(Maxmem), NBPDP);
1688 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
1689 		ndmpdp = 4;
1690 	ndmpdpphys = howmany(ndmpdp, NPDPEPG);
1691 	if (ndmpdpphys > NDMPML4E) {
1692 		/*
1693 		 * Each NDMPML4E allows 512 GB, so limit to that,
1694 		 * and then readjust ndmpdp and ndmpdpphys.
1695 		 */
1696 		printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
1697 		Maxmem = atop(NDMPML4E * NBPML4);
1698 		ndmpdpphys = NDMPML4E;
1699 		ndmpdp = NDMPML4E * NPDEPG;
1700 	}
1701 	DMPDPphys = allocpages(firstaddr, ndmpdpphys);
1702 	ndm1g = 0;
1703 	if ((amd_feature & AMDID_PAGE1GB) != 0) {
1704 		/*
1705 		 * Calculate the number of 1G pages that will fully fit in
1706 		 * Maxmem.
1707 		 */
1708 		ndm1g = ptoa(Maxmem) >> PDPSHIFT;
1709 
1710 		/*
1711 		 * Allocate 2M pages for the kernel. These will be used in
1712 		 * place of the one or more 1G pages from ndm1g that maps
1713 		 * kernel memory into DMAP.
1714 		 */
1715 		nkdmpde = howmany((vm_offset_t)brwsection - KERNSTART +
1716 		    kernphys - rounddown2(kernphys, NBPDP), NBPDP);
1717 		DMPDkernphys = allocpages(firstaddr, nkdmpde);
1718 	}
1719 	if (ndm1g < ndmpdp)
1720 		DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
1721 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
1722 
1723 	/* Allocate pages. */
1724 	KPML4phys = allocpages(firstaddr, 1);
1725 	KPDPphys = allocpages(firstaddr, NKPML4E);
1726 #ifdef KASAN
1727 	KASANPDPphys = allocpages(firstaddr, NKASANPML4E);
1728 	KASANPDphys = allocpages(firstaddr, 1);
1729 #endif
1730 #ifdef KMSAN
1731 	/*
1732 	 * The KMSAN shadow maps are initially left unpopulated, since there is
1733 	 * no need to shadow memory above KERNBASE.
1734 	 */
1735 	KMSANSHADPDPphys = allocpages(firstaddr, NKMSANSHADPML4E);
1736 	KMSANORIGPDPphys = allocpages(firstaddr, NKMSANORIGPML4E);
1737 #endif
1738 
1739 	/*
1740 	 * Allocate the initial number of kernel page table pages required to
1741 	 * bootstrap.  We defer this until after all memory-size dependent
1742 	 * allocations are done (e.g. direct map), so that we don't have to
1743 	 * build in too much slop in our estimate.
1744 	 *
1745 	 * Note that when NKPML4E > 1, we have an empty page underneath
1746 	 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
1747 	 * pages.  (pmap_enter requires a PD page to exist for each KPML4E.)
1748 	 */
1749 	nkpt_init(*firstaddr);
1750 	nkpdpe = NKPDPE(nkpt);
1751 
1752 	KPTphys = allocpages(firstaddr, nkpt);
1753 	KPDphys = allocpages(firstaddr, nkpdpe);
1754 
1755 #ifdef KASAN
1756 	nkasanpte = howmany(nkpt, KASAN_SHADOW_SCALE);
1757 	KASANPTphys = allocpages(firstaddr, nkasanpte);
1758 	KASANphys = allocpages(firstaddr, nkasanpte * NPTEPG);
1759 #endif
1760 
1761 	/*
1762 	 * Connect the zero-filled PT pages to their PD entries.  This
1763 	 * implicitly maps the PT pages at their correct locations within
1764 	 * the PTmap.
1765 	 */
1766 	pd_p = (pd_entry_t *)KPDphys;
1767 	for (i = 0; i < nkpt; i++)
1768 		pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1769 
1770 	/*
1771 	 * Map from start of the kernel in physical memory (staging
1772 	 * area) to the end of loader preallocated memory using 2MB
1773 	 * pages.  This replaces some of the PD entries created above.
1774 	 * For compatibility, identity map 2M at the start.
1775 	 */
1776 	pd_p[0] = X86_PG_V | PG_PS | pg_g | X86_PG_M | X86_PG_A |
1777 	    X86_PG_RW | pg_nx;
1778 	for (i = 1, pax = kernphys; pax < KERNend; i++, pax += NBPDR) {
1779 		/* Preset PG_M and PG_A because demotion expects it. */
1780 		pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1781 		    X86_PG_A | bootaddr_rwx(pax);
1782 	}
1783 
1784 	/*
1785 	 * Because we map the physical blocks in 2M pages, adjust firstaddr
1786 	 * to record the physical blocks we've actually mapped into kernel
1787 	 * virtual address space.
1788 	 */
1789 	if (*firstaddr < round_2mpage(KERNend))
1790 		*firstaddr = round_2mpage(KERNend);
1791 
1792 	/* And connect up the PD to the PDP (leaving room for L4 pages) */
1793 	pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
1794 	for (i = 0; i < nkpdpe; i++)
1795 		pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1796 
1797 #ifdef KASAN
1798 	kasankernbase = kasan_md_addr_to_shad(KERNBASE);
1799 	kasankpdpi = pmap_pdpe_index(kasankernbase);
1800 	kasankpdi = pmap_pde_index(kasankernbase);
1801 
1802 	pdp_p = (pdp_entry_t *)KASANPDPphys;
1803 	pdp_p[kasankpdpi] = (KASANPDphys | X86_PG_RW | X86_PG_V | pg_nx);
1804 
1805 	pd_p = (pd_entry_t *)KASANPDphys;
1806 	for (i = 0; i < nkasanpte; i++)
1807 		pd_p[i + kasankpdi] = (KASANPTphys + ptoa(i)) | X86_PG_RW |
1808 		    X86_PG_V | pg_nx;
1809 
1810 	pt_p = (pt_entry_t *)KASANPTphys;
1811 	for (i = 0; i < nkasanpte * NPTEPG; i++)
1812 		pt_p[i] = (KASANphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1813 		    X86_PG_M | X86_PG_A | pg_nx;
1814 #endif
1815 
1816 	/*
1817 	 * Now, set up the direct map region using 2MB and/or 1GB pages.  If
1818 	 * the end of physical memory is not aligned to a 1GB page boundary,
1819 	 * then the residual physical memory is mapped with 2MB pages.  Later,
1820 	 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
1821 	 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
1822 	 * that are partially used.
1823 	 */
1824 	pd_p = (pd_entry_t *)DMPDphys;
1825 	for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
1826 		pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
1827 		/* Preset PG_M and PG_A because demotion expects it. */
1828 		pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1829 		    X86_PG_M | X86_PG_A | pg_nx;
1830 	}
1831 	pdp_p = (pdp_entry_t *)DMPDPphys;
1832 	for (i = 0; i < ndm1g; i++) {
1833 		pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
1834 		/* Preset PG_M and PG_A because demotion expects it. */
1835 		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1836 		    X86_PG_M | X86_PG_A | pg_nx;
1837 	}
1838 	for (j = 0; i < ndmpdp; i++, j++) {
1839 		pdp_p[i] = DMPDphys + ptoa(j);
1840 		pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
1841 	}
1842 
1843 	/*
1844 	 * Instead of using a 1G page for the memory containing the kernel,
1845 	 * use 2M pages with read-only and no-execute permissions.  (If using 1G
1846 	 * pages, this will partially overwrite the PDPEs above.)
1847 	 */
1848 	if (ndm1g > 0) {
1849 		pd_p = (pd_entry_t *)DMPDkernphys;
1850 		for (i = 0, pax = rounddown2(kernphys, NBPDP);
1851 		    i < NPDEPG * nkdmpde; i++, pax += NBPDR) {
1852 			pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1853 			    X86_PG_A | pg_nx | bootaddr_rwx(pax);
1854 		}
1855 		j = rounddown2(kernphys, NBPDP) >> PDPSHIFT;
1856 		for (i = 0; i < nkdmpde; i++) {
1857 			pdp_p[i + j] = (DMPDkernphys + ptoa(i)) |
1858 			    X86_PG_RW | X86_PG_V | pg_nx;
1859 		}
1860 	}
1861 
1862 	/* And recursively map PML4 to itself in order to get PTmap */
1863 	p4_p = (pml4_entry_t *)KPML4phys;
1864 	p4_p[PML4PML4I] = KPML4phys;
1865 	p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
1866 
1867 #ifdef KASAN
1868 	/* Connect the KASAN shadow map slots up to the PML4. */
1869 	for (i = 0; i < NKASANPML4E; i++) {
1870 		p4_p[KASANPML4I + i] = KASANPDPphys + ptoa(i);
1871 		p4_p[KASANPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1872 	}
1873 #endif
1874 
1875 #ifdef KMSAN
1876 	/* Connect the KMSAN shadow map slots up to the PML4. */
1877 	for (i = 0; i < NKMSANSHADPML4E; i++) {
1878 		p4_p[KMSANSHADPML4I + i] = KMSANSHADPDPphys + ptoa(i);
1879 		p4_p[KMSANSHADPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1880 	}
1881 
1882 	/* Connect the KMSAN origin map slots up to the PML4. */
1883 	for (i = 0; i < NKMSANORIGPML4E; i++) {
1884 		p4_p[KMSANORIGPML4I + i] = KMSANORIGPDPphys + ptoa(i);
1885 		p4_p[KMSANORIGPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1886 	}
1887 #endif
1888 
1889 	/* Connect the Direct Map slots up to the PML4. */
1890 	for (i = 0; i < ndmpdpphys; i++) {
1891 		p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
1892 		p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1893 	}
1894 
1895 	/* Connect the KVA slots up to the PML4 */
1896 	for (i = 0; i < NKPML4E; i++) {
1897 		p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
1898 		p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
1899 	}
1900 
1901 	kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
1902 	TSEXIT();
1903 }
1904 
1905 /*
1906  *	Bootstrap the system enough to run with virtual memory.
1907  *
1908  *	On amd64 this is called after mapping has already been enabled
1909  *	and just syncs the pmap module with what has already been done.
1910  *	[We can't call it easily with mapping off since the kernel is not
1911  *	mapped with PA == VA, hence we would have to relocate every address
1912  *	from the linked base (virtual) address "KERNBASE" to the actual
1913  *	(physical) address starting relative to 0]
1914  */
1915 void
pmap_bootstrap(vm_paddr_t * firstaddr)1916 pmap_bootstrap(vm_paddr_t *firstaddr)
1917 {
1918 	vm_offset_t va;
1919 	pt_entry_t *pte, *pcpu_pte;
1920 	struct region_descriptor r_gdt;
1921 	uint64_t cr4, pcpu0_phys;
1922 	u_long res;
1923 	int i;
1924 
1925 	TSENTER();
1926 	KERNend = *firstaddr;
1927 	res = atop(KERNend - (vm_paddr_t)kernphys);
1928 
1929 	if (!pti)
1930 		pg_g = X86_PG_G;
1931 
1932 	/*
1933 	 * Create an initial set of page tables to run the kernel in.
1934 	 */
1935 	create_pagetables(firstaddr);
1936 
1937 	pcpu0_phys = allocpages(firstaddr, 1);
1938 
1939 	/*
1940 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
1941 	 * preallocated kernel page table pages so that vm_page structures
1942 	 * representing these pages will be created.  The vm_page structures
1943 	 * are required for promotion of the corresponding kernel virtual
1944 	 * addresses to superpage mappings.
1945 	 */
1946 	vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1947 
1948 	/*
1949 	 * Account for the virtual addresses mapped by create_pagetables().
1950 	 */
1951 	virtual_avail = (vm_offset_t)KERNSTART + round_2mpage(KERNend -
1952 	    (vm_paddr_t)kernphys);
1953 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1954 
1955 	/*
1956 	 * Enable PG_G global pages, then switch to the kernel page
1957 	 * table from the bootstrap page table.  After the switch, it
1958 	 * is possible to enable SMEP and SMAP since PG_U bits are
1959 	 * correct now.
1960 	 */
1961 	cr4 = rcr4();
1962 	cr4 |= CR4_PGE;
1963 	load_cr4(cr4);
1964 	load_cr3(KPML4phys);
1965 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
1966 		cr4 |= CR4_SMEP;
1967 	if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
1968 		cr4 |= CR4_SMAP;
1969 	load_cr4(cr4);
1970 
1971 	/*
1972 	 * Initialize the kernel pmap (which is statically allocated).
1973 	 * Count bootstrap data as being resident in case any of this data is
1974 	 * later unmapped (using pmap_remove()) and freed.
1975 	 */
1976 	PMAP_LOCK_INIT(kernel_pmap);
1977 	kernel_pmap->pm_pmltop = kernel_pml4;
1978 	kernel_pmap->pm_cr3 = KPML4phys;
1979 	kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
1980 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1981 	kernel_pmap->pm_stats.resident_count = res;
1982 	vm_radix_init(&kernel_pmap->pm_root);
1983 	kernel_pmap->pm_flags = pmap_flags;
1984 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
1985 		rangeset_init(&kernel_pmap->pm_pkru, pkru_dup_range,
1986 		    pkru_free_range, kernel_pmap, M_NOWAIT);
1987 	}
1988 
1989 	/*
1990 	 * The kernel pmap is always active on all CPUs.  Once CPUs are
1991 	 * enumerated, the mask will be set equal to all_cpus.
1992 	 */
1993 	CPU_FILL(&kernel_pmap->pm_active);
1994 
1995  	/*
1996 	 * Initialize the TLB invalidations generation number lock.
1997 	 */
1998 	mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
1999 
2000 	/*
2001 	 * Reserve some special page table entries/VA space for temporary
2002 	 * mapping of pages.
2003 	 */
2004 #define	SYSMAP(c, p, v, n)	\
2005 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
2006 
2007 	va = virtual_avail;
2008 	pte = vtopte(va);
2009 
2010 	/*
2011 	 * Crashdump maps.  The first page is reused as CMAP1 for the
2012 	 * memory test.
2013 	 */
2014 	SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
2015 	CADDR1 = crashdumpmap;
2016 
2017 	SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
2018 	virtual_avail = va;
2019 
2020 	/*
2021 	 * Map the BSP PCPU now, the rest of the PCPUs are mapped by
2022 	 * amd64_mp_alloc_pcpu()/start_all_aps() when we know the
2023 	 * number of CPUs and NUMA affinity.
2024 	 */
2025 	pcpu_pte[0] = pcpu0_phys | X86_PG_V | X86_PG_RW | pg_g | pg_nx |
2026 	    X86_PG_M | X86_PG_A;
2027 	for (i = 1; i < MAXCPU; i++)
2028 		pcpu_pte[i] = 0;
2029 
2030 	/*
2031 	 * Re-initialize PCPU area for BSP after switching.
2032 	 * Make hardware use gdt and common_tss from the new PCPU.
2033 	 */
2034 	STAILQ_INIT(&cpuhead);
2035 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2036 	pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
2037 	amd64_bsp_pcpu_init1(&__pcpu[0]);
2038 	amd64_bsp_ist_init(&__pcpu[0]);
2039 	__pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
2040 	    IOPERM_BITMAP_SIZE;
2041 	memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
2042 	    sizeof(struct user_segment_descriptor));
2043 	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
2044 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2045 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2046 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2047 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2048 	lgdt(&r_gdt);
2049 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2050 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2051 	__pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
2052 	__pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
2053 
2054 	/*
2055 	 * Initialize the PAT MSR.
2056 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
2057 	 * side-effect, invalidates stale PG_G TLB entries that might
2058 	 * have been created in our pre-boot environment.
2059 	 */
2060 	pmap_init_pat();
2061 
2062 	/* Initialize TLB Context Id. */
2063 	if (pmap_pcid_enabled) {
2064 		kernel_pmap->pm_pcidp = (void *)(uintptr_t)
2065 		    offsetof(struct pcpu, pc_kpmap_store);
2066 
2067 		PCPU_SET(kpmap_store.pm_pcid, PMAP_PCID_KERN);
2068 		PCPU_SET(kpmap_store.pm_gen, 1);
2069 
2070 		/*
2071 		 * PMAP_PCID_KERN + 1 is used for initialization of
2072 		 * proc0 pmap.  The pmap' pcid state might be used by
2073 		 * EFIRT entry before first context switch, so it
2074 		 * needs to be valid.
2075 		 */
2076 		PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
2077 		PCPU_SET(pcid_gen, 1);
2078 
2079 		/*
2080 		 * pcpu area for APs is zeroed during AP startup.
2081 		 * pc_pcid_next and pc_pcid_gen are initialized by AP
2082 		 * during pcpu setup.
2083 		 */
2084 		load_cr4(rcr4() | CR4_PCIDE);
2085 	}
2086 	TSEXIT();
2087 }
2088 
2089 /*
2090  * Setup the PAT MSR.
2091  */
2092 void
pmap_init_pat(void)2093 pmap_init_pat(void)
2094 {
2095 	uint64_t pat_msr;
2096 	u_long cr0, cr4;
2097 	int i;
2098 
2099 	/* Bail if this CPU doesn't implement PAT. */
2100 	if ((cpu_feature & CPUID_PAT) == 0)
2101 		panic("no PAT??");
2102 
2103 	/* Set default PAT index table. */
2104 	for (i = 0; i < PAT_INDEX_SIZE; i++)
2105 		pat_index[i] = -1;
2106 	pat_index[PAT_WRITE_BACK] = 0;
2107 	pat_index[PAT_WRITE_THROUGH] = 1;
2108 	pat_index[PAT_UNCACHEABLE] = 3;
2109 	pat_index[PAT_WRITE_COMBINING] = 6;
2110 	pat_index[PAT_WRITE_PROTECTED] = 5;
2111 	pat_index[PAT_UNCACHED] = 2;
2112 
2113 	/*
2114 	 * Initialize default PAT entries.
2115 	 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
2116 	 * Program 5 and 6 as WP and WC.
2117 	 *
2118 	 * Leave 4 and 7 as WB and UC.  Note that a recursive page table
2119 	 * mapping for a 2M page uses a PAT value with the bit 3 set due
2120 	 * to its overload with PG_PS.
2121 	 */
2122 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
2123 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
2124 	    PAT_VALUE(2, PAT_UNCACHED) |
2125 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
2126 	    PAT_VALUE(4, PAT_WRITE_BACK) |
2127 	    PAT_VALUE(5, PAT_WRITE_PROTECTED) |
2128 	    PAT_VALUE(6, PAT_WRITE_COMBINING) |
2129 	    PAT_VALUE(7, PAT_UNCACHEABLE);
2130 
2131 	/* Disable PGE. */
2132 	cr4 = rcr4();
2133 	load_cr4(cr4 & ~CR4_PGE);
2134 
2135 	/* Disable caches (CD = 1, NW = 0). */
2136 	cr0 = rcr0();
2137 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
2138 
2139 	/* Flushes caches and TLBs. */
2140 	wbinvd();
2141 	invltlb();
2142 
2143 	/* Update PAT and index table. */
2144 	wrmsr(MSR_PAT, pat_msr);
2145 
2146 	/* Flush caches and TLBs again. */
2147 	wbinvd();
2148 	invltlb();
2149 
2150 	/* Restore caches and PGE. */
2151 	load_cr0(cr0);
2152 	load_cr4(cr4);
2153 }
2154 
2155 vm_page_t
pmap_page_alloc_below_4g(bool zeroed)2156 pmap_page_alloc_below_4g(bool zeroed)
2157 {
2158 	return (vm_page_alloc_noobj_contig((zeroed ? VM_ALLOC_ZERO : 0),
2159 	    1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT));
2160 }
2161 
2162 extern const char la57_trampoline[], la57_trampoline_gdt_desc[],
2163     la57_trampoline_gdt[], la57_trampoline_end[];
2164 
2165 static void
pmap_bootstrap_la57(void * arg __unused)2166 pmap_bootstrap_la57(void *arg __unused)
2167 {
2168 	char *v_code;
2169 	pml5_entry_t *v_pml5;
2170 	pml4_entry_t *v_pml4;
2171 	pdp_entry_t *v_pdp;
2172 	pd_entry_t *v_pd;
2173 	pt_entry_t *v_pt;
2174 	vm_page_t m_code, m_pml4, m_pdp, m_pd, m_pt, m_pml5;
2175 	void (*la57_tramp)(uint64_t pml5);
2176 	struct region_descriptor r_gdt;
2177 
2178 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
2179 		return;
2180 	TUNABLE_INT_FETCH("vm.pmap.la57", &la57);
2181 	if (!la57)
2182 		return;
2183 
2184 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2185 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2186 
2187 	m_code = pmap_page_alloc_below_4g(true);
2188 	v_code = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_code));
2189 	m_pml5 = pmap_page_alloc_below_4g(true);
2190 	KPML5phys = VM_PAGE_TO_PHYS(m_pml5);
2191 	v_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(KPML5phys);
2192 	m_pml4 = pmap_page_alloc_below_4g(true);
2193 	v_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pml4));
2194 	m_pdp = pmap_page_alloc_below_4g(true);
2195 	v_pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pdp));
2196 	m_pd = pmap_page_alloc_below_4g(true);
2197 	v_pd = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd));
2198 	m_pt = pmap_page_alloc_below_4g(true);
2199 	v_pt = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pt));
2200 
2201 	/*
2202 	 * Map m_code 1:1, it appears below 4G in KVA due to physical
2203 	 * address being below 4G.  Since kernel KVA is in upper half,
2204 	 * the pml4e should be zero and free for temporary use.
2205 	 */
2206 	kernel_pmap->pm_pmltop[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2207 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2208 	    X86_PG_M;
2209 	v_pdp[pmap_pdpe_index(VM_PAGE_TO_PHYS(m_code))] =
2210 	    VM_PAGE_TO_PHYS(m_pd) | X86_PG_V | X86_PG_RW | X86_PG_A |
2211 	    X86_PG_M;
2212 	v_pd[pmap_pde_index(VM_PAGE_TO_PHYS(m_code))] =
2213 	    VM_PAGE_TO_PHYS(m_pt) | X86_PG_V | X86_PG_RW | X86_PG_A |
2214 	    X86_PG_M;
2215 	v_pt[pmap_pte_index(VM_PAGE_TO_PHYS(m_code))] =
2216 	    VM_PAGE_TO_PHYS(m_code) | X86_PG_V | X86_PG_RW | X86_PG_A |
2217 	    X86_PG_M;
2218 
2219 	/*
2220 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
2221 	 * entering all existing kernel mappings into level 5 table.
2222 	 */
2223 	v_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
2224 	    X86_PG_RW | X86_PG_A | X86_PG_M | pg_g;
2225 
2226 	/*
2227 	 * Add pml5 entry for 1:1 trampoline mapping after LA57 is turned on.
2228 	 */
2229 	v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))] =
2230 	    VM_PAGE_TO_PHYS(m_pml4) | X86_PG_V | X86_PG_RW | X86_PG_A |
2231 	    X86_PG_M;
2232 	v_pml4[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2233 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2234 	    X86_PG_M;
2235 
2236 	/*
2237 	 * Copy and call the 48->57 trampoline, hope we return there, alive.
2238 	 */
2239 	bcopy(la57_trampoline, v_code, la57_trampoline_end - la57_trampoline);
2240 	*(u_long *)(v_code + 2 + (la57_trampoline_gdt_desc - la57_trampoline)) =
2241 	    la57_trampoline_gdt - la57_trampoline + VM_PAGE_TO_PHYS(m_code);
2242 	la57_tramp = (void (*)(uint64_t))VM_PAGE_TO_PHYS(m_code);
2243 	invlpg((vm_offset_t)la57_tramp);
2244 	la57_tramp(KPML5phys);
2245 
2246 	/*
2247 	 * gdt was necessary reset, switch back to our gdt.
2248 	 */
2249 	lgdt(&r_gdt);
2250 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2251 	load_ds(_udatasel);
2252 	load_es(_udatasel);
2253 	load_fs(_ufssel);
2254 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2255 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2256 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2257 
2258 	/*
2259 	 * Now unmap the trampoline, and free the pages.
2260 	 * Clear pml5 entry used for 1:1 trampoline mapping.
2261 	 */
2262 	pte_clear(&v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))]);
2263 	invlpg((vm_offset_t)v_code);
2264 	vm_page_free(m_code);
2265 	vm_page_free(m_pdp);
2266 	vm_page_free(m_pd);
2267 	vm_page_free(m_pt);
2268 
2269 	/*
2270 	 * Recursively map PML5 to itself in order to get PTmap and
2271 	 * PDmap.
2272 	 */
2273 	v_pml5[PML5PML5I] = KPML5phys | X86_PG_RW | X86_PG_V | pg_nx;
2274 
2275 	vtoptem = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
2276 	    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2277 	PTmap = (vm_offset_t)P5Tmap;
2278 	vtopdem = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
2279 	    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2280 	PDmap = (vm_offset_t)P5Dmap;
2281 
2282 	kernel_pmap->pm_cr3 = KPML5phys;
2283 	kernel_pmap->pm_pmltop = v_pml5;
2284 	pmap_pt_page_count_adj(kernel_pmap, 1);
2285 }
2286 SYSINIT(la57, SI_SUB_KMEM, SI_ORDER_ANY, pmap_bootstrap_la57, NULL);
2287 
2288 /*
2289  *	Initialize a vm_page's machine-dependent fields.
2290  */
2291 void
pmap_page_init(vm_page_t m)2292 pmap_page_init(vm_page_t m)
2293 {
2294 
2295 	TAILQ_INIT(&m->md.pv_list);
2296 	m->md.pat_mode = PAT_WRITE_BACK;
2297 }
2298 
2299 static int pmap_allow_2m_x_ept;
2300 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
2301     &pmap_allow_2m_x_ept, 0,
2302     "Allow executable superpage mappings in EPT");
2303 
2304 void
pmap_allow_2m_x_ept_recalculate(void)2305 pmap_allow_2m_x_ept_recalculate(void)
2306 {
2307 	/*
2308 	 * SKL002, SKL012S.  Since the EPT format is only used by
2309 	 * Intel CPUs, the vendor check is merely a formality.
2310 	 */
2311 	if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
2312 	    (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
2313 	    (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
2314 	    (CPUID_TO_MODEL(cpu_id) == 0x26 ||	/* Atoms */
2315 	    CPUID_TO_MODEL(cpu_id) == 0x27 ||
2316 	    CPUID_TO_MODEL(cpu_id) == 0x35 ||
2317 	    CPUID_TO_MODEL(cpu_id) == 0x36 ||
2318 	    CPUID_TO_MODEL(cpu_id) == 0x37 ||
2319 	    CPUID_TO_MODEL(cpu_id) == 0x86 ||
2320 	    CPUID_TO_MODEL(cpu_id) == 0x1c ||
2321 	    CPUID_TO_MODEL(cpu_id) == 0x4a ||
2322 	    CPUID_TO_MODEL(cpu_id) == 0x4c ||
2323 	    CPUID_TO_MODEL(cpu_id) == 0x4d ||
2324 	    CPUID_TO_MODEL(cpu_id) == 0x5a ||
2325 	    CPUID_TO_MODEL(cpu_id) == 0x5c ||
2326 	    CPUID_TO_MODEL(cpu_id) == 0x5d ||
2327 	    CPUID_TO_MODEL(cpu_id) == 0x5f ||
2328 	    CPUID_TO_MODEL(cpu_id) == 0x6e ||
2329 	    CPUID_TO_MODEL(cpu_id) == 0x7a ||
2330 	    CPUID_TO_MODEL(cpu_id) == 0x57 ||	/* Knights */
2331 	    CPUID_TO_MODEL(cpu_id) == 0x85))))
2332 		pmap_allow_2m_x_ept = 1;
2333 #ifndef BURN_BRIDGES
2334 	TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2335 #endif
2336 	TUNABLE_INT_FETCH("vm.pmap.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2337 }
2338 
2339 static bool
pmap_allow_2m_x_page(pmap_t pmap,bool executable)2340 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
2341 {
2342 
2343 	return (pmap->pm_type != PT_EPT || !executable ||
2344 	    !pmap_allow_2m_x_ept);
2345 }
2346 
2347 #ifdef NUMA
2348 static void
pmap_init_pv_table(void)2349 pmap_init_pv_table(void)
2350 {
2351 	struct pmap_large_md_page *pvd;
2352 	vm_size_t s;
2353 	long start, end, highest, pv_npg;
2354 	int domain, i, j, pages;
2355 
2356 	/*
2357 	 * For correctness we depend on the size being evenly divisible into a
2358 	 * page. As a tradeoff between performance and total memory use, the
2359 	 * entry is 64 bytes (aka one cacheline) in size. Not being smaller
2360 	 * avoids false-sharing, but not being 128 bytes potentially allows for
2361 	 * avoidable traffic due to adjacent cacheline prefetcher.
2362 	 *
2363 	 * Assert the size so that accidental changes fail to compile.
2364 	 */
2365 	CTASSERT((sizeof(*pvd) == 64));
2366 
2367 	/*
2368 	 * Calculate the size of the array.
2369 	 */
2370 	pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
2371 	pv_npg = howmany(pmap_last_pa, NBPDR);
2372 	s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
2373 	s = round_page(s);
2374 	pv_table = (struct pmap_large_md_page *)kva_alloc(s);
2375 	if (pv_table == NULL)
2376 		panic("%s: kva_alloc failed\n", __func__);
2377 
2378 	/*
2379 	 * Iterate physical segments to allocate space for respective pages.
2380 	 */
2381 	highest = -1;
2382 	s = 0;
2383 	for (i = 0; i < vm_phys_nsegs; i++) {
2384 		end = vm_phys_segs[i].end / NBPDR;
2385 		domain = vm_phys_segs[i].domain;
2386 
2387 		if (highest >= end)
2388 			continue;
2389 
2390 		start = highest + 1;
2391 		pvd = &pv_table[start];
2392 
2393 		pages = end - start + 1;
2394 		s = round_page(pages * sizeof(*pvd));
2395 		highest = start + (s / sizeof(*pvd)) - 1;
2396 
2397 		for (j = 0; j < s; j += PAGE_SIZE) {
2398 			vm_page_t m = vm_page_alloc_noobj_domain(domain, 0);
2399 			if (m == NULL)
2400 				panic("failed to allocate PV table page");
2401 			pmap_qenter((vm_offset_t)pvd + j, &m, 1);
2402 		}
2403 
2404 		for (j = 0; j < s / sizeof(*pvd); j++) {
2405 			rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
2406 			TAILQ_INIT(&pvd->pv_page.pv_list);
2407 			pvd->pv_page.pv_gen = 0;
2408 			pvd->pv_page.pat_mode = 0;
2409 			pvd->pv_invl_gen = 0;
2410 			pvd++;
2411 		}
2412 	}
2413 	pvd = &pv_dummy_large;
2414 	rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
2415 	TAILQ_INIT(&pvd->pv_page.pv_list);
2416 	pvd->pv_page.pv_gen = 0;
2417 	pvd->pv_page.pat_mode = 0;
2418 	pvd->pv_invl_gen = 0;
2419 }
2420 #else
2421 static void
pmap_init_pv_table(void)2422 pmap_init_pv_table(void)
2423 {
2424 	vm_size_t s;
2425 	long i, pv_npg;
2426 
2427 	/*
2428 	 * Initialize the pool of pv list locks.
2429 	 */
2430 	for (i = 0; i < NPV_LIST_LOCKS; i++)
2431 		rw_init(&pv_list_locks[i], "pmap pv list");
2432 
2433 	/*
2434 	 * Calculate the size of the pv head table for superpages.
2435 	 */
2436 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
2437 
2438 	/*
2439 	 * Allocate memory for the pv head table for superpages.
2440 	 */
2441 	s = (vm_size_t)pv_npg * sizeof(struct md_page);
2442 	s = round_page(s);
2443 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
2444 	for (i = 0; i < pv_npg; i++)
2445 		TAILQ_INIT(&pv_table[i].pv_list);
2446 	TAILQ_INIT(&pv_dummy.pv_list);
2447 }
2448 #endif
2449 
2450 /*
2451  *	Initialize the pmap module.
2452  *
2453  *	Called by vm_mem_init(), to initialize any structures that the pmap
2454  *	system needs to map virtual memory.
2455  */
2456 void
pmap_init(void)2457 pmap_init(void)
2458 {
2459 	struct pmap_preinit_mapping *ppim;
2460 	vm_page_t m, mpte;
2461 	int error, i, ret, skz63;
2462 
2463 	/* L1TF, reserve page @0 unconditionally */
2464 	vm_page_blacklist_add(0, bootverbose);
2465 
2466 	/* Detect bare-metal Skylake Server and Skylake-X. */
2467 	if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
2468 	    CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
2469 		/*
2470 		 * Skylake-X errata SKZ63. Processor May Hang When
2471 		 * Executing Code In an HLE Transaction Region between
2472 		 * 40000000H and 403FFFFFH.
2473 		 *
2474 		 * Mark the pages in the range as preallocated.  It
2475 		 * seems to be impossible to distinguish between
2476 		 * Skylake Server and Skylake X.
2477 		 */
2478 		skz63 = 1;
2479 		TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
2480 		if (skz63 != 0) {
2481 			if (bootverbose)
2482 				printf("SKZ63: skipping 4M RAM starting "
2483 				    "at physical 1G\n");
2484 			for (i = 0; i < atop(0x400000); i++) {
2485 				ret = vm_page_blacklist_add(0x40000000 +
2486 				    ptoa(i), false);
2487 				if (!ret && bootverbose)
2488 					printf("page at %#lx already used\n",
2489 					    0x40000000 + ptoa(i));
2490 			}
2491 		}
2492 	}
2493 
2494 	/* IFU */
2495 	pmap_allow_2m_x_ept_recalculate();
2496 
2497 	/*
2498 	 * Initialize the vm page array entries for the kernel pmap's
2499 	 * page table pages.
2500 	 */
2501 	PMAP_LOCK(kernel_pmap);
2502 	for (i = 0; i < nkpt; i++) {
2503 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
2504 		KASSERT(mpte >= vm_page_array &&
2505 		    mpte < &vm_page_array[vm_page_array_size],
2506 		    ("pmap_init: page table page is out of range"));
2507 		mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
2508 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
2509 		mpte->ref_count = 1;
2510 
2511 		/*
2512 		 * Collect the page table pages that were replaced by a 2MB
2513 		 * page in create_pagetables().  They are zero filled.
2514 		 */
2515 		if ((i == 0 ||
2516 		    kernphys + ((vm_paddr_t)(i - 1) << PDRSHIFT) < KERNend) &&
2517 		    pmap_insert_pt_page(kernel_pmap, mpte, false, false))
2518 			panic("pmap_init: pmap_insert_pt_page failed");
2519 	}
2520 	PMAP_UNLOCK(kernel_pmap);
2521 	vm_wire_add(nkpt);
2522 
2523 	/*
2524 	 * If the kernel is running on a virtual machine, then it must assume
2525 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
2526 	 * be prepared for the hypervisor changing the vendor and family that
2527 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
2528 	 * 10h Erratum 383 is enabled if the processor's feature set does not
2529 	 * include at least one feature that is only supported by older Intel
2530 	 * or newer AMD processors.
2531 	 */
2532 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
2533 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
2534 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
2535 	    AMDID2_FMA4)) == 0)
2536 		workaround_erratum383 = 1;
2537 
2538 	/*
2539 	 * Are large page mappings enabled?
2540 	 */
2541 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
2542 	if (pg_ps_enabled) {
2543 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
2544 		    ("pmap_init: can't assign to pagesizes[1]"));
2545 		pagesizes[1] = NBPDR;
2546 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
2547 			KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
2548 			    ("pmap_init: can't assign to pagesizes[2]"));
2549 			pagesizes[2] = NBPDP;
2550 		}
2551 	}
2552 
2553 	/*
2554 	 * Initialize pv chunk lists.
2555 	 */
2556 	for (i = 0; i < PMAP_MEMDOM; i++) {
2557 		mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
2558 		TAILQ_INIT(&pv_chunks[i].pvc_list);
2559 	}
2560 	pmap_init_pv_table();
2561 
2562 	pmap_initialized = 1;
2563 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
2564 		ppim = pmap_preinit_mapping + i;
2565 		if (ppim->va == 0)
2566 			continue;
2567 		/* Make the direct map consistent */
2568 		if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
2569 			(void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
2570 			    ppim->sz, ppim->mode);
2571 		}
2572 		if (!bootverbose)
2573 			continue;
2574 		printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
2575 		    ppim->pa, ppim->va, ppim->sz, ppim->mode);
2576 	}
2577 
2578 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
2579 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
2580 	    (vmem_addr_t *)&qframe);
2581 	if (error != 0)
2582 		panic("qframe allocation failed");
2583 
2584 	lm_ents = 8;
2585 	TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
2586 	if (lm_ents > LMEPML4I - LMSPML4I + 1)
2587 		lm_ents = LMEPML4I - LMSPML4I + 1;
2588 #ifdef KMSAN
2589 	if (lm_ents > KMSANORIGPML4I - LMSPML4I) {
2590 		printf(
2591 	    "pmap: shrinking large map for KMSAN (%d slots to %ld slots)\n",
2592 		    lm_ents, KMSANORIGPML4I - LMSPML4I);
2593 		lm_ents = KMSANORIGPML4I - LMSPML4I;
2594 	}
2595 #endif
2596 	if (bootverbose)
2597 		printf("pmap: large map %u PML4 slots (%lu GB)\n",
2598 		    lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
2599 	if (lm_ents != 0) {
2600 		large_vmem = vmem_create("large", LARGEMAP_MIN_ADDRESS,
2601 		    (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
2602 		if (large_vmem == NULL) {
2603 			printf("pmap: cannot create large map\n");
2604 			lm_ents = 0;
2605 		}
2606 		for (i = 0; i < lm_ents; i++) {
2607 			m = pmap_large_map_getptp_unlocked();
2608 			/* XXXKIB la57 */
2609 			kernel_pml4[LMSPML4I + i] = X86_PG_V |
2610 			    X86_PG_RW | X86_PG_A | X86_PG_M | pg_nx |
2611 			    VM_PAGE_TO_PHYS(m);
2612 		}
2613 	}
2614 }
2615 
2616 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
2617     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
2618     "Maximum number of PML4 entries for use by large map (tunable).  "
2619     "Each entry corresponds to 512GB of address space.");
2620 
2621 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2622     "2MB page mapping counters");
2623 
2624 static COUNTER_U64_DEFINE_EARLY(pmap_pde_demotions);
2625 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, demotions,
2626     CTLFLAG_RD, &pmap_pde_demotions, "2MB page demotions");
2627 
2628 static COUNTER_U64_DEFINE_EARLY(pmap_pde_mappings);
2629 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
2630     &pmap_pde_mappings, "2MB page mappings");
2631 
2632 static COUNTER_U64_DEFINE_EARLY(pmap_pde_p_failures);
2633 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
2634     &pmap_pde_p_failures, "2MB page promotion failures");
2635 
2636 static COUNTER_U64_DEFINE_EARLY(pmap_pde_promotions);
2637 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
2638     &pmap_pde_promotions, "2MB page promotions");
2639 
2640 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2641     "1GB page mapping counters");
2642 
2643 static COUNTER_U64_DEFINE_EARLY(pmap_pdpe_demotions);
2644 SYSCTL_COUNTER_U64(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
2645     &pmap_pdpe_demotions, "1GB page demotions");
2646 
2647 /***************************************************
2648  * Low level helper routines.....
2649  ***************************************************/
2650 
2651 static pt_entry_t
pmap_swap_pat(pmap_t pmap,pt_entry_t entry)2652 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
2653 {
2654 	int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
2655 
2656 	switch (pmap->pm_type) {
2657 	case PT_X86:
2658 	case PT_RVI:
2659 		/* Verify that both PAT bits are not set at the same time */
2660 		KASSERT((entry & x86_pat_bits) != x86_pat_bits,
2661 		    ("Invalid PAT bits in entry %#lx", entry));
2662 
2663 		/* Swap the PAT bits if one of them is set */
2664 		if ((entry & x86_pat_bits) != 0)
2665 			entry ^= x86_pat_bits;
2666 		break;
2667 	case PT_EPT:
2668 		/*
2669 		 * Nothing to do - the memory attributes are represented
2670 		 * the same way for regular pages and superpages.
2671 		 */
2672 		break;
2673 	default:
2674 		panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
2675 	}
2676 
2677 	return (entry);
2678 }
2679 
2680 bool
pmap_is_valid_memattr(pmap_t pmap __unused,vm_memattr_t mode)2681 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
2682 {
2683 
2684 	return (mode >= 0 && mode < PAT_INDEX_SIZE &&
2685 	    pat_index[(int)mode] >= 0);
2686 }
2687 
2688 /*
2689  * Determine the appropriate bits to set in a PTE or PDE for a specified
2690  * caching mode.
2691  */
2692 int
pmap_cache_bits(pmap_t pmap,int mode,bool is_pde)2693 pmap_cache_bits(pmap_t pmap, int mode, bool is_pde)
2694 {
2695 	int cache_bits, pat_flag, pat_idx;
2696 
2697 	if (!pmap_is_valid_memattr(pmap, mode))
2698 		panic("Unknown caching mode %d\n", mode);
2699 
2700 	switch (pmap->pm_type) {
2701 	case PT_X86:
2702 	case PT_RVI:
2703 		/* The PAT bit is different for PTE's and PDE's. */
2704 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2705 
2706 		/* Map the caching mode to a PAT index. */
2707 		pat_idx = pat_index[mode];
2708 
2709 		/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
2710 		cache_bits = 0;
2711 		if (pat_idx & 0x4)
2712 			cache_bits |= pat_flag;
2713 		if (pat_idx & 0x2)
2714 			cache_bits |= PG_NC_PCD;
2715 		if (pat_idx & 0x1)
2716 			cache_bits |= PG_NC_PWT;
2717 		break;
2718 
2719 	case PT_EPT:
2720 		cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
2721 		break;
2722 
2723 	default:
2724 		panic("unsupported pmap type %d", pmap->pm_type);
2725 	}
2726 
2727 	return (cache_bits);
2728 }
2729 
2730 static int
pmap_cache_mask(pmap_t pmap,bool is_pde)2731 pmap_cache_mask(pmap_t pmap, bool is_pde)
2732 {
2733 	int mask;
2734 
2735 	switch (pmap->pm_type) {
2736 	case PT_X86:
2737 	case PT_RVI:
2738 		mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
2739 		break;
2740 	case PT_EPT:
2741 		mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
2742 		break;
2743 	default:
2744 		panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
2745 	}
2746 
2747 	return (mask);
2748 }
2749 
2750 static int
pmap_pat_index(pmap_t pmap,pt_entry_t pte,bool is_pde)2751 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
2752 {
2753 	int pat_flag, pat_idx;
2754 
2755 	pat_idx = 0;
2756 	switch (pmap->pm_type) {
2757 	case PT_X86:
2758 	case PT_RVI:
2759 		/* The PAT bit is different for PTE's and PDE's. */
2760 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2761 
2762 		if ((pte & pat_flag) != 0)
2763 			pat_idx |= 0x4;
2764 		if ((pte & PG_NC_PCD) != 0)
2765 			pat_idx |= 0x2;
2766 		if ((pte & PG_NC_PWT) != 0)
2767 			pat_idx |= 0x1;
2768 		break;
2769 	case PT_EPT:
2770 		if ((pte & EPT_PG_IGNORE_PAT) != 0)
2771 			panic("EPT PTE %#lx has no PAT memory type", pte);
2772 		pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
2773 		break;
2774 	}
2775 
2776 	/* See pmap_init_pat(). */
2777 	if (pat_idx == 4)
2778 		pat_idx = 0;
2779 	if (pat_idx == 7)
2780 		pat_idx = 3;
2781 
2782 	return (pat_idx);
2783 }
2784 
2785 bool
pmap_ps_enabled(pmap_t pmap)2786 pmap_ps_enabled(pmap_t pmap)
2787 {
2788 
2789 	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
2790 }
2791 
2792 static void
pmap_update_pde_store(pmap_t pmap,pd_entry_t * pde,pd_entry_t newpde)2793 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
2794 {
2795 
2796 	switch (pmap->pm_type) {
2797 	case PT_X86:
2798 		break;
2799 	case PT_RVI:
2800 	case PT_EPT:
2801 		/*
2802 		 * XXX
2803 		 * This is a little bogus since the generation number is
2804 		 * supposed to be bumped up when a region of the address
2805 		 * space is invalidated in the page tables.
2806 		 *
2807 		 * In this case the old PDE entry is valid but yet we want
2808 		 * to make sure that any mappings using the old entry are
2809 		 * invalidated in the TLB.
2810 		 *
2811 		 * The reason this works as expected is because we rendezvous
2812 		 * "all" host cpus and force any vcpu context to exit as a
2813 		 * side-effect.
2814 		 */
2815 		atomic_add_long(&pmap->pm_eptgen, 1);
2816 		break;
2817 	default:
2818 		panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
2819 	}
2820 	pde_store(pde, newpde);
2821 }
2822 
2823 /*
2824  * After changing the page size for the specified virtual address in the page
2825  * table, flush the corresponding entries from the processor's TLB.  Only the
2826  * calling processor's TLB is affected.
2827  *
2828  * The calling thread must be pinned to a processor.
2829  */
2830 static void
pmap_update_pde_invalidate(pmap_t pmap,vm_offset_t va,pd_entry_t newpde)2831 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
2832 {
2833 	pt_entry_t PG_G;
2834 
2835 	if (pmap_type_guest(pmap))
2836 		return;
2837 
2838 	KASSERT(pmap->pm_type == PT_X86,
2839 	    ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
2840 
2841 	PG_G = pmap_global_bit(pmap);
2842 
2843 	if ((newpde & PG_PS) == 0)
2844 		/* Demotion: flush a specific 2MB page mapping. */
2845 		pmap_invlpg(pmap, va);
2846 	else if ((newpde & PG_G) == 0)
2847 		/*
2848 		 * Promotion: flush every 4KB page mapping from the TLB
2849 		 * because there are too many to flush individually.
2850 		 */
2851 		invltlb();
2852 	else {
2853 		/*
2854 		 * Promotion: flush every 4KB page mapping from the TLB,
2855 		 * including any global (PG_G) mappings.
2856 		 */
2857 		invltlb_glob();
2858 	}
2859 }
2860 
2861 /*
2862  * The amd64 pmap uses different approaches to TLB invalidation
2863  * depending on the kernel configuration, available hardware features,
2864  * and known hardware errata.  The kernel configuration option that
2865  * has the greatest operational impact on TLB invalidation is PTI,
2866  * which is enabled automatically on affected Intel CPUs.  The most
2867  * impactful hardware features are first PCID, and then INVPCID
2868  * instruction presence.  PCID usage is quite different for PTI
2869  * vs. non-PTI.
2870  *
2871  * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
2872  *   the Meltdown bug in some Intel CPUs.  Under PTI, each user address
2873  *   space is served by two page tables, user and kernel.  The user
2874  *   page table only maps user space and a kernel trampoline.  The
2875  *   kernel trampoline includes the entirety of the kernel text but
2876  *   only the kernel data that is needed to switch from user to kernel
2877  *   mode.  The kernel page table maps the user and kernel address
2878  *   spaces in their entirety.  It is identical to the per-process
2879  *   page table used in non-PTI mode.
2880  *
2881  *   User page tables are only used when the CPU is in user mode.
2882  *   Consequently, some TLB invalidations can be postponed until the
2883  *   switch from kernel to user mode.  In contrast, the user
2884  *   space part of the kernel page table is used for copyout(9), so
2885  *   TLB invalidations on this page table cannot be similarly postponed.
2886  *
2887  *   The existence of a user mode page table for the given pmap is
2888  *   indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
2889  *   which case pm_ucr3 contains the %cr3 register value for the user
2890  *   mode page table's root.
2891  *
2892  * * The pm_active bitmask indicates which CPUs currently have the
2893  *   pmap active.  A CPU's bit is set on context switch to the pmap, and
2894  *   cleared on switching off this CPU.  For the kernel page table,
2895  *   the pm_active field is immutable and contains all CPUs.  The
2896  *   kernel page table is always logically active on every processor,
2897  *   but not necessarily in use by the hardware, e.g., in PTI mode.
