xref: /freebsd/sys/amd64/amd64/pmap.c (revision b8d29d68)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2003 Peter Wemm
11  * All rights reserved.
12  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
13  * All rights reserved.
14  *
15  * This code is derived from software contributed to Berkeley by
16  * the Systems Programming Group of the University of Utah Computer
17  * Science Department and William Jolitz of UUNET Technologies Inc.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 3. All advertising materials mentioning features or use of this software
28  *    must display the following acknowledgement:
29  *	This product includes software developed by the University of
30  *	California, Berkeley and its contributors.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  */
47 /*-
48  * Copyright (c) 2003 Networks Associates Technology, Inc.
49  * Copyright (c) 2014-2020 The FreeBSD Foundation
50  * All rights reserved.
51  *
52  * This software was developed for the FreeBSD Project by Jake Burkholder,
53  * Safeport Network Services, and Network Associates Laboratories, the
54  * Security Research Division of Network Associates, Inc. under
55  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
56  * CHATS research program.
57  *
58  * Portions of this software were developed by
59  * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
60  * the FreeBSD Foundation.
61  *
62  * Redistribution and use in source and binary forms, with or without
63  * modification, are permitted provided that the following conditions
64  * are met:
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in the
69  *    documentation and/or other materials provided with the distribution.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  */
83 
84 #define	AMD64_NPT_AWARE
85 
86 #include <sys/cdefs.h>
87 /*
88  *	Manages physical address maps.
89  *
90  *	Since the information managed by this module is
91  *	also stored by the logical address mapping module,
92  *	this module may throw away valid virtual-to-physical
93  *	mappings at almost any time.  However, invalidations
94  *	of virtual-to-physical mappings must be done as
95  *	requested.
96  *
97  *	In order to cope with hardware architectures which
98  *	make virtual-to-physical map invalidates expensive,
99  *	this module may delay invalidate or reduced protection
100  *	operations until such time as they are actually
101  *	necessary.  This module is given full information as
102  *	to which processors are currently using which maps,
103  *	and to when physical maps must be made correct.
104  */
105 
106 #include "opt_ddb.h"
107 #include "opt_pmap.h"
108 #include "opt_vm.h"
109 
110 #include <sys/param.h>
111 #include <sys/asan.h>
112 #include <sys/bitstring.h>
113 #include <sys/bus.h>
114 #include <sys/systm.h>
115 #include <sys/counter.h>
116 #include <sys/kernel.h>
117 #include <sys/ktr.h>
118 #include <sys/lock.h>
119 #include <sys/malloc.h>
120 #include <sys/mman.h>
121 #include <sys/msan.h>
122 #include <sys/mutex.h>
123 #include <sys/proc.h>
124 #include <sys/rangeset.h>
125 #include <sys/rwlock.h>
126 #include <sys/sbuf.h>
127 #include <sys/smr.h>
128 #include <sys/sx.h>
129 #include <sys/turnstile.h>
130 #include <sys/vmem.h>
131 #include <sys/vmmeter.h>
132 #include <sys/sched.h>
133 #include <sys/sysctl.h>
134 #include <sys/smp.h>
135 #ifdef DDB
136 #include <sys/kdb.h>
137 #include <ddb/ddb.h>
138 #endif
139 
140 #include <vm/vm.h>
141 #include <vm/vm_param.h>
142 #include <vm/vm_kern.h>
143 #include <vm/vm_page.h>
144 #include <vm/vm_map.h>
145 #include <vm/vm_object.h>
146 #include <vm/vm_extern.h>
147 #include <vm/vm_pageout.h>
148 #include <vm/vm_pager.h>
149 #include <vm/vm_phys.h>
150 #include <vm/vm_radix.h>
151 #include <vm/vm_reserv.h>
152 #include <vm/vm_dumpset.h>
153 #include <vm/uma.h>
154 
155 #include <machine/asan.h>
156 #include <machine/intr_machdep.h>
157 #include <x86/apicvar.h>
158 #include <x86/ifunc.h>
159 #include <machine/cpu.h>
160 #include <machine/cputypes.h>
161 #include <machine/md_var.h>
162 #include <machine/msan.h>
163 #include <machine/pcb.h>
164 #include <machine/specialreg.h>
165 #ifdef SMP
166 #include <machine/smp.h>
167 #endif
168 #include <machine/sysarch.h>
169 #include <machine/tss.h>
170 
171 #ifdef NUMA
172 #define	PMAP_MEMDOM	MAXMEMDOM
173 #else
174 #define	PMAP_MEMDOM	1
175 #endif
176 
177 static __inline bool
pmap_type_guest(pmap_t pmap)178 pmap_type_guest(pmap_t pmap)
179 {
180 
181 	return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
182 }
183 
184 static __inline bool
pmap_emulate_ad_bits(pmap_t pmap)185 pmap_emulate_ad_bits(pmap_t pmap)
186 {
187 
188 	return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
189 }
190 
191 static __inline pt_entry_t
pmap_valid_bit(pmap_t pmap)192 pmap_valid_bit(pmap_t pmap)
193 {
194 	pt_entry_t mask;
195 
196 	switch (pmap->pm_type) {
197 	case PT_X86:
198 	case PT_RVI:
199 		mask = X86_PG_V;
200 		break;
201 	case PT_EPT:
202 		if (pmap_emulate_ad_bits(pmap))
203 			mask = EPT_PG_EMUL_V;
204 		else
205 			mask = EPT_PG_READ;
206 		break;
207 	default:
208 		panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
209 	}
210 
211 	return (mask);
212 }
213 
214 static __inline pt_entry_t
pmap_rw_bit(pmap_t pmap)215 pmap_rw_bit(pmap_t pmap)
216 {
217 	pt_entry_t mask;
218 
219 	switch (pmap->pm_type) {
220 	case PT_X86:
221 	case PT_RVI:
222 		mask = X86_PG_RW;
223 		break;
224 	case PT_EPT:
225 		if (pmap_emulate_ad_bits(pmap))
226 			mask = EPT_PG_EMUL_RW;
227 		else
228 			mask = EPT_PG_WRITE;
229 		break;
230 	default:
231 		panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
232 	}
233 
234 	return (mask);
235 }
236 
237 static pt_entry_t pg_g;
238 
239 static __inline pt_entry_t
pmap_global_bit(pmap_t pmap)240 pmap_global_bit(pmap_t pmap)
241 {
242 	pt_entry_t mask;
243 
244 	switch (pmap->pm_type) {
245 	case PT_X86:
246 		mask = pg_g;
247 		break;
248 	case PT_RVI:
249 	case PT_EPT:
250 		mask = 0;
251 		break;
252 	default:
253 		panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
254 	}
255 
256 	return (mask);
257 }
258 
259 static __inline pt_entry_t
pmap_accessed_bit(pmap_t pmap)260 pmap_accessed_bit(pmap_t pmap)
261 {
262 	pt_entry_t mask;
263 
264 	switch (pmap->pm_type) {
265 	case PT_X86:
266 	case PT_RVI:
267 		mask = X86_PG_A;
268 		break;
269 	case PT_EPT:
270 		if (pmap_emulate_ad_bits(pmap))
271 			mask = EPT_PG_READ;
272 		else
273 			mask = EPT_PG_A;
274 		break;
275 	default:
276 		panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
277 	}
278 
279 	return (mask);
280 }
281 
282 static __inline pt_entry_t
pmap_modified_bit(pmap_t pmap)283 pmap_modified_bit(pmap_t pmap)
284 {
285 	pt_entry_t mask;
286 
287 	switch (pmap->pm_type) {
288 	case PT_X86:
289 	case PT_RVI:
290 		mask = X86_PG_M;
291 		break;
292 	case PT_EPT:
293 		if (pmap_emulate_ad_bits(pmap))
294 			mask = EPT_PG_WRITE;
295 		else
296 			mask = EPT_PG_M;
297 		break;
298 	default:
299 		panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
300 	}
301 
302 	return (mask);
303 }
304 
305 static __inline pt_entry_t
pmap_pku_mask_bit(pmap_t pmap)306 pmap_pku_mask_bit(pmap_t pmap)
307 {
308 
309 	return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
310 }
311 
312 static __inline bool
safe_to_clear_referenced(pmap_t pmap,pt_entry_t pte)313 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
314 {
315 
316 	if (!pmap_emulate_ad_bits(pmap))
317 		return (true);
318 
319 	KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
320 
321 	/*
322 	 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
323 	 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
324 	 * if the EPT_PG_WRITE bit is set.
325 	 */
326 	if ((pte & EPT_PG_WRITE) != 0)
327 		return (false);
328 
329 	/*
330 	 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
331 	 */
332 	if ((pte & EPT_PG_EXECUTE) == 0 ||
333 	    ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
334 		return (true);
335 	else
336 		return (false);
337 }
338 
339 #ifdef PV_STATS
340 #define PV_STAT(x)	do { x ; } while (0)
341 #else
342 #define PV_STAT(x)	do { } while (0)
343 #endif
344 
345 #undef pa_index
346 #ifdef NUMA
347 #define	pa_index(pa)	({					\
348 	KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end,	\
349 	    ("address %lx beyond the last segment", (pa)));	\
350 	(pa) >> PDRSHIFT;					\
351 })
352 #define	pa_to_pmdp(pa)	(&pv_table[pa_index(pa)])
353 #define	pa_to_pvh(pa)	(&(pa_to_pmdp(pa)->pv_page))
354 #define	PHYS_TO_PV_LIST_LOCK(pa)	({			\
355 	struct rwlock *_lock;					\
356 	if (__predict_false((pa) > pmap_last_pa))		\
357 		_lock = &pv_dummy_large.pv_lock;		\
358 	else							\
359 		_lock = &(pa_to_pmdp(pa)->pv_lock);		\
360 	_lock;							\
361 })
362 #else
363 #define	pa_index(pa)	((pa) >> PDRSHIFT)
364 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
365 
366 #define	NPV_LIST_LOCKS	MAXCPU
367 
368 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
369 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
370 #endif
371 
372 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
373 	struct rwlock **_lockp = (lockp);		\
374 	struct rwlock *_new_lock;			\
375 							\
376 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
377 	if (_new_lock != *_lockp) {			\
378 		if (*_lockp != NULL)			\
379 			rw_wunlock(*_lockp);		\
380 		*_lockp = _new_lock;			\
381 		rw_wlock(*_lockp);			\
382 	}						\
383 } while (0)
384 
385 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
386 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
387 
388 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
389 	struct rwlock **_lockp = (lockp);		\
390 							\
391 	if (*_lockp != NULL) {				\
392 		rw_wunlock(*_lockp);			\
393 		*_lockp = NULL;				\
394 	}						\
395 } while (0)
396 
397 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
398 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
399 
400 /*
401  * Statically allocate kernel pmap memory.  However, memory for
402  * pm_pcids is obtained after the dynamic allocator is operational.
403  * Initialize it with a non-canonical pointer to catch early accesses
404  * regardless of the active mapping.
405  */
406 struct pmap kernel_pmap_store = {
407 	.pm_pcidp = (void *)0xdeadbeefdeadbeef,
408 };
409 
410 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
411 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
412 
413 int nkpt;
414 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
415     "Number of kernel page table pages allocated on bootup");
416 
417 static int ndmpdp;
418 vm_paddr_t dmaplimit;
419 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
420 pt_entry_t pg_nx;
421 
422 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
423     "VM/pmap parameters");
424 
425 static int __read_frequently pg_ps_enabled = 1;
426 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
427     &pg_ps_enabled, 0, "Are large page mappings enabled?");
428 
429 int __read_frequently la57 = 0;
430 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
431     &la57, 0,
432     "5-level paging for host is enabled");
433 
434 static bool
pmap_is_la57(pmap_t pmap)435 pmap_is_la57(pmap_t pmap)
436 {
437 	if (pmap->pm_type == PT_X86)
438 		return (la57);
439 	return (false);		/* XXXKIB handle EPT */
440 }
441 
442 #define	PAT_INDEX_SIZE	8
443 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
444 
445 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
446 static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
447 static u_int64_t	KPDPphys;	/* phys addr of kernel level 3 */
448 u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
449 u_int64_t		KPML5phys;	/* phys addr of kernel level 5,
450 					   if supported */
451 
452 #ifdef KASAN
453 static uint64_t		KASANPDPphys;
454 #endif
455 #ifdef KMSAN
456 static uint64_t		KMSANSHADPDPphys;
457 static uint64_t		KMSANORIGPDPphys;
458 
459 /*
460  * To support systems with large amounts of memory, it is necessary to extend
461  * the maximum size of the direct map.  This could eat into the space reserved
462  * for the shadow map.
463  */
464 _Static_assert(DMPML4I + NDMPML4E <= KMSANSHADPML4I, "direct map overflow");
465 #endif
466 
467 static pml4_entry_t	*kernel_pml4;
468 static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
469 static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
470 static int		ndmpdpphys;	/* number of DMPDPphys pages */
471 
472 vm_paddr_t		kernphys;	/* phys addr of start of bootstrap data */
473 vm_paddr_t		KERNend;	/* and the end */
474 
475 /*
476  * pmap_mapdev support pre initialization (i.e. console)
477  */
478 #define	PMAP_PREINIT_MAPPING_COUNT	8
479 static struct pmap_preinit_mapping {
480 	vm_paddr_t	pa;
481 	vm_offset_t	va;
482 	vm_size_t	sz;
483 	int		mode;
484 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
485 static int pmap_initialized;
486 
487 /*
488  * Data for the pv entry allocation mechanism.
489  * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
490  */
491 #ifdef NUMA
492 static __inline int
pc_to_domain(struct pv_chunk * pc)493 pc_to_domain(struct pv_chunk *pc)
494 {
495 
496 	return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
497 }
498 #else
499 static __inline int
pc_to_domain(struct pv_chunk * pc __unused)500 pc_to_domain(struct pv_chunk *pc __unused)
501 {
502 
503 	return (0);
504 }
505 #endif
506 
507 struct pv_chunks_list {
508 	struct mtx pvc_lock;
509 	TAILQ_HEAD(pch, pv_chunk) pvc_list;
510 	int active_reclaims;
511 } __aligned(CACHE_LINE_SIZE);
512 
513 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
514 
515 #ifdef	NUMA
516 struct pmap_large_md_page {
517 	struct rwlock   pv_lock;
518 	struct md_page  pv_page;
519 	u_long pv_invl_gen;
520 };
521 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
522 #define pv_dummy pv_dummy_large.pv_page
523 __read_mostly static struct pmap_large_md_page *pv_table;
524 __read_mostly vm_paddr_t pmap_last_pa;
525 #else
526 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
527 static u_long pv_invl_gen[NPV_LIST_LOCKS];
528 static struct md_page *pv_table;
529 static struct md_page pv_dummy;
530 #endif
531 
532 /*
533  * All those kernel PT submaps that BSD is so fond of
534  */
535 pt_entry_t *CMAP1 = NULL;
536 caddr_t CADDR1 = 0;
537 static vm_offset_t qframe = 0;
538 static struct mtx qframe_mtx;
539 
540 static int pmap_flags = PMAP_PDE_SUPERPAGE;	/* flags for x86 pmaps */
541 
542 static vmem_t *large_vmem;
543 static u_int lm_ents;
544 #define	PMAP_ADDRESS_IN_LARGEMAP(va)	((va) >= LARGEMAP_MIN_ADDRESS && \
545 	(va) < LARGEMAP_MIN_ADDRESS + NBPML4 * (u_long)lm_ents)
546 
547 int pmap_pcid_enabled = 1;
548 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
549     &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
550 int invpcid_works = 0;
551 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
552     "Is the invpcid instruction available ?");
553 int pmap_pcid_invlpg_workaround = 0;
554 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_invlpg_workaround,
555     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
556     &pmap_pcid_invlpg_workaround, 0,
557     "Enable small core PCID/INVLPG workaround");
558 int pmap_pcid_invlpg_workaround_uena = 1;
559 
560 int __read_frequently pti = 0;
561 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
562     &pti, 0,
563     "Page Table Isolation enabled");
564 static vm_object_t pti_obj;
565 static pml4_entry_t *pti_pml4;
566 static vm_pindex_t pti_pg_idx;
567 static bool pti_finalized;
568 
569 struct pmap_pkru_range {
570 	struct rs_el	pkru_rs_el;
571 	u_int		pkru_keyidx;
572 	int		pkru_flags;
573 };
574 
575 static uma_zone_t pmap_pkru_ranges_zone;
576 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
577 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
578 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
579 static void *pkru_dup_range(void *ctx, void *data);
580 static void pkru_free_range(void *ctx, void *node);
581 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
582 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
583 static void pmap_pkru_deassign_all(pmap_t pmap);
584 
585 static COUNTER_U64_DEFINE_EARLY(pcid_save_cnt);
586 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLFLAG_RD,
587     &pcid_save_cnt, "Count of saved TLB context on switch");
588 
589 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
590     LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
591 static struct mtx invl_gen_mtx;
592 /* Fake lock object to satisfy turnstiles interface. */
593 static struct lock_object invl_gen_ts = {
594 	.lo_name = "invlts",
595 };
596 static struct pmap_invl_gen pmap_invl_gen_head = {
597 	.gen = 1,
598 	.next = NULL,
599 };
600 static u_long pmap_invl_gen = 1;
601 static int pmap_invl_waiters;
602 static struct callout pmap_invl_callout;
603 static bool pmap_invl_callout_inited;
604 
605 #define	PMAP_ASSERT_NOT_IN_DI() \
606     KASSERT(pmap_not_in_di(), ("DI already started"))
607 
608 static bool
pmap_di_locked(void)609 pmap_di_locked(void)
610 {
611 	int tun;
612 
613 	if ((cpu_feature2 & CPUID2_CX16) == 0)
614 		return (true);
615 	tun = 0;
616 	TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
617 	return (tun != 0);
618 }
619 
620 static int
sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)621 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
622 {
623 	int locked;
624 
625 	locked = pmap_di_locked();
626 	return (sysctl_handle_int(oidp, &locked, 0, req));
627 }
628 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
629     CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
630     "Locked delayed invalidation");
631 
632 static bool pmap_not_in_di_l(void);
633 static bool pmap_not_in_di_u(void);
634 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
635 {
636 
637 	return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
638 }
639 
640 static bool
pmap_not_in_di_l(void)641 pmap_not_in_di_l(void)
642 {
643 	struct pmap_invl_gen *invl_gen;
644 
645 	invl_gen = &curthread->td_md.md_invl_gen;
646 	return (invl_gen->gen == 0);
647 }
648 
649 static void
pmap_thread_init_invl_gen_l(struct thread * td)650 pmap_thread_init_invl_gen_l(struct thread *td)
651 {
652 	struct pmap_invl_gen *invl_gen;
653 
654 	invl_gen = &td->td_md.md_invl_gen;
655 	invl_gen->gen = 0;
656 }
657 
658 static void
pmap_delayed_invl_wait_block(u_long * m_gen,u_long * invl_gen)659 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
660 {
661 	struct turnstile *ts;
662 
663 	ts = turnstile_trywait(&invl_gen_ts);
664 	if (*m_gen > atomic_load_long(invl_gen))
665 		turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
666 	else
667 		turnstile_cancel(ts);
668 }
669 
670 static void
pmap_delayed_invl_finish_unblock(u_long new_gen)671 pmap_delayed_invl_finish_unblock(u_long new_gen)
672 {
673 	struct turnstile *ts;
674 
675 	turnstile_chain_lock(&invl_gen_ts);
676 	ts = turnstile_lookup(&invl_gen_ts);
677 	if (new_gen != 0)
678 		pmap_invl_gen = new_gen;
679 	if (ts != NULL) {
680 		turnstile_broadcast(ts, TS_SHARED_QUEUE);
681 		turnstile_unpend(ts);
682 	}
683 	turnstile_chain_unlock(&invl_gen_ts);
684 }
685 
686 /*
687  * Start a new Delayed Invalidation (DI) block of code, executed by
688  * the current thread.  Within a DI block, the current thread may
689  * destroy both the page table and PV list entries for a mapping and
690  * then release the corresponding PV list lock before ensuring that
691  * the mapping is flushed from the TLBs of any processors with the
692  * pmap active.
693  */
694 static void
pmap_delayed_invl_start_l(void)695 pmap_delayed_invl_start_l(void)
696 {
697 	struct pmap_invl_gen *invl_gen;
698 	u_long currgen;
699 
700 	invl_gen = &curthread->td_md.md_invl_gen;
701 	PMAP_ASSERT_NOT_IN_DI();
702 	mtx_lock(&invl_gen_mtx);
703 	if (LIST_EMPTY(&pmap_invl_gen_tracker))
704 		currgen = pmap_invl_gen;
705 	else
706 		currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
707 	invl_gen->gen = currgen + 1;
708 	LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
709 	mtx_unlock(&invl_gen_mtx);
710 }
711 
712 /*
713  * Finish the DI block, previously started by the current thread.  All
714  * required TLB flushes for the pages marked by
715  * pmap_delayed_invl_page() must be finished before this function is
716  * called.
717  *
718  * This function works by bumping the global DI generation number to
719  * the generation number of the current thread's DI, unless there is a
720  * pending DI that started earlier.  In the latter case, bumping the
721  * global DI generation number would incorrectly signal that the
722  * earlier DI had finished.  Instead, this function bumps the earlier
723  * DI's generation number to match the generation number of the
724  * current thread's DI.
725  */
726 static void
pmap_delayed_invl_finish_l(void)727 pmap_delayed_invl_finish_l(void)
728 {
729 	struct pmap_invl_gen *invl_gen, *next;
730 
731 	invl_gen = &curthread->td_md.md_invl_gen;
732 	KASSERT(invl_gen->gen != 0, ("missed invl_start"));
733 	mtx_lock(&invl_gen_mtx);
734 	next = LIST_NEXT(invl_gen, link);
735 	if (next == NULL)
736 		pmap_delayed_invl_finish_unblock(invl_gen->gen);
737 	else
738 		next->gen = invl_gen->gen;
739 	LIST_REMOVE(invl_gen, link);
740 	mtx_unlock(&invl_gen_mtx);
741 	invl_gen->gen = 0;
742 }
743 
744 static bool
pmap_not_in_di_u(void)745 pmap_not_in_di_u(void)
746 {
747 	struct pmap_invl_gen *invl_gen;
748 
749 	invl_gen = &curthread->td_md.md_invl_gen;
750 	return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
751 }
752 
753 static void
pmap_thread_init_invl_gen_u(struct thread * td)754 pmap_thread_init_invl_gen_u(struct thread *td)
755 {
756 	struct pmap_invl_gen *invl_gen;
757 
758 	invl_gen = &td->td_md.md_invl_gen;
759 	invl_gen->gen = 0;
760 	invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
761 }
762 
763 static bool
pmap_di_load_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * out)764 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
765 {
766 	uint64_t new_high, new_low, old_high, old_low;
767 	char res;
768 
769 	old_low = new_low = 0;
770 	old_high = new_high = (uintptr_t)0;
771 
772 	__asm volatile("lock;cmpxchg16b\t%1"
773 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
774 	    : "b"(new_low), "c" (new_high)
775 	    : "memory", "cc");
776 	if (res == 0) {
777 		if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
778 			return (false);
779 		out->gen = old_low;
780 		out->next = (void *)old_high;
781 	} else {
782 		out->gen = new_low;
783 		out->next = (void *)new_high;
784 	}
785 	return (true);
786 }
787 
788 static bool
pmap_di_store_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * old_val,struct pmap_invl_gen * new_val)789 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
790     struct pmap_invl_gen *new_val)
791 {
792 	uint64_t new_high, new_low, old_high, old_low;
793 	char res;
794 
795 	new_low = new_val->gen;
796 	new_high = (uintptr_t)new_val->next;
797 	old_low = old_val->gen;
798 	old_high = (uintptr_t)old_val->next;
799 
800 	__asm volatile("lock;cmpxchg16b\t%1"
801 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
802 	    : "b"(new_low), "c" (new_high)
803 	    : "memory", "cc");
804 	return (res);
805 }
806 
807 static COUNTER_U64_DEFINE_EARLY(pv_page_count);
808 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_page_count, CTLFLAG_RD,
809     &pv_page_count, "Current number of allocated pv pages");
810 
811 static COUNTER_U64_DEFINE_EARLY(user_pt_page_count);
812 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, user_pt_page_count, CTLFLAG_RD,
813     &user_pt_page_count,
814     "Current number of allocated page table pages for userspace");
815 
816 static COUNTER_U64_DEFINE_EARLY(kernel_pt_page_count);
817 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, kernel_pt_page_count, CTLFLAG_RD,
818     &kernel_pt_page_count,
819     "Current number of allocated page table pages for the kernel");
820 
821 #ifdef PV_STATS
822 
823 static COUNTER_U64_DEFINE_EARLY(invl_start_restart);
824 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_start_restart,
825     CTLFLAG_RD, &invl_start_restart,
826     "Number of delayed TLB invalidation request restarts");
827 
828 static COUNTER_U64_DEFINE_EARLY(invl_finish_restart);
829 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
830     &invl_finish_restart,
831     "Number of delayed TLB invalidation completion restarts");
832 
833 static int invl_max_qlen;
834 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
835     &invl_max_qlen, 0,
836     "Maximum delayed TLB invalidation request queue length");
837 #endif
838 
839 #define di_delay	locks_delay
840 
841 static void
pmap_delayed_invl_start_u(void)842 pmap_delayed_invl_start_u(void)
843 {
844 	struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
845 	struct thread *td;
846 	struct lock_delay_arg lda;
847 	uintptr_t prevl;
848 	u_char pri;
849 #ifdef PV_STATS
850 	int i, ii;
851 #endif
852 
853 	td = curthread;
854 	invl_gen = &td->td_md.md_invl_gen;
855 	PMAP_ASSERT_NOT_IN_DI();
856 	lock_delay_arg_init(&lda, &di_delay);
857 	invl_gen->saved_pri = 0;
858 	pri = td->td_base_pri;
859 	if (pri > PVM) {
860 		thread_lock(td);
861 		pri = td->td_base_pri;
862 		if (pri > PVM) {
863 			invl_gen->saved_pri = pri;
864 			sched_prio(td, PVM);
865 		}
866 		thread_unlock(td);
867 	}
868 again:
869 	PV_STAT(i = 0);
870 	for (p = &pmap_invl_gen_head;; p = prev.next) {
871 		PV_STAT(i++);
872 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
873 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
874 			PV_STAT(counter_u64_add(invl_start_restart, 1));
875 			lock_delay(&lda);
876 			goto again;
877 		}
878 		if (prevl == 0)
879 			break;
880 		prev.next = (void *)prevl;
881 	}
882 #ifdef PV_STATS
883 	if ((ii = invl_max_qlen) < i)
884 		atomic_cmpset_int(&invl_max_qlen, ii, i);
885 #endif
886 
887 	if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
888 		PV_STAT(counter_u64_add(invl_start_restart, 1));
889 		lock_delay(&lda);
890 		goto again;
891 	}
892 
893 	new_prev.gen = prev.gen;
894 	new_prev.next = invl_gen;
895 	invl_gen->gen = prev.gen + 1;
896 
897 	/* Formal fence between store to invl->gen and updating *p. */
898 	atomic_thread_fence_rel();
899 
900 	/*
901 	 * After inserting an invl_gen element with invalid bit set,
902 	 * this thread blocks any other thread trying to enter the
903 	 * delayed invalidation block.  Do not allow to remove us from
904 	 * the CPU, because it causes starvation for other threads.
905 	 */
906 	critical_enter();
907 
908 	/*
909 	 * ABA for *p is not possible there, since p->gen can only
910 	 * increase.  So if the *p thread finished its di, then
911 	 * started a new one and got inserted into the list at the
912 	 * same place, its gen will appear greater than the previously
913 	 * read gen.
914 	 */
915 	if (!pmap_di_store_invl(p, &prev, &new_prev)) {
916 		critical_exit();
917 		PV_STAT(counter_u64_add(invl_start_restart, 1));
918 		lock_delay(&lda);
919 		goto again;
920 	}
921 
922 	/*
923 	 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
924 	 * invl_gen->next, allowing other threads to iterate past us.
925 	 * pmap_di_store_invl() provides fence between the generation
926 	 * write and the update of next.
927 	 */
928 	invl_gen->next = NULL;
929 	critical_exit();
930 }
931 
932 static bool
pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen * invl_gen,struct pmap_invl_gen * p)933 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
934     struct pmap_invl_gen *p)
935 {
936 	struct pmap_invl_gen prev, new_prev;
937 	u_long mygen;
938 
939 	/*
940 	 * Load invl_gen->gen after setting invl_gen->next
941 	 * PMAP_INVL_GEN_NEXT_INVALID.  This prevents larger
942 	 * generations to propagate to our invl_gen->gen.  Lock prefix
943 	 * in atomic_set_ptr() worked as seq_cst fence.
944 	 */
945 	mygen = atomic_load_long(&invl_gen->gen);
946 
947 	if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
948 		return (false);
949 
950 	KASSERT(prev.gen < mygen,
951 	    ("invalid di gen sequence %lu %lu", prev.gen, mygen));
952 	new_prev.gen = mygen;
953 	new_prev.next = (void *)((uintptr_t)invl_gen->next &
954 	    ~PMAP_INVL_GEN_NEXT_INVALID);
955 
956 	/* Formal fence between load of prev and storing update to it. */
957 	atomic_thread_fence_rel();
958 
959 	return (pmap_di_store_invl(p, &prev, &new_prev));
960 }
961 
962 static void
pmap_delayed_invl_finish_u(void)963 pmap_delayed_invl_finish_u(void)
964 {
965 	struct pmap_invl_gen *invl_gen, *p;
966 	struct thread *td;
967 	struct lock_delay_arg lda;
968 	uintptr_t prevl;
969 
970 	td = curthread;
971 	invl_gen = &td->td_md.md_invl_gen;
972 	KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
973 	KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
974 	    ("missed invl_start: INVALID"));
975 	lock_delay_arg_init(&lda, &di_delay);
976 
977 again:
978 	for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
979 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
980 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
981 			PV_STAT(counter_u64_add(invl_finish_restart, 1));
982 			lock_delay(&lda);
983 			goto again;
984 		}
985 		if ((void *)prevl == invl_gen)
986 			break;
987 	}
988 
989 	/*
990 	 * It is legitimate to not find ourself on the list if a
991 	 * thread before us finished its DI and started it again.