2898  *
2899  *   When requesting invalidation of virtual addresses with
2900  *   pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
2901  *   all CPUs recorded as active in pm_active.  Updates to and reads
2902  *   from pm_active are not synchronized, and so they may race with
2903  *   each other.  Shootdown handlers are prepared to handle the race.
2904  *
2905  * * PCID is an optional feature of the long mode x86 MMU where TLB
2906  *   entries are tagged with the 'Process ID' of the address space
2907  *   they belong to.  This feature provides a limited namespace for
2908  *   process identifiers, 12 bits, supporting 4095 simultaneous IDs
2909  *   total.
2910  *
2911  *   Allocation of a PCID to a pmap is done by an algorithm described
2912  *   in section 15.12, "Other TLB Consistency Algorithms", of
2913  *   Vahalia's book "Unix Internals".  A PCID cannot be allocated for
2914  *   the whole lifetime of a pmap in pmap_pinit() due to the limited
2915  *   namespace.  Instead, a per-CPU, per-pmap PCID is assigned when
2916  *   the CPU is about to start caching TLB entries from a pmap,
2917  *   i.e., on the context switch that activates the pmap on the CPU.
2918  *
2919  *   The PCID allocator maintains a per-CPU, per-pmap generation
2920  *   count, pm_gen, which is incremented each time a new PCID is
2921  *   allocated.  On TLB invalidation, the generation counters for the
2922  *   pmap are zeroed, which signals the context switch code that the
2923  *   previously allocated PCID is no longer valid.  Effectively,
2924  *   zeroing any of these counters triggers a TLB shootdown for the
2925  *   given CPU/address space, due to the allocation of a new PCID.
2926  *
2927  *   Zeroing can be performed remotely.  Consequently, if a pmap is
2928  *   inactive on a CPU, then a TLB shootdown for that pmap and CPU can
2929  *   be initiated by an ordinary memory access to reset the target
2930  *   CPU's generation count within the pmap.  The CPU initiating the
2931  *   TLB shootdown does not need to send an IPI to the target CPU.
2932  *
2933  * * PTI + PCID.  The available PCIDs are divided into two sets: PCIDs
2934  *   for complete (kernel) page tables, and PCIDs for user mode page
2935  *   tables.  A user PCID value is obtained from the kernel PCID value
2936  *   by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
2937  *
2938  *   User space page tables are activated on return to user mode, by
2939  *   loading pm_ucr3 into %cr3.  If the PCPU(ucr3_load_mask) requests
2940  *   clearing bit 63 of the loaded ucr3, this effectively causes
2941  *   complete invalidation of the user mode TLB entries for the
2942  *   current pmap.  In which case, local invalidations of individual
2943  *   pages in the user page table are skipped.
2944  *
2945  * * Local invalidation, all modes.  If the requested invalidation is
2946  *   for a specific address or the total invalidation of a currently
2947  *   active pmap, then the TLB is flushed using INVLPG for a kernel
2948  *   page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
2949  *   user space page table(s).
2950  *
2951  *   If the INVPCID instruction is available, it is used to flush user
2952  *   entries from the kernel page table.
2953  *
2954  *   When PCID is enabled, the INVLPG instruction invalidates all TLB
2955  *   entries for the given page that either match the current PCID or
2956  *   are global. Since TLB entries for the same page under different
2957  *   PCIDs are unaffected, kernel pages which reside in all address
2958  *   spaces could be problematic.  We avoid the problem by creating
2959  *   all kernel PTEs with the global flag (PG_G) set, when PTI is
2960  *   disabled.
2961  *
2962  * * mode: PTI disabled, PCID present.  The kernel reserves PCID 0 for its
2963  *   address space, all other 4095 PCIDs are used for user mode spaces
2964  *   as described above.  A context switch allocates a new PCID if
2965  *   the recorded PCID is zero or the recorded generation does not match
2966  *   the CPU's generation, effectively flushing the TLB for this address space.
2967  *   Total remote invalidation is performed by zeroing pm_gen for all CPUs.
2968  *	local user page: INVLPG
2969  *	local kernel page: INVLPG
2970  *	local user total: INVPCID(CTX)
2971  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2972  *	remote user page, inactive pmap: zero pm_gen
2973  *	remote user page, active pmap: zero pm_gen + IPI:INVLPG
2974  *	(Both actions are required to handle the aforementioned pm_active races.)
2975  *	remote kernel page: IPI:INVLPG
2976  *	remote user total, inactive pmap: zero pm_gen
2977  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
2978  *          reload %cr3)
2979  *	(See note above about pm_active races.)
2980  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2981  *
2982  * PTI enabled, PCID present.
2983  *	local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
2984  *          for upt
2985  *	local kernel page: INVLPG
2986  *	local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
2987  *          on loading UCR3 into %cr3 for upt
2988  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2989  *	remote user page, inactive pmap: zero pm_gen
2990  *	remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
2991  *          INVPCID(ADDR) for upt)
2992  *	remote kernel page: IPI:INVLPG
2993  *	remote user total, inactive pmap: zero pm_gen
2994  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
2995  *          clear PCID_SAVE on loading UCR3 into $cr3 for upt)
2996  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2997  *
2998  *  No PCID.
2999  *	local user page: INVLPG
3000  *	local kernel page: INVLPG
3001  *	local user total: reload %cr3
3002  *	local kernel total: invltlb_glob()
3003  *	remote user page, inactive pmap: -
3004  *	remote user page, active pmap: IPI:INVLPG
3005  *	remote kernel page: IPI:INVLPG
3006  *	remote user total, inactive pmap: -
3007  *	remote user total, active pmap: IPI:(reload %cr3)
3008  *	remote kernel total: IPI:invltlb_glob()
3009  *  Since on return to user mode, the reload of %cr3 with ucr3 causes
3010  *  TLB invalidation, no specific action is required for user page table.
3011  *
3012  * EPT.  EPT pmaps do not map KVA, all mappings are userspace.
3013  * XXX TODO
3014  */
3015 
3016 #ifdef SMP
3017 /*
3018  * Interrupt the cpus that are executing in the guest context.
3019  * This will force the vcpu to exit and the cached EPT mappings
3020  * will be invalidated by the host before the next vmresume.
3021  */
3022 static __inline void
pmap_invalidate_ept(pmap_t pmap)3023 pmap_invalidate_ept(pmap_t pmap)
3024 {
3025 	smr_seq_t goal;
3026 	int ipinum;
3027 
3028 	sched_pin();
3029 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
3030 	    ("pmap_invalidate_ept: absurd pm_active"));
3031 
3032 	/*
3033 	 * The TLB mappings associated with a vcpu context are not
3034 	 * flushed each time a different vcpu is chosen to execute.
3035 	 *
3036 	 * This is in contrast with a process's vtop mappings that
3037 	 * are flushed from the TLB on each context switch.
3038 	 *
3039 	 * Therefore we need to do more than just a TLB shootdown on
3040 	 * the active cpus in 'pmap->pm_active'. To do this we keep
3041 	 * track of the number of invalidations performed on this pmap.
3042 	 *
3043 	 * Each vcpu keeps a cache of this counter and compares it
3044 	 * just before a vmresume. If the counter is out-of-date an
3045 	 * invept will be done to flush stale mappings from the TLB.
3046 	 *
3047 	 * To ensure that all vCPU threads have observed the new counter
3048 	 * value before returning, we use SMR.  Ordering is important here:
3049 	 * the VMM enters an SMR read section before loading the counter
3050 	 * and after updating the pm_active bit set.  Thus, pm_active is
3051 	 * a superset of active readers, and any reader that has observed
3052 	 * the goal has observed the new counter value.
3053 	 */
3054 	atomic_add_long(&pmap->pm_eptgen, 1);
3055 
3056 	goal = smr_advance(pmap->pm_eptsmr);
3057 
3058 	/*
3059 	 * Force the vcpu to exit and trap back into the hypervisor.
3060 	 */
3061 	ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
3062 	ipi_selected(pmap->pm_active, ipinum);
3063 	sched_unpin();
3064 
3065 	/*
3066 	 * Ensure that all active vCPUs will observe the new generation counter
3067 	 * value before executing any more guest instructions.
3068 	 */
3069 	smr_wait(pmap->pm_eptsmr, goal);
3070 }
3071 
3072 static inline void
pmap_invalidate_preipi_pcid(pmap_t pmap)3073 pmap_invalidate_preipi_pcid(pmap_t pmap)
3074 {
3075 	struct pmap_pcid *pcidp;
3076 	u_int cpuid, i;
3077 
3078 	sched_pin();
3079 
3080 	cpuid = PCPU_GET(cpuid);
3081 	if (pmap != PCPU_GET(curpmap))
3082 		cpuid = 0xffffffff;	/* An impossible value */
3083 
3084 	CPU_FOREACH(i) {
3085 		if (cpuid != i) {
3086 			pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
3087 			pcidp->pm_gen = 0;
3088 		}
3089 	}
3090 
3091 	/*
3092 	 * The fence is between stores to pm_gen and the read of the
3093 	 * pm_active mask.  We need to ensure that it is impossible
3094 	 * for us to miss the bit update in pm_active and
3095 	 * simultaneously observe a non-zero pm_gen in
3096 	 * pmap_activate_sw(), otherwise TLB update is missed.
3097 	 * Without the fence, IA32 allows such an outcome.  Note that
3098 	 * pm_active is updated by a locked operation, which provides
3099 	 * the reciprocal fence.
3100 	 */
3101 	atomic_thread_fence_seq_cst();
3102 }
3103 
3104 static void
pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)3105 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
3106 {
3107 	sched_pin();
3108 }
3109 
3110 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
3111 {
3112 	return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
3113 	    pmap_invalidate_preipi_nopcid);
3114 }
3115 
3116 static inline void
pmap_invalidate_page_pcid_cb(pmap_t pmap,vm_offset_t va,const bool invpcid_works1)3117 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
3118     const bool invpcid_works1)
3119 {
3120 	struct invpcid_descr d;
3121 	uint64_t kcr3, ucr3;
3122 	uint32_t pcid;
3123 
3124 	/*
3125 	 * Because pm_pcid is recalculated on a context switch, we
3126 	 * must ensure there is no preemption, not just pinning.
3127 	 * Otherwise, we might use a stale value below.
3128 	 */
3129 	CRITICAL_ASSERT(curthread);
3130 
3131 	/*
3132 	 * No need to do anything with user page tables invalidation
3133 	 * if there is no user page table, or invalidation is deferred
3134 	 * until the return to userspace.  ucr3_load_mask is stable
3135 	 * because we have preemption disabled.
3136 	 */
3137 	if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
3138 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3139 		return;
3140 
3141 	pcid = pmap_get_pcid(pmap);
3142 	if (invpcid_works1) {
3143 		d.pcid = pcid | PMAP_PCID_USER_PT;
3144 		d.pad = 0;
3145 		d.addr = va;
3146 		invpcid(&d, INVPCID_ADDR);
3147 	} else {
3148 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3149 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3150 		pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3151 	}
3152 }
3153 
3154 static void
pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap,vm_offset_t va)3155 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
3156 {
3157 	pmap_invalidate_page_pcid_cb(pmap, va, true);
3158 }
3159 
3160 static void
pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t va)3161 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
3162 {
3163 	pmap_invalidate_page_pcid_cb(pmap, va, false);
3164 }
3165 
3166 static void
pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused,vm_offset_t va __unused)3167 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
3168 {
3169 }
3170 
3171 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
3172 {
3173 	if (pmap_pcid_enabled)
3174 		return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
3175 		    pmap_invalidate_page_pcid_noinvpcid_cb);
3176 	return (pmap_invalidate_page_nopcid_cb);
3177 }
3178 
3179 static void
pmap_invalidate_page_curcpu_cb(pmap_t pmap,vm_offset_t va,vm_offset_t addr2 __unused)3180 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
3181     vm_offset_t addr2 __unused)
3182 {
3183 	if (pmap == kernel_pmap) {
3184 		pmap_invlpg(kernel_pmap, va);
3185 	} else if (pmap == PCPU_GET(curpmap)) {
3186 		invlpg(va);
3187 		pmap_invalidate_page_cb(pmap, va);
3188 	}
3189 }
3190 
3191 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3192 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3193 {
3194 	if (pmap_type_guest(pmap)) {
3195 		pmap_invalidate_ept(pmap);
3196 		return;
3197 	}
3198 
3199 	KASSERT(pmap->pm_type == PT_X86,
3200 	    ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
3201 
3202 	pmap_invalidate_preipi(pmap);
3203 	smp_masked_invlpg(va, pmap, pmap_invalidate_page_curcpu_cb);
3204 }
3205 
3206 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
3207 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
3208 
3209 static void
pmap_invalidate_range_pcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,const bool invpcid_works1)3210 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3211     const bool invpcid_works1)
3212 {
3213 	struct invpcid_descr d;
3214 	uint64_t kcr3, ucr3;
3215 	uint32_t pcid;
3216 
3217 	CRITICAL_ASSERT(curthread);
3218 
3219 	if (pmap != PCPU_GET(curpmap) ||
3220 	    pmap->pm_ucr3 == PMAP_NO_CR3 ||
3221 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3222 		return;
3223 
3224 	pcid = pmap_get_pcid(pmap);
3225 	if (invpcid_works1) {
3226 		d.pcid = pcid | PMAP_PCID_USER_PT;
3227 		d.pad = 0;
3228 		for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
3229 			invpcid(&d, INVPCID_ADDR);
3230 	} else {
3231 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3232 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3233 		pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3234 	}
3235 }
3236 
3237 static void
pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3238 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
3239     vm_offset_t eva)
3240 {
3241 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
3242 }
3243 
3244 static void
pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3245 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
3246     vm_offset_t eva)
3247 {
3248 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
3249 }
3250 
3251 static void
pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused,vm_offset_t sva __unused,vm_offset_t eva __unused)3252 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
3253     vm_offset_t eva __unused)
3254 {
3255 }
3256 
3257 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
3258     vm_offset_t))
3259 {
3260 	if (pmap_pcid_enabled)
3261 		return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
3262 		    pmap_invalidate_range_pcid_noinvpcid_cb);
3263 	return (pmap_invalidate_range_nopcid_cb);
3264 }
3265 
3266 static void
pmap_invalidate_range_curcpu_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3267 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3268 {
3269 	vm_offset_t addr;
3270 
3271 	if (pmap == kernel_pmap) {
3272 		if (PCPU_GET(pcid_invlpg_workaround)) {
3273 			struct invpcid_descr d = { 0 };
3274 
3275 			invpcid(&d, INVPCID_CTXGLOB);
3276 		} else {
3277 			for (addr = sva; addr < eva; addr += PAGE_SIZE)
3278 				invlpg(addr);
3279 		}
3280 	} else if (pmap == PCPU_GET(curpmap)) {
3281 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3282 			invlpg(addr);
3283 		pmap_invalidate_range_cb(pmap, sva, eva);
3284 	}
3285 }
3286 
3287 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3288 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3289 {
3290 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
3291 		pmap_invalidate_all(pmap);
3292 		return;
3293 	}
3294 
3295 	if (pmap_type_guest(pmap)) {
3296 		pmap_invalidate_ept(pmap);
3297 		return;
3298 	}
3299 
3300 	KASSERT(pmap->pm_type == PT_X86,
3301 	    ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
3302 
3303 	pmap_invalidate_preipi(pmap);
3304 	smp_masked_invlpg_range(sva, eva, pmap,
3305 	    pmap_invalidate_range_curcpu_cb);
3306 }
3307 
3308 static inline void
pmap_invalidate_all_pcid_cb(pmap_t pmap,bool invpcid_works1)3309 pmap_invalidate_all_pcid_cb(pmap_t pmap, bool invpcid_works1)
3310 {
3311 	struct invpcid_descr d;
3312 	uint64_t kcr3;
3313 	uint32_t pcid;
3314 
3315 	if (pmap == kernel_pmap) {
3316 		if (invpcid_works1) {
3317 			bzero(&d, sizeof(d));
3318 			invpcid(&d, INVPCID_CTXGLOB);
3319 		} else {
3320 			invltlb_glob();
3321 		}
3322 	} else if (pmap == PCPU_GET(curpmap)) {
3323 		CRITICAL_ASSERT(curthread);
3324 
3325 		pcid = pmap_get_pcid(pmap);
3326 		if (invpcid_works1) {
3327 			d.pcid = pcid;
3328 			d.pad = 0;
3329 			d.addr = 0;
3330 			invpcid(&d, INVPCID_CTX);
3331 		} else {
3332 			kcr3 = pmap->pm_cr3 | pcid;
3333 			load_cr3(kcr3);
3334 		}
3335 		if (pmap->pm_ucr3 != PMAP_NO_CR3)
3336 			PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
3337 	}
3338 }
3339 
3340 static void
pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)3341 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)
3342 {
3343 	pmap_invalidate_all_pcid_cb(pmap, true);
3344 }
3345 
3346 static void
pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)3347 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)
3348 {
3349 	pmap_invalidate_all_pcid_cb(pmap, false);
3350 }
3351 
3352 static void
pmap_invalidate_all_nopcid_cb(pmap_t pmap)3353 pmap_invalidate_all_nopcid_cb(pmap_t pmap)
3354 {
3355 	if (pmap == kernel_pmap)
3356 		invltlb_glob();
3357 	else if (pmap == PCPU_GET(curpmap))
3358 		invltlb();
3359 }
3360 
3361 DEFINE_IFUNC(static, void, pmap_invalidate_all_cb, (pmap_t))
3362 {
3363 	if (pmap_pcid_enabled)
3364 		return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
3365 		    pmap_invalidate_all_pcid_noinvpcid_cb);
3366 	return (pmap_invalidate_all_nopcid_cb);
3367 }
3368 
3369 static void
pmap_invalidate_all_curcpu_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3370 pmap_invalidate_all_curcpu_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3371     vm_offset_t addr2 __unused)
3372 {
3373 	pmap_invalidate_all_cb(pmap);
3374 }
3375 
3376 void
pmap_invalidate_all(pmap_t pmap)3377 pmap_invalidate_all(pmap_t pmap)
3378 {
3379 	if (pmap_type_guest(pmap)) {
3380 		pmap_invalidate_ept(pmap);
3381 		return;
3382 	}
3383 
3384 	KASSERT(pmap->pm_type == PT_X86,
3385 	    ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
3386 
3387 	pmap_invalidate_preipi(pmap);
3388 	smp_masked_invltlb(pmap, pmap_invalidate_all_curcpu_cb);
3389 }
3390 
3391 static void
pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,vm_offset_t va __unused,vm_offset_t addr2 __unused)3392 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
3393     vm_offset_t addr2 __unused)
3394 {
3395 	wbinvd();
3396 }
3397 
3398 void
pmap_invalidate_cache(void)3399 pmap_invalidate_cache(void)
3400 {
3401 	sched_pin();
3402 	smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
3403 }
3404 
3405 struct pde_action {
3406 	cpuset_t invalidate;	/* processors that invalidate their TLB */
3407 	pmap_t pmap;
3408 	vm_offset_t va;
3409 	pd_entry_t *pde;
3410 	pd_entry_t newpde;
3411 	u_int store;		/* processor that updates the PDE */
3412 };
3413 
3414 static void
pmap_update_pde_action(void * arg)3415 pmap_update_pde_action(void *arg)
3416 {
3417 	struct pde_action *act = arg;
3418 
3419 	if (act->store == PCPU_GET(cpuid))
3420 		pmap_update_pde_store(act->pmap, act->pde, act->newpde);
3421 }
3422 
3423 static void
pmap_update_pde_teardown(void * arg)3424 pmap_update_pde_teardown(void *arg)
3425 {
3426 	struct pde_action *act = arg;
3427 
3428 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
3429 		pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
3430 }
3431 
3432 /*
3433  * Change the page size for the specified virtual address in a way that
3434  * prevents any possibility of the TLB ever having two entries that map the
3435  * same virtual address using different page sizes.  This is the recommended
3436  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
3437  * machine check exception for a TLB state that is improperly diagnosed as a
3438  * hardware error.
3439  */
3440 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3441 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3442 {
3443 	struct pde_action act;
3444 	cpuset_t active, other_cpus;
3445 	u_int cpuid;
3446 
3447 	sched_pin();
3448 	cpuid = PCPU_GET(cpuid);
3449 	other_cpus = all_cpus;
3450 	CPU_CLR(cpuid, &other_cpus);
3451 	if (pmap == kernel_pmap || pmap_type_guest(pmap))
3452 		active = all_cpus;
3453 	else {
3454 		active = pmap->pm_active;
3455 	}
3456 	if (CPU_OVERLAP(&active, &other_cpus)) {
3457 		act.store = cpuid;
3458 		act.invalidate = active;
3459 		act.va = va;
3460 		act.pmap = pmap;
3461 		act.pde = pde;
3462 		act.newpde = newpde;
3463 		CPU_SET(cpuid, &active);
3464 		smp_rendezvous_cpus(active,
3465 		    smp_no_rendezvous_barrier, pmap_update_pde_action,
3466 		    pmap_update_pde_teardown, &act);
3467 	} else {
3468 		pmap_update_pde_store(pmap, pde, newpde);
3469 		if (CPU_ISSET(cpuid, &active))
3470 			pmap_update_pde_invalidate(pmap, va, newpde);
3471 	}
3472 	sched_unpin();
3473 }
3474 #else /* !SMP */
3475 /*
3476  * Normal, non-SMP, invalidation functions.
3477  */
3478 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3479 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3480 {
3481 	struct invpcid_descr d;
3482 	struct pmap_pcid *pcidp;
3483 	uint64_t kcr3, ucr3;
3484 	uint32_t pcid;
3485 
3486 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3487 		pmap->pm_eptgen++;
3488 		return;
3489 	}
3490 	KASSERT(pmap->pm_type == PT_X86,
3491 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3492 
3493 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3494 		invlpg(va);
3495 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3496 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3497 			critical_enter();
3498 			pcid = pmap_get_pcid(pmap);
3499 			if (invpcid_works) {
3500 				d.pcid = pcid | PMAP_PCID_USER_PT;
3501 				d.pad = 0;
3502 				d.addr = va;
3503 				invpcid(&d, INVPCID_ADDR);
3504 			} else {
3505 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3506 				ucr3 = pmap->pm_ucr3 | pcid |
3507 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3508 				pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3509 			}
3510 			critical_exit();
3511 		}
3512 	} else if (pmap_pcid_enabled) {
3513 		pcidp = zpcpu_get(pmap->pm_pcidp);
3514 		pcidp->pm_gen = 0;
3515 	}
3516 }
3517 
3518 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3519 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3520 {
3521 	struct invpcid_descr d;
3522 	struct pmap_pcid *pcidp;
3523 	vm_offset_t addr;
3524 	uint64_t kcr3, ucr3;
3525 	uint32_t pcid;
3526 
3527 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3528 		pmap->pm_eptgen++;
3529 		return;
3530 	}
3531 	KASSERT(pmap->pm_type == PT_X86,
3532 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3533 
3534 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3535 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3536 			invlpg(addr);
3537 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3538 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3539 			critical_enter();
3540 			pcid = pmap_get_pcid(pmap);
3541 			if (invpcid_works) {
3542 				d.pcid = pcid | PMAP_PCID_USER_PT;
3543 				d.pad = 0;
3544 				d.addr = sva;
3545 				for (; d.addr < eva; d.addr += PAGE_SIZE)
3546 					invpcid(&d, INVPCID_ADDR);
3547 			} else {
3548 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3549 				ucr3 = pmap->pm_ucr3 | pcid |
3550 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3551 				pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3552 			}
3553 			critical_exit();
3554 		}
3555 	} else if (pmap_pcid_enabled) {
3556 		pcidp = zpcpu_get(pmap->pm_pcidp);
3557 		pcidp->pm_gen = 0;
3558 	}
3559 }
3560 
3561 void
pmap_invalidate_all(pmap_t pmap)3562 pmap_invalidate_all(pmap_t pmap)
3563 {
3564 	struct invpcid_descr d;
3565 	struct pmap_pcid *pcidp;
3566 	uint64_t kcr3, ucr3;
3567 	uint32_t pcid;
3568 
3569 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3570 		pmap->pm_eptgen++;
3571 		return;
3572 	}
3573 	KASSERT(pmap->pm_type == PT_X86,
3574 	    ("pmap_invalidate_all: unknown type %d", pmap->pm_type));
3575 
3576 	if (pmap == kernel_pmap) {
3577 		if (pmap_pcid_enabled && invpcid_works) {
3578 			bzero(&d, sizeof(d));
3579 			invpcid(&d, INVPCID_CTXGLOB);
3580 		} else {
3581 			invltlb_glob();
3582 		}
3583 	} else if (pmap == PCPU_GET(curpmap)) {
3584 		if (pmap_pcid_enabled) {
3585 			critical_enter();
3586 			pcid = pmap_get_pcid(pmap);
3587 			if (invpcid_works) {
3588 				d.pcid = pcid;
3589 				d.pad = 0;
3590 				d.addr = 0;
3591 				invpcid(&d, INVPCID_CTX);
3592 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3593 					d.pcid |= PMAP_PCID_USER_PT;
3594 					invpcid(&d, INVPCID_CTX);
3595 				}
3596 			} else {
3597 				kcr3 = pmap->pm_cr3 | pcid;
3598 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3599 					ucr3 = pmap->pm_ucr3 | pcid |
3600 					    PMAP_PCID_USER_PT;
3601 					pmap_pti_pcid_invalidate(ucr3, kcr3);
3602 				} else
3603 					load_cr3(kcr3);
3604 			}
3605 			critical_exit();
3606 		} else {
3607 			invltlb();
3608 		}
3609 	} else if (pmap_pcid_enabled) {
3610 		pcidp = zpcpu_get(pmap->pm_pcidp);
3611 		pcidp->pm_gen = 0;
3612 	}
3613 }
3614 
3615 void
pmap_invalidate_cache(void)3616 pmap_invalidate_cache(void)
3617 {
3618 
3619 	wbinvd();
3620 }
3621 
3622 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3623 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3624 {
3625 	struct pmap_pcid *pcidp;
3626 
3627 	pmap_update_pde_store(pmap, pde, newpde);
3628 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
3629 		pmap_update_pde_invalidate(pmap, va, newpde);
3630 	else {
3631 		pcidp = zpcpu_get(pmap->pm_pcidp);
3632 		pcidp->pm_gen = 0;
3633 	}
3634 }
3635 #endif /* !SMP */
3636 
3637 static void
pmap_invalidate_pde_page(pmap_t pmap,vm_offset_t va,pd_entry_t pde)3638 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
3639 {
3640 
3641 	/*
3642 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
3643 	 * by a promotion that did not invalidate the 512 4KB page mappings
3644 	 * that might exist in the TLB.  Consequently, at this point, the TLB
3645 	 * may hold both 4KB and 2MB page mappings for the address range [va,
3646 	 * va + NBPDR).  Therefore, the entire range must be invalidated here.
3647 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
3648 	 * 4KB page mappings for the address range [va, va + NBPDR), and so a
3649 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
3650 	 * TLB.
3651 	 */
3652 	if ((pde & PG_PROMOTED) != 0)
3653 		pmap_invalidate_range(pmap, va, va + NBPDR - 1);
3654 	else
3655 		pmap_invalidate_page(pmap, va);
3656 }
3657 
3658 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
3659     (vm_offset_t sva, vm_offset_t eva))
3660 {
3661 
3662 	if ((cpu_feature & CPUID_SS) != 0)
3663 		return (pmap_invalidate_cache_range_selfsnoop);
3664 	if ((cpu_feature & CPUID_CLFSH) != 0)
3665 		return (pmap_force_invalidate_cache_range);
3666 	return (pmap_invalidate_cache_range_all);
3667 }
3668 
3669 #define PMAP_CLFLUSH_THRESHOLD   (2 * 1024 * 1024)
3670 
3671 static void
pmap_invalidate_cache_range_check_align(vm_offset_t sva,vm_offset_t eva)3672 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
3673 {
3674 
3675 	KASSERT((sva & PAGE_MASK) == 0,
3676 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
3677 	KASSERT((eva & PAGE_MASK) == 0,
3678 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
3679 }
3680 
3681 static void
pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,vm_offset_t eva)3682 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
3683 {
3684 
3685 	pmap_invalidate_cache_range_check_align(sva, eva);
3686 }
3687 
3688 void
pmap_force_invalidate_cache_range(vm_offset_t sva,vm_offset_t eva)3689 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
3690 {
3691 
3692 	sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
3693 
3694 	/*
3695 	 * XXX: Some CPUs fault, hang, or trash the local APIC
3696 	 * registers if we use CLFLUSH on the local APIC range.  The
3697 	 * local APIC is always uncached, so we don't need to flush
3698 	 * for that range anyway.
3699 	 */
3700 	if (pmap_kextract(sva) == lapic_paddr)
3701 		return;
3702 
3703 	if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
3704 		/*
3705 		 * Do per-cache line flush.  Use a locked
3706 		 * instruction to insure that previous stores are
3707 		 * included in the write-back.  The processor
3708 		 * propagates flush to other processors in the cache
3709 		 * coherence domain.
3710 		 */
3711 		atomic_thread_fence_seq_cst();
3712 		for (; sva < eva; sva += cpu_clflush_line_size)
3713 			clflushopt(sva);
3714 		atomic_thread_fence_seq_cst();
3715 	} else {
3716 		/*
3717 		 * Writes are ordered by CLFLUSH on Intel CPUs.
3718 		 */
3719 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3720 			mfence();
3721 		for (; sva < eva; sva += cpu_clflush_line_size)
3722 			clflush(sva);
3723 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3724 			mfence();
3725 	}
3726 }
3727 
3728 static void
pmap_invalidate_cache_range_all(vm_offset_t sva,vm_offset_t eva)3729 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
3730 {
3731 
3732 	pmap_invalidate_cache_range_check_align(sva, eva);
3733 	pmap_invalidate_cache();
3734 }
3735 
3736 /*
3737  * Remove the specified set of pages from the data and instruction caches.
3738  *
3739  * In contrast to pmap_invalidate_cache_range(), this function does not
3740  * rely on the CPU's self-snoop feature, because it is intended for use
3741  * when moving pages into a different cache domain.
3742  */
3743 void
pmap_invalidate_cache_pages(vm_page_t * pages,int count)3744 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
3745 {
3746 	vm_offset_t daddr, eva;
3747 	int i;
3748 	bool useclflushopt;
3749 
3750 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
3751 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
3752 	    ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
3753 		pmap_invalidate_cache();
3754 	else {
3755 		if (useclflushopt)
3756 			atomic_thread_fence_seq_cst();
3757 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3758 			mfence();
3759 		for (i = 0; i < count; i++) {
3760 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
3761 			eva = daddr + PAGE_SIZE;
3762 			for (; daddr < eva; daddr += cpu_clflush_line_size) {
3763 				if (useclflushopt)
3764 					clflushopt(daddr);
3765 				else
3766 					clflush(daddr);
3767 			}
3768 		}
3769 		if (useclflushopt)
3770 			atomic_thread_fence_seq_cst();
3771 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3772 			mfence();
3773 	}
3774 }
3775 
3776 void
pmap_flush_cache_range(vm_offset_t sva,vm_offset_t eva)3777 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
3778 {
3779 
3780 	pmap_invalidate_cache_range_check_align(sva, eva);
3781 
3782 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
3783 		pmap_force_invalidate_cache_range(sva, eva);
3784 		return;
3785 	}
3786 
3787 	/* See comment in pmap_force_invalidate_cache_range(). */
3788 	if (pmap_kextract(sva) == lapic_paddr)
3789 		return;
3790 
3791 	atomic_thread_fence_seq_cst();
3792 	for (; sva < eva; sva += cpu_clflush_line_size)
3793 		clwb(sva);
3794 	atomic_thread_fence_seq_cst();
3795 }
3796 
3797 void
pmap_flush_cache_phys_range(vm_paddr_t spa,vm_paddr_t epa,vm_memattr_t mattr)3798 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
3799 {
3800 	pt_entry_t *pte;
3801 	vm_offset_t vaddr;
3802 	int error __diagused;
3803 	int pte_bits;
3804 
3805 	KASSERT((spa & PAGE_MASK) == 0,
3806 	    ("pmap_flush_cache_phys_range: spa not page-aligned"));
3807 	KASSERT((epa & PAGE_MASK) == 0,
3808 	    ("pmap_flush_cache_phys_range: epa not page-aligned"));
3809 
3810 	if (spa < dmaplimit) {
3811 		pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
3812 		    dmaplimit, epa)));
3813 		if (dmaplimit >= epa)
3814 			return;
3815 		spa = dmaplimit;
3816 	}
3817 
3818 	pte_bits = pmap_cache_bits(kernel_pmap, mattr, false) | X86_PG_RW |
3819 	    X86_PG_V;
3820 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3821 	    &vaddr);
3822 	KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3823 	pte = vtopte(vaddr);
3824 	for (; spa < epa; spa += PAGE_SIZE) {
3825 		sched_pin();
3826 		pte_store(pte, spa | pte_bits);
3827 		pmap_invlpg(kernel_pmap, vaddr);
3828 		/* XXXKIB atomic inside flush_cache_range are excessive */
3829 		pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
3830 		sched_unpin();
3831 	}
3832 	vmem_free(kernel_arena, vaddr, PAGE_SIZE);
3833 }
3834 
3835 /*
3836  *	Routine:	pmap_extract
3837  *	Function:
3838  *		Extract the physical page address associated
3839  *		with the given map/virtual_address pair.
3840  */
3841 vm_paddr_t
pmap_extract(pmap_t pmap,vm_offset_t va)3842 pmap_extract(pmap_t pmap, vm_offset_t va)
3843 {
3844 	pdp_entry_t *pdpe;
3845 	pd_entry_t *pde;
3846 	pt_entry_t *pte, PG_V;
3847 	vm_paddr_t pa;
3848 
3849 	pa = 0;
3850 	PG_V = pmap_valid_bit(pmap);
3851 	PMAP_LOCK(pmap);
3852 	pdpe = pmap_pdpe(pmap, va);
3853 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
3854 		if ((*pdpe & PG_PS) != 0)
3855 			pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
3856 		else {
3857 			pde = pmap_pdpe_to_pde(pdpe, va);
3858 			if ((*pde & PG_V) != 0) {
3859 				if ((*pde & PG_PS) != 0) {
3860 					pa = (*pde & PG_PS_FRAME) |
3861 					    (va & PDRMASK);
3862 				} else {
3863 					pte = pmap_pde_to_pte(pde, va);
3864 					pa = (*pte & PG_FRAME) |
3865 					    (va & PAGE_MASK);
3866 				}
3867 			}
3868 		}
3869 	}
3870 	PMAP_UNLOCK(pmap);
3871 	return (pa);
3872 }
3873 
3874 /*
3875  *	Routine:	pmap_extract_and_hold
3876  *	Function:
3877  *		Atomically extract and hold the physical page
3878  *		with the given pmap and virtual address pair
3879  *		if that mapping permits the given protection.
3880  */
3881 vm_page_t
pmap_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)3882 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3883 {
3884 	pdp_entry_t pdpe, *pdpep;
3885 	pd_entry_t pde, *pdep;
3886 	pt_entry_t pte, PG_RW, PG_V;
3887 	vm_page_t m;
3888 
3889 	m = NULL;
3890 	PG_RW = pmap_rw_bit(pmap);
3891 	PG_V = pmap_valid_bit(pmap);
3892 	PMAP_LOCK(pmap);
3893 
3894 	pdpep = pmap_pdpe(pmap, va);
3895 	if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
3896 		goto out;
3897 	if ((pdpe & PG_PS) != 0) {
3898 		if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3899 			goto out;
3900 		m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
3901 		goto check_page;
3902 	}
3903 
3904 	pdep = pmap_pdpe_to_pde(pdpep, va);
3905 	if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
3906 		goto out;
3907 	if ((pde & PG_PS) != 0) {
3908 		if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3909 			goto out;
3910 		m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
3911 		goto check_page;
3912 	}
3913 
3914 	pte = *pmap_pde_to_pte(pdep, va);
3915 	if ((pte & PG_V) == 0 ||
3916 	    ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
3917 		goto out;
3918 	m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3919 
3920 check_page:
3921 	if (m != NULL && !vm_page_wire_mapped(m))
3922 		m = NULL;
3923 out:
3924 	PMAP_UNLOCK(pmap);
3925 	return (m);
3926 }
3927 
3928 /*
3929  *	Routine:	pmap_kextract
3930  *	Function:
3931  *		Extract the physical page address associated with the given kernel
3932  *		virtual address.
3933  */
3934 vm_paddr_t
pmap_kextract(vm_offset_t va)3935 pmap_kextract(vm_offset_t va)
3936 {
3937 	pd_entry_t pde;
3938 	vm_paddr_t pa;
3939 
3940 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
3941 		pa = DMAP_TO_PHYS(va);
3942 	} else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
3943 		pa = pmap_large_map_kextract(va);
3944 	} else {
3945 		pde = *vtopde(va);
3946 		if (pde & PG_PS) {
3947 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
3948 		} else {
3949 			/*
3950 			 * Beware of a concurrent promotion that changes the
3951 			 * PDE at this point!  For example, vtopte() must not
3952 			 * be used to access the PTE because it would use the
3953 			 * new PDE.  It is, however, safe to use the old PDE
3954 			 * because the page table page is preserved by the
3955 			 * promotion.
3956 			 */
3957 			pa = *pmap_pde_to_pte(&pde, va);
3958 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3959 		}
3960 	}
3961 	return (pa);
3962 }
3963 
3964 /***************************************************
3965  * Low level mapping routines.....
3966  ***************************************************/
3967 
3968 /*
3969  * Add a wired page to the kva.
3970  * Note: not SMP coherent.
3971  */
3972 void
pmap_kenter(vm_offset_t va,vm_paddr_t pa)3973 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
3974 {
3975 	pt_entry_t *pte;
3976 
3977 	pte = vtopte(va);
3978 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3979 	    X86_PG_RW | X86_PG_V);
3980 }
3981 
3982 static __inline void
pmap_kenter_attr(vm_offset_t va,vm_paddr_t pa,int mode)3983 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
3984 {
3985 	pt_entry_t *pte;
3986 	int cache_bits;
3987 
3988 	pte = vtopte(va);
3989 	cache_bits = pmap_cache_bits(kernel_pmap, mode, false);
3990 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3991 	    X86_PG_RW | X86_PG_V | cache_bits);
3992 }
3993 
3994 /*
3995  * Remove a page from the kernel pagetables.
3996  * Note: not SMP coherent.
3997  */
3998 void
pmap_kremove(vm_offset_t va)3999 pmap_kremove(vm_offset_t va)
4000 {
4001 	pt_entry_t *pte;
4002 
4003 	pte = vtopte(va);
4004 	pte_clear(pte);
4005 }
4006 
4007 /*
4008  *	Used to map a range of physical addresses into kernel
4009  *	virtual address space.
4010  *
4011  *	The value passed in '*virt' is a suggested virtual address for
4012  *	the mapping. Architectures which can support a direct-mapped
4013  *	physical to virtual region can return the appropriate address
4014  *	within that region, leaving '*virt' unchanged. Other
4015  *	architectures should map the pages starting at '*virt' and
4016  *	update '*virt' with the first usable address after the mapped
4017  *	region.
4018  */
4019 vm_offset_t
pmap_map(vm_offset_t * virt,vm_paddr_t start,vm_paddr_t end,int prot)4020 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
4021 {
4022 	return PHYS_TO_DMAP(start);
4023 }
4024 
4025 /*
4026  * Add a list of wired pages to the kva
4027  * this routine is only used for temporary
4028  * kernel mappings that do not need to have
4029  * page modification or references recorded.
4030  * Note that old mappings are simply written
4031  * over.  The page *must* be wired.
4032  * Note: SMP coherent.  Uses a ranged shootdown IPI.
4033  */
4034 void
pmap_qenter(vm_offset_t sva,vm_page_t * ma,int count)4035 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
4036 {
4037 	pt_entry_t *endpte, oldpte, pa, *pte;
4038 	vm_page_t m;
4039 	int cache_bits;
4040 
4041 	oldpte = 0;
4042 	pte = vtopte(sva);
4043 	endpte = pte + count;
4044 	while (pte < endpte) {
4045 		m = *ma++;
4046 		cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
4047 		pa = VM_PAGE_TO_PHYS(m) | cache_bits;
4048 		if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
4049 			oldpte |= *pte;
4050 			pte_store(pte, pa | pg_g | pg_nx | X86_PG_A |
4051 			    X86_PG_M | X86_PG_RW | X86_PG_V);
4052 		}
4053 		pte++;
4054 	}
4055 	if (__predict_false((oldpte & X86_PG_V) != 0))
4056 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
4057 		    PAGE_SIZE);
4058 }
4059 
4060 /*
4061  * This routine tears out page mappings from the
4062  * kernel -- it is meant only for temporary mappings.
4063  * Note: SMP coherent.  Uses a ranged shootdown IPI.
4064  */
4065 void
pmap_qremove(vm_offset_t sva,int count)4066 pmap_qremove(vm_offset_t sva, int count)
4067 {
4068 	vm_offset_t va;
4069 
4070 	va = sva;
4071 	while (count-- > 0) {
4072 		KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
4073 		pmap_kremove(va);
4074 		va += PAGE_SIZE;
4075 	}
4076 	pmap_invalidate_range(kernel_pmap, sva, va);
4077 }
4078 
4079 /***************************************************
4080  * Page table page management routines.....
4081  ***************************************************/
4082 /*
4083  * Schedule the specified unused page table page to be freed.  Specifically,
4084  * add the page to the specified list of pages that will be released to the
4085  * physical memory manager after the TLB has been updated.
4086  */
4087 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,bool set_PG_ZERO)4088 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
4089 {
4090 
4091 	if (set_PG_ZERO)
4092 		m->flags |= PG_ZERO;
4093 	else
4094 		m->flags &= ~PG_ZERO;
4095 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4096 }
4097 
4098 /*
4099  * Inserts the specified page table page into the specified pmap's collection
4100  * of idle page table pages.  Each of a pmap's page table pages is responsible
4101  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4102  * ordered by this virtual address range.
4103  *
4104  * If "promoted" is false, then the page table page "mpte" must be zero filled;
4105  * "mpte"'s valid field will be set to 0.
4106  *
4107  * If "promoted" is true and "allpte_PG_A_set" is false, then "mpte" must
4108  * contain valid mappings with identical attributes except for PG_A; "mpte"'s
4109  * valid field will be set to 1.
4110  *
4111  * If "promoted" and "allpte_PG_A_set" are both true, then "mpte" must contain
4112  * valid mappings with identical attributes including PG_A; "mpte"'s valid
4113  * field will be set to VM_PAGE_BITS_ALL.
4114  */
4115 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted,bool allpte_PG_A_set)4116 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
4117     bool allpte_PG_A_set)
4118 {
4119 
4120 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4121 	KASSERT(promoted || !allpte_PG_A_set,
4122 	    ("a zero-filled PTP can't have PG_A set in every PTE"));
4123 	mpte->valid = promoted ? (allpte_PG_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
4124 	return (vm_radix_insert(&pmap->pm_root, mpte));
4125 }
4126 
4127 /*
4128  * Removes the page table page mapping the specified virtual address from the
4129  * specified pmap's collection of idle page table pages, and returns it.
4130  * Otherwise, returns NULL if there is no page table page corresponding to the
4131  * specified virtual address.
4132  */
4133 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)4134 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4135 {
4136 
4137 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4138 	return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
4139 }
4140 
4141 /*
4142  * Decrements a page table page's reference count, which is used to record the
4143  * number of valid page table entries within the page.  If the reference count
4144  * drops to zero, then the page table page is unmapped.  Returns true if the
4145  * page table page was unmapped and false otherwise.
4146  */
4147 static inline bool
pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4148 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4149 {
4150 
4151 	--m->ref_count;
4152 	if (m->ref_count == 0) {
4153 		_pmap_unwire_ptp(pmap, va, m, free);
4154 		return (true);
4155 	} else
4156 		return (false);
4157 }
4158 
4159 static void
_pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4160 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4161 {
4162 	pml5_entry_t *pml5;
4163 	pml4_entry_t *pml4;
4164 	pdp_entry_t *pdp;
4165 	pd_entry_t *pd;
4166 	vm_page_t pdpg, pdppg, pml4pg;
4167 
4168 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4169 
4170 	/*
4171 	 * unmap the page table page
4172 	 */
4173 	if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
4174 		/* PML4 page */
4175 		MPASS(pmap_is_la57(pmap));
4176 		pml5 = pmap_pml5e(pmap, va);
4177 		*pml5 = 0;
4178 		if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
4179 			pml5 = pmap_pml5e_u(pmap, va);
4180 			*pml5 = 0;
4181 		}
4182 	} else if (m->pindex >= NUPDE + NUPDPE) {
4183 		/* PDP page */
4184 		pml4 = pmap_pml4e(pmap, va);
4185 		*pml4 = 0;
4186 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4187 		    va <= VM_MAXUSER_ADDRESS) {
4188 			pml4 = pmap_pml4e_u(pmap, va);
4189 			*pml4 = 0;
4190 		}
4191 	} else if (m->pindex >= NUPDE) {
4192 		/* PD page */
4193 		pdp = pmap_pdpe(pmap, va);
4194 		*pdp = 0;
4195 	} else {
4196 		/* PTE page */
4197 		pd = pmap_pde(pmap, va);
4198 		*pd = 0;
4199 	}
4200 	if (m->pindex < NUPDE) {
4201 		/* We just released a PT, unhold the matching PD */
4202 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
4203 		pmap_unwire_ptp(pmap, va, pdpg, free);
4204 	} else if (m->pindex < NUPDE + NUPDPE) {
4205 		/* We just released a PD, unhold the matching PDP */
4206 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
4207 		pmap_unwire_ptp(pmap, va, pdppg, free);
4208 	} else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
4209 		/* We just released a PDP, unhold the matching PML4 */
4210 		pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
4211 		pmap_unwire_ptp(pmap, va, pml4pg, free);
4212 	}
4213 
4214 	pmap_pt_page_count_adj(pmap, -1);
4215 
4216 	/*
4217 	 * Put page on a list so that it is released after
4218 	 * *ALL* TLB shootdown is done
4219 	 */
4220 	pmap_add_delayed_free_list(m, free, true);
4221 }
4222 
4223 /*
4224  * After removing a page table entry, this routine is used to
4225  * conditionally free the page, and manage the reference count.
4226  */
4227 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,pd_entry_t ptepde,struct spglist * free)4228 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
4229     struct spglist *free)
4230 {
4231 	vm_page_t mpte;
4232 
4233 	if (va >= VM_MAXUSER_ADDRESS)
4234 		return (0);
4235 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4236 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4237 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4238 }
4239 
4240 /*
4241  * Release a page table page reference after a failed attempt to create a
4242  * mapping.
4243  */
4244 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)4245 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
4246 {
4247 	struct spglist free;
4248 
4249 	SLIST_INIT(&free);
4250 	if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4251 		/*
4252 		 * Although "va" was never mapped, paging-structure caches
4253 		 * could nonetheless have entries that refer to the freed
4254 		 * page table pages.  Invalidate those entries.