992 	 */
993 	if (__predict_false(p == NULL)) {
994 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
995 		lock_delay(&lda);
996 		goto again;
997 	}
998 
999 	critical_enter();
1000 	atomic_set_ptr((uintptr_t *)&invl_gen->next,
1001 	    PMAP_INVL_GEN_NEXT_INVALID);
1002 	if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
1003 		atomic_clear_ptr((uintptr_t *)&invl_gen->next,
1004 		    PMAP_INVL_GEN_NEXT_INVALID);
1005 		critical_exit();
1006 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
1007 		lock_delay(&lda);
1008 		goto again;
1009 	}
1010 	critical_exit();
1011 	if (atomic_load_int(&pmap_invl_waiters) > 0)
1012 		pmap_delayed_invl_finish_unblock(0);
1013 	if (invl_gen->saved_pri != 0) {
1014 		thread_lock(td);
1015 		sched_prio(td, invl_gen->saved_pri);
1016 		thread_unlock(td);
1017 	}
1018 }
1019 
1020 #ifdef DDB
DB_SHOW_COMMAND(di_queue,pmap_di_queue)1021 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
1022 {
1023 	struct pmap_invl_gen *p, *pn;
1024 	struct thread *td;
1025 	uintptr_t nextl;
1026 	bool first;
1027 
1028 	for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
1029 	    first = false) {
1030 		nextl = (uintptr_t)atomic_load_ptr(&p->next);
1031 		pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
1032 		td = first ? NULL : __containerof(p, struct thread,
1033 		    td_md.md_invl_gen);
1034 		db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
1035 		    (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
1036 		    td != NULL ? td->td_tid : -1);
1037 	}
1038 }
1039 #endif
1040 
1041 #ifdef PV_STATS
1042 static COUNTER_U64_DEFINE_EARLY(invl_wait);
1043 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait,
1044     CTLFLAG_RD, &invl_wait,
1045     "Number of times DI invalidation blocked pmap_remove_all/write");
1046 
1047 static COUNTER_U64_DEFINE_EARLY(invl_wait_slow);
1048 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD,
1049      &invl_wait_slow, "Number of slow invalidation waits for lockless DI");
1050 
1051 #endif
1052 
1053 #ifdef NUMA
1054 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1055 pmap_delayed_invl_genp(vm_page_t m)
1056 {
1057 	vm_paddr_t pa;
1058 	u_long *gen;
1059 
1060 	pa = VM_PAGE_TO_PHYS(m);
1061 	if (__predict_false((pa) > pmap_last_pa))
1062 		gen = &pv_dummy_large.pv_invl_gen;
1063 	else
1064 		gen = &(pa_to_pmdp(pa)->pv_invl_gen);
1065 
1066 	return (gen);
1067 }
1068 #else
1069 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1070 pmap_delayed_invl_genp(vm_page_t m)
1071 {
1072 
1073 	return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
1074 }
1075 #endif
1076 
1077 static void
pmap_delayed_invl_callout_func(void * arg __unused)1078 pmap_delayed_invl_callout_func(void *arg __unused)
1079 {
1080 
1081 	if (atomic_load_int(&pmap_invl_waiters) == 0)
1082 		return;
1083 	pmap_delayed_invl_finish_unblock(0);
1084 }
1085 
1086 static void
pmap_delayed_invl_callout_init(void * arg __unused)1087 pmap_delayed_invl_callout_init(void *arg __unused)
1088 {
1089 
1090 	if (pmap_di_locked())
1091 		return;
1092 	callout_init(&pmap_invl_callout, 1);
1093 	pmap_invl_callout_inited = true;
1094 }
1095 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
1096     pmap_delayed_invl_callout_init, NULL);
1097 
1098 /*
1099  * Ensure that all currently executing DI blocks, that need to flush
1100  * TLB for the given page m, actually flushed the TLB at the time the
1101  * function returned.  If the page m has an empty PV list and we call
1102  * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
1103  * valid mapping for the page m in either its page table or TLB.
1104  *
1105  * This function works by blocking until the global DI generation
1106  * number catches up with the generation number associated with the
1107  * given page m and its PV list.  Since this function's callers
1108  * typically own an object lock and sometimes own a page lock, it
1109  * cannot sleep.  Instead, it blocks on a turnstile to relinquish the
1110  * processor.
1111  */
1112 static void
pmap_delayed_invl_wait_l(vm_page_t m)1113 pmap_delayed_invl_wait_l(vm_page_t m)
1114 {
1115 	u_long *m_gen;
1116 #ifdef PV_STATS
1117 	bool accounted = false;
1118 #endif
1119 
1120 	m_gen = pmap_delayed_invl_genp(m);
1121 	while (*m_gen > pmap_invl_gen) {
1122 #ifdef PV_STATS
1123 		if (!accounted) {
1124 			counter_u64_add(invl_wait, 1);
1125 			accounted = true;
1126 		}
1127 #endif
1128 		pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
1129 	}
1130 }
1131 
1132 static void
pmap_delayed_invl_wait_u(vm_page_t m)1133 pmap_delayed_invl_wait_u(vm_page_t m)
1134 {
1135 	u_long *m_gen;
1136 	struct lock_delay_arg lda;
1137 	bool fast;
1138 
1139 	fast = true;
1140 	m_gen = pmap_delayed_invl_genp(m);
1141 	lock_delay_arg_init(&lda, &di_delay);
1142 	while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
1143 		if (fast || !pmap_invl_callout_inited) {
1144 			PV_STAT(counter_u64_add(invl_wait, 1));
1145 			lock_delay(&lda);
1146 			fast = false;
1147 		} else {
1148 			/*
1149 			 * The page's invalidation generation number
1150 			 * is still below the current thread's number.
1151 			 * Prepare to block so that we do not waste
1152 			 * CPU cycles or worse, suffer livelock.
1153 			 *
1154 			 * Since it is impossible to block without
1155 			 * racing with pmap_delayed_invl_finish_u(),
1156 			 * prepare for the race by incrementing
1157 			 * pmap_invl_waiters and arming a 1-tick
1158 			 * callout which will unblock us if we lose
1159 			 * the race.
1160 			 */
1161 			atomic_add_int(&pmap_invl_waiters, 1);
1162 
1163 			/*
1164 			 * Re-check the current thread's invalidation
1165 			 * generation after incrementing
1166 			 * pmap_invl_waiters, so that there is no race
1167 			 * with pmap_delayed_invl_finish_u() setting
1168 			 * the page generation and checking
1169 			 * pmap_invl_waiters.  The only race allowed
1170 			 * is for a missed unblock, which is handled
1171 			 * by the callout.
1172 			 */
1173 			if (*m_gen >
1174 			    atomic_load_long(&pmap_invl_gen_head.gen)) {
1175 				callout_reset(&pmap_invl_callout, 1,
1176 				    pmap_delayed_invl_callout_func, NULL);
1177 				PV_STAT(counter_u64_add(invl_wait_slow, 1));
1178 				pmap_delayed_invl_wait_block(m_gen,
1179 				    &pmap_invl_gen_head.gen);
1180 			}
1181 			atomic_add_int(&pmap_invl_waiters, -1);
1182 		}
1183 	}
1184 }
1185 
1186 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
1187 {
1188 
1189 	return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
1190 	    pmap_thread_init_invl_gen_u);
1191 }
1192 
1193 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
1194 {
1195 
1196 	return (pmap_di_locked() ? pmap_delayed_invl_start_l :
1197 	    pmap_delayed_invl_start_u);
1198 }
1199 
1200 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
1201 {
1202 
1203 	return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
1204 	    pmap_delayed_invl_finish_u);
1205 }
1206 
1207 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
1208 {
1209 
1210 	return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
1211 	    pmap_delayed_invl_wait_u);
1212 }
1213 
1214 /*
1215  * Mark the page m's PV list as participating in the current thread's
1216  * DI block.  Any threads concurrently using m's PV list to remove or
1217  * restrict all mappings to m will wait for the current thread's DI
1218  * block to complete before proceeding.
1219  *
1220  * The function works by setting the DI generation number for m's PV
1221  * list to at least the DI generation number of the current thread.
1222  * This forces a caller of pmap_delayed_invl_wait() to block until
1223  * current thread calls pmap_delayed_invl_finish().
1224  */
1225 static void
pmap_delayed_invl_page(vm_page_t m)1226 pmap_delayed_invl_page(vm_page_t m)
1227 {
1228 	u_long gen, *m_gen;
1229 
1230 	rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
1231 	gen = curthread->td_md.md_invl_gen.gen;
1232 	if (gen == 0)
1233 		return;
1234 	m_gen = pmap_delayed_invl_genp(m);
1235 	if (*m_gen < gen)
1236 		*m_gen = gen;
1237 }
1238 
1239 /*
1240  * Crashdump maps.
1241  */
1242 static caddr_t crashdumpmap;
1243 
1244 /*
1245  * Internal flags for pmap_enter()'s helper functions.
1246  */
1247 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
1248 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
1249 
1250 /*
1251  * Internal flags for pmap_mapdev_internal() and
1252  * pmap_change_props_locked().
1253  */
1254 #define	MAPDEV_FLUSHCACHE	0x00000001	/* Flush cache after mapping. */
1255 #define	MAPDEV_SETATTR		0x00000002	/* Modify existing attrs. */
1256 #define	MAPDEV_ASSERTVALID	0x00000004	/* Assert mapping validity. */
1257 
1258 TAILQ_HEAD(pv_chunklist, pv_chunk);
1259 
1260 static void	free_pv_chunk(struct pv_chunk *pc);
1261 static void	free_pv_chunk_batch(struct pv_chunklist *batch);
1262 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
1263 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
1264 static int	popcnt_pc_map_pq(uint64_t *map);
1265 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
1266 static void	reserve_pv_entries(pmap_t pmap, int needed,
1267 		    struct rwlock **lockp);
1268 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1269 		    struct rwlock **lockp);
1270 static bool	pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
1271 		    u_int flags, struct rwlock **lockp);
1272 #if VM_NRESERVLEVEL > 0
1273 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1274 		    struct rwlock **lockp);
1275 #endif
1276 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
1277 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
1278 		    vm_offset_t va);
1279 
1280 static void	pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
1281 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
1282     vm_prot_t prot, int mode, int flags);
1283 static bool	pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
1284 static bool	pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
1285     vm_offset_t va, struct rwlock **lockp);
1286 static bool	pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
1287     vm_offset_t va);
1288 static int	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
1289 		    vm_prot_t prot, struct rwlock **lockp);
1290 static int	pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
1291 		    u_int flags, vm_page_t m, struct rwlock **lockp);
1292 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
1293     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
1294 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
1295 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
1296     bool allpte_PG_A_set);
1297 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
1298     vm_offset_t eva);
1299 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
1300     vm_offset_t eva);
1301 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
1302 		    pd_entry_t pde);
1303 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
1304 static vm_page_t pmap_large_map_getptp_unlocked(void);
1305 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
1306 #if VM_NRESERVLEVEL > 0
1307 static bool pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
1308     vm_page_t mpte, struct rwlock **lockp);
1309 #endif
1310 static bool pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
1311     vm_prot_t prot);
1312 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
1313 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
1314     bool exec);
1315 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
1316 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
1317 static void pmap_pti_wire_pte(void *pte);
1318 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
1319     struct spglist *free, struct rwlock **lockp);
1320 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
1321     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
1322 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
1323 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1324     struct spglist *free);
1325 static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1326 		    pd_entry_t *pde, struct spglist *free,
1327 		    struct rwlock **lockp);
1328 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
1329     vm_page_t m, struct rwlock **lockp);
1330 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1331     pd_entry_t newpde);
1332 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
1333 
1334 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
1335 		struct rwlock **lockp);
1336 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
1337 		struct rwlock **lockp, vm_offset_t va);
1338 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
1339 		struct rwlock **lockp, vm_offset_t va);
1340 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
1341 		struct rwlock **lockp);
1342 
1343 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
1344     struct spglist *free);
1345 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
1346 
1347 static vm_page_t pmap_alloc_pt_page(pmap_t, vm_pindex_t, int);
1348 static void pmap_free_pt_page(pmap_t, vm_page_t, bool);
1349 
1350 /********************/
1351 /* Inline functions */
1352 /********************/
1353 
1354 /*
1355  * Return a non-clipped indexes for a given VA, which are page table
1356  * pages indexes at the corresponding level.
1357  */
1358 static __inline vm_pindex_t
pmap_pde_pindex(vm_offset_t va)1359 pmap_pde_pindex(vm_offset_t va)
1360 {
1361 	return (va >> PDRSHIFT);
1362 }
1363 
1364 static __inline vm_pindex_t
pmap_pdpe_pindex(vm_offset_t va)1365 pmap_pdpe_pindex(vm_offset_t va)
1366 {
1367 	return (NUPDE + (va >> PDPSHIFT));
1368 }
1369 
1370 static __inline vm_pindex_t
pmap_pml4e_pindex(vm_offset_t va)1371 pmap_pml4e_pindex(vm_offset_t va)
1372 {
1373 	return (NUPDE + NUPDPE + (va >> PML4SHIFT));
1374 }
1375 
1376 static __inline vm_pindex_t
pmap_pml5e_pindex(vm_offset_t va)1377 pmap_pml5e_pindex(vm_offset_t va)
1378 {
1379 	return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
1380 }
1381 
1382 static __inline pml4_entry_t *
pmap_pml5e(pmap_t pmap,vm_offset_t va)1383 pmap_pml5e(pmap_t pmap, vm_offset_t va)
1384 {
1385 
1386 	MPASS(pmap_is_la57(pmap));
1387 	return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
1388 }
1389 
1390 static __inline pml4_entry_t *
pmap_pml5e_u(pmap_t pmap,vm_offset_t va)1391 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
1392 {
1393 
1394 	MPASS(pmap_is_la57(pmap));
1395 	return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
1396 }
1397 
1398 static __inline pml4_entry_t *
pmap_pml5e_to_pml4e(pml5_entry_t * pml5e,vm_offset_t va)1399 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
1400 {
1401 	pml4_entry_t *pml4e;
1402 
1403 	/* XXX MPASS(pmap_is_la57(pmap); */
1404 	pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1405 	return (&pml4e[pmap_pml4e_index(va)]);
1406 }
1407 
1408 /* Return a pointer to the PML4 slot that corresponds to a VA */
1409 static __inline pml4_entry_t *
pmap_pml4e(pmap_t pmap,vm_offset_t va)1410 pmap_pml4e(pmap_t pmap, vm_offset_t va)
1411 {
1412 	pml5_entry_t *pml5e;
1413 	pml4_entry_t *pml4e;
1414 	pt_entry_t PG_V;
1415 
1416 	if (pmap_is_la57(pmap)) {
1417 		pml5e = pmap_pml5e(pmap, va);
1418 		PG_V = pmap_valid_bit(pmap);
1419 		if ((*pml5e & PG_V) == 0)
1420 			return (NULL);
1421 		pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1422 	} else {
1423 		pml4e = pmap->pm_pmltop;
1424 	}
1425 	return (&pml4e[pmap_pml4e_index(va)]);
1426 }
1427 
1428 static __inline pml4_entry_t *
pmap_pml4e_u(pmap_t pmap,vm_offset_t va)1429 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
1430 {
1431 	MPASS(!pmap_is_la57(pmap));
1432 	return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
1433 }
1434 
1435 /* Return a pointer to the PDP slot that corresponds to a VA */
1436 static __inline pdp_entry_t *
pmap_pml4e_to_pdpe(pml4_entry_t * pml4e,vm_offset_t va)1437 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
1438 {
1439 	pdp_entry_t *pdpe;
1440 
1441 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
1442 	return (&pdpe[pmap_pdpe_index(va)]);
1443 }
1444 
1445 /* Return a pointer to the PDP slot that corresponds to a VA */
1446 static __inline pdp_entry_t *
pmap_pdpe(pmap_t pmap,vm_offset_t va)1447 pmap_pdpe(pmap_t pmap, vm_offset_t va)
1448 {
1449 	pml4_entry_t *pml4e;
1450 	pt_entry_t PG_V;
1451 
1452 	PG_V = pmap_valid_bit(pmap);
1453 	pml4e = pmap_pml4e(pmap, va);
1454 	if (pml4e == NULL || (*pml4e & PG_V) == 0)
1455 		return (NULL);
1456 	return (pmap_pml4e_to_pdpe(pml4e, va));
1457 }
1458 
1459 /* Return a pointer to the PD slot that corresponds to a VA */
1460 static __inline pd_entry_t *
pmap_pdpe_to_pde(pdp_entry_t * pdpe,vm_offset_t va)1461 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
1462 {
1463 	pd_entry_t *pde;
1464 
1465 	KASSERT((*pdpe & PG_PS) == 0,
1466 	    ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
1467 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
1468 	return (&pde[pmap_pde_index(va)]);
1469 }
1470 
1471 /* Return a pointer to the PD slot that corresponds to a VA */
1472 static __inline pd_entry_t *
pmap_pde(pmap_t pmap,vm_offset_t va)1473 pmap_pde(pmap_t pmap, vm_offset_t va)
1474 {
1475 	pdp_entry_t *pdpe;
1476 	pt_entry_t PG_V;
1477 
1478 	PG_V = pmap_valid_bit(pmap);
1479 	pdpe = pmap_pdpe(pmap, va);
1480 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
1481 		return (NULL);
1482 	KASSERT((*pdpe & PG_PS) == 0,
1483 	    ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
1484 	return (pmap_pdpe_to_pde(pdpe, va));
1485 }
1486 
1487 /* Return a pointer to the PT slot that corresponds to a VA */
1488 static __inline pt_entry_t *
pmap_pde_to_pte(pd_entry_t * pde,vm_offset_t va)1489 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
1490 {
1491 	pt_entry_t *pte;
1492 
1493 	KASSERT((*pde & PG_PS) == 0,
1494 	    ("%s: pde %#lx is a leaf", __func__, *pde));
1495 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
1496 	return (&pte[pmap_pte_index(va)]);
1497 }
1498 
1499 /* Return a pointer to the PT slot that corresponds to a VA */
1500 static __inline pt_entry_t *
pmap_pte(pmap_t pmap,vm_offset_t va)1501 pmap_pte(pmap_t pmap, vm_offset_t va)
1502 {
1503 	pd_entry_t *pde;
1504 	pt_entry_t PG_V;
1505 
1506 	PG_V = pmap_valid_bit(pmap);
1507 	pde = pmap_pde(pmap, va);
1508 	if (pde == NULL || (*pde & PG_V) == 0)
1509 		return (NULL);
1510 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
1511 		return ((pt_entry_t *)pde);
1512 	return (pmap_pde_to_pte(pde, va));
1513 }
1514 
1515 static __inline void
pmap_resident_count_adj(pmap_t pmap,int count)1516 pmap_resident_count_adj(pmap_t pmap, int count)
1517 {
1518 
1519 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1520 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1521 	    ("pmap %p resident count underflow %ld %d", pmap,
1522 	    pmap->pm_stats.resident_count, count));
1523 	pmap->pm_stats.resident_count += count;
1524 }
1525 
1526 static __inline void
pmap_pt_page_count_pinit(pmap_t pmap,int count)1527 pmap_pt_page_count_pinit(pmap_t pmap, int count)
1528 {
1529 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1530 	    ("pmap %p resident count underflow %ld %d", pmap,
1531 	    pmap->pm_stats.resident_count, count));
1532 	pmap->pm_stats.resident_count += count;
1533 }
1534 
1535 static __inline void
pmap_pt_page_count_adj(pmap_t pmap,int count)1536 pmap_pt_page_count_adj(pmap_t pmap, int count)
1537 {
1538 	if (pmap == kernel_pmap)
1539 		counter_u64_add(kernel_pt_page_count, count);
1540 	else {
1541 		if (pmap != NULL)
1542 			pmap_resident_count_adj(pmap, count);
1543 		counter_u64_add(user_pt_page_count, count);
1544 	}
1545 }
1546 
1547 pt_entry_t vtoptem __read_mostly = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
1548     NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1) << 3;
1549 vm_offset_t PTmap __read_mostly = (vm_offset_t)P4Tmap;
1550 
1551 pt_entry_t *
vtopte(vm_offset_t va)1552 vtopte(vm_offset_t va)
1553 {
1554 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
1555 
1556 	return ((pt_entry_t *)(PTmap + ((va >> (PAGE_SHIFT - 3)) & vtoptem)));
1557 }
1558 
1559 pd_entry_t vtopdem __read_mostly = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1560     NPML4EPGSHIFT)) - 1) << 3;
1561 vm_offset_t PDmap __read_mostly = (vm_offset_t)P4Dmap;
1562 
1563 static __inline pd_entry_t *
vtopde(vm_offset_t va)1564 vtopde(vm_offset_t va)
1565 {
1566 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
1567 
1568 	return ((pt_entry_t *)(PDmap + ((va >> (PDRSHIFT - 3)) & vtopdem)));
1569 }
1570 
1571 static u_int64_t
allocpages(vm_paddr_t * firstaddr,int n)1572 allocpages(vm_paddr_t *firstaddr, int n)
1573 {
1574 	u_int64_t ret;
1575 
1576 	ret = *firstaddr;
1577 	bzero((void *)ret, n * PAGE_SIZE);
1578 	*firstaddr += n * PAGE_SIZE;
1579 	return (ret);
1580 }
1581 
1582 CTASSERT(powerof2(NDMPML4E));
1583 
1584 /* number of kernel PDP slots */
1585 #define	NKPDPE(ptpgs)		howmany(ptpgs, NPDEPG)
1586 
1587 static void
nkpt_init(vm_paddr_t addr)1588 nkpt_init(vm_paddr_t addr)
1589 {
1590 	int pt_pages;
1591 
1592 #ifdef NKPT
1593 	pt_pages = NKPT;
1594 #else
1595 	pt_pages = howmany(addr - kernphys, NBPDR) + 1; /* +1 for 2M hole @0 */
1596 	pt_pages += NKPDPE(pt_pages);
1597 
1598 	/*
1599 	 * Add some slop beyond the bare minimum required for bootstrapping
1600 	 * the kernel.
1601 	 *
1602 	 * This is quite important when allocating KVA for kernel modules.
1603 	 * The modules are required to be linked in the negative 2GB of
1604 	 * the address space.  If we run out of KVA in this region then
1605 	 * pmap_growkernel() will need to allocate page table pages to map
1606 	 * the entire 512GB of KVA space which is an unnecessary tax on
1607 	 * physical memory.
1608 	 *
1609 	 * Secondly, device memory mapped as part of setting up the low-
1610 	 * level console(s) is taken from KVA, starting at virtual_avail.
1611 	 * This is because cninit() is called after pmap_bootstrap() but
1612 	 * before vm_init() and pmap_init(). 20MB for a frame buffer is
1613 	 * not uncommon.
1614 	 */
1615 	pt_pages += 32;		/* 64MB additional slop. */
1616 #endif
1617 	nkpt = pt_pages;
1618 }
1619 
1620 /*
1621  * Returns the proper write/execute permission for a physical page that is
1622  * part of the initial boot allocations.
1623  *
1624  * If the page has kernel text, it is marked as read-only. If the page has
1625  * kernel read-only data, it is marked as read-only/not-executable. If the
1626  * page has only read-write data, it is marked as read-write/not-executable.
1627  * If the page is below/above the kernel range, it is marked as read-write.
1628  *
1629  * This function operates on 2M pages, since we map the kernel space that
1630  * way.
1631  */
1632 static inline pt_entry_t
bootaddr_rwx(vm_paddr_t pa)1633 bootaddr_rwx(vm_paddr_t pa)
1634 {
1635 	/*
1636 	 * The kernel is loaded at a 2MB-aligned address, and memory below that
1637 	 * need not be executable.  The .bss section is padded to a 2MB
1638 	 * boundary, so memory following the kernel need not be executable
1639 	 * either.  Preloaded kernel modules have their mapping permissions
1640 	 * fixed up by the linker.
1641 	 */
1642 	if (pa < trunc_2mpage(kernphys + btext - KERNSTART) ||
1643 	    pa >= trunc_2mpage(kernphys + _end - KERNSTART))
1644 		return (X86_PG_RW | pg_nx);
1645 
1646 	/*
1647 	 * The linker should ensure that the read-only and read-write
1648 	 * portions don't share the same 2M page, so this shouldn't
1649 	 * impact read-only data. However, in any case, any page with
1650 	 * read-write data needs to be read-write.
1651 	 */
1652 	if (pa >= trunc_2mpage(kernphys + brwsection - KERNSTART))
1653 		return (X86_PG_RW | pg_nx);
1654 
1655 	/*
1656 	 * Mark any 2M page containing kernel text as read-only. Mark
1657 	 * other pages with read-only data as read-only and not executable.
1658 	 * (It is likely a small portion of the read-only data section will
1659 	 * be marked as read-only, but executable. This should be acceptable
1660 	 * since the read-only protection will keep the data from changing.)
1661 	 * Note that fixups to the .text section will still work until we
1662 	 * set CR0.WP.
1663 	 */
1664 	if (pa < round_2mpage(kernphys + etext - KERNSTART))
1665 		return (0);
1666 	return (pg_nx);
1667 }
1668 
1669 static void
create_pagetables(vm_paddr_t * firstaddr)1670 create_pagetables(vm_paddr_t *firstaddr)
1671 {
1672 	pd_entry_t *pd_p;
1673 	pdp_entry_t *pdp_p;
1674 	pml4_entry_t *p4_p;
1675 	uint64_t DMPDkernphys;
1676 	vm_paddr_t pax;
1677 #ifdef KASAN
1678 	pt_entry_t *pt_p;
1679 	uint64_t KASANPDphys, KASANPTphys, KASANphys;
1680 	vm_offset_t kasankernbase;
1681 	int kasankpdpi, kasankpdi, nkasanpte;
1682 #endif
1683 	int i, j, ndm1g, nkpdpe, nkdmpde;
1684 
1685 	TSENTER();
1686 	/* Allocate page table pages for the direct map */
1687 	ndmpdp = howmany(ptoa(Maxmem), NBPDP);
1688 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
1689 		ndmpdp = 4;
1690 	ndmpdpphys = howmany(ndmpdp, NPDPEPG);
1691 	if (ndmpdpphys > NDMPML4E) {
1692 		/*
1693 		 * Each NDMPML4E allows 512 GB, so limit to that,
1694 		 * and then readjust ndmpdp and ndmpdpphys.
1695 		 */
1696 		printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
1697 		Maxmem = atop(NDMPML4E * NBPML4);
1698 		ndmpdpphys = NDMPML4E;
1699 		ndmpdp = NDMPML4E * NPDEPG;
1700 	}
1701 	DMPDPphys = allocpages(firstaddr, ndmpdpphys);
1702 	ndm1g = 0;
1703 	if ((amd_feature & AMDID_PAGE1GB) != 0) {
1704 		/*
1705 		 * Calculate the number of 1G pages that will fully fit in
1706 		 * Maxmem.
1707 		 */
1708 		ndm1g = ptoa(Maxmem) >> PDPSHIFT;
1709 
1710 		/*
1711 		 * Allocate 2M pages for the kernel. These will be used in
1712 		 * place of the one or more 1G pages from ndm1g that maps
1713 		 * kernel memory into DMAP.
1714 		 */
1715 		nkdmpde = howmany((vm_offset_t)brwsection - KERNSTART +
1716 		    kernphys - rounddown2(kernphys, NBPDP), NBPDP);
1717 		DMPDkernphys = allocpages(firstaddr, nkdmpde);
1718 	}
1719 	if (ndm1g < ndmpdp)
1720 		DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
1721 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
1722 
1723 	/* Allocate pages. */
1724 	KPML4phys = allocpages(firstaddr, 1);
1725 	KPDPphys = allocpages(firstaddr, NKPML4E);
1726 #ifdef KASAN
1727 	KASANPDPphys = allocpages(firstaddr, NKASANPML4E);
1728 	KASANPDphys = allocpages(firstaddr, 1);
1729 #endif
1730 #ifdef KMSAN
1731 	/*
1732 	 * The KMSAN shadow maps are initially left unpopulated, since there is
1733 	 * no need to shadow memory above KERNBASE.
1734 	 */
1735 	KMSANSHADPDPphys = allocpages(firstaddr, NKMSANSHADPML4E);
1736 	KMSANORIGPDPphys = allocpages(firstaddr, NKMSANORIGPML4E);
1737 #endif
1738 
1739 	/*
1740 	 * Allocate the initial number of kernel page table pages required to
1741 	 * bootstrap.  We defer this until after all memory-size dependent
1742 	 * allocations are done (e.g. direct map), so that we don't have to
1743 	 * build in too much slop in our estimate.
1744 	 *
1745 	 * Note that when NKPML4E > 1, we have an empty page underneath
1746 	 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
1747 	 * pages.  (pmap_enter requires a PD page to exist for each KPML4E.)
1748 	 */
1749 	nkpt_init(*firstaddr);
1750 	nkpdpe = NKPDPE(nkpt);
1751 
1752 	KPTphys = allocpages(firstaddr, nkpt);
1753 	KPDphys = allocpages(firstaddr, nkpdpe);
1754 
1755 #ifdef KASAN
1756 	nkasanpte = howmany(nkpt, KASAN_SHADOW_SCALE);
1757 	KASANPTphys = allocpages(firstaddr, nkasanpte);
1758 	KASANphys = allocpages(firstaddr, nkasanpte * NPTEPG);
1759 #endif
1760 
1761 	/*
1762 	 * Connect the zero-filled PT pages to their PD entries.  This
1763 	 * implicitly maps the PT pages at their correct locations within
1764 	 * the PTmap.
1765 	 */
1766 	pd_p = (pd_entry_t *)KPDphys;
1767 	for (i = 0; i < nkpt; i++)
1768 		pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1769 
1770 	/*
1771 	 * Map from start of the kernel in physical memory (staging
1772 	 * area) to the end of loader preallocated memory using 2MB
1773 	 * pages.  This replaces some of the PD entries created above.
1774 	 * For compatibility, identity map 2M at the start.
1775 	 */
1776 	pd_p[0] = X86_PG_V | PG_PS | pg_g | X86_PG_M | X86_PG_A |
1777 	    X86_PG_RW | pg_nx;
1778 	for (i = 1, pax = kernphys; pax < KERNend; i++, pax += NBPDR) {
1779 		/* Preset PG_M and PG_A because demotion expects it. */
1780 		pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1781 		    X86_PG_A | bootaddr_rwx(pax);
1782 	}
1783 
1784 	/*
1785 	 * Because we map the physical blocks in 2M pages, adjust firstaddr
1786 	 * to record the physical blocks we've actually mapped into kernel
1787 	 * virtual address space.
1788 	 */
1789 	if (*firstaddr < round_2mpage(KERNend))
1790 		*firstaddr = round_2mpage(KERNend);
1791 
1792 	/* And connect up the PD to the PDP (leaving room for L4 pages) */
1793 	pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
1794 	for (i = 0; i < nkpdpe; i++)
1795 		pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1796 
1797 #ifdef KASAN
1798 	kasankernbase = kasan_md_addr_to_shad(KERNBASE);
1799 	kasankpdpi = pmap_pdpe_index(kasankernbase);
1800 	kasankpdi = pmap_pde_index(kasankernbase);
1801 
1802 	pdp_p = (pdp_entry_t *)KASANPDPphys;
1803 	pdp_p[kasankpdpi] = (KASANPDphys | X86_PG_RW | X86_PG_V | pg_nx);
1804 
1805 	pd_p = (pd_entry_t *)KASANPDphys;
1806 	for (i = 0; i < nkasanpte; i++)
1807 		pd_p[i + kasankpdi] = (KASANPTphys + ptoa(i)) | X86_PG_RW |
1808 		    X86_PG_V | pg_nx;
1809 
1810 	pt_p = (pt_entry_t *)KASANPTphys;
1811 	for (i = 0; i < nkasanpte * NPTEPG; i++)
1812 		pt_p[i] = (KASANphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1813 		    X86_PG_M | X86_PG_A | pg_nx;
1814 #endif
1815 
1816 	/*
1817 	 * Now, set up the direct map region using 2MB and/or 1GB pages.  If
1818 	 * the end of physical memory is not aligned to a 1GB page boundary,
1819 	 * then the residual physical memory is mapped with 2MB pages.  Later,
1820 	 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
1821 	 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
1822 	 * that are partially used.
1823 	 */
1824 	pd_p = (pd_entry_t *)DMPDphys;
1825 	for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
1826 		pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
1827 		/* Preset PG_M and PG_A because demotion expects it. */
1828 		pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1829 		    X86_PG_M | X86_PG_A | pg_nx;
1830 	}
1831 	pdp_p = (pdp_entry_t *)DMPDPphys;
1832 	for (i = 0; i < ndm1g; i++) {
1833 		pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
1834 		/* Preset PG_M and PG_A because demotion expects it. */
1835 		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1836 		    X86_PG_M | X86_PG_A | pg_nx;
1837 	}
1838 	for (j = 0; i < ndmpdp; i++, j++) {
1839 		pdp_p[i] = DMPDphys + ptoa(j);
1840 		pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
1841 	}
1842 
1843 	/*
1844 	 * Instead of using a 1G page for the memory containing the kernel,
1845 	 * use 2M pages with read-only and no-execute permissions.  (If using 1G
1846 	 * pages, this will partially overwrite the PDPEs above.)
1847 	 */
1848 	if (ndm1g > 0) {
1849 		pd_p = (pd_entry_t *)DMPDkernphys;
1850 		for (i = 0, pax = rounddown2(kernphys, NBPDP);
1851 		    i < NPDEPG * nkdmpde; i++, pax += NBPDR) {
1852 			pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1853 			    X86_PG_A | pg_nx | bootaddr_rwx(pax);
1854 		}
1855 		j = rounddown2(kernphys, NBPDP) >> PDPSHIFT;
1856 		for (i = 0; i < nkdmpde; i++) {
1857 			pdp_p[i + j] = (DMPDkernphys + ptoa(i)) |
1858 			    X86_PG_RW | X86_PG_V | pg_nx;
1859 		}
1860 	}
1861 
1862 	/* And recursively map PML4 to itself in order to get PTmap */
1863 	p4_p = (pml4_entry_t *)KPML4phys;
1864 	p4_p[PML4PML4I] = KPML4phys;
1865 	p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
1866 
1867 #ifdef KASAN
1868 	/* Connect the KASAN shadow map slots up to the PML4. */
1869 	for (i = 0; i < NKASANPML4E; i++) {
1870 		p4_p[KASANPML4I + i] = KASANPDPphys + ptoa(i);
1871 		p4_p[KASANPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1872 	}
1873 #endif
1874 
1875 #ifdef KMSAN
1876 	/* Connect the KMSAN shadow map slots up to the PML4. */
1877 	for (i = 0; i < NKMSANSHADPML4E; i++) {
1878 		p4_p[KMSANSHADPML4I + i] = KMSANSHADPDPphys + ptoa(i);
1879 		p4_p[KMSANSHADPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1880 	}
1881 
1882 	/* Connect the KMSAN origin map slots up to the PML4. */
1883 	for (i = 0; i < NKMSANORIGPML4E; i++) {
1884 		p4_p[KMSANORIGPML4I + i] = KMSANORIGPDPphys + ptoa(i);
1885 		p4_p[KMSANORIGPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1886 	}
1887 #endif
1888 
1889 	/* Connect the Direct Map slots up to the PML4. */
1890 	for (i = 0; i < ndmpdpphys; i++) {
1891 		p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
1892 		p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1893 	}
1894 
1895 	/* Connect the KVA slots up to the PML4 */
1896 	for (i = 0; i < NKPML4E; i++) {
1897 		p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
1898 		p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
1899 	}
1900 
1901 	kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
1902 	TSEXIT();
1903 }
1904 
1905 /*
1906  *	Bootstrap the system enough to run with virtual memory.
1907  *
1908  *	On amd64 this is called after mapping has already been enabled
1909  *	and just syncs the pmap module with what has already been done.
1910  *	[We can't call it easily with mapping off since the kernel is not
1911  *	mapped with PA == VA, hence we would have to relocate every address
1912  *	from the linked base (virtual) address "KERNBASE" to the actual
1913  *	(physical) address starting relative to 0]
1914  */
1915 void
pmap_bootstrap(vm_paddr_t * firstaddr)1916 pmap_bootstrap(vm_paddr_t *firstaddr)
1917 {
1918 	vm_offset_t va;
1919 	pt_entry_t *pte, *pcpu_pte;
1920 	struct region_descriptor r_gdt;
1921 	uint64_t cr4, pcpu0_phys;
1922 	u_long res;
1923 	int i;
1924 
1925 	TSENTER();
1926 	KERNend = *firstaddr;
1927 	res = atop(KERNend - (vm_paddr_t)kernphys);
1928 
1929 	if (!pti)
1930 		pg_g = X86_PG_G;
1931 
1932 	/*
1933 	 * Create an initial set of page tables to run the kernel in.
1934 	 */
1935 	create_pagetables(firstaddr);
1936 
1937 	pcpu0_phys = allocpages(firstaddr, 1);
1938 
1939 	/*
1940 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
1941 	 * preallocated kernel page table pages so that vm_page structures
1942 	 * representing these pages will be created.  The vm_page structures
1943 	 * are required for promotion of the corresponding kernel virtual
1944 	 * addresses to superpage mappings.
1945 	 */
1946 	vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1947 
1948 	/*
1949 	 * Account for the virtual addresses mapped by create_pagetables().
1950 	 */
1951 	virtual_avail = (vm_offset_t)KERNSTART + round_2mpage(KERNend -
1952 	    (vm_paddr_t)kernphys);
1953 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1954 
1955 	/*
1956 	 * Enable PG_G global pages, then switch to the kernel page
1957 	 * table from the bootstrap page table.  After the switch, it
1958 	 * is possible to enable SMEP and SMAP since PG_U bits are
1959 	 * correct now.
1960 	 */
1961 	cr4 = rcr4();
1962 	cr4 |= CR4_PGE;
1963 	load_cr4(cr4);
1964 	load_cr3(KPML4phys);
1965 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
1966 		cr4 |= CR4_SMEP;
1967 	if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
1968 		cr4 |= CR4_SMAP;
1969 	load_cr4(cr4);
1970 
1971 	/*
1972 	 * Initialize the kernel pmap (which is statically allocated).
1973 	 * Count bootstrap data as being resident in case any of this data is
1974 	 * later unmapped (using pmap_remove()) and freed.
1975 	 */
1976 	PMAP_LOCK_INIT(kernel_pmap);
1977 	kernel_pmap->pm_pmltop = kernel_pml4;
1978 	kernel_pmap->pm_cr3 = KPML4phys;
1979 	kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
1980 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1981 	kernel_pmap->pm_stats.resident_count = res;
1982 	vm_radix_init(&kernel_pmap->pm_root);
1983 	kernel_pmap->pm_flags = pmap_flags;
1984 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
1985 		rangeset_init(&kernel_pmap->pm_pkru, pkru_dup_range,
1986 		    pkru_free_range, kernel_pmap, M_NOWAIT);
1987 	}
1988 
1989 	/*
1990 	 * The kernel pmap is always active on all CPUs.  Once CPUs are
1991 	 * enumerated, the mask will be set equal to all_cpus.
1992 	 */
1993 	CPU_FILL(&kernel_pmap->pm_active);
1994 
1995  	/*
1996 	 * Initialize the TLB invalidations generation number lock.
1997 	 */
1998 	mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
1999 
2000 	/*
2001 	 * Reserve some special page table entries/VA space for temporary
2002 	 * mapping of pages.
2003 	 */
2004 #define	SYSMAP(c, p, v, n)	\
2005 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
2006 
2007 	va = virtual_avail;
2008 	pte = vtopte(va);
2009 
2010 	/*
2011 	 * Crashdump maps.  The first page is reused as CMAP1 for the
2012 	 * memory test.
2013 	 */
2014 	SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
2015 	CADDR1 = crashdumpmap;
2016 
2017 	SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
2018 	virtual_avail = va;
2019 
2020 	/*
2021 	 * Map the BSP PCPU now, the rest of the PCPUs are mapped by
2022 	 * amd64_mp_alloc_pcpu()/start_all_aps() when we know the
2023 	 * number of CPUs and NUMA affinity.
2024 	 */
2025 	pcpu_pte[0] = pcpu0_phys | X86_PG_V | X86_PG_RW | pg_g | pg_nx |
2026 	    X86_PG_M | X86_PG_A;
2027 	for (i = 1; i < MAXCPU; i++)
2028 		pcpu_pte[i] = 0;
2029 
2030 	/*
2031 	 * Re-initialize PCPU area for BSP after switching.
2032 	 * Make hardware use gdt and common_tss from the new PCPU.
2033 	 */
2034 	STAILQ_INIT(&cpuhead);
2035 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2036 	pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
2037 	amd64_bsp_pcpu_init1(&__pcpu[0]);
2038 	amd64_bsp_ist_init(&__pcpu[0]);
2039 	__pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
2040 	    IOPERM_BITMAP_SIZE;
2041 	memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
2042 	    sizeof(struct user_segment_descriptor));
2043 	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
2044 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2045 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2046 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2047 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2048 	lgdt(&r_gdt);
2049 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2050 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2051 	__pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
2052 	__pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
2053 
2054 	/*
2055 	 * Initialize the PAT MSR.
2056 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
2057 	 * side-effect, invalidates stale PG_G TLB entries that might
2058 	 * have been created in our pre-boot environment.
2059 	 */
2060 	pmap_init_pat();
2061 
2062 	/* Initialize TLB Context Id. */
2063 	if (pmap_pcid_enabled) {
2064 		kernel_pmap->pm_pcidp = (void *)(uintptr_t)
2065 		    offsetof(struct pcpu, pc_kpmap_store);
2066 
2067 		PCPU_SET(kpmap_store.pm_pcid, PMAP_PCID_KERN);
2068 		PCPU_SET(kpmap_store.pm_gen, 1);
2069 
2070 		/*
2071 		 * PMAP_PCID_KERN + 1 is used for initialization of
2072 		 * proc0 pmap.  The pmap' pcid state might be used by
2073 		 * EFIRT entry before first context switch, so it
2074 		 * needs to be valid.
2075 		 */
2076 		PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
2077 		PCPU_SET(pcid_gen, 1);
2078 
2079 		/*
2080 		 * pcpu area for APs is zeroed during AP startup.
2081 		 * pc_pcid_next and pc_pcid_gen are initialized by AP
2082 		 * during pcpu setup.
2083 		 */
2084 		load_cr4(rcr4() | CR4_PCIDE);
2085 	}
2086 	TSEXIT();
2087 }
2088 
2089 /*
2090  * Setup the PAT MSR.
2091  */
2092 void
pmap_init_pat(void)2093 pmap_init_pat(void)
2094 {
2095 	uint64_t pat_msr;
2096 	u_long cr0, cr4;
2097 	int i;
2098 
2099 	/* Bail if this CPU doesn't implement PAT. */
2100 	if ((cpu_feature & CPUID_PAT) == 0)
2101 		panic("no PAT??");
2102 
2103 	/* Set default PAT index table. */
2104 	for (i = 0; i < PAT_INDEX_SIZE; i++)
2105 		pat_index[i] = -1;
2106 	pat_index[PAT_WRITE_BACK] = 0;
2107 	pat_index[PAT_WRITE_THROUGH] = 1;
2108 	pat_index[PAT_UNCACHEABLE] = 3;
2109 	pat_index[PAT_WRITE_COMBINING] = 6;
2110 	pat_index[PAT_WRITE_PROTECTED] = 5;
2111 	pat_index[PAT_UNCACHED] = 2;
2112 
2113 	/*
2114 	 * Initialize default PAT entries.
2115 	 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
2116 	 * Program 5 and 6 as WP and WC.
2117 	 *
2118 	 * Leave 4 and 7 as WB and UC.  Note that a recursive page table
2119 	 * mapping for a 2M page uses a PAT value with the bit 3 set due
2120 	 * to its overload with PG_PS.
2121 	 */
2122 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
2123 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
2124 	    PAT_VALUE(2, PAT_UNCACHED) |
2125 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
2126 	    PAT_VALUE(4, PAT_WRITE_BACK) |
2127 	    PAT_VALUE(5, PAT_WRITE_PROTECTED) |
2128 	    PAT_VALUE(6, PAT_WRITE_COMBINING) |
2129 	    PAT_VALUE(7, PAT_UNCACHEABLE);
2130 
2131 	/* Disable PGE. */
2132 	cr4 = rcr4();
2133 	load_cr4(cr4 & ~CR4_PGE);
2134 
2135 	/* Disable caches (CD = 1, NW = 0). */
2136 	cr0 = rcr0();
2137 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
2138 
2139 	/* Flushes caches and TLBs. */
2140 	wbinvd();
2141 	invltlb();
2142 
2143 	/* Update PAT and index table. */
2144 	wrmsr(MSR_PAT, pat_msr);
2145 
2146 	/* Flush caches and TLBs again. */
2147 	wbinvd();
2148 	invltlb();
2149 
2150 	/* Restore caches and PGE. */
2151 	load_cr0(cr0);
2152 	load_cr4(cr4);
2153 }
2154 
2155 vm_page_t
pmap_page_alloc_below_4g(bool zeroed)2156 pmap_page_alloc_below_4g(bool zeroed)
2157 {
2158 	return (vm_page_alloc_noobj_contig((zeroed ? VM_ALLOC_ZERO : 0),
2159 	    1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT));
2160 }
2161 
2162 extern const char la57_trampoline[], la57_trampoline_gdt_desc[],
2163     la57_trampoline_gdt[], la57_trampoline_end[];
2164 
2165 static void
pmap_bootstrap_la57(void * arg __unused)2166 pmap_bootstrap_la57(void *arg __unused)
2167 {
2168 	char *v_code;
2169 	pml5_entry_t *v_pml5;
2170 	pml4_entry_t *v_pml4;
2171 	pdp_entry_t *v_pdp;
2172 	pd_entry_t *v_pd;
2173 	pt_entry_t *v_pt;
2174 	vm_page_t m_code, m_pml4, m_pdp, m_pd, m_pt, m_pml5;
2175 	void (*la57_tramp)(uint64_t pml5);
2176 	struct region_descriptor r_gdt;
2177 
2178 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
2179 		return;
2180 	TUNABLE_INT_FETCH("vm.pmap.la57", &la57);
2181 	if (!la57)
2182 		return;
2183 
2184 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2185 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2186 
2187 	m_code = pmap_page_alloc_below_4g(true);
2188 	v_code = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_code));
2189 	m_pml5 = pmap_page_alloc_below_4g(true);
2190 	KPML5phys = VM_PAGE_TO_PHYS(m_pml5);
2191 	v_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(KPML5phys);
2192 	m_pml4 = pmap_page_alloc_below_4g(true);
2193 	v_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pml4));
2194 	m_pdp = pmap_page_alloc_below_4g(true);
2195 	v_pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pdp));
2196 	m_pd = pmap_page_alloc_below_4g(true);
2197 	v_pd = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd));
2198 	m_pt = pmap_page_alloc_below_4g(true);
2199 	v_pt = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pt));
2200 
2201 	/*
2202 	 * Map m_code 1:1, it appears below 4G in KVA due to physical
2203 	 * address being below 4G.  Since kernel KVA is in upper half,
2204 	 * the pml4e should be zero and free for temporary use.
2205 	 */
2206 	kernel_pmap->pm_pmltop[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2207 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2208 	    X86_PG_M;
2209 	v_pdp[pmap_pdpe_index(VM_PAGE_TO_PHYS(m_code))] =
2210 	    VM_PAGE_TO_PHYS(m_pd) | X86_PG_V | X86_PG_RW | X86_PG_A |
2211 	    X86_PG_M;
2212 	v_pd[pmap_pde_index(VM_PAGE_TO_PHYS(m_code))] =
2213 	    VM_PAGE_TO_PHYS(m_pt) | X86_PG_V | X86_PG_RW | X86_PG_A |
2214 	    X86_PG_M;
2215 	v_pt[pmap_pte_index(VM_PAGE_TO_PHYS(m_code))] =
2216 	    VM_PAGE_TO_PHYS(m_code) | X86_PG_V | X86_PG_RW | X86_PG_A |
2217 	    X86_PG_M;
2218 
2219 	/*
2220 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
2221 	 * entering all existing kernel mappings into level 5 table.
2222 	 */
2223 	v_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
2224 	    X86_PG_RW | X86_PG_A | X86_PG_M | pg_g;
2225 
2226 	/*
2227 	 * Add pml5 entry for 1:1 trampoline mapping after LA57 is turned on.
2228 	 */
2229 	v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))] =
2230 	    VM_PAGE_TO_PHYS(m_pml4) | X86_PG_V | X86_PG_RW | X86_PG_A |
2231 	    X86_PG_M;
2232 	v_pml4[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2233 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2234 	    X86_PG_M;
2235 
2236 	/*
2237 	 * Copy and call the 48->57 trampoline, hope we return there, alive.
2238 	 */
2239 	bcopy(la57_trampoline, v_code, la57_trampoline_end - la57_trampoline);
2240 	*(u_long *)(v_code + 2 + (la57_trampoline_gdt_desc - la57_trampoline)) =
2241 	    la57_trampoline_gdt - la57_trampoline + VM_PAGE_TO_PHYS(m_code);
2242 	la57_tramp = (void (*)(uint64_t))VM_PAGE_TO_PHYS(m_code);
2243 	invlpg((vm_offset_t)la57_tramp);
2244 	la57_tramp(KPML5phys);
2245 
2246 	/*
2247 	 * gdt was necessary reset, switch back to our gdt.
2248 	 */
2249 	lgdt(&r_gdt);
2250 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2251 	load_ds(_udatasel);
2252 	load_es(_udatasel);
2253 	load_fs(_ufssel);
2254 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2255 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2256 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2257 
2258 	/*
2259 	 * Now unmap the trampoline, and free the pages.
2260 	 * Clear pml5 entry used for 1:1 trampoline mapping.
2261 	 */
2262 	pte_clear(&v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))]);
2263 	invlpg((vm_offset_t)v_code);
2264 	vm_page_free(m_code);
2265 	vm_page_free(m_pdp);
2266 	vm_page_free(m_pd);
2267 	vm_page_free(m_pt);
2268 
2269 	/*
2270 	 * Recursively map PML5 to itself in order to get PTmap and
2271 	 * PDmap.
2272 	 */
2273 	v_pml5[PML5PML5I] = KPML5phys | X86_PG_RW | X86_PG_V | pg_nx;
2274 
2275 	vtoptem = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
2276 	    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2277 	PTmap = (vm_offset_t)P5Tmap;
2278 	vtopdem = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
2279 	    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2280 	PDmap = (vm_offset_t)P5Dmap;
2281 
2282 	kernel_pmap->pm_cr3 = KPML5phys;
2283 	kernel_pmap->pm_pmltop = v_pml5;
2284 	pmap_pt_page_count_adj(kernel_pmap, 1);
2285 }
2286 SYSINIT(la57, SI_SUB_KMEM, SI_ORDER_ANY, pmap_bootstrap_la57, NULL);
2287 
2288 /*
2289  *	Initialize a vm_page's machine-dependent fields.
2290  */
2291 void
pmap_page_init(vm_page_t m)2292 pmap_page_init(vm_page_t m)
2293 {
2294 
2295 	TAILQ_INIT(&m->md.pv_list);
2296 	m->md.pat_mode = PAT_WRITE_BACK;
2297 }
2298 
2299 static int pmap_allow_2m_x_ept;
2300 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
2301     &pmap_allow_2m_x_ept, 0,
2302     "Allow executable superpage mappings in EPT");
2303 
2304 void
pmap_allow_2m_x_ept_recalculate(void)2305 pmap_allow_2m_x_ept_recalculate(void)
2306 {
2307 	/*
2308 	 * SKL002, SKL012S.  Since the EPT format is only used by
2309 	 * Intel CPUs, the vendor check is merely a formality.
2310 	 */
2311 	if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
2312 	    (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
2313 	    (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
2314 	    (CPUID_TO_MODEL(cpu_id) == 0x26 ||	/* Atoms */
2315 	    CPUID_TO_MODEL(cpu_id) == 0x27 ||
2316 	    CPUID_TO_MODEL(cpu_id) == 0x35 ||
2317 	    CPUID_TO_MODEL(cpu_id) == 0x36 ||
2318 	    CPUID_TO_MODEL(cpu_id) == 0x37 ||
2319 	    CPUID_TO_MODEL(cpu_id) == 0x86 ||
2320 	    CPUID_TO_MODEL(cpu_id) == 0x1c ||
2321 	    CPUID_TO_MODEL(cpu_id) == 0x4a ||
2322 	    CPUID_TO_MODEL(cpu_id) == 0x4c ||
2323 	    CPUID_TO_MODEL(cpu_id) == 0x4d ||
2324 	    CPUID_TO_MODEL(cpu_id) == 0x5a ||
2325 	    CPUID_TO_MODEL(cpu_id) == 0x5c ||
2326 	    CPUID_TO_MODEL(cpu_id) == 0x5d ||
2327 	    CPUID_TO_MODEL(cpu_id) == 0x5f ||
2328 	    CPUID_TO_MODEL(cpu_id) == 0x6e ||
2329 	    CPUID_TO_MODEL(cpu_id) == 0x7a ||
2330 	    CPUID_TO_MODEL(cpu_id) == 0x57 ||	/* Knights */
2331 	    CPUID_TO_MODEL(cpu_id) == 0x85))))
2332 		pmap_allow_2m_x_ept = 1;
2333 #ifndef BURN_BRIDGES
2334 	TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2335 #endif
2336 	TUNABLE_INT_FETCH("vm.pmap.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2337 }
2338 
2339 static bool
pmap_allow_2m_x_page(pmap_t pmap,bool executable)2340 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
2341 {
2342 
2343 	return (pmap->pm_type != PT_EPT || !executable ||
2344 	    !pmap_allow_2m_x_ept);
2345 }
2346 
2347 #ifdef NUMA
2348 static void
pmap_init_pv_table(void)2349 pmap_init_pv_table(void)
2350 {
2351 	struct pmap_large_md_page *pvd;
2352 	vm_size_t s;
2353 	long start, end, highest, pv_npg;
2354 	int domain, i, j, pages;
2355 
2356 	/*
2357 	 * For correctness we depend on the size being evenly divisible into a
2358 	 * page. As a tradeoff between performance and total memory use, the
2359 	 * entry is 64 bytes (aka one cacheline) in size. Not being smaller
2360 	 * avoids false-sharing, but not being 128 bytes potentially allows for
2361 	 * avoidable traffic due to adjacent cacheline prefetcher.
2362 	 *
2363 	 * Assert the size so that accidental changes fail to compile.
2364 	 */
2365 	CTASSERT((sizeof(*pvd) == 64));
2366 
2367 	/*
2368 	 * Calculate the size of the array.
2369 	 */
2370 	pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
2371 	pv_npg = howmany(pmap_last_pa, NBPDR);
2372 	s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
2373 	s = round_page(s);
2374 	pv_table = (struct pmap_large_md_page *)kva_alloc(s);
2375 	if (pv_table == NULL)
2376 		panic("%s: kva_alloc failed\n", __func__);
2377 
2378 	/*
2379 	 * Iterate physical segments to allocate space for respective pages.
2380 	 */
2381 	highest = -1;
2382 	s = 0;
2383 	for (i = 0; i < vm_phys_nsegs; i++) {
2384 		end = vm_phys_segs[i].end / NBPDR;
2385 		domain = vm_phys_segs[i].domain;
2386 
2387 		if (highest >= end)
2388 			continue;
2389 
2390 		start = highest + 1;
2391 		pvd = &pv_table[start];
2392 
2393 		pages = end - start + 1;
2394 		s = round_page(pages * sizeof(*pvd));
2395 		highest = start + (s / sizeof(*pvd)) - 1;
2396 
2397 		for (j = 0; j < s; j += PAGE_SIZE) {
2398 			vm_page_t m = vm_page_alloc_noobj_domain(domain, 0);
2399 			if (m == NULL)
2400 				panic("failed to allocate PV table page");
2401 			pmap_qenter((vm_offset_t)pvd + j, &m, 1);
2402 		}
2403 
2404 		for (j = 0; j < s / sizeof(*pvd); j++) {
2405 			rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
2406 			TAILQ_INIT(&pvd->pv_page.pv_list);
2407 			pvd->pv_page.pv_gen = 0;
2408 			pvd->pv_page.pat_mode = 0;
2409 			pvd->pv_invl_gen = 0;
2410 			pvd++;
2411 		}
2412 	}
2413 	pvd = &pv_dummy_large;
2414 	rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
2415 	TAILQ_INIT(&pvd->pv_page.pv_list);
2416 	pvd->pv_page.pv_gen = 0;
2417 	pvd->pv_page.pat_mode = 0;
2418 	pvd->pv_invl_gen = 0;
2419 }
2420 #else
2421 static void
pmap_init_pv_table(void)2422 pmap_init_pv_table(void)
2423 {
2424 	vm_size_t s;
2425 	long i, pv_npg;
2426 
2427 	/*
2428 	 * Initialize the pool of pv list locks.
2429 	 */
2430 	for (i = 0; i < NPV_LIST_LOCKS; i++)
2431 		rw_init(&pv_list_locks[i], "pmap pv list");
2432 
2433 	/*
2434 	 * Calculate the size of the pv head table for superpages.
2435 	 */
2436 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
2437 
2438 	/*
2439 	 * Allocate memory for the pv head table for superpages.
2440 	 */
2441 	s = (vm_size_t)pv_npg * sizeof(struct md_page);
2442 	s = round_page(s);
2443 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
2444 	for (i = 0; i < pv_npg; i++)
2445 		TAILQ_INIT(&pv_table[i].pv_list);
2446 	TAILQ_INIT(&pv_dummy.pv_list);
2447 }
2448 #endif
2449 
2450 /*
2451  *	Initialize the pmap module.
2452  *	Called by vm_init, to initialize any structures that the pmap
2453  *	system needs to map virtual memory.
2454  */
2455 void
pmap_init(void)2456 pmap_init(void)
2457 {
2458 	struct pmap_preinit_mapping *ppim;
2459 	vm_page_t m, mpte;
2460 	int error, i, ret, skz63;
2461 
2462 	/* L1TF, reserve page @0 unconditionally */
2463 	vm_page_blacklist_add(0, bootverbose);
2464 
2465 	/* Detect bare-metal Skylake Server and Skylake-X. */
2466 	if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
2467 	    CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
2468 		/*
2469 		 * Skylake-X errata SKZ63. Processor May Hang When
2470 		 * Executing Code In an HLE Transaction Region between
2471 		 * 40000000H and 403FFFFFH.
2472 		 *
2473 		 * Mark the pages in the range as preallocated.  It
2474 		 * seems to be impossible to distinguish between
2475 		 * Skylake Server and Skylake X.
2476 		 */
2477 		skz63 = 1;
2478 		TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
2479 		if (skz63 != 0) {
2480 			if (bootverbose)
2481 				printf("SKZ63: skipping 4M RAM starting "
2482 				    "at physical 1G\n");
2483 			for (i = 0; i < atop(0x400000); i++) {
2484 				ret = vm_page_blacklist_add(0x40000000 +
2485 				    ptoa(i), false);
2486 				if (!ret && bootverbose)
2487 					printf("page at %#lx already used\n",
2488 					    0x40000000 + ptoa(i));
2489 			}
2490 		}
2491 	}
2492 
2493 	/* IFU */
2494 	pmap_allow_2m_x_ept_recalculate();
2495 
2496 	/*
2497 	 * Initialize the vm page array entries for the kernel pmap's
2498 	 * page table pages.
2499 	 */
2500 	PMAP_LOCK(kernel_pmap);
2501 	for (i = 0; i < nkpt; i++) {
2502 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
2503 		KASSERT(mpte >= vm_page_array &&
2504 		    mpte < &vm_page_array[vm_page_array_size],
2505 		    ("pmap_init: page table page is out of range"));
2506 		mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
2507 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
2508 		mpte->ref_count = 1;
2509 
2510 		/*
2511 		 * Collect the page table pages that were replaced by a 2MB
2512 		 * page in create_pagetables().  They are zero filled.
2513 		 */
2514 		if ((i == 0 ||
2515 		    kernphys + ((vm_paddr_t)(i - 1) << PDRSHIFT) < KERNend) &&
2516 		    pmap_insert_pt_page(kernel_pmap, mpte, false, false))
2517 			panic("pmap_init: pmap_insert_pt_page failed");
2518 	}
2519 	PMAP_UNLOCK(kernel_pmap);
2520 	vm_wire_add(nkpt);
2521 
2522 	/*
2523 	 * If the kernel is running on a virtual machine, then it must assume
2524 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
2525 	 * be prepared for the hypervisor changing the vendor and family that
2526 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
2527 	 * 10h Erratum 383 is enabled if the processor's feature set does not
2528 	 * include at least one feature that is only supported by older Intel
2529 	 * or newer AMD processors.
2530 	 */
2531 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
2532 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
2533 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
2534 	    AMDID2_FMA4)) == 0)
2535 		workaround_erratum383 = 1;
2536 
2537 	/*
2538 	 * Are large page mappings enabled?
2539 	 */
2540 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
2541 	if (pg_ps_enabled) {
2542 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
2543 		    ("pmap_init: can't assign to pagesizes[1]"));
2544 		pagesizes[1] = NBPDR;
2545 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
2546 			KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
2547 			    ("pmap_init: can't assign to pagesizes[2]"));
2548 			pagesizes[2] = NBPDP;
2549 		}
2550 	}
2551 
2552 	/*
2553 	 * Initialize pv chunk lists.