4255 		 */
4256 		pmap_invalidate_page(pmap, va);
4257 		vm_page_free_pages_toq(&free, true);
4258 	}
4259 }
4260 
4261 static void
pmap_pinit_pcids(pmap_t pmap,uint32_t pcid,int gen)4262 pmap_pinit_pcids(pmap_t pmap, uint32_t pcid, int gen)
4263 {
4264 	struct pmap_pcid *pcidp;
4265 	int i;
4266 
4267 	CPU_FOREACH(i) {
4268 		pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
4269 		pcidp->pm_pcid = pcid;
4270 		pcidp->pm_gen = gen;
4271 	}
4272 }
4273 
4274 void
pmap_pinit0(pmap_t pmap)4275 pmap_pinit0(pmap_t pmap)
4276 {
4277 	struct proc *p;
4278 	struct thread *td;
4279 
4280 	PMAP_LOCK_INIT(pmap);
4281 	pmap->pm_pmltop = kernel_pmap->pm_pmltop;
4282 	pmap->pm_pmltopu = NULL;
4283 	pmap->pm_cr3 = kernel_pmap->pm_cr3;
4284 	/* hack to keep pmap_pti_pcid_invalidate() alive */
4285 	pmap->pm_ucr3 = PMAP_NO_CR3;
4286 	vm_radix_init(&pmap->pm_root);
4287 	CPU_ZERO(&pmap->pm_active);
4288 	TAILQ_INIT(&pmap->pm_pvchunk);
4289 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4290 	pmap->pm_flags = pmap_flags;
4291 	pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8, M_WAITOK);
4292 	pmap_pinit_pcids(pmap, PMAP_PCID_KERN + 1, 1);
4293 	pmap_activate_boot(pmap);
4294 	td = curthread;
4295 	if (pti) {
4296 		p = td->td_proc;
4297 		PROC_LOCK(p);
4298 		p->p_md.md_flags |= P_MD_KPTI;
4299 		PROC_UNLOCK(p);
4300 	}
4301 	pmap_thread_init_invl_gen(td);
4302 
4303 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4304 		pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
4305 		    sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
4306 		    UMA_ALIGN_PTR, 0);
4307 	}
4308 }
4309 
4310 void
pmap_pinit_pml4(vm_page_t pml4pg)4311 pmap_pinit_pml4(vm_page_t pml4pg)
4312 {
4313 	pml4_entry_t *pm_pml4;
4314 	int i;
4315 
4316 	pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
4317 
4318 	/* Wire in kernel global address entries. */
4319 	for (i = 0; i < NKPML4E; i++) {
4320 		pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
4321 		    X86_PG_V;
4322 	}
4323 #ifdef KASAN
4324 	for (i = 0; i < NKASANPML4E; i++) {
4325 		pm_pml4[KASANPML4I + i] = (KASANPDPphys + ptoa(i)) | X86_PG_RW |
4326 		    X86_PG_V | pg_nx;
4327 	}
4328 #endif
4329 #ifdef KMSAN
4330 	for (i = 0; i < NKMSANSHADPML4E; i++) {
4331 		pm_pml4[KMSANSHADPML4I + i] = (KMSANSHADPDPphys + ptoa(i)) |
4332 		    X86_PG_RW | X86_PG_V | pg_nx;
4333 	}
4334 	for (i = 0; i < NKMSANORIGPML4E; i++) {
4335 		pm_pml4[KMSANORIGPML4I + i] = (KMSANORIGPDPphys + ptoa(i)) |
4336 		    X86_PG_RW | X86_PG_V | pg_nx;
4337 	}
4338 #endif
4339 	for (i = 0; i < ndmpdpphys; i++) {
4340 		pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
4341 		    X86_PG_V;
4342 	}
4343 
4344 	/* install self-referential address mapping entry(s) */
4345 	pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
4346 	    X86_PG_A | X86_PG_M;
4347 
4348 	/* install large map entries if configured */
4349 	for (i = 0; i < lm_ents; i++)
4350 		pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
4351 }
4352 
4353 void
pmap_pinit_pml5(vm_page_t pml5pg)4354 pmap_pinit_pml5(vm_page_t pml5pg)
4355 {
4356 	pml5_entry_t *pm_pml5;
4357 
4358 	pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
4359 
4360 	/*
4361 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
4362 	 * entering all existing kernel mappings into level 5 table.
4363 	 */
4364 	pm_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
4365 	    X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
4366 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, false);
4367 
4368 	/*
4369 	 * Install self-referential address mapping entry.
4370 	 */
4371 	pm_pml5[PML5PML5I] = VM_PAGE_TO_PHYS(pml5pg) |
4372 	    X86_PG_RW | X86_PG_V | X86_PG_M | X86_PG_A |
4373 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, false);
4374 }
4375 
4376 static void
pmap_pinit_pml4_pti(vm_page_t pml4pgu)4377 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
4378 {
4379 	pml4_entry_t *pm_pml4u;
4380 	int i;
4381 
4382 	pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
4383 	for (i = 0; i < NPML4EPG; i++)
4384 		pm_pml4u[i] = pti_pml4[i];
4385 }
4386 
4387 static void
pmap_pinit_pml5_pti(vm_page_t pml5pgu)4388 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
4389 {
4390 	pml5_entry_t *pm_pml5u;
4391 
4392 	pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
4393 	pagezero(pm_pml5u);
4394 
4395 	/*
4396 	 * Add pml5 entry at top of KVA pointing to existing pml4 pti
4397 	 * table, entering all kernel mappings needed for usermode
4398 	 * into level 5 table.
4399 	 */
4400 	pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
4401 	    pmap_kextract((vm_offset_t)pti_pml4) |
4402 	    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
4403 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, false);
4404 }
4405 
4406 /* Allocate a page table page and do related bookkeeping */
4407 static vm_page_t
pmap_alloc_pt_page(pmap_t pmap,vm_pindex_t pindex,int flags)4408 pmap_alloc_pt_page(pmap_t pmap, vm_pindex_t pindex, int flags)
4409 {
4410 	vm_page_t m;
4411 
4412 	m = vm_page_alloc_noobj(flags);
4413 	if (__predict_false(m == NULL))
4414 		return (NULL);
4415 	m->pindex = pindex;
4416 	pmap_pt_page_count_adj(pmap, 1);
4417 	return (m);
4418 }
4419 
4420 static void
pmap_free_pt_page(pmap_t pmap,vm_page_t m,bool zerofilled)4421 pmap_free_pt_page(pmap_t pmap, vm_page_t m, bool zerofilled)
4422 {
4423 	/*
4424 	 * This function assumes the page will need to be unwired,
4425 	 * even though the counterpart allocation in pmap_alloc_pt_page()
4426 	 * doesn't enforce VM_ALLOC_WIRED.  However, all current uses
4427 	 * of pmap_free_pt_page() require unwiring.  The case in which
4428 	 * a PT page doesn't require unwiring because its ref_count has
4429 	 * naturally reached 0 is handled through _pmap_unwire_ptp().
4430 	 */
4431 	vm_page_unwire_noq(m);
4432 	if (zerofilled)
4433 		vm_page_free_zero(m);
4434 	else
4435 		vm_page_free(m);
4436 
4437 	pmap_pt_page_count_adj(pmap, -1);
4438 }
4439 
4440 _Static_assert(sizeof(struct pmap_pcid) == 8, "Fix pcpu zone for pm_pcidp");
4441 
4442 /*
4443  * Initialize a preallocated and zeroed pmap structure,
4444  * such as one in a vmspace structure.
4445  */
4446 int
pmap_pinit_type(pmap_t pmap,enum pmap_type pm_type,int flags)4447 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
4448 {
4449 	vm_page_t pmltop_pg, pmltop_pgu;
4450 	vm_paddr_t pmltop_phys;
4451 
4452 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4453 
4454 	/*
4455 	 * Allocate the page directory page.  Pass NULL instead of a
4456 	 * pointer to the pmap here to avoid calling
4457 	 * pmap_resident_count_adj() through pmap_pt_page_count_adj(),
4458 	 * since that requires pmap lock.  Instead do the accounting
4459 	 * manually.
4460 	 *
4461 	 * Note that final call to pmap_remove() optimization that
4462 	 * checks for zero resident_count is basically disabled by
4463 	 * accounting for top-level page.  But the optimization was
4464 	 * not effective since we started using non-managed mapping of
4465 	 * the shared page.
4466 	 */
4467 	pmltop_pg = pmap_alloc_pt_page(NULL, 0, VM_ALLOC_WIRED | VM_ALLOC_ZERO |
4468 	    VM_ALLOC_WAITOK);
4469 	pmap_pt_page_count_pinit(pmap, 1);
4470 
4471 	pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
4472 	pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
4473 
4474 	if (pmap_pcid_enabled) {
4475 		if (pmap->pm_pcidp == NULL)
4476 			pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8,
4477 			    M_WAITOK);
4478 		pmap_pinit_pcids(pmap, PMAP_PCID_NONE, 0);
4479 	}
4480 	pmap->pm_cr3 = PMAP_NO_CR3;	/* initialize to an invalid value */
4481 	pmap->pm_ucr3 = PMAP_NO_CR3;
4482 	pmap->pm_pmltopu = NULL;
4483 
4484 	pmap->pm_type = pm_type;
4485 
4486 	/*
4487 	 * Do not install the host kernel mappings in the nested page
4488 	 * tables. These mappings are meaningless in the guest physical
4489 	 * address space.
4490 	 * Install minimal kernel mappings in PTI case.
4491 	 */
4492 	switch (pm_type) {
4493 	case PT_X86:
4494 		pmap->pm_cr3 = pmltop_phys;
4495 		if (pmap_is_la57(pmap))
4496 			pmap_pinit_pml5(pmltop_pg);
4497 		else
4498 			pmap_pinit_pml4(pmltop_pg);
4499 		if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
4500 			/*
4501 			 * As with pmltop_pg, pass NULL instead of a
4502 			 * pointer to the pmap to ensure that the PTI
4503 			 * page counted explicitly.
4504 			 */
4505 			pmltop_pgu = pmap_alloc_pt_page(NULL, 0,
4506 			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
4507 			pmap_pt_page_count_pinit(pmap, 1);
4508 			pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
4509 			    VM_PAGE_TO_PHYS(pmltop_pgu));
4510 			if (pmap_is_la57(pmap))
4511 				pmap_pinit_pml5_pti(pmltop_pgu);
4512 			else
4513 				pmap_pinit_pml4_pti(pmltop_pgu);
4514 			pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
4515 		}
4516 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4517 			rangeset_init(&pmap->pm_pkru, pkru_dup_range,
4518 			    pkru_free_range, pmap, M_NOWAIT);
4519 		}
4520 		break;
4521 	case PT_EPT:
4522 	case PT_RVI:
4523 		pmap->pm_eptsmr = smr_create("pmap", 0, 0);
4524 		break;
4525 	}
4526 
4527 	vm_radix_init(&pmap->pm_root);
4528 	CPU_ZERO(&pmap->pm_active);
4529 	TAILQ_INIT(&pmap->pm_pvchunk);
4530 	pmap->pm_flags = flags;
4531 	pmap->pm_eptgen = 0;
4532 
4533 	return (1);
4534 }
4535 
4536 int
pmap_pinit(pmap_t pmap)4537 pmap_pinit(pmap_t pmap)
4538 {
4539 
4540 	return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
4541 }
4542 
4543 static void
pmap_allocpte_free_unref(pmap_t pmap,vm_offset_t va,pt_entry_t * pte)4544 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
4545 {
4546 	vm_page_t mpg;
4547 	struct spglist free;
4548 
4549 	mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4550 	if (mpg->ref_count != 0)
4551 		return;
4552 	SLIST_INIT(&free);
4553 	_pmap_unwire_ptp(pmap, va, mpg, &free);
4554 	pmap_invalidate_page(pmap, va);
4555 	vm_page_free_pages_toq(&free, true);
4556 }
4557 
4558 static pml4_entry_t *
pmap_allocpte_getpml4(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4559 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4560     bool addref)
4561 {
4562 	vm_pindex_t pml5index;
4563 	pml5_entry_t *pml5;
4564 	pml4_entry_t *pml4;
4565 	vm_page_t pml4pg;
4566 	pt_entry_t PG_V;
4567 	bool allocated;
4568 
4569 	if (!pmap_is_la57(pmap))
4570 		return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
4571 
4572 	PG_V = pmap_valid_bit(pmap);
4573 	pml5index = pmap_pml5e_index(va);
4574 	pml5 = &pmap->pm_pmltop[pml5index];
4575 	if ((*pml5 & PG_V) == 0) {
4576 		if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
4577 		    va) == NULL)
4578 			return (NULL);
4579 		allocated = true;
4580 	} else {
4581 		allocated = false;
4582 	}
4583 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
4584 	pml4 = &pml4[pmap_pml4e_index(va)];
4585 	if ((*pml4 & PG_V) == 0) {
4586 		pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
4587 		if (allocated && !addref)
4588 			pml4pg->ref_count--;
4589 		else if (!allocated && addref)
4590 			pml4pg->ref_count++;
4591 	}
4592 	return (pml4);
4593 }
4594 
4595 static pdp_entry_t *
pmap_allocpte_getpdp(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4596 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4597     bool addref)
4598 {
4599 	vm_page_t pdppg;
4600 	pml4_entry_t *pml4;
4601 	pdp_entry_t *pdp;
4602 	pt_entry_t PG_V;
4603 	bool allocated;
4604 
4605 	PG_V = pmap_valid_bit(pmap);
4606 
4607 	pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
4608 	if (pml4 == NULL)
4609 		return (NULL);
4610 
4611 	if ((*pml4 & PG_V) == 0) {
4612 		/* Have to allocate a new pdp, recurse */
4613 		if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
4614 		    va) == NULL) {
4615 			if (pmap_is_la57(pmap))
4616 				pmap_allocpte_free_unref(pmap, va,
4617 				    pmap_pml5e(pmap, va));
4618 			return (NULL);
4619 		}
4620 		allocated = true;
4621 	} else {
4622 		allocated = false;
4623 	}
4624 	pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
4625 	pdp = &pdp[pmap_pdpe_index(va)];
4626 	if ((*pdp & PG_V) == 0) {
4627 		pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
4628 		if (allocated && !addref)
4629 			pdppg->ref_count--;
4630 		else if (!allocated && addref)
4631 			pdppg->ref_count++;
4632 	}
4633 	return (pdp);
4634 }
4635 
4636 /*
4637  * The ptepindexes, i.e. page indices, of the page table pages encountered
4638  * while translating virtual address va are defined as follows:
4639  * - for the page table page (last level),
4640  *      ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
4641  *   in other words, it is just the index of the PDE that maps the page
4642  *   table page.
4643  * - for the page directory page,
4644  *      ptepindex = NUPDE (number of userland PD entries) +
4645  *          (pmap_pde_index(va) >> NPDEPGSHIFT)
4646  *   i.e. index of PDPE is put after the last index of PDE,
4647  * - for the page directory pointer page,
4648  *      ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
4649  *          NPML4EPGSHIFT),
4650  *   i.e. index of pml4e is put after the last index of PDPE,
4651  * - for the PML4 page (if LA57 mode is enabled),
4652  *      ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
4653  *          (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
4654  *   i.e. index of pml5e is put after the last index of PML4E.
4655  *
4656  * Define an order on the paging entries, where all entries of the
4657  * same height are put together, then heights are put from deepest to
4658  * root.  Then ptexpindex is the sequential number of the
4659  * corresponding paging entry in this order.
4660  *
4661  * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
4662  * LA57 paging structures even in LA48 paging mode. Moreover, the
4663  * ptepindexes are calculated as if the paging structures were 5-level
4664  * regardless of the actual mode of operation.
4665  *
4666  * The root page at PML4/PML5 does not participate in this indexing scheme,
4667  * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
4668  */
4669 static vm_page_t
pmap_allocpte_nosleep(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4670 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4671     vm_offset_t va)
4672 {
4673 	vm_pindex_t pml5index, pml4index;
4674 	pml5_entry_t *pml5, *pml5u;
4675 	pml4_entry_t *pml4, *pml4u;
4676 	pdp_entry_t *pdp;
4677 	pd_entry_t *pd;
4678 	vm_page_t m, pdpg;
4679 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4680 
4681 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4682 
4683 	PG_A = pmap_accessed_bit(pmap);
4684 	PG_M = pmap_modified_bit(pmap);
4685 	PG_V = pmap_valid_bit(pmap);
4686 	PG_RW = pmap_rw_bit(pmap);
4687 
4688 	/*
4689 	 * Allocate a page table page.
4690 	 */
4691 	m = pmap_alloc_pt_page(pmap, ptepindex,
4692 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
4693 	if (m == NULL)
4694 		return (NULL);
4695 
4696 	/*
4697 	 * Map the pagetable page into the process address space, if
4698 	 * it isn't already there.
4699 	 */
4700 	if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
4701 		MPASS(pmap_is_la57(pmap));
4702 
4703 		pml5index = pmap_pml5e_index(va);
4704 		pml5 = &pmap->pm_pmltop[pml5index];
4705 		KASSERT((*pml5 & PG_V) == 0,
4706 		    ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
4707 		*pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4708 
4709 		if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
4710 			if (pmap->pm_ucr3 != PMAP_NO_CR3)
4711 				*pml5 |= pg_nx;
4712 
4713 			pml5u = &pmap->pm_pmltopu[pml5index];
4714 			*pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4715 			    PG_A | PG_M;
4716 		}
4717 	} else if (ptepindex >= NUPDE + NUPDPE) {
4718 		pml4index = pmap_pml4e_index(va);
4719 		/* Wire up a new PDPE page */
4720 		pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
4721 		if (pml4 == NULL) {
4722 			pmap_free_pt_page(pmap, m, true);
4723 			return (NULL);
4724 		}
4725 		KASSERT((*pml4 & PG_V) == 0,
4726 		    ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
4727 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4728 
4729 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4730 		    pml4index < NUPML4E) {
4731 			/*
4732 			 * PTI: Make all user-space mappings in the
4733 			 * kernel-mode page table no-execute so that
4734 			 * we detect any programming errors that leave
4735 			 * the kernel-mode page table active on return
4736 			 * to user space.
4737 			 */
4738 			if (pmap->pm_ucr3 != PMAP_NO_CR3)
4739 				*pml4 |= pg_nx;
4740 
4741 			pml4u = &pmap->pm_pmltopu[pml4index];
4742 			*pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4743 			    PG_A | PG_M;
4744 		}
4745 	} else if (ptepindex >= NUPDE) {
4746 		/* Wire up a new PDE page */
4747 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
4748 		if (pdp == NULL) {
4749 			pmap_free_pt_page(pmap, m, true);
4750 			return (NULL);
4751 		}
4752 		KASSERT((*pdp & PG_V) == 0,
4753 		    ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
4754 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4755 	} else {
4756 		/* Wire up a new PTE page */
4757 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
4758 		if (pdp == NULL) {
4759 			pmap_free_pt_page(pmap, m, true);
4760 			return (NULL);
4761 		}
4762 		if ((*pdp & PG_V) == 0) {
4763 			/* Have to allocate a new pd, recurse */
4764 		  if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
4765 		      lockp, va) == NULL) {
4766 				pmap_allocpte_free_unref(pmap, va,
4767 				    pmap_pml4e(pmap, va));
4768 				pmap_free_pt_page(pmap, m, true);
4769 				return (NULL);
4770 			}
4771 		} else {
4772 			/* Add reference to the pd page */
4773 			pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
4774 			pdpg->ref_count++;
4775 		}
4776 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
4777 
4778 		/* Now we know where the page directory page is */
4779 		pd = &pd[pmap_pde_index(va)];
4780 		KASSERT((*pd & PG_V) == 0,
4781 		    ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
4782 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4783 	}
4784 
4785 	return (m);
4786 }
4787 
4788 /*
4789  * This routine is called if the desired page table page does not exist.
4790  *
4791  * If page table page allocation fails, this routine may sleep before
4792  * returning NULL.  It sleeps only if a lock pointer was given.  Sleep
4793  * occurs right before returning to the caller. This way, we never
4794  * drop pmap lock to sleep while a page table page has ref_count == 0,
4795  * which prevents the page from being freed under us.
4796  */
4797 static vm_page_t
pmap_allocpte_alloc(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4798 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4799     vm_offset_t va)
4800 {
4801 	vm_page_t m;
4802 
4803 	m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
4804 	if (m == NULL && lockp != NULL) {
4805 		RELEASE_PV_LIST_LOCK(lockp);
4806 		PMAP_UNLOCK(pmap);
4807 		PMAP_ASSERT_NOT_IN_DI();
4808 		vm_wait(NULL);
4809 		PMAP_LOCK(pmap);
4810 	}
4811 	return (m);
4812 }
4813 
4814 static pd_entry_t *
pmap_alloc_pde(pmap_t pmap,vm_offset_t va,vm_page_t * pdpgp,struct rwlock ** lockp)4815 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
4816     struct rwlock **lockp)
4817 {
4818 	pdp_entry_t *pdpe, PG_V;
4819 	pd_entry_t *pde;
4820 	vm_page_t pdpg;
4821 	vm_pindex_t pdpindex;
4822 
4823 	PG_V = pmap_valid_bit(pmap);
4824 
4825 retry:
4826 	pdpe = pmap_pdpe(pmap, va);
4827 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4828 		pde = pmap_pdpe_to_pde(pdpe, va);
4829 		if (va < VM_MAXUSER_ADDRESS) {
4830 			/* Add a reference to the pd page. */
4831 			pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4832 			pdpg->ref_count++;
4833 		} else
4834 			pdpg = NULL;
4835 	} else if (va < VM_MAXUSER_ADDRESS) {
4836 		/* Allocate a pd page. */
4837 		pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
4838 		pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
4839 		if (pdpg == NULL) {
4840 			if (lockp != NULL)
4841 				goto retry;
4842 			else
4843 				return (NULL);
4844 		}
4845 		pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4846 		pde = &pde[pmap_pde_index(va)];
4847 	} else
4848 		panic("pmap_alloc_pde: missing page table page for va %#lx",
4849 		    va);
4850 	*pdpgp = pdpg;
4851 	return (pde);
4852 }
4853 
4854 static vm_page_t
pmap_allocpte(pmap_t pmap,vm_offset_t va,struct rwlock ** lockp)4855 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4856 {
4857 	vm_pindex_t ptepindex;
4858 	pd_entry_t *pd, PG_V;
4859 	vm_page_t m;
4860 
4861 	PG_V = pmap_valid_bit(pmap);
4862 
4863 	/*
4864 	 * Calculate pagetable page index
4865 	 */
4866 	ptepindex = pmap_pde_pindex(va);
4867 retry:
4868 	/*
4869 	 * Get the page directory entry
4870 	 */
4871 	pd = pmap_pde(pmap, va);
4872 
4873 	/*
4874 	 * This supports switching from a 2MB page to a
4875 	 * normal 4K page.
4876 	 */
4877 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
4878 		if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
4879 			/*
4880 			 * Invalidation of the 2MB page mapping may have caused
4881 			 * the deallocation of the underlying PD page.
4882 			 */
4883 			pd = NULL;
4884 		}
4885 	}
4886 
4887 	/*
4888 	 * If the page table page is mapped, we just increment the
4889 	 * hold count, and activate it.
4890 	 */
4891 	if (pd != NULL && (*pd & PG_V) != 0) {
4892 		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4893 		m->ref_count++;
4894 	} else {
4895 		/*
4896 		 * Here if the pte page isn't mapped, or if it has been
4897 		 * deallocated.
4898 		 */
4899 		m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
4900 		if (m == NULL && lockp != NULL)
4901 			goto retry;
4902 	}
4903 	return (m);
4904 }
4905 
4906 /***************************************************
4907  * Pmap allocation/deallocation routines.
4908  ***************************************************/
4909 
4910 /*
4911  * Release any resources held by the given physical map.
4912  * Called when a pmap initialized by pmap_pinit is being released.
4913  * Should only be called if the map contains no valid mappings.
4914  */
4915 void
pmap_release(pmap_t pmap)4916 pmap_release(pmap_t pmap)
4917 {
4918 	vm_page_t m;
4919 	int i;
4920 
4921 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
4922 	    ("pmap_release: pmap %p has reserved page table page(s)",
4923 	    pmap));
4924 	KASSERT(CPU_EMPTY(&pmap->pm_active),
4925 	    ("releasing active pmap %p", pmap));
4926 
4927 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
4928 
4929 	if (pmap_is_la57(pmap)) {
4930 		pmap->pm_pmltop[pmap_pml5e_index(UPT_MAX_ADDRESS)] = 0;
4931 		pmap->pm_pmltop[PML5PML5I] = 0;
4932 	} else {
4933 		for (i = 0; i < NKPML4E; i++)	/* KVA */
4934 			pmap->pm_pmltop[KPML4BASE + i] = 0;
4935 #ifdef KASAN
4936 		for (i = 0; i < NKASANPML4E; i++) /* KASAN shadow map */
4937 			pmap->pm_pmltop[KASANPML4I + i] = 0;
4938 #endif
4939 #ifdef KMSAN
4940 		for (i = 0; i < NKMSANSHADPML4E; i++) /* KMSAN shadow map */
4941 			pmap->pm_pmltop[KMSANSHADPML4I + i] = 0;
4942 		for (i = 0; i < NKMSANORIGPML4E; i++) /* KMSAN shadow map */
4943 			pmap->pm_pmltop[KMSANORIGPML4I + i] = 0;
4944 #endif
4945 		for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
4946 			pmap->pm_pmltop[DMPML4I + i] = 0;
4947 		pmap->pm_pmltop[PML4PML4I] = 0;	/* Recursive Mapping */
4948 		for (i = 0; i < lm_ents; i++)	/* Large Map */
4949 			pmap->pm_pmltop[LMSPML4I + i] = 0;
4950 	}
4951 
4952 	pmap_free_pt_page(NULL, m, true);
4953 	pmap_pt_page_count_pinit(pmap, -1);
4954 
4955 	if (pmap->pm_pmltopu != NULL) {
4956 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
4957 		    pm_pmltopu));
4958 		pmap_free_pt_page(NULL, m, false);
4959 		pmap_pt_page_count_pinit(pmap, -1);
4960 	}
4961 	if (pmap->pm_type == PT_X86 &&
4962 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
4963 		rangeset_fini(&pmap->pm_pkru);
4964 
4965 	KASSERT(pmap->pm_stats.resident_count == 0,
4966 	    ("pmap_release: pmap %p resident count %ld != 0",
4967 	    pmap, pmap->pm_stats.resident_count));
4968 }
4969 
4970 static int
kvm_size(SYSCTL_HANDLER_ARGS)4971 kvm_size(SYSCTL_HANDLER_ARGS)
4972 {
4973 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
4974 
4975 	return sysctl_handle_long(oidp, &ksize, 0, req);
4976 }
4977 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4978     0, 0, kvm_size, "LU",
4979     "Size of KVM");
4980 
4981 static int
kvm_free(SYSCTL_HANDLER_ARGS)4982 kvm_free(SYSCTL_HANDLER_ARGS)
4983 {
4984 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
4985 
4986 	return sysctl_handle_long(oidp, &kfree, 0, req);
4987 }
4988 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4989     0, 0, kvm_free, "LU",
4990     "Amount of KVM free");
4991 
4992 #ifdef KMSAN
4993 static void
pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa,vm_size_t size)4994 pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa, vm_size_t size)
4995 {
4996 	pdp_entry_t *pdpe;
4997 	pd_entry_t *pde;
4998 	pt_entry_t *pte;
4999 	vm_paddr_t dummypa, dummypd, dummypt;
5000 	int i, npde, npdpg;
5001 
5002 	npdpg = howmany(size, NBPDP);
5003 	npde = size / NBPDR;
5004 
5005 	dummypa = vm_phys_early_alloc(-1, PAGE_SIZE);
5006 	pagezero((void *)PHYS_TO_DMAP(dummypa));
5007 
5008 	dummypt = vm_phys_early_alloc(-1, PAGE_SIZE);
5009 	pagezero((void *)PHYS_TO_DMAP(dummypt));
5010 	dummypd = vm_phys_early_alloc(-1, PAGE_SIZE * npdpg);
5011 	for (i = 0; i < npdpg; i++)
5012 		pagezero((void *)PHYS_TO_DMAP(dummypd + ptoa(i)));
5013 
5014 	pte = (pt_entry_t *)PHYS_TO_DMAP(dummypt);
5015 	for (i = 0; i < NPTEPG; i++)
5016 		pte[i] = (pt_entry_t)(dummypa | X86_PG_V | X86_PG_RW |
5017 		    X86_PG_A | X86_PG_M | pg_nx);
5018 
5019 	pde = (pd_entry_t *)PHYS_TO_DMAP(dummypd);
5020 	for (i = 0; i < npde; i++)
5021 		pde[i] = (pd_entry_t)(dummypt | X86_PG_V | X86_PG_RW | pg_nx);
5022 
5023 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(pdppa);
5024 	for (i = 0; i < npdpg; i++)
5025 		pdpe[i] = (pdp_entry_t)(dummypd + ptoa(i) | X86_PG_V |
5026 		    X86_PG_RW | pg_nx);
5027 }
5028 
5029 static void
pmap_kmsan_page_array_startup(vm_offset_t start,vm_offset_t end)5030 pmap_kmsan_page_array_startup(vm_offset_t start, vm_offset_t end)
5031 {
5032 	vm_size_t size;
5033 
5034 	KASSERT(start % NBPDP == 0, ("unaligned page array start address"));
5035 
5036 	/*
5037 	 * The end of the page array's KVA region is 2MB aligned, see
5038 	 * kmem_init().
5039 	 */
5040 	size = round_2mpage(end) - start;
5041 	pmap_kmsan_shadow_map_page_array(KMSANSHADPDPphys, size);
5042 	pmap_kmsan_shadow_map_page_array(KMSANORIGPDPphys, size);
5043 }
5044 #endif
5045 
5046 /*
5047  * Allocate physical memory for the vm_page array and map it into KVA,
5048  * attempting to back the vm_pages with domain-local memory.
5049  */
5050 void
pmap_page_array_startup(long pages)5051 pmap_page_array_startup(long pages)
5052 {
5053 	pdp_entry_t *pdpe;
5054 	pd_entry_t *pde, newpdir;
5055 	vm_offset_t va, start, end;
5056 	vm_paddr_t pa;
5057 	long pfn;
5058 	int domain, i;
5059 
5060 	vm_page_array_size = pages;
5061 
5062 	start = VM_MIN_KERNEL_ADDRESS;
5063 	end = start + pages * sizeof(struct vm_page);
5064 	for (va = start; va < end; va += NBPDR) {
5065 		pfn = first_page + (va - start) / sizeof(struct vm_page);
5066 		domain = vm_phys_domain(ptoa(pfn));
5067 		pdpe = pmap_pdpe(kernel_pmap, va);
5068 		if ((*pdpe & X86_PG_V) == 0) {
5069 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
5070 			dump_add_page(pa);
5071 			pagezero((void *)PHYS_TO_DMAP(pa));
5072 			*pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
5073 			    X86_PG_A | X86_PG_M);
5074 		}
5075 		pde = pmap_pdpe_to_pde(pdpe, va);
5076 		if ((*pde & X86_PG_V) != 0)
5077 			panic("Unexpected pde");
5078 		pa = vm_phys_early_alloc(domain, NBPDR);
5079 		for (i = 0; i < NPDEPG; i++)
5080 			dump_add_page(pa + i * PAGE_SIZE);
5081 		newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
5082 		    X86_PG_M | PG_PS | pg_g | pg_nx);
5083 		pde_store(pde, newpdir);
5084 	}
5085 	vm_page_array = (vm_page_t)start;
5086 
5087 #ifdef KMSAN
5088 	pmap_kmsan_page_array_startup(start, end);
5089 #endif
5090 }
5091 
5092 /*
5093  * grow the number of kernel page table entries, if needed
5094  */
5095 void
pmap_growkernel(vm_offset_t addr)5096 pmap_growkernel(vm_offset_t addr)
5097 {
5098 	vm_paddr_t paddr;
5099 	vm_page_t nkpg;
5100 	pd_entry_t *pde, newpdir;
5101 	pdp_entry_t *pdpe;
5102 	vm_offset_t end;
5103 
5104 	TSENTER();
5105 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
5106 
5107 	/*
5108 	 * The kernel map covers two distinct regions of KVA: that used
5109 	 * for dynamic kernel memory allocations, and the uppermost 2GB
5110 	 * of the virtual address space.  The latter is used to map the
5111 	 * kernel and loadable kernel modules.  This scheme enables the
5112 	 * use of a special code generation model for kernel code which
5113 	 * takes advantage of compact addressing modes in machine code.
5114 	 *
5115 	 * Both regions grow upwards; to avoid wasting memory, the gap
5116 	 * in between is unmapped.  If "addr" is above "KERNBASE", the
5117 	 * kernel's region is grown, otherwise the kmem region is grown.
5118 	 *
5119 	 * The correctness of this action is based on the following
5120 	 * argument: vm_map_insert() allocates contiguous ranges of the
5121 	 * kernel virtual address space.  It calls this function if a range
5122 	 * ends after "kernel_vm_end".  If the kernel is mapped between
5123 	 * "kernel_vm_end" and "addr", then the range cannot begin at
5124 	 * "kernel_vm_end".  In fact, its beginning address cannot be less
5125 	 * than the kernel.  Thus, there is no immediate need to allocate
5126 	 * any new kernel page table pages between "kernel_vm_end" and
5127 	 * "KERNBASE".
5128 	 */
5129 	if (KERNBASE < addr) {
5130 		end = KERNBASE + nkpt * NBPDR;
5131 		if (end == 0) {
5132 			TSEXIT();
5133 			return;
5134 		}
5135 	} else {
5136 		end = kernel_vm_end;
5137 	}
5138 
5139 	addr = roundup2(addr, NBPDR);
5140 	if (addr - 1 >= vm_map_max(kernel_map))
5141 		addr = vm_map_max(kernel_map);
5142 	if (addr <= end) {
5143 		/*
5144 		 * The grown region is already mapped, so there is
5145 		 * nothing to do.
5146 		 */
5147 		TSEXIT();
5148 		return;
5149 	}
5150 
5151 	kasan_shadow_map(end, addr - end);
5152 	kmsan_shadow_map(end, addr - end);
5153 	while (end < addr) {
5154 		pdpe = pmap_pdpe(kernel_pmap, end);
5155 		if ((*pdpe & X86_PG_V) == 0) {
5156 			nkpg = pmap_alloc_pt_page(kernel_pmap,
5157 			    pmap_pdpe_pindex(end), VM_ALLOC_WIRED |
5158 			    VM_ALLOC_INTERRUPT | VM_ALLOC_ZERO);
5159 			if (nkpg == NULL)
5160 				panic("pmap_growkernel: no memory to grow kernel");
5161 			paddr = VM_PAGE_TO_PHYS(nkpg);
5162 			*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
5163 			    X86_PG_A | X86_PG_M);
5164 			continue; /* try again */
5165 		}
5166 		pde = pmap_pdpe_to_pde(pdpe, end);
5167 		if ((*pde & X86_PG_V) != 0) {
5168 			end = (end + NBPDR) & ~PDRMASK;
5169 			if (end - 1 >= vm_map_max(kernel_map)) {
5170 				end = vm_map_max(kernel_map);
5171 				break;
5172 			}
5173 			continue;
5174 		}
5175 
5176 		nkpg = pmap_alloc_pt_page(kernel_pmap, pmap_pde_pindex(end),
5177 		    VM_ALLOC_WIRED | VM_ALLOC_INTERRUPT | VM_ALLOC_ZERO);
5178 		if (nkpg == NULL)
5179 			panic("pmap_growkernel: no memory to grow kernel");
5180 		paddr = VM_PAGE_TO_PHYS(nkpg);
5181 		newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
5182 		pde_store(pde, newpdir);
5183 
5184 		end = (end + NBPDR) & ~PDRMASK;
5185 		if (end - 1 >= vm_map_max(kernel_map)) {
5186 			end = vm_map_max(kernel_map);
5187 			break;
5188 		}
5189 	}
5190 
5191 	if (end <= KERNBASE)
5192 		kernel_vm_end = end;
5193 	else
5194 		nkpt = howmany(end - KERNBASE, NBPDR);
5195 	TSEXIT();
5196 }
5197 
5198 /***************************************************
5199  * page management routines.
5200  ***************************************************/
5201 
5202 static const uint64_t pc_freemask[_NPCM] = {
5203 	[0 ... _NPCM - 2] = PC_FREEN,
5204 	[_NPCM - 1] = PC_FREEL
5205 };
5206 
5207 #ifdef PV_STATS
5208 
5209 static COUNTER_U64_DEFINE_EARLY(pc_chunk_count);
5210 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD,
5211     &pc_chunk_count, "Current number of pv entry cnunks");
5212 
5213 static COUNTER_U64_DEFINE_EARLY(pc_chunk_allocs);
5214 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD,
5215     &pc_chunk_allocs, "Total number of pv entry chunks allocated");
5216 
5217 static COUNTER_U64_DEFINE_EARLY(pc_chunk_frees);
5218 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD,
5219     &pc_chunk_frees, "Total number of pv entry chunks freed");
5220 
5221 static COUNTER_U64_DEFINE_EARLY(pc_chunk_tryfail);
5222 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD,
5223     &pc_chunk_tryfail,
5224     "Number of failed attempts to get a pv entry chunk page");
5225 
5226 static COUNTER_U64_DEFINE_EARLY(pv_entry_frees);
5227 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD,
5228     &pv_entry_frees, "Total number of pv entries freed");
5229 
5230 static COUNTER_U64_DEFINE_EARLY(pv_entry_allocs);
5231 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD,
5232     &pv_entry_allocs, "Total number of pv entries allocated");
5233 
5234 static COUNTER_U64_DEFINE_EARLY(pv_entry_count);
5235 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD,
5236     &pv_entry_count, "Current number of pv entries");
5237 
5238 static COUNTER_U64_DEFINE_EARLY(pv_entry_spare);
5239 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD,
5240     &pv_entry_spare, "Current number of spare pv entries");
5241 #endif
5242 
5243 static void
reclaim_pv_chunk_leave_pmap(pmap_t pmap,pmap_t locked_pmap,bool start_di)5244 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
5245 {
5246 
5247 	if (pmap == NULL)
5248 		return;
5249 	pmap_invalidate_all(pmap);
5250 	if (pmap != locked_pmap)
5251 		PMAP_UNLOCK(pmap);
5252 	if (start_di)
5253 		pmap_delayed_invl_finish();
5254 }
5255 
5256 /*
5257  * We are in a serious low memory condition.  Resort to
5258  * drastic measures to free some pages so we can allocate
5259  * another pv entry chunk.
5260  *
5261  * Returns NULL if PV entries were reclaimed from the specified pmap.
5262  *
5263  * We do not, however, unmap 2mpages because subsequent accesses will
5264  * allocate per-page pv entries until repromotion occurs, thereby
5265  * exacerbating the shortage of free pv entries.
5266  */
5267 static vm_page_t
reclaim_pv_chunk_domain(pmap_t locked_pmap,struct rwlock ** lockp,int domain)5268 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
5269 {
5270 	struct pv_chunks_list *pvc;
5271 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
5272 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
5273 	struct md_page *pvh;
5274 	pd_entry_t *pde;
5275 	pmap_t next_pmap, pmap;
5276 	pt_entry_t *pte, tpte;
5277 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
5278 	pv_entry_t pv;
5279 	vm_offset_t va;
5280 	vm_page_t m, m_pc;
5281 	struct spglist free;
5282 	uint64_t inuse;
5283 	int bit, field, freed;
5284 	bool start_di, restart;
5285 
5286 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
5287 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
5288 	pmap = NULL;
5289 	m_pc = NULL;
5290 	PG_G = PG_A = PG_M = PG_RW = 0;
5291 	SLIST_INIT(&free);
5292 	bzero(&pc_marker_b, sizeof(pc_marker_b));
5293 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
5294 	pc_marker = (struct pv_chunk *)&pc_marker_b;
5295 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
5296 
5297 	/*
5298 	 * A delayed invalidation block should already be active if
5299 	 * pmap_advise() or pmap_remove() called this function by way
5300 	 * of pmap_demote_pde_locked().
5301 	 */
5302 	start_di = pmap_not_in_di();
5303 
5304 	pvc = &pv_chunks[domain];
5305 	mtx_lock(&pvc->pvc_lock);
5306 	pvc->active_reclaims++;
5307 	TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
5308 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
5309 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
5310 	    SLIST_EMPTY(&free)) {
5311 		next_pmap = pc->pc_pmap;
5312 		if (next_pmap == NULL) {
5313 			/*
5314 			 * The next chunk is a marker.  However, it is
5315 			 * not our marker, so active_reclaims must be
5316 			 * > 1.  Consequently, the next_chunk code
5317 			 * will not rotate the pv_chunks list.
5318 			 */
5319 			goto next_chunk;
5320 		}
5321 		mtx_unlock(&pvc->pvc_lock);
5322 
5323 		/*
5324 		 * A pv_chunk can only be removed from the pc_lru list
5325 		 * when both pc_chunks_mutex is owned and the
5326 		 * corresponding pmap is locked.
5327 		 */
5328 		if (pmap != next_pmap) {
5329 			restart = false;
5330 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
5331 			    start_di);
5332 			pmap = next_pmap;
5333 			/* Avoid deadlock and lock recursion. */
5334 			if (pmap > locked_pmap) {
5335 				RELEASE_PV_LIST_LOCK(lockp);
5336 				PMAP_LOCK(pmap);
5337 				if (start_di)
5338 					pmap_delayed_invl_start();
5339 				mtx_lock(&pvc->pvc_lock);
5340 				restart = true;
5341 			} else if (pmap != locked_pmap) {
5342 				if (PMAP_TRYLOCK(pmap)) {
5343 					if (start_di)
5344 						pmap_delayed_invl_start();
5345 					mtx_lock(&pvc->pvc_lock);
5346 					restart = true;
5347 				} else {
5348 					pmap = NULL; /* pmap is not locked */
5349 					mtx_lock(&pvc->pvc_lock);
5350 					pc = TAILQ_NEXT(pc_marker, pc_lru);
5351 					if (pc == NULL ||
5352 					    pc->pc_pmap != next_pmap)
5353 						continue;
5354 					goto next_chunk;
5355 				}
5356 			} else if (start_di)
5357 				pmap_delayed_invl_start();
5358 			PG_G = pmap_global_bit(pmap);
5359 			PG_A = pmap_accessed_bit(pmap);
5360 			PG_M = pmap_modified_bit(pmap);
5361 			PG_RW = pmap_rw_bit(pmap);
5362 			if (restart)
5363 				continue;
5364 		}
5365 
5366 		/*
5367 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
5368 		 */
5369 		freed = 0;
5370 		for (field = 0; field < _NPCM; field++) {
5371 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
5372 			    inuse != 0; inuse &= ~(1UL << bit)) {
5373 				bit = bsfq(inuse);
5374 				pv = &pc->pc_pventry[field * 64 + bit];
5375 				va = pv->pv_va;
5376 				pde = pmap_pde(pmap, va);
5377 				if ((*pde & PG_PS) != 0)
5378 					continue;
5379 				pte = pmap_pde_to_pte(pde, va);
5380 				if ((*pte & PG_W) != 0)
5381 					continue;
5382 				tpte = pte_load_clear(pte);
5383 				if ((tpte & PG_G) != 0)
5384 					pmap_invalidate_page(pmap, va);
5385 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
5386 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5387 					vm_page_dirty(m);
5388 				if ((tpte & PG_A) != 0)
5389 					vm_page_aflag_set(m, PGA_REFERENCED);
5390 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5391 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5392 				m->md.pv_gen++;
5393 				if (TAILQ_EMPTY(&m->md.pv_list) &&
5394 				    (m->flags & PG_FICTITIOUS) == 0) {
5395 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5396 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5397 						vm_page_aflag_clear(m,
5398 						    PGA_WRITEABLE);
5399 					}
5400 				}
5401 				pmap_delayed_invl_page(m);
5402 				pc->pc_map[field] |= 1UL << bit;
5403 				pmap_unuse_pt(pmap, va, *pde, &free);
5404 				freed++;
5405 			}
5406 		}
5407 		if (freed == 0) {
5408 			mtx_lock(&pvc->pvc_lock);
5409 			goto next_chunk;
5410 		}
5411 		/* Every freed mapping is for a 4 KB page. */
5412 		pmap_resident_count_adj(pmap, -freed);
5413 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
5414 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
5415 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
5416 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5417 		if (pc_is_free(pc)) {
5418 			PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5419 			PV_STAT(counter_u64_add(pc_chunk_count, -1));
5420 			PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5421 			/* Entire chunk is free; return it. */
5422 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5423 			dump_drop_page(m_pc->phys_addr);
5424 			mtx_lock(&pvc->pvc_lock);
5425 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5426 			break;
5427 		}
5428 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5429 		mtx_lock(&pvc->pvc_lock);
5430 		/* One freed pv entry in locked_pmap is sufficient. */
5431 		if (pmap == locked_pmap)
5432 			break;
5433 next_chunk:
5434 		TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5435 		TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
5436 		if (pvc->active_reclaims == 1 && pmap != NULL) {
5437 			/*
5438 			 * Rotate the pv chunks list so that we do not
5439 			 * scan the same pv chunks that could not be
5440 			 * freed (because they contained a wired
5441 			 * and/or superpage mapping) on every
5442 			 * invocation of reclaim_pv_chunk().
5443 			 */
5444 			while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
5445 				MPASS(pc->pc_pmap != NULL);
5446 				TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5447 				TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5448 			}
5449 		}
5450 	}
5451 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5452 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
5453 	pvc->active_reclaims--;
5454 	mtx_unlock(&pvc->pvc_lock);
5455 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
5456 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
5457 		m_pc = SLIST_FIRST(&free);
5458 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
5459 		/* Recycle a freed page table page. */
5460 		m_pc->ref_count = 1;
5461 	}
5462 	vm_page_free_pages_toq(&free, true);
5463 	return (m_pc);
5464 }
5465 
5466 static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap,struct rwlock ** lockp)5467 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
5468 {
5469 	vm_page_t m;
5470 	int i, domain;
5471 
5472 	domain = PCPU_GET(domain);
5473 	for (i = 0; i < vm_ndomains; i++) {
5474 		m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
5475 		if (m != NULL)
5476 			break;
5477 		domain = (domain + 1) % vm_ndomains;
5478 	}
5479 
5480 	return (m);
5481 }
5482 
5483 /*
5484  * free the pv_entry back to the free list
5485  */
5486 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)5487 free_pv_entry(pmap_t pmap, pv_entry_t pv)
5488 {
5489 	struct pv_chunk *pc;
5490 	int idx, field, bit;
5491 
5492 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5493 	PV_STAT(counter_u64_add(pv_entry_frees, 1));
5494 	PV_STAT(counter_u64_add(pv_entry_spare, 1));
5495 	PV_STAT(counter_u64_add(pv_entry_count, -1));
5496 	pc = pv_to_chunk(pv);
5497 	idx = pv - &pc->pc_pventry[0];
5498 	field = idx / 64;
5499 	bit = idx % 64;
5500 	pc->pc_map[field] |= 1ul << bit;
5501 	if (!pc_is_free(pc)) {
5502 		/* 98% of the time, pc is already at the head of the list. */
5503 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
5504 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5505 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5506 		}
5507 		return;
5508 	}
5509 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5510 	free_pv_chunk(pc);
5511 }
5512 
5513 static void
free_pv_chunk_dequeued(struct pv_chunk * pc)5514 free_pv_chunk_dequeued(struct pv_chunk *pc)
5515 {
5516 	vm_page_t m;
5517 
5518 	PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5519 	PV_STAT(counter_u64_add(pc_chunk_count, -1));
5520 	PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5521 	counter_u64_add(pv_page_count, -1);
5522 	/* entire chunk is free, return it */
5523 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5524 	dump_drop_page(m->phys_addr);
5525 	vm_page_unwire_noq(m);
5526 	vm_page_free(m);
5527 }
5528 
5529 static void
free_pv_chunk(struct pv_chunk * pc)5530 free_pv_chunk(struct pv_chunk *pc)
5531 {
5532 	struct pv_chunks_list *pvc;
5533 
5534 	pvc = &pv_chunks[pc_to_domain(pc)];
5535 	mtx_lock(&pvc->pvc_lock);
5536 	TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5537 	mtx_unlock(&pvc->pvc_lock);
5538 	free_pv_chunk_dequeued(pc);
5539 }
5540 
5541 static void
free_pv_chunk_batch(struct pv_chunklist * batch)5542 free_pv_chunk_batch(struct pv_chunklist *batch)
5543 {
5544 	struct pv_chunks_list *pvc;
5545 	struct pv_chunk *pc, *npc;
5546 	int i;
5547 
5548 	for (i = 0; i < vm_ndomains; i++) {
5549 		if (TAILQ_EMPTY(&batch[i]))
5550 			continue;
5551 		pvc = &pv_chunks[i];
5552 		mtx_lock(&pvc->pvc_lock);
5553 		TAILQ_FOREACH(pc, &batch[i], pc_list) {
5554 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5555 		}
5556 		mtx_unlock(&pvc->pvc_lock);
5557 	}
5558 
5559 	for (i = 0; i < vm_ndomains; i++) {
5560 		TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
5561 			free_pv_chunk_dequeued(pc);
5562 		}
5563 	}
5564 }
5565 
5566 /*
5567  * Returns a new PV entry, allocating a new PV chunk from the system when
5568  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
5569  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
5570  * returned.