2554 	 */
2555 	for (i = 0; i < PMAP_MEMDOM; i++) {
2556 		mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
2557 		TAILQ_INIT(&pv_chunks[i].pvc_list);
2558 	}
2559 	pmap_init_pv_table();
2560 
2561 	pmap_initialized = 1;
2562 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
2563 		ppim = pmap_preinit_mapping + i;
2564 		if (ppim->va == 0)
2565 			continue;
2566 		/* Make the direct map consistent */
2567 		if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
2568 			(void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
2569 			    ppim->sz, ppim->mode);
2570 		}
2571 		if (!bootverbose)
2572 			continue;
2573 		printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
2574 		    ppim->pa, ppim->va, ppim->sz, ppim->mode);
2575 	}
2576 
2577 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
2578 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
2579 	    (vmem_addr_t *)&qframe);
2580 	if (error != 0)
2581 		panic("qframe allocation failed");
2582 
2583 	lm_ents = 8;
2584 	TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
2585 	if (lm_ents > LMEPML4I - LMSPML4I + 1)
2586 		lm_ents = LMEPML4I - LMSPML4I + 1;
2587 #ifdef KMSAN
2588 	if (lm_ents > KMSANORIGPML4I - LMSPML4I) {
2589 		printf(
2590 	    "pmap: shrinking large map for KMSAN (%d slots to %ld slots)\n",
2591 		    lm_ents, KMSANORIGPML4I - LMSPML4I);
2592 		lm_ents = KMSANORIGPML4I - LMSPML4I;
2593 	}
2594 #endif
2595 	if (bootverbose)
2596 		printf("pmap: large map %u PML4 slots (%lu GB)\n",
2597 		    lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
2598 	if (lm_ents != 0) {
2599 		large_vmem = vmem_create("large", LARGEMAP_MIN_ADDRESS,
2600 		    (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
2601 		if (large_vmem == NULL) {
2602 			printf("pmap: cannot create large map\n");
2603 			lm_ents = 0;
2604 		}
2605 		for (i = 0; i < lm_ents; i++) {
2606 			m = pmap_large_map_getptp_unlocked();
2607 			/* XXXKIB la57 */
2608 			kernel_pml4[LMSPML4I + i] = X86_PG_V |
2609 			    X86_PG_RW | X86_PG_A | X86_PG_M | pg_nx |
2610 			    VM_PAGE_TO_PHYS(m);
2611 		}
2612 	}
2613 }
2614 
2615 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
2616     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
2617     "Maximum number of PML4 entries for use by large map (tunable).  "
2618     "Each entry corresponds to 512GB of address space.");
2619 
2620 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2621     "2MB page mapping counters");
2622 
2623 static COUNTER_U64_DEFINE_EARLY(pmap_pde_demotions);
2624 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, demotions,
2625     CTLFLAG_RD, &pmap_pde_demotions, "2MB page demotions");
2626 
2627 static COUNTER_U64_DEFINE_EARLY(pmap_pde_mappings);
2628 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
2629     &pmap_pde_mappings, "2MB page mappings");
2630 
2631 static COUNTER_U64_DEFINE_EARLY(pmap_pde_p_failures);
2632 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
2633     &pmap_pde_p_failures, "2MB page promotion failures");
2634 
2635 static COUNTER_U64_DEFINE_EARLY(pmap_pde_promotions);
2636 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
2637     &pmap_pde_promotions, "2MB page promotions");
2638 
2639 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2640     "1GB page mapping counters");
2641 
2642 static COUNTER_U64_DEFINE_EARLY(pmap_pdpe_demotions);
2643 SYSCTL_COUNTER_U64(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
2644     &pmap_pdpe_demotions, "1GB page demotions");
2645 
2646 /***************************************************
2647  * Low level helper routines.....
2648  ***************************************************/
2649 
2650 static pt_entry_t
pmap_swap_pat(pmap_t pmap,pt_entry_t entry)2651 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
2652 {
2653 	int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
2654 
2655 	switch (pmap->pm_type) {
2656 	case PT_X86:
2657 	case PT_RVI:
2658 		/* Verify that both PAT bits are not set at the same time */
2659 		KASSERT((entry & x86_pat_bits) != x86_pat_bits,
2660 		    ("Invalid PAT bits in entry %#lx", entry));
2661 
2662 		/* Swap the PAT bits if one of them is set */
2663 		if ((entry & x86_pat_bits) != 0)
2664 			entry ^= x86_pat_bits;
2665 		break;
2666 	case PT_EPT:
2667 		/*
2668 		 * Nothing to do - the memory attributes are represented
2669 		 * the same way for regular pages and superpages.
2670 		 */
2671 		break;
2672 	default:
2673 		panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
2674 	}
2675 
2676 	return (entry);
2677 }
2678 
2679 bool
pmap_is_valid_memattr(pmap_t pmap __unused,vm_memattr_t mode)2680 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
2681 {
2682 
2683 	return (mode >= 0 && mode < PAT_INDEX_SIZE &&
2684 	    pat_index[(int)mode] >= 0);
2685 }
2686 
2687 /*
2688  * Determine the appropriate bits to set in a PTE or PDE for a specified
2689  * caching mode.
2690  */
2691 int
pmap_cache_bits(pmap_t pmap,int mode,bool is_pde)2692 pmap_cache_bits(pmap_t pmap, int mode, bool is_pde)
2693 {
2694 	int cache_bits, pat_flag, pat_idx;
2695 
2696 	if (!pmap_is_valid_memattr(pmap, mode))
2697 		panic("Unknown caching mode %d\n", mode);
2698 
2699 	switch (pmap->pm_type) {
2700 	case PT_X86:
2701 	case PT_RVI:
2702 		/* The PAT bit is different for PTE's and PDE's. */
2703 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2704 
2705 		/* Map the caching mode to a PAT index. */
2706 		pat_idx = pat_index[mode];
2707 
2708 		/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
2709 		cache_bits = 0;
2710 		if (pat_idx & 0x4)
2711 			cache_bits |= pat_flag;
2712 		if (pat_idx & 0x2)
2713 			cache_bits |= PG_NC_PCD;
2714 		if (pat_idx & 0x1)
2715 			cache_bits |= PG_NC_PWT;
2716 		break;
2717 
2718 	case PT_EPT:
2719 		cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
2720 		break;
2721 
2722 	default:
2723 		panic("unsupported pmap type %d", pmap->pm_type);
2724 	}
2725 
2726 	return (cache_bits);
2727 }
2728 
2729 static int
pmap_cache_mask(pmap_t pmap,bool is_pde)2730 pmap_cache_mask(pmap_t pmap, bool is_pde)
2731 {
2732 	int mask;
2733 
2734 	switch (pmap->pm_type) {
2735 	case PT_X86:
2736 	case PT_RVI:
2737 		mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
2738 		break;
2739 	case PT_EPT:
2740 		mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
2741 		break;
2742 	default:
2743 		panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
2744 	}
2745 
2746 	return (mask);
2747 }
2748 
2749 static int
pmap_pat_index(pmap_t pmap,pt_entry_t pte,bool is_pde)2750 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
2751 {
2752 	int pat_flag, pat_idx;
2753 
2754 	pat_idx = 0;
2755 	switch (pmap->pm_type) {
2756 	case PT_X86:
2757 	case PT_RVI:
2758 		/* The PAT bit is different for PTE's and PDE's. */
2759 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2760 
2761 		if ((pte & pat_flag) != 0)
2762 			pat_idx |= 0x4;
2763 		if ((pte & PG_NC_PCD) != 0)
2764 			pat_idx |= 0x2;
2765 		if ((pte & PG_NC_PWT) != 0)
2766 			pat_idx |= 0x1;
2767 		break;
2768 	case PT_EPT:
2769 		if ((pte & EPT_PG_IGNORE_PAT) != 0)
2770 			panic("EPT PTE %#lx has no PAT memory type", pte);
2771 		pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
2772 		break;
2773 	}
2774 
2775 	/* See pmap_init_pat(). */
2776 	if (pat_idx == 4)
2777 		pat_idx = 0;
2778 	if (pat_idx == 7)
2779 		pat_idx = 3;
2780 
2781 	return (pat_idx);
2782 }
2783 
2784 bool
pmap_ps_enabled(pmap_t pmap)2785 pmap_ps_enabled(pmap_t pmap)
2786 {
2787 
2788 	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
2789 }
2790 
2791 static void
pmap_update_pde_store(pmap_t pmap,pd_entry_t * pde,pd_entry_t newpde)2792 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
2793 {
2794 
2795 	switch (pmap->pm_type) {
2796 	case PT_X86:
2797 		break;
2798 	case PT_RVI:
2799 	case PT_EPT:
2800 		/*
2801 		 * XXX
2802 		 * This is a little bogus since the generation number is
2803 		 * supposed to be bumped up when a region of the address
2804 		 * space is invalidated in the page tables.
2805 		 *
2806 		 * In this case the old PDE entry is valid but yet we want
2807 		 * to make sure that any mappings using the old entry are
2808 		 * invalidated in the TLB.
2809 		 *
2810 		 * The reason this works as expected is because we rendezvous
2811 		 * "all" host cpus and force any vcpu context to exit as a
2812 		 * side-effect.
2813 		 */
2814 		atomic_add_long(&pmap->pm_eptgen, 1);
2815 		break;
2816 	default:
2817 		panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
2818 	}
2819 	pde_store(pde, newpde);
2820 }
2821 
2822 /*
2823  * After changing the page size for the specified virtual address in the page
2824  * table, flush the corresponding entries from the processor's TLB.  Only the
2825  * calling processor's TLB is affected.
2826  *
2827  * The calling thread must be pinned to a processor.
2828  */
2829 static void
pmap_update_pde_invalidate(pmap_t pmap,vm_offset_t va,pd_entry_t newpde)2830 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
2831 {
2832 	pt_entry_t PG_G;
2833 
2834 	if (pmap_type_guest(pmap))
2835 		return;
2836 
2837 	KASSERT(pmap->pm_type == PT_X86,
2838 	    ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
2839 
2840 	PG_G = pmap_global_bit(pmap);
2841 
2842 	if ((newpde & PG_PS) == 0)
2843 		/* Demotion: flush a specific 2MB page mapping. */
2844 		pmap_invlpg(pmap, va);
2845 	else if ((newpde & PG_G) == 0)
2846 		/*
2847 		 * Promotion: flush every 4KB page mapping from the TLB
2848 		 * because there are too many to flush individually.
2849 		 */
2850 		invltlb();
2851 	else {
2852 		/*
2853 		 * Promotion: flush every 4KB page mapping from the TLB,
2854 		 * including any global (PG_G) mappings.
2855 		 */
2856 		invltlb_glob();
2857 	}
2858 }
2859 
2860 /*
2861  * The amd64 pmap uses different approaches to TLB invalidation
2862  * depending on the kernel configuration, available hardware features,
2863  * and known hardware errata.  The kernel configuration option that
2864  * has the greatest operational impact on TLB invalidation is PTI,
2865  * which is enabled automatically on affected Intel CPUs.  The most
2866  * impactful hardware features are first PCID, and then INVPCID
2867  * instruction presence.  PCID usage is quite different for PTI
2868  * vs. non-PTI.
2869  *
2870  * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
2871  *   the Meltdown bug in some Intel CPUs.  Under PTI, each user address
2872  *   space is served by two page tables, user and kernel.  The user
2873  *   page table only maps user space and a kernel trampoline.  The
2874  *   kernel trampoline includes the entirety of the kernel text but
2875  *   only the kernel data that is needed to switch from user to kernel
2876  *   mode.  The kernel page table maps the user and kernel address
2877  *   spaces in their entirety.  It is identical to the per-process
2878  *   page table used in non-PTI mode.
2879  *
2880  *   User page tables are only used when the CPU is in user mode.
2881  *   Consequently, some TLB invalidations can be postponed until the
2882  *   switch from kernel to user mode.  In contrast, the user
2883  *   space part of the kernel page table is used for copyout(9), so
2884  *   TLB invalidations on this page table cannot be similarly postponed.
2885  *
2886  *   The existence of a user mode page table for the given pmap is
2887  *   indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
2888  *   which case pm_ucr3 contains the %cr3 register value for the user
2889  *   mode page table's root.
2890  *
2891  * * The pm_active bitmask indicates which CPUs currently have the
2892  *   pmap active.  A CPU's bit is set on context switch to the pmap, and
2893  *   cleared on switching off this CPU.  For the kernel page table,
2894  *   the pm_active field is immutable and contains all CPUs.  The
2895  *   kernel page table is always logically active on every processor,
2896  *   but not necessarily in use by the hardware, e.g., in PTI mode.
2897  *
2898  *   When requesting invalidation of virtual addresses with
2899  *   pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
2900  *   all CPUs recorded as active in pm_active.  Updates to and reads
2901  *   from pm_active are not synchronized, and so they may race with
2902  *   each other.  Shootdown handlers are prepared to handle the race.
2903  *
2904  * * PCID is an optional feature of the long mode x86 MMU where TLB
2905  *   entries are tagged with the 'Process ID' of the address space
2906  *   they belong to.  This feature provides a limited namespace for
2907  *   process identifiers, 12 bits, supporting 4095 simultaneous IDs
2908  *   total.
2909  *
2910  *   Allocation of a PCID to a pmap is done by an algorithm described
2911  *   in section 15.12, "Other TLB Consistency Algorithms", of
2912  *   Vahalia's book "Unix Internals".  A PCID cannot be allocated for
2913  *   the whole lifetime of a pmap in pmap_pinit() due to the limited
2914  *   namespace.  Instead, a per-CPU, per-pmap PCID is assigned when
2915  *   the CPU is about to start caching TLB entries from a pmap,
2916  *   i.e., on the context switch that activates the pmap on the CPU.
2917  *
2918  *   The PCID allocator maintains a per-CPU, per-pmap generation
2919  *   count, pm_gen, which is incremented each time a new PCID is
2920  *   allocated.  On TLB invalidation, the generation counters for the
2921  *   pmap are zeroed, which signals the context switch code that the
2922  *   previously allocated PCID is no longer valid.  Effectively,
2923  *   zeroing any of these counters triggers a TLB shootdown for the
2924  *   given CPU/address space, due to the allocation of a new PCID.
2925  *
2926  *   Zeroing can be performed remotely.  Consequently, if a pmap is
2927  *   inactive on a CPU, then a TLB shootdown for that pmap and CPU can
2928  *   be initiated by an ordinary memory access to reset the target
2929  *   CPU's generation count within the pmap.  The CPU initiating the
2930  *   TLB shootdown does not need to send an IPI to the target CPU.
2931  *
2932  * * PTI + PCID.  The available PCIDs are divided into two sets: PCIDs
2933  *   for complete (kernel) page tables, and PCIDs for user mode page
2934  *   tables.  A user PCID value is obtained from the kernel PCID value
2935  *   by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
2936  *
2937  *   User space page tables are activated on return to user mode, by
2938  *   loading pm_ucr3 into %cr3.  If the PCPU(ucr3_load_mask) requests
2939  *   clearing bit 63 of the loaded ucr3, this effectively causes
2940  *   complete invalidation of the user mode TLB entries for the
2941  *   current pmap.  In which case, local invalidations of individual
2942  *   pages in the user page table are skipped.
2943  *
2944  * * Local invalidation, all modes.  If the requested invalidation is
2945  *   for a specific address or the total invalidation of a currently
2946  *   active pmap, then the TLB is flushed using INVLPG for a kernel
2947  *   page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
2948  *   user space page table(s).
2949  *
2950  *   If the INVPCID instruction is available, it is used to flush user
2951  *   entries from the kernel page table.
2952  *
2953  *   When PCID is enabled, the INVLPG instruction invalidates all TLB
2954  *   entries for the given page that either match the current PCID or
2955  *   are global. Since TLB entries for the same page under different
2956  *   PCIDs are unaffected, kernel pages which reside in all address
2957  *   spaces could be problematic.  We avoid the problem by creating
2958  *   all kernel PTEs with the global flag (PG_G) set, when PTI is
2959  *   disabled.
2960  *
2961  * * mode: PTI disabled, PCID present.  The kernel reserves PCID 0 for its
2962  *   address space, all other 4095 PCIDs are used for user mode spaces
2963  *   as described above.  A context switch allocates a new PCID if
2964  *   the recorded PCID is zero or the recorded generation does not match
2965  *   the CPU's generation, effectively flushing the TLB for this address space.
2966  *   Total remote invalidation is performed by zeroing pm_gen for all CPUs.
2967  *	local user page: INVLPG
2968  *	local kernel page: INVLPG
2969  *	local user total: INVPCID(CTX)
2970  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2971  *	remote user page, inactive pmap: zero pm_gen
2972  *	remote user page, active pmap: zero pm_gen + IPI:INVLPG
2973  *	(Both actions are required to handle the aforementioned pm_active races.)
2974  *	remote kernel page: IPI:INVLPG
2975  *	remote user total, inactive pmap: zero pm_gen
2976  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
2977  *          reload %cr3)
2978  *	(See note above about pm_active races.)
2979  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2980  *
2981  * PTI enabled, PCID present.
2982  *	local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
2983  *          for upt
2984  *	local kernel page: INVLPG
2985  *	local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
2986  *          on loading UCR3 into %cr3 for upt
2987  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2988  *	remote user page, inactive pmap: zero pm_gen
2989  *	remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
2990  *          INVPCID(ADDR) for upt)
2991  *	remote kernel page: IPI:INVLPG
2992  *	remote user total, inactive pmap: zero pm_gen
2993  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
2994  *          clear PCID_SAVE on loading UCR3 into $cr3 for upt)
2995  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2996  *
2997  *  No PCID.
2998  *	local user page: INVLPG
2999  *	local kernel page: INVLPG
3000  *	local user total: reload %cr3
3001  *	local kernel total: invltlb_glob()
3002  *	remote user page, inactive pmap: -
3003  *	remote user page, active pmap: IPI:INVLPG
3004  *	remote kernel page: IPI:INVLPG
3005  *	remote user total, inactive pmap: -
3006  *	remote user total, active pmap: IPI:(reload %cr3)
3007  *	remote kernel total: IPI:invltlb_glob()
3008  *  Since on return to user mode, the reload of %cr3 with ucr3 causes
3009  *  TLB invalidation, no specific action is required for user page table.
3010  *
3011  * EPT.  EPT pmaps do not map KVA, all mappings are userspace.
3012  * XXX TODO
3013  */
3014 
3015 #ifdef SMP
3016 /*
3017  * Interrupt the cpus that are executing in the guest context.
3018  * This will force the vcpu to exit and the cached EPT mappings
3019  * will be invalidated by the host before the next vmresume.
3020  */
3021 static __inline void
pmap_invalidate_ept(pmap_t pmap)3022 pmap_invalidate_ept(pmap_t pmap)
3023 {
3024 	smr_seq_t goal;
3025 	int ipinum;
3026 
3027 	sched_pin();
3028 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
3029 	    ("pmap_invalidate_ept: absurd pm_active"));
3030 
3031 	/*
3032 	 * The TLB mappings associated with a vcpu context are not
3033 	 * flushed each time a different vcpu is chosen to execute.
3034 	 *
3035 	 * This is in contrast with a process's vtop mappings that
3036 	 * are flushed from the TLB on each context switch.
3037 	 *
3038 	 * Therefore we need to do more than just a TLB shootdown on
3039 	 * the active cpus in 'pmap->pm_active'. To do this we keep
3040 	 * track of the number of invalidations performed on this pmap.
3041 	 *
3042 	 * Each vcpu keeps a cache of this counter and compares it
3043 	 * just before a vmresume. If the counter is out-of-date an
3044 	 * invept will be done to flush stale mappings from the TLB.
3045 	 *
3046 	 * To ensure that all vCPU threads have observed the new counter
3047 	 * value before returning, we use SMR.  Ordering is important here:
3048 	 * the VMM enters an SMR read section before loading the counter
3049 	 * and after updating the pm_active bit set.  Thus, pm_active is
3050 	 * a superset of active readers, and any reader that has observed
3051 	 * the goal has observed the new counter value.
3052 	 */
3053 	atomic_add_long(&pmap->pm_eptgen, 1);
3054 
3055 	goal = smr_advance(pmap->pm_eptsmr);
3056 
3057 	/*
3058 	 * Force the vcpu to exit and trap back into the hypervisor.
3059 	 */
3060 	ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
3061 	ipi_selected(pmap->pm_active, ipinum);
3062 	sched_unpin();
3063 
3064 	/*
3065 	 * Ensure that all active vCPUs will observe the new generation counter
3066 	 * value before executing any more guest instructions.
3067 	 */
3068 	smr_wait(pmap->pm_eptsmr, goal);
3069 }
3070 
3071 static inline void
pmap_invalidate_preipi_pcid(pmap_t pmap)3072 pmap_invalidate_preipi_pcid(pmap_t pmap)
3073 {
3074 	struct pmap_pcid *pcidp;
3075 	u_int cpuid, i;
3076 
3077 	sched_pin();
3078 
3079 	cpuid = PCPU_GET(cpuid);
3080 	if (pmap != PCPU_GET(curpmap))
3081 		cpuid = 0xffffffff;	/* An impossible value */
3082 
3083 	CPU_FOREACH(i) {
3084 		if (cpuid != i) {
3085 			pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
3086 			pcidp->pm_gen = 0;
3087 		}
3088 	}
3089 
3090 	/*
3091 	 * The fence is between stores to pm_gen and the read of the
3092 	 * pm_active mask.  We need to ensure that it is impossible
3093 	 * for us to miss the bit update in pm_active and
3094 	 * simultaneously observe a non-zero pm_gen in
3095 	 * pmap_activate_sw(), otherwise TLB update is missed.
3096 	 * Without the fence, IA32 allows such an outcome.  Note that
3097 	 * pm_active is updated by a locked operation, which provides
3098 	 * the reciprocal fence.
3099 	 */
3100 	atomic_thread_fence_seq_cst();
3101 }
3102 
3103 static void
pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)3104 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
3105 {
3106 	sched_pin();
3107 }
3108 
3109 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
3110 {
3111 	return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
3112 	    pmap_invalidate_preipi_nopcid);
3113 }
3114 
3115 static inline void
pmap_invalidate_page_pcid_cb(pmap_t pmap,vm_offset_t va,const bool invpcid_works1)3116 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
3117     const bool invpcid_works1)
3118 {
3119 	struct invpcid_descr d;
3120 	uint64_t kcr3, ucr3;
3121 	uint32_t pcid;
3122 
3123 	/*
3124 	 * Because pm_pcid is recalculated on a context switch, we
3125 	 * must ensure there is no preemption, not just pinning.
3126 	 * Otherwise, we might use a stale value below.
3127 	 */
3128 	CRITICAL_ASSERT(curthread);
3129 
3130 	/*
3131 	 * No need to do anything with user page tables invalidation
3132 	 * if there is no user page table, or invalidation is deferred
3133 	 * until the return to userspace.  ucr3_load_mask is stable
3134 	 * because we have preemption disabled.
3135 	 */
3136 	if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
3137 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3138 		return;
3139 
3140 	pcid = pmap_get_pcid(pmap);
3141 	if (invpcid_works1) {
3142 		d.pcid = pcid | PMAP_PCID_USER_PT;
3143 		d.pad = 0;
3144 		d.addr = va;
3145 		invpcid(&d, INVPCID_ADDR);
3146 	} else {
3147 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3148 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3149 		pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3150 	}
3151 }
3152 
3153 static void
pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap,vm_offset_t va)3154 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
3155 {
3156 	pmap_invalidate_page_pcid_cb(pmap, va, true);
3157 }
3158 
3159 static void
pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t va)3160 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
3161 {
3162 	pmap_invalidate_page_pcid_cb(pmap, va, false);
3163 }
3164 
3165 static void
pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused,vm_offset_t va __unused)3166 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
3167 {
3168 }
3169 
3170 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
3171 {
3172 	if (pmap_pcid_enabled)
3173 		return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
3174 		    pmap_invalidate_page_pcid_noinvpcid_cb);
3175 	return (pmap_invalidate_page_nopcid_cb);
3176 }
3177 
3178 static void
pmap_invalidate_page_curcpu_cb(pmap_t pmap,vm_offset_t va,vm_offset_t addr2 __unused)3179 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
3180     vm_offset_t addr2 __unused)
3181 {
3182 	if (pmap == kernel_pmap) {
3183 		pmap_invlpg(kernel_pmap, va);
3184 	} else if (pmap == PCPU_GET(curpmap)) {
3185 		invlpg(va);
3186 		pmap_invalidate_page_cb(pmap, va);
3187 	}
3188 }
3189 
3190 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3191 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3192 {
3193 	if (pmap_type_guest(pmap)) {
3194 		pmap_invalidate_ept(pmap);
3195 		return;
3196 	}
3197 
3198 	KASSERT(pmap->pm_type == PT_X86,
3199 	    ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
3200 
3201 	pmap_invalidate_preipi(pmap);
3202 	smp_masked_invlpg(va, pmap, pmap_invalidate_page_curcpu_cb);
3203 }
3204 
3205 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
3206 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
3207 
3208 static void
pmap_invalidate_range_pcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,const bool invpcid_works1)3209 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3210     const bool invpcid_works1)
3211 {
3212 	struct invpcid_descr d;
3213 	uint64_t kcr3, ucr3;
3214 	uint32_t pcid;
3215 
3216 	CRITICAL_ASSERT(curthread);
3217 
3218 	if (pmap != PCPU_GET(curpmap) ||
3219 	    pmap->pm_ucr3 == PMAP_NO_CR3 ||
3220 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3221 		return;
3222 
3223 	pcid = pmap_get_pcid(pmap);
3224 	if (invpcid_works1) {
3225 		d.pcid = pcid | PMAP_PCID_USER_PT;
3226 		d.pad = 0;
3227 		for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
3228 			invpcid(&d, INVPCID_ADDR);
3229 	} else {
3230 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3231 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3232 		pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3233 	}
3234 }
3235 
3236 static void
pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3237 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
3238     vm_offset_t eva)
3239 {
3240 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
3241 }
3242 
3243 static void
pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3244 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
3245     vm_offset_t eva)
3246 {
3247 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
3248 }
3249 
3250 static void
pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused,vm_offset_t sva __unused,vm_offset_t eva __unused)3251 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
3252     vm_offset_t eva __unused)
3253 {
3254 }
3255 
3256 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
3257     vm_offset_t))
3258 {
3259 	if (pmap_pcid_enabled)
3260 		return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
3261 		    pmap_invalidate_range_pcid_noinvpcid_cb);
3262 	return (pmap_invalidate_range_nopcid_cb);
3263 }
3264 
3265 static void
pmap_invalidate_range_curcpu_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3266 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3267 {
3268 	vm_offset_t addr;
3269 
3270 	if (pmap == kernel_pmap) {
3271 		if (PCPU_GET(pcid_invlpg_workaround)) {
3272 			struct invpcid_descr d = { 0 };
3273 
3274 			invpcid(&d, INVPCID_CTXGLOB);
3275 		} else {
3276 			for (addr = sva; addr < eva; addr += PAGE_SIZE)
3277 				invlpg(addr);
3278 		}
3279 	} else if (pmap == PCPU_GET(curpmap)) {
3280 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3281 			invlpg(addr);
3282 		pmap_invalidate_range_cb(pmap, sva, eva);
3283 	}
3284 }
3285 
3286 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3287 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3288 {
3289 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
3290 		pmap_invalidate_all(pmap);
3291 		return;
3292 	}
3293 
3294 	if (pmap_type_guest(pmap)) {
3295 		pmap_invalidate_ept(pmap);
3296 		return;
3297 	}
3298 
3299 	KASSERT(pmap->pm_type == PT_X86,
3300 	    ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
3301 
3302 	pmap_invalidate_preipi(pmap);
3303 	smp_masked_invlpg_range(sva, eva, pmap,
3304 	    pmap_invalidate_range_curcpu_cb);
3305 }
3306 
3307 static inline void
pmap_invalidate_all_pcid_cb(pmap_t pmap,bool invpcid_works1)3308 pmap_invalidate_all_pcid_cb(pmap_t pmap, bool invpcid_works1)
3309 {
3310 	struct invpcid_descr d;
3311 	uint64_t kcr3;
3312 	uint32_t pcid;
3313 
3314 	if (pmap == kernel_pmap) {
3315 		if (invpcid_works1) {
3316 			bzero(&d, sizeof(d));
3317 			invpcid(&d, INVPCID_CTXGLOB);
3318 		} else {
3319 			invltlb_glob();
3320 		}
3321 	} else if (pmap == PCPU_GET(curpmap)) {
3322 		CRITICAL_ASSERT(curthread);
3323 
3324 		pcid = pmap_get_pcid(pmap);
3325 		if (invpcid_works1) {
3326 			d.pcid = pcid;
3327 			d.pad = 0;
3328 			d.addr = 0;
3329 			invpcid(&d, INVPCID_CTX);
3330 		} else {
3331 			kcr3 = pmap->pm_cr3 | pcid;
3332 			load_cr3(kcr3);
3333 		}
3334 		if (pmap->pm_ucr3 != PMAP_NO_CR3)
3335 			PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
3336 	}
3337 }
3338 
3339 static void
pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)3340 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)
3341 {
3342 	pmap_invalidate_all_pcid_cb(pmap, true);
3343 }
3344 
3345 static void
pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)3346 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)
3347 {
3348 	pmap_invalidate_all_pcid_cb(pmap, false);
3349 }
3350 
3351 static void
pmap_invalidate_all_nopcid_cb(pmap_t pmap)3352 pmap_invalidate_all_nopcid_cb(pmap_t pmap)
3353 {
3354 	if (pmap == kernel_pmap)
3355 		invltlb_glob();
3356 	else if (pmap == PCPU_GET(curpmap))
3357 		invltlb();
3358 }
3359 
3360 DEFINE_IFUNC(static, void, pmap_invalidate_all_cb, (pmap_t))
3361 {
3362 	if (pmap_pcid_enabled)
3363 		return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
3364 		    pmap_invalidate_all_pcid_noinvpcid_cb);
3365 	return (pmap_invalidate_all_nopcid_cb);
3366 }
3367 
3368 static void
pmap_invalidate_all_curcpu_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3369 pmap_invalidate_all_curcpu_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3370     vm_offset_t addr2 __unused)
3371 {
3372 	pmap_invalidate_all_cb(pmap);
3373 }
3374 
3375 void
pmap_invalidate_all(pmap_t pmap)3376 pmap_invalidate_all(pmap_t pmap)
3377 {
3378 	if (pmap_type_guest(pmap)) {
3379 		pmap_invalidate_ept(pmap);
3380 		return;
3381 	}
3382 
3383 	KASSERT(pmap->pm_type == PT_X86,
3384 	    ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
3385 
3386 	pmap_invalidate_preipi(pmap);
3387 	smp_masked_invltlb(pmap, pmap_invalidate_all_curcpu_cb);
3388 }
3389 
3390 static void
pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,vm_offset_t va __unused,vm_offset_t addr2 __unused)3391 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
3392     vm_offset_t addr2 __unused)
3393 {
3394 	wbinvd();
3395 }
3396 
3397 void
pmap_invalidate_cache(void)3398 pmap_invalidate_cache(void)
3399 {
3400 	sched_pin();
3401 	smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
3402 }
3403 
3404 struct pde_action {
3405 	cpuset_t invalidate;	/* processors that invalidate their TLB */
3406 	pmap_t pmap;
3407 	vm_offset_t va;
3408 	pd_entry_t *pde;
3409 	pd_entry_t newpde;
3410 	u_int store;		/* processor that updates the PDE */
3411 };
3412 
3413 static void
pmap_update_pde_action(void * arg)3414 pmap_update_pde_action(void *arg)
3415 {
3416 	struct pde_action *act = arg;
3417 
3418 	if (act->store == PCPU_GET(cpuid))
3419 		pmap_update_pde_store(act->pmap, act->pde, act->newpde);
3420 }
3421 
3422 static void
pmap_update_pde_teardown(void * arg)3423 pmap_update_pde_teardown(void *arg)
3424 {
3425 	struct pde_action *act = arg;
3426 
3427 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
3428 		pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
3429 }
3430 
3431 /*
3432  * Change the page size for the specified virtual address in a way that
3433  * prevents any possibility of the TLB ever having two entries that map the
3434  * same virtual address using different page sizes.  This is the recommended
3435  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
3436  * machine check exception for a TLB state that is improperly diagnosed as a
3437  * hardware error.
3438  */
3439 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3440 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3441 {
3442 	struct pde_action act;
3443 	cpuset_t active, other_cpus;
3444 	u_int cpuid;
3445 
3446 	sched_pin();
3447 	cpuid = PCPU_GET(cpuid);
3448 	other_cpus = all_cpus;
3449 	CPU_CLR(cpuid, &other_cpus);
3450 	if (pmap == kernel_pmap || pmap_type_guest(pmap))
3451 		active = all_cpus;
3452 	else {
3453 		active = pmap->pm_active;
3454 	}
3455 	if (CPU_OVERLAP(&active, &other_cpus)) {
3456 		act.store = cpuid;
3457 		act.invalidate = active;
3458 		act.va = va;
3459 		act.pmap = pmap;
3460 		act.pde = pde;
3461 		act.newpde = newpde;
3462 		CPU_SET(cpuid, &active);
3463 		smp_rendezvous_cpus(active,
3464 		    smp_no_rendezvous_barrier, pmap_update_pde_action,
3465 		    pmap_update_pde_teardown, &act);
3466 	} else {
3467 		pmap_update_pde_store(pmap, pde, newpde);
3468 		if (CPU_ISSET(cpuid, &active))
3469 			pmap_update_pde_invalidate(pmap, va, newpde);
3470 	}
3471 	sched_unpin();
3472 }
3473 #else /* !SMP */
3474 /*
3475  * Normal, non-SMP, invalidation functions.
3476  */
3477 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3478 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3479 {
3480 	struct invpcid_descr d;
3481 	struct pmap_pcid *pcidp;
3482 	uint64_t kcr3, ucr3;
3483 	uint32_t pcid;
3484 
3485 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3486 		pmap->pm_eptgen++;
3487 		return;
3488 	}
3489 	KASSERT(pmap->pm_type == PT_X86,
3490 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3491 
3492 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3493 		invlpg(va);
3494 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3495 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3496 			critical_enter();
3497 			pcid = pmap_get_pcid(pmap);
3498 			if (invpcid_works) {
3499 				d.pcid = pcid | PMAP_PCID_USER_PT;
3500 				d.pad = 0;
3501 				d.addr = va;
3502 				invpcid(&d, INVPCID_ADDR);
3503 			} else {
3504 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3505 				ucr3 = pmap->pm_ucr3 | pcid |
3506 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3507 				pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3508 			}
3509 			critical_exit();
3510 		}
3511 	} else if (pmap_pcid_enabled) {
3512 		pcidp = zpcpu_get(pmap->pm_pcidp);
3513 		pcidp->pm_gen = 0;
3514 	}
3515 }
3516 
3517 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3518 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3519 {
3520 	struct invpcid_descr d;
3521 	struct pmap_pcid *pcidp;
3522 	vm_offset_t addr;
3523 	uint64_t kcr3, ucr3;
3524 	uint32_t pcid;
3525 
3526 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3527 		pmap->pm_eptgen++;
3528 		return;
3529 	}
3530 	KASSERT(pmap->pm_type == PT_X86,
3531 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3532 
3533 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3534 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3535 			invlpg(addr);
3536 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3537 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3538 			critical_enter();
3539 			pcid = pmap_get_pcid(pmap);
3540 			if (invpcid_works) {
3541 				d.pcid = pcid | PMAP_PCID_USER_PT;
3542 				d.pad = 0;
3543 				d.addr = sva;
3544 				for (; d.addr < eva; d.addr += PAGE_SIZE)
3545 					invpcid(&d, INVPCID_ADDR);
3546 			} else {
3547 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3548 				ucr3 = pmap->pm_ucr3 | pcid |
3549 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3550 				pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3551 			}
3552 			critical_exit();
3553 		}
3554 	} else if (pmap_pcid_enabled) {
3555 		pcidp = zpcpu_get(pmap->pm_pcidp);
3556 		pcidp->pm_gen = 0;
3557 	}
3558 }
3559 
3560 void
pmap_invalidate_all(pmap_t pmap)3561 pmap_invalidate_all(pmap_t pmap)
3562 {
3563 	struct invpcid_descr d;
3564 	struct pmap_pcid *pcidp;
3565 	uint64_t kcr3, ucr3;
3566 	uint32_t pcid;
3567 
3568 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3569 		pmap->pm_eptgen++;
3570 		return;
3571 	}
3572 	KASSERT(pmap->pm_type == PT_X86,
3573 	    ("pmap_invalidate_all: unknown type %d", pmap->pm_type));
3574 
3575 	if (pmap == kernel_pmap) {
3576 		if (pmap_pcid_enabled && invpcid_works) {
3577 			bzero(&d, sizeof(d));
3578 			invpcid(&d, INVPCID_CTXGLOB);
3579 		} else {
3580 			invltlb_glob();
3581 		}
3582 	} else if (pmap == PCPU_GET(curpmap)) {
3583 		if (pmap_pcid_enabled) {
3584 			critical_enter();
3585 			pcid = pmap_get_pcid(pmap);
3586 			if (invpcid_works) {
3587 				d.pcid = pcid;
3588 				d.pad = 0;
3589 				d.addr = 0;
3590 				invpcid(&d, INVPCID_CTX);
3591 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3592 					d.pcid |= PMAP_PCID_USER_PT;
3593 					invpcid(&d, INVPCID_CTX);
3594 				}
3595 			} else {
3596 				kcr3 = pmap->pm_cr3 | pcid;
3597 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3598 					ucr3 = pmap->pm_ucr3 | pcid |
3599 					    PMAP_PCID_USER_PT;
3600 					pmap_pti_pcid_invalidate(ucr3, kcr3);
3601 				} else
3602 					load_cr3(kcr3);
3603 			}
3604 			critical_exit();
3605 		} else {
3606 			invltlb();
3607 		}
3608 	} else if (pmap_pcid_enabled) {
3609 		pcidp = zpcpu_get(pmap->pm_pcidp);
3610 		pcidp->pm_gen = 0;
3611 	}
3612 }
3613 
3614 void
pmap_invalidate_cache(void)3615 pmap_invalidate_cache(void)
3616 {
3617 
3618 	wbinvd();
3619 }
3620 
3621 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3622 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3623 {
3624 	struct pmap_pcid *pcidp;
3625 
3626 	pmap_update_pde_store(pmap, pde, newpde);
3627 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
3628 		pmap_update_pde_invalidate(pmap, va, newpde);
3629 	else {
3630 		pcidp = zpcpu_get(pmap->pm_pcidp);
3631 		pcidp->pm_gen = 0;
3632 	}
3633 }
3634 #endif /* !SMP */
3635 
3636 static void
pmap_invalidate_pde_page(pmap_t pmap,vm_offset_t va,pd_entry_t pde)3637 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
3638 {
3639 
3640 	/*
3641 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
3642 	 * by a promotion that did not invalidate the 512 4KB page mappings
3643 	 * that might exist in the TLB.  Consequently, at this point, the TLB
3644 	 * may hold both 4KB and 2MB page mappings for the address range [va,
3645 	 * va + NBPDR).  Therefore, the entire range must be invalidated here.
3646 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
3647 	 * 4KB page mappings for the address range [va, va + NBPDR), and so a
3648 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
3649 	 * TLB.
3650 	 */
3651 	if ((pde & PG_PROMOTED) != 0)
3652 		pmap_invalidate_range(pmap, va, va + NBPDR - 1);
3653 	else
3654 		pmap_invalidate_page(pmap, va);
3655 }
3656 
3657 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
3658     (vm_offset_t sva, vm_offset_t eva))
3659 {
3660 
3661 	if ((cpu_feature & CPUID_SS) != 0)
3662 		return (pmap_invalidate_cache_range_selfsnoop);
3663 	if ((cpu_feature & CPUID_CLFSH) != 0)
3664 		return (pmap_force_invalidate_cache_range);
3665 	return (pmap_invalidate_cache_range_all);
3666 }
3667 
3668 #define PMAP_CLFLUSH_THRESHOLD   (2 * 1024 * 1024)
3669 
3670 static void
pmap_invalidate_cache_range_check_align(vm_offset_t sva,vm_offset_t eva)3671 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
3672 {
3673 
3674 	KASSERT((sva & PAGE_MASK) == 0,
3675 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
3676 	KASSERT((eva & PAGE_MASK) == 0,
3677 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
3678 }
3679 
3680 static void
pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,vm_offset_t eva)3681 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
3682 {
3683 
3684 	pmap_invalidate_cache_range_check_align(sva, eva);
3685 }
3686 
3687 void
pmap_force_invalidate_cache_range(vm_offset_t sva,vm_offset_t eva)3688 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
3689 {
3690 
3691 	sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
3692 
3693 	/*
3694 	 * XXX: Some CPUs fault, hang, or trash the local APIC
3695 	 * registers if we use CLFLUSH on the local APIC range.  The
3696 	 * local APIC is always uncached, so we don't need to flush
3697 	 * for that range anyway.
3698 	 */
3699 	if (pmap_kextract(sva) == lapic_paddr)
3700 		return;
3701 
3702 	if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
3703 		/*
3704 		 * Do per-cache line flush.  Use a locked
3705 		 * instruction to insure that previous stores are
3706 		 * included in the write-back.  The processor
3707 		 * propagates flush to other processors in the cache
3708 		 * coherence domain.
3709 		 */
3710 		atomic_thread_fence_seq_cst();
3711 		for (; sva < eva; sva += cpu_clflush_line_size)
3712 			clflushopt(sva);
3713 		atomic_thread_fence_seq_cst();
3714 	} else {
3715 		/*
3716 		 * Writes are ordered by CLFLUSH on Intel CPUs.
3717 		 */
3718 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3719 			mfence();
3720 		for (; sva < eva; sva += cpu_clflush_line_size)
3721 			clflush(sva);
3722 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3723 			mfence();
3724 	}
3725 }
3726 
3727 static void
pmap_invalidate_cache_range_all(vm_offset_t sva,vm_offset_t eva)3728 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
3729 {
3730 
3731 	pmap_invalidate_cache_range_check_align(sva, eva);
3732 	pmap_invalidate_cache();
3733 }
3734 
3735 /*
3736  * Remove the specified set of pages from the data and instruction caches.
3737  *
3738  * In contrast to pmap_invalidate_cache_range(), this function does not
3739  * rely on the CPU's self-snoop feature, because it is intended for use
3740  * when moving pages into a different cache domain.
3741  */
3742 void
pmap_invalidate_cache_pages(vm_page_t * pages,int count)3743 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
3744 {
3745 	vm_offset_t daddr, eva;
3746 	int i;
3747 	bool useclflushopt;
3748 
3749 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
3750 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
3751 	    ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
3752 		pmap_invalidate_cache();
3753 	else {
3754 		if (useclflushopt)
3755 			atomic_thread_fence_seq_cst();
3756 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3757 			mfence();
3758 		for (i = 0; i < count; i++) {
3759 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
3760 			eva = daddr + PAGE_SIZE;
3761 			for (; daddr < eva; daddr += cpu_clflush_line_size) {
3762 				if (useclflushopt)
3763 					clflushopt(daddr);
3764 				else
3765 					clflush(daddr);
3766 			}
3767 		}
3768 		if (useclflushopt)
3769 			atomic_thread_fence_seq_cst();
3770 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3771 			mfence();
3772 	}
3773 }
3774 
3775 void
pmap_flush_cache_range(vm_offset_t sva,vm_offset_t eva)3776 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
3777 {
3778 
3779 	pmap_invalidate_cache_range_check_align(sva, eva);
3780 
3781 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
3782 		pmap_force_invalidate_cache_range(sva, eva);
3783 		return;
3784 	}
3785 
3786 	/* See comment in pmap_force_invalidate_cache_range(). */
3787 	if (pmap_kextract(sva) == lapic_paddr)
3788 		return;
3789 
3790 	atomic_thread_fence_seq_cst();
3791 	for (; sva < eva; sva += cpu_clflush_line_size)
3792 		clwb(sva);
3793 	atomic_thread_fence_seq_cst();
3794 }
3795 
3796 void
pmap_flush_cache_phys_range(vm_paddr_t spa,vm_paddr_t epa,vm_memattr_t mattr)3797 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
3798 {
3799 	pt_entry_t *pte;
3800 	vm_offset_t vaddr;
3801 	int error __diagused;
3802 	int pte_bits;
3803 
3804 	KASSERT((spa & PAGE_MASK) == 0,
3805 	    ("pmap_flush_cache_phys_range: spa not page-aligned"));
3806 	KASSERT((epa & PAGE_MASK) == 0,
3807 	    ("pmap_flush_cache_phys_range: epa not page-aligned"));
3808 
3809 	if (spa < dmaplimit) {
3810 		pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
3811 		    dmaplimit, epa)));
3812 		if (dmaplimit >= epa)
3813 			return;
3814 		spa = dmaplimit;
3815 	}
3816 
3817 	pte_bits = pmap_cache_bits(kernel_pmap, mattr, false) | X86_PG_RW |
3818 	    X86_PG_V;
3819 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3820 	    &vaddr);
3821 	KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3822 	pte = vtopte(vaddr);
3823 	for (; spa < epa; spa += PAGE_SIZE) {
3824 		sched_pin();
3825 		pte_store(pte, spa | pte_bits);
3826 		pmap_invlpg(kernel_pmap, vaddr);
3827 		/* XXXKIB atomic inside flush_cache_range are excessive */
3828 		pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
3829 		sched_unpin();
3830 	}
3831 	vmem_free(kernel_arena, vaddr, PAGE_SIZE);
3832 }
3833 
3834 /*
3835  *	Routine:	pmap_extract
3836  *	Function:
3837  *		Extract the physical page address associated
3838  *		with the given map/virtual_address pair.
3839  */
3840 vm_paddr_t
pmap_extract(pmap_t pmap,vm_offset_t va)3841 pmap_extract(pmap_t pmap, vm_offset_t va)
3842 {
3843 	pdp_entry_t *pdpe;
3844 	pd_entry_t *pde;
3845 	pt_entry_t *pte, PG_V;
3846 	vm_paddr_t pa;
3847 
3848 	pa = 0;
3849 	PG_V = pmap_valid_bit(pmap);
3850 	PMAP_LOCK(pmap);
3851 	pdpe = pmap_pdpe(pmap, va);
3852 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
3853 		if ((*pdpe & PG_PS) != 0)
3854 			pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
3855 		else {
3856 			pde = pmap_pdpe_to_pde(pdpe, va);
3857 			if ((*pde & PG_V) != 0) {
3858 				if ((*pde & PG_PS) != 0) {
3859 					pa = (*pde & PG_PS_FRAME) |
3860 					    (va & PDRMASK);
3861 				} else {
3862 					pte = pmap_pde_to_pte(pde, va);
3863 					pa = (*pte & PG_FRAME) |
3864 					    (va & PAGE_MASK);
3865 				}
3866 			}
3867 		}
3868 	}
3869 	PMAP_UNLOCK(pmap);
3870 	return (pa);
3871 }
3872 
3873 /*
3874  *	Routine:	pmap_extract_and_hold
3875  *	Function:
3876  *		Atomically extract and hold the physical page
3877  *		with the given pmap and virtual address pair
3878  *		if that mapping permits the given protection.
3879  */
3880 vm_page_t
pmap_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)3881 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3882 {
3883 	pdp_entry_t pdpe, *pdpep;
3884 	pd_entry_t pde, *pdep;
3885 	pt_entry_t pte, PG_RW, PG_V;
3886 	vm_page_t m;
3887 
3888 	m = NULL;
3889 	PG_RW = pmap_rw_bit(pmap);
3890 	PG_V = pmap_valid_bit(pmap);
3891 	PMAP_LOCK(pmap);
3892 
3893 	pdpep = pmap_pdpe(pmap, va);
3894 	if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
3895 		goto out;
3896 	if ((pdpe & PG_PS) != 0) {
3897 		if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3898 			goto out;
3899 		m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
3900 		goto check_page;
3901 	}
3902 
3903 	pdep = pmap_pdpe_to_pde(pdpep, va);
3904 	if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
3905 		goto out;
3906 	if ((pde & PG_PS) != 0) {
3907 		if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3908 			goto out;
3909 		m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
3910 		goto check_page;
3911 	}
3912 
3913 	pte = *pmap_pde_to_pte(pdep, va);
3914 	if ((pte & PG_V) == 0 ||
3915 	    ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
3916 		goto out;
3917 	m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3918 
3919 check_page:
3920 	if (m != NULL && !vm_page_wire_mapped(m))
3921 		m = NULL;
3922 out:
3923 	PMAP_UNLOCK(pmap);
3924 	return (m);
3925 }
3926 
3927 /*
3928  *	Routine:	pmap_kextract
3929  *	Function:
3930  *		Extract the physical page address associated with the given kernel
3931  *		virtual address.
3932  */
3933 vm_paddr_t
pmap_kextract(vm_offset_t va)3934 pmap_kextract(vm_offset_t va)
3935 {
3936 	pd_entry_t pde;
3937 	vm_paddr_t pa;
3938 
3939 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
3940 		pa = DMAP_TO_PHYS(va);
3941 	} else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
3942 		pa = pmap_large_map_kextract(va);
3943 	} else {
3944 		pde = *vtopde(va);
3945 		if (pde & PG_PS) {
3946 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
3947 		} else {
3948 			/*
3949 			 * Beware of a concurrent promotion that changes the
3950 			 * PDE at this point!  For example, vtopte() must not
3951 			 * be used to access the PTE because it would use the
3952 			 * new PDE.  It is, however, safe to use the old PDE
3953 			 * because the page table page is preserved by the
3954 			 * promotion.
3955 			 */
3956 			pa = *pmap_pde_to_pte(&pde, va);
3957 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3958 		}
3959 	}
3960 	return (pa);
3961 }
3962 
3963 /***************************************************
3964  * Low level mapping routines.....
3965  ***************************************************/
3966 
3967 /*
3968  * Add a wired page to the kva.
3969  * Note: not SMP coherent.
3970  */
3971 void
pmap_kenter(vm_offset_t va,vm_paddr_t pa)3972 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
3973 {
3974 	pt_entry_t *pte;
3975 
3976 	pte = vtopte(va);
3977 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3978 	    X86_PG_RW | X86_PG_V);
3979 }
3980 
3981 static __inline void
pmap_kenter_attr(vm_offset_t va,vm_paddr_t pa,int mode)3982 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
3983 {
3984 	pt_entry_t *pte;
3985 	int cache_bits;
3986 
3987 	pte = vtopte(va);
3988 	cache_bits = pmap_cache_bits(kernel_pmap, mode, false);
3989 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3990 	    X86_PG_RW | X86_PG_V | cache_bits);
3991 }
3992 
3993 /*
3994  * Remove a page from the kernel pagetables.
3995  * Note: not SMP coherent.
3996  */
3997 void
pmap_kremove(vm_offset_t va)3998 pmap_kremove(vm_offset_t va)
3999 {
4000 	pt_entry_t *pte;
4001 
4002 	pte = vtopte(va);
4003 	pte_clear(pte);
4004 }
4005 
4006 /*
4007  *	Used to map a range of physical addresses into kernel
4008  *	virtual address space.
4009  *
4010  *	The value passed in '*virt' is a suggested virtual address for
4011  *	the mapping. Architectures which can support a direct-mapped
4012  *	physical to virtual region can return the appropriate address
4013  *	within that region, leaving '*virt' unchanged. Other
4014  *	architectures should map the pages starting at '*virt' and
4015  *	update '*virt' with the first usable address after the mapped
4016  *	region.
4017  */
4018 vm_offset_t
pmap_map(vm_offset_t * virt,vm_paddr_t start,vm_paddr_t end,int prot)4019 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
4020 {
4021 	return PHYS_TO_DMAP(start);
4022 }
4023 
4024 /*
4025  * Add a list of wired pages to the kva
4026  * this routine is only used for temporary
4027  * kernel mappings that do not need to have
4028  * page modification or references recorded.
4029  * Note that old mappings are simply written
4030  * over.  The page *must* be wired.
4031  * Note: SMP coherent.  Uses a ranged shootdown IPI.
4032  */
4033 void
pmap_qenter(vm_offset_t sva,vm_page_t * ma,int count)4034 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
4035 {
4036 	pt_entry_t *endpte, oldpte, pa, *pte;
4037 	vm_page_t m;
4038 	int cache_bits;
4039 
4040 	oldpte = 0;
4041 	pte = vtopte(sva);
4042 	endpte = pte + count;
4043 	while (pte < endpte) {
4044 		m = *ma++;
4045 		cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
4046 		pa = VM_PAGE_TO_PHYS(m) | cache_bits;
4047 		if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
4048 			oldpte |= *pte;
4049 			pte_store(pte, pa | pg_g | pg_nx | X86_PG_A |
4050 			    X86_PG_M | X86_PG_RW | X86_PG_V);
4051 		}
4052 		pte++;
4053 	}
4054 	if (__predict_false((oldpte & X86_PG_V) != 0))
4055 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
4056 		    PAGE_SIZE);
4057 }
4058 
4059 /*
4060  * This routine tears out page mappings from the
4061  * kernel -- it is meant only for temporary mappings.
4062  * Note: SMP coherent.  Uses a ranged shootdown IPI.
4063  */
4064 void
pmap_qremove(vm_offset_t sva,int count)4065 pmap_qremove(vm_offset_t sva, int count)
4066 {
4067 	vm_offset_t va;
4068 
4069 	va = sva;
4070 	while (count-- > 0) {
4071 		KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
4072 		pmap_kremove(va);
4073 		va += PAGE_SIZE;
4074 	}
4075 	pmap_invalidate_range(kernel_pmap, sva, va);
4076 }
4077 
4078 /***************************************************
4079  * Page table page management routines.....
4080  ***************************************************/
4081 /*
4082  * Schedule the specified unused page table page to be freed.  Specifically,
4083  * add the page to the specified list of pages that will be released to the
4084  * physical memory manager after the TLB has been updated.
4085  */
4086 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,bool set_PG_ZERO)4087 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
4088 {
4089 
4090 	if (set_PG_ZERO)
4091 		m->flags |= PG_ZERO;
4092 	else
4093 		m->flags &= ~PG_ZERO;
4094 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4095 }
4096 
4097 /*
4098  * Inserts the specified page table page into the specified pmap's collection
4099  * of idle page table pages.  Each of a pmap's page table pages is responsible
4100  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4101  * ordered by this virtual address range.
4102  *
4103  * If "promoted" is false, then the page table page "mpte" must be zero filled;
4104  * "mpte"'s valid field will be set to 0.
4105  *
4106  * If "promoted" is true and "allpte_PG_A_set" is false, then "mpte" must
4107  * contain valid mappings with identical attributes except for PG_A; "mpte"'s
4108  * valid field will be set to 1.
4109  *
4110  * If "promoted" and "allpte_PG_A_set" are both true, then "mpte" must contain
4111  * valid mappings with identical attributes including PG_A; "mpte"'s valid
4112  * field will be set to VM_PAGE_BITS_ALL.
4113  */
4114 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted,bool allpte_PG_A_set)4115 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
4116     bool allpte_PG_A_set)
4117 {
4118 
4119 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4120 	KASSERT(promoted || !allpte_PG_A_set,
4121 	    ("a zero-filled PTP can't have PG_A set in every PTE"));
4122 	mpte->valid = promoted ? (allpte_PG_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
4123 	return (vm_radix_insert(&pmap->pm_root, mpte));
4124 }
4125 
4126 /*
4127  * Removes the page table page mapping the specified virtual address from the
4128  * specified pmap's collection of idle page table pages, and returns it.
4129  * Otherwise, returns NULL if there is no page table page corresponding to the
4130  * specified virtual address.
4131  */
4132 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)4133 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4134 {
4135 
4136 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4137 	return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
4138 }
4139 
4140 /*
4141  * Decrements a page table page's reference count, which is used to record the
4142  * number of valid page table entries within the page.  If the reference count
4143  * drops to zero, then the page table page is unmapped.  Returns true if the
4144  * page table page was unmapped and false otherwise.
4145  */
4146 static inline bool
pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4147 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4148 {
4149 
4150 	--m->ref_count;
4151 	if (m->ref_count == 0) {
4152 		_pmap_unwire_ptp(pmap, va, m, free);
4153 		return (true);
4154 	} else
4155 		return (false);
4156 }
4157 
4158 static void
_pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4159 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4160 {
4161 	pml5_entry_t *pml5;
4162 	pml4_entry_t *pml4;
4163 	pdp_entry_t *pdp;
4164 	pd_entry_t *pd;
4165 	vm_page_t pdpg, pdppg, pml4pg;
4166 
4167 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4168 
4169 	/*
4170 	 * unmap the page table page
4171 	 */
4172 	if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
4173 		/* PML4 page */
4174 		MPASS(pmap_is_la57(pmap));
4175 		pml5 = pmap_pml5e(pmap, va);
4176 		*pml5 = 0;
4177 		if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
4178 			pml5 = pmap_pml5e_u(pmap, va);
4179 			*pml5 = 0;
4180 		}
4181 	} else if (m->pindex >= NUPDE + NUPDPE) {
4182 		/* PDP page */
4183 		pml4 = pmap_pml4e(pmap, va);
4184 		*pml4 = 0;
4185 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4186 		    va <= VM_MAXUSER_ADDRESS) {
4187 			pml4 = pmap_pml4e_u(pmap, va);
4188 			*pml4 = 0;
4189 		}
4190 	} else if (m->pindex >= NUPDE) {
4191 		/* PD page */
4192 		pdp = pmap_pdpe(pmap, va);
4193 		*pdp = 0;
4194 	} else {
4195 		/* PTE page */
4196 		pd = pmap_pde(pmap, va);
4197 		*pd = 0;
4198 	}
4199 	if (m->pindex < NUPDE) {
4200 		/* We just released a PT, unhold the matching PD */
4201 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
4202 		pmap_unwire_ptp(pmap, va, pdpg, free);
4203 	} else if (m->pindex < NUPDE + NUPDPE) {
4204 		/* We just released a PD, unhold the matching PDP */
4205 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
4206 		pmap_unwire_ptp(pmap, va, pdppg, free);
4207 	} else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
4208 		/* We just released a PDP, unhold the matching PML4 */
4209 		pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
4210 		pmap_unwire_ptp(pmap, va, pml4pg, free);
4211 	}
4212 
4213 	pmap_pt_page_count_adj(pmap, -1);
4214 
4215 	/*
4216 	 * Put page on a list so that it is released after
4217 	 * *ALL* TLB shootdown is done
4218 	 */
4219 	pmap_add_delayed_free_list(m, free, true);
4220 }
4221 
4222 /*
4223  * After removing a page table entry, this routine is used to
4224  * conditionally free the page, and manage the reference count.
4225  */
4226 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,pd_entry_t ptepde,struct spglist * free)4227 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
4228     struct spglist *free)
4229 {
4230 	vm_page_t mpte;
4231 
4232 	if (va >= VM_MAXUSER_ADDRESS)
4233 		return (0);
4234 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4235 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4236 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4237 }
4238 
4239 /*
4240  * Release a page table page reference after a failed attempt to create a
4241  * mapping.
4242  */
4243 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)4244 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
4245 {
4246 	struct spglist free;
4247 
4248 	SLIST_INIT(&free);
4249 	if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4250 		/*
4251 		 * Although "va" was never mapped, paging-structure caches
4252 		 * could nonetheless have entries that refer to the freed
4253 		 * page table pages.  Invalidate those entries.
4254 		 */
4255 		pmap_invalidate_page(pmap, va);
4256 		vm_page_free_pages_toq(&free, true);
4257 	}
4258 }
4259 
4260 static void
pmap_pinit_pcids(pmap_t pmap,uint32_t pcid,int gen)4261 pmap_pinit_pcids(pmap_t pmap, uint32_t pcid, int gen)
4262 {
4263 	struct pmap_pcid *pcidp;
4264 	int i;
4265 
4266 	CPU_FOREACH(i) {
4267 		pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
4268 		pcidp->pm_pcid = pcid;
4269 		pcidp->pm_gen = gen;
4270 	}
4271 }
4272 
4273 void
pmap_pinit0(pmap_t pmap)4274 pmap_pinit0(pmap_t pmap)
4275 {
4276 	struct proc *p;
4277 	struct thread *td;
4278 
4279 	PMAP_LOCK_INIT(pmap);
4280 	pmap->pm_pmltop = kernel_pmap->pm_pmltop;
4281 	pmap->pm_pmltopu = NULL;
4282 	pmap->pm_cr3 = kernel_pmap->pm_cr3;
4283 	/* hack to keep pmap_pti_pcid_invalidate() alive */
4284 	pmap->pm_ucr3 = PMAP_NO_CR3;
4285 	vm_radix_init(&pmap->pm_root);
4286 	CPU_ZERO(&pmap->pm_active);
4287 	TAILQ_INIT(&pmap->pm_pvchunk);
4288 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4289 	pmap->pm_flags = pmap_flags;
4290 	pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8, M_WAITOK);
4291 	pmap_pinit_pcids(pmap, PMAP_PCID_KERN + 1, 1);
4292 	pmap_activate_boot(pmap);
4293 	td = curthread;
4294 	if (pti) {
4295 		p = td->td_proc;
4296 		PROC_LOCK(p);
4297 		p->p_md.md_flags |= P_MD_KPTI;
4298 		PROC_UNLOCK(p);
4299 	}
4300 	pmap_thread_init_invl_gen(td);
4301 
4302 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4303 		pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
4304 		    sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
4305 		    UMA_ALIGN_PTR, 0);
4306 	}
4307 }
4308 
4309 void
pmap_pinit_pml4(vm_page_t pml4pg)4310 pmap_pinit_pml4(vm_page_t pml4pg)
4311 {
4312 	pml4_entry_t *pm_pml4;
4313 	int i;
4314 
4315 	pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
4316 
4317 	/* Wire in kernel global address entries. */
4318 	for (i = 0; i < NKPML4E; i++) {
4319 		pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
4320 		    X86_PG_V;
4321 	}
4322 #ifdef KASAN
4323 	for (i = 0; i < NKASANPML4E; i++) {
4324 		pm_pml4[KASANPML4I + i] = (KASANPDPphys + ptoa(i)) | X86_PG_RW |
4325 		    X86_PG_V | pg_nx;
4326 	}
4327 #endif
4328 #ifdef KMSAN
4329 	for (i = 0; i < NKMSANSHADPML4E; i++) {
4330 		pm_pml4[KMSANSHADPML4I + i] = (KMSANSHADPDPphys + ptoa(i)) |
4331 		    X86_PG_RW | X86_PG_V | pg_nx;
4332 	}
4333 	for (i = 0; i < NKMSANORIGPML4E; i++) {
4334 		pm_pml4[KMSANORIGPML4I + i] = (KMSANORIGPDPphys + ptoa(i)) |
4335 		    X86_PG_RW | X86_PG_V | pg_nx;
4336 	}
4337 #endif
4338 	for (i = 0; i < ndmpdpphys; i++) {
4339 		pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
4340 		    X86_PG_V;
4341 	}
4342 
4343 	/* install self-referential address mapping entry(s) */
4344 	pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
4345 	    X86_PG_A | X86_PG_M;
4346 
4347 	/* install large map entries if configured */
4348 	for (i = 0; i < lm_ents; i++)
4349 		pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
4350 }
4351 
4352 void
pmap_pinit_pml5(vm_page_t pml5pg)4353 pmap_pinit_pml5(vm_page_t pml5pg)
4354 {
4355 	pml5_entry_t *pm_pml5;
4356 
4357 	pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
4358 
4359 	/*
4360 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
4361 	 * entering all existing kernel mappings into level 5 table.
4362 	 */
4363 	pm_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
4364 	    X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
4365 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, false);
4366 
4367 	/*
4368 	 * Install self-referential address mapping entry.