5571  *
5572  * The given PV list lock may be released.
5573  */
5574 static pv_entry_t
get_pv_entry(pmap_t pmap,struct rwlock ** lockp)5575 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
5576 {
5577 	struct pv_chunks_list *pvc;
5578 	int bit, field;
5579 	pv_entry_t pv;
5580 	struct pv_chunk *pc;
5581 	vm_page_t m;
5582 
5583 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5584 	PV_STAT(counter_u64_add(pv_entry_allocs, 1));
5585 retry:
5586 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5587 	if (pc != NULL) {
5588 		for (field = 0; field < _NPCM; field++) {
5589 			if (pc->pc_map[field]) {
5590 				bit = bsfq(pc->pc_map[field]);
5591 				break;
5592 			}
5593 		}
5594 		if (field < _NPCM) {
5595 			pv = &pc->pc_pventry[field * 64 + bit];
5596 			pc->pc_map[field] &= ~(1ul << bit);
5597 			/* If this was the last item, move it to tail */
5598 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
5599 			    pc->pc_map[2] == 0) {
5600 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5601 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
5602 				    pc_list);
5603 			}
5604 			PV_STAT(counter_u64_add(pv_entry_count, 1));
5605 			PV_STAT(counter_u64_add(pv_entry_spare, -1));
5606 			return (pv);
5607 		}
5608 	}
5609 	/* No free items, allocate another chunk */
5610 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5611 	if (m == NULL) {
5612 		if (lockp == NULL) {
5613 			PV_STAT(counter_u64_add(pc_chunk_tryfail, 1));
5614 			return (NULL);
5615 		}
5616 		m = reclaim_pv_chunk(pmap, lockp);
5617 		if (m == NULL)
5618 			goto retry;
5619 	} else
5620 		counter_u64_add(pv_page_count, 1);
5621 	PV_STAT(counter_u64_add(pc_chunk_count, 1));
5622 	PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5623 	dump_add_page(m->phys_addr);
5624 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5625 	pc->pc_pmap = pmap;
5626 	pc->pc_map[0] = PC_FREEN & ~1ul;	/* preallocated bit 0 */
5627 	pc->pc_map[1] = PC_FREEN;
5628 	pc->pc_map[2] = PC_FREEL;
5629 	pvc = &pv_chunks[vm_page_domain(m)];
5630 	mtx_lock(&pvc->pvc_lock);
5631 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5632 	mtx_unlock(&pvc->pvc_lock);
5633 	pv = &pc->pc_pventry[0];
5634 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5635 	PV_STAT(counter_u64_add(pv_entry_count, 1));
5636 	PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV - 1));
5637 	return (pv);
5638 }
5639 
5640 /*
5641  * Returns the number of one bits within the given PV chunk map.
5642  *
5643  * The erratas for Intel processors state that "POPCNT Instruction May
5644  * Take Longer to Execute Than Expected".  It is believed that the
5645  * issue is the spurious dependency on the destination register.
5646  * Provide a hint to the register rename logic that the destination
5647  * value is overwritten, by clearing it, as suggested in the
5648  * optimization manual.  It should be cheap for unaffected processors
5649  * as well.
5650  *
5651  * Reference numbers for erratas are
5652  * 4th Gen Core: HSD146
5653  * 5th Gen Core: BDM85
5654  * 6th Gen Core: SKL029
5655  */
5656 static int
popcnt_pc_map_pq(uint64_t * map)5657 popcnt_pc_map_pq(uint64_t *map)
5658 {
5659 	u_long result, tmp;
5660 
5661 	__asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
5662 	    "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
5663 	    "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
5664 	    : "=&r" (result), "=&r" (tmp)
5665 	    : "m" (map[0]), "m" (map[1]), "m" (map[2]));
5666 	return (result);
5667 }
5668 
5669 /*
5670  * Ensure that the number of spare PV entries in the specified pmap meets or
5671  * exceeds the given count, "needed".
5672  *
5673  * The given PV list lock may be released.
5674  */
5675 static void
reserve_pv_entries(pmap_t pmap,int needed,struct rwlock ** lockp)5676 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
5677 {
5678 	struct pv_chunks_list *pvc;
5679 	struct pch new_tail[PMAP_MEMDOM];
5680 	struct pv_chunk *pc;
5681 	vm_page_t m;
5682 	int avail, free, i;
5683 	bool reclaimed;
5684 
5685 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5686 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
5687 
5688 	/*
5689 	 * Newly allocated PV chunks must be stored in a private list until
5690 	 * the required number of PV chunks have been allocated.  Otherwise,
5691 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
5692 	 * contrast, these chunks must be added to the pmap upon allocation.
5693 	 */
5694 	for (i = 0; i < PMAP_MEMDOM; i++)
5695 		TAILQ_INIT(&new_tail[i]);
5696 retry:
5697 	avail = 0;
5698 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
5699 #ifndef __POPCNT__
5700 		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
5701 			bit_count((bitstr_t *)pc->pc_map, 0,
5702 			    sizeof(pc->pc_map) * NBBY, &free);
5703 		else
5704 #endif
5705 		free = popcnt_pc_map_pq(pc->pc_map);
5706 		if (free == 0)
5707 			break;
5708 		avail += free;
5709 		if (avail >= needed)
5710 			break;
5711 	}
5712 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
5713 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5714 		if (m == NULL) {
5715 			m = reclaim_pv_chunk(pmap, lockp);
5716 			if (m == NULL)
5717 				goto retry;
5718 			reclaimed = true;
5719 		} else
5720 			counter_u64_add(pv_page_count, 1);
5721 		PV_STAT(counter_u64_add(pc_chunk_count, 1));
5722 		PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5723 		dump_add_page(m->phys_addr);
5724 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5725 		pc->pc_pmap = pmap;
5726 		pc->pc_map[0] = PC_FREEN;
5727 		pc->pc_map[1] = PC_FREEN;
5728 		pc->pc_map[2] = PC_FREEL;
5729 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5730 		TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
5731 		PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV));
5732 
5733 		/*
5734 		 * The reclaim might have freed a chunk from the current pmap.
5735 		 * If that chunk contained available entries, we need to
5736 		 * re-count the number of available entries.
5737 		 */
5738 		if (reclaimed)
5739 			goto retry;
5740 	}
5741 	for (i = 0; i < vm_ndomains; i++) {
5742 		if (TAILQ_EMPTY(&new_tail[i]))
5743 			continue;
5744 		pvc = &pv_chunks[i];
5745 		mtx_lock(&pvc->pvc_lock);
5746 		TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
5747 		mtx_unlock(&pvc->pvc_lock);
5748 	}
5749 }
5750 
5751 /*
5752  * First find and then remove the pv entry for the specified pmap and virtual
5753  * address from the specified pv list.  Returns the pv entry if found and NULL
5754  * otherwise.  This operation can be performed on pv lists for either 4KB or
5755  * 2MB page mappings.
5756  */
5757 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5758 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5759 {
5760 	pv_entry_t pv;
5761 
5762 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5763 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
5764 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5765 			pvh->pv_gen++;
5766 			break;
5767 		}
5768 	}
5769 	return (pv);
5770 }
5771 
5772 /*
5773  * After demotion from a 2MB page mapping to 512 4KB page mappings,
5774  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
5775  * entries for each of the 4KB page mappings.
5776  */
5777 static void
pmap_pv_demote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5778 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5779     struct rwlock **lockp)
5780 {
5781 	struct md_page *pvh;
5782 	struct pv_chunk *pc;
5783 	pv_entry_t pv;
5784 	vm_offset_t va_last;
5785 	vm_page_t m;
5786 	int bit, field;
5787 
5788 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5789 	KASSERT((pa & PDRMASK) == 0,
5790 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
5791 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5792 
5793 	/*
5794 	 * Transfer the 2mpage's pv entry for this mapping to the first
5795 	 * page's pv list.  Once this transfer begins, the pv list lock
5796 	 * must not be released until the last pv entry is reinstantiated.
5797 	 */
5798 	pvh = pa_to_pvh(pa);
5799 	va = trunc_2mpage(va);
5800 	pv = pmap_pvh_remove(pvh, pmap, va);
5801 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
5802 	m = PHYS_TO_VM_PAGE(pa);
5803 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5804 	m->md.pv_gen++;
5805 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
5806 	PV_STAT(counter_u64_add(pv_entry_allocs, NPTEPG - 1));
5807 	va_last = va + NBPDR - PAGE_SIZE;
5808 	for (;;) {
5809 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5810 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
5811 		    pc->pc_map[2] != 0, ("pmap_pv_demote_pde: missing spare"));
5812 		for (field = 0; field < _NPCM; field++) {
5813 			while (pc->pc_map[field]) {
5814 				bit = bsfq(pc->pc_map[field]);
5815 				pc->pc_map[field] &= ~(1ul << bit);
5816 				pv = &pc->pc_pventry[field * 64 + bit];
5817 				va += PAGE_SIZE;
5818 				pv->pv_va = va;
5819 				m++;
5820 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5821 			    ("pmap_pv_demote_pde: page %p is not managed", m));
5822 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5823 				m->md.pv_gen++;
5824 				if (va == va_last)
5825 					goto out;
5826 			}
5827 		}
5828 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5829 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5830 	}
5831 out:
5832 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
5833 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5834 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5835 	}
5836 	PV_STAT(counter_u64_add(pv_entry_count, NPTEPG - 1));
5837 	PV_STAT(counter_u64_add(pv_entry_spare, -(NPTEPG - 1)));
5838 }
5839 
5840 #if VM_NRESERVLEVEL > 0
5841 /*
5842  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
5843  * replace the many pv entries for the 4KB page mappings by a single pv entry
5844  * for the 2MB page mapping.
5845  */
5846 static void
pmap_pv_promote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5847 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5848     struct rwlock **lockp)
5849 {
5850 	struct md_page *pvh;
5851 	pv_entry_t pv;
5852 	vm_offset_t va_last;
5853 	vm_page_t m;
5854 
5855 	KASSERT((pa & PDRMASK) == 0,
5856 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
5857 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5858 
5859 	/*
5860 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
5861 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
5862 	 * a transfer avoids the possibility that get_pv_entry() calls
5863 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
5864 	 * mappings that is being promoted.
5865 	 */
5866 	m = PHYS_TO_VM_PAGE(pa);
5867 	va = trunc_2mpage(va);
5868 	pv = pmap_pvh_remove(&m->md, pmap, va);
5869 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
5870 	pvh = pa_to_pvh(pa);
5871 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5872 	pvh->pv_gen++;
5873 	/* Free the remaining NPTEPG - 1 pv entries. */
5874 	va_last = va + NBPDR - PAGE_SIZE;
5875 	do {
5876 		m++;
5877 		va += PAGE_SIZE;
5878 		pmap_pvh_free(&m->md, pmap, va);
5879 	} while (va < va_last);
5880 }
5881 #endif /* VM_NRESERVLEVEL > 0 */
5882 
5883 /*
5884  * First find and then destroy the pv entry for the specified pmap and virtual
5885  * address.  This operation can be performed on pv lists for either 4KB or 2MB
5886  * page mappings.
5887  */
5888 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5889 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5890 {
5891 	pv_entry_t pv;
5892 
5893 	pv = pmap_pvh_remove(pvh, pmap, va);
5894 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
5895 	free_pv_entry(pmap, pv);
5896 }
5897 
5898 /*
5899  * Conditionally create the PV entry for a 4KB page mapping if the required
5900  * memory can be allocated without resorting to reclamation.
5901  */
5902 static bool
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)5903 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
5904     struct rwlock **lockp)
5905 {
5906 	pv_entry_t pv;
5907 
5908 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5909 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5910 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
5911 		pv->pv_va = va;
5912 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5913 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5914 		m->md.pv_gen++;
5915 		return (true);
5916 	} else
5917 		return (false);
5918 }
5919 
5920 /*
5921  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
5922  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
5923  * false if the PV entry cannot be allocated without resorting to reclamation.
5924  */
5925 static bool
pmap_pv_insert_pde(pmap_t pmap,vm_offset_t va,pd_entry_t pde,u_int flags,struct rwlock ** lockp)5926 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
5927     struct rwlock **lockp)
5928 {
5929 	struct md_page *pvh;
5930 	pv_entry_t pv;
5931 	vm_paddr_t pa;
5932 
5933 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5934 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5935 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
5936 	    NULL : lockp)) == NULL)
5937 		return (false);
5938 	pv->pv_va = va;
5939 	pa = pde & PG_PS_FRAME;
5940 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5941 	pvh = pa_to_pvh(pa);
5942 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5943 	pvh->pv_gen++;
5944 	return (true);
5945 }
5946 
5947 /*
5948  * Fills a page table page with mappings to consecutive physical pages.
5949  */
5950 static void
pmap_fill_ptp(pt_entry_t * firstpte,pt_entry_t newpte)5951 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
5952 {
5953 	pt_entry_t *pte;
5954 
5955 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
5956 		*pte = newpte;
5957 		newpte += PAGE_SIZE;
5958 	}
5959 }
5960 
5961 /*
5962  * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
5963  * mapping is invalidated.
5964  */
5965 static bool
pmap_demote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)5966 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5967 {
5968 	struct rwlock *lock;
5969 	bool rv;
5970 
5971 	lock = NULL;
5972 	rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
5973 	if (lock != NULL)
5974 		rw_wunlock(lock);
5975 	return (rv);
5976 }
5977 
5978 static void
pmap_demote_pde_check(pt_entry_t * firstpte __unused,pt_entry_t newpte __unused)5979 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
5980 {
5981 #ifdef INVARIANTS
5982 #ifdef DIAGNOSTIC
5983 	pt_entry_t *xpte, *ypte;
5984 
5985 	for (xpte = firstpte; xpte < firstpte + NPTEPG;
5986 	    xpte++, newpte += PAGE_SIZE) {
5987 		if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
5988 			printf("pmap_demote_pde: xpte %zd and newpte map "
5989 			    "different pages: found %#lx, expected %#lx\n",
5990 			    xpte - firstpte, *xpte, newpte);
5991 			printf("page table dump\n");
5992 			for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
5993 				printf("%zd %#lx\n", ypte - firstpte, *ypte);
5994 			panic("firstpte");
5995 		}
5996 	}
5997 #else
5998 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
5999 	    ("pmap_demote_pde: firstpte and newpte map different physical"
6000 	    " addresses"));
6001 #endif
6002 #endif
6003 }
6004 
6005 static void
pmap_demote_pde_abort(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t oldpde,struct rwlock ** lockp)6006 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6007     pd_entry_t oldpde, struct rwlock **lockp)
6008 {
6009 	struct spglist free;
6010 	vm_offset_t sva;
6011 
6012 	SLIST_INIT(&free);
6013 	sva = trunc_2mpage(va);
6014 	pmap_remove_pde(pmap, pde, sva, &free, lockp);
6015 	if ((oldpde & pmap_global_bit(pmap)) == 0)
6016 		pmap_invalidate_pde_page(pmap, sva, oldpde);
6017 	vm_page_free_pages_toq(&free, true);
6018 	CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
6019 	    va, pmap);
6020 }
6021 
6022 static bool
pmap_demote_pde_locked(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,struct rwlock ** lockp)6023 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
6024     struct rwlock **lockp)
6025 {
6026 	pd_entry_t newpde, oldpde;
6027 	pt_entry_t *firstpte, newpte;
6028 	pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6029 	vm_paddr_t mptepa;
6030 	vm_page_t mpte;
6031 	int PG_PTE_CACHE;
6032 	bool in_kernel;
6033 
6034 	PG_A = pmap_accessed_bit(pmap);
6035 	PG_G = pmap_global_bit(pmap);
6036 	PG_M = pmap_modified_bit(pmap);
6037 	PG_RW = pmap_rw_bit(pmap);
6038 	PG_V = pmap_valid_bit(pmap);
6039 	PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6040 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6041 
6042 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6043 	in_kernel = va >= VM_MAXUSER_ADDRESS;
6044 	oldpde = *pde;
6045 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
6046 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
6047 
6048 	/*
6049 	 * Invalidate the 2MB page mapping and return "failure" if the
6050 	 * mapping was never accessed.
6051 	 */
6052 	if ((oldpde & PG_A) == 0) {
6053 		KASSERT((oldpde & PG_W) == 0,
6054 		    ("pmap_demote_pde: a wired mapping is missing PG_A"));
6055 		pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6056 		return (false);
6057 	}
6058 
6059 	mpte = pmap_remove_pt_page(pmap, va);
6060 	if (mpte == NULL) {
6061 		KASSERT((oldpde & PG_W) == 0,
6062 		    ("pmap_demote_pde: page table page for a wired mapping"
6063 		    " is missing"));
6064 
6065 		/*
6066 		 * If the page table page is missing and the mapping
6067 		 * is for a kernel address, the mapping must belong to
6068 		 * the direct map.  Page table pages are preallocated
6069 		 * for every other part of the kernel address space,
6070 		 * so the direct map region is the only part of the
6071 		 * kernel address space that must be handled here.
6072 		 */
6073 		KASSERT(!in_kernel || (va >= DMAP_MIN_ADDRESS &&
6074 		    va < DMAP_MAX_ADDRESS),
6075 		    ("pmap_demote_pde: No saved mpte for va %#lx", va));
6076 
6077 		/*
6078 		 * If the 2MB page mapping belongs to the direct map
6079 		 * region of the kernel's address space, then the page
6080 		 * allocation request specifies the highest possible
6081 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the
6082 		 * priority is normal.
6083 		 */
6084 		mpte = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
6085 		    (in_kernel ? VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED);
6086 
6087 		/*
6088 		 * If the allocation of the new page table page fails,
6089 		 * invalidate the 2MB page mapping and return "failure".
6090 		 */
6091 		if (mpte == NULL) {
6092 			pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6093 			return (false);
6094 		}
6095 
6096 		if (!in_kernel)
6097 			mpte->ref_count = NPTEPG;
6098 	}
6099 	mptepa = VM_PAGE_TO_PHYS(mpte);
6100 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
6101 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
6102 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
6103 	    ("pmap_demote_pde: oldpde is missing PG_M"));
6104 	newpte = oldpde & ~PG_PS;
6105 	newpte = pmap_swap_pat(pmap, newpte);
6106 
6107 	/*
6108 	 * If the PTP is not leftover from an earlier promotion or it does not
6109 	 * have PG_A set in every PTE, then fill it.  The new PTEs will all
6110 	 * have PG_A set.
6111 	 */
6112 	if (!vm_page_all_valid(mpte))
6113 		pmap_fill_ptp(firstpte, newpte);
6114 
6115 	pmap_demote_pde_check(firstpte, newpte);
6116 
6117 	/*
6118 	 * If the mapping has changed attributes, update the PTEs.
6119 	 */
6120 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
6121 		pmap_fill_ptp(firstpte, newpte);
6122 
6123 	/*
6124 	 * The spare PV entries must be reserved prior to demoting the
6125 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
6126 	 * of the PDE and the PV lists will be inconsistent, which can result
6127 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
6128 	 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
6129 	 * PV entry for the 2MB page mapping that is being demoted.
6130 	 */
6131 	if ((oldpde & PG_MANAGED) != 0)
6132 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
6133 
6134 	/*
6135 	 * Demote the mapping.  This pmap is locked.  The old PDE has
6136 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
6137 	 * set.  Thus, there is no danger of a race with another
6138 	 * processor changing the setting of PG_A and/or PG_M between
6139 	 * the read above and the store below.
6140 	 */
6141 	if (workaround_erratum383)
6142 		pmap_update_pde(pmap, va, pde, newpde);
6143 	else
6144 		pde_store(pde, newpde);
6145 
6146 	/*
6147 	 * Invalidate a stale recursive mapping of the page table page.
6148 	 */
6149 	if (in_kernel)
6150 		pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6151 
6152 	/*
6153 	 * Demote the PV entry.
6154 	 */
6155 	if ((oldpde & PG_MANAGED) != 0)
6156 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
6157 
6158 	counter_u64_add(pmap_pde_demotions, 1);
6159 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
6160 	    va, pmap);
6161 	return (true);
6162 }
6163 
6164 /*
6165  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
6166  */
6167 static void
pmap_remove_kernel_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)6168 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
6169 {
6170 	pd_entry_t newpde;
6171 	vm_paddr_t mptepa;
6172 	vm_page_t mpte;
6173 
6174 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
6175 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6176 	mpte = pmap_remove_pt_page(pmap, va);
6177 	if (mpte == NULL)
6178 		panic("pmap_remove_kernel_pde: Missing pt page.");
6179 
6180 	mptepa = VM_PAGE_TO_PHYS(mpte);
6181 	newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
6182 
6183 	/*
6184 	 * If this page table page was unmapped by a promotion, then it
6185 	 * contains valid mappings.  Zero it to invalidate those mappings.
6186 	 */
6187 	if (vm_page_any_valid(mpte))
6188 		pagezero((void *)PHYS_TO_DMAP(mptepa));
6189 
6190 	/*
6191 	 * Demote the mapping.
6192 	 */
6193 	if (workaround_erratum383)
6194 		pmap_update_pde(pmap, va, pde, newpde);
6195 	else
6196 		pde_store(pde, newpde);
6197 
6198 	/*
6199 	 * Invalidate a stale recursive mapping of the page table page.
6200 	 */
6201 	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6202 }
6203 
6204 /*
6205  * pmap_remove_pde: do the things to unmap a superpage in a process
6206  */
6207 static int
pmap_remove_pde(pmap_t pmap,pd_entry_t * pdq,vm_offset_t sva,struct spglist * free,struct rwlock ** lockp)6208 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
6209     struct spglist *free, struct rwlock **lockp)
6210 {
6211 	struct md_page *pvh;
6212 	pd_entry_t oldpde;
6213 	vm_offset_t eva, va;
6214 	vm_page_t m, mpte;
6215 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
6216 
6217 	PG_G = pmap_global_bit(pmap);
6218 	PG_A = pmap_accessed_bit(pmap);
6219 	PG_M = pmap_modified_bit(pmap);
6220 	PG_RW = pmap_rw_bit(pmap);
6221 
6222 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6223 	KASSERT((sva & PDRMASK) == 0,
6224 	    ("pmap_remove_pde: sva is not 2mpage aligned"));
6225 	oldpde = pte_load_clear(pdq);
6226 	if (oldpde & PG_W)
6227 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
6228 	if ((oldpde & PG_G) != 0)
6229 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6230 	pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
6231 	if (oldpde & PG_MANAGED) {
6232 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
6233 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
6234 		pmap_pvh_free(pvh, pmap, sva);
6235 		eva = sva + NBPDR;
6236 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6237 		    va < eva; va += PAGE_SIZE, m++) {
6238 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
6239 				vm_page_dirty(m);
6240 			if (oldpde & PG_A)
6241 				vm_page_aflag_set(m, PGA_REFERENCED);
6242 			if (TAILQ_EMPTY(&m->md.pv_list) &&
6243 			    TAILQ_EMPTY(&pvh->pv_list))
6244 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6245 			pmap_delayed_invl_page(m);
6246 		}
6247 	}
6248 	if (pmap == kernel_pmap) {
6249 		pmap_remove_kernel_pde(pmap, pdq, sva);
6250 	} else {
6251 		mpte = pmap_remove_pt_page(pmap, sva);
6252 		if (mpte != NULL) {
6253 			KASSERT(vm_page_any_valid(mpte),
6254 			    ("pmap_remove_pde: pte page not promoted"));
6255 			pmap_pt_page_count_adj(pmap, -1);
6256 			KASSERT(mpte->ref_count == NPTEPG,
6257 			    ("pmap_remove_pde: pte page ref count error"));
6258 			mpte->ref_count = 0;
6259 			pmap_add_delayed_free_list(mpte, free, false);
6260 		}
6261 	}
6262 	return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
6263 }
6264 
6265 /*
6266  * pmap_remove_pte: do the things to unmap a page in a process
6267  */
6268 static int
pmap_remove_pte(pmap_t pmap,pt_entry_t * ptq,vm_offset_t va,pd_entry_t ptepde,struct spglist * free,struct rwlock ** lockp)6269 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
6270     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
6271 {
6272 	struct md_page *pvh;
6273 	pt_entry_t oldpte, PG_A, PG_M, PG_RW;
6274 	vm_page_t m;
6275 
6276 	PG_A = pmap_accessed_bit(pmap);
6277 	PG_M = pmap_modified_bit(pmap);
6278 	PG_RW = pmap_rw_bit(pmap);
6279 
6280 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6281 	oldpte = pte_load_clear(ptq);
6282 	if (oldpte & PG_W)
6283 		pmap->pm_stats.wired_count -= 1;
6284 	pmap_resident_count_adj(pmap, -1);
6285 	if (oldpte & PG_MANAGED) {
6286 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
6287 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6288 			vm_page_dirty(m);
6289 		if (oldpte & PG_A)
6290 			vm_page_aflag_set(m, PGA_REFERENCED);
6291 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
6292 		pmap_pvh_free(&m->md, pmap, va);
6293 		if (TAILQ_EMPTY(&m->md.pv_list) &&
6294 		    (m->flags & PG_FICTITIOUS) == 0) {
6295 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
6296 			if (TAILQ_EMPTY(&pvh->pv_list))
6297 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6298 		}
6299 		pmap_delayed_invl_page(m);
6300 	}
6301 	return (pmap_unuse_pt(pmap, va, ptepde, free));
6302 }
6303 
6304 /*
6305  * Remove a single page from a process address space
6306  */
6307 static void
pmap_remove_page(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,struct spglist * free)6308 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6309     struct spglist *free)
6310 {
6311 	struct rwlock *lock;
6312 	pt_entry_t *pte, PG_V;
6313 
6314 	PG_V = pmap_valid_bit(pmap);
6315 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6316 	if ((*pde & PG_V) == 0)
6317 		return;
6318 	pte = pmap_pde_to_pte(pde, va);
6319 	if ((*pte & PG_V) == 0)
6320 		return;
6321 	lock = NULL;
6322 	pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
6323 	if (lock != NULL)
6324 		rw_wunlock(lock);
6325 	pmap_invalidate_page(pmap, va);
6326 }
6327 
6328 /*
6329  * Removes the specified range of addresses from the page table page.
6330  */
6331 static bool
pmap_remove_ptes(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pd_entry_t * pde,struct spglist * free,struct rwlock ** lockp)6332 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
6333     pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
6334 {
6335 	pt_entry_t PG_G, *pte;
6336 	vm_offset_t va;
6337 	bool anyvalid;
6338 
6339 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6340 	PG_G = pmap_global_bit(pmap);
6341 	anyvalid = false;
6342 	va = eva;
6343 	for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
6344 	    sva += PAGE_SIZE) {
6345 		if (*pte == 0) {
6346 			if (va != eva) {
6347 				pmap_invalidate_range(pmap, va, sva);
6348 				va = eva;
6349 			}
6350 			continue;
6351 		}
6352 		if ((*pte & PG_G) == 0)
6353 			anyvalid = true;
6354 		else if (va == eva)
6355 			va = sva;
6356 		if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
6357 			sva += PAGE_SIZE;
6358 			break;
6359 		}
6360 	}
6361 	if (va != eva)
6362 		pmap_invalidate_range(pmap, va, sva);
6363 	return (anyvalid);
6364 }
6365 
6366 static void
pmap_remove1(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool map_delete)6367 pmap_remove1(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool map_delete)
6368 {
6369 	struct rwlock *lock;
6370 	vm_page_t mt;
6371 	vm_offset_t va_next;
6372 	pml5_entry_t *pml5e;
6373 	pml4_entry_t *pml4e;
6374 	pdp_entry_t *pdpe;
6375 	pd_entry_t ptpaddr, *pde;
6376 	pt_entry_t PG_G, PG_V;
6377 	struct spglist free;
6378 	int anyvalid;
6379 
6380 	PG_G = pmap_global_bit(pmap);
6381 	PG_V = pmap_valid_bit(pmap);
6382 
6383 	/*
6384 	 * If there are no resident pages besides the top level page
6385 	 * table page(s), there is nothing to do.  Kernel pmap always
6386 	 * accounts whole preloaded area as resident, which makes its
6387 	 * resident count > 2.
6388 	 * Perform an unsynchronized read.  This is, however, safe.
6389 	 */
6390 	if (pmap->pm_stats.resident_count <= 1 + (pmap->pm_pmltopu != NULL ?
6391 	    1 : 0))
6392 		return;
6393 
6394 	anyvalid = 0;
6395 	SLIST_INIT(&free);
6396 
6397 	pmap_delayed_invl_start();
6398 	PMAP_LOCK(pmap);
6399 	if (map_delete)
6400 		pmap_pkru_on_remove(pmap, sva, eva);
6401 
6402 	/*
6403 	 * special handling of removing one page.  a very
6404 	 * common operation and easy to short circuit some
6405 	 * code.
6406 	 */
6407 	if (sva + PAGE_SIZE == eva) {
6408 		pde = pmap_pde(pmap, sva);
6409 		if (pde && (*pde & PG_PS) == 0) {
6410 			pmap_remove_page(pmap, sva, pde, &free);
6411 			goto out;
6412 		}
6413 	}
6414 
6415 	lock = NULL;
6416 	for (; sva < eva; sva = va_next) {
6417 		if (pmap->pm_stats.resident_count == 0)
6418 			break;
6419 
6420 		if (pmap_is_la57(pmap)) {
6421 			pml5e = pmap_pml5e(pmap, sva);
6422 			if ((*pml5e & PG_V) == 0) {
6423 				va_next = (sva + NBPML5) & ~PML5MASK;
6424 				if (va_next < sva)
6425 					va_next = eva;
6426 				continue;
6427 			}
6428 			pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
6429 		} else {
6430 			pml4e = pmap_pml4e(pmap, sva);
6431 		}
6432 		if ((*pml4e & PG_V) == 0) {
6433 			va_next = (sva + NBPML4) & ~PML4MASK;
6434 			if (va_next < sva)
6435 				va_next = eva;
6436 			continue;
6437 		}
6438 
6439 		va_next = (sva + NBPDP) & ~PDPMASK;
6440 		if (va_next < sva)
6441 			va_next = eva;
6442 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6443 		if ((*pdpe & PG_V) == 0)
6444 			continue;
6445 		if ((*pdpe & PG_PS) != 0) {
6446 			KASSERT(va_next <= eva,
6447 			    ("partial update of non-transparent 1G mapping "
6448 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6449 			    *pdpe, sva, eva, va_next));
6450 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6451 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
6452 			anyvalid = 1;
6453 			*pdpe = 0;
6454 			pmap_resident_count_adj(pmap, -NBPDP / PAGE_SIZE);
6455 			mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
6456 			pmap_unwire_ptp(pmap, sva, mt, &free);
6457 			continue;
6458 		}
6459 
6460 		/*
6461 		 * Calculate index for next page table.
6462 		 */
6463 		va_next = (sva + NBPDR) & ~PDRMASK;
6464 		if (va_next < sva)
6465 			va_next = eva;
6466 
6467 		pde = pmap_pdpe_to_pde(pdpe, sva);
6468 		ptpaddr = *pde;
6469 
6470 		/*
6471 		 * Weed out invalid mappings.
6472 		 */
6473 		if (ptpaddr == 0)
6474 			continue;
6475 
6476 		/*
6477 		 * Check for large page.
6478 		 */
6479 		if ((ptpaddr & PG_PS) != 0) {
6480 			/*
6481 			 * Are we removing the entire large page?  If not,
6482 			 * demote the mapping and fall through.
6483 			 */
6484 			if (sva + NBPDR == va_next && eva >= va_next) {
6485 				/*
6486 				 * The TLB entry for a PG_G mapping is
6487 				 * invalidated by pmap_remove_pde().
6488 				 */
6489 				if ((ptpaddr & PG_G) == 0)
6490 					anyvalid = 1;
6491 				pmap_remove_pde(pmap, pde, sva, &free, &lock);
6492 				continue;
6493 			} else if (!pmap_demote_pde_locked(pmap, pde, sva,
6494 			    &lock)) {
6495 				/* The large page mapping was destroyed. */
6496 				continue;
6497 			} else
6498 				ptpaddr = *pde;
6499 		}
6500 
6501 		/*
6502 		 * Limit our scan to either the end of the va represented
6503 		 * by the current page table page, or to the end of the
6504 		 * range being removed.
6505 		 */
6506 		if (va_next > eva)
6507 			va_next = eva;
6508 
6509 		if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
6510 			anyvalid = 1;
6511 	}
6512 	if (lock != NULL)
6513 		rw_wunlock(lock);
6514 out:
6515 	if (anyvalid)
6516 		pmap_invalidate_all(pmap);
6517 	PMAP_UNLOCK(pmap);
6518 	pmap_delayed_invl_finish();
6519 	vm_page_free_pages_toq(&free, true);
6520 }
6521 
6522 /*
6523  *	Remove the given range of addresses from the specified map.
6524  *
6525  *	It is assumed that the start and end are properly
6526  *	rounded to the page size.
6527  */
6528 void
pmap_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6529 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6530 {
6531 	pmap_remove1(pmap, sva, eva, false);
6532 }
6533 
6534 /*
6535  *	Remove the given range of addresses as part of a logical unmap
6536  *	operation. This has the effect of calling pmap_remove(), but
6537  *	also clears any metadata that should persist for the lifetime
6538  *	of a logical mapping.
6539  */
6540 void
pmap_map_delete(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6541 pmap_map_delete(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6542 {
6543 	pmap_remove1(pmap, sva, eva, true);
6544 }
6545 
6546 /*
6547  *	Routine:	pmap_remove_all
6548  *	Function:
6549  *		Removes this physical page from
6550  *		all physical maps in which it resides.
6551  *		Reflects back modify bits to the pager.
6552  *
6553  *	Notes:
6554  *		Original versions of this routine were very
6555  *		inefficient because they iteratively called
6556  *		pmap_remove (slow...)
6557  */
6558 
6559 void
pmap_remove_all(vm_page_t m)6560 pmap_remove_all(vm_page_t m)
6561 {
6562 	struct md_page *pvh;
6563 	pv_entry_t pv;
6564 	pmap_t pmap;
6565 	struct rwlock *lock;
6566 	pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
6567 	pd_entry_t *pde;
6568 	vm_offset_t va;
6569 	struct spglist free;
6570 	int pvh_gen, md_gen;
6571 
6572 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6573 	    ("pmap_remove_all: page %p is not managed", m));
6574 	SLIST_INIT(&free);
6575 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6576 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6577 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
6578 	rw_wlock(lock);
6579 retry:
6580 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
6581 		pmap = PV_PMAP(pv);
6582 		if (!PMAP_TRYLOCK(pmap)) {
6583 			pvh_gen = pvh->pv_gen;
6584 			rw_wunlock(lock);
6585 			PMAP_LOCK(pmap);
6586 			rw_wlock(lock);
6587 			if (pvh_gen != pvh->pv_gen) {
6588 				PMAP_UNLOCK(pmap);
6589 				goto retry;
6590 			}
6591 		}
6592 		va = pv->pv_va;
6593 		pde = pmap_pde(pmap, va);
6594 		(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
6595 		PMAP_UNLOCK(pmap);
6596 	}
6597 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
6598 		pmap = PV_PMAP(pv);
6599 		if (!PMAP_TRYLOCK(pmap)) {
6600 			pvh_gen = pvh->pv_gen;
6601 			md_gen = m->md.pv_gen;
6602 			rw_wunlock(lock);
6603 			PMAP_LOCK(pmap);
6604 			rw_wlock(lock);
6605 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6606 				PMAP_UNLOCK(pmap);
6607 				goto retry;
6608 			}
6609 		}
6610 		PG_A = pmap_accessed_bit(pmap);
6611 		PG_M = pmap_modified_bit(pmap);
6612 		PG_RW = pmap_rw_bit(pmap);
6613 		pmap_resident_count_adj(pmap, -1);
6614 		pde = pmap_pde(pmap, pv->pv_va);
6615 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
6616 		    " a 2mpage in page %p's pv list", m));
6617 		pte = pmap_pde_to_pte(pde, pv->pv_va);
6618 		tpte = pte_load_clear(pte);
6619 		if (tpte & PG_W)
6620 			pmap->pm_stats.wired_count--;
6621 		if (tpte & PG_A)
6622 			vm_page_aflag_set(m, PGA_REFERENCED);
6623 
6624 		/*
6625 		 * Update the vm_page_t clean and reference bits.
6626 		 */
6627 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6628 			vm_page_dirty(m);
6629 		pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
6630 		pmap_invalidate_page(pmap, pv->pv_va);
6631 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6632 		m->md.pv_gen++;
6633 		free_pv_entry(pmap, pv);
6634 		PMAP_UNLOCK(pmap);
6635 	}
6636 	vm_page_aflag_clear(m, PGA_WRITEABLE);
6637 	rw_wunlock(lock);
6638 	pmap_delayed_invl_wait(m);
6639 	vm_page_free_pages_toq(&free, true);
6640 }
6641 
6642 /*
6643  * pmap_protect_pde: do the things to protect a 2mpage in a process
6644  */
6645 static bool
pmap_protect_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t sva,vm_prot_t prot)6646 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
6647 {
6648 	pd_entry_t newpde, oldpde;
6649 	vm_page_t m, mt;
6650 	bool anychanged;
6651 	pt_entry_t PG_G, PG_M, PG_RW;
6652 
6653 	PG_G = pmap_global_bit(pmap);
6654 	PG_M = pmap_modified_bit(pmap);
6655 	PG_RW = pmap_rw_bit(pmap);
6656 
6657 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6658 	KASSERT((sva & PDRMASK) == 0,
6659 	    ("pmap_protect_pde: sva is not 2mpage aligned"));
6660 	anychanged = false;
6661 retry:
6662 	oldpde = newpde = *pde;
6663 	if ((prot & VM_PROT_WRITE) == 0) {
6664 		if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
6665 		    (PG_MANAGED | PG_M | PG_RW)) {
6666 			m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6667 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
6668 				vm_page_dirty(mt);
6669 		}
6670 		newpde &= ~(PG_RW | PG_M);
6671 	}
6672 	if ((prot & VM_PROT_EXECUTE) == 0)
6673 		newpde |= pg_nx;
6674 	if (newpde != oldpde) {
6675 		/*
6676 		 * As an optimization to future operations on this PDE, clear
6677 		 * PG_PROMOTED.  The impending invalidation will remove any
6678 		 * lingering 4KB page mappings from the TLB.
6679 		 */
6680 		if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
6681 			goto retry;
6682 		if ((oldpde & PG_G) != 0)
6683 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6684 		else
6685 			anychanged = true;
6686 	}
6687 	return (anychanged);
6688 }
6689 
6690 /*
6691  *	Set the physical protection on the
6692  *	specified range of this map as requested.
6693  */
6694 void
pmap_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)6695 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
6696 {
6697 	vm_page_t m;
6698 	vm_offset_t va_next;
6699 	pml4_entry_t *pml4e;
6700 	pdp_entry_t *pdpe;
6701 	pd_entry_t ptpaddr, *pde;
6702 	pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
6703 	pt_entry_t obits, pbits;
6704 	bool anychanged;
6705 
6706 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
6707 	if (prot == VM_PROT_NONE) {
6708 		pmap_remove(pmap, sva, eva);
6709 		return;
6710 	}
6711 
6712 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
6713 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
6714 		return;
6715 
6716 	PG_G = pmap_global_bit(pmap);
6717 	PG_M = pmap_modified_bit(pmap);
6718 	PG_V = pmap_valid_bit(pmap);
6719 	PG_RW = pmap_rw_bit(pmap);
6720 	anychanged = false;
6721 
6722 	/*
6723 	 * Although this function delays and batches the invalidation
6724 	 * of stale TLB entries, it does not need to call
6725 	 * pmap_delayed_invl_start() and
6726 	 * pmap_delayed_invl_finish(), because it does not
6727 	 * ordinarily destroy mappings.  Stale TLB entries from
6728 	 * protection-only changes need only be invalidated before the
6729 	 * pmap lock is released, because protection-only changes do
6730 	 * not destroy PV entries.  Even operations that iterate over
6731 	 * a physical page's PV list of mappings, like
6732 	 * pmap_remove_write(), acquire the pmap lock for each
6733 	 * mapping.  Consequently, for protection-only changes, the
6734 	 * pmap lock suffices to synchronize both page table and TLB
6735 	 * updates.
6736 	 *
6737 	 * This function only destroys a mapping if pmap_demote_pde()
6738 	 * fails.  In that case, stale TLB entries are immediately
6739 	 * invalidated.
6740 	 */
6741 
6742 	PMAP_LOCK(pmap);
6743 	for (; sva < eva; sva = va_next) {
6744 		pml4e = pmap_pml4e(pmap, sva);
6745 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6746 			va_next = (sva + NBPML4) & ~PML4MASK;
6747 			if (va_next < sva)
6748 				va_next = eva;
6749 			continue;
6750 		}
6751 
6752 		va_next = (sva + NBPDP) & ~PDPMASK;
6753 		if (va_next < sva)
6754 			va_next = eva;
6755 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6756 		if ((*pdpe & PG_V) == 0)
6757 			continue;
6758 		if ((*pdpe & PG_PS) != 0) {
6759 			KASSERT(va_next <= eva,
6760 			    ("partial update of non-transparent 1G mapping "
6761 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6762 			    *pdpe, sva, eva, va_next));
6763 retry_pdpe:
6764 			obits = pbits = *pdpe;
6765 			MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
6766 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6767 			if ((prot & VM_PROT_WRITE) == 0)
6768 				pbits &= ~(PG_RW | PG_M);
6769 			if ((prot & VM_PROT_EXECUTE) == 0)
6770 				pbits |= pg_nx;
6771 
6772 			if (pbits != obits) {
6773 				if (!atomic_cmpset_long(pdpe, obits, pbits))
6774 					/* PG_PS cannot be cleared under us, */
6775 					goto retry_pdpe;
6776 				anychanged = true;
6777 			}
6778 			continue;
6779 		}
6780 
6781 		va_next = (sva + NBPDR) & ~PDRMASK;
6782 		if (va_next < sva)
6783 			va_next = eva;
6784 
6785 		pde = pmap_pdpe_to_pde(pdpe, sva);
6786 		ptpaddr = *pde;
6787 
6788 		/*
6789 		 * Weed out invalid mappings.
6790 		 */
6791 		if (ptpaddr == 0)
6792 			continue;
6793 
6794 		/*
6795 		 * Check for large page.
6796 		 */
6797 		if ((ptpaddr & PG_PS) != 0) {
6798 			/*
6799 			 * Are we protecting the entire large page?  If not,
6800 			 * demote the mapping and fall through.
6801 			 */
6802 			if (sva + NBPDR == va_next && eva >= va_next) {
6803 				/*
6804 				 * The TLB entry for a PG_G mapping is
6805 				 * invalidated by pmap_protect_pde().
6806 				 */
6807 				if (pmap_protect_pde(pmap, pde, sva, prot))
6808 					anychanged = true;
6809 				continue;
6810 			} else if (!pmap_demote_pde(pmap, pde, sva)) {
6811 				/*
6812 				 * The large page mapping was destroyed.
6813 				 */
6814 				continue;
6815 			}
6816 		}
6817 
6818 		if (va_next > eva)
6819 			va_next = eva;
6820 
6821 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6822 		    sva += PAGE_SIZE) {
6823 retry:
6824 			obits = pbits = *pte;
6825 			if ((pbits & PG_V) == 0)
6826 				continue;
6827 
6828 			if ((prot & VM_PROT_WRITE) == 0) {
6829 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
6830 				    (PG_MANAGED | PG_M | PG_RW)) {
6831 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
6832 					vm_page_dirty(m);
6833 				}
6834 				pbits &= ~(PG_RW | PG_M);
6835 			}
6836 			if ((prot & VM_PROT_EXECUTE) == 0)
6837 				pbits |= pg_nx;
6838 
6839 			if (pbits != obits) {
6840 				if (!atomic_cmpset_long(pte, obits, pbits))
6841 					goto retry;
6842 				if (obits & PG_G)
6843 					pmap_invalidate_page(pmap, sva);
6844 				else
6845 					anychanged = true;
6846 			}
6847 		}
6848 	}
6849 	if (anychanged)
6850 		pmap_invalidate_all(pmap);
6851 	PMAP_UNLOCK(pmap);
6852 }
6853 
6854 static bool
pmap_pde_ept_executable(pmap_t pmap,pd_entry_t pde)6855 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
6856 {
6857 
6858 	if (pmap->pm_type != PT_EPT)
6859 		return (false);
6860 	return ((pde & EPT_PG_EXECUTE) != 0);
6861 }
6862 
6863 #if VM_NRESERVLEVEL > 0
6864 /*
6865  * Tries to promote the 512, contiguous 4KB page mappings that are within a
6866  * single page table page (PTP) to a single 2MB page mapping.  For promotion
6867  * to occur, two conditions must be met: (1) the 4KB page mappings must map
6868  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
6869  * identical characteristics.
6870  */
6871 static bool
pmap_promote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,vm_page_t mpte,struct rwlock ** lockp)6872 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte,
6873     struct rwlock **lockp)
6874 {
6875 	pd_entry_t newpde;
6876 	pt_entry_t *firstpte, oldpte, pa, *pte;
6877 	pt_entry_t allpte_PG_A, PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6878 	int PG_PTE_CACHE;
6879 
6880 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6881 	if (!pmap_ps_enabled(pmap))
6882 		return (false);
6883 
6884 	PG_A = pmap_accessed_bit(pmap);
6885 	PG_G = pmap_global_bit(pmap);
6886 	PG_M = pmap_modified_bit(pmap);
6887 	PG_V = pmap_valid_bit(pmap);
6888 	PG_RW = pmap_rw_bit(pmap);
6889 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6890 	PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6891 
6892 	/*
6893 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
6894 	 * ineligible for promotion due to hardware errata, invalid, or does
6895 	 * not map the first 4KB physical page within a 2MB page.
6896 	 */
6897 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
6898 	newpde = *firstpte;
6899 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap, newpde)))
6900 		return (false);
6901 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
6902 		counter_u64_add(pmap_pde_p_failures, 1);
6903 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6904 		    " in pmap %p", va, pmap);
6905 		return (false);
6906 	}
6907 
6908 	/*
6909 	 * Both here and in the below "for" loop, to allow for repromotion
6910 	 * after MADV_FREE, conditionally write protect a clean PTE before
6911 	 * possibly aborting the promotion due to other PTE attributes.  Why?
6912 	 * Suppose that MADV_FREE is applied to a part of a superpage, the
6913 	 * address range [S, E).  pmap_advise() will demote the superpage
6914 	 * mapping, destroy the 4KB page mapping at the end of [S, E), and
6915 	 * clear PG_M and PG_A in the PTEs for the rest of [S, E).  Later,
6916 	 * imagine that the memory in [S, E) is recycled, but the last 4KB
6917 	 * page in [S, E) is not the last to be rewritten, or simply accessed.
6918 	 * In other words, there is still a 4KB page in [S, E), call it P,
6919 	 * that is writeable but PG_M and PG_A are clear in P's PTE.  Unless
6920 	 * we write protect P before aborting the promotion, if and when P is
6921 	 * finally rewritten, there won't be a page fault to trigger
6922 	 * repromotion.
6923 	 */
6924 setpde:
6925 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
6926 		/*
6927 		 * When PG_M is already clear, PG_RW can be cleared without
6928 		 * a TLB invalidation.
6929 		 */
6930 		if (!atomic_fcmpset_long(firstpte, &newpde, newpde & ~PG_RW))
6931 			goto setpde;
6932 		newpde &= ~PG_RW;
6933 		CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6934 		    " in pmap %p", va & ~PDRMASK, pmap);
6935 	}
6936 
6937 	/*
6938 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
6939 	 * PTE maps an unexpected 4KB physical page or does not have identical
6940 	 * characteristics to the first PTE.
6941 	 */
6942 	allpte_PG_A = newpde & PG_A;
6943 	pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
6944 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
6945 		oldpte = *pte;
6946 		if ((oldpte & (PG_FRAME | PG_V)) != pa) {
6947 			counter_u64_add(pmap_pde_p_failures, 1);
6948 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6949 			    " in pmap %p", va, pmap);
6950 			return (false);
6951 		}
6952 setpte:
6953 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
6954 			/*
6955 			 * When PG_M is already clear, PG_RW can be cleared
6956 			 * without a TLB invalidation.