4369 	 */
4370 	pm_pml5[PML5PML5I] = VM_PAGE_TO_PHYS(pml5pg) |
4371 	    X86_PG_RW | X86_PG_V | X86_PG_M | X86_PG_A |
4372 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, false);
4373 }
4374 
4375 static void
pmap_pinit_pml4_pti(vm_page_t pml4pgu)4376 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
4377 {
4378 	pml4_entry_t *pm_pml4u;
4379 	int i;
4380 
4381 	pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
4382 	for (i = 0; i < NPML4EPG; i++)
4383 		pm_pml4u[i] = pti_pml4[i];
4384 }
4385 
4386 static void
pmap_pinit_pml5_pti(vm_page_t pml5pgu)4387 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
4388 {
4389 	pml5_entry_t *pm_pml5u;
4390 
4391 	pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
4392 	pagezero(pm_pml5u);
4393 
4394 	/*
4395 	 * Add pml5 entry at top of KVA pointing to existing pml4 pti
4396 	 * table, entering all kernel mappings needed for usermode
4397 	 * into level 5 table.
4398 	 */
4399 	pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
4400 	    pmap_kextract((vm_offset_t)pti_pml4) |
4401 	    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
4402 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, false);
4403 }
4404 
4405 /* Allocate a page table page and do related bookkeeping */
4406 static vm_page_t
pmap_alloc_pt_page(pmap_t pmap,vm_pindex_t pindex,int flags)4407 pmap_alloc_pt_page(pmap_t pmap, vm_pindex_t pindex, int flags)
4408 {
4409 	vm_page_t m;
4410 
4411 	m = vm_page_alloc_noobj(flags);
4412 	if (__predict_false(m == NULL))
4413 		return (NULL);
4414 	m->pindex = pindex;
4415 	pmap_pt_page_count_adj(pmap, 1);
4416 	return (m);
4417 }
4418 
4419 static void
pmap_free_pt_page(pmap_t pmap,vm_page_t m,bool zerofilled)4420 pmap_free_pt_page(pmap_t pmap, vm_page_t m, bool zerofilled)
4421 {
4422 	/*
4423 	 * This function assumes the page will need to be unwired,
4424 	 * even though the counterpart allocation in pmap_alloc_pt_page()
4425 	 * doesn't enforce VM_ALLOC_WIRED.  However, all current uses
4426 	 * of pmap_free_pt_page() require unwiring.  The case in which
4427 	 * a PT page doesn't require unwiring because its ref_count has
4428 	 * naturally reached 0 is handled through _pmap_unwire_ptp().
4429 	 */
4430 	vm_page_unwire_noq(m);
4431 	if (zerofilled)
4432 		vm_page_free_zero(m);
4433 	else
4434 		vm_page_free(m);
4435 
4436 	pmap_pt_page_count_adj(pmap, -1);
4437 }
4438 
4439 _Static_assert(sizeof(struct pmap_pcid) == 8, "Fix pcpu zone for pm_pcidp");
4440 
4441 /*
4442  * Initialize a preallocated and zeroed pmap structure,
4443  * such as one in a vmspace structure.
4444  */
4445 int
pmap_pinit_type(pmap_t pmap,enum pmap_type pm_type,int flags)4446 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
4447 {
4448 	vm_page_t pmltop_pg, pmltop_pgu;
4449 	vm_paddr_t pmltop_phys;
4450 
4451 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4452 
4453 	/*
4454 	 * Allocate the page directory page.  Pass NULL instead of a
4455 	 * pointer to the pmap here to avoid calling
4456 	 * pmap_resident_count_adj() through pmap_pt_page_count_adj(),
4457 	 * since that requires pmap lock.  Instead do the accounting
4458 	 * manually.
4459 	 *
4460 	 * Note that final call to pmap_remove() optimization that
4461 	 * checks for zero resident_count is basically disabled by
4462 	 * accounting for top-level page.  But the optimization was
4463 	 * not effective since we started using non-managed mapping of
4464 	 * the shared page.
4465 	 */
4466 	pmltop_pg = pmap_alloc_pt_page(NULL, 0, VM_ALLOC_WIRED | VM_ALLOC_ZERO |
4467 	    VM_ALLOC_WAITOK);
4468 	pmap_pt_page_count_pinit(pmap, 1);
4469 
4470 	pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
4471 	pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
4472 
4473 	if (pmap_pcid_enabled) {
4474 		if (pmap->pm_pcidp == NULL)
4475 			pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8,
4476 			    M_WAITOK);
4477 		pmap_pinit_pcids(pmap, PMAP_PCID_NONE, 0);
4478 	}
4479 	pmap->pm_cr3 = PMAP_NO_CR3;	/* initialize to an invalid value */
4480 	pmap->pm_ucr3 = PMAP_NO_CR3;
4481 	pmap->pm_pmltopu = NULL;
4482 
4483 	pmap->pm_type = pm_type;
4484 
4485 	/*
4486 	 * Do not install the host kernel mappings in the nested page
4487 	 * tables. These mappings are meaningless in the guest physical
4488 	 * address space.
4489 	 * Install minimal kernel mappings in PTI case.
4490 	 */
4491 	switch (pm_type) {
4492 	case PT_X86:
4493 		pmap->pm_cr3 = pmltop_phys;
4494 		if (pmap_is_la57(pmap))
4495 			pmap_pinit_pml5(pmltop_pg);
4496 		else
4497 			pmap_pinit_pml4(pmltop_pg);
4498 		if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
4499 			/*
4500 			 * As with pmltop_pg, pass NULL instead of a
4501 			 * pointer to the pmap to ensure that the PTI
4502 			 * page counted explicitly.
4503 			 */
4504 			pmltop_pgu = pmap_alloc_pt_page(NULL, 0,
4505 			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
4506 			pmap_pt_page_count_pinit(pmap, 1);
4507 			pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
4508 			    VM_PAGE_TO_PHYS(pmltop_pgu));
4509 			if (pmap_is_la57(pmap))
4510 				pmap_pinit_pml5_pti(pmltop_pgu);
4511 			else
4512 				pmap_pinit_pml4_pti(pmltop_pgu);
4513 			pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
4514 		}
4515 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4516 			rangeset_init(&pmap->pm_pkru, pkru_dup_range,
4517 			    pkru_free_range, pmap, M_NOWAIT);
4518 		}
4519 		break;
4520 	case PT_EPT:
4521 	case PT_RVI:
4522 		pmap->pm_eptsmr = smr_create("pmap", 0, 0);
4523 		break;
4524 	}
4525 
4526 	vm_radix_init(&pmap->pm_root);
4527 	CPU_ZERO(&pmap->pm_active);
4528 	TAILQ_INIT(&pmap->pm_pvchunk);
4529 	pmap->pm_flags = flags;
4530 	pmap->pm_eptgen = 0;
4531 
4532 	return (1);
4533 }
4534 
4535 int
pmap_pinit(pmap_t pmap)4536 pmap_pinit(pmap_t pmap)
4537 {
4538 
4539 	return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
4540 }
4541 
4542 static void
pmap_allocpte_free_unref(pmap_t pmap,vm_offset_t va,pt_entry_t * pte)4543 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
4544 {
4545 	vm_page_t mpg;
4546 	struct spglist free;
4547 
4548 	mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4549 	if (mpg->ref_count != 0)
4550 		return;
4551 	SLIST_INIT(&free);
4552 	_pmap_unwire_ptp(pmap, va, mpg, &free);
4553 	pmap_invalidate_page(pmap, va);
4554 	vm_page_free_pages_toq(&free, true);
4555 }
4556 
4557 static pml4_entry_t *
pmap_allocpte_getpml4(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4558 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4559     bool addref)
4560 {
4561 	vm_pindex_t pml5index;
4562 	pml5_entry_t *pml5;
4563 	pml4_entry_t *pml4;
4564 	vm_page_t pml4pg;
4565 	pt_entry_t PG_V;
4566 	bool allocated;
4567 
4568 	if (!pmap_is_la57(pmap))
4569 		return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
4570 
4571 	PG_V = pmap_valid_bit(pmap);
4572 	pml5index = pmap_pml5e_index(va);
4573 	pml5 = &pmap->pm_pmltop[pml5index];
4574 	if ((*pml5 & PG_V) == 0) {
4575 		if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
4576 		    va) == NULL)
4577 			return (NULL);
4578 		allocated = true;
4579 	} else {
4580 		allocated = false;
4581 	}
4582 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
4583 	pml4 = &pml4[pmap_pml4e_index(va)];
4584 	if ((*pml4 & PG_V) == 0) {
4585 		pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
4586 		if (allocated && !addref)
4587 			pml4pg->ref_count--;
4588 		else if (!allocated && addref)
4589 			pml4pg->ref_count++;
4590 	}
4591 	return (pml4);
4592 }
4593 
4594 static pdp_entry_t *
pmap_allocpte_getpdp(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4595 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4596     bool addref)
4597 {
4598 	vm_page_t pdppg;
4599 	pml4_entry_t *pml4;
4600 	pdp_entry_t *pdp;
4601 	pt_entry_t PG_V;
4602 	bool allocated;
4603 
4604 	PG_V = pmap_valid_bit(pmap);
4605 
4606 	pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
4607 	if (pml4 == NULL)
4608 		return (NULL);
4609 
4610 	if ((*pml4 & PG_V) == 0) {
4611 		/* Have to allocate a new pdp, recurse */
4612 		if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
4613 		    va) == NULL) {
4614 			if (pmap_is_la57(pmap))
4615 				pmap_allocpte_free_unref(pmap, va,
4616 				    pmap_pml5e(pmap, va));
4617 			return (NULL);
4618 		}
4619 		allocated = true;
4620 	} else {
4621 		allocated = false;
4622 	}
4623 	pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
4624 	pdp = &pdp[pmap_pdpe_index(va)];
4625 	if ((*pdp & PG_V) == 0) {
4626 		pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
4627 		if (allocated && !addref)
4628 			pdppg->ref_count--;
4629 		else if (!allocated && addref)
4630 			pdppg->ref_count++;
4631 	}
4632 	return (pdp);
4633 }
4634 
4635 /*
4636  * The ptepindexes, i.e. page indices, of the page table pages encountered
4637  * while translating virtual address va are defined as follows:
4638  * - for the page table page (last level),
4639  *      ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
4640  *   in other words, it is just the index of the PDE that maps the page
4641  *   table page.
4642  * - for the page directory page,
4643  *      ptepindex = NUPDE (number of userland PD entries) +
4644  *          (pmap_pde_index(va) >> NPDEPGSHIFT)
4645  *   i.e. index of PDPE is put after the last index of PDE,
4646  * - for the page directory pointer page,
4647  *      ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
4648  *          NPML4EPGSHIFT),
4649  *   i.e. index of pml4e is put after the last index of PDPE,
4650  * - for the PML4 page (if LA57 mode is enabled),
4651  *      ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
4652  *          (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
4653  *   i.e. index of pml5e is put after the last index of PML4E.
4654  *
4655  * Define an order on the paging entries, where all entries of the
4656  * same height are put together, then heights are put from deepest to
4657  * root.  Then ptexpindex is the sequential number of the
4658  * corresponding paging entry in this order.
4659  *
4660  * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
4661  * LA57 paging structures even in LA48 paging mode. Moreover, the
4662  * ptepindexes are calculated as if the paging structures were 5-level
4663  * regardless of the actual mode of operation.
4664  *
4665  * The root page at PML4/PML5 does not participate in this indexing scheme,
4666  * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
4667  */
4668 static vm_page_t
pmap_allocpte_nosleep(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4669 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4670     vm_offset_t va)
4671 {
4672 	vm_pindex_t pml5index, pml4index;
4673 	pml5_entry_t *pml5, *pml5u;
4674 	pml4_entry_t *pml4, *pml4u;
4675 	pdp_entry_t *pdp;
4676 	pd_entry_t *pd;
4677 	vm_page_t m, pdpg;
4678 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4679 
4680 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4681 
4682 	PG_A = pmap_accessed_bit(pmap);
4683 	PG_M = pmap_modified_bit(pmap);
4684 	PG_V = pmap_valid_bit(pmap);
4685 	PG_RW = pmap_rw_bit(pmap);
4686 
4687 	/*
4688 	 * Allocate a page table page.
4689 	 */
4690 	m = pmap_alloc_pt_page(pmap, ptepindex,
4691 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
4692 	if (m == NULL)
4693 		return (NULL);
4694 
4695 	/*
4696 	 * Map the pagetable page into the process address space, if
4697 	 * it isn't already there.
4698 	 */
4699 	if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
4700 		MPASS(pmap_is_la57(pmap));
4701 
4702 		pml5index = pmap_pml5e_index(va);
4703 		pml5 = &pmap->pm_pmltop[pml5index];
4704 		KASSERT((*pml5 & PG_V) == 0,
4705 		    ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
4706 		*pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4707 
4708 		if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
4709 			if (pmap->pm_ucr3 != PMAP_NO_CR3)
4710 				*pml5 |= pg_nx;
4711 
4712 			pml5u = &pmap->pm_pmltopu[pml5index];
4713 			*pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4714 			    PG_A | PG_M;
4715 		}
4716 	} else if (ptepindex >= NUPDE + NUPDPE) {
4717 		pml4index = pmap_pml4e_index(va);
4718 		/* Wire up a new PDPE page */
4719 		pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
4720 		if (pml4 == NULL) {
4721 			pmap_free_pt_page(pmap, m, true);
4722 			return (NULL);
4723 		}
4724 		KASSERT((*pml4 & PG_V) == 0,
4725 		    ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
4726 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4727 
4728 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4729 		    pml4index < NUPML4E) {
4730 			/*
4731 			 * PTI: Make all user-space mappings in the
4732 			 * kernel-mode page table no-execute so that
4733 			 * we detect any programming errors that leave
4734 			 * the kernel-mode page table active on return
4735 			 * to user space.
4736 			 */
4737 			if (pmap->pm_ucr3 != PMAP_NO_CR3)
4738 				*pml4 |= pg_nx;
4739 
4740 			pml4u = &pmap->pm_pmltopu[pml4index];
4741 			*pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4742 			    PG_A | PG_M;
4743 		}
4744 	} else if (ptepindex >= NUPDE) {
4745 		/* Wire up a new PDE page */
4746 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
4747 		if (pdp == NULL) {
4748 			pmap_free_pt_page(pmap, m, true);
4749 			return (NULL);
4750 		}
4751 		KASSERT((*pdp & PG_V) == 0,
4752 		    ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
4753 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4754 	} else {
4755 		/* Wire up a new PTE page */
4756 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
4757 		if (pdp == NULL) {
4758 			pmap_free_pt_page(pmap, m, true);
4759 			return (NULL);
4760 		}
4761 		if ((*pdp & PG_V) == 0) {
4762 			/* Have to allocate a new pd, recurse */
4763 		  if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
4764 		      lockp, va) == NULL) {
4765 				pmap_allocpte_free_unref(pmap, va,
4766 				    pmap_pml4e(pmap, va));
4767 				pmap_free_pt_page(pmap, m, true);
4768 				return (NULL);
4769 			}
4770 		} else {
4771 			/* Add reference to the pd page */
4772 			pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
4773 			pdpg->ref_count++;
4774 		}
4775 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
4776 
4777 		/* Now we know where the page directory page is */
4778 		pd = &pd[pmap_pde_index(va)];
4779 		KASSERT((*pd & PG_V) == 0,
4780 		    ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
4781 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4782 	}
4783 
4784 	return (m);
4785 }
4786 
4787 /*
4788  * This routine is called if the desired page table page does not exist.
4789  *
4790  * If page table page allocation fails, this routine may sleep before
4791  * returning NULL.  It sleeps only if a lock pointer was given.  Sleep
4792  * occurs right before returning to the caller. This way, we never
4793  * drop pmap lock to sleep while a page table page has ref_count == 0,
4794  * which prevents the page from being freed under us.
4795  */
4796 static vm_page_t
pmap_allocpte_alloc(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4797 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4798     vm_offset_t va)
4799 {
4800 	vm_page_t m;
4801 
4802 	m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
4803 	if (m == NULL && lockp != NULL) {
4804 		RELEASE_PV_LIST_LOCK(lockp);
4805 		PMAP_UNLOCK(pmap);
4806 		PMAP_ASSERT_NOT_IN_DI();
4807 		vm_wait(NULL);
4808 		PMAP_LOCK(pmap);
4809 	}
4810 	return (m);
4811 }
4812 
4813 static pd_entry_t *
pmap_alloc_pde(pmap_t pmap,vm_offset_t va,vm_page_t * pdpgp,struct rwlock ** lockp)4814 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
4815     struct rwlock **lockp)
4816 {
4817 	pdp_entry_t *pdpe, PG_V;
4818 	pd_entry_t *pde;
4819 	vm_page_t pdpg;
4820 	vm_pindex_t pdpindex;
4821 
4822 	PG_V = pmap_valid_bit(pmap);
4823 
4824 retry:
4825 	pdpe = pmap_pdpe(pmap, va);
4826 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4827 		pde = pmap_pdpe_to_pde(pdpe, va);
4828 		if (va < VM_MAXUSER_ADDRESS) {
4829 			/* Add a reference to the pd page. */
4830 			pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4831 			pdpg->ref_count++;
4832 		} else
4833 			pdpg = NULL;
4834 	} else if (va < VM_MAXUSER_ADDRESS) {
4835 		/* Allocate a pd page. */
4836 		pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
4837 		pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
4838 		if (pdpg == NULL) {
4839 			if (lockp != NULL)
4840 				goto retry;
4841 			else
4842 				return (NULL);
4843 		}
4844 		pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4845 		pde = &pde[pmap_pde_index(va)];
4846 	} else
4847 		panic("pmap_alloc_pde: missing page table page for va %#lx",
4848 		    va);
4849 	*pdpgp = pdpg;
4850 	return (pde);
4851 }
4852 
4853 static vm_page_t
pmap_allocpte(pmap_t pmap,vm_offset_t va,struct rwlock ** lockp)4854 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4855 {
4856 	vm_pindex_t ptepindex;
4857 	pd_entry_t *pd, PG_V;
4858 	vm_page_t m;
4859 
4860 	PG_V = pmap_valid_bit(pmap);
4861 
4862 	/*
4863 	 * Calculate pagetable page index
4864 	 */
4865 	ptepindex = pmap_pde_pindex(va);
4866 retry:
4867 	/*
4868 	 * Get the page directory entry
4869 	 */
4870 	pd = pmap_pde(pmap, va);
4871 
4872 	/*
4873 	 * This supports switching from a 2MB page to a
4874 	 * normal 4K page.
4875 	 */
4876 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
4877 		if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
4878 			/*
4879 			 * Invalidation of the 2MB page mapping may have caused
4880 			 * the deallocation of the underlying PD page.
4881 			 */
4882 			pd = NULL;
4883 		}
4884 	}
4885 
4886 	/*
4887 	 * If the page table page is mapped, we just increment the
4888 	 * hold count, and activate it.
4889 	 */
4890 	if (pd != NULL && (*pd & PG_V) != 0) {
4891 		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4892 		m->ref_count++;
4893 	} else {
4894 		/*
4895 		 * Here if the pte page isn't mapped, or if it has been
4896 		 * deallocated.
4897 		 */
4898 		m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
4899 		if (m == NULL && lockp != NULL)
4900 			goto retry;
4901 	}
4902 	return (m);
4903 }
4904 
4905 /***************************************************
4906  * Pmap allocation/deallocation routines.
4907  ***************************************************/
4908 
4909 /*
4910  * Release any resources held by the given physical map.
4911  * Called when a pmap initialized by pmap_pinit is being released.
4912  * Should only be called if the map contains no valid mappings.
4913  */
4914 void
pmap_release(pmap_t pmap)4915 pmap_release(pmap_t pmap)
4916 {
4917 	vm_page_t m;
4918 	int i;
4919 
4920 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
4921 	    ("pmap_release: pmap %p has reserved page table page(s)",
4922 	    pmap));
4923 	KASSERT(CPU_EMPTY(&pmap->pm_active),
4924 	    ("releasing active pmap %p", pmap));
4925 
4926 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
4927 
4928 	if (pmap_is_la57(pmap)) {
4929 		pmap->pm_pmltop[pmap_pml5e_index(UPT_MAX_ADDRESS)] = 0;
4930 		pmap->pm_pmltop[PML5PML5I] = 0;
4931 	} else {
4932 		for (i = 0; i < NKPML4E; i++)	/* KVA */
4933 			pmap->pm_pmltop[KPML4BASE + i] = 0;
4934 #ifdef KASAN
4935 		for (i = 0; i < NKASANPML4E; i++) /* KASAN shadow map */
4936 			pmap->pm_pmltop[KASANPML4I + i] = 0;
4937 #endif
4938 #ifdef KMSAN
4939 		for (i = 0; i < NKMSANSHADPML4E; i++) /* KMSAN shadow map */
4940 			pmap->pm_pmltop[KMSANSHADPML4I + i] = 0;
4941 		for (i = 0; i < NKMSANORIGPML4E; i++) /* KMSAN shadow map */
4942 			pmap->pm_pmltop[KMSANORIGPML4I + i] = 0;
4943 #endif
4944 		for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
4945 			pmap->pm_pmltop[DMPML4I + i] = 0;
4946 		pmap->pm_pmltop[PML4PML4I] = 0;	/* Recursive Mapping */
4947 		for (i = 0; i < lm_ents; i++)	/* Large Map */
4948 			pmap->pm_pmltop[LMSPML4I + i] = 0;
4949 	}
4950 
4951 	pmap_free_pt_page(NULL, m, true);
4952 	pmap_pt_page_count_pinit(pmap, -1);
4953 
4954 	if (pmap->pm_pmltopu != NULL) {
4955 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
4956 		    pm_pmltopu));
4957 		pmap_free_pt_page(NULL, m, false);
4958 		pmap_pt_page_count_pinit(pmap, -1);
4959 	}
4960 	if (pmap->pm_type == PT_X86 &&
4961 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
4962 		rangeset_fini(&pmap->pm_pkru);
4963 
4964 	KASSERT(pmap->pm_stats.resident_count == 0,
4965 	    ("pmap_release: pmap %p resident count %ld != 0",
4966 	    pmap, pmap->pm_stats.resident_count));
4967 }
4968 
4969 static int
kvm_size(SYSCTL_HANDLER_ARGS)4970 kvm_size(SYSCTL_HANDLER_ARGS)
4971 {
4972 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
4973 
4974 	return sysctl_handle_long(oidp, &ksize, 0, req);
4975 }
4976 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4977     0, 0, kvm_size, "LU",
4978     "Size of KVM");
4979 
4980 static int
kvm_free(SYSCTL_HANDLER_ARGS)4981 kvm_free(SYSCTL_HANDLER_ARGS)
4982 {
4983 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
4984 
4985 	return sysctl_handle_long(oidp, &kfree, 0, req);
4986 }
4987 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4988     0, 0, kvm_free, "LU",
4989     "Amount of KVM free");
4990 
4991 #ifdef KMSAN
4992 static void
pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa,vm_size_t size)4993 pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa, vm_size_t size)
4994 {
4995 	pdp_entry_t *pdpe;
4996 	pd_entry_t *pde;
4997 	pt_entry_t *pte;
4998 	vm_paddr_t dummypa, dummypd, dummypt;
4999 	int i, npde, npdpg;
5000 
5001 	npdpg = howmany(size, NBPDP);
5002 	npde = size / NBPDR;
5003 
5004 	dummypa = vm_phys_early_alloc(-1, PAGE_SIZE);
5005 	pagezero((void *)PHYS_TO_DMAP(dummypa));
5006 
5007 	dummypt = vm_phys_early_alloc(-1, PAGE_SIZE);
5008 	pagezero((void *)PHYS_TO_DMAP(dummypt));
5009 	dummypd = vm_phys_early_alloc(-1, PAGE_SIZE * npdpg);
5010 	for (i = 0; i < npdpg; i++)
5011 		pagezero((void *)PHYS_TO_DMAP(dummypd + ptoa(i)));
5012 
5013 	pte = (pt_entry_t *)PHYS_TO_DMAP(dummypt);
5014 	for (i = 0; i < NPTEPG; i++)
5015 		pte[i] = (pt_entry_t)(dummypa | X86_PG_V | X86_PG_RW |
5016 		    X86_PG_A | X86_PG_M | pg_nx);
5017 
5018 	pde = (pd_entry_t *)PHYS_TO_DMAP(dummypd);
5019 	for (i = 0; i < npde; i++)
5020 		pde[i] = (pd_entry_t)(dummypt | X86_PG_V | X86_PG_RW | pg_nx);
5021 
5022 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(pdppa);
5023 	for (i = 0; i < npdpg; i++)
5024 		pdpe[i] = (pdp_entry_t)(dummypd + ptoa(i) | X86_PG_V |
5025 		    X86_PG_RW | pg_nx);
5026 }
5027 
5028 static void
pmap_kmsan_page_array_startup(vm_offset_t start,vm_offset_t end)5029 pmap_kmsan_page_array_startup(vm_offset_t start, vm_offset_t end)
5030 {
5031 	vm_size_t size;
5032 
5033 	KASSERT(start % NBPDP == 0, ("unaligned page array start address"));
5034 
5035 	/*
5036 	 * The end of the page array's KVA region is 2MB aligned, see
5037 	 * kmem_init().
5038 	 */
5039 	size = round_2mpage(end) - start;
5040 	pmap_kmsan_shadow_map_page_array(KMSANSHADPDPphys, size);
5041 	pmap_kmsan_shadow_map_page_array(KMSANORIGPDPphys, size);
5042 }
5043 #endif
5044 
5045 /*
5046  * Allocate physical memory for the vm_page array and map it into KVA,
5047  * attempting to back the vm_pages with domain-local memory.
5048  */
5049 void
pmap_page_array_startup(long pages)5050 pmap_page_array_startup(long pages)
5051 {
5052 	pdp_entry_t *pdpe;
5053 	pd_entry_t *pde, newpdir;
5054 	vm_offset_t va, start, end;
5055 	vm_paddr_t pa;
5056 	long pfn;
5057 	int domain, i;
5058 
5059 	vm_page_array_size = pages;
5060 
5061 	start = VM_MIN_KERNEL_ADDRESS;
5062 	end = start + pages * sizeof(struct vm_page);
5063 	for (va = start; va < end; va += NBPDR) {
5064 		pfn = first_page + (va - start) / sizeof(struct vm_page);
5065 		domain = vm_phys_domain(ptoa(pfn));
5066 		pdpe = pmap_pdpe(kernel_pmap, va);
5067 		if ((*pdpe & X86_PG_V) == 0) {
5068 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
5069 			dump_add_page(pa);
5070 			pagezero((void *)PHYS_TO_DMAP(pa));
5071 			*pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
5072 			    X86_PG_A | X86_PG_M);
5073 		}
5074 		pde = pmap_pdpe_to_pde(pdpe, va);
5075 		if ((*pde & X86_PG_V) != 0)
5076 			panic("Unexpected pde");
5077 		pa = vm_phys_early_alloc(domain, NBPDR);
5078 		for (i = 0; i < NPDEPG; i++)
5079 			dump_add_page(pa + i * PAGE_SIZE);
5080 		newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
5081 		    X86_PG_M | PG_PS | pg_g | pg_nx);
5082 		pde_store(pde, newpdir);
5083 	}
5084 	vm_page_array = (vm_page_t)start;
5085 
5086 #ifdef KMSAN
5087 	pmap_kmsan_page_array_startup(start, end);
5088 #endif
5089 }
5090 
5091 /*
5092  * grow the number of kernel page table entries, if needed
5093  */
5094 void
pmap_growkernel(vm_offset_t addr)5095 pmap_growkernel(vm_offset_t addr)
5096 {
5097 	vm_paddr_t paddr;
5098 	vm_page_t nkpg;
5099 	pd_entry_t *pde, newpdir;
5100 	pdp_entry_t *pdpe;
5101 	vm_offset_t end;
5102 
5103 	TSENTER();
5104 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
5105 
5106 	/*
5107 	 * The kernel map covers two distinct regions of KVA: that used
5108 	 * for dynamic kernel memory allocations, and the uppermost 2GB
5109 	 * of the virtual address space.  The latter is used to map the
5110 	 * kernel and loadable kernel modules.  This scheme enables the
5111 	 * use of a special code generation model for kernel code which
5112 	 * takes advantage of compact addressing modes in machine code.
5113 	 *
5114 	 * Both regions grow upwards; to avoid wasting memory, the gap
5115 	 * in between is unmapped.  If "addr" is above "KERNBASE", the
5116 	 * kernel's region is grown, otherwise the kmem region is grown.
5117 	 *
5118 	 * The correctness of this action is based on the following
5119 	 * argument: vm_map_insert() allocates contiguous ranges of the
5120 	 * kernel virtual address space.  It calls this function if a range
5121 	 * ends after "kernel_vm_end".  If the kernel is mapped between
5122 	 * "kernel_vm_end" and "addr", then the range cannot begin at
5123 	 * "kernel_vm_end".  In fact, its beginning address cannot be less
5124 	 * than the kernel.  Thus, there is no immediate need to allocate
5125 	 * any new kernel page table pages between "kernel_vm_end" and
5126 	 * "KERNBASE".
5127 	 */
5128 	if (KERNBASE < addr) {
5129 		end = KERNBASE + nkpt * NBPDR;
5130 		if (end == 0) {
5131 			TSEXIT();
5132 			return;
5133 		}
5134 	} else {
5135 		end = kernel_vm_end;
5136 	}
5137 
5138 	addr = roundup2(addr, NBPDR);
5139 	if (addr - 1 >= vm_map_max(kernel_map))
5140 		addr = vm_map_max(kernel_map);
5141 	if (addr <= end) {
5142 		/*
5143 		 * The grown region is already mapped, so there is
5144 		 * nothing to do.
5145 		 */
5146 		TSEXIT();
5147 		return;
5148 	}
5149 
5150 	kasan_shadow_map(end, addr - end);
5151 	kmsan_shadow_map(end, addr - end);
5152 	while (end < addr) {
5153 		pdpe = pmap_pdpe(kernel_pmap, end);
5154 		if ((*pdpe & X86_PG_V) == 0) {
5155 			nkpg = pmap_alloc_pt_page(kernel_pmap,
5156 			    pmap_pdpe_pindex(end), VM_ALLOC_WIRED |
5157 			    VM_ALLOC_INTERRUPT | VM_ALLOC_ZERO);
5158 			if (nkpg == NULL)
5159 				panic("pmap_growkernel: no memory to grow kernel");
5160 			paddr = VM_PAGE_TO_PHYS(nkpg);
5161 			*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
5162 			    X86_PG_A | X86_PG_M);
5163 			continue; /* try again */
5164 		}
5165 		pde = pmap_pdpe_to_pde(pdpe, end);
5166 		if ((*pde & X86_PG_V) != 0) {
5167 			end = (end + NBPDR) & ~PDRMASK;
5168 			if (end - 1 >= vm_map_max(kernel_map)) {
5169 				end = vm_map_max(kernel_map);
5170 				break;
5171 			}
5172 			continue;
5173 		}
5174 
5175 		nkpg = pmap_alloc_pt_page(kernel_pmap, pmap_pde_pindex(end),
5176 		    VM_ALLOC_WIRED | VM_ALLOC_INTERRUPT | VM_ALLOC_ZERO);
5177 		if (nkpg == NULL)
5178 			panic("pmap_growkernel: no memory to grow kernel");
5179 		paddr = VM_PAGE_TO_PHYS(nkpg);
5180 		newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
5181 		pde_store(pde, newpdir);
5182 
5183 		end = (end + NBPDR) & ~PDRMASK;
5184 		if (end - 1 >= vm_map_max(kernel_map)) {
5185 			end = vm_map_max(kernel_map);
5186 			break;
5187 		}
5188 	}
5189 
5190 	if (end <= KERNBASE)
5191 		kernel_vm_end = end;
5192 	else
5193 		nkpt = howmany(end - KERNBASE, NBPDR);
5194 	TSEXIT();
5195 }
5196 
5197 /***************************************************
5198  * page management routines.
5199  ***************************************************/
5200 
5201 static const uint64_t pc_freemask[_NPCM] = {
5202 	[0 ... _NPCM - 2] = PC_FREEN,
5203 	[_NPCM - 1] = PC_FREEL
5204 };
5205 
5206 #ifdef PV_STATS
5207 
5208 static COUNTER_U64_DEFINE_EARLY(pc_chunk_count);
5209 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD,
5210     &pc_chunk_count, "Current number of pv entry cnunks");
5211 
5212 static COUNTER_U64_DEFINE_EARLY(pc_chunk_allocs);
5213 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD,
5214     &pc_chunk_allocs, "Total number of pv entry chunks allocated");
5215 
5216 static COUNTER_U64_DEFINE_EARLY(pc_chunk_frees);
5217 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD,
5218     &pc_chunk_frees, "Total number of pv entry chunks freed");
5219 
5220 static COUNTER_U64_DEFINE_EARLY(pc_chunk_tryfail);
5221 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD,
5222     &pc_chunk_tryfail,
5223     "Number of failed attempts to get a pv entry chunk page");
5224 
5225 static COUNTER_U64_DEFINE_EARLY(pv_entry_frees);
5226 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD,
5227     &pv_entry_frees, "Total number of pv entries freed");
5228 
5229 static COUNTER_U64_DEFINE_EARLY(pv_entry_allocs);
5230 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD,
5231     &pv_entry_allocs, "Total number of pv entries allocated");
5232 
5233 static COUNTER_U64_DEFINE_EARLY(pv_entry_count);
5234 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD,
5235     &pv_entry_count, "Current number of pv entries");
5236 
5237 static COUNTER_U64_DEFINE_EARLY(pv_entry_spare);
5238 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD,
5239     &pv_entry_spare, "Current number of spare pv entries");
5240 #endif
5241 
5242 static void
reclaim_pv_chunk_leave_pmap(pmap_t pmap,pmap_t locked_pmap,bool start_di)5243 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
5244 {
5245 
5246 	if (pmap == NULL)
5247 		return;
5248 	pmap_invalidate_all(pmap);
5249 	if (pmap != locked_pmap)
5250 		PMAP_UNLOCK(pmap);
5251 	if (start_di)
5252 		pmap_delayed_invl_finish();
5253 }
5254 
5255 /*
5256  * We are in a serious low memory condition.  Resort to
5257  * drastic measures to free some pages so we can allocate
5258  * another pv entry chunk.
5259  *
5260  * Returns NULL if PV entries were reclaimed from the specified pmap.
5261  *
5262  * We do not, however, unmap 2mpages because subsequent accesses will
5263  * allocate per-page pv entries until repromotion occurs, thereby
5264  * exacerbating the shortage of free pv entries.
5265  */
5266 static vm_page_t
reclaim_pv_chunk_domain(pmap_t locked_pmap,struct rwlock ** lockp,int domain)5267 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
5268 {
5269 	struct pv_chunks_list *pvc;
5270 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
5271 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
5272 	struct md_page *pvh;
5273 	pd_entry_t *pde;
5274 	pmap_t next_pmap, pmap;
5275 	pt_entry_t *pte, tpte;
5276 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
5277 	pv_entry_t pv;
5278 	vm_offset_t va;
5279 	vm_page_t m, m_pc;
5280 	struct spglist free;
5281 	uint64_t inuse;
5282 	int bit, field, freed;
5283 	bool start_di, restart;
5284 
5285 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
5286 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
5287 	pmap = NULL;
5288 	m_pc = NULL;
5289 	PG_G = PG_A = PG_M = PG_RW = 0;
5290 	SLIST_INIT(&free);
5291 	bzero(&pc_marker_b, sizeof(pc_marker_b));
5292 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
5293 	pc_marker = (struct pv_chunk *)&pc_marker_b;
5294 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
5295 
5296 	/*
5297 	 * A delayed invalidation block should already be active if
5298 	 * pmap_advise() or pmap_remove() called this function by way
5299 	 * of pmap_demote_pde_locked().
5300 	 */
5301 	start_di = pmap_not_in_di();
5302 
5303 	pvc = &pv_chunks[domain];
5304 	mtx_lock(&pvc->pvc_lock);
5305 	pvc->active_reclaims++;
5306 	TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
5307 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
5308 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
5309 	    SLIST_EMPTY(&free)) {
5310 		next_pmap = pc->pc_pmap;
5311 		if (next_pmap == NULL) {
5312 			/*
5313 			 * The next chunk is a marker.  However, it is
5314 			 * not our marker, so active_reclaims must be
5315 			 * > 1.  Consequently, the next_chunk code
5316 			 * will not rotate the pv_chunks list.
5317 			 */
5318 			goto next_chunk;
5319 		}
5320 		mtx_unlock(&pvc->pvc_lock);
5321 
5322 		/*
5323 		 * A pv_chunk can only be removed from the pc_lru list
5324 		 * when both pc_chunks_mutex is owned and the
5325 		 * corresponding pmap is locked.
5326 		 */
5327 		if (pmap != next_pmap) {
5328 			restart = false;
5329 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
5330 			    start_di);
5331 			pmap = next_pmap;
5332 			/* Avoid deadlock and lock recursion. */
5333 			if (pmap > locked_pmap) {
5334 				RELEASE_PV_LIST_LOCK(lockp);
5335 				PMAP_LOCK(pmap);
5336 				if (start_di)
5337 					pmap_delayed_invl_start();
5338 				mtx_lock(&pvc->pvc_lock);
5339 				restart = true;
5340 			} else if (pmap != locked_pmap) {
5341 				if (PMAP_TRYLOCK(pmap)) {
5342 					if (start_di)
5343 						pmap_delayed_invl_start();
5344 					mtx_lock(&pvc->pvc_lock);
5345 					restart = true;
5346 				} else {
5347 					pmap = NULL; /* pmap is not locked */
5348 					mtx_lock(&pvc->pvc_lock);
5349 					pc = TAILQ_NEXT(pc_marker, pc_lru);
5350 					if (pc == NULL ||
5351 					    pc->pc_pmap != next_pmap)
5352 						continue;
5353 					goto next_chunk;
5354 				}
5355 			} else if (start_di)
5356 				pmap_delayed_invl_start();
5357 			PG_G = pmap_global_bit(pmap);
5358 			PG_A = pmap_accessed_bit(pmap);
5359 			PG_M = pmap_modified_bit(pmap);
5360 			PG_RW = pmap_rw_bit(pmap);
5361 			if (restart)
5362 				continue;
5363 		}
5364 
5365 		/*
5366 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
5367 		 */
5368 		freed = 0;
5369 		for (field = 0; field < _NPCM; field++) {
5370 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
5371 			    inuse != 0; inuse &= ~(1UL << bit)) {
5372 				bit = bsfq(inuse);
5373 				pv = &pc->pc_pventry[field * 64 + bit];
5374 				va = pv->pv_va;
5375 				pde = pmap_pde(pmap, va);
5376 				if ((*pde & PG_PS) != 0)
5377 					continue;
5378 				pte = pmap_pde_to_pte(pde, va);
5379 				if ((*pte & PG_W) != 0)
5380 					continue;
5381 				tpte = pte_load_clear(pte);
5382 				if ((tpte & PG_G) != 0)
5383 					pmap_invalidate_page(pmap, va);
5384 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
5385 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5386 					vm_page_dirty(m);
5387 				if ((tpte & PG_A) != 0)
5388 					vm_page_aflag_set(m, PGA_REFERENCED);
5389 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5390 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5391 				m->md.pv_gen++;
5392 				if (TAILQ_EMPTY(&m->md.pv_list) &&
5393 				    (m->flags & PG_FICTITIOUS) == 0) {
5394 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5395 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5396 						vm_page_aflag_clear(m,
5397 						    PGA_WRITEABLE);
5398 					}
5399 				}
5400 				pmap_delayed_invl_page(m);
5401 				pc->pc_map[field] |= 1UL << bit;
5402 				pmap_unuse_pt(pmap, va, *pde, &free);
5403 				freed++;
5404 			}
5405 		}
5406 		if (freed == 0) {
5407 			mtx_lock(&pvc->pvc_lock);
5408 			goto next_chunk;
5409 		}
5410 		/* Every freed mapping is for a 4 KB page. */
5411 		pmap_resident_count_adj(pmap, -freed);
5412 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
5413 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
5414 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
5415 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5416 		if (pc_is_free(pc)) {
5417 			PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5418 			PV_STAT(counter_u64_add(pc_chunk_count, -1));
5419 			PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5420 			/* Entire chunk is free; return it. */
5421 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5422 			dump_drop_page(m_pc->phys_addr);
5423 			mtx_lock(&pvc->pvc_lock);
5424 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5425 			break;
5426 		}
5427 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5428 		mtx_lock(&pvc->pvc_lock);
5429 		/* One freed pv entry in locked_pmap is sufficient. */
5430 		if (pmap == locked_pmap)
5431 			break;
5432 next_chunk:
5433 		TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5434 		TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
5435 		if (pvc->active_reclaims == 1 && pmap != NULL) {
5436 			/*
5437 			 * Rotate the pv chunks list so that we do not
5438 			 * scan the same pv chunks that could not be
5439 			 * freed (because they contained a wired
5440 			 * and/or superpage mapping) on every
5441 			 * invocation of reclaim_pv_chunk().
5442 			 */
5443 			while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
5444 				MPASS(pc->pc_pmap != NULL);
5445 				TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5446 				TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5447 			}
5448 		}
5449 	}
5450 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5451 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
5452 	pvc->active_reclaims--;
5453 	mtx_unlock(&pvc->pvc_lock);
5454 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
5455 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
5456 		m_pc = SLIST_FIRST(&free);
5457 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
5458 		/* Recycle a freed page table page. */
5459 		m_pc->ref_count = 1;
5460 	}
5461 	vm_page_free_pages_toq(&free, true);
5462 	return (m_pc);
5463 }
5464 
5465 static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap,struct rwlock ** lockp)5466 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
5467 {
5468 	vm_page_t m;
5469 	int i, domain;
5470 
5471 	domain = PCPU_GET(domain);
5472 	for (i = 0; i < vm_ndomains; i++) {
5473 		m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
5474 		if (m != NULL)
5475 			break;
5476 		domain = (domain + 1) % vm_ndomains;
5477 	}
5478 
5479 	return (m);
5480 }
5481 
5482 /*
5483  * free the pv_entry back to the free list
5484  */
5485 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)5486 free_pv_entry(pmap_t pmap, pv_entry_t pv)
5487 {
5488 	struct pv_chunk *pc;
5489 	int idx, field, bit;
5490 
5491 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5492 	PV_STAT(counter_u64_add(pv_entry_frees, 1));
5493 	PV_STAT(counter_u64_add(pv_entry_spare, 1));
5494 	PV_STAT(counter_u64_add(pv_entry_count, -1));
5495 	pc = pv_to_chunk(pv);
5496 	idx = pv - &pc->pc_pventry[0];
5497 	field = idx / 64;
5498 	bit = idx % 64;
5499 	pc->pc_map[field] |= 1ul << bit;
5500 	if (!pc_is_free(pc)) {
5501 		/* 98% of the time, pc is already at the head of the list. */
5502 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
5503 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5504 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5505 		}
5506 		return;
5507 	}
5508 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5509 	free_pv_chunk(pc);
5510 }
5511 
5512 static void
free_pv_chunk_dequeued(struct pv_chunk * pc)5513 free_pv_chunk_dequeued(struct pv_chunk *pc)
5514 {
5515 	vm_page_t m;
5516 
5517 	PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5518 	PV_STAT(counter_u64_add(pc_chunk_count, -1));
5519 	PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5520 	counter_u64_add(pv_page_count, -1);
5521 	/* entire chunk is free, return it */
5522 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5523 	dump_drop_page(m->phys_addr);
5524 	vm_page_unwire_noq(m);
5525 	vm_page_free(m);
5526 }
5527 
5528 static void
free_pv_chunk(struct pv_chunk * pc)5529 free_pv_chunk(struct pv_chunk *pc)
5530 {
5531 	struct pv_chunks_list *pvc;
5532 
5533 	pvc = &pv_chunks[pc_to_domain(pc)];
5534 	mtx_lock(&pvc->pvc_lock);
5535 	TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5536 	mtx_unlock(&pvc->pvc_lock);
5537 	free_pv_chunk_dequeued(pc);
5538 }
5539 
5540 static void
free_pv_chunk_batch(struct pv_chunklist * batch)5541 free_pv_chunk_batch(struct pv_chunklist *batch)
5542 {
5543 	struct pv_chunks_list *pvc;
5544 	struct pv_chunk *pc, *npc;
5545 	int i;
5546 
5547 	for (i = 0; i < vm_ndomains; i++) {
5548 		if (TAILQ_EMPTY(&batch[i]))
5549 			continue;
5550 		pvc = &pv_chunks[i];
5551 		mtx_lock(&pvc->pvc_lock);
5552 		TAILQ_FOREACH(pc, &batch[i], pc_list) {
5553 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5554 		}
5555 		mtx_unlock(&pvc->pvc_lock);
5556 	}
5557 
5558 	for (i = 0; i < vm_ndomains; i++) {
5559 		TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
5560 			free_pv_chunk_dequeued(pc);
5561 		}
5562 	}
5563 }
5564 
5565 /*
5566  * Returns a new PV entry, allocating a new PV chunk from the system when
5567  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
5568  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
5569  * returned.
5570  *
5571  * The given PV list lock may be released.
5572  */
5573 static pv_entry_t
get_pv_entry(pmap_t pmap,struct rwlock ** lockp)5574 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
5575 {
5576 	struct pv_chunks_list *pvc;
5577 	int bit, field;
5578 	pv_entry_t pv;
5579 	struct pv_chunk *pc;
5580 	vm_page_t m;
5581 
5582 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5583 	PV_STAT(counter_u64_add(pv_entry_allocs, 1));
5584 retry:
5585 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5586 	if (pc != NULL) {
5587 		for (field = 0; field < _NPCM; field++) {
5588 			if (pc->pc_map[field]) {
5589 				bit = bsfq(pc->pc_map[field]);
5590 				break;
5591 			}
5592 		}
5593 		if (field < _NPCM) {
5594 			pv = &pc->pc_pventry[field * 64 + bit];
5595 			pc->pc_map[field] &= ~(1ul << bit);
5596 			/* If this was the last item, move it to tail */
5597 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
5598 			    pc->pc_map[2] == 0) {
5599 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5600 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
5601 				    pc_list);
5602 			}
5603 			PV_STAT(counter_u64_add(pv_entry_count, 1));
5604 			PV_STAT(counter_u64_add(pv_entry_spare, -1));
5605 			return (pv);
5606 		}
5607 	}
5608 	/* No free items, allocate another chunk */
5609 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5610 	if (m == NULL) {
5611 		if (lockp == NULL) {
5612 			PV_STAT(counter_u64_add(pc_chunk_tryfail, 1));
5613 			return (NULL);
5614 		}
5615 		m = reclaim_pv_chunk(pmap, lockp);
5616 		if (m == NULL)
5617 			goto retry;
5618 	} else
5619 		counter_u64_add(pv_page_count, 1);
5620 	PV_STAT(counter_u64_add(pc_chunk_count, 1));
5621 	PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5622 	dump_add_page(m->phys_addr);
5623 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5624 	pc->pc_pmap = pmap;
5625 	pc->pc_map[0] = PC_FREEN & ~1ul;	/* preallocated bit 0 */
5626 	pc->pc_map[1] = PC_FREEN;
5627 	pc->pc_map[2] = PC_FREEL;
5628 	pvc = &pv_chunks[vm_page_domain(m)];
5629 	mtx_lock(&pvc->pvc_lock);
5630 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5631 	mtx_unlock(&pvc->pvc_lock);
5632 	pv = &pc->pc_pventry[0];
5633 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5634 	PV_STAT(counter_u64_add(pv_entry_count, 1));
5635 	PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV - 1));
5636 	return (pv);
5637 }
5638 
5639 /*
5640  * Returns the number of one bits within the given PV chunk map.
5641  *
5642  * The erratas for Intel processors state that "POPCNT Instruction May
5643  * Take Longer to Execute Than Expected".  It is believed that the
5644  * issue is the spurious dependency on the destination register.
5645  * Provide a hint to the register rename logic that the destination
5646  * value is overwritten, by clearing it, as suggested in the
5647  * optimization manual.  It should be cheap for unaffected processors
5648  * as well.
5649  *
5650  * Reference numbers for erratas are
5651  * 4th Gen Core: HSD146
5652  * 5th Gen Core: BDM85
5653  * 6th Gen Core: SKL029
5654  */
5655 static int
popcnt_pc_map_pq(uint64_t * map)5656 popcnt_pc_map_pq(uint64_t *map)
5657 {
5658 	u_long result, tmp;
5659 
5660 	__asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
5661 	    "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
5662 	    "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
5663 	    : "=&r" (result), "=&r" (tmp)
5664 	    : "m" (map[0]), "m" (map[1]), "m" (map[2]));
5665 	return (result);
5666 }
5667 
5668 /*
5669  * Ensure that the number of spare PV entries in the specified pmap meets or
5670  * exceeds the given count, "needed".
5671  *
5672  * The given PV list lock may be released.
5673  */
5674 static void
reserve_pv_entries(pmap_t pmap,int needed,struct rwlock ** lockp)5675 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
5676 {
5677 	struct pv_chunks_list *pvc;
5678 	struct pch new_tail[PMAP_MEMDOM];
5679 	struct pv_chunk *pc;
5680 	vm_page_t m;
5681 	int avail, free, i;
5682 	bool reclaimed;
5683 
5684 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5685 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
5686 
5687 	/*
5688 	 * Newly allocated PV chunks must be stored in a private list until
5689 	 * the required number of PV chunks have been allocated.  Otherwise,
5690 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
5691 	 * contrast, these chunks must be added to the pmap upon allocation.
5692 	 */
5693 	for (i = 0; i < PMAP_MEMDOM; i++)
5694 		TAILQ_INIT(&new_tail[i]);
5695 retry:
5696 	avail = 0;
5697 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
5698 #ifndef __POPCNT__
5699 		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
5700 			bit_count((bitstr_t *)pc->pc_map, 0,
5701 			    sizeof(pc->pc_map) * NBBY, &free);
5702 		else
5703 #endif
5704 		free = popcnt_pc_map_pq(pc->pc_map);
5705 		if (free == 0)
5706 			break;
5707 		avail += free;
5708 		if (avail >= needed)
5709 			break;
5710 	}
5711 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
5712 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5713 		if (m == NULL) {
5714 			m = reclaim_pv_chunk(pmap, lockp);
5715 			if (m == NULL)
5716 				goto retry;
5717 			reclaimed = true;
5718 		} else
5719 			counter_u64_add(pv_page_count, 1);
5720 		PV_STAT(counter_u64_add(pc_chunk_count, 1));
5721 		PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5722 		dump_add_page(m->phys_addr);
5723 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5724 		pc->pc_pmap = pmap;
5725 		pc->pc_map[0] = PC_FREEN;
5726 		pc->pc_map[1] = PC_FREEN;
5727 		pc->pc_map[2] = PC_FREEL;
5728 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5729 		TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
5730 		PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV));
5731 
5732 		/*
5733 		 * The reclaim might have freed a chunk from the current pmap.
5734 		 * If that chunk contained available entries, we need to
5735 		 * re-count the number of available entries.
5736 		 */
5737 		if (reclaimed)
5738 			goto retry;
5739 	}
5740 	for (i = 0; i < vm_ndomains; i++) {
5741 		if (TAILQ_EMPTY(&new_tail[i]))
5742 			continue;
5743 		pvc = &pv_chunks[i];
5744 		mtx_lock(&pvc->pvc_lock);
5745 		TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
5746 		mtx_unlock(&pvc->pvc_lock);
5747 	}
5748 }
5749 
5750 /*
5751  * First find and then remove the pv entry for the specified pmap and virtual
5752  * address from the specified pv list.  Returns the pv entry if found and NULL
5753  * otherwise.  This operation can be performed on pv lists for either 4KB or
5754  * 2MB page mappings.
5755  */
5756 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5757 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5758 {
5759 	pv_entry_t pv;
5760 
5761 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5762 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
5763 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5764 			pvh->pv_gen++;
5765 			break;
5766 		}
5767 	}
5768 	return (pv);
5769 }
5770 
5771 /*
5772  * After demotion from a 2MB page mapping to 512 4KB page mappings,
5773  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
5774  * entries for each of the 4KB page mappings.
5775  */
5776 static void
pmap_pv_demote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5777 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5778     struct rwlock **lockp)
5779 {
5780 	struct md_page *pvh;
5781 	struct pv_chunk *pc;
5782 	pv_entry_t pv;
5783 	vm_offset_t va_last;
5784 	vm_page_t m;
5785 	int bit, field;
5786 
5787 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5788 	KASSERT((pa & PDRMASK) == 0,
5789 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
5790 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5791 
5792 	/*
5793 	 * Transfer the 2mpage's pv entry for this mapping to the first
5794 	 * page's pv list.  Once this transfer begins, the pv list lock
5795 	 * must not be released until the last pv entry is reinstantiated.
5796 	 */
5797 	pvh = pa_to_pvh(pa);
5798 	va = trunc_2mpage(va);
5799 	pv = pmap_pvh_remove(pvh, pmap, va);
5800 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
5801 	m = PHYS_TO_VM_PAGE(pa);
5802 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5803 	m->md.pv_gen++;
5804 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
5805 	PV_STAT(counter_u64_add(pv_entry_allocs, NPTEPG - 1));
5806 	va_last = va + NBPDR - PAGE_SIZE;
5807 	for (;;) {
5808 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5809 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
5810 		    pc->pc_map[2] != 0, ("pmap_pv_demote_pde: missing spare"));
5811 		for (field = 0; field < _NPCM; field++) {
5812 			while (pc->pc_map[field]) {
5813 				bit = bsfq(pc->pc_map[field]);
5814 				pc->pc_map[field] &= ~(1ul << bit);
5815 				pv = &pc->pc_pventry[field * 64 + bit];
5816 				va += PAGE_SIZE;
5817 				pv->pv_va = va;
5818 				m++;
5819 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5820 			    ("pmap_pv_demote_pde: page %p is not managed", m));
5821 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5822 				m->md.pv_gen++;
5823 				if (va == va_last)
5824 					goto out;
5825 			}
5826 		}
5827 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5828 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5829 	}
5830 out:
5831 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
5832 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5833 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5834 	}
5835 	PV_STAT(counter_u64_add(pv_entry_count, NPTEPG - 1));
5836 	PV_STAT(counter_u64_add(pv_entry_spare, -(NPTEPG - 1)));
5837 }
5838 
5839 #if VM_NRESERVLEVEL > 0
5840 /*
5841  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
5842  * replace the many pv entries for the 4KB page mappings by a single pv entry
5843  * for the 2MB page mapping.
5844  */
5845 static void
pmap_pv_promote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5846 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5847     struct rwlock **lockp)
5848 {
5849 	struct md_page *pvh;
5850 	pv_entry_t pv;
5851 	vm_offset_t va_last;
5852 	vm_page_t m;
5853 
5854 	KASSERT((pa & PDRMASK) == 0,
5855 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
5856 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5857 
5858 	/*
5859 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
5860 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
5861 	 * a transfer avoids the possibility that get_pv_entry() calls
5862 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
5863 	 * mappings that is being promoted.
5864 	 */
5865 	m = PHYS_TO_VM_PAGE(pa);
5866 	va = trunc_2mpage(va);
5867 	pv = pmap_pvh_remove(&m->md, pmap, va);
5868 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
5869 	pvh = pa_to_pvh(pa);
5870 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5871 	pvh->pv_gen++;
5872 	/* Free the remaining NPTEPG - 1 pv entries. */
5873 	va_last = va + NBPDR - PAGE_SIZE;
5874 	do {
5875 		m++;
5876 		va += PAGE_SIZE;
5877 		pmap_pvh_free(&m->md, pmap, va);
5878 	} while (va < va_last);
5879 }
5880 #endif /* VM_NRESERVLEVEL > 0 */
5881 
5882 /*
5883  * First find and then destroy the pv entry for the specified pmap and virtual
5884  * address.  This operation can be performed on pv lists for either 4KB or 2MB
5885  * page mappings.
5886  */
5887 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5888 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5889 {
5890 	pv_entry_t pv;
5891 
5892 	pv = pmap_pvh_remove(pvh, pmap, va);
5893 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
5894 	free_pv_entry(pmap, pv);
5895 }
5896 
5897 /*
5898  * Conditionally create the PV entry for a 4KB page mapping if the required
5899  * memory can be allocated without resorting to reclamation.
5900  */
5901 static bool
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)5902 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
5903     struct rwlock **lockp)
5904 {
5905 	pv_entry_t pv;
5906 
5907 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5908 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5909 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
5910 		pv->pv_va = va;
5911 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5912 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5913 		m->md.pv_gen++;
5914 		return (true);
5915 	} else
5916 		return (false);
5917 }
5918 
5919 /*
5920  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
5921  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
5922  * false if the PV entry cannot be allocated without resorting to reclamation.
5923  */
5924 static bool
pmap_pv_insert_pde(pmap_t pmap,vm_offset_t va,pd_entry_t pde,u_int flags,struct rwlock ** lockp)5925 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
5926     struct rwlock **lockp)
5927 {
5928 	struct md_page *pvh;
5929 	pv_entry_t pv;
5930 	vm_paddr_t pa;
5931 
5932 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5933 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5934 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
5935 	    NULL : lockp)) == NULL)
5936 		return (false);
5937 	pv->pv_va = va;
5938 	pa = pde & PG_PS_FRAME;
5939 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5940 	pvh = pa_to_pvh(pa);
5941 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5942 	pvh->pv_gen++;
5943 	return (true);
5944 }
5945 
5946 /*
5947  * Fills a page table page with mappings to consecutive physical pages.
5948  */
5949 static void
pmap_fill_ptp(pt_entry_t * firstpte,pt_entry_t newpte)5950 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
5951 {
5952 	pt_entry_t *pte;
5953 
5954 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
5955 		*pte = newpte;
5956 		newpte += PAGE_SIZE;
5957 	}
5958 }
5959 
5960 /*
5961  * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
5962  * mapping is invalidated.
5963  */
5964 static bool
pmap_demote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)5965 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5966 {
5967 	struct rwlock *lock;
5968 	bool rv;
5969 
5970 	lock = NULL;
5971 	rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
5972 	if (lock != NULL)
5973 		rw_wunlock(lock);
5974 	return (rv);
5975 }
5976 
5977 static void
pmap_demote_pde_check(pt_entry_t * firstpte __unused,pt_entry_t newpte __unused)5978 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
5979 {
5980 #ifdef INVARIANTS
5981 #ifdef DIAGNOSTIC
5982 	pt_entry_t *xpte, *ypte;
5983 
5984 	for (xpte = firstpte; xpte < firstpte + NPTEPG;
5985 	    xpte++, newpte += PAGE_SIZE) {
5986 		if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
5987 			printf("pmap_demote_pde: xpte %zd and newpte map "
5988 			    "different pages: found %#lx, expected %#lx\n",
5989 			    xpte - firstpte, *xpte, newpte);
5990 			printf("page table dump\n");
5991 			for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
5992 				printf("%zd %#lx\n", ypte - firstpte, *ypte);
5993 			panic("firstpte");
5994 		}
5995 	}
5996 #else
5997 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
5998 	    ("pmap_demote_pde: firstpte and newpte map different physical"
5999 	    " addresses"));
6000 #endif
6001 #endif
6002 }
6003 
6004 static void
pmap_demote_pde_abort(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t oldpde,struct rwlock ** lockp)6005 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6006     pd_entry_t oldpde, struct rwlock **lockp)
6007 {
6008 	struct spglist free;
6009 	vm_offset_t sva;
6010 
6011 	SLIST_INIT(&free);
6012 	sva = trunc_2mpage(va);
6013 	pmap_remove_pde(pmap, pde, sva, &free, lockp);
6014 	if ((oldpde & pmap_global_bit(pmap)) == 0)
6015 		pmap_invalidate_pde_page(pmap, sva, oldpde);
6016 	vm_page_free_pages_toq(&free, true);
6017 	CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
6018 	    va, pmap);
6019 }
6020 
6021 static bool
pmap_demote_pde_locked(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,struct rwlock ** lockp)6022 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
6023     struct rwlock **lockp)
6024 {
6025 	pd_entry_t newpde, oldpde;
6026 	pt_entry_t *firstpte, newpte;
6027 	pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6028 	vm_paddr_t mptepa;
6029 	vm_page_t mpte;
6030 	int PG_PTE_CACHE;
6031 	bool in_kernel;
6032 
6033 	PG_A = pmap_accessed_bit(pmap);
6034 	PG_G = pmap_global_bit(pmap);
6035 	PG_M = pmap_modified_bit(pmap);
6036 	PG_RW = pmap_rw_bit(pmap);
6037 	PG_V = pmap_valid_bit(pmap);
6038 	PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6039 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6040 
6041 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6042 	in_kernel = va >= VM_MAXUSER_ADDRESS;
6043 	oldpde = *pde;
6044 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
6045 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
6046 
6047 	/*
6048 	 * Invalidate the 2MB page mapping and return "failure" if the
6049 	 * mapping was never accessed.
6050 	 */
6051 	if ((oldpde & PG_A) == 0) {
6052 		KASSERT((oldpde & PG_W) == 0,
6053 		    ("pmap_demote_pde: a wired mapping is missing PG_A"));
6054 		pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6055 		return (false);
6056 	}
6057 
6058 	mpte = pmap_remove_pt_page(pmap, va);
6059 	if (mpte == NULL) {
6060 		KASSERT((oldpde & PG_W) == 0,
6061 		    ("pmap_demote_pde: page table page for a wired mapping"
6062 		    " is missing"));
6063 
6064 		/*
6065 		 * If the page table page is missing and the mapping
6066 		 * is for a kernel address, the mapping must belong to
6067 		 * the direct map.  Page table pages are preallocated
6068 		 * for every other part of the kernel address space,
6069 		 * so the direct map region is the only part of the
6070 		 * kernel address space that must be handled here.
6071 		 */
6072 		KASSERT(!in_kernel || (va >= DMAP_MIN_ADDRESS &&
6073 		    va < DMAP_MAX_ADDRESS),
6074 		    ("pmap_demote_pde: No saved mpte for va %#lx", va));
6075 
6076 		/*
6077 		 * If the 2MB page mapping belongs to the direct map
6078 		 * region of the kernel's address space, then the page
6079 		 * allocation request specifies the highest possible
6080 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the
6081 		 * priority is normal.