6957 			 */
6958 			if (!atomic_fcmpset_long(pte, &oldpte, oldpte & ~PG_RW))
6959 				goto setpte;
6960 			oldpte &= ~PG_RW;
6961 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6962 			    " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
6963 			    (va & ~PDRMASK), pmap);
6964 		}
6965 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
6966 			counter_u64_add(pmap_pde_p_failures, 1);
6967 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6968 			    " in pmap %p", va, pmap);
6969 			return (false);
6970 		}
6971 		allpte_PG_A &= oldpte;
6972 		pa -= PAGE_SIZE;
6973 	}
6974 
6975 	/*
6976 	 * Unless all PTEs have PG_A set, clear it from the superpage mapping,
6977 	 * so that promotions triggered by speculative mappings, such as
6978 	 * pmap_enter_quick(), don't automatically mark the underlying pages
6979 	 * as referenced.
6980 	 */
6981 	newpde &= ~PG_A | allpte_PG_A;
6982 
6983 	/*
6984 	 * EPT PTEs with PG_M set and PG_A clear are not supported by early
6985 	 * MMUs supporting EPT.
6986 	 */
6987 	KASSERT((newpde & PG_A) != 0 || safe_to_clear_referenced(pmap, newpde),
6988 	    ("unsupported EPT PTE"));
6989 
6990 	/*
6991 	 * Save the PTP in its current state until the PDE mapping the
6992 	 * superpage is demoted by pmap_demote_pde() or destroyed by
6993 	 * pmap_remove_pde().  If PG_A is not set in every PTE, then request
6994 	 * that the PTP be refilled on demotion.
6995 	 */
6996 	if (mpte == NULL)
6997 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
6998 	KASSERT(mpte >= vm_page_array &&
6999 	    mpte < &vm_page_array[vm_page_array_size],
7000 	    ("pmap_promote_pde: page table page is out of range"));
7001 	KASSERT(mpte->pindex == pmap_pde_pindex(va),
7002 	    ("pmap_promote_pde: page table page's pindex is wrong "
7003 	    "mpte %p pidx %#lx va %#lx va pde pidx %#lx",
7004 	    mpte, mpte->pindex, va, pmap_pde_pindex(va)));
7005 	if (pmap_insert_pt_page(pmap, mpte, true, allpte_PG_A != 0)) {
7006 		counter_u64_add(pmap_pde_p_failures, 1);
7007 		CTR2(KTR_PMAP,
7008 		    "pmap_promote_pde: failure for va %#lx in pmap %p", va,
7009 		    pmap);
7010 		return (false);
7011 	}
7012 
7013 	/*
7014 	 * Promote the pv entries.
7015 	 */
7016 	if ((newpde & PG_MANAGED) != 0)
7017 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
7018 
7019 	/*
7020 	 * Propagate the PAT index to its proper position.
7021 	 */
7022 	newpde = pmap_swap_pat(pmap, newpde);
7023 
7024 	/*
7025 	 * Map the superpage.
7026 	 */
7027 	if (workaround_erratum383)
7028 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
7029 	else
7030 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
7031 
7032 	counter_u64_add(pmap_pde_promotions, 1);
7033 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
7034 	    " in pmap %p", va, pmap);
7035 	return (true);
7036 }
7037 #endif /* VM_NRESERVLEVEL > 0 */
7038 
7039 static int
pmap_enter_largepage(pmap_t pmap,vm_offset_t va,pt_entry_t newpte,int flags,int psind)7040 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
7041     int psind)
7042 {
7043 	vm_page_t mp;
7044 	pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
7045 
7046 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7047 	KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
7048 	    ("psind %d unexpected", psind));
7049 	KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
7050 	    ("unaligned phys address %#lx newpte %#lx psind %d",
7051 	    newpte & PG_FRAME, newpte, psind));
7052 	KASSERT((va & (pagesizes[psind] - 1)) == 0,
7053 	    ("unaligned va %#lx psind %d", va, psind));
7054 	KASSERT(va < VM_MAXUSER_ADDRESS,
7055 	    ("kernel mode non-transparent superpage")); /* XXXKIB */
7056 	KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
7057 	    ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
7058 
7059 	PG_V = pmap_valid_bit(pmap);
7060 
7061 restart:
7062 	if (!pmap_pkru_same(pmap, va, va + pagesizes[psind]))
7063 		return (KERN_PROTECTION_FAILURE);
7064 	pten = newpte;
7065 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7066 		pten |= pmap_pkru_get(pmap, va);
7067 
7068 	if (psind == 2) {	/* 1G */
7069 		pml4e = pmap_pml4e(pmap, va);
7070 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7071 			mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
7072 			    NULL, va);
7073 			if (mp == NULL)
7074 				goto allocf;
7075 			pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7076 			pdpe = &pdpe[pmap_pdpe_index(va)];
7077 			origpte = *pdpe;
7078 			MPASS(origpte == 0);
7079 		} else {
7080 			pdpe = pmap_pml4e_to_pdpe(pml4e, va);
7081 			KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
7082 			origpte = *pdpe;
7083 			if ((origpte & PG_V) == 0) {
7084 				mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
7085 				mp->ref_count++;
7086 			}
7087 		}
7088 		*pdpe = pten;
7089 	} else /* (psind == 1) */ {	/* 2M */
7090 		pde = pmap_pde(pmap, va);
7091 		if (pde == NULL) {
7092 			mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
7093 			    NULL, va);
7094 			if (mp == NULL)
7095 				goto allocf;
7096 			pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7097 			pde = &pde[pmap_pde_index(va)];
7098 			origpte = *pde;
7099 			MPASS(origpte == 0);
7100 		} else {
7101 			origpte = *pde;
7102 			if ((origpte & PG_V) == 0) {
7103 				pdpe = pmap_pdpe(pmap, va);
7104 				MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
7105 				mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
7106 				mp->ref_count++;
7107 			}
7108 		}
7109 		*pde = pten;
7110 	}
7111 	KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
7112 	    (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
7113 	    ("va %#lx changing %s phys page origpte %#lx pten %#lx",
7114 	    va, psind == 2 ? "1G" : "2M", origpte, pten));
7115 	if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
7116 		pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
7117 	else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
7118 		pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
7119 	if ((origpte & PG_V) == 0)
7120 		pmap_resident_count_adj(pmap, pagesizes[psind] / PAGE_SIZE);
7121 
7122 	return (KERN_SUCCESS);
7123 
7124 allocf:
7125 	if ((flags & PMAP_ENTER_NOSLEEP) != 0)
7126 		return (KERN_RESOURCE_SHORTAGE);
7127 	PMAP_UNLOCK(pmap);
7128 	vm_wait(NULL);
7129 	PMAP_LOCK(pmap);
7130 	goto restart;
7131 }
7132 
7133 /*
7134  *	Insert the given physical page (p) at
7135  *	the specified virtual address (v) in the
7136  *	target physical map with the protection requested.
7137  *
7138  *	If specified, the page will be wired down, meaning
7139  *	that the related pte can not be reclaimed.
7140  *
7141  *	NB:  This is the only routine which MAY NOT lazy-evaluate
7142  *	or lose information.  That is, this routine must actually
7143  *	insert this page into the given map NOW.
7144  *
7145  *	When destroying both a page table and PV entry, this function
7146  *	performs the TLB invalidation before releasing the PV list
7147  *	lock, so we do not need pmap_delayed_invl_page() calls here.
7148  */
7149 int
pmap_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)7150 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7151     u_int flags, int8_t psind)
7152 {
7153 	struct rwlock *lock;
7154 	pd_entry_t *pde;
7155 	pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
7156 	pt_entry_t newpte, origpte;
7157 	pv_entry_t pv;
7158 	vm_paddr_t opa, pa;
7159 	vm_page_t mpte, om;
7160 	int rv;
7161 	bool nosleep;
7162 
7163 	PG_A = pmap_accessed_bit(pmap);
7164 	PG_G = pmap_global_bit(pmap);
7165 	PG_M = pmap_modified_bit(pmap);
7166 	PG_V = pmap_valid_bit(pmap);
7167 	PG_RW = pmap_rw_bit(pmap);
7168 
7169 	va = trunc_page(va);
7170 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
7171 	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
7172 	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
7173 	    va));
7174 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
7175 	    ("pmap_enter: managed mapping within the clean submap"));
7176 	if ((m->oflags & VPO_UNMANAGED) == 0)
7177 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
7178 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
7179 	    ("pmap_enter: flags %u has reserved bits set", flags));
7180 	pa = VM_PAGE_TO_PHYS(m);
7181 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
7182 	if ((flags & VM_PROT_WRITE) != 0)
7183 		newpte |= PG_M;
7184 	if ((prot & VM_PROT_WRITE) != 0)
7185 		newpte |= PG_RW;
7186 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
7187 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
7188 	if ((prot & VM_PROT_EXECUTE) == 0)
7189 		newpte |= pg_nx;
7190 	if ((flags & PMAP_ENTER_WIRED) != 0)
7191 		newpte |= PG_W;
7192 	if (va < VM_MAXUSER_ADDRESS)
7193 		newpte |= PG_U;
7194 	if (pmap == kernel_pmap)
7195 		newpte |= PG_G;
7196 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
7197 
7198 	/*
7199 	 * Set modified bit gratuitously for writeable mappings if
7200 	 * the page is unmanaged. We do not want to take a fault
7201 	 * to do the dirty bit accounting for these mappings.
7202 	 */
7203 	if ((m->oflags & VPO_UNMANAGED) != 0) {
7204 		if ((newpte & PG_RW) != 0)
7205 			newpte |= PG_M;
7206 	} else
7207 		newpte |= PG_MANAGED;
7208 
7209 	lock = NULL;
7210 	PMAP_LOCK(pmap);
7211 	if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
7212 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
7213 		    ("managed largepage va %#lx flags %#x", va, flags));
7214 		rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
7215 		    psind);
7216 		goto out;
7217 	}
7218 	if (psind == 1) {
7219 		/* Assert the required virtual and physical alignment. */
7220 		KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
7221 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
7222 		rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
7223 		goto out;
7224 	}
7225 	mpte = NULL;
7226 
7227 	/*
7228 	 * In the case that a page table page is not
7229 	 * resident, we are creating it here.
7230 	 */
7231 retry:
7232 	pde = pmap_pde(pmap, va);
7233 	if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
7234 	    pmap_demote_pde_locked(pmap, pde, va, &lock))) {
7235 		pte = pmap_pde_to_pte(pde, va);
7236 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
7237 			mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7238 			mpte->ref_count++;
7239 		}
7240 	} else if (va < VM_MAXUSER_ADDRESS) {
7241 		/*
7242 		 * Here if the pte page isn't mapped, or if it has been
7243 		 * deallocated.
7244 		 */
7245 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
7246 		mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
7247 		    nosleep ? NULL : &lock, va);
7248 		if (mpte == NULL && nosleep) {
7249 			rv = KERN_RESOURCE_SHORTAGE;
7250 			goto out;
7251 		}
7252 		goto retry;
7253 	} else
7254 		panic("pmap_enter: invalid page directory va=%#lx", va);
7255 
7256 	origpte = *pte;
7257 	pv = NULL;
7258 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7259 		newpte |= pmap_pkru_get(pmap, va);
7260 
7261 	/*
7262 	 * Is the specified virtual address already mapped?
7263 	 */
7264 	if ((origpte & PG_V) != 0) {
7265 		/*
7266 		 * Wiring change, just update stats. We don't worry about
7267 		 * wiring PT pages as they remain resident as long as there
7268 		 * are valid mappings in them. Hence, if a user page is wired,
7269 		 * the PT page will be also.
7270 		 */
7271 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
7272 			pmap->pm_stats.wired_count++;
7273 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
7274 			pmap->pm_stats.wired_count--;
7275 
7276 		/*
7277 		 * Remove the extra PT page reference.
7278 		 */
7279 		if (mpte != NULL) {
7280 			mpte->ref_count--;
7281 			KASSERT(mpte->ref_count > 0,
7282 			    ("pmap_enter: missing reference to page table page,"
7283 			     " va: 0x%lx", va));
7284 		}
7285 
7286 		/*
7287 		 * Has the physical page changed?
7288 		 */
7289 		opa = origpte & PG_FRAME;
7290 		if (opa == pa) {
7291 			/*
7292 			 * No, might be a protection or wiring change.
7293 			 */
7294 			if ((origpte & PG_MANAGED) != 0 &&
7295 			    (newpte & PG_RW) != 0)
7296 				vm_page_aflag_set(m, PGA_WRITEABLE);
7297 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
7298 				goto unchanged;
7299 			goto validate;
7300 		}
7301 
7302 		/*
7303 		 * The physical page has changed.  Temporarily invalidate
7304 		 * the mapping.  This ensures that all threads sharing the
7305 		 * pmap keep a consistent view of the mapping, which is
7306 		 * necessary for the correct handling of COW faults.  It
7307 		 * also permits reuse of the old mapping's PV entry,
7308 		 * avoiding an allocation.
7309 		 *
7310 		 * For consistency, handle unmanaged mappings the same way.
7311 		 */
7312 		origpte = pte_load_clear(pte);
7313 		KASSERT((origpte & PG_FRAME) == opa,
7314 		    ("pmap_enter: unexpected pa update for %#lx", va));
7315 		if ((origpte & PG_MANAGED) != 0) {
7316 			om = PHYS_TO_VM_PAGE(opa);
7317 
7318 			/*
7319 			 * The pmap lock is sufficient to synchronize with
7320 			 * concurrent calls to pmap_page_test_mappings() and
7321 			 * pmap_ts_referenced().
7322 			 */
7323 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
7324 				vm_page_dirty(om);
7325 			if ((origpte & PG_A) != 0) {
7326 				pmap_invalidate_page(pmap, va);
7327 				vm_page_aflag_set(om, PGA_REFERENCED);
7328 			}
7329 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
7330 			pv = pmap_pvh_remove(&om->md, pmap, va);
7331 			KASSERT(pv != NULL,
7332 			    ("pmap_enter: no PV entry for %#lx", va));
7333 			if ((newpte & PG_MANAGED) == 0)
7334 				free_pv_entry(pmap, pv);
7335 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
7336 			    TAILQ_EMPTY(&om->md.pv_list) &&
7337 			    ((om->flags & PG_FICTITIOUS) != 0 ||
7338 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
7339 				vm_page_aflag_clear(om, PGA_WRITEABLE);
7340 		} else {
7341 			/*
7342 			 * Since this mapping is unmanaged, assume that PG_A
7343 			 * is set.
7344 			 */
7345 			pmap_invalidate_page(pmap, va);
7346 		}
7347 		origpte = 0;
7348 	} else {
7349 		/*
7350 		 * Increment the counters.
7351 		 */
7352 		if ((newpte & PG_W) != 0)
7353 			pmap->pm_stats.wired_count++;
7354 		pmap_resident_count_adj(pmap, 1);
7355 	}
7356 
7357 	/*
7358 	 * Enter on the PV list if part of our managed memory.
7359 	 */
7360 	if ((newpte & PG_MANAGED) != 0) {
7361 		if (pv == NULL) {
7362 			pv = get_pv_entry(pmap, &lock);
7363 			pv->pv_va = va;
7364 		}
7365 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
7366 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
7367 		m->md.pv_gen++;
7368 		if ((newpte & PG_RW) != 0)
7369 			vm_page_aflag_set(m, PGA_WRITEABLE);
7370 	}
7371 
7372 	/*
7373 	 * Update the PTE.
7374 	 */
7375 	if ((origpte & PG_V) != 0) {
7376 validate:
7377 		origpte = pte_load_store(pte, newpte);
7378 		KASSERT((origpte & PG_FRAME) == pa,
7379 		    ("pmap_enter: unexpected pa update for %#lx", va));
7380 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
7381 		    (PG_M | PG_RW)) {
7382 			if ((origpte & PG_MANAGED) != 0)
7383 				vm_page_dirty(m);
7384 
7385 			/*
7386 			 * Although the PTE may still have PG_RW set, TLB
7387 			 * invalidation may nonetheless be required because
7388 			 * the PTE no longer has PG_M set.
7389 			 */
7390 		} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
7391 			/*
7392 			 * This PTE change does not require TLB invalidation.
7393 			 */
7394 			goto unchanged;
7395 		}
7396 		if ((origpte & PG_A) != 0)
7397 			pmap_invalidate_page(pmap, va);
7398 	} else
7399 		pte_store(pte, newpte);
7400 
7401 unchanged:
7402 
7403 #if VM_NRESERVLEVEL > 0
7404 	/*
7405 	 * If both the page table page and the reservation are fully
7406 	 * populated, then attempt promotion.
7407 	 */
7408 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
7409 	    (m->flags & PG_FICTITIOUS) == 0 &&
7410 	    vm_reserv_level_iffullpop(m) == 0)
7411 		(void)pmap_promote_pde(pmap, pde, va, mpte, &lock);
7412 #endif
7413 
7414 	rv = KERN_SUCCESS;
7415 out:
7416 	if (lock != NULL)
7417 		rw_wunlock(lock);
7418 	PMAP_UNLOCK(pmap);
7419 	return (rv);
7420 }
7421 
7422 /*
7423  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns
7424  * KERN_SUCCESS if the mapping was created.  Otherwise, returns an error
7425  * value.  See pmap_enter_pde() for the possible error values when "no sleep",
7426  * "no replace", and "no reclaim" are specified.
7427  */
7428 static int
pmap_enter_2mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,struct rwlock ** lockp)7429 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7430     struct rwlock **lockp)
7431 {
7432 	pd_entry_t newpde;
7433 	pt_entry_t PG_V;
7434 
7435 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7436 	PG_V = pmap_valid_bit(pmap);
7437 	newpde = VM_PAGE_TO_PHYS(m) |
7438 	    pmap_cache_bits(pmap, m->md.pat_mode, true) | PG_PS | PG_V;
7439 	if ((m->oflags & VPO_UNMANAGED) == 0)
7440 		newpde |= PG_MANAGED;
7441 	if ((prot & VM_PROT_EXECUTE) == 0)
7442 		newpde |= pg_nx;
7443 	if (va < VM_MAXUSER_ADDRESS)
7444 		newpde |= PG_U;
7445 	return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
7446 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
7447 }
7448 
7449 /*
7450  * Returns true if every page table entry in the specified page table page is
7451  * zero.
7452  */
7453 static bool
pmap_every_pte_zero(vm_paddr_t pa)7454 pmap_every_pte_zero(vm_paddr_t pa)
7455 {
7456 	pt_entry_t *pt_end, *pte;
7457 
7458 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
7459 	pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
7460 	for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
7461 		if (*pte != 0)
7462 			return (false);
7463 	}
7464 	return (true);
7465 }
7466 
7467 /*
7468  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
7469  * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
7470  * KERN_PROTECTION_FAILURE, or KERN_RESOURCE_SHORTAGE otherwise.  Returns
7471  * KERN_FAILURE if either (1) PMAP_ENTER_NOREPLACE was specified and a 4KB
7472  * page mapping already exists within the 2MB virtual address range starting
7473  * at the specified virtual address or (2) the requested 2MB page mapping is
7474  * not supported due to hardware errata.  Returns KERN_NO_SPACE if
7475  * PMAP_ENTER_NOREPLACE was specified and a 2MB page mapping already exists at
7476  * the specified virtual address.  Returns KERN_PROTECTION_FAILURE if the PKRU
7477  * settings are not the same across the 2MB virtual address range starting at
7478  * the specified virtual address.  Returns KERN_RESOURCE_SHORTAGE if either
7479  * (1) PMAP_ENTER_NOSLEEP was specified and a page table page allocation
7480  * failed or (2) PMAP_ENTER_NORECLAIM was specified and a PV entry allocation
7481  * failed.
7482  *
7483  * The parameter "m" is only used when creating a managed, writeable mapping.
7484  */
7485 static int
pmap_enter_pde(pmap_t pmap,vm_offset_t va,pd_entry_t newpde,u_int flags,vm_page_t m,struct rwlock ** lockp)7486 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
7487     vm_page_t m, struct rwlock **lockp)
7488 {
7489 	struct spglist free;
7490 	pd_entry_t oldpde, *pde;
7491 	pt_entry_t PG_G, PG_RW, PG_V;
7492 	vm_page_t mt, pdpg;
7493 	vm_page_t uwptpg;
7494 
7495 	PG_G = pmap_global_bit(pmap);
7496 	PG_RW = pmap_rw_bit(pmap);
7497 	KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
7498 	    ("pmap_enter_pde: newpde is missing PG_M"));
7499 	PG_V = pmap_valid_bit(pmap);
7500 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7501 
7502 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
7503 	    newpde))) {
7504 		CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
7505 		    " in pmap %p", va, pmap);
7506 		return (KERN_FAILURE);
7507 	}
7508 	if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
7509 	    PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
7510 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7511 		    " in pmap %p", va, pmap);
7512 		return (KERN_RESOURCE_SHORTAGE);
7513 	}
7514 
7515 	/*
7516 	 * If pkru is not same for the whole pde range, return failure
7517 	 * and let vm_fault() cope.  Check after pde allocation, since
7518 	 * it could sleep.
7519 	 */
7520 	if (!pmap_pkru_same(pmap, va, va + NBPDR)) {
7521 		pmap_abort_ptp(pmap, va, pdpg);
7522 		return (KERN_PROTECTION_FAILURE);
7523 	}
7524 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86) {
7525 		newpde &= ~X86_PG_PKU_MASK;
7526 		newpde |= pmap_pkru_get(pmap, va);
7527 	}
7528 
7529 	/*
7530 	 * If there are existing mappings, either abort or remove them.
7531 	 */
7532 	oldpde = *pde;
7533 	if ((oldpde & PG_V) != 0) {
7534 		KASSERT(pdpg == NULL || pdpg->ref_count > 1,
7535 		    ("pmap_enter_pde: pdpg's reference count is too low"));
7536 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
7537 			if ((oldpde & PG_PS) != 0) {
7538 				if (pdpg != NULL)
7539 					pdpg->ref_count--;
7540 				CTR2(KTR_PMAP,
7541 				    "pmap_enter_pde: no space for va %#lx"
7542 				    " in pmap %p", va, pmap);
7543 				return (KERN_NO_SPACE);
7544 			} else if (va < VM_MAXUSER_ADDRESS ||
7545 			    !pmap_every_pte_zero(oldpde & PG_FRAME)) {
7546 				if (pdpg != NULL)
7547 					pdpg->ref_count--;
7548 				CTR2(KTR_PMAP,
7549 				    "pmap_enter_pde: failure for va %#lx"
7550 				    " in pmap %p", va, pmap);
7551 				return (KERN_FAILURE);
7552 			}
7553 		}
7554 		/* Break the existing mapping(s). */
7555 		SLIST_INIT(&free);
7556 		if ((oldpde & PG_PS) != 0) {
7557 			/*
7558 			 * The reference to the PD page that was acquired by
7559 			 * pmap_alloc_pde() ensures that it won't be freed.
7560 			 * However, if the PDE resulted from a promotion, then
7561 			 * a reserved PT page could be freed.
7562 			 */
7563 			(void)pmap_remove_pde(pmap, pde, va, &free, lockp);
7564 			if ((oldpde & PG_G) == 0)
7565 				pmap_invalidate_pde_page(pmap, va, oldpde);
7566 		} else {
7567 			pmap_delayed_invl_start();
7568 			if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
7569 			    lockp))
7570 		               pmap_invalidate_all(pmap);
7571 			pmap_delayed_invl_finish();
7572 		}
7573 		if (va < VM_MAXUSER_ADDRESS) {
7574 			vm_page_free_pages_toq(&free, true);
7575 			KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
7576 			    pde));
7577 		} else {
7578 			KASSERT(SLIST_EMPTY(&free),
7579 			    ("pmap_enter_pde: freed kernel page table page"));
7580 
7581 			/*
7582 			 * Both pmap_remove_pde() and pmap_remove_ptes() will
7583 			 * leave the kernel page table page zero filled.
7584 			 */
7585 			mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7586 			if (pmap_insert_pt_page(pmap, mt, false, false))
7587 				panic("pmap_enter_pde: trie insert failed");
7588 		}
7589 	}
7590 
7591 	/*
7592 	 * Allocate leaf ptpage for wired userspace pages.
7593 	 */
7594 	uwptpg = NULL;
7595 	if ((newpde & PG_W) != 0 && pmap != kernel_pmap) {
7596 		uwptpg = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
7597 		    VM_ALLOC_WIRED);
7598 		if (uwptpg == NULL) {
7599 			pmap_abort_ptp(pmap, va, pdpg);
7600 			return (KERN_RESOURCE_SHORTAGE);
7601 		}
7602 		if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
7603 			pmap_free_pt_page(pmap, uwptpg, false);
7604 			pmap_abort_ptp(pmap, va, pdpg);
7605 			return (KERN_RESOURCE_SHORTAGE);
7606 		}
7607 
7608 		uwptpg->ref_count = NPTEPG;
7609 	}
7610 	if ((newpde & PG_MANAGED) != 0) {
7611 		/*
7612 		 * Abort this mapping if its PV entry could not be created.
7613 		 */
7614 		if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
7615 			if (pdpg != NULL)
7616 				pmap_abort_ptp(pmap, va, pdpg);
7617 			if (uwptpg != NULL) {
7618 				mt = pmap_remove_pt_page(pmap, va);
7619 				KASSERT(mt == uwptpg,
7620 				    ("removed pt page %p, expected %p", mt,
7621 				    uwptpg));
7622 				uwptpg->ref_count = 1;
7623 				pmap_free_pt_page(pmap, uwptpg, false);
7624 			}
7625 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7626 			    " in pmap %p", va, pmap);
7627 			return (KERN_RESOURCE_SHORTAGE);
7628 		}
7629 		if ((newpde & PG_RW) != 0) {
7630 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
7631 				vm_page_aflag_set(mt, PGA_WRITEABLE);
7632 		}
7633 	}
7634 
7635 	/*
7636 	 * Increment counters.
7637 	 */
7638 	if ((newpde & PG_W) != 0)
7639 		pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
7640 	pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7641 
7642 	/*
7643 	 * Map the superpage.  (This is not a promoted mapping; there will not
7644 	 * be any lingering 4KB page mappings in the TLB.)
7645 	 */
7646 	pde_store(pde, newpde);
7647 
7648 	counter_u64_add(pmap_pde_mappings, 1);
7649 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
7650 	    va, pmap);
7651 	return (KERN_SUCCESS);
7652 }
7653 
7654 /*
7655  * Maps a sequence of resident pages belonging to the same object.
7656  * The sequence begins with the given page m_start.  This page is
7657  * mapped at the given virtual address start.  Each subsequent page is
7658  * mapped at a virtual address that is offset from start by the same
7659  * amount as the page is offset from m_start within the object.  The
7660  * last page in the sequence is the page with the largest offset from
7661  * m_start that can be mapped at a virtual address less than the given
7662  * virtual address end.  Not every virtual page between start and end
7663  * is mapped; only those for which a resident page exists with the
7664  * corresponding offset from m_start are mapped.
7665  */
7666 void
pmap_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)7667 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
7668     vm_page_t m_start, vm_prot_t prot)
7669 {
7670 	struct rwlock *lock;
7671 	vm_offset_t va;
7672 	vm_page_t m, mpte;
7673 	vm_pindex_t diff, psize;
7674 	int rv;
7675 
7676 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
7677 
7678 	psize = atop(end - start);
7679 	mpte = NULL;
7680 	m = m_start;
7681 	lock = NULL;
7682 	PMAP_LOCK(pmap);
7683 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
7684 		va = start + ptoa(diff);
7685 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
7686 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
7687 		    ((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
7688 		    KERN_SUCCESS || rv == KERN_NO_SPACE))
7689 			m = &m[NBPDR / PAGE_SIZE - 1];
7690 		else
7691 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
7692 			    mpte, &lock);
7693 		m = TAILQ_NEXT(m, listq);
7694 	}
7695 	if (lock != NULL)
7696 		rw_wunlock(lock);
7697 	PMAP_UNLOCK(pmap);
7698 }
7699 
7700 /*
7701  * this code makes some *MAJOR* assumptions:
7702  * 1. Current pmap & pmap exists.
7703  * 2. Not wired.
7704  * 3. Read access.
7705  * 4. No page table pages.
7706  * but is *MUCH* faster than pmap_enter...
7707  */
7708 
7709 void
pmap_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)7710 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
7711 {
7712 	struct rwlock *lock;
7713 
7714 	lock = NULL;
7715 	PMAP_LOCK(pmap);
7716 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
7717 	if (lock != NULL)
7718 		rw_wunlock(lock);
7719 	PMAP_UNLOCK(pmap);
7720 }
7721 
7722 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte,struct rwlock ** lockp)7723 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
7724     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
7725 {
7726 	pd_entry_t *pde;
7727 	pt_entry_t newpte, *pte, PG_V;
7728 
7729 	KASSERT(!VA_IS_CLEANMAP(va) ||
7730 	    (m->oflags & VPO_UNMANAGED) != 0,
7731 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
7732 	PG_V = pmap_valid_bit(pmap);
7733 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7734 	pde = NULL;
7735 
7736 	/*
7737 	 * In the case that a page table page is not
7738 	 * resident, we are creating it here.
7739 	 */
7740 	if (va < VM_MAXUSER_ADDRESS) {
7741 		pdp_entry_t *pdpe;
7742 		vm_pindex_t ptepindex;
7743 
7744 		/*
7745 		 * Calculate pagetable page index
7746 		 */
7747 		ptepindex = pmap_pde_pindex(va);
7748 		if (mpte && (mpte->pindex == ptepindex)) {
7749 			mpte->ref_count++;
7750 		} else {
7751 			/*
7752 			 * If the page table page is mapped, we just increment
7753 			 * the hold count, and activate it.  Otherwise, we
7754 			 * attempt to allocate a page table page, passing NULL
7755 			 * instead of the PV list lock pointer because we don't
7756 			 * intend to sleep.  If this attempt fails, we don't
7757 			 * retry.  Instead, we give up.
7758 			 */
7759 			pdpe = pmap_pdpe(pmap, va);
7760 			if (pdpe != NULL && (*pdpe & PG_V) != 0) {
7761 				if ((*pdpe & PG_PS) != 0)
7762 					return (NULL);
7763 				pde = pmap_pdpe_to_pde(pdpe, va);
7764 				if ((*pde & PG_V) != 0) {
7765 					if ((*pde & PG_PS) != 0)
7766 						return (NULL);
7767 					mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7768 					mpte->ref_count++;
7769 				} else {
7770 					mpte = pmap_allocpte_alloc(pmap,
7771 					    ptepindex, NULL, va);
7772 					if (mpte == NULL)
7773 						return (NULL);
7774 				}
7775 			} else {
7776 				mpte = pmap_allocpte_alloc(pmap, ptepindex,
7777 				    NULL, va);
7778 				if (mpte == NULL)
7779 					return (NULL);
7780 			}
7781 		}
7782 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
7783 		pte = &pte[pmap_pte_index(va)];
7784 	} else {
7785 		mpte = NULL;
7786 		pte = vtopte(va);
7787 	}
7788 	if (*pte) {
7789 		if (mpte != NULL)
7790 			mpte->ref_count--;
7791 		return (NULL);
7792 	}
7793 
7794 	/*
7795 	 * Enter on the PV list if part of our managed memory.
7796 	 */
7797 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
7798 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
7799 		if (mpte != NULL)
7800 			pmap_abort_ptp(pmap, va, mpte);
7801 		return (NULL);
7802 	}
7803 
7804 	/*
7805 	 * Increment counters
7806 	 */
7807 	pmap_resident_count_adj(pmap, 1);
7808 
7809 	newpte = VM_PAGE_TO_PHYS(m) | PG_V |
7810 	    pmap_cache_bits(pmap, m->md.pat_mode, false);
7811 	if ((m->oflags & VPO_UNMANAGED) == 0)
7812 		newpte |= PG_MANAGED;
7813 	if ((prot & VM_PROT_EXECUTE) == 0)
7814 		newpte |= pg_nx;
7815 	if (va < VM_MAXUSER_ADDRESS)
7816 		newpte |= PG_U | pmap_pkru_get(pmap, va);
7817 	pte_store(pte, newpte);
7818 
7819 #if VM_NRESERVLEVEL > 0
7820 	/*
7821 	 * If both the PTP and the reservation are fully populated, then
7822 	 * attempt promotion.
7823 	 */
7824 	if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
7825 	    (mpte == NULL || mpte->ref_count == NPTEPG) &&
7826 	    (m->flags & PG_FICTITIOUS) == 0 &&
7827 	    vm_reserv_level_iffullpop(m) == 0) {
7828 		if (pde == NULL)
7829 			pde = pmap_pde(pmap, va);
7830 
7831 		/*
7832 		 * If promotion succeeds, then the next call to this function
7833 		 * should not be given the unmapped PTP as a hint.
7834 		 */
7835 		if (pmap_promote_pde(pmap, pde, va, mpte, lockp))
7836 			mpte = NULL;
7837 	}
7838 #endif
7839 
7840 	return (mpte);
7841 }
7842 
7843 /*
7844  * Make a temporary mapping for a physical address.  This is only intended
7845  * to be used for panic dumps.
7846  */
7847 void *
pmap_kenter_temporary(vm_paddr_t pa,int i)7848 pmap_kenter_temporary(vm_paddr_t pa, int i)
7849 {
7850 	vm_offset_t va;
7851 
7852 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
7853 	pmap_kenter(va, pa);
7854 	pmap_invlpg(kernel_pmap, va);
7855 	return ((void *)crashdumpmap);
7856 }
7857 
7858 /*
7859  * This code maps large physical mmap regions into the
7860  * processor address space.  Note that some shortcuts
7861  * are taken, but the code works.
7862  */
7863 void
pmap_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)7864 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
7865     vm_pindex_t pindex, vm_size_t size)
7866 {
7867 	pd_entry_t *pde;
7868 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
7869 	vm_paddr_t pa, ptepa;
7870 	vm_page_t p, pdpg;
7871 	int pat_mode;
7872 
7873 	PG_A = pmap_accessed_bit(pmap);
7874 	PG_M = pmap_modified_bit(pmap);
7875 	PG_V = pmap_valid_bit(pmap);
7876 	PG_RW = pmap_rw_bit(pmap);
7877 
7878 	VM_OBJECT_ASSERT_WLOCKED(object);
7879 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
7880 	    ("pmap_object_init_pt: non-device object"));
7881 	if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
7882 		if (!pmap_ps_enabled(pmap))
7883 			return;
7884 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
7885 			return;
7886 		p = vm_page_lookup(object, pindex);
7887 		KASSERT(vm_page_all_valid(p),
7888 		    ("pmap_object_init_pt: invalid page %p", p));
7889 		pat_mode = p->md.pat_mode;
7890 
7891 		/*
7892 		 * Abort the mapping if the first page is not physically
7893 		 * aligned to a 2MB page boundary.
7894 		 */
7895 		ptepa = VM_PAGE_TO_PHYS(p);
7896 		if (ptepa & (NBPDR - 1))
7897 			return;
7898 
7899 		/*
7900 		 * Skip the first page.  Abort the mapping if the rest of
7901 		 * the pages are not physically contiguous or have differing
7902 		 * memory attributes.
7903 		 */
7904 		p = TAILQ_NEXT(p, listq);
7905 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
7906 		    pa += PAGE_SIZE) {
7907 			KASSERT(vm_page_all_valid(p),
7908 			    ("pmap_object_init_pt: invalid page %p", p));
7909 			if (pa != VM_PAGE_TO_PHYS(p) ||
7910 			    pat_mode != p->md.pat_mode)
7911 				return;
7912 			p = TAILQ_NEXT(p, listq);
7913 		}
7914 
7915 		/*
7916 		 * Map using 2MB pages.  Since "ptepa" is 2M aligned and
7917 		 * "size" is a multiple of 2M, adding the PAT setting to "pa"
7918 		 * will not affect the termination of this loop.
7919 		 */
7920 		PMAP_LOCK(pmap);
7921 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, true);
7922 		    pa < ptepa + size; pa += NBPDR) {
7923 			pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
7924 			if (pde == NULL) {
7925 				/*
7926 				 * The creation of mappings below is only an
7927 				 * optimization.  If a page directory page
7928 				 * cannot be allocated without blocking,
7929 				 * continue on to the next mapping rather than
7930 				 * blocking.
7931 				 */
7932 				addr += NBPDR;
7933 				continue;
7934 			}
7935 			if ((*pde & PG_V) == 0) {
7936 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
7937 				    PG_U | PG_RW | PG_V);
7938 				pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7939 				counter_u64_add(pmap_pde_mappings, 1);
7940 			} else {
7941 				/* Continue on if the PDE is already valid. */
7942 				pdpg->ref_count--;
7943 				KASSERT(pdpg->ref_count > 0,
7944 				    ("pmap_object_init_pt: missing reference "
7945 				    "to page directory page, va: 0x%lx", addr));
7946 			}
7947 			addr += NBPDR;
7948 		}
7949 		PMAP_UNLOCK(pmap);
7950 	}
7951 }
7952 
7953 /*
7954  *	Clear the wired attribute from the mappings for the specified range of
7955  *	addresses in the given pmap.  Every valid mapping within that range
7956  *	must have the wired attribute set.  In contrast, invalid mappings
7957  *	cannot have the wired attribute set, so they are ignored.
7958  *
7959  *	The wired attribute of the page table entry is not a hardware
7960  *	feature, so there is no need to invalidate any TLB entries.
7961  *	Since pmap_demote_pde() for the wired entry must never fail,
7962  *	pmap_delayed_invl_start()/finish() calls around the
7963  *	function are not needed.
7964  */
7965 void
pmap_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)7966 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
7967 {
7968 	vm_offset_t va_next;
7969 	pml4_entry_t *pml4e;
7970 	pdp_entry_t *pdpe;
7971 	pd_entry_t *pde;
7972 	pt_entry_t *pte, PG_V, PG_G __diagused;
7973 
7974 	PG_V = pmap_valid_bit(pmap);
7975 	PG_G = pmap_global_bit(pmap);
7976 	PMAP_LOCK(pmap);
7977 	for (; sva < eva; sva = va_next) {
7978 		pml4e = pmap_pml4e(pmap, sva);
7979 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7980 			va_next = (sva + NBPML4) & ~PML4MASK;
7981 			if (va_next < sva)
7982 				va_next = eva;
7983 			continue;
7984 		}
7985 
7986 		va_next = (sva + NBPDP) & ~PDPMASK;
7987 		if (va_next < sva)
7988 			va_next = eva;
7989 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
7990 		if ((*pdpe & PG_V) == 0)
7991 			continue;
7992 		if ((*pdpe & PG_PS) != 0) {
7993 			KASSERT(va_next <= eva,
7994 			    ("partial update of non-transparent 1G mapping "
7995 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7996 			    *pdpe, sva, eva, va_next));
7997 			MPASS(pmap != kernel_pmap); /* XXXKIB */
7998 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
7999 			atomic_clear_long(pdpe, PG_W);
8000 			pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
8001 			continue;
8002 		}
8003 
8004 		va_next = (sva + NBPDR) & ~PDRMASK;
8005 		if (va_next < sva)
8006 			va_next = eva;
8007 		pde = pmap_pdpe_to_pde(pdpe, sva);
8008 		if ((*pde & PG_V) == 0)
8009 			continue;
8010 		if ((*pde & PG_PS) != 0) {
8011 			if ((*pde & PG_W) == 0)
8012 				panic("pmap_unwire: pde %#jx is missing PG_W",
8013 				    (uintmax_t)*pde);
8014 
8015 			/*
8016 			 * Are we unwiring the entire large page?  If not,
8017 			 * demote the mapping and fall through.
8018 			 */
8019 			if (sva + NBPDR == va_next && eva >= va_next) {
8020 				atomic_clear_long(pde, PG_W);
8021 				pmap->pm_stats.wired_count -= NBPDR /
8022 				    PAGE_SIZE;
8023 				continue;
8024 			} else if (!pmap_demote_pde(pmap, pde, sva))
8025 				panic("pmap_unwire: demotion failed");
8026 		}
8027 		if (va_next > eva)
8028 			va_next = eva;
8029 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
8030 		    sva += PAGE_SIZE) {
8031 			if ((*pte & PG_V) == 0)
8032 				continue;
8033 			if ((*pte & PG_W) == 0)
8034 				panic("pmap_unwire: pte %#jx is missing PG_W",
8035 				    (uintmax_t)*pte);
8036 
8037 			/*
8038 			 * PG_W must be cleared atomically.  Although the pmap
8039 			 * lock synchronizes access to PG_W, another processor
8040 			 * could be setting PG_M and/or PG_A concurrently.
8041 			 */
8042 			atomic_clear_long(pte, PG_W);
8043 			pmap->pm_stats.wired_count--;
8044 		}
8045 	}
8046 	PMAP_UNLOCK(pmap);
8047 }
8048 
8049 /*
8050  *	Copy the range specified by src_addr/len
8051  *	from the source map to the range dst_addr/len
8052  *	in the destination map.
8053  *
8054  *	This routine is only advisory and need not do anything.
8055  */
8056 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)8057 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
8058     vm_offset_t src_addr)
8059 {
8060 	struct rwlock *lock;
8061 	pml4_entry_t *pml4e;
8062 	pdp_entry_t *pdpe;
8063 	pd_entry_t *pde, srcptepaddr;
8064 	pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
8065 	vm_offset_t addr, end_addr, va_next;
8066 	vm_page_t dst_pdpg, dstmpte, srcmpte;
8067 
8068 	if (dst_addr != src_addr)
8069 		return;
8070 
8071 	if (dst_pmap->pm_type != src_pmap->pm_type)
8072 		return;
8073 
8074 	/*
8075 	 * EPT page table entries that require emulation of A/D bits are
8076 	 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
8077 	 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
8078 	 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
8079 	 * implementations flag an EPT misconfiguration for exec-only
8080 	 * mappings we skip this function entirely for emulated pmaps.
8081 	 */
8082 	if (pmap_emulate_ad_bits(dst_pmap))
8083 		return;
8084 
8085 	end_addr = src_addr + len;
8086 	lock = NULL;
8087 	if (dst_pmap < src_pmap) {
8088 		PMAP_LOCK(dst_pmap);
8089 		PMAP_LOCK(src_pmap);
8090 	} else {
8091 		PMAP_LOCK(src_pmap);
8092 		PMAP_LOCK(dst_pmap);
8093 	}
8094 
8095 	PG_A = pmap_accessed_bit(dst_pmap);
8096 	PG_M = pmap_modified_bit(dst_pmap);
8097 	PG_V = pmap_valid_bit(dst_pmap);
8098 
8099 	for (addr = src_addr; addr < end_addr; addr = va_next) {
8100 		KASSERT(addr < UPT_MIN_ADDRESS,
8101 		    ("pmap_copy: invalid to pmap_copy page tables"));
8102 
8103 		pml4e = pmap_pml4e(src_pmap, addr);
8104 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8105 			va_next = (addr + NBPML4) & ~PML4MASK;
8106 			if (va_next < addr)
8107 				va_next = end_addr;
8108 			continue;
8109 		}
8110 
8111 		va_next = (addr + NBPDP) & ~PDPMASK;
8112 		if (va_next < addr)
8113 			va_next = end_addr;
8114 		pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
8115 		if ((*pdpe & PG_V) == 0)
8116 			continue;
8117 		if ((*pdpe & PG_PS) != 0) {
8118 			KASSERT(va_next <= end_addr,
8119 			    ("partial update of non-transparent 1G mapping "
8120 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8121 			    *pdpe, addr, end_addr, va_next));
8122 			MPASS((addr & PDPMASK) == 0);
8123 			MPASS((*pdpe & PG_MANAGED) == 0);
8124 			srcptepaddr = *pdpe;
8125 			pdpe = pmap_pdpe(dst_pmap, addr);
8126 			if (pdpe == NULL) {
8127 				if (pmap_allocpte_alloc(dst_pmap,
8128 				    pmap_pml4e_pindex(addr), NULL, addr) ==
8129 				    NULL)
8130 					break;
8131 				pdpe = pmap_pdpe(dst_pmap, addr);
8132 			} else {
8133 				pml4e = pmap_pml4e(dst_pmap, addr);
8134 				dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
8135 				dst_pdpg->ref_count++;
8136 			}
8137 			KASSERT(*pdpe == 0,
8138 			    ("1G mapping present in dst pmap "
8139 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8140 			    *pdpe, addr, end_addr, va_next));
8141 			*pdpe = srcptepaddr & ~PG_W;
8142 			pmap_resident_count_adj(dst_pmap, NBPDP / PAGE_SIZE);
8143 			continue;
8144 		}
8145 
8146 		va_next = (addr + NBPDR) & ~PDRMASK;
8147 		if (va_next < addr)
8148 			va_next = end_addr;
8149 
8150 		pde = pmap_pdpe_to_pde(pdpe, addr);
8151 		srcptepaddr = *pde;
8152 		if (srcptepaddr == 0)
8153 			continue;
8154 
8155 		if (srcptepaddr & PG_PS) {
8156 			/*
8157 			 * We can only virtual copy whole superpages.
8158 			 */
8159 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
8160 				continue;
8161 			pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
8162 			if (pde == NULL)
8163 				break;
8164 			if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
8165 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
8166 			    PMAP_ENTER_NORECLAIM, &lock))) {
8167 				/*
8168 				 * We leave the dirty bit unchanged because
8169 				 * managed read/write superpage mappings are
8170 				 * required to be dirty.  However, managed
8171 				 * superpage mappings are not required to
8172 				 * have their accessed bit set, so we clear
8173 				 * it because we don't know if this mapping
8174 				 * will be used.
8175 				 */
8176 				srcptepaddr &= ~PG_W;
8177 				if ((srcptepaddr & PG_MANAGED) != 0)
8178 					srcptepaddr &= ~PG_A;
8179 				*pde = srcptepaddr;
8180 				pmap_resident_count_adj(dst_pmap, NBPDR /
8181 				    PAGE_SIZE);
8182 				counter_u64_add(pmap_pde_mappings, 1);
8183 			} else
8184 				pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
8185 			continue;
8186 		}
8187 
8188 		srcptepaddr &= PG_FRAME;
8189 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
8190 		KASSERT(srcmpte->ref_count > 0,
8191 		    ("pmap_copy: source page table page is unused"));
8192 
8193 		if (va_next > end_addr)
8194 			va_next = end_addr;
8195 
8196 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
8197 		src_pte = &src_pte[pmap_pte_index(addr)];
8198 		dstmpte = NULL;
8199 		for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
8200 			ptetemp = *src_pte;
8201 
8202 			/*
8203 			 * We only virtual copy managed pages.
8204 			 */
8205 			if ((ptetemp & PG_MANAGED) == 0)
8206 				continue;
8207 
8208 			if (dstmpte != NULL) {
8209 				KASSERT(dstmpte->pindex ==
8210 				    pmap_pde_pindex(addr),
8211 				    ("dstmpte pindex/addr mismatch"));
8212 				dstmpte->ref_count++;
8213 			} else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
8214 			    NULL)) == NULL)
8215 				goto out;
8216 			dst_pte = (pt_entry_t *)
8217 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
8218 			dst_pte = &dst_pte[pmap_pte_index(addr)];
8219 			if (*dst_pte == 0 &&
8220 			    pmap_try_insert_pv_entry(dst_pmap, addr,
8221 			    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
8222 				/*
8223 				 * Clear the wired, modified, and accessed
8224 				 * (referenced) bits during the copy.
8225 				 */
8226 				*dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
8227 				pmap_resident_count_adj(dst_pmap, 1);
8228 			} else {
8229 				pmap_abort_ptp(dst_pmap, addr, dstmpte);
8230 				goto out;
8231 			}
8232 			/* Have we copied all of the valid mappings? */
8233 			if (dstmpte->ref_count >= srcmpte->ref_count)
8234 				break;
8235 		}
8236 	}
8237 out:
8238 	if (lock != NULL)
8239 		rw_wunlock(lock);
8240 	PMAP_UNLOCK(src_pmap);
8241 	PMAP_UNLOCK(dst_pmap);
8242 }
8243 
8244 int
pmap_vmspace_copy(pmap_t dst_pmap,pmap_t src_pmap)8245 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
8246 {
8247 	int error;
8248 
8249 	if (dst_pmap->pm_type != src_pmap->pm_type ||
8250 	    dst_pmap->pm_type != PT_X86 ||
8251 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
8252 		return (0);
8253 	for (;;) {
8254 		if (dst_pmap < src_pmap) {
8255 			PMAP_LOCK(dst_pmap);
8256 			PMAP_LOCK(src_pmap);
8257 		} else {
8258 			PMAP_LOCK(src_pmap);
8259 			PMAP_LOCK(dst_pmap);
8260 		}
8261 		error = pmap_pkru_copy(dst_pmap, src_pmap);
8262 		/* Clean up partial copy on failure due to no memory. */
8263 		if (error == ENOMEM)
8264 			pmap_pkru_deassign_all(dst_pmap);
8265 		PMAP_UNLOCK(src_pmap);
8266 		PMAP_UNLOCK(dst_pmap);
8267 		if (error != ENOMEM)
8268 			break;
8269 		vm_wait(NULL);
8270 	}
8271 	return (error);
8272 }
8273 
8274 /*
8275  * Zero the specified hardware page.
8276  */
8277 void
pmap_zero_page(vm_page_t m)8278 pmap_zero_page(vm_page_t m)
8279 {
8280 	vm_offset_t va;
8281 
8282 #ifdef TSLOG_PAGEZERO
8283 	TSENTER();
8284 #endif
8285 	va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8286 	pagezero((void *)va);
8287 #ifdef TSLOG_PAGEZERO
8288 	TSEXIT();
8289 #endif
8290 }
8291 
8292 /*
8293  * Zero an area within a single hardware page.  off and size must not
8294  * cover an area beyond a single hardware page.
8295  */
8296 void
pmap_zero_page_area(vm_page_t m,int off,int size)8297 pmap_zero_page_area(vm_page_t m, int off, int size)
8298 {
8299 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8300 
8301 	if (off == 0 && size == PAGE_SIZE)
8302 		pagezero((void *)va);
8303 	else
8304 		bzero((char *)va + off, size);
8305 }
8306 
8307 /*
8308  * Copy 1 specified hardware page to another.
8309  */
8310 void
pmap_copy_page(vm_page_t msrc,vm_page_t mdst)8311 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
8312 {
8313 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
8314 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
8315 
8316 	pagecopy((void *)src, (void *)dst);
8317 }
8318 
8319 int unmapped_buf_allowed = 1;
8320 
8321 void
pmap_copy_pages(vm_page_t ma[],vm_offset_t a_offset,vm_page_t mb[],vm_offset_t b_offset,int xfersize)8322 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
8323     vm_offset_t b_offset, int xfersize)
8324 {
8325 	void *a_cp, *b_cp;
8326 	vm_page_t pages[2];
8327 	vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
8328 	int cnt;
8329 	bool mapped;
8330 
8331 	while (xfersize > 0) {
8332 		a_pg_offset = a_offset & PAGE_MASK;
8333 		pages[0] = ma[a_offset >> PAGE_SHIFT];
8334 		b_pg_offset = b_offset & PAGE_MASK;
8335 		pages[1] = mb[b_offset >> PAGE_SHIFT];
8336 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
8337 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
8338 		mapped = pmap_map_io_transient(pages, vaddr, 2, false);
8339 		a_cp = (char *)vaddr[0] + a_pg_offset;
8340 		b_cp = (char *)vaddr[1] + b_pg_offset;
8341 		bcopy(a_cp, b_cp, cnt);
8342 		if (__predict_false(mapped))
8343 			pmap_unmap_io_transient(pages, vaddr, 2, false);
8344 		a_offset += cnt;
8345 		b_offset += cnt;
8346 		xfersize -= cnt;
8347 	}
8348 }
8349 
8350 /*
8351  * Returns true if the pmap's pv is one of the first
8352  * 16 pvs linked to from this page.  This count may
8353  * be changed upwards or downwards in the future; it
8354  * is only necessary that true be returned for a small
8355  * subset of pmaps for proper page aging.
8356  */
8357 bool
pmap_page_exists_quick(pmap_t pmap,vm_page_t m)8358 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
8359 {
8360 	struct md_page *pvh;
8361 	struct rwlock *lock;
8362 	pv_entry_t pv;
8363 	int loops = 0;
8364 	bool rv;
8365 
8366 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8367 	    ("pmap_page_exists_quick: page %p is not managed", m));
8368 	rv = false;
8369 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8370 	rw_rlock(lock);
8371 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8372 		if (PV_PMAP(pv) == pmap) {
8373 			rv = true;
8374 			break;
8375 		}
8376 		loops++;
8377 		if (loops >= 16)
8378 			break;
8379 	}
8380 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
8381 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8382 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8383 			if (PV_PMAP(pv) == pmap) {
8384 				rv = true;
8385 				break;
8386 			}
8387 			loops++;
8388 			if (loops >= 16)
8389 				break;
8390 		}
8391 	}
8392 	rw_runlock(lock);
8393 	return (rv);
8394 }
8395 
8396 /*
8397  *	pmap_page_wired_mappings:
8398  *
8399  *	Return the number of managed mappings to the given physical page
8400  *	that are wired.
8401  */
8402 int
pmap_page_wired_mappings(vm_page_t m)8403 pmap_page_wired_mappings(vm_page_t m)
8404 {
8405 	struct rwlock *lock;
8406 	struct md_page *pvh;
8407 	pmap_t pmap;
8408 	pt_entry_t *pte;
8409 	pv_entry_t pv;
8410 	int count, md_gen, pvh_gen;
8411 
8412 	if ((m->oflags & VPO_UNMANAGED) != 0)
8413 		return (0);
8414 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8415 	rw_rlock(lock);
8416 restart:
8417 	count = 0;
8418 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8419 		pmap = PV_PMAP(pv);
8420 		if (!PMAP_TRYLOCK(pmap)) {
8421 			md_gen = m->md.pv_gen;
8422 			rw_runlock(lock);
8423 			PMAP_LOCK(pmap);
8424 			rw_rlock(lock);
8425 			if (md_gen != m->md.pv_gen) {
8426 				PMAP_UNLOCK(pmap);
8427 				goto restart;
8428 			}
8429 		}
8430 		pte = pmap_pte(pmap, pv->pv_va);
8431 		if ((*pte & PG_W) != 0)
8432 			count++;
8433 		PMAP_UNLOCK(pmap);
8434 	}
8435 	if ((m->flags & PG_FICTITIOUS) == 0) {
8436 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8437 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8438 			pmap = PV_PMAP(pv);
8439 			if (!PMAP_TRYLOCK(pmap)) {
8440 				md_gen = m->md.pv_gen;
8441 				pvh_gen = pvh->pv_gen;
8442 				rw_runlock(lock);
8443 				PMAP_LOCK(pmap);
8444 				rw_rlock(lock);
8445 				if (md_gen != m->md.pv_gen ||
8446 				    pvh_gen != pvh->pv_gen) {
8447 					PMAP_UNLOCK(pmap);
8448 					goto restart;
8449 				}
8450 			}
8451 			pte = pmap_pde(pmap, pv->pv_va);
8452 			if ((*pte & PG_W) != 0)
8453 				count++;
8454 			PMAP_UNLOCK(pmap);
8455 		}
8456 	}
8457 	rw_runlock(lock);
8458 	return (count);
8459 }
8460 
8461 /*
8462  * Returns true if the given page is mapped individually or as part of
8463  * a 2mpage.  Otherwise, returns false.
8464  */
8465 bool
pmap_page_is_mapped(vm_page_t m)8466 pmap_page_is_mapped(vm_page_t m)
8467 {
8468 	struct rwlock *lock;
8469 	bool rv;
8470 
8471 	if ((m->oflags & VPO_UNMANAGED) != 0)
8472 		return (false);
8473 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8474 	rw_rlock(lock);
8475 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
8476 	    ((m->flags & PG_FICTITIOUS) == 0 &&
8477 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
8478 	rw_runlock(lock);
8479 	return (rv);
8480 }
8481 
8482 /*
8483  * Destroy all managed, non-wired mappings in the given user-space
8484  * pmap.  This pmap cannot be active on any processor besides the
8485  * caller.
8486  *
8487  * This function cannot be applied to the kernel pmap.  Moreover, it
8488  * is not intended for general use.  It is only to be used during
8489  * process termination.  Consequently, it can be implemented in ways
8490  * that make it faster than pmap_remove().  First, it can more quickly
8491  * destroy mappings by iterating over the pmap's collection of PV
8492  * entries, rather than searching the page table.  Second, it doesn't
8493  * have to test and clear the page table entries atomically, because
8494  * no processor is currently accessing the user address space.  In
8495  * particular, a page table entry's dirty bit won't change state once
8496  * this function starts.
8497  *
8498  * Although this function destroys all of the pmap's managed,
8499  * non-wired mappings, it can delay and batch the invalidation of TLB
8500  * entries without calling pmap_delayed_invl_start() and
8501  * pmap_delayed_invl_finish().  Because the pmap is not active on
8502  * any other processor, none of these TLB entries will ever be used
8503  * before their eventual invalidation.  Consequently, there is no need
8504  * for either pmap_remove_all() or pmap_remove_write() to wait for
8505  * that eventual TLB invalidation.
8506  */
8507 void
pmap_remove_pages(pmap_t pmap)8508 pmap_remove_pages(pmap_t pmap)
8509 {
8510 	pd_entry_t ptepde;
8511 	pt_entry_t *pte, tpte;
8512 	pt_entry_t PG_M, PG_RW, PG_V;
8513 	struct spglist free;
8514 	struct pv_chunklist free_chunks[PMAP_MEMDOM];
8515 	vm_page_t m, mpte, mt;
8516 	pv_entry_t pv;
8517 	struct md_page *pvh;
8518 	struct pv_chunk *pc, *npc;
8519 	struct rwlock *lock;
8520 	int64_t bit;
8521 	uint64_t inuse, bitmask;
8522 	int allfree, field, i, idx;
8523 #ifdef PV_STATS
8524 	int freed;
8525 #endif
8526 	bool superpage;
8527 	vm_paddr_t pa;
8528 
8529 	/*
8530 	 * Assert that the given pmap is only active on the current
8531 	 * CPU.  Unfortunately, we cannot block another CPU from
8532 	 * activating the pmap while this function is executing.
8533 	 */
8534 	KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
8535 #ifdef INVARIANTS
8536 	{
8537 		cpuset_t other_cpus;
8538 
8539 		other_cpus = all_cpus;
8540 		critical_enter();
8541 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
8542 		CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
8543 		critical_exit();
8544 		KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
8545 	}
8546 #endif
8547 
8548 	lock = NULL;
8549 	PG_M = pmap_modified_bit(pmap);
8550 	PG_V = pmap_valid_bit(pmap);
8551 	PG_RW = pmap_rw_bit(pmap);
8552 
8553 	for (i = 0; i < PMAP_MEMDOM; i++)
8554 		TAILQ_INIT(&free_chunks[i]);
8555 	SLIST_INIT(&free);
8556 	PMAP_LOCK(pmap);
8557 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
8558 		allfree = 1;
8559 #ifdef PV_STATS
8560 		freed = 0;
8561 #endif
8562 		for (field = 0; field < _NPCM; field++) {
8563 			inuse = ~pc->pc_map[field] & pc_freemask[field];
8564 			while (inuse != 0) {
8565 				bit = bsfq(inuse);
8566 				bitmask = 1UL << bit;
8567 				idx = field * 64 + bit;
8568 				pv = &pc->pc_pventry[idx];
8569 				inuse &= ~bitmask;
8570 
8571 				pte = pmap_pdpe(pmap, pv->pv_va);
8572 				ptepde = *pte;
8573 				pte = pmap_pdpe_to_pde(pte, pv->pv_va);
8574 				tpte = *pte;
8575 				if ((tpte & (PG_PS | PG_V)) == PG_V) {
8576 					superpage = false;
8577 					ptepde = tpte;
8578 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
8579 					    PG_FRAME);
8580 					pte = &pte[pmap_pte_index(pv->pv_va)];
8581 					tpte = *pte;
8582 				} else {
8583 					/*
8584 					 * Keep track whether 'tpte' is a
8585 					 * superpage explicitly instead of
8586 					 * relying on PG_PS being set.
8587 					 *
8588 					 * This is because PG_PS is numerically
8589 					 * identical to PG_PTE_PAT and thus a
8590 					 * regular page could be mistaken for
8591 					 * a superpage.
8592 					 */
8593 					superpage = true;
8594 				}
8595 
8596 				if ((tpte & PG_V) == 0) {
8597 					panic("bad pte va %lx pte %lx",
8598 					    pv->pv_va, tpte);
8599 				}
8600 
8601 /*
8602  * We cannot remove wired pages from a process' mapping at this time
8603  */
8604 				if (tpte & PG_W) {
8605 					allfree = 0;
8606 					continue;
8607 				}
8608 
8609 				/* Mark free */
8610 				pc->pc_map[field] |= bitmask;
8611 
8612 				/*
8613 				 * Because this pmap is not active on other
8614 				 * processors, the dirty bit cannot have
8615 				 * changed state since we last loaded pte.
8616 				 */
8617 				pte_clear(pte);
8618 
8619 				if (superpage)
8620 					pa = tpte & PG_PS_FRAME;
8621 				else
8622 					pa = tpte & PG_FRAME;
8623 
8624 				m = PHYS_TO_VM_PAGE(pa);
8625 				KASSERT(m->phys_addr == pa,
8626 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
8627 				    m, (uintmax_t)m->phys_addr,
8628 				    (uintmax_t)tpte));
8629 
8630 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
8631 				    m < &vm_page_array[vm_page_array_size],
8632 				    ("pmap_remove_pages: bad tpte %#jx",
8633 				    (uintmax_t)tpte));
8634 
8635 				/*
8636 				 * Update the vm_page_t clean/reference bits.
8637 				 */
8638 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8639 					if (superpage) {
8640 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8641 							vm_page_dirty(mt);
8642 					} else
8643 						vm_page_dirty(m);
8644 				}
8645 
8646 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
8647 
8648 				if (superpage) {
8649 					pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
8650 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
8651 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8652 					pvh->pv_gen++;
8653 					if (TAILQ_EMPTY(&pvh->pv_list)) {
8654 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8655 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
8656 							    TAILQ_EMPTY(&mt->md.pv_list))
8657 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
8658 					}
8659 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
8660 					if (mpte != NULL) {
8661 						KASSERT(vm_page_any_valid(mpte),
8662 						    ("pmap_remove_pages: pte page not promoted"));
8663 						pmap_pt_page_count_adj(pmap, -1);
8664 						KASSERT(mpte->ref_count == NPTEPG,
8665 						    ("pmap_remove_pages: pte page reference count error"));
8666 						mpte->ref_count = 0;
8667 						pmap_add_delayed_free_list(mpte, &free, false);
8668 					}
8669 				} else {
8670 					pmap_resident_count_adj(pmap, -1);
8671 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8672 					m->md.pv_gen++;
8673 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
8674 					    TAILQ_EMPTY(&m->md.pv_list) &&
8675 					    (m->flags & PG_FICTITIOUS) == 0) {
8676 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8677 						if (TAILQ_EMPTY(&pvh->pv_list))
8678 							vm_page_aflag_clear(m, PGA_WRITEABLE);
8679 					}
8680 				}
8681 				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
8682 #ifdef PV_STATS
8683 				freed++;
8684 #endif
8685 			}
8686 		}
8687 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
8688 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
8689 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
8690 		if (allfree) {
8691 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
8692 			TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
8693 		}
8694 	}
8695 	if (lock != NULL)
8696 		rw_wunlock(lock);
8697 	pmap_invalidate_all(pmap);
8698 	pmap_pkru_deassign_all(pmap);
8699 	free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
8700 	PMAP_UNLOCK(pmap);
8701 	vm_page_free_pages_toq(&free, true);
8702 }
8703 
8704 static bool
pmap_page_test_mappings(vm_page_t m,bool accessed,bool modified)8705 pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
8706 {
8707 	struct rwlock *lock;
8708 	pv_entry_t pv;
8709 	struct md_page *pvh;
8710 	pt_entry_t *pte, mask;
8711 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
8712 	pmap_t pmap;
8713 	int md_gen, pvh_gen;
8714 	bool rv;
8715 
8716 	rv = false;
8717 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8718 	rw_rlock(lock);
8719 restart:
8720 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8721 		pmap = PV_PMAP(pv);
8722 		if (!PMAP_TRYLOCK(pmap)) {
8723 			md_gen = m->md.pv_gen;
8724 			rw_runlock(lock);
8725 			PMAP_LOCK(pmap);
8726 			rw_rlock(lock);
8727 			if (md_gen != m->md.pv_gen) {
8728 				PMAP_UNLOCK(pmap);
8729 				goto restart;
8730 			}
8731 		}
8732 		pte = pmap_pte(pmap, pv->pv_va);
8733 		mask = 0;
8734 		if (modified) {
8735 			PG_M = pmap_modified_bit(pmap);
8736 			PG_RW = pmap_rw_bit(pmap);
8737 			mask |= PG_RW | PG_M;
8738 		}
8739 		if (accessed) {
8740 			PG_A = pmap_accessed_bit(pmap);
8741 			PG_V = pmap_valid_bit(pmap);
8742 			mask |= PG_V | PG_A;
8743 		}
8744 		rv = (*pte & mask) == mask;
8745 		PMAP_UNLOCK(pmap);
8746 		if (rv)
8747 			goto out;
8748 	}
8749 	if ((m->flags & PG_FICTITIOUS) == 0) {
8750 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8751 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8752 			pmap = PV_PMAP(pv);
8753 			if (!PMAP_TRYLOCK(pmap)) {
8754 				md_gen = m->md.pv_gen;
8755 				pvh_gen = pvh->pv_gen;
8756 				rw_runlock(lock);
8757 				PMAP_LOCK(pmap);
8758 				rw_rlock(lock);
8759 				if (md_gen != m->md.pv_gen ||
8760 				    pvh_gen != pvh->pv_gen) {
8761 					PMAP_UNLOCK(pmap);
8762 					goto restart;
8763 				}
8764 			}
8765 			pte = pmap_pde(pmap, pv->pv_va);
8766 			mask = 0;
8767 			if (modified) {
8768 				PG_M = pmap_modified_bit(pmap);
8769 				PG_RW = pmap_rw_bit(pmap);
8770 				mask |= PG_RW | PG_M;
8771 			}
8772 			if (accessed) {
8773 				PG_A = pmap_accessed_bit(pmap);
8774 				PG_V = pmap_valid_bit(pmap);
8775 				mask |= PG_V | PG_A;
8776 			}
8777 			rv = (*pte & mask) == mask;
8778 			PMAP_UNLOCK(pmap);
8779 			if (rv)
8780 				goto out;
8781 		}
8782 	}
8783 out:
8784 	rw_runlock(lock);
8785 	return (rv);
8786 }
8787 
8788 /*
8789  *	pmap_is_modified:
8790  *
8791  *	Return whether or not the specified physical page was modified
8792  *	in any physical maps.
8793  */
8794 bool
pmap_is_modified(vm_page_t m)8795 pmap_is_modified(vm_page_t m)
8796 {
8797 
8798 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8799 	    ("pmap_is_modified: page %p is not managed", m));
8800 
8801 	/*
8802 	 * If the page is not busied then this check is racy.
8803 	 */
8804 	if (!pmap_page_is_write_mapped(m))
8805 		return (false);
8806 	return (pmap_page_test_mappings(m, false, true));
8807 }
8808 
8809 /*
8810  *	pmap_is_prefaultable:
8811  *
8812  *	Return whether or not the specified virtual address is eligible
8813  *	for prefault.
8814  */
8815 bool
pmap_is_prefaultable(pmap_t pmap,vm_offset_t addr)8816 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
8817 {
8818 	pd_entry_t *pde;
8819 	pt_entry_t *pte, PG_V;
8820 	bool rv;
8821 
8822 	PG_V = pmap_valid_bit(pmap);
8823 
8824 	/*
8825 	 * Return true if and only if the PTE for the specified virtual
8826 	 * address is allocated but invalid.
8827 	 */
8828 	rv = false;
8829 	PMAP_LOCK(pmap);
8830 	pde = pmap_pde(pmap, addr);
8831 	if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
8832 		pte = pmap_pde_to_pte(pde, addr);
8833 		rv = (*pte & PG_V) == 0;
8834 	}
8835 	PMAP_UNLOCK(pmap);
8836 	return (rv);
8837 }
8838 
8839 /*
8840  *	pmap_is_referenced:
8841  *
8842  *	Return whether or not the specified physical page was referenced
8843  *	in any physical maps.
8844  */
8845 bool
pmap_is_referenced(vm_page_t m)8846 pmap_is_referenced(vm_page_t m)
8847 {
8848 
8849 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8850 	    ("pmap_is_referenced: page %p is not managed", m));
8851 	return (pmap_page_test_mappings(m, true, false));
8852 }
8853 
8854 /*
8855  * Clear the write and modified bits in each of the given page's mappings.
8856  */
8857 void
pmap_remove_write(vm_page_t m)8858 pmap_remove_write(vm_page_t m)
8859 {
8860 	struct md_page *pvh;
8861 	pmap_t pmap;
8862 	struct rwlock *lock;
8863 	pv_entry_t next_pv, pv;
8864 	pd_entry_t *pde;
8865 	pt_entry_t oldpte, *pte, PG_M, PG_RW;
8866 	vm_offset_t va;
8867 	int pvh_gen, md_gen;
8868 
8869 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8870 	    ("pmap_remove_write: page %p is not managed", m));
8871 
8872 	vm_page_assert_busied(m);
8873 	if (!pmap_page_is_write_mapped(m))
8874 		return;
8875 
8876 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8877 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8878 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
8879 	rw_wlock(lock);
8880 retry:
8881 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8882 		pmap = PV_PMAP(pv);
8883 		if (!PMAP_TRYLOCK(pmap)) {
8884 			pvh_gen = pvh->pv_gen;
8885 			rw_wunlock(lock);
8886 			PMAP_LOCK(pmap);
8887 			rw_wlock(lock);
8888 			if (pvh_gen != pvh->pv_gen) {
8889 				PMAP_UNLOCK(pmap);
8890 				goto retry;
8891 			}
8892 		}
8893 		PG_RW = pmap_rw_bit(pmap);
8894 		va = pv->pv_va;
8895 		pde = pmap_pde(pmap, va);
8896 		if ((*pde & PG_RW) != 0)
8897 			(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
8898 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8899 		    ("inconsistent pv lock %p %p for page %p",
8900 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8901 		PMAP_UNLOCK(pmap);
8902 	}
8903 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8904 		pmap = PV_PMAP(pv);
8905 		if (!PMAP_TRYLOCK(pmap)) {
8906 			pvh_gen = pvh->pv_gen;
8907 			md_gen = m->md.pv_gen;
8908 			rw_wunlock(lock);
8909 			PMAP_LOCK(pmap);
8910 			rw_wlock(lock);
8911 			if (pvh_gen != pvh->pv_gen ||
8912 			    md_gen != m->md.pv_gen) {
8913 				PMAP_UNLOCK(pmap);
8914 				goto retry;
8915 			}
8916 		}
8917 		PG_M = pmap_modified_bit(pmap);
8918 		PG_RW = pmap_rw_bit(pmap);
8919 		pde = pmap_pde(pmap, pv->pv_va);
8920 		KASSERT((*pde & PG_PS) == 0,
8921 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
8922 		    m));
8923 		pte = pmap_pde_to_pte(pde, pv->pv_va);
8924 		oldpte = *pte;
8925 		if (oldpte & PG_RW) {
8926 			while (!atomic_fcmpset_long(pte, &oldpte, oldpte &
8927 			    ~(PG_RW | PG_M)))
8928 				cpu_spinwait();
8929 			if ((oldpte & PG_M) != 0)
8930 				vm_page_dirty(m);
8931 			pmap_invalidate_page(pmap, pv->pv_va);
8932 		}
8933 		PMAP_UNLOCK(pmap);
8934 	}
8935 	rw_wunlock(lock);
8936 	vm_page_aflag_clear(m, PGA_WRITEABLE);
8937 	pmap_delayed_invl_wait(m);
8938 }
8939 
8940 /*
8941  *	pmap_ts_referenced:
8942  *
8943  *	Return a count of reference bits for a page, clearing those bits.
8944  *	It is not necessary for every reference bit to be cleared, but it
8945  *	is necessary that 0 only be returned when there are truly no
8946  *	reference bits set.
8947  *
8948  *	As an optimization, update the page's dirty field if a modified bit is
8949  *	found while counting reference bits.  This opportunistic update can be
8950  *	performed at low cost and can eliminate the need for some future calls
8951  *	to pmap_is_modified().  However, since this function stops after
8952  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
8953  *	dirty pages.  Those dirty pages will only be detected by a future call
8954  *	to pmap_is_modified().
8955  *
8956  *	A DI block is not needed within this function, because
8957  *	invalidations are performed before the PV list lock is
8958  *	released.
8959  */
8960 int
pmap_ts_referenced(vm_page_t m)8961 pmap_ts_referenced(vm_page_t m)
8962 {
8963 	struct md_page *pvh;
8964 	pv_entry_t pv, pvf;
8965 	pmap_t pmap;
8966 	struct rwlock *lock;
8967 	pd_entry_t oldpde, *pde;
8968 	pt_entry_t *pte, PG_A, PG_M, PG_RW;
8969 	vm_offset_t va;
8970 	vm_paddr_t pa;
8971 	int cleared, md_gen, not_cleared, pvh_gen;
8972 	struct spglist free;
8973 	bool demoted;
8974 
8975 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8976 	    ("pmap_ts_referenced: page %p is not managed", m));
8977 	SLIST_INIT(&free);
8978 	cleared = 0;
8979 	pa = VM_PAGE_TO_PHYS(m);
8980 	lock = PHYS_TO_PV_LIST_LOCK(pa);
8981 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
8982 	rw_wlock(lock);
8983 retry:
8984 	not_cleared = 0;
8985 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
8986 		goto small_mappings;
8987 	pv = pvf;
8988 	do {
8989 		if (pvf == NULL)
8990 			pvf = pv;
8991 		pmap = PV_PMAP(pv);
8992 		if (!PMAP_TRYLOCK(pmap)) {
8993 			pvh_gen = pvh->pv_gen;
8994 			rw_wunlock(lock);
8995 			PMAP_LOCK(pmap);
8996 			rw_wlock(lock);
8997 			if (pvh_gen != pvh->pv_gen) {
8998 				PMAP_UNLOCK(pmap);
8999 				goto retry;
9000 			}
9001 		}
9002 		PG_A = pmap_accessed_bit(pmap);
9003 		PG_M = pmap_modified_bit(pmap);
9004 		PG_RW = pmap_rw_bit(pmap);
9005 		va = pv->pv_va;
9006 		pde = pmap_pde(pmap, pv->pv_va);
9007 		oldpde = *pde;
9008 		if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9009 			/*
9010 			 * Although "oldpde" is mapping a 2MB page, because
9011 			 * this function is called at a 4KB page granularity,
9012 			 * we only update the 4KB page under test.
9013 			 */
9014 			vm_page_dirty(m);
9015 		}
9016 		if ((oldpde & PG_A) != 0) {
9017 			/*
9018 			 * Since this reference bit is shared by 512 4KB
9019 			 * pages, it should not be cleared every time it is
9020 			 * tested.  Apply a simple "hash" function on the
9021 			 * physical page number, the virtual superpage number,
9022 			 * and the pmap address to select one 4KB page out of
9023 			 * the 512 on which testing the reference bit will
9024 			 * result in clearing that reference bit.  This
9025 			 * function is designed to avoid the selection of the
9026 			 * same 4KB page for every 2MB page mapping.
9027 			 *
9028 			 * On demotion, a mapping that hasn't been referenced
9029 			 * is simply destroyed.  To avoid the possibility of a
9030 			 * subsequent page fault on a demoted wired mapping,
9031 			 * always leave its reference bit set.  Moreover,
9032 			 * since the superpage is wired, the current state of
9033 			 * its reference bit won't affect page replacement.
9034 			 */
9035 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
9036 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
9037 			    (oldpde & PG_W) == 0) {
9038 				if (safe_to_clear_referenced(pmap, oldpde)) {
9039 					atomic_clear_long(pde, PG_A);
9040 					pmap_invalidate_page(pmap, pv->pv_va);
9041 					demoted = false;
9042 				} else if (pmap_demote_pde_locked(pmap, pde,
9043 				    pv->pv_va, &lock)) {
9044 					/*
9045 					 * Remove the mapping to a single page
9046 					 * so that a subsequent access may
9047 					 * repromote.  Since the underlying
9048 					 * page table page is fully populated,
9049 					 * this removal never frees a page
9050 					 * table page.
9051 					 */
9052 					demoted = true;
9053 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
9054 					    PG_PS_FRAME);
9055 					pte = pmap_pde_to_pte(pde, va);
9056 					pmap_remove_pte(pmap, pte, va, *pde,
9057 					    NULL, &lock);
9058 					pmap_invalidate_page(pmap, va);
9059 				} else
9060 					demoted = true;
9061 
9062 				if (demoted) {
9063 					/*
9064 					 * The superpage mapping was removed
9065 					 * entirely and therefore 'pv' is no
9066 					 * longer valid.
9067 					 */
9068 					if (pvf == pv)
9069 						pvf = NULL;
9070 					pv = NULL;
9071 				}
9072 				cleared++;
9073 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9074 				    ("inconsistent pv lock %p %p for page %p",
9075 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9076 			} else
9077 				not_cleared++;
9078 		}
9079 		PMAP_UNLOCK(pmap);
9080 		/* Rotate the PV list if it has more than one entry. */
9081 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9082 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
9083 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
9084 			pvh->pv_gen++;
9085 		}
9086 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
9087 			goto out;
9088 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
9089 small_mappings:
9090 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
9091 		goto out;
9092 	pv = pvf;
9093 	do {
9094 		if (pvf == NULL)
9095 			pvf = pv;
9096 		pmap = PV_PMAP(pv);
9097 		if (!PMAP_TRYLOCK(pmap)) {
9098 			pvh_gen = pvh->pv_gen;
9099 			md_gen = m->md.pv_gen;
9100 			rw_wunlock(lock);
9101 			PMAP_LOCK(pmap);
9102 			rw_wlock(lock);
9103 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9104 				PMAP_UNLOCK(pmap);
9105 				goto retry;
9106 			}
9107 		}
9108 		PG_A = pmap_accessed_bit(pmap);
9109 		PG_M = pmap_modified_bit(pmap);
9110 		PG_RW = pmap_rw_bit(pmap);
9111 		pde = pmap_pde(pmap, pv->pv_va);
9112 		KASSERT((*pde & PG_PS) == 0,
9113 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
9114 		    m));
9115 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9116 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
9117 			vm_page_dirty(m);
9118 		if ((*pte & PG_A) != 0) {
9119 			if (safe_to_clear_referenced(pmap, *pte)) {
9120 				atomic_clear_long(pte, PG_A);
9121 				pmap_invalidate_page(pmap, pv->pv_va);
9122 				cleared++;
9123 			} else if ((*pte & PG_W) == 0) {
9124 				/*
9125 				 * Wired pages cannot be paged out so
9126 				 * doing accessed bit emulation for
9127 				 * them is wasted effort. We do the
9128 				 * hard work for unwired pages only.
9129 				 */
9130 				pmap_remove_pte(pmap, pte, pv->pv_va,
9131 				    *pde, &free, &lock);
9132 				pmap_invalidate_page(pmap, pv->pv_va);
9133 				cleared++;
9134 				if (pvf == pv)
9135 					pvf = NULL;
9136 				pv = NULL;
9137 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9138 				    ("inconsistent pv lock %p %p for page %p",
9139 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9140 			} else
9141 				not_cleared++;
9142 		}
9143 		PMAP_UNLOCK(pmap);
9144 		/* Rotate the PV list if it has more than one entry. */
9145 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9146 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
9147 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
9148 			m->md.pv_gen++;
9149 		}
9150 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
9151 	    not_cleared < PMAP_TS_REFERENCED_MAX);
9152 out:
9153 	rw_wunlock(lock);
9154 	vm_page_free_pages_toq(&free, true);
9155 	return (cleared + not_cleared);
9156 }
9157 
9158 /*
9159  *	Apply the given advice to the specified range of addresses within the
9160  *	given pmap.  Depending on the advice, clear the referenced and/or
9161  *	modified flags in each mapping and set the mapped page's dirty field.
9162  */
9163 void
pmap_advise(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,int advice)9164 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
9165 {
9166 	struct rwlock *lock;
9167 	pml4_entry_t *pml4e;
9168 	pdp_entry_t *pdpe;
9169 	pd_entry_t oldpde, *pde;
9170 	pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
9171 	vm_offset_t va, va_next;
9172 	vm_page_t m;
9173 	bool anychanged;
9174 
9175 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
9176 		return;
9177 
9178 	/*
9179 	 * A/D bit emulation requires an alternate code path when clearing
9180 	 * the modified and accessed bits below. Since this function is
9181 	 * advisory in nature we skip it entirely for pmaps that require
9182 	 * A/D bit emulation.
9183 	 */
9184 	if (pmap_emulate_ad_bits(pmap))
9185 		return;
9186 
9187 	PG_A = pmap_accessed_bit(pmap);
9188 	PG_G = pmap_global_bit(pmap);
9189 	PG_M = pmap_modified_bit(pmap);
9190 	PG_V = pmap_valid_bit(pmap);
9191 	PG_RW = pmap_rw_bit(pmap);
9192 	anychanged = false;
9193 	pmap_delayed_invl_start();
9194 	PMAP_LOCK(pmap);
9195 	for (; sva < eva; sva = va_next) {
9196 		pml4e = pmap_pml4e(pmap, sva);
9197 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
9198 			va_next = (sva + NBPML4) & ~PML4MASK;
9199 			if (va_next < sva)
9200 				va_next = eva;
9201 			continue;
9202 		}
9203 
9204 		va_next = (sva + NBPDP) & ~PDPMASK;
9205 		if (va_next < sva)
9206 			va_next = eva;
9207 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
9208 		if ((*pdpe & PG_V) == 0)
9209 			continue;
9210 		if ((*pdpe & PG_PS) != 0)
9211 			continue;
9212 
9213 		va_next = (sva + NBPDR) & ~PDRMASK;
9214 		if (va_next < sva)
9215 			va_next = eva;
9216 		pde = pmap_pdpe_to_pde(pdpe, sva);
9217 		oldpde = *pde;
9218 		if ((oldpde & PG_V) == 0)
9219 			continue;
9220 		else if ((oldpde & PG_PS) != 0) {
9221 			if ((oldpde & PG_MANAGED) == 0)
9222 				continue;
9223 			lock = NULL;
9224 			if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
9225 				if (lock != NULL)
9226 					rw_wunlock(lock);
9227 
9228 				/*
9229 				 * The large page mapping was destroyed.
9230 				 */
9231 				continue;
9232 			}
9233 
9234 			/*
9235 			 * Unless the page mappings are wired, remove the
9236 			 * mapping to a single page so that a subsequent
9237 			 * access may repromote.  Choosing the last page
9238 			 * within the address range [sva, min(va_next, eva))
9239 			 * generally results in more repromotions.  Since the
9240 			 * underlying page table page is fully populated, this
9241 			 * removal never frees a page table page.
9242 			 */
9243 			if ((oldpde & PG_W) == 0) {
9244 				va = eva;
9245 				if (va > va_next)
9246 					va = va_next;
9247 				va -= PAGE_SIZE;
9248 				KASSERT(va >= sva,
9249 				    ("pmap_advise: no address gap"));
9250 				pte = pmap_pde_to_pte(pde, va);
9251 				KASSERT((*pte & PG_V) != 0,
9252 				    ("pmap_advise: invalid PTE"));
9253 				pmap_remove_pte(pmap, pte, va, *pde, NULL,
9254 				    &lock);
9255 				anychanged = true;
9256 			}
9257 			if (lock != NULL)
9258 				rw_wunlock(lock);
9259 		}
9260 		if (va_next > eva)
9261 			va_next = eva;
9262 		va = va_next;
9263 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
9264 		    sva += PAGE_SIZE) {
9265 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
9266 				goto maybe_invlrng;
9267 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9268 				if (advice == MADV_DONTNEED) {
9269 					/*
9270 					 * Future calls to pmap_is_modified()
9271 					 * can be avoided by making the page
9272 					 * dirty now.
9273 					 */
9274 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
9275 					vm_page_dirty(m);
9276 				}
9277 				atomic_clear_long(pte, PG_M | PG_A);
9278 			} else if ((*pte & PG_A) != 0)
9279 				atomic_clear_long(pte, PG_A);
9280 			else
9281 				goto maybe_invlrng;
9282 
9283 			if ((*pte & PG_G) != 0) {
9284 				if (va == va_next)
9285 					va = sva;
9286 			} else
9287 				anychanged = true;
9288 			continue;
9289 maybe_invlrng:
9290 			if (va != va_next) {
9291 				pmap_invalidate_range(pmap, va, sva);
9292 				va = va_next;
9293 			}
9294 		}
9295 		if (va != va_next)
9296 			pmap_invalidate_range(pmap, va, sva);
9297 	}
9298 	if (anychanged)
9299 		pmap_invalidate_all(pmap);
9300 	PMAP_UNLOCK(pmap);
9301 	pmap_delayed_invl_finish();
9302 }
9303 
9304 /*
9305  *	Clear the modify bits on the specified physical page.
9306  */
9307 void
pmap_clear_modify(vm_page_t m)9308 pmap_clear_modify(vm_page_t m)
9309 {
9310 	struct md_page *pvh;
9311 	pmap_t pmap;
9312 	pv_entry_t next_pv, pv;
9313 	pd_entry_t oldpde, *pde;
9314 	pt_entry_t *pte, PG_M, PG_RW;
9315 	struct rwlock *lock;
9316 	vm_offset_t va;
9317 	int md_gen, pvh_gen;
9318 
9319 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9320 	    ("pmap_clear_modify: page %p is not managed", m));
9321 	vm_page_assert_busied(m);
9322 
9323 	if (!pmap_page_is_write_mapped(m))
9324 		return;
9325 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
9326 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
9327 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
9328 	rw_wlock(lock);
9329 restart:
9330 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
9331 		pmap = PV_PMAP(pv);
9332 		if (!PMAP_TRYLOCK(pmap)) {
9333 			pvh_gen = pvh->pv_gen;
9334 			rw_wunlock(lock);
9335 			PMAP_LOCK(pmap);
9336 			rw_wlock(lock);
9337 			if (pvh_gen != pvh->pv_gen) {
9338 				PMAP_UNLOCK(pmap);
9339 				goto restart;
9340 			}
9341 		}
9342 		PG_M = pmap_modified_bit(pmap);
9343 		PG_RW = pmap_rw_bit(pmap);
9344 		va = pv->pv_va;
9345 		pde = pmap_pde(pmap, va);
9346 		oldpde = *pde;
9347 		/* If oldpde has PG_RW set, then it also has PG_M set. */
9348 		if ((oldpde & PG_RW) != 0 &&
9349 		    pmap_demote_pde_locked(pmap, pde, va, &lock) &&
9350 		    (oldpde & PG_W) == 0) {
9351 			/*
9352 			 * Write protect the mapping to a single page so that
9353 			 * a subsequent write access may repromote.
9354 			 */
9355 			va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
9356 			pte = pmap_pde_to_pte(pde, va);
9357 			atomic_clear_long(pte, PG_M | PG_RW);
9358 			vm_page_dirty(m);
9359 			pmap_invalidate_page(pmap, va);
9360 		}
9361 		PMAP_UNLOCK(pmap);
9362 	}
9363 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
9364 		pmap = PV_PMAP(pv);
9365 		if (!PMAP_TRYLOCK(pmap)) {
9366 			md_gen = m->md.pv_gen;
9367 			pvh_gen = pvh->pv_gen;
9368 			rw_wunlock(lock);
9369 			PMAP_LOCK(pmap);
9370 			rw_wlock(lock);
9371 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9372 				PMAP_UNLOCK(pmap);
9373 				goto restart;
9374 			}
9375 		}
9376 		PG_M = pmap_modified_bit(pmap);
9377 		PG_RW = pmap_rw_bit(pmap);
9378 		pde = pmap_pde(pmap, pv->pv_va);
9379 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
9380 		    " a 2mpage in page %p's pv list", m));
9381 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9382 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9383 			atomic_clear_long(pte, PG_M);
9384 			pmap_invalidate_page(pmap, pv->pv_va);
9385 		}
9386 		PMAP_UNLOCK(pmap);
9387 	}
9388 	rw_wunlock(lock);
9389 }
9390 
9391 /*
9392  * Miscellaneous support routines follow
9393  */
9394 
9395 /* Adjust the properties for a leaf page table entry. */
9396 static __inline void
pmap_pte_props(pt_entry_t * pte,u_long bits,u_long mask)9397 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
9398 {
9399 	u_long opte, npte;
9400 
9401 	opte = *(u_long *)pte;
9402 	do {
9403 		npte = opte & ~mask;
9404 		npte |= bits;
9405 	} while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
9406 	    npte));
9407 }
9408 
9409 /*
9410  * Map a set of physical memory pages into the kernel virtual
9411  * address space. Return a pointer to where it is mapped. This
9412  * routine is intended to be used for mapping device memory,
9413  * NOT real memory.
9414  */
9415 static void *
pmap_mapdev_internal(vm_paddr_t pa,vm_size_t size,int mode,int flags)9416 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
9417 {
9418 	struct pmap_preinit_mapping *ppim;
9419 	vm_offset_t va, offset;
9420 	vm_size_t tmpsize;
9421 	int i;
9422 
9423 	offset = pa & PAGE_MASK;
9424 	size = round_page(offset + size);
9425 	pa = trunc_page(pa);
9426 
9427 	if (!pmap_initialized) {
9428 		va = 0;
9429 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9430 			ppim = pmap_preinit_mapping + i;
9431 			if (ppim->va == 0) {
9432 				ppim->pa = pa;
9433 				ppim->sz = size;
9434 				ppim->mode = mode;
9435 				ppim->va = virtual_avail;
9436 				virtual_avail += size;
9437 				va = ppim->va;
9438 				break;
9439 			}
9440 		}
9441 		if (va == 0)
9442 			panic("%s: too many preinit mappings", __func__);
9443 	} else {
9444 		/*
9445 		 * If we have a preinit mapping, reuse it.
9446 		 */
9447 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9448 			ppim = pmap_preinit_mapping + i;
9449 			if (ppim->pa == pa && ppim->sz == size &&
9450 			    (ppim->mode == mode ||
9451 			    (flags & MAPDEV_SETATTR) == 0))
9452 				return ((void *)(ppim->va + offset));
9453 		}
9454 		/*
9455 		 * If the specified range of physical addresses fits within
9456 		 * the direct map window, use the direct map.
9457 		 */
9458 		if (pa < dmaplimit && pa + size <= dmaplimit) {
9459 			va = PHYS_TO_DMAP(pa);
9460 			if ((flags & MAPDEV_SETATTR) != 0) {
9461 				PMAP_LOCK(kernel_pmap);
9462 				i = pmap_change_props_locked(va, size,
9463 				    PROT_NONE, mode, flags);
9464 				PMAP_UNLOCK(kernel_pmap);
9465 			} else
9466 				i = 0;
9467 			if (!i)
9468 				return ((void *)(va + offset));
9469 		}
9470 		va = kva_alloc(size);
9471 		if (va == 0)
9472 			panic("%s: Couldn't allocate KVA", __func__);
9473 	}
9474 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
9475 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
9476 	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
9477 	if ((flags & MAPDEV_FLUSHCACHE) != 0)
9478 		pmap_invalidate_cache_range(va, va + tmpsize);
9479 	return ((void *)(va + offset));
9480 }
9481 
9482 void *
pmap_mapdev_attr(vm_paddr_t pa,vm_size_t size,int mode)9483 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
9484 {
9485 
9486 	return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
9487 	    MAPDEV_SETATTR));
9488 }
9489 
9490 void *
pmap_mapdev(vm_paddr_t pa,vm_size_t size)9491 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
9492 {
9493 
9494 	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
9495 }
9496 
9497 void *
pmap_mapdev_pciecfg(vm_paddr_t pa,vm_size_t size)9498 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
9499 {
9500 
9501 	return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
9502 	    MAPDEV_SETATTR));
9503 }
9504 
9505 void *
pmap_mapbios(vm_paddr_t pa,vm_size_t size)9506 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
9507 {
9508 
9509 	return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
9510 	    MAPDEV_FLUSHCACHE));
9511 }
9512 
9513 void
pmap_unmapdev(void * p,vm_size_t size)9514 pmap_unmapdev(void *p, vm_size_t size)
9515 {
9516 	struct pmap_preinit_mapping *ppim;
9517 	vm_offset_t offset, va;
9518 	int i;
9519 
9520 	va = (vm_offset_t)p;
9521 
9522 	/* If we gave a direct map region in pmap_mapdev, do nothing */
9523 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
9524 		return;
9525 	offset = va & PAGE_MASK;
9526 	size = round_page(offset + size);
9527 	va = trunc_page(va);
9528 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9529 		ppim = pmap_preinit_mapping + i;
9530 		if (ppim->va == va && ppim->sz == size) {
9531 			if (pmap_initialized)
9532 				return;
9533 			ppim->pa = 0;
9534 			ppim->va = 0;
9535 			ppim->sz = 0;
9536 			ppim->mode = 0;
9537 			if (va + size == virtual_avail)
9538 				virtual_avail = va;
9539 			return;
9540 		}
9541 	}
9542 	if (pmap_initialized) {
9543 		pmap_qremove(va, atop(size));
9544 		kva_free(va, size);
9545 	}
9546 }
9547 
9548 /*
9549  * Tries to demote a 1GB page mapping.
9550  */
9551 static bool
pmap_demote_pdpe(pmap_t pmap,pdp_entry_t * pdpe,vm_offset_t va)9552 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
9553 {
9554 	pdp_entry_t newpdpe, oldpdpe;
9555 	pd_entry_t *firstpde, newpde, *pde;
9556 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
9557 	vm_paddr_t pdpgpa;
9558 	vm_page_t pdpg;
9559 
9560 	PG_A = pmap_accessed_bit(pmap);
9561 	PG_M = pmap_modified_bit(pmap);
9562 	PG_V = pmap_valid_bit(pmap);
9563 	PG_RW = pmap_rw_bit(pmap);
9564 
9565 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9566 	oldpdpe = *pdpe;
9567 	KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
9568 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
9569 	pdpg = pmap_alloc_pt_page(pmap, va >> PDPSHIFT,
9570 	    VM_ALLOC_WIRED | VM_ALLOC_INTERRUPT);
9571 	if (pdpg  == NULL) {
9572 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
9573 		    " in pmap %p", va, pmap);
9574 		return (false);
9575 	}
9576 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
9577 	firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
9578 	newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
9579 	KASSERT((oldpdpe & PG_A) != 0,
9580 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
9581 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
9582 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
9583 	newpde = oldpdpe;
9584 
9585 	/*
9586 	 * Initialize the page directory page.
9587 	 */
9588 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
9589 		*pde = newpde;
9590 		newpde += NBPDR;
9591 	}
9592 
9593 	/*
9594 	 * Demote the mapping.
9595 	 */
9596 	*pdpe = newpdpe;
9597 
9598 	/*
9599 	 * Invalidate a stale recursive mapping of the page directory page.
9600 	 */
9601 	pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
9602 
9603 	counter_u64_add(pmap_pdpe_demotions, 1);
9604 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
9605 	    " in pmap %p", va, pmap);
9606 	return (true);
9607 }
9608 
9609 /*
9610  * Sets the memory attribute for the specified page.
9611  */
9612 void
pmap_page_set_memattr(vm_page_t m,vm_memattr_t ma)9613 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
9614 {
9615 
9616 	m->md.pat_mode = ma;
9617 
9618 	/*
9619 	 * If "m" is a normal page, update its direct mapping.  This update
9620 	 * can be relied upon to perform any cache operations that are
9621 	 * required for data coherence.
9622 	 */
9623 	if ((m->flags & PG_FICTITIOUS) == 0 &&
9624 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
9625 	    m->md.pat_mode))
9626 		panic("memory attribute change on the direct map failed");
9627 }
9628 
9629 void
pmap_page_set_memattr_noflush(vm_page_t m,vm_memattr_t ma)9630 pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma)
9631 {
9632 	int error;
9633 
9634 	m->md.pat_mode = ma;
9635 
9636 	if ((m->flags & PG_FICTITIOUS) != 0)
9637 		return;
9638 	PMAP_LOCK(kernel_pmap);
9639 	error = pmap_change_props_locked(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
9640 	    PAGE_SIZE, PROT_NONE, m->md.pat_mode, 0);
9641 	PMAP_UNLOCK(kernel_pmap);
9642 	if (error != 0)
9643 		panic("memory attribute change on the direct map failed");
9644 }
9645 
9646 /*
9647  * Changes the specified virtual address range's memory type to that given by
9648  * the parameter "mode".  The specified virtual address range must be
9649  * completely contained within either the direct map or the kernel map.  If
9650  * the virtual address range is contained within the kernel map, then the
9651  * memory type for each of the corresponding ranges of the direct map is also
9652  * changed.  (The corresponding ranges of the direct map are those ranges that
9653  * map the same physical pages as the specified virtual address range.)  These
9654  * changes to the direct map are necessary because Intel describes the
9655  * behavior of their processors as "undefined" if two or more mappings to the
9656  * same physical page have different memory types.
9657  *
9658  * Returns zero if the change completed successfully, and either EINVAL or
9659  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
9660  * of the virtual address range was not mapped, and ENOMEM is returned if
9661  * there was insufficient memory available to complete the change.  In the
9662  * latter case, the memory type may have been changed on some part of the
9663  * virtual address range or the direct map.
9664  */
9665 int
pmap_change_attr(vm_offset_t va,vm_size_t size,int mode)9666 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
9667 {
9668 	int error;
9669 
9670 	PMAP_LOCK(kernel_pmap);
9671 	error = pmap_change_props_locked(va, size, PROT_NONE, mode,
9672 	    MAPDEV_FLUSHCACHE);
9673 	PMAP_UNLOCK(kernel_pmap);
9674 	return (error);
9675 }
9676 
9677 /*
9678  * Changes the specified virtual address range's protections to those
9679  * specified by "prot".  Like pmap_change_attr(), protections for aliases
9680  * in the direct map are updated as well.  Protections on aliasing mappings may
9681  * be a subset of the requested protections; for example, mappings in the direct
9682  * map are never executable.
9683  */
9684 int
pmap_change_prot(vm_offset_t va,vm_size_t size,vm_prot_t prot)9685 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
9686 {
9687 	int error;
9688 
9689 	/* Only supported within the kernel map. */
9690 	if (va < VM_MIN_KERNEL_ADDRESS)
9691 		return (EINVAL);
9692 
9693 	PMAP_LOCK(kernel_pmap);
9694 	error = pmap_change_props_locked(va, size, prot, -1,
9695 	    MAPDEV_ASSERTVALID);
9696 	PMAP_UNLOCK(kernel_pmap);
9697 	return (error);
9698 }
9699 
9700 static int
pmap_change_props_locked(vm_offset_t va,vm_size_t size,vm_prot_t prot,int mode,int flags)9701 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
9702     int mode, int flags)
9703 {
9704 	vm_offset_t base, offset, tmpva;
9705 	vm_paddr_t pa_start, pa_end, pa_end1;
9706 	pdp_entry_t *pdpe;
9707 	pd_entry_t *pde, pde_bits, pde_mask;
9708 	pt_entry_t *pte, pte_bits, pte_mask;
9709 	int error;
9710 	bool changed;
9711 
9712 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
9713 	base = trunc_page(va);
9714 	offset = va & PAGE_MASK;
9715 	size = round_page(offset + size);
9716 
9717 	/*
9718 	 * Only supported on kernel virtual addresses, including the direct
9719 	 * map but excluding the recursive map.
9720 	 */
9721 	if (base < DMAP_MIN_ADDRESS)
9722 		return (EINVAL);
9723 
9724 	/*
9725 	 * Construct our flag sets and masks.  "bits" is the subset of
9726 	 * "mask" that will be set in each modified PTE.
9727 	 *
9728 	 * Mappings in the direct map are never allowed to be executable.
9729 	 */
9730 	pde_bits = pte_bits = 0;
9731 	pde_mask = pte_mask = 0;
9732 	if (mode != -1) {
9733 		pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
9734 		pde_mask |= X86_PG_PDE_CACHE;
9735 		pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
9736 		pte_mask |= X86_PG_PTE_CACHE;
9737 	}
9738 	if (prot != VM_PROT_NONE) {
9739 		if ((prot & VM_PROT_WRITE) != 0) {
9740 			pde_bits |= X86_PG_RW;
9741 			pte_bits |= X86_PG_RW;
9742 		}
9743 		if ((prot & VM_PROT_EXECUTE) == 0 ||
9744 		    va < VM_MIN_KERNEL_ADDRESS) {
9745 			pde_bits |= pg_nx;
9746 			pte_bits |= pg_nx;
9747 		}
9748 		pde_mask |= X86_PG_RW | pg_nx;
9749 		pte_mask |= X86_PG_RW | pg_nx;
9750 	}
9751 
9752 	/*
9753 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
9754 	 * into 4KB pages if required.
9755 	 */
9756 	for (tmpva = base; tmpva < base + size; ) {
9757 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9758 		if (pdpe == NULL || *pdpe == 0) {
9759 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9760 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9761 			return (EINVAL);
9762 		}
9763 		if (*pdpe & PG_PS) {
9764 			/*
9765 			 * If the current 1GB page already has the required
9766 			 * properties, then we need not demote this page.  Just
9767 			 * increment tmpva to the next 1GB page frame.
9768 			 */
9769 			if ((*pdpe & pde_mask) == pde_bits) {
9770 				tmpva = trunc_1gpage(tmpva) + NBPDP;
9771 				continue;
9772 			}
9773 
9774 			/*
9775 			 * If the current offset aligns with a 1GB page frame
9776 			 * and there is at least 1GB left within the range, then
9777 			 * we need not break down this page into 2MB pages.
9778 			 */
9779 			if ((tmpva & PDPMASK) == 0 &&
9780 			    tmpva + PDPMASK < base + size) {
9781 				tmpva += NBPDP;
9782 				continue;
9783 			}
9784 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
9785 				return (ENOMEM);
9786 		}
9787 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9788 		if (*pde == 0) {
9789 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9790 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9791 			return (EINVAL);
9792 		}
9793 		if (*pde & PG_PS) {
9794 			/*
9795 			 * If the current 2MB page already has the required
9796 			 * properties, then we need not demote this page.  Just
9797 			 * increment tmpva to the next 2MB page frame.
9798 			 */
9799 			if ((*pde & pde_mask) == pde_bits) {
9800 				tmpva = trunc_2mpage(tmpva) + NBPDR;
9801 				continue;
9802 			}
9803 
9804 			/*
9805 			 * If the current offset aligns with a 2MB page frame
9806 			 * and there is at least 2MB left within the range, then
9807 			 * we need not break down this page into 4KB pages.
9808 			 */
9809 			if ((tmpva & PDRMASK) == 0 &&
9810 			    tmpva + PDRMASK < base + size) {
9811 				tmpva += NBPDR;
9812 				continue;
9813 			}
9814 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
9815 				return (ENOMEM);
9816 		}
9817 		pte = pmap_pde_to_pte(pde, tmpva);
9818 		if (*pte == 0) {
9819 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9820 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9821 			return (EINVAL);
9822 		}
9823 		tmpva += PAGE_SIZE;
9824 	}
9825 	error = 0;
9826 
9827 	/*
9828 	 * Ok, all the pages exist, so run through them updating their
9829 	 * properties if required.
9830 	 */
9831 	changed = false;
9832 	pa_start = pa_end = 0;
9833 	for (tmpva = base; tmpva < base + size; ) {
9834 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9835 		if (*pdpe & PG_PS) {
9836 			if ((*pdpe & pde_mask) != pde_bits) {
9837 				pmap_pte_props(pdpe, pde_bits, pde_mask);
9838 				changed = true;
9839 			}
9840 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9841 			    (*pdpe & PG_PS_FRAME) < dmaplimit) {
9842 				if (pa_start == pa_end) {
9843 					/* Start physical address run. */
9844 					pa_start = *pdpe & PG_PS_FRAME;
9845 					pa_end = pa_start + NBPDP;
9846 				} else if (pa_end == (*pdpe & PG_PS_FRAME))
9847 					pa_end += NBPDP;
9848 				else {
9849 					/* Run ended, update direct map. */
9850 					error = pmap_change_props_locked(
9851 					    PHYS_TO_DMAP(pa_start),
9852 					    pa_end - pa_start, prot, mode,
9853 					    flags);
9854 					if (error != 0)
9855 						break;
9856 					/* Start physical address run. */
9857 					pa_start = *pdpe & PG_PS_FRAME;
9858 					pa_end = pa_start + NBPDP;
9859 				}
9860 			}
9861 			tmpva = trunc_1gpage(tmpva) + NBPDP;
9862 			continue;
9863 		}
9864 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9865 		if (*pde & PG_PS) {
9866 			if ((*pde & pde_mask) != pde_bits) {
9867 				pmap_pte_props(pde, pde_bits, pde_mask);
9868 				changed = true;
9869 			}
9870 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9871 			    (*pde & PG_PS_FRAME) < dmaplimit) {
9872 				if (pa_start == pa_end) {
9873 					/* Start physical address run. */
9874 					pa_start = *pde & PG_PS_FRAME;
9875 					pa_end = pa_start + NBPDR;
9876 				} else if (pa_end == (*pde & PG_PS_FRAME))
9877 					pa_end += NBPDR;
9878 				else {
9879 					/* Run ended, update direct map. */
9880 					error = pmap_change_props_locked(
9881 					    PHYS_TO_DMAP(pa_start),
9882 					    pa_end - pa_start, prot, mode,
9883 					    flags);
9884 					if (error != 0)
9885 						break;
9886 					/* Start physical address run. */
9887 					pa_start = *pde & PG_PS_FRAME;
9888 					pa_end = pa_start + NBPDR;
9889 				}
9890 			}
9891 			tmpva = trunc_2mpage(tmpva) + NBPDR;
9892 		} else {
9893 			pte = pmap_pde_to_pte(pde, tmpva);
9894 			if ((*pte & pte_mask) != pte_bits) {
9895 				pmap_pte_props(pte, pte_bits, pte_mask);
9896 				changed = true;
9897 			}
9898 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9899 			    (*pte & PG_FRAME) < dmaplimit) {
9900 				if (pa_start == pa_end) {
9901 					/* Start physical address run. */
9902 					pa_start = *pte & PG_FRAME;
9903 					pa_end = pa_start + PAGE_SIZE;
9904 				} else if (pa_end == (*pte & PG_FRAME))
9905 					pa_end += PAGE_SIZE;
9906 				else {
9907 					/* Run ended, update direct map. */
9908 					error = pmap_change_props_locked(
9909 					    PHYS_TO_DMAP(pa_start),
9910 					    pa_end - pa_start, prot, mode,
9911 					    flags);
9912 					if (error != 0)
9913 						break;
9914 					/* Start physical address run. */
9915 					pa_start = *pte & PG_FRAME;
9916 					pa_end = pa_start + PAGE_SIZE;
9917 				}
9918 			}
9919 			tmpva += PAGE_SIZE;
9920 		}
9921 	}
9922 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
9923 		pa_end1 = MIN(pa_end, dmaplimit);
9924 		if (pa_start != pa_end1)
9925 			error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
9926 			    pa_end1 - pa_start, prot, mode, flags);
9927 	}
9928 
9929 	/*
9930 	 * Flush CPU caches if required to make sure any data isn't cached that
9931 	 * shouldn't be, etc.
9932 	 */
9933 	if (changed) {
9934 		pmap_invalidate_range(kernel_pmap, base, tmpva);
9935 		if ((flags & MAPDEV_FLUSHCACHE) != 0)
9936 			pmap_invalidate_cache_range(base, tmpva);
9937 	}
9938 	return (error);
9939 }
9940 
9941 /*
9942  * Demotes any mapping within the direct map region that covers more than the
9943  * specified range of physical addresses.  This range's size must be a power
9944  * of two and its starting address must be a multiple of its size.  Since the
9945  * demotion does not change any attributes of the mapping, a TLB invalidation
9946  * is not mandatory.  The caller may, however, request a TLB invalidation.
9947  */
9948 void
pmap_demote_DMAP(vm_paddr_t base,vm_size_t len,bool invalidate)9949 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, bool invalidate)
9950 {
9951 	pdp_entry_t *pdpe;
9952 	pd_entry_t *pde;
9953 	vm_offset_t va;
9954 	bool changed;
9955 
9956 	if (len == 0)
9957 		return;
9958 	KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
9959 	KASSERT((base & (len - 1)) == 0,
9960 	    ("pmap_demote_DMAP: base is not a multiple of len"));
9961 	if (len < NBPDP && base < dmaplimit) {
9962 		va = PHYS_TO_DMAP(base);
9963 		changed = false;
9964 		PMAP_LOCK(kernel_pmap);
9965 		pdpe = pmap_pdpe(kernel_pmap, va);
9966 		if ((*pdpe & X86_PG_V) == 0)
9967 			panic("pmap_demote_DMAP: invalid PDPE");
9968 		if ((*pdpe & PG_PS) != 0) {
9969 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
9970 				panic("pmap_demote_DMAP: PDPE failed");
9971 			changed = true;
9972 		}
9973 		if (len < NBPDR) {
9974 			pde = pmap_pdpe_to_pde(pdpe, va);
9975 			if ((*pde & X86_PG_V) == 0)
9976 				panic("pmap_demote_DMAP: invalid PDE");
9977 			if ((*pde & PG_PS) != 0) {
9978 				if (!pmap_demote_pde(kernel_pmap, pde, va))
9979 					panic("pmap_demote_DMAP: PDE failed");
9980 				changed = true;
9981 			}
9982 		}
9983 		if (changed && invalidate)
9984 			pmap_invalidate_page(kernel_pmap, va);
9985 		PMAP_UNLOCK(kernel_pmap);
9986 	}
9987 }
9988 
9989 /*
9990  * Perform the pmap work for mincore(2).  If the page is not both referenced and
9991  * modified by this pmap, returns its physical address so that the caller can
9992  * find other mappings.
9993  */
9994 int
pmap_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)9995 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
9996 {
9997 	pdp_entry_t *pdpe;
9998 	pd_entry_t *pdep;
9999 	pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
10000 	vm_paddr_t pa;
10001 	int val;
10002 
10003 	PG_A = pmap_accessed_bit(pmap);
10004 	PG_M = pmap_modified_bit(pmap);
10005 	PG_V = pmap_valid_bit(pmap);
10006 	PG_RW = pmap_rw_bit(pmap);
10007 
10008 	PMAP_LOCK(pmap);
10009 	pte = 0;
10010 	pa = 0;
10011 	val = 0;
10012 	pdpe = pmap_pdpe(pmap, addr);
10013 	if (pdpe == NULL)
10014 		goto out;
10015 	if ((*pdpe & PG_V) != 0) {
10016 		if ((*pdpe & PG_PS) != 0) {
10017 			pte = *pdpe;
10018 			pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
10019 			    PG_FRAME;
10020 			val = MINCORE_PSIND(2);
10021 		} else {
10022 			pdep = pmap_pde(pmap, addr);
10023 			if (pdep != NULL && (*pdep & PG_V) != 0) {
10024 				if ((*pdep & PG_PS) != 0) {
10025 					pte = *pdep;
10026 			/* Compute the physical address of the 4KB page. */
10027 					pa = ((pte & PG_PS_FRAME) | (addr &
10028 					    PDRMASK)) & PG_FRAME;
10029 					val = MINCORE_PSIND(1);
10030 				} else {
10031 					pte = *pmap_pde_to_pte(pdep, addr);
10032 					pa = pte & PG_FRAME;
10033 					val = 0;
10034 				}
10035 			}
10036 		}
10037 	}
10038 	if ((pte & PG_V) != 0) {
10039 		val |= MINCORE_INCORE;
10040 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
10041 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
10042 		if ((pte & PG_A) != 0)
10043 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
10044 	}
10045 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
10046 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
10047 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
10048 		*pap = pa;
10049 	}
10050 out:
10051 	PMAP_UNLOCK(pmap);
10052 	return (val);
10053 }
10054 
10055 static uint64_t
pmap_pcid_alloc(pmap_t pmap,struct pmap_pcid * pcidp)10056 pmap_pcid_alloc(pmap_t pmap, struct pmap_pcid *pcidp)
10057 {
10058 	uint32_t gen, new_gen, pcid_next;
10059 
10060 	CRITICAL_ASSERT(curthread);
10061 	gen = PCPU_GET(pcid_gen);
10062 	if (pcidp->pm_pcid == PMAP_PCID_KERN)
10063 		return (pti ? 0 : CR3_PCID_SAVE);
10064 	if (pcidp->pm_gen == gen)
10065 		return (CR3_PCID_SAVE);
10066 	pcid_next = PCPU_GET(pcid_next);
10067 	KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
10068 	    (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
10069 	    ("cpu %d pcid_next %#x", PCPU_GET(cpuid), pcid_next));
10070 	if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
10071 	    (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
10072 		new_gen = gen + 1;
10073 		if (new_gen == 0)
10074 			new_gen = 1;
10075 		PCPU_SET(pcid_gen, new_gen);
10076 		pcid_next = PMAP_PCID_KERN + 1;
10077 	} else {
10078 		new_gen = gen;
10079 	}
10080 	pcidp->pm_pcid = pcid_next;
10081 	pcidp->pm_gen = new_gen;
10082 	PCPU_SET(pcid_next, pcid_next + 1);
10083 	return (0);
10084 }
10085 
10086 static uint64_t
pmap_pcid_alloc_checked(pmap_t pmap,struct pmap_pcid * pcidp)10087 pmap_pcid_alloc_checked(pmap_t pmap, struct pmap_pcid *pcidp)
10088 {
10089 	uint64_t cached;
10090 
10091 	cached = pmap_pcid_alloc(pmap, pcidp);
10092 	KASSERT(pcidp->pm_pcid < PMAP_PCID_OVERMAX,
10093 	    ("pmap %p cpu %d pcid %#x", pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10094 	KASSERT(pcidp->pm_pcid != PMAP_PCID_KERN || pmap == kernel_pmap,
10095 	    ("non-kernel pmap pmap %p cpu %d pcid %#x",
10096 	    pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10097 	return (cached);
10098 }
10099 
10100 static void
pmap_activate_sw_pti_post(struct thread * td,pmap_t pmap)10101 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
10102 {
10103 
10104 	PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
10105 	    PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
10106 }
10107 
10108 static void
pmap_activate_sw_pcid_pti(struct thread * td,pmap_t pmap,u_int cpuid)10109 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
10110 {
10111 	pmap_t old_pmap;
10112 	struct pmap_pcid *pcidp, *old_pcidp;
10113 	uint64_t cached, cr3, kcr3, ucr3;
10114 
10115 	KASSERT((read_rflags() & PSL_I) == 0,
10116 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10117 
10118 	/* See the comment in pmap_invalidate_page_pcid(). */
10119 	if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
10120 		PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
10121 		old_pmap = PCPU_GET(curpmap);
10122 		MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
10123 		old_pcidp = zpcpu_get_cpu(old_pmap->pm_pcidp, cpuid);
10124 		old_pcidp->pm_gen = 0;
10125 	}
10126 
10127 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10128 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
10129 	cr3 = rcr3();
10130 	if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10131 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid);
10132 	PCPU_SET(curpmap, pmap);
10133 	kcr3 = pmap->pm_cr3 | pcidp->pm_pcid;
10134 	ucr3 = pmap->pm_ucr3 | pcidp->pm_pcid | PMAP_PCID_USER_PT;
10135 
10136 	if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
10137 		PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
10138 
10139 	PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
10140 	PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
10141 	if (cached)
10142 		counter_u64_add(pcid_save_cnt, 1);
10143 
10144 	pmap_activate_sw_pti_post(td, pmap);
10145 }
10146 
10147 static void
pmap_activate_sw_pcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid)10148 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
10149     u_int cpuid)
10150 {
10151 	struct pmap_pcid *pcidp;
10152 	uint64_t cached, cr3;
10153 
10154 	KASSERT((read_rflags() & PSL_I) == 0,
10155 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10156 
10157 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10158 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
10159 	cr3 = rcr3();
10160 	if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10161 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid | cached);
10162 	PCPU_SET(curpmap, pmap);
10163 	if (cached)
10164 		counter_u64_add(pcid_save_cnt, 1);
10165 }
10166 
10167 static void
pmap_activate_sw_nopcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid __unused)10168 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
10169     u_int cpuid __unused)
10170 {
10171 
10172 	load_cr3(pmap->pm_cr3);
10173 	PCPU_SET(curpmap, pmap);
10174 }
10175 
10176 static void
pmap_activate_sw_nopcid_pti(struct thread * td,pmap_t pmap,u_int cpuid __unused)10177 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
10178     u_int cpuid __unused)
10179 {
10180 
10181 	pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
10182 	PCPU_SET(kcr3, pmap->pm_cr3);
10183 	PCPU_SET(ucr3, pmap->pm_ucr3);
10184 	pmap_activate_sw_pti_post(td, pmap);
10185 }
10186 
10187 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
10188     u_int))
10189 {
10190 
10191 	if (pmap_pcid_enabled && pti)
10192 		return (pmap_activate_sw_pcid_pti);
10193 	else if (pmap_pcid_enabled && !pti)
10194 		return (pmap_activate_sw_pcid_nopti);
10195 	else if (!pmap_pcid_enabled && pti)
10196 		return (pmap_activate_sw_nopcid_pti);
10197 	else /* if (!pmap_pcid_enabled && !pti) */
10198 		return (pmap_activate_sw_nopcid_nopti);
10199 }
10200 
10201 void
pmap_activate_sw(struct thread * td)10202 pmap_activate_sw(struct thread *td)
10203 {
10204 	pmap_t oldpmap, pmap;
10205 	u_int cpuid;
10206 
10207 	oldpmap = PCPU_GET(curpmap);
10208 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
10209 	if (oldpmap == pmap) {
10210 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
10211 			mfence();
10212 		return;
10213 	}
10214 	cpuid = PCPU_GET(cpuid);
10215 #ifdef SMP
10216 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10217 #else
10218 	CPU_SET(cpuid, &pmap->pm_active);
10219 #endif
10220 	pmap_activate_sw_mode(td, pmap, cpuid);
10221 #ifdef SMP
10222 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
10223 #else
10224 	CPU_CLR(cpuid, &oldpmap->pm_active);
10225 #endif
10226 }
10227 
10228 void
pmap_activate(struct thread * td)10229 pmap_activate(struct thread *td)
10230 {
10231 	/*
10232 	 * invltlb_{invpcid,}_pcid_handler() is used to handle an
10233 	 * invalidate_all IPI, which checks for curpmap ==
10234 	 * smp_tlb_pmap.  The below sequence of operations has a
10235 	 * window where %CR3 is loaded with the new pmap's PML4
10236 	 * address, but the curpmap value has not yet been updated.
10237 	 * This causes the invltlb IPI handler, which is called
10238 	 * between the updates, to execute as a NOP, which leaves
10239 	 * stale TLB entries.
10240 	 *
10241 	 * Note that the most common use of pmap_activate_sw(), from
10242 	 * a context switch, is immune to this race, because
10243 	 * interrupts are disabled (while the thread lock is owned),
10244 	 * so the IPI is delayed until after curpmap is updated.  Protect
10245 	 * other callers in a similar way, by disabling interrupts
10246 	 * around the %cr3 register reload and curpmap assignment.
10247 	 */
10248 	spinlock_enter();
10249 	pmap_activate_sw(td);
10250 	spinlock_exit();
10251 }
10252 
10253 void
pmap_activate_boot(pmap_t pmap)10254 pmap_activate_boot(pmap_t pmap)
10255 {
10256 	uint64_t kcr3;
10257 	u_int cpuid;
10258 
10259 	/*
10260 	 * kernel_pmap must be never deactivated, and we ensure that
10261 	 * by never activating it at all.
10262 	 */
10263 	MPASS(pmap != kernel_pmap);
10264 
10265 	cpuid = PCPU_GET(cpuid);
10266 #ifdef SMP
10267 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10268 #else
10269 	CPU_SET(cpuid, &pmap->pm_active);
10270 #endif
10271 	PCPU_SET(curpmap, pmap);
10272 	if (pti) {
10273 		kcr3 = pmap->pm_cr3;
10274 		if (pmap_pcid_enabled)
10275 			kcr3 |= pmap_get_pcid(pmap) | CR3_PCID_SAVE;
10276 	} else {
10277 		kcr3 = PMAP_NO_CR3;
10278 	}
10279 	PCPU_SET(kcr3, kcr3);
10280 	PCPU_SET(ucr3, PMAP_NO_CR3);
10281 }
10282 
10283 void
pmap_active_cpus(pmap_t pmap,cpuset_t * res)10284 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
10285 {
10286 	*res = pmap->pm_active;
10287 }
10288 
10289 void
pmap_sync_icache(pmap_t pm,vm_offset_t va,vm_size_t sz)10290 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
10291 {
10292 }
10293 
10294 /*
10295  *	Increase the starting virtual address of the given mapping if a
10296  *	different alignment might result in more superpage mappings.
10297  */
10298 void
pmap_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)10299 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
10300     vm_offset_t *addr, vm_size_t size)
10301 {
10302 	vm_offset_t superpage_offset;
10303 
10304 	if (size < NBPDR)
10305 		return;
10306 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
10307 		offset += ptoa(object->pg_color);
10308 	superpage_offset = offset & PDRMASK;
10309 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
10310 	    (*addr & PDRMASK) == superpage_offset)
10311 		return;
10312 	if ((*addr & PDRMASK) < superpage_offset)
10313 		*addr = (*addr & ~PDRMASK) + superpage_offset;
10314 	else
10315 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
10316 }
10317 
10318 #ifdef INVARIANTS
10319 static unsigned long num_dirty_emulations;
10320 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
10321 	     &num_dirty_emulations, 0, NULL);
10322 
10323 static unsigned long num_accessed_emulations;
10324 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
10325 	     &num_accessed_emulations, 0, NULL);
10326 
10327 static unsigned long num_superpage_accessed_emulations;
10328 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
10329 	     &num_superpage_accessed_emulations, 0, NULL);
10330 
10331 static unsigned long ad_emulation_superpage_promotions;
10332 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
10333 	     &ad_emulation_superpage_promotions, 0, NULL);
10334 #endif	/* INVARIANTS */
10335 
10336 int
pmap_emulate_accessed_dirty(pmap_t pmap,vm_offset_t va,int ftype)10337 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
10338 {
10339 	int rv;
10340 	struct rwlock *lock;
10341 #if VM_NRESERVLEVEL > 0
10342 	vm_page_t m, mpte;
10343 #endif
10344 	pd_entry_t *pde;
10345 	pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
10346 
10347 	KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
10348 	    ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
10349 
10350 	if (!pmap_emulate_ad_bits(pmap))
10351 		return (-1);
10352 
10353 	PG_A = pmap_accessed_bit(pmap);
10354 	PG_M = pmap_modified_bit(pmap);
10355 	PG_V = pmap_valid_bit(pmap);
10356 	PG_RW = pmap_rw_bit(pmap);
10357 
10358 	rv = -1;
10359 	lock = NULL;
10360 	PMAP_LOCK(pmap);
10361 
10362 	pde = pmap_pde(pmap, va);
10363 	if (pde == NULL || (*pde & PG_V) == 0)
10364 		goto done;
10365 
10366 	if ((*pde & PG_PS) != 0) {
10367 		if (ftype == VM_PROT_READ) {
10368 #ifdef INVARIANTS
10369 			atomic_add_long(&num_superpage_accessed_emulations, 1);
10370 #endif
10371 			*pde |= PG_A;
10372 			rv = 0;
10373 		}
10374 		goto done;
10375 	}
10376 
10377 	pte = pmap_pde_to_pte(pde, va);
10378 	if ((*pte & PG_V) == 0)
10379 		goto done;
10380 
10381 	if (ftype == VM_PROT_WRITE) {
10382 		if ((*pte & PG_RW) == 0)
10383 			goto done;
10384 		/*
10385 		 * Set the modified and accessed bits simultaneously.
10386 		 *
10387 		 * Intel EPT PTEs that do software emulation of A/D bits map
10388 		 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
10389 		 * An EPT misconfiguration is triggered if the PTE is writable
10390 		 * but not readable (WR=10). This is avoided by setting PG_A
10391 		 * and PG_M simultaneously.
10392 		 */
10393 		*pte |= PG_M | PG_A;
10394 	} else {
10395 		*pte |= PG_A;
10396 	}
10397 
10398 #if VM_NRESERVLEVEL > 0
10399 	/* try to promote the mapping */
10400 	if (va < VM_MAXUSER_ADDRESS)
10401 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
10402 	else
10403 		mpte = NULL;
10404 
10405 	m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
10406 
10407 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
10408 	    (m->flags & PG_FICTITIOUS) == 0 &&
10409 	    vm_reserv_level_iffullpop(m) == 0 &&
10410 	    pmap_promote_pde(pmap, pde, va, mpte, &lock)) {
10411 #ifdef INVARIANTS
10412 		atomic_add_long(&ad_emulation_superpage_promotions, 1);
10413 #endif
10414 	}
10415 #endif
10416 
10417 #ifdef INVARIANTS
10418 	if (ftype == VM_PROT_WRITE)
10419 		atomic_add_long(&num_dirty_emulations, 1);
10420 	else
10421 		atomic_add_long(&num_accessed_emulations, 1);
10422 #endif
10423 	rv = 0;		/* success */
10424 done:
10425 	if (lock != NULL)
10426 		rw_wunlock(lock);
10427 	PMAP_UNLOCK(pmap);
10428 	return (rv);
10429 }
10430 
10431 void
pmap_get_mapping(pmap_t pmap,vm_offset_t va,uint64_t * ptr,int * num)10432 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
10433 {
10434 	pml4_entry_t *pml4;
10435 	pdp_entry_t *pdp;
10436 	pd_entry_t *pde;
10437 	pt_entry_t *pte, PG_V;
10438 	int idx;
10439 
10440 	idx = 0;
10441 	PG_V = pmap_valid_bit(pmap);
10442 	PMAP_LOCK(pmap);
10443 
10444 	pml4 = pmap_pml4e(pmap, va);
10445 	if (pml4 == NULL)
10446 		goto done;
10447 	ptr[idx++] = *pml4;
10448 	if ((*pml4 & PG_V) == 0)
10449 		goto done;
10450 
10451 	pdp = pmap_pml4e_to_pdpe(pml4, va);
10452 	ptr[idx++] = *pdp;
10453 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
10454 		goto done;
10455 
10456 	pde = pmap_pdpe_to_pde(pdp, va);
10457 	ptr[idx++] = *pde;
10458 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
10459 		goto done;
10460 
10461 	pte = pmap_pde_to_pte(pde, va);
10462 	ptr[idx++] = *pte;
10463 
10464 done:
10465 	PMAP_UNLOCK(pmap);
10466 	*num = idx;
10467 }
10468 
10469 /**
10470  * Get the kernel virtual address of a set of physical pages. If there are
10471  * physical addresses not covered by the DMAP perform a transient mapping
10472  * that will be removed when calling pmap_unmap_io_transient.
10473  *
10474  * \param page        The pages the caller wishes to obtain the virtual
10475  *                    address on the kernel memory map.
10476  * \param vaddr       On return contains the kernel virtual memory address
10477  *                    of the pages passed in the page parameter.
10478  * \param count       Number of pages passed in.
10479  * \param can_fault   true if the thread using the mapped pages can take
10480  *                    page faults, false otherwise.
10481  *
10482  * \returns true if the caller must call pmap_unmap_io_transient when
10483  *          finished or false otherwise.
10484  *
10485  */
10486 bool
pmap_map_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10487 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10488     bool can_fault)
10489 {
10490 	vm_paddr_t paddr;
10491 	bool needs_mapping;
10492 	pt_entry_t *pte;
10493 	int cache_bits, error __unused, i;
10494 
10495 	/*
10496 	 * Allocate any KVA space that we need, this is done in a separate
10497 	 * loop to prevent calling vmem_alloc while pinned.
10498 	 */
10499 	needs_mapping = false;
10500 	for (i = 0; i < count; i++) {
10501 		paddr = VM_PAGE_TO_PHYS(page[i]);
10502 		if (__predict_false(paddr >= dmaplimit)) {
10503 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
10504 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
10505 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
10506 			needs_mapping = true;
10507 		} else {
10508 			vaddr[i] = PHYS_TO_DMAP(paddr);
10509 		}
10510 	}
10511 
10512 	/* Exit early if everything is covered by the DMAP */
10513 	if (!needs_mapping)
10514 		return (false);
10515 
10516 	/*
10517 	 * NB:  The sequence of updating a page table followed by accesses
10518 	 * to the corresponding pages used in the !DMAP case is subject to
10519 	 * the situation described in the "AMD64 Architecture Programmer's
10520 	 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
10521 	 * Coherency Considerations".  Therefore, issuing the INVLPG right
10522 	 * after modifying the PTE bits is crucial.
10523 	 */
10524 	if (!can_fault)
10525 		sched_pin();
10526 	for (i = 0; i < count; i++) {
10527 		paddr = VM_PAGE_TO_PHYS(page[i]);
10528 		if (paddr >= dmaplimit) {
10529 			if (can_fault) {
10530 				/*
10531 				 * Slow path, since we can get page faults
10532 				 * while mappings are active don't pin the
10533 				 * thread to the CPU and instead add a global
10534 				 * mapping visible to all CPUs.
10535 				 */
10536 				pmap_qenter(vaddr[i], &page[i], 1);
10537 			} else {
10538 				pte = vtopte(vaddr[i]);
10539 				cache_bits = pmap_cache_bits(kernel_pmap,
10540 				    page[i]->md.pat_mode, false);
10541 				pte_store(pte, paddr | X86_PG_RW | X86_PG_V |
10542 				    cache_bits);
10543 				pmap_invlpg(kernel_pmap, vaddr[i]);
10544 			}
10545 		}
10546 	}
10547 
10548 	return (needs_mapping);
10549 }
10550 
10551 void
pmap_unmap_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10552 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10553     bool can_fault)
10554 {
10555 	vm_paddr_t paddr;
10556 	int i;
10557 
10558 	if (!can_fault)
10559 		sched_unpin();
10560 	for (i = 0; i < count; i++) {
10561 		paddr = VM_PAGE_TO_PHYS(page[i]);
10562 		if (paddr >= dmaplimit) {
10563 			if (can_fault)
10564 				pmap_qremove(vaddr[i], 1);
10565 			vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
10566 		}
10567 	}
10568 }
10569 
10570 vm_offset_t
pmap_quick_enter_page(vm_page_t m)10571 pmap_quick_enter_page(vm_page_t m)
10572 {
10573 	vm_paddr_t paddr;
10574 
10575 	paddr = VM_PAGE_TO_PHYS(m);
10576 	if (paddr < dmaplimit)
10577 		return (PHYS_TO_DMAP(paddr));
10578 	mtx_lock_spin(&qframe_mtx);
10579 	KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
10580 
10581 	/*
10582 	 * Since qframe is exclusively mapped by us, and we do not set
10583 	 * PG_G, we can use INVLPG here.
10584 	 */
10585 	invlpg(qframe);
10586 
10587 	pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
10588 	    X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, false));
10589 	return (qframe);
10590 }
10591 
10592 void
pmap_quick_remove_page(vm_offset_t addr)10593 pmap_quick_remove_page(vm_offset_t addr)
10594 {
10595 
10596 	if (addr != qframe)
10597 		return;
10598 	pte_store(vtopte(qframe), 0);
10599 	mtx_unlock_spin(&qframe_mtx);
10600 }
10601 
10602 /*
10603  * Pdp pages from the large map are managed differently from either
10604  * kernel or user page table pages.  They are permanently allocated at
10605  * initialization time, and their reference count is permanently set to
10606  * zero.  The pml4 entries pointing to those pages are copied into
10607  * each allocated pmap.
10608  *
10609  * In contrast, pd and pt pages are managed like user page table
10610  * pages.  They are dynamically allocated, and their reference count
10611  * represents the number of valid entries within the page.
10612  */
10613 static vm_page_t
pmap_large_map_getptp_unlocked(void)10614 pmap_large_map_getptp_unlocked(void)
10615 {
10616 	return (pmap_alloc_pt_page(kernel_pmap, 0, VM_ALLOC_ZERO));
10617 }
10618 
10619 static vm_page_t
pmap_large_map_getptp(void)10620 pmap_large_map_getptp(void)
10621 {
10622 	vm_page_t m;
10623 
10624 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
10625 	m = pmap_large_map_getptp_unlocked();
10626 	if (m == NULL) {
10627 		PMAP_UNLOCK(kernel_pmap);
10628 		vm_wait(NULL);
10629 		PMAP_LOCK(kernel_pmap);
10630 		/* Callers retry. */
10631 	}
10632 	return (m);
10633 }
10634 
10635 static pdp_entry_t *
pmap_large_map_pdpe(vm_offset_t va)10636 pmap_large_map_pdpe(vm_offset_t va)
10637 {
10638 	vm_pindex_t pml4_idx;
10639 	vm_paddr_t mphys;
10640 
10641 	pml4_idx = pmap_pml4e_index(va);
10642 	KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
10643 	    ("pmap_large_map_pdpe: va %#jx out of range idx %#jx LMSPML4I "
10644 	    "%#jx lm_ents %d",
10645 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10646 	KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
10647 	    ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
10648 	    "LMSPML4I %#jx lm_ents %d",
10649 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10650 	mphys = kernel_pml4[pml4_idx] & PG_FRAME;
10651 	return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
10652 }
10653 
10654 static pd_entry_t *
pmap_large_map_pde(vm_offset_t va)10655 pmap_large_map_pde(vm_offset_t va)
10656 {
10657 	pdp_entry_t *pdpe;
10658 	vm_page_t m;
10659 	vm_paddr_t mphys;
10660 
10661 retry:
10662 	pdpe = pmap_large_map_pdpe(va);
10663 	if (*pdpe == 0) {
10664 		m = pmap_large_map_getptp();
10665 		if (m == NULL)
10666 			goto retry;
10667 		mphys = VM_PAGE_TO_PHYS(m);
10668 		*pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10669 	} else {
10670 		MPASS((*pdpe & X86_PG_PS) == 0);
10671 		mphys = *pdpe & PG_FRAME;
10672 	}
10673 	return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
10674 }
10675 
10676 static pt_entry_t *
pmap_large_map_pte(vm_offset_t va)10677 pmap_large_map_pte(vm_offset_t va)
10678 {
10679 	pd_entry_t *pde;
10680 	vm_page_t m;
10681 	vm_paddr_t mphys;
10682 
10683 retry:
10684 	pde = pmap_large_map_pde(va);
10685 	if (*pde == 0) {
10686 		m = pmap_large_map_getptp();
10687 		if (m == NULL)
10688 			goto retry;
10689 		mphys = VM_PAGE_TO_PHYS(m);
10690 		*pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10691 		PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
10692 	} else {
10693 		MPASS((*pde & X86_PG_PS) == 0);
10694 		mphys = *pde & PG_FRAME;
10695 	}
10696 	return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
10697 }
10698 
10699 static vm_paddr_t
pmap_large_map_kextract(vm_offset_t va)10700 pmap_large_map_kextract(vm_offset_t va)
10701 {
10702 	pdp_entry_t *pdpe, pdp;
10703 	pd_entry_t *pde, pd;
10704 	pt_entry_t *pte, pt;
10705 
10706 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
10707 	    ("not largemap range %#lx", (u_long)va));
10708 	pdpe = pmap_large_map_pdpe(va);
10709 	pdp = *pdpe;
10710 	KASSERT((pdp & X86_PG_V) != 0,
10711 	    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10712 	    (u_long)pdpe, pdp));
10713 	if ((pdp & X86_PG_PS) != 0) {
10714 		KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10715 		    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10716 		    (u_long)pdpe, pdp));
10717 		return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
10718 	}
10719 	pde = pmap_pdpe_to_pde(pdpe, va);
10720 	pd = *pde;
10721 	KASSERT((pd & X86_PG_V) != 0,
10722 	    ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
10723 	if ((pd & X86_PG_PS) != 0)
10724 		return ((pd & PG_PS_FRAME) | (va & PDRMASK));
10725 	pte = pmap_pde_to_pte(pde, va);
10726 	pt = *pte;
10727 	KASSERT((pt & X86_PG_V) != 0,
10728 	    ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
10729 	return ((pt & PG_FRAME) | (va & PAGE_MASK));
10730 }
10731 
10732 static int
pmap_large_map_getva(vm_size_t len,vm_offset_t align,vm_offset_t phase,vmem_addr_t * vmem_res)10733 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
10734     vmem_addr_t *vmem_res)
10735 {
10736 
10737 	/*
10738 	 * Large mappings are all but static.  Consequently, there
10739 	 * is no point in waiting for an earlier allocation to be
10740 	 * freed.
10741 	 */
10742 	return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
10743 	    VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
10744 }
10745 
10746 int
pmap_large_map(vm_paddr_t spa,vm_size_t len,void ** addr,vm_memattr_t mattr)10747 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
10748     vm_memattr_t mattr)
10749 {
10750 	pdp_entry_t *pdpe;
10751 	pd_entry_t *pde;
10752 	pt_entry_t *pte;
10753 	vm_offset_t va, inc;
10754 	vmem_addr_t vmem_res;
10755 	vm_paddr_t pa;
10756 	int error;
10757 
10758 	if (len == 0 || spa + len < spa)
10759 		return (EINVAL);
10760 
10761 	/* See if DMAP can serve. */
10762 	if (spa + len <= dmaplimit) {
10763 		va = PHYS_TO_DMAP(spa);
10764 		*addr = (void *)va;
10765 		return (pmap_change_attr(va, len, mattr));
10766 	}
10767 
10768 	/*
10769 	 * No, allocate KVA.  Fit the address with best possible
10770 	 * alignment for superpages.  Fall back to worse align if
10771 	 * failed.
10772 	 */
10773 	error = ENOMEM;
10774 	if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
10775 	    NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
10776 		error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
10777 		    &vmem_res);
10778 	if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
10779 	    NBPDR) + NBPDR)
10780 		error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
10781 		    &vmem_res);
10782 	if (error != 0)
10783 		error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
10784 	if (error != 0)
10785 		return (error);
10786 
10787 	/*
10788 	 * Fill pagetable.  PG_M is not pre-set, we scan modified bits
10789 	 * in the pagetable to minimize flushing.  No need to
10790 	 * invalidate TLB, since we only update invalid entries.
10791 	 */
10792 	PMAP_LOCK(kernel_pmap);
10793 	for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
10794 	    len -= inc) {
10795 		if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
10796 		    (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
10797 			pdpe = pmap_large_map_pdpe(va);
10798 			MPASS(*pdpe == 0);
10799 			*pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
10800 			    X86_PG_V | X86_PG_A | pg_nx |
10801 			    pmap_cache_bits(kernel_pmap, mattr, true);
10802 			inc = NBPDP;
10803 		} else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
10804 		    (va & PDRMASK) == 0) {
10805 			pde = pmap_large_map_pde(va);
10806 			MPASS(*pde == 0);
10807 			*pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
10808 			    X86_PG_V | X86_PG_A | pg_nx |
10809 			    pmap_cache_bits(kernel_pmap, mattr, true);
10810 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
10811 			    ref_count++;
10812 			inc = NBPDR;
10813 		} else {
10814 			pte = pmap_large_map_pte(va);
10815 			MPASS(*pte == 0);
10816 			*pte = pa | pg_g | X86_PG_RW | X86_PG_V |
10817 			    X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
10818 			    mattr, false);
10819 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
10820 			    ref_count++;
10821 			inc = PAGE_SIZE;
10822 		}
10823 	}
10824 	PMAP_UNLOCK(kernel_pmap);
10825 	MPASS(len == 0);
10826 
10827 	*addr = (void *)vmem_res;
10828 	return (0);
10829 }
10830 
10831 void
pmap_large_unmap(void * svaa,vm_size_t len)10832 pmap_large_unmap(void *svaa, vm_size_t len)
10833 {
10834 	vm_offset_t sva, va;
10835 	vm_size_t inc;
10836 	pdp_entry_t *pdpe, pdp;
10837 	pd_entry_t *pde, pd;
10838 	pt_entry_t *pte;
10839 	vm_page_t m;
10840 	struct spglist spgf;
10841 
10842 	sva = (vm_offset_t)svaa;
10843 	if (len == 0 || sva + len < sva || (sva >= DMAP_MIN_ADDRESS &&
10844 	    sva + len <= DMAP_MIN_ADDRESS + dmaplimit))
10845 		return;
10846 
10847 	SLIST_INIT(&spgf);
10848 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
10849 	    PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
10850 	    ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
10851 	PMAP_LOCK(kernel_pmap);
10852 	for (va = sva; va < sva + len; va += inc) {
10853 		pdpe = pmap_large_map_pdpe(va);
10854 		pdp = *pdpe;
10855 		KASSERT((pdp & X86_PG_V) != 0,
10856 		    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10857 		    (u_long)pdpe, pdp));
10858 		if ((pdp & X86_PG_PS) != 0) {
10859 			KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10860 			    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10861 			    (u_long)pdpe, pdp));
10862 			KASSERT((va & PDPMASK) == 0,
10863 			    ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
10864 			    (u_long)pdpe, pdp));
10865 			KASSERT(va + NBPDP <= sva + len,
10866 			    ("unmap covers partial 1GB page, sva %#lx va %#lx "
10867 			    "pdpe %#lx pdp %#lx len %#lx", sva, va,
10868 			    (u_long)pdpe, pdp, len));
10869 			*pdpe = 0;
10870 			inc = NBPDP;
10871 			continue;
10872 		}
10873 		pde = pmap_pdpe_to_pde(pdpe, va);
10874 		pd = *pde;
10875 		KASSERT((pd & X86_PG_V) != 0,
10876 		    ("invalid pd va %#lx pde %#lx pd %#lx", va,
10877 		    (u_long)pde, pd));
10878 		if ((pd & X86_PG_PS) != 0) {
10879 			KASSERT((va & PDRMASK) == 0,
10880 			    ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
10881 			    (u_long)pde, pd));
10882 			KASSERT(va + NBPDR <= sva + len,
10883 			    ("unmap covers partial 2MB page, sva %#lx va %#lx "
10884 			    "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
10885 			    pd, len));
10886 			pde_store(pde, 0);
10887 			inc = NBPDR;
10888 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10889 			m->ref_count--;
10890 			if (m->ref_count == 0) {
10891 				*pdpe = 0;
10892 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10893 			}
10894 			continue;
10895 		}
10896 		pte = pmap_pde_to_pte(pde, va);
10897 		KASSERT((*pte & X86_PG_V) != 0,
10898 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
10899 		    (u_long)pte, *pte));
10900 		pte_clear(pte);
10901 		inc = PAGE_SIZE;
10902 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
10903 		m->ref_count--;
10904 		if (m->ref_count == 0) {
10905 			*pde = 0;
10906 			SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10907 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10908 			m->ref_count--;
10909 			if (m->ref_count == 0) {
10910 				*pdpe = 0;
10911 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10912 			}
10913 		}
10914 	}
10915 	pmap_invalidate_range(kernel_pmap, sva, sva + len);
10916 	PMAP_UNLOCK(kernel_pmap);
10917 	vm_page_free_pages_toq(&spgf, false);
10918 	vmem_free(large_vmem, sva, len);
10919 }
10920 
10921 static void
pmap_large_map_wb_fence_mfence(void)10922 pmap_large_map_wb_fence_mfence(void)
10923 {
10924 
10925 	mfence();
10926 }
10927 
10928 static void
pmap_large_map_wb_fence_atomic(void)10929 pmap_large_map_wb_fence_atomic(void)
10930 {
10931 
10932 	atomic_thread_fence_seq_cst();
10933 }
10934 
10935 static void
pmap_large_map_wb_fence_nop(void)10936 pmap_large_map_wb_fence_nop(void)
10937 {
10938 }
10939 
10940 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
10941 {
10942 
10943 	if (cpu_vendor_id != CPU_VENDOR_INTEL)
10944 		return (pmap_large_map_wb_fence_mfence);
10945 	else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
10946 	    CPUID_STDEXT_CLFLUSHOPT)) == 0)
10947 		return (pmap_large_map_wb_fence_atomic);
10948 	else
10949 		/* clflush is strongly enough ordered */
10950 		return (pmap_large_map_wb_fence_nop);
10951 }
10952 
10953 static void
pmap_large_map_flush_range_clwb(vm_offset_t va,vm_size_t len)10954 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
10955 {
10956 
10957 	for (; len > 0; len -= cpu_clflush_line_size,
10958 	    va += cpu_clflush_line_size)
10959 		clwb(va);
10960 }
10961 
10962 static void
pmap_large_map_flush_range_clflushopt(vm_offset_t va,vm_size_t len)10963 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
10964 {
10965 
10966 	for (; len > 0; len -= cpu_clflush_line_size,
10967 	    va += cpu_clflush_line_size)
10968 		clflushopt(va);
10969 }
10970 
10971 static void
pmap_large_map_flush_range_clflush(vm_offset_t va,vm_size_t len)10972 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
10973 {
10974 
10975 	for (; len > 0; len -= cpu_clflush_line_size,
10976 	    va += cpu_clflush_line_size)
10977 		clflush(va);
10978 }
10979 
10980 static void
pmap_large_map_flush_range_nop(vm_offset_t sva __unused,vm_size_t len __unused)10981 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
10982 {
10983 }
10984 
10985 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
10986 {
10987 
10988 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
10989 		return (pmap_large_map_flush_range_clwb);
10990 	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
10991 		return (pmap_large_map_flush_range_clflushopt);
10992 	else if ((cpu_feature & CPUID_CLFSH) != 0)
10993 		return (pmap_large_map_flush_range_clflush);
10994 	else
10995 		return (pmap_large_map_flush_range_nop);
10996 }
10997 
10998 static void
pmap_large_map_wb_large(vm_offset_t sva,vm_offset_t eva)10999 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
11000 {
11001 	volatile u_long *pe;
11002 	u_long p;
11003 	vm_offset_t va;
11004 	vm_size_t inc;
11005 	bool seen_other;
11006 
11007 	for (va = sva; va < eva; va += inc) {
11008 		inc = 0;
11009 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
11010 			pe = (volatile u_long *)pmap_large_map_pdpe(va);
11011 			p = *pe;
11012 			if ((p & X86_PG_PS) != 0)
11013 				inc = NBPDP;
11014 		}
11015 		if (inc == 0) {
11016 			pe = (volatile u_long *)pmap_large_map_pde(va);
11017 			p = *pe;
11018 			if ((p & X86_PG_PS) != 0)
11019 				inc = NBPDR;
11020 		}
11021 		if (inc == 0) {
11022 			pe = (volatile u_long *)pmap_large_map_pte(va);
11023 			p = *pe;
11024 			inc = PAGE_SIZE;
11025 		}
11026 		seen_other = false;
11027 		for (;;) {
11028 			if ((p & X86_PG_AVAIL1) != 0) {
11029 				/*
11030 				 * Spin-wait for the end of a parallel
11031 				 * write-back.
11032 				 */
11033 				cpu_spinwait();
11034 				p = *pe;
11035 
11036 				/*
11037 				 * If we saw other write-back
11038 				 * occurring, we cannot rely on PG_M to
11039 				 * indicate state of the cache.  The
11040 				 * PG_M bit is cleared before the
11041 				 * flush to avoid ignoring new writes,
11042 				 * and writes which are relevant for
11043 				 * us might happen after.
11044 				 */
11045 				seen_other = true;
11046 				continue;
11047 			}
11048 
11049 			if ((p & X86_PG_M) != 0 || seen_other) {
11050 				if (!atomic_fcmpset_long(pe, &p,
11051 				    (p & ~X86_PG_M) | X86_PG_AVAIL1))
11052 					/*
11053 					 * If we saw PG_M without
11054 					 * PG_AVAIL1, and then on the
11055 					 * next attempt we do not
11056 					 * observe either PG_M or
11057 					 * PG_AVAIL1, the other
11058 					 * write-back started after us
11059 					 * and finished before us.  We
11060 					 * can rely on it doing our
11061 					 * work.
11062 					 */
11063 					continue;
11064 				pmap_large_map_flush_range(va, inc);
11065 				atomic_clear_long(pe, X86_PG_AVAIL1);
11066 			}
11067 			break;
11068 		}
11069 		maybe_yield();
11070 	}
11071 }
11072 
11073 /*
11074  * Write-back cache lines for the given address range.
11075  *
11076  * Must be called only on the range or sub-range returned from
11077  * pmap_large_map().  Must not be called on the coalesced ranges.
11078  *
11079  * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
11080  * instructions support.
11081  */
11082 void
pmap_large_map_wb(void * svap,vm_size_t len)11083 pmap_large_map_wb(void *svap, vm_size_t len)
11084 {
11085 	vm_offset_t eva, sva;
11086 
11087 	sva = (vm_offset_t)svap;
11088 	eva = sva + len;
11089 	pmap_large_map_wb_fence();
11090 	if (sva >= DMAP_MIN_ADDRESS && eva <= DMAP_MIN_ADDRESS + dmaplimit) {
11091 		pmap_large_map_flush_range(sva, len);
11092 	} else {
11093 		KASSERT(sva >= LARGEMAP_MIN_ADDRESS &&
11094 		    eva <= LARGEMAP_MIN_ADDRESS + lm_ents * NBPML4,
11095 		    ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
11096 		pmap_large_map_wb_large(sva, eva);
11097 	}
11098 	pmap_large_map_wb_fence();
11099 }
11100 
11101 static vm_page_t
pmap_pti_alloc_page(void)11102 pmap_pti_alloc_page(void)
11103 {
11104 	vm_page_t m;
11105 
11106 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11107 	m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_WIRED | VM_ALLOC_ZERO);
11108 	return (m);
11109 }
11110 
11111 static bool
pmap_pti_free_page(vm_page_t m)11112 pmap_pti_free_page(vm_page_t m)
11113 {
11114 	if (!vm_page_unwire_noq(m))
11115 		return (false);
11116 	vm_page_xbusy_claim(m);
11117 	vm_page_free_zero(m);
11118 	return (true);
11119 }
11120 
11121 static void
pmap_pti_init(void)11122 pmap_pti_init(void)
11123 {
11124 	vm_page_t pml4_pg;
11125 	pdp_entry_t *pdpe;
11126 	vm_offset_t va;
11127 	int i;
11128 
11129 	if (!pti)
11130 		return;
11131 	pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
11132 	VM_OBJECT_WLOCK(pti_obj);
11133 	pml4_pg = pmap_pti_alloc_page();
11134 	pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
11135 	for (va = VM_MIN_KERNEL_ADDRESS; va <= VM_MAX_KERNEL_ADDRESS &&
11136 	    va >= VM_MIN_KERNEL_ADDRESS && va > NBPML4; va += NBPML4) {
11137 		pdpe = pmap_pti_pdpe(va);
11138 		pmap_pti_wire_pte(pdpe);
11139 	}
11140 	pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
11141 	    (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
11142 	pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
11143 	    sizeof(struct gate_descriptor) * NIDT, false);
11144 	CPU_FOREACH(i) {
11145 		/* Doublefault stack IST 1 */
11146 		va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
11147 		pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
11148 		/* NMI stack IST 2 */
11149 		va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
11150 		pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
11151 		/* MC# stack IST 3 */
11152 		va = __pcpu[i].pc_common_tss.tss_ist3 +
11153 		    sizeof(struct nmi_pcpu);
11154 		pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
11155 		/* DB# stack IST 4 */
11156 		va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
11157 		pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
11158 	}
11159 	pmap_pti_add_kva_locked((vm_offset_t)KERNSTART, (vm_offset_t)etext,
11160 	    true);
11161 	pti_finalized = true;
11162 	VM_OBJECT_WUNLOCK(pti_obj);
11163 }
11164 
11165 static void
pmap_cpu_init(void * arg __unused)11166 pmap_cpu_init(void *arg __unused)
11167 {
11168 	CPU_COPY(&all_cpus, &kernel_pmap->pm_active);
11169 	pmap_pti_init();
11170 }
11171 SYSINIT(pmap_cpu, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_cpu_init, NULL);
11172 
11173 static pdp_entry_t *
pmap_pti_pdpe(vm_offset_t va)11174 pmap_pti_pdpe(vm_offset_t va)
11175 {
11176 	pml4_entry_t *pml4e;
11177 	pdp_entry_t *pdpe;
11178 	vm_page_t m;
11179 	vm_pindex_t pml4_idx;
11180 	vm_paddr_t mphys;
11181 
11182 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11183 
11184 	pml4_idx = pmap_pml4e_index(va);
11185 	pml4e = &pti_pml4[pml4_idx];
11186 	m = NULL;
11187 	if (*pml4e == 0) {
11188 		if (pti_finalized)
11189 			panic("pml4 alloc after finalization\n");
11190 		m = pmap_pti_alloc_page();
11191 		if (*pml4e != 0) {
11192 			pmap_pti_free_page(m);
11193 			mphys = *pml4e & ~PAGE_MASK;
11194 		} else {
11195 			mphys = VM_PAGE_TO_PHYS(m);
11196 			*pml4e = mphys | X86_PG_RW | X86_PG_V;
11197 		}
11198 	} else {
11199 		mphys = *pml4e & ~PAGE_MASK;
11200 	}
11201 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
11202 	return (pdpe);
11203 }
11204 
11205 static void
pmap_pti_wire_pte(void * pte)11206 pmap_pti_wire_pte(void *pte)
11207 {
11208 	vm_page_t m;
11209 
11210 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11211 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11212 	m->ref_count++;
11213 }
11214 
11215 static void
pmap_pti_unwire_pde(void * pde,bool only_ref)11216 pmap_pti_unwire_pde(void *pde, bool only_ref)
11217 {
11218 	vm_page_t m;
11219 
11220 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11221 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
11222 	MPASS(only_ref || m->ref_count > 1);
11223 	pmap_pti_free_page(m);
11224 }
11225 
11226 static void
pmap_pti_unwire_pte(void * pte,vm_offset_t va)11227 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
11228 {
11229 	vm_page_t m;
11230 	pd_entry_t *pde;
11231 
11232 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11233 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11234 	if (pmap_pti_free_page(m)) {
11235 		pde = pmap_pti_pde(va);
11236 		MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
11237 		*pde = 0;
11238 		pmap_pti_unwire_pde(pde, false);
11239 	}
11240 }
11241 
11242 static pd_entry_t *
pmap_pti_pde(vm_offset_t va)11243 pmap_pti_pde(vm_offset_t va)
11244 {
11245 	pdp_entry_t *pdpe;
11246 	pd_entry_t *pde;
11247 	vm_page_t m;
11248 	vm_pindex_t pd_idx;
11249 	vm_paddr_t mphys;
11250 
11251 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11252 
11253 	pdpe = pmap_pti_pdpe(va);
11254 	if (*pdpe == 0) {
11255 		m = pmap_pti_alloc_page();
11256 		if (*pdpe != 0) {
11257 			pmap_pti_free_page(m);
11258 			MPASS((*pdpe & X86_PG_PS) == 0);
11259 			mphys = *pdpe & ~PAGE_MASK;
11260 		} else {
11261 			mphys =  VM_PAGE_TO_PHYS(m);
11262 			*pdpe = mphys | X86_PG_RW | X86_PG_V;
11263 		}
11264 	} else {
11265 		MPASS((*pdpe & X86_PG_PS) == 0);
11266 		mphys = *pdpe & ~PAGE_MASK;
11267 	}
11268 
11269 	pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
11270 	pd_idx = pmap_pde_index(va);
11271 	pde += pd_idx;
11272 	return (pde);
11273 }
11274 
11275 static pt_entry_t *
pmap_pti_pte(vm_offset_t va,bool * unwire_pde)11276 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
11277 {
11278 	pd_entry_t *pde;
11279 	pt_entry_t *pte;
11280 	vm_page_t m;
11281 	vm_paddr_t mphys;
11282 
11283 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11284 
11285 	pde = pmap_pti_pde(va);
11286 	if (unwire_pde != NULL) {
11287 		*unwire_pde = true;
11288 		pmap_pti_wire_pte(pde);
11289 	}
11290 	if (*pde == 0) {
11291 		m = pmap_pti_alloc_page();
11292 		if (*pde != 0) {
11293 			pmap_pti_free_page(m);
11294 			MPASS((*pde & X86_PG_PS) == 0);
11295 			mphys = *pde & ~(PAGE_MASK | pg_nx);
11296 		} else {
11297 			mphys = VM_PAGE_TO_PHYS(m);
11298 			*pde = mphys | X86_PG_RW | X86_PG_V;
11299 			if (unwire_pde != NULL)
11300 				*unwire_pde = false;
11301 		}
11302 	} else {
11303 		MPASS((*pde & X86_PG_PS) == 0);
11304 		mphys = *pde & ~(PAGE_MASK | pg_nx);
11305 	}
11306 
11307 	pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
11308 	pte += pmap_pte_index(va);
11309 
11310 	return (pte);
11311 }
11312 
11313 static void
pmap_pti_add_kva_locked(vm_offset_t sva,vm_offset_t eva,bool exec)11314 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
11315 {
11316 	vm_paddr_t pa;
11317 	pd_entry_t *pde;
11318 	pt_entry_t *pte, ptev;
11319 	bool unwire_pde;
11320 
11321 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11322 
11323 	sva = trunc_page(sva);
11324 	MPASS(sva > VM_MAXUSER_ADDRESS);
11325 	eva = round_page(eva);
11326 	MPASS(sva < eva);
11327 	for (; sva < eva; sva += PAGE_SIZE) {
11328 		pte = pmap_pti_pte(sva, &unwire_pde);
11329 		pa = pmap_kextract(sva);
11330 		ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
11331 		    (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
11332 		    VM_MEMATTR_DEFAULT, false);
11333 		if (*pte == 0) {
11334 			pte_store(pte, ptev);
11335 			pmap_pti_wire_pte(pte);
11336 		} else {
11337 			KASSERT(!pti_finalized,
11338 			    ("pti overlap after fin %#lx %#lx %#lx",
11339 			    sva, *pte, ptev));
11340 			KASSERT(*pte == ptev,
11341 			    ("pti non-identical pte after fin %#lx %#lx %#lx",
11342 			    sva, *pte, ptev));
11343 		}
11344 		if (unwire_pde) {
11345 			pde = pmap_pti_pde(sva);
11346 			pmap_pti_unwire_pde(pde, true);
11347 		}
11348 	}
11349 }
11350 
11351 void
pmap_pti_add_kva(vm_offset_t sva,vm_offset_t eva,bool exec)11352 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
11353 {
11354 
11355 	if (!pti)
11356 		return;
11357 	VM_OBJECT_WLOCK(pti_obj);
11358 	pmap_pti_add_kva_locked(sva, eva, exec);
11359 	VM_OBJECT_WUNLOCK(pti_obj);
11360 }
11361 
11362 void
pmap_pti_remove_kva(vm_offset_t sva,vm_offset_t eva)11363 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
11364 {
11365 	pt_entry_t *pte;
11366 	vm_offset_t va;
11367 
11368 	if (!pti)
11369 		return;
11370 	sva = rounddown2(sva, PAGE_SIZE);
11371 	MPASS(sva > VM_MAXUSER_ADDRESS);
11372 	eva = roundup2(eva, PAGE_SIZE);
11373 	MPASS(sva < eva);
11374 	VM_OBJECT_WLOCK(pti_obj);
11375 	for (va = sva; va < eva; va += PAGE_SIZE) {
11376 		pte = pmap_pti_pte(va, NULL);
11377 		KASSERT((*pte & X86_PG_V) != 0,
11378 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
11379 		    (u_long)pte, *pte));
11380 		pte_clear(pte);
11381 		pmap_pti_unwire_pte(pte, va);
11382 	}
11383 	pmap_invalidate_range(kernel_pmap, sva, eva);
11384 	VM_OBJECT_WUNLOCK(pti_obj);
11385 }
11386 
11387 static void *
pkru_dup_range(void * ctx __unused,void * data)11388 pkru_dup_range(void *ctx __unused, void *data)
11389 {
11390 	struct pmap_pkru_range *node, *new_node;
11391 
11392 	new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11393 	if (new_node == NULL)
11394 		return (NULL);
11395 	node = data;
11396 	memcpy(new_node, node, sizeof(*node));
11397 	return (new_node);
11398 }
11399 
11400 static void
pkru_free_range(void * ctx __unused,void * node)11401 pkru_free_range(void *ctx __unused, void *node)
11402 {
11403 
11404 	uma_zfree(pmap_pkru_ranges_zone, node);
11405 }
11406 
11407 static int
pmap_pkru_assign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11408 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11409     int flags)
11410 {
11411 	struct pmap_pkru_range *ppr;
11412 	int error;
11413 
11414 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11415 	MPASS(pmap->pm_type == PT_X86);
11416 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11417 	if ((flags & AMD64_PKRU_EXCL) != 0 &&
11418 	    !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
11419 		return (EBUSY);
11420 	ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11421 	if (ppr == NULL)
11422 		return (ENOMEM);
11423 	ppr->pkru_keyidx = keyidx;
11424 	ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
11425 	error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
11426 	if (error != 0)
11427 		uma_zfree(pmap_pkru_ranges_zone, ppr);
11428 	return (error);
11429 }
11430 
11431 static int
pmap_pkru_deassign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11432 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11433 {
11434 
11435 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11436 	MPASS(pmap->pm_type == PT_X86);
11437 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11438 	return (rangeset_remove(&pmap->pm_pkru, sva, eva));
11439 }
11440 
11441 static void
pmap_pkru_deassign_all(pmap_t pmap)11442 pmap_pkru_deassign_all(pmap_t pmap)
11443 {
11444 
11445 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11446 	if (pmap->pm_type == PT_X86 &&
11447 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
11448 		rangeset_remove_all(&pmap->pm_pkru);
11449 }
11450 
11451 static bool
pmap_pkru_same(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11452 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11453 {
11454 	struct pmap_pkru_range *next_ppr, *ppr;
11455 	vm_offset_t va;
11456 
11457 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11458 	if (pmap->pm_type != PT_X86 ||
11459 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11460 	    sva >= VM_MAXUSER_ADDRESS)
11461 		return (true);
11462 	MPASS(eva <= VM_MAXUSER_ADDRESS);
11463 	ppr = rangeset_lookup(&pmap->pm_pkru, sva);
11464 	if (ppr == NULL) {
11465 		ppr = rangeset_next(&pmap->pm_pkru, sva);
11466 		return (ppr == NULL ||
11467 		    ppr->pkru_rs_el.re_start >= eva);
11468 	}
11469 	while ((va = ppr->pkru_rs_el.re_end) < eva) {
11470 		next_ppr = rangeset_next(&pmap->pm_pkru, va);
11471 		if (next_ppr == NULL ||
11472 		    va != next_ppr->pkru_rs_el.re_start ||
11473 		    ppr->pkru_keyidx != next_ppr->pkru_keyidx)
11474 			return (false);
11475 		ppr = next_ppr;
11476 	}
11477 	return (true);
11478 }
11479 
11480 static pt_entry_t
pmap_pkru_get(pmap_t pmap,vm_offset_t va)11481 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
11482 {
11483 	struct pmap_pkru_range *ppr;
11484 
11485 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11486 	if (pmap->pm_type != PT_X86 ||
11487 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11488 	    va >= VM_MAXUSER_ADDRESS)
11489 		return (0);
11490 	ppr = rangeset_lookup(&pmap->pm_pkru, va);
11491 	if (ppr != NULL)
11492 		return (X86_PG_PKU(ppr->pkru_keyidx));
11493 	return (0);
11494 }
11495 
11496 static bool
pred_pkru_on_remove(void * ctx __unused,void * r)11497 pred_pkru_on_remove(void *ctx __unused, void *r)
11498 {
11499 	struct pmap_pkru_range *ppr;
11500 
11501 	ppr = r;
11502 	return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
11503 }
11504 
11505 static void
pmap_pkru_on_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11506 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11507 {
11508 
11509 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11510 	if (pmap->pm_type == PT_X86 &&
11511 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
11512 		rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
11513 		    pred_pkru_on_remove);
11514 	}
11515 }
11516 
11517 static int
pmap_pkru_copy(pmap_t dst_pmap,pmap_t src_pmap)11518 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
11519 {
11520 
11521 	PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
11522 	PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
11523 	MPASS(dst_pmap->pm_type == PT_X86);
11524 	MPASS(src_pmap->pm_type == PT_X86);
11525 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11526 	if (src_pmap->pm_pkru.rs_data_ctx == NULL)
11527 		return (0);
11528 	return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
11529 }
11530 
11531 static void
pmap_pkru_update_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx)11532 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11533     u_int keyidx)
11534 {
11535 	pml4_entry_t *pml4e;
11536 	pdp_entry_t *pdpe;
11537 	pd_entry_t newpde, ptpaddr, *pde;
11538 	pt_entry_t newpte, *ptep, pte;
11539 	vm_offset_t va, va_next;
11540 	bool changed;
11541 
11542 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11543 	MPASS(pmap->pm_type == PT_X86);
11544 	MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
11545 
11546 	for (changed = false, va = sva; va < eva; va = va_next) {
11547 		pml4e = pmap_pml4e(pmap, va);
11548 		if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
11549 			va_next = (va + NBPML4) & ~PML4MASK;
11550 			if (va_next < va)
11551 				va_next = eva;
11552 			continue;
11553 		}
11554 
11555 		pdpe = pmap_pml4e_to_pdpe(pml4e, va);
11556 		if ((*pdpe & X86_PG_V) == 0) {
11557 			va_next = (va + NBPDP) & ~PDPMASK;
11558 			if (va_next < va)
11559 				va_next = eva;
11560 			continue;
11561 		}
11562 
11563 		va_next = (va + NBPDR) & ~PDRMASK;
11564 		if (va_next < va)
11565 			va_next = eva;
11566 
11567 		pde = pmap_pdpe_to_pde(pdpe, va);
11568 		ptpaddr = *pde;
11569 		if (ptpaddr == 0)
11570 			continue;
11571 
11572 		MPASS((ptpaddr & X86_PG_V) != 0);
11573 		if ((ptpaddr & PG_PS) != 0) {
11574 			if (va + NBPDR == va_next && eva >= va_next) {
11575 				newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
11576 				    X86_PG_PKU(keyidx);
11577 				if (newpde != ptpaddr) {
11578 					*pde = newpde;
11579 					changed = true;
11580 				}
11581 				continue;
11582 			} else if (!pmap_demote_pde(pmap, pde, va)) {
11583 				continue;
11584 			}
11585 		}
11586 
11587 		if (va_next > eva)
11588 			va_next = eva;
11589 
11590 		for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
11591 		    ptep++, va += PAGE_SIZE) {
11592 			pte = *ptep;
11593 			if ((pte & X86_PG_V) == 0)
11594 				continue;
11595 			newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
11596 			if (newpte != pte) {
11597 				*ptep = newpte;
11598 				changed = true;
11599 			}
11600 		}
11601 	}
11602 	if (changed)
11603 		pmap_invalidate_range(pmap, sva, eva);
11604 }
11605 
11606 static int
pmap_pkru_check_uargs(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11607 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11608     u_int keyidx, int flags)
11609 {
11610 
11611 	if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
11612 	    (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
11613 		return (EINVAL);
11614 	if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
11615 		return (EFAULT);
11616 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
11617 		return (ENOTSUP);
11618 	return (0);
11619 }
11620 
11621 int
pmap_pkru_set(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11622 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11623     int flags)
11624 {
11625 	int error;
11626 
11627 	sva = trunc_page(sva);
11628 	eva = round_page(eva);
11629 	error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
11630 	if (error != 0)
11631 		return (error);
11632 	for (;;) {
11633 		PMAP_LOCK(pmap);
11634 		error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
11635 		if (error == 0)
11636 			pmap_pkru_update_range(pmap, sva, eva, keyidx);
11637 		PMAP_UNLOCK(pmap);
11638 		if (error != ENOMEM)
11639 			break;
11640 		vm_wait(NULL);
11641 	}
11642 	return (error);
11643 }
11644 
11645 int
pmap_pkru_clear(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11646 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11647 {
11648 	int error;
11649 
11650 	sva = trunc_page(sva);
11651 	eva = round_page(eva);
11652 	error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
11653 	if (error != 0)
11654 		return (error);
11655 	for (;;) {
11656 		PMAP_LOCK(pmap);
11657 		error = pmap_pkru_deassign(pmap, sva, eva);
11658 		if (error == 0)
11659 			pmap_pkru_update_range(pmap, sva, eva, 0);
11660 		PMAP_UNLOCK(pmap);
11661 		if (error != ENOMEM)
11662 			break;
11663 		vm_wait(NULL);
11664 	}
11665 	return (error);
11666 }
11667 
11668 #if defined(KASAN) || defined(KMSAN)
11669 
11670 /*
11671  * Reserve enough memory to:
11672  * 1) allocate PDP pages for the shadow map(s),
11673  * 2) shadow the boot stack of KSTACK_PAGES pages,
11674  * 3) assuming that the kernel stack does not cross a 1GB boundary,
11675  * so we need one or two PD pages, one or two PT pages, and KSTACK_PAGES shadow
11676  * pages per shadow map.
11677  */
11678 #ifdef KASAN
11679 #define	SAN_EARLY_PAGES	\
11680 	(NKASANPML4E + 2 + 2 + howmany(KSTACK_PAGES, KASAN_SHADOW_SCALE))
11681 #else
11682 #define	SAN_EARLY_PAGES	\
11683 	(NKMSANSHADPML4E + NKMSANORIGPML4E + 2 * (2 + 2 + KSTACK_PAGES))
11684 #endif
11685 
11686 static uint64_t __nosanitizeaddress __nosanitizememory
pmap_san_enter_early_alloc_4k(uint64_t pabase)11687 pmap_san_enter_early_alloc_4k(uint64_t pabase)
11688 {
11689 	static uint8_t data[PAGE_SIZE * SAN_EARLY_PAGES] __aligned(PAGE_SIZE);
11690 	static size_t offset = 0;
11691 	uint64_t pa;
11692 
11693 	if (offset == sizeof(data)) {
11694 		panic("%s: ran out of memory for the bootstrap shadow map",
11695 		    __func__);
11696 	}
11697 
11698 	pa = pabase + ((vm_offset_t)&data[offset] - KERNSTART);
11699 	offset += PAGE_SIZE;
11700 	return (pa);
11701 }
11702 
11703 /*
11704  * Map a shadow page, before the kernel has bootstrapped its page tables.  This
11705  * is currently only used to shadow the temporary boot stack set up by locore.
11706  */
11707 static void __nosanitizeaddress __nosanitizememory
pmap_san_enter_early(vm_offset_t va)11708 pmap_san_enter_early(vm_offset_t va)
11709 {
11710 	static bool first = true;
11711 	pml4_entry_t *pml4e;
11712 	pdp_entry_t *pdpe;
11713 	pd_entry_t *pde;
11714 	pt_entry_t *pte;
11715 	uint64_t cr3, pa, base;
11716 	int i;
11717 
11718 	base = amd64_loadaddr();
11719 	cr3 = rcr3();
11720 
11721 	if (first) {
11722 		/*
11723 		 * If this the first call, we need to allocate new PML4Es for
11724 		 * the bootstrap shadow map(s).  We don't know how the PML4 page
11725 		 * was initialized by the boot loader, so we can't simply test
11726 		 * whether the shadow map's PML4Es are zero.
11727 		 */
11728 		first = false;
11729 #ifdef KASAN
11730 		for (i = 0; i < NKASANPML4E; i++) {
11731 			pa = pmap_san_enter_early_alloc_4k(base);
11732 
11733 			pml4e = (pml4_entry_t *)cr3 +
11734 			    pmap_pml4e_index(KASAN_MIN_ADDRESS + i * NBPML4);
11735 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11736 		}
11737 #else
11738 		for (i = 0; i < NKMSANORIGPML4E; i++) {
11739 			pa = pmap_san_enter_early_alloc_4k(base);
11740 
11741 			pml4e = (pml4_entry_t *)cr3 +
11742 			    pmap_pml4e_index(KMSAN_ORIG_MIN_ADDRESS +
11743 			    i * NBPML4);
11744 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11745 		}
11746 		for (i = 0; i < NKMSANSHADPML4E; i++) {
11747 			pa = pmap_san_enter_early_alloc_4k(base);
11748 
11749 			pml4e = (pml4_entry_t *)cr3 +
11750 			    pmap_pml4e_index(KMSAN_SHAD_MIN_ADDRESS +
11751 			    i * NBPML4);
11752 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11753 		}
11754 #endif
11755 	}
11756 	pml4e = (pml4_entry_t *)cr3 + pmap_pml4e_index(va);
11757 	pdpe = (pdp_entry_t *)(*pml4e & PG_FRAME) + pmap_pdpe_index(va);
11758 	if (*pdpe == 0) {
11759 		pa = pmap_san_enter_early_alloc_4k(base);
11760 		*pdpe = (pdp_entry_t)(pa | X86_PG_RW | X86_PG_V);
11761 	}
11762 	pde = (pd_entry_t *)(*pdpe & PG_FRAME) + pmap_pde_index(va);
11763 	if (*pde == 0) {
11764 		pa = pmap_san_enter_early_alloc_4k(base);
11765 		*pde = (pd_entry_t)(pa | X86_PG_RW | X86_PG_V);
11766 	}
11767 	pte = (pt_entry_t *)(*pde & PG_FRAME) + pmap_pte_index(va);
11768 	if (*pte != 0)
11769 		panic("%s: PTE for %#lx is already initialized", __func__, va);
11770 	pa = pmap_san_enter_early_alloc_4k(base);
11771 	*pte = (pt_entry_t)(pa | X86_PG_A | X86_PG_M | X86_PG_RW | X86_PG_V);
11772 }
11773 
11774 static vm_page_t
pmap_san_enter_alloc_4k(void)11775 pmap_san_enter_alloc_4k(void)
11776 {
11777 	vm_page_t m;
11778 
11779 	m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
11780 	    VM_ALLOC_ZERO);
11781 	if (m == NULL)
11782 		panic("%s: no memory to grow shadow map", __func__);
11783 	return (m);
11784 }
11785 
11786 static vm_page_t
pmap_san_enter_alloc_2m(void)11787 pmap_san_enter_alloc_2m(void)
11788 {
11789 	return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
11790 	    NPTEPG, 0, ~0ul, NBPDR, 0, VM_MEMATTR_DEFAULT));
11791 }
11792 
11793 /*
11794  * Grow a shadow map by at least one 4KB page at the specified address.  Use 2MB
11795  * pages when possible.
11796  */
11797 void __nosanitizeaddress __nosanitizememory
pmap_san_enter(vm_offset_t va)11798 pmap_san_enter(vm_offset_t va)
11799 {
11800 	pdp_entry_t *pdpe;
11801 	pd_entry_t *pde;
11802 	pt_entry_t *pte;
11803 	vm_page_t m;
11804 
11805 	if (kernphys == 0) {
11806 		/*
11807 		 * We're creating a temporary shadow map for the boot stack.
11808 		 */
11809 		pmap_san_enter_early(va);
11810 		return;
11811 	}
11812 
11813 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
11814 
11815 	pdpe = pmap_pdpe(kernel_pmap, va);
11816 	if ((*pdpe & X86_PG_V) == 0) {
11817 		m = pmap_san_enter_alloc_4k();
11818 		*pdpe = (pdp_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11819 		    X86_PG_V | pg_nx);
11820 	}
11821 	pde = pmap_pdpe_to_pde(pdpe, va);
11822 	if ((*pde & X86_PG_V) == 0) {
11823 		m = pmap_san_enter_alloc_2m();
11824 		if (m != NULL) {
11825 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11826 			    X86_PG_PS | X86_PG_V | X86_PG_A | X86_PG_M | pg_nx);
11827 		} else {
11828 			m = pmap_san_enter_alloc_4k();
11829 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11830 			    X86_PG_V | pg_nx);
11831 		}
11832 	}
11833 	if ((*pde & X86_PG_PS) != 0)
11834 		return;
11835 	pte = pmap_pde_to_pte(pde, va);
11836 	if ((*pte & X86_PG_V) != 0)
11837 		return;
11838 	m = pmap_san_enter_alloc_4k();
11839 	*pte = (pt_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW | X86_PG_V |
11840 	    X86_PG_M | X86_PG_A | pg_nx);
11841 }
11842 #endif
11843 
11844 /*
11845  * Track a range of the kernel's virtual address space that is contiguous
11846  * in various mapping attributes.
11847  */
11848 struct pmap_kernel_map_range {
11849 	vm_offset_t sva;
11850 	pt_entry_t attrs;
11851 	int ptes;
11852 	int pdes;
11853 	int pdpes;
11854 };
11855 
11856 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)11857 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
11858     vm_offset_t eva)
11859 {
11860 	const char *mode;
11861 	int i, pat_idx;
11862 
11863 	if (eva <= range->sva)
11864 		return;
11865 
11866 	pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
11867 	for (i = 0; i < PAT_INDEX_SIZE; i++)
11868 		if (pat_index[i] == pat_idx)
11869 			break;
11870 
11871 	switch (i) {
11872 	case PAT_WRITE_BACK:
11873 		mode = "WB";
11874 		break;
11875 	case PAT_WRITE_THROUGH:
11876 		mode = "WT";
11877 		break;
11878 	case PAT_UNCACHEABLE:
11879 		mode = "UC";
11880 		break;
11881 	case PAT_UNCACHED:
11882 		mode = "U-";
11883 		break;
11884 	case PAT_WRITE_PROTECTED:
11885 		mode = "WP";
11886 		break;
11887 	case PAT_WRITE_COMBINING:
11888 		mode = "WC";
11889 		break;
11890 	default:
11891 		printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
11892 		    __func__, pat_idx, range->sva, eva);
11893 		mode = "??";
11894 		break;
11895 	}
11896 
11897 	sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
11898 	    range->sva, eva,
11899 	    (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
11900 	    (range->attrs & pg_nx) != 0 ? '-' : 'x',
11901 	    (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
11902 	    (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
11903 	    mode, range->pdpes, range->pdes, range->ptes);
11904 
11905 	/* Reset to sentinel value. */
11906 	range->sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11907 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11908 	    NPDEPG - 1, NPTEPG - 1);
11909 }
11910 
11911 /*
11912  * Determine whether the attributes specified by a page table entry match those
11913  * being tracked by the current range.  This is not quite as simple as a direct
11914  * flag comparison since some PAT modes have multiple representations.
11915  */
11916 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)11917 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
11918 {
11919 	pt_entry_t diff, mask;
11920 
11921 	mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
11922 	diff = (range->attrs ^ attrs) & mask;
11923 	if (diff == 0)
11924 		return (true);
11925 	if ((diff & ~X86_PG_PDE_PAT) == 0 &&
11926 	    pmap_pat_index(kernel_pmap, range->attrs, true) ==
11927 	    pmap_pat_index(kernel_pmap, attrs, true))
11928 		return (true);
11929 	return (false);
11930 }
11931 
11932 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)11933 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
11934     pt_entry_t attrs)
11935 {
11936 
11937 	memset(range, 0, sizeof(*range));
11938 	range->sva = va;
11939 	range->attrs = attrs;
11940 }
11941 
11942 /*
11943  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
11944  * those of the current run, dump the address range and its attributes, and
11945  * begin a new run.
11946  */
11947 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pml4_entry_t pml4e,pdp_entry_t pdpe,pd_entry_t pde,pt_entry_t pte)11948 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
11949     vm_offset_t va, pml4_entry_t pml4e, pdp_entry_t pdpe, pd_entry_t pde,
11950     pt_entry_t pte)
11951 {
11952 	pt_entry_t attrs;
11953 
11954 	attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
11955 
11956 	attrs |= pdpe & pg_nx;
11957 	attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
11958 	if ((pdpe & PG_PS) != 0) {
11959 		attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
11960 	} else if (pde != 0) {
11961 		attrs |= pde & pg_nx;
11962 		attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
11963 	}
11964 	if ((pde & PG_PS) != 0) {
11965 		attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
11966 	} else if (pte != 0) {
11967 		attrs |= pte & pg_nx;
11968 		attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
11969 		attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
11970 
11971 		/* Canonicalize by always using the PDE PAT bit. */
11972 		if ((attrs & X86_PG_PTE_PAT) != 0)
11973 			attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
11974 	}
11975 
11976 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
11977 		sysctl_kmaps_dump(sb, range, va);
11978 		sysctl_kmaps_reinit(range, va, attrs);
11979 	}
11980 }
11981 
11982 static int
sysctl_kmaps(SYSCTL_HANDLER_ARGS)11983 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
11984 {
11985 	struct pmap_kernel_map_range range;
11986 	struct sbuf sbuf, *sb;
11987 	pml4_entry_t pml4e;
11988 	pdp_entry_t *pdp, pdpe;
11989 	pd_entry_t *pd, pde;
11990 	pt_entry_t *pt, pte;
11991 	vm_offset_t sva;
11992 	vm_paddr_t pa;
11993 	int error, i, j, k, l;
11994 
11995 	error = sysctl_wire_old_buffer(req, 0);
11996 	if (error != 0)
11997 		return (error);
11998 	sb = &sbuf;
11999 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
12000 
12001 	/* Sentinel value. */
12002 	range.sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
12003 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
12004 	    NPDEPG - 1, NPTEPG - 1);
12005 
12006 	/*
12007 	 * Iterate over the kernel page tables without holding the kernel pmap
12008 	 * lock.  Outside of the large map, kernel page table pages are never
12009 	 * freed, so at worst we will observe inconsistencies in the output.
12010 	 * Within the large map, ensure that PDP and PD page addresses are
12011 	 * valid before descending.
12012 	 */
12013 	for (sva = 0, i = pmap_pml4e_index(sva); i < NPML4EPG; i++) {
12014 		switch (i) {
12015 		case PML4PML4I:
12016 			sbuf_printf(sb, "\nRecursive map:\n");
12017 			break;
12018 		case DMPML4I:
12019 			sbuf_printf(sb, "\nDirect map:\n");
12020 			break;
12021 #ifdef KASAN
12022 		case KASANPML4I:
12023 			sbuf_printf(sb, "\nKASAN shadow map:\n");
12024 			break;
12025 #endif
12026 #ifdef KMSAN
12027 		case KMSANSHADPML4I:
12028 			sbuf_printf(sb, "\nKMSAN shadow map:\n");
12029 			break;
12030 		case KMSANORIGPML4I:
12031 			sbuf_printf(sb, "\nKMSAN origin map:\n");
12032 			break;
12033 #endif
12034 		case KPML4BASE:
12035 			sbuf_printf(sb, "\nKernel map:\n");
12036 			break;
12037 		case LMSPML4I:
12038 			sbuf_printf(sb, "\nLarge map:\n");
12039 			break;
12040 		}
12041 
12042 		/* Convert to canonical form. */
12043 		if (sva == 1ul << 47)
12044 			sva |= -1ul << 48;
12045 
12046 restart:
12047 		pml4e = kernel_pml4[i];
12048 		if ((pml4e & X86_PG_V) == 0) {
12049 			sva = rounddown2(sva, NBPML4);
12050 			sysctl_kmaps_dump(sb, &range, sva);
12051 			sva += NBPML4;
12052 			continue;
12053 		}
12054 		pa = pml4e & PG_FRAME;
12055 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
12056 
12057 		for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
12058 			pdpe = pdp[j];
12059 			if ((pdpe & X86_PG_V) == 0) {
12060 				sva = rounddown2(sva, NBPDP);
12061 				sysctl_kmaps_dump(sb, &range, sva);
12062 				sva += NBPDP;
12063 				continue;
12064 			}
12065 			pa = pdpe & PG_FRAME;
12066 			if ((pdpe & PG_PS) != 0) {
12067 				sva = rounddown2(sva, NBPDP);
12068 				sysctl_kmaps_check(sb, &range, sva, pml4e, pdpe,
12069 				    0, 0);
12070 				range.pdpes++;
12071 				sva += NBPDP;
12072 				continue;
12073 			}
12074 			if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12075 			    vm_phys_paddr_to_vm_page(pa) == NULL) {
12076 				/*
12077 				 * Page table pages for the large map may be
12078 				 * freed.  Validate the next-level address
12079 				 * before descending.
12080 				 */
12081 				goto restart;
12082 			}
12083 			pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
12084 
12085 			for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
12086 				pde = pd[k];
12087 				if ((pde & X86_PG_V) == 0) {
12088 					sva = rounddown2(sva, NBPDR);
12089 					sysctl_kmaps_dump(sb, &range, sva);
12090 					sva += NBPDR;
12091 					continue;
12092 				}
12093 				pa = pde & PG_FRAME;
12094 				if ((pde & PG_PS) != 0) {
12095 					sva = rounddown2(sva, NBPDR);
12096 					sysctl_kmaps_check(sb, &range, sva,
12097 					    pml4e, pdpe, pde, 0);
12098 					range.pdes++;
12099 					sva += NBPDR;
12100 					continue;
12101 				}
12102 				if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12103 				    vm_phys_paddr_to_vm_page(pa) == NULL) {
12104 					/*
12105 					 * Page table pages for the large map
12106 					 * may be freed.  Validate the
12107 					 * next-level address before descending.
12108 					 */
12109 					goto restart;
12110 				}
12111 				pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
12112 
12113 				for (l = pmap_pte_index(sva); l < NPTEPG; l++,
12114 				    sva += PAGE_SIZE) {
12115 					pte = pt[l];
12116 					if ((pte & X86_PG_V) == 0) {
12117 						sysctl_kmaps_dump(sb, &range,
12118 						    sva);
12119 						continue;
12120 					}
12121 					sysctl_kmaps_check(sb, &range, sva,
12122 					    pml4e, pdpe, pde, pte);
12123 					range.ptes++;
12124 				}
12125 			}
12126 		}
12127 	}
12128 
12129 	error = sbuf_finish(sb);
12130 	sbuf_delete(sb);
12131 	return (error);
12132 }
12133 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
12134     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
12135     NULL, 0, sysctl_kmaps, "A",
12136     "Dump kernel address layout");
12137 
12138 #ifdef DDB
DB_SHOW_COMMAND(pte,pmap_print_pte)12139 DB_SHOW_COMMAND(pte, pmap_print_pte)
12140 {
12141 	pmap_t pmap;
12142 	pml5_entry_t *pml5;
12143 	pml4_entry_t *pml4;
12144 	pdp_entry_t *pdp;
12145 	pd_entry_t *pde;
12146 	pt_entry_t *pte, PG_V;
12147 	vm_offset_t va;
12148 
12149 	if (!have_addr) {
12150 		db_printf("show pte addr\n");
12151 		return;
12152 	}
12153 	va = (vm_offset_t)addr;
12154 
12155 	if (kdb_thread != NULL)
12156 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
12157 	else
12158 		pmap = PCPU_GET(curpmap);
12159 
12160 	PG_V = pmap_valid_bit(pmap);
12161 	db_printf("VA 0x%016lx", va);
12162 
12163 	if (pmap_is_la57(pmap)) {
12164 		pml5 = pmap_pml5e(pmap, va);
12165 		db_printf(" pml5e 0x%016lx", *pml5);
12166 		if ((*pml5 & PG_V) == 0) {
12167 			db_printf("\n");
12168 			return;
12169 		}
12170 		pml4 = pmap_pml5e_to_pml4e(pml5, va);
12171 	} else {
12172 		pml4 = pmap_pml4e(pmap, va);
12173 	}
12174 	db_printf(" pml4e 0x%016lx", *pml4);
12175 	if ((*pml4 & PG_V) == 0) {
12176 		db_printf("\n");
12177 		return;
12178 	}
12179 	pdp = pmap_pml4e_to_pdpe(pml4, va);
12180 	db_printf(" pdpe 0x%016lx", *pdp);
12181 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
12182 		db_printf("\n");
12183 		return;
12184 	}
12185 	pde = pmap_pdpe_to_pde(pdp, va);
12186 	db_printf(" pde 0x%016lx", *pde);
12187 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
12188 		db_printf("\n");
12189 		return;
12190 	}
12191 	pte = pmap_pde_to_pte(pde, va);
12192 	db_printf(" pte 0x%016lx\n", *pte);
12193 }
12194 
DB_SHOW_COMMAND(phys2dmap,pmap_phys2dmap)12195 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
12196 {
12197 	vm_paddr_t a;
12198 
12199 	if (have_addr) {
12200 		a = (vm_paddr_t)addr;
12201 		db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
12202 	} else {
12203 		db_printf("show phys2dmap addr\n");
12204 	}
12205 }
12206 
12207 static void
ptpages_show_page(int level,int idx,vm_page_t pg)12208 ptpages_show_page(int level, int idx, vm_page_t pg)
12209 {
12210 	db_printf("l %d i %d pg %p phys %#lx ref %x\n",
12211 	    level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
12212 }
12213 
12214 static void
ptpages_show_complain(int level,int idx,uint64_t pte)12215 ptpages_show_complain(int level, int idx, uint64_t pte)
12216 {
12217 	db_printf("l %d i %d pte %#lx\n", level, idx, pte);
12218 }
12219 
12220 static void
ptpages_show_pml4(vm_page_t pg4,int num_entries,uint64_t PG_V)12221 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
12222 {
12223 	vm_page_t pg3, pg2, pg1;
12224 	pml4_entry_t *pml4;
12225 	pdp_entry_t *pdp;
12226 	pd_entry_t *pd;
12227 	int i4, i3, i2;
12228 
12229 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
12230 	for (i4 = 0; i4 < num_entries; i4++) {
12231 		if ((pml4[i4] & PG_V) == 0)
12232 			continue;
12233 		pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
12234 		if (pg3 == NULL) {
12235 			ptpages_show_complain(3, i4, pml4[i4]);
12236 			continue;
12237 		}
12238 		ptpages_show_page(3, i4, pg3);
12239 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
12240 		for (i3 = 0; i3 < NPDPEPG; i3++) {
12241 			if ((pdp[i3] & PG_V) == 0)
12242 				continue;
12243 			pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
12244 			if (pg3 == NULL) {
12245 				ptpages_show_complain(2, i3, pdp[i3]);
12246 				continue;
12247 			}
12248 			ptpages_show_page(2, i3, pg2);
12249 			pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
12250 			for (i2 = 0; i2 < NPDEPG; i2++) {
12251 				if ((pd[i2] & PG_V) == 0)
12252 					continue;
12253 				pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
12254 				if (pg1 == NULL) {
12255 					ptpages_show_complain(1, i2, pd[i2]);
12256 					continue;
12257 				}
12258 				ptpages_show_page(1, i2, pg1);
12259 			}
12260 		}
12261 	}
12262 }
12263 
DB_SHOW_COMMAND(ptpages,pmap_ptpages)12264 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
12265 {
12266 	pmap_t pmap;
12267 	vm_page_t pg;
12268 	pml5_entry_t *pml5;
12269 	uint64_t PG_V;
12270 	int i5;
12271 
12272 	if (have_addr)
12273 		pmap = (pmap_t)addr;
12274 	else
12275 		pmap = PCPU_GET(curpmap);
12276 
12277 	PG_V = pmap_valid_bit(pmap);
12278 
12279 	if (pmap_is_la57(pmap)) {
12280 		pml5 = pmap->pm_pmltop;
12281 		for (i5 = 0; i5 < NUPML5E; i5++) {
12282 			if ((pml5[i5] & PG_V) == 0)
12283 				continue;
12284 			pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
12285 			if (pg == NULL) {
12286 				ptpages_show_complain(4, i5, pml5[i5]);
12287 				continue;
12288 			}
12289 			ptpages_show_page(4, i5, pg);
12290 			ptpages_show_pml4(pg, NPML4EPG, PG_V);
12291 		}
12292 	} else {
12293 		ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
12294 		    (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
12295 	}
12296 }
12297 #endif
12298