6082 		 */
6083 		mpte = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
6084 		    (in_kernel ? VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED);
6085 
6086 		/*
6087 		 * If the allocation of the new page table page fails,
6088 		 * invalidate the 2MB page mapping and return "failure".
6089 		 */
6090 		if (mpte == NULL) {
6091 			pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6092 			return (false);
6093 		}
6094 
6095 		if (!in_kernel)
6096 			mpte->ref_count = NPTEPG;
6097 	}
6098 	mptepa = VM_PAGE_TO_PHYS(mpte);
6099 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
6100 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
6101 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
6102 	    ("pmap_demote_pde: oldpde is missing PG_M"));
6103 	newpte = oldpde & ~PG_PS;
6104 	newpte = pmap_swap_pat(pmap, newpte);
6105 
6106 	/*
6107 	 * If the PTP is not leftover from an earlier promotion or it does not
6108 	 * have PG_A set in every PTE, then fill it.  The new PTEs will all
6109 	 * have PG_A set.
6110 	 */
6111 	if (!vm_page_all_valid(mpte))
6112 		pmap_fill_ptp(firstpte, newpte);
6113 
6114 	pmap_demote_pde_check(firstpte, newpte);
6115 
6116 	/*
6117 	 * If the mapping has changed attributes, update the PTEs.
6118 	 */
6119 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
6120 		pmap_fill_ptp(firstpte, newpte);
6121 
6122 	/*
6123 	 * The spare PV entries must be reserved prior to demoting the
6124 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
6125 	 * of the PDE and the PV lists will be inconsistent, which can result
6126 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
6127 	 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
6128 	 * PV entry for the 2MB page mapping that is being demoted.
6129 	 */
6130 	if ((oldpde & PG_MANAGED) != 0)
6131 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
6132 
6133 	/*
6134 	 * Demote the mapping.  This pmap is locked.  The old PDE has
6135 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
6136 	 * set.  Thus, there is no danger of a race with another
6137 	 * processor changing the setting of PG_A and/or PG_M between
6138 	 * the read above and the store below.
6139 	 */
6140 	if (workaround_erratum383)
6141 		pmap_update_pde(pmap, va, pde, newpde);
6142 	else
6143 		pde_store(pde, newpde);
6144 
6145 	/*
6146 	 * Invalidate a stale recursive mapping of the page table page.
6147 	 */
6148 	if (in_kernel)
6149 		pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6150 
6151 	/*
6152 	 * Demote the PV entry.
6153 	 */
6154 	if ((oldpde & PG_MANAGED) != 0)
6155 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
6156 
6157 	counter_u64_add(pmap_pde_demotions, 1);
6158 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
6159 	    va, pmap);
6160 	return (true);
6161 }
6162 
6163 /*
6164  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
6165  */
6166 static void
pmap_remove_kernel_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)6167 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
6168 {
6169 	pd_entry_t newpde;
6170 	vm_paddr_t mptepa;
6171 	vm_page_t mpte;
6172 
6173 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
6174 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6175 	mpte = pmap_remove_pt_page(pmap, va);
6176 	if (mpte == NULL)
6177 		panic("pmap_remove_kernel_pde: Missing pt page.");
6178 
6179 	mptepa = VM_PAGE_TO_PHYS(mpte);
6180 	newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
6181 
6182 	/*
6183 	 * If this page table page was unmapped by a promotion, then it
6184 	 * contains valid mappings.  Zero it to invalidate those mappings.
6185 	 */
6186 	if (vm_page_any_valid(mpte))
6187 		pagezero((void *)PHYS_TO_DMAP(mptepa));
6188 
6189 	/*
6190 	 * Demote the mapping.
6191 	 */
6192 	if (workaround_erratum383)
6193 		pmap_update_pde(pmap, va, pde, newpde);
6194 	else
6195 		pde_store(pde, newpde);
6196 
6197 	/*
6198 	 * Invalidate a stale recursive mapping of the page table page.
6199 	 */
6200 	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6201 }
6202 
6203 /*
6204  * pmap_remove_pde: do the things to unmap a superpage in a process
6205  */
6206 static int
pmap_remove_pde(pmap_t pmap,pd_entry_t * pdq,vm_offset_t sva,struct spglist * free,struct rwlock ** lockp)6207 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
6208     struct spglist *free, struct rwlock **lockp)
6209 {
6210 	struct md_page *pvh;
6211 	pd_entry_t oldpde;
6212 	vm_offset_t eva, va;
6213 	vm_page_t m, mpte;
6214 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
6215 
6216 	PG_G = pmap_global_bit(pmap);
6217 	PG_A = pmap_accessed_bit(pmap);
6218 	PG_M = pmap_modified_bit(pmap);
6219 	PG_RW = pmap_rw_bit(pmap);
6220 
6221 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6222 	KASSERT((sva & PDRMASK) == 0,
6223 	    ("pmap_remove_pde: sva is not 2mpage aligned"));
6224 	oldpde = pte_load_clear(pdq);
6225 	if (oldpde & PG_W)
6226 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
6227 	if ((oldpde & PG_G) != 0)
6228 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6229 	pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
6230 	if (oldpde & PG_MANAGED) {
6231 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
6232 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
6233 		pmap_pvh_free(pvh, pmap, sva);
6234 		eva = sva + NBPDR;
6235 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6236 		    va < eva; va += PAGE_SIZE, m++) {
6237 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
6238 				vm_page_dirty(m);
6239 			if (oldpde & PG_A)
6240 				vm_page_aflag_set(m, PGA_REFERENCED);
6241 			if (TAILQ_EMPTY(&m->md.pv_list) &&
6242 			    TAILQ_EMPTY(&pvh->pv_list))
6243 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6244 			pmap_delayed_invl_page(m);
6245 		}
6246 	}
6247 	if (pmap == kernel_pmap) {
6248 		pmap_remove_kernel_pde(pmap, pdq, sva);
6249 	} else {
6250 		mpte = pmap_remove_pt_page(pmap, sva);
6251 		if (mpte != NULL) {
6252 			KASSERT(vm_page_any_valid(mpte),
6253 			    ("pmap_remove_pde: pte page not promoted"));
6254 			pmap_pt_page_count_adj(pmap, -1);
6255 			KASSERT(mpte->ref_count == NPTEPG,
6256 			    ("pmap_remove_pde: pte page ref count error"));
6257 			mpte->ref_count = 0;
6258 			pmap_add_delayed_free_list(mpte, free, false);
6259 		}
6260 	}
6261 	return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
6262 }
6263 
6264 /*
6265  * pmap_remove_pte: do the things to unmap a page in a process
6266  */
6267 static int
pmap_remove_pte(pmap_t pmap,pt_entry_t * ptq,vm_offset_t va,pd_entry_t ptepde,struct spglist * free,struct rwlock ** lockp)6268 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
6269     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
6270 {
6271 	struct md_page *pvh;
6272 	pt_entry_t oldpte, PG_A, PG_M, PG_RW;
6273 	vm_page_t m;
6274 
6275 	PG_A = pmap_accessed_bit(pmap);
6276 	PG_M = pmap_modified_bit(pmap);
6277 	PG_RW = pmap_rw_bit(pmap);
6278 
6279 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6280 	oldpte = pte_load_clear(ptq);
6281 	if (oldpte & PG_W)
6282 		pmap->pm_stats.wired_count -= 1;
6283 	pmap_resident_count_adj(pmap, -1);
6284 	if (oldpte & PG_MANAGED) {
6285 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
6286 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6287 			vm_page_dirty(m);
6288 		if (oldpte & PG_A)
6289 			vm_page_aflag_set(m, PGA_REFERENCED);
6290 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
6291 		pmap_pvh_free(&m->md, pmap, va);
6292 		if (TAILQ_EMPTY(&m->md.pv_list) &&
6293 		    (m->flags & PG_FICTITIOUS) == 0) {
6294 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
6295 			if (TAILQ_EMPTY(&pvh->pv_list))
6296 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6297 		}
6298 		pmap_delayed_invl_page(m);
6299 	}
6300 	return (pmap_unuse_pt(pmap, va, ptepde, free));
6301 }
6302 
6303 /*
6304  * Remove a single page from a process address space
6305  */
6306 static void
pmap_remove_page(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,struct spglist * free)6307 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6308     struct spglist *free)
6309 {
6310 	struct rwlock *lock;
6311 	pt_entry_t *pte, PG_V;
6312 
6313 	PG_V = pmap_valid_bit(pmap);
6314 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6315 	if ((*pde & PG_V) == 0)
6316 		return;
6317 	pte = pmap_pde_to_pte(pde, va);
6318 	if ((*pte & PG_V) == 0)
6319 		return;
6320 	lock = NULL;
6321 	pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
6322 	if (lock != NULL)
6323 		rw_wunlock(lock);
6324 	pmap_invalidate_page(pmap, va);
6325 }
6326 
6327 /*
6328  * Removes the specified range of addresses from the page table page.
6329  */
6330 static bool
pmap_remove_ptes(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pd_entry_t * pde,struct spglist * free,struct rwlock ** lockp)6331 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
6332     pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
6333 {
6334 	pt_entry_t PG_G, *pte;
6335 	vm_offset_t va;
6336 	bool anyvalid;
6337 
6338 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6339 	PG_G = pmap_global_bit(pmap);
6340 	anyvalid = false;
6341 	va = eva;
6342 	for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
6343 	    sva += PAGE_SIZE) {
6344 		if (*pte == 0) {
6345 			if (va != eva) {
6346 				pmap_invalidate_range(pmap, va, sva);
6347 				va = eva;
6348 			}
6349 			continue;
6350 		}
6351 		if ((*pte & PG_G) == 0)
6352 			anyvalid = true;
6353 		else if (va == eva)
6354 			va = sva;
6355 		if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
6356 			sva += PAGE_SIZE;
6357 			break;
6358 		}
6359 	}
6360 	if (va != eva)
6361 		pmap_invalidate_range(pmap, va, sva);
6362 	return (anyvalid);
6363 }
6364 
6365 static void
pmap_remove1(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool map_delete)6366 pmap_remove1(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool map_delete)
6367 {
6368 	struct rwlock *lock;
6369 	vm_page_t mt;
6370 	vm_offset_t va_next;
6371 	pml5_entry_t *pml5e;
6372 	pml4_entry_t *pml4e;
6373 	pdp_entry_t *pdpe;
6374 	pd_entry_t ptpaddr, *pde;
6375 	pt_entry_t PG_G, PG_V;
6376 	struct spglist free;
6377 	int anyvalid;
6378 
6379 	PG_G = pmap_global_bit(pmap);
6380 	PG_V = pmap_valid_bit(pmap);
6381 
6382 	/*
6383 	 * If there are no resident pages besides the top level page
6384 	 * table page(s), there is nothing to do.  Kernel pmap always
6385 	 * accounts whole preloaded area as resident, which makes its
6386 	 * resident count > 2.
6387 	 * Perform an unsynchronized read.  This is, however, safe.
6388 	 */
6389 	if (pmap->pm_stats.resident_count <= 1 + (pmap->pm_pmltopu != NULL ?
6390 	    1 : 0))
6391 		return;
6392 
6393 	anyvalid = 0;
6394 	SLIST_INIT(&free);
6395 
6396 	pmap_delayed_invl_start();
6397 	PMAP_LOCK(pmap);
6398 	if (map_delete)
6399 		pmap_pkru_on_remove(pmap, sva, eva);
6400 
6401 	/*
6402 	 * special handling of removing one page.  a very
6403 	 * common operation and easy to short circuit some
6404 	 * code.
6405 	 */
6406 	if (sva + PAGE_SIZE == eva) {
6407 		pde = pmap_pde(pmap, sva);
6408 		if (pde && (*pde & PG_PS) == 0) {
6409 			pmap_remove_page(pmap, sva, pde, &free);
6410 			goto out;
6411 		}
6412 	}
6413 
6414 	lock = NULL;
6415 	for (; sva < eva; sva = va_next) {
6416 		if (pmap->pm_stats.resident_count == 0)
6417 			break;
6418 
6419 		if (pmap_is_la57(pmap)) {
6420 			pml5e = pmap_pml5e(pmap, sva);
6421 			if ((*pml5e & PG_V) == 0) {
6422 				va_next = (sva + NBPML5) & ~PML5MASK;
6423 				if (va_next < sva)
6424 					va_next = eva;
6425 				continue;
6426 			}
6427 			pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
6428 		} else {
6429 			pml4e = pmap_pml4e(pmap, sva);
6430 		}
6431 		if ((*pml4e & PG_V) == 0) {
6432 			va_next = (sva + NBPML4) & ~PML4MASK;
6433 			if (va_next < sva)
6434 				va_next = eva;
6435 			continue;
6436 		}
6437 
6438 		va_next = (sva + NBPDP) & ~PDPMASK;
6439 		if (va_next < sva)
6440 			va_next = eva;
6441 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6442 		if ((*pdpe & PG_V) == 0)
6443 			continue;
6444 		if ((*pdpe & PG_PS) != 0) {
6445 			KASSERT(va_next <= eva,
6446 			    ("partial update of non-transparent 1G mapping "
6447 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6448 			    *pdpe, sva, eva, va_next));
6449 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6450 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
6451 			anyvalid = 1;
6452 			*pdpe = 0;
6453 			pmap_resident_count_adj(pmap, -NBPDP / PAGE_SIZE);
6454 			mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
6455 			pmap_unwire_ptp(pmap, sva, mt, &free);
6456 			continue;
6457 		}
6458 
6459 		/*
6460 		 * Calculate index for next page table.
6461 		 */
6462 		va_next = (sva + NBPDR) & ~PDRMASK;
6463 		if (va_next < sva)
6464 			va_next = eva;
6465 
6466 		pde = pmap_pdpe_to_pde(pdpe, sva);
6467 		ptpaddr = *pde;
6468 
6469 		/*
6470 		 * Weed out invalid mappings.
6471 		 */
6472 		if (ptpaddr == 0)
6473 			continue;
6474 
6475 		/*
6476 		 * Check for large page.
6477 		 */
6478 		if ((ptpaddr & PG_PS) != 0) {
6479 			/*
6480 			 * Are we removing the entire large page?  If not,
6481 			 * demote the mapping and fall through.
6482 			 */
6483 			if (sva + NBPDR == va_next && eva >= va_next) {
6484 				/*
6485 				 * The TLB entry for a PG_G mapping is
6486 				 * invalidated by pmap_remove_pde().
6487 				 */
6488 				if ((ptpaddr & PG_G) == 0)
6489 					anyvalid = 1;
6490 				pmap_remove_pde(pmap, pde, sva, &free, &lock);
6491 				continue;
6492 			} else if (!pmap_demote_pde_locked(pmap, pde, sva,
6493 			    &lock)) {
6494 				/* The large page mapping was destroyed. */
6495 				continue;
6496 			} else
6497 				ptpaddr = *pde;
6498 		}
6499 
6500 		/*
6501 		 * Limit our scan to either the end of the va represented
6502 		 * by the current page table page, or to the end of the
6503 		 * range being removed.
6504 		 */
6505 		if (va_next > eva)
6506 			va_next = eva;
6507 
6508 		if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
6509 			anyvalid = 1;
6510 	}
6511 	if (lock != NULL)
6512 		rw_wunlock(lock);
6513 out:
6514 	if (anyvalid)
6515 		pmap_invalidate_all(pmap);
6516 	PMAP_UNLOCK(pmap);
6517 	pmap_delayed_invl_finish();
6518 	vm_page_free_pages_toq(&free, true);
6519 }
6520 
6521 /*
6522  *	Remove the given range of addresses from the specified map.
6523  *
6524  *	It is assumed that the start and end are properly
6525  *	rounded to the page size.
6526  */
6527 void
pmap_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6528 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6529 {
6530 	pmap_remove1(pmap, sva, eva, false);
6531 }
6532 
6533 /*
6534  *	Remove the given range of addresses as part of a logical unmap
6535  *	operation. This has the effect of calling pmap_remove(), but
6536  *	also clears any metadata that should persist for the lifetime
6537  *	of a logical mapping.
6538  */
6539 void
pmap_map_delete(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6540 pmap_map_delete(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6541 {
6542 	pmap_remove1(pmap, sva, eva, true);
6543 }
6544 
6545 /*
6546  *	Routine:	pmap_remove_all
6547  *	Function:
6548  *		Removes this physical page from
6549  *		all physical maps in which it resides.
6550  *		Reflects back modify bits to the pager.
6551  *
6552  *	Notes:
6553  *		Original versions of this routine were very
6554  *		inefficient because they iteratively called
6555  *		pmap_remove (slow...)
6556  */
6557 
6558 void
pmap_remove_all(vm_page_t m)6559 pmap_remove_all(vm_page_t m)
6560 {
6561 	struct md_page *pvh;
6562 	pv_entry_t pv;
6563 	pmap_t pmap;
6564 	struct rwlock *lock;
6565 	pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
6566 	pd_entry_t *pde;
6567 	vm_offset_t va;
6568 	struct spglist free;
6569 	int pvh_gen, md_gen;
6570 
6571 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6572 	    ("pmap_remove_all: page %p is not managed", m));
6573 	SLIST_INIT(&free);
6574 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6575 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6576 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
6577 	rw_wlock(lock);
6578 retry:
6579 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
6580 		pmap = PV_PMAP(pv);
6581 		if (!PMAP_TRYLOCK(pmap)) {
6582 			pvh_gen = pvh->pv_gen;
6583 			rw_wunlock(lock);
6584 			PMAP_LOCK(pmap);
6585 			rw_wlock(lock);
6586 			if (pvh_gen != pvh->pv_gen) {
6587 				PMAP_UNLOCK(pmap);
6588 				goto retry;
6589 			}
6590 		}
6591 		va = pv->pv_va;
6592 		pde = pmap_pde(pmap, va);
6593 		(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
6594 		PMAP_UNLOCK(pmap);
6595 	}
6596 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
6597 		pmap = PV_PMAP(pv);
6598 		if (!PMAP_TRYLOCK(pmap)) {
6599 			pvh_gen = pvh->pv_gen;
6600 			md_gen = m->md.pv_gen;
6601 			rw_wunlock(lock);
6602 			PMAP_LOCK(pmap);
6603 			rw_wlock(lock);
6604 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6605 				PMAP_UNLOCK(pmap);
6606 				goto retry;
6607 			}
6608 		}
6609 		PG_A = pmap_accessed_bit(pmap);
6610 		PG_M = pmap_modified_bit(pmap);
6611 		PG_RW = pmap_rw_bit(pmap);
6612 		pmap_resident_count_adj(pmap, -1);
6613 		pde = pmap_pde(pmap, pv->pv_va);
6614 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
6615 		    " a 2mpage in page %p's pv list", m));
6616 		pte = pmap_pde_to_pte(pde, pv->pv_va);
6617 		tpte = pte_load_clear(pte);
6618 		if (tpte & PG_W)
6619 			pmap->pm_stats.wired_count--;
6620 		if (tpte & PG_A)
6621 			vm_page_aflag_set(m, PGA_REFERENCED);
6622 
6623 		/*
6624 		 * Update the vm_page_t clean and reference bits.
6625 		 */
6626 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6627 			vm_page_dirty(m);
6628 		pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
6629 		pmap_invalidate_page(pmap, pv->pv_va);
6630 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6631 		m->md.pv_gen++;
6632 		free_pv_entry(pmap, pv);
6633 		PMAP_UNLOCK(pmap);
6634 	}
6635 	vm_page_aflag_clear(m, PGA_WRITEABLE);
6636 	rw_wunlock(lock);
6637 	pmap_delayed_invl_wait(m);
6638 	vm_page_free_pages_toq(&free, true);
6639 }
6640 
6641 /*
6642  * pmap_protect_pde: do the things to protect a 2mpage in a process
6643  */
6644 static bool
pmap_protect_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t sva,vm_prot_t prot)6645 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
6646 {
6647 	pd_entry_t newpde, oldpde;
6648 	vm_page_t m, mt;
6649 	bool anychanged;
6650 	pt_entry_t PG_G, PG_M, PG_RW;
6651 
6652 	PG_G = pmap_global_bit(pmap);
6653 	PG_M = pmap_modified_bit(pmap);
6654 	PG_RW = pmap_rw_bit(pmap);
6655 
6656 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6657 	KASSERT((sva & PDRMASK) == 0,
6658 	    ("pmap_protect_pde: sva is not 2mpage aligned"));
6659 	anychanged = false;
6660 retry:
6661 	oldpde = newpde = *pde;
6662 	if ((prot & VM_PROT_WRITE) == 0) {
6663 		if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
6664 		    (PG_MANAGED | PG_M | PG_RW)) {
6665 			m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6666 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
6667 				vm_page_dirty(mt);
6668 		}
6669 		newpde &= ~(PG_RW | PG_M);
6670 	}
6671 	if ((prot & VM_PROT_EXECUTE) == 0)
6672 		newpde |= pg_nx;
6673 	if (newpde != oldpde) {
6674 		/*
6675 		 * As an optimization to future operations on this PDE, clear
6676 		 * PG_PROMOTED.  The impending invalidation will remove any
6677 		 * lingering 4KB page mappings from the TLB.
6678 		 */
6679 		if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
6680 			goto retry;
6681 		if ((oldpde & PG_G) != 0)
6682 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6683 		else
6684 			anychanged = true;
6685 	}
6686 	return (anychanged);
6687 }
6688 
6689 /*
6690  *	Set the physical protection on the
6691  *	specified range of this map as requested.
6692  */
6693 void
pmap_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)6694 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
6695 {
6696 	vm_page_t m;
6697 	vm_offset_t va_next;
6698 	pml4_entry_t *pml4e;
6699 	pdp_entry_t *pdpe;
6700 	pd_entry_t ptpaddr, *pde;
6701 	pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
6702 	pt_entry_t obits, pbits;
6703 	bool anychanged;
6704 
6705 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
6706 	if (prot == VM_PROT_NONE) {
6707 		pmap_remove(pmap, sva, eva);
6708 		return;
6709 	}
6710 
6711 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
6712 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
6713 		return;
6714 
6715 	PG_G = pmap_global_bit(pmap);
6716 	PG_M = pmap_modified_bit(pmap);
6717 	PG_V = pmap_valid_bit(pmap);
6718 	PG_RW = pmap_rw_bit(pmap);
6719 	anychanged = false;
6720 
6721 	/*
6722 	 * Although this function delays and batches the invalidation
6723 	 * of stale TLB entries, it does not need to call
6724 	 * pmap_delayed_invl_start() and
6725 	 * pmap_delayed_invl_finish(), because it does not
6726 	 * ordinarily destroy mappings.  Stale TLB entries from
6727 	 * protection-only changes need only be invalidated before the
6728 	 * pmap lock is released, because protection-only changes do
6729 	 * not destroy PV entries.  Even operations that iterate over
6730 	 * a physical page's PV list of mappings, like
6731 	 * pmap_remove_write(), acquire the pmap lock for each
6732 	 * mapping.  Consequently, for protection-only changes, the
6733 	 * pmap lock suffices to synchronize both page table and TLB
6734 	 * updates.
6735 	 *
6736 	 * This function only destroys a mapping if pmap_demote_pde()
6737 	 * fails.  In that case, stale TLB entries are immediately
6738 	 * invalidated.
6739 	 */
6740 
6741 	PMAP_LOCK(pmap);
6742 	for (; sva < eva; sva = va_next) {
6743 		pml4e = pmap_pml4e(pmap, sva);
6744 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6745 			va_next = (sva + NBPML4) & ~PML4MASK;
6746 			if (va_next < sva)
6747 				va_next = eva;
6748 			continue;
6749 		}
6750 
6751 		va_next = (sva + NBPDP) & ~PDPMASK;
6752 		if (va_next < sva)
6753 			va_next = eva;
6754 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6755 		if ((*pdpe & PG_V) == 0)
6756 			continue;
6757 		if ((*pdpe & PG_PS) != 0) {
6758 			KASSERT(va_next <= eva,
6759 			    ("partial update of non-transparent 1G mapping "
6760 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6761 			    *pdpe, sva, eva, va_next));
6762 retry_pdpe:
6763 			obits = pbits = *pdpe;
6764 			MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
6765 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6766 			if ((prot & VM_PROT_WRITE) == 0)
6767 				pbits &= ~(PG_RW | PG_M);
6768 			if ((prot & VM_PROT_EXECUTE) == 0)
6769 				pbits |= pg_nx;
6770 
6771 			if (pbits != obits) {
6772 				if (!atomic_cmpset_long(pdpe, obits, pbits))
6773 					/* PG_PS cannot be cleared under us, */
6774 					goto retry_pdpe;
6775 				anychanged = true;
6776 			}
6777 			continue;
6778 		}
6779 
6780 		va_next = (sva + NBPDR) & ~PDRMASK;
6781 		if (va_next < sva)
6782 			va_next = eva;
6783 
6784 		pde = pmap_pdpe_to_pde(pdpe, sva);
6785 		ptpaddr = *pde;
6786 
6787 		/*
6788 		 * Weed out invalid mappings.
6789 		 */
6790 		if (ptpaddr == 0)
6791 			continue;
6792 
6793 		/*
6794 		 * Check for large page.
6795 		 */
6796 		if ((ptpaddr & PG_PS) != 0) {
6797 			/*
6798 			 * Are we protecting the entire large page?  If not,
6799 			 * demote the mapping and fall through.
6800 			 */
6801 			if (sva + NBPDR == va_next && eva >= va_next) {
6802 				/*
6803 				 * The TLB entry for a PG_G mapping is
6804 				 * invalidated by pmap_protect_pde().
6805 				 */
6806 				if (pmap_protect_pde(pmap, pde, sva, prot))
6807 					anychanged = true;
6808 				continue;
6809 			} else if (!pmap_demote_pde(pmap, pde, sva)) {
6810 				/*
6811 				 * The large page mapping was destroyed.
6812 				 */
6813 				continue;
6814 			}
6815 		}
6816 
6817 		if (va_next > eva)
6818 			va_next = eva;
6819 
6820 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6821 		    sva += PAGE_SIZE) {
6822 retry:
6823 			obits = pbits = *pte;
6824 			if ((pbits & PG_V) == 0)
6825 				continue;
6826 
6827 			if ((prot & VM_PROT_WRITE) == 0) {
6828 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
6829 				    (PG_MANAGED | PG_M | PG_RW)) {
6830 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
6831 					vm_page_dirty(m);
6832 				}
6833 				pbits &= ~(PG_RW | PG_M);
6834 			}
6835 			if ((prot & VM_PROT_EXECUTE) == 0)
6836 				pbits |= pg_nx;
6837 
6838 			if (pbits != obits) {
6839 				if (!atomic_cmpset_long(pte, obits, pbits))
6840 					goto retry;
6841 				if (obits & PG_G)
6842 					pmap_invalidate_page(pmap, sva);
6843 				else
6844 					anychanged = true;
6845 			}
6846 		}
6847 	}
6848 	if (anychanged)
6849 		pmap_invalidate_all(pmap);
6850 	PMAP_UNLOCK(pmap);
6851 }
6852 
6853 static bool
pmap_pde_ept_executable(pmap_t pmap,pd_entry_t pde)6854 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
6855 {
6856 
6857 	if (pmap->pm_type != PT_EPT)
6858 		return (false);
6859 	return ((pde & EPT_PG_EXECUTE) != 0);
6860 }
6861 
6862 #if VM_NRESERVLEVEL > 0
6863 /*
6864  * Tries to promote the 512, contiguous 4KB page mappings that are within a
6865  * single page table page (PTP) to a single 2MB page mapping.  For promotion
6866  * to occur, two conditions must be met: (1) the 4KB page mappings must map
6867  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
6868  * identical characteristics.
6869  */
6870 static bool
pmap_promote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,vm_page_t mpte,struct rwlock ** lockp)6871 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte,
6872     struct rwlock **lockp)
6873 {
6874 	pd_entry_t newpde;
6875 	pt_entry_t *firstpte, oldpte, pa, *pte;
6876 	pt_entry_t allpte_PG_A, PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6877 	int PG_PTE_CACHE;
6878 
6879 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6880 	if (!pmap_ps_enabled(pmap))
6881 		return (false);
6882 
6883 	PG_A = pmap_accessed_bit(pmap);
6884 	PG_G = pmap_global_bit(pmap);
6885 	PG_M = pmap_modified_bit(pmap);
6886 	PG_V = pmap_valid_bit(pmap);
6887 	PG_RW = pmap_rw_bit(pmap);
6888 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6889 	PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6890 
6891 	/*
6892 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
6893 	 * ineligible for promotion due to hardware errata, invalid, or does
6894 	 * not map the first 4KB physical page within a 2MB page.
6895 	 */
6896 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
6897 	newpde = *firstpte;
6898 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap, newpde)))
6899 		return (false);
6900 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
6901 		counter_u64_add(pmap_pde_p_failures, 1);
6902 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6903 		    " in pmap %p", va, pmap);
6904 		return (false);
6905 	}
6906 
6907 	/*
6908 	 * Both here and in the below "for" loop, to allow for repromotion
6909 	 * after MADV_FREE, conditionally write protect a clean PTE before
6910 	 * possibly aborting the promotion due to other PTE attributes.  Why?
6911 	 * Suppose that MADV_FREE is applied to a part of a superpage, the
6912 	 * address range [S, E).  pmap_advise() will demote the superpage
6913 	 * mapping, destroy the 4KB page mapping at the end of [S, E), and
6914 	 * clear PG_M and PG_A in the PTEs for the rest of [S, E).  Later,
6915 	 * imagine that the memory in [S, E) is recycled, but the last 4KB
6916 	 * page in [S, E) is not the last to be rewritten, or simply accessed.
6917 	 * In other words, there is still a 4KB page in [S, E), call it P,
6918 	 * that is writeable but PG_M and PG_A are clear in P's PTE.  Unless
6919 	 * we write protect P before aborting the promotion, if and when P is
6920 	 * finally rewritten, there won't be a page fault to trigger
6921 	 * repromotion.
6922 	 */
6923 setpde:
6924 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
6925 		/*
6926 		 * When PG_M is already clear, PG_RW can be cleared without
6927 		 * a TLB invalidation.
6928 		 */
6929 		if (!atomic_fcmpset_long(firstpte, &newpde, newpde & ~PG_RW))
6930 			goto setpde;
6931 		newpde &= ~PG_RW;
6932 		CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6933 		    " in pmap %p", va & ~PDRMASK, pmap);
6934 	}
6935 
6936 	/*
6937 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
6938 	 * PTE maps an unexpected 4KB physical page or does not have identical
6939 	 * characteristics to the first PTE.
6940 	 */
6941 	allpte_PG_A = newpde & PG_A;
6942 	pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
6943 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
6944 		oldpte = *pte;
6945 		if ((oldpte & (PG_FRAME | PG_V)) != pa) {
6946 			counter_u64_add(pmap_pde_p_failures, 1);
6947 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6948 			    " in pmap %p", va, pmap);
6949 			return (false);
6950 		}
6951 setpte:
6952 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
6953 			/*
6954 			 * When PG_M is already clear, PG_RW can be cleared
6955 			 * without a TLB invalidation.
6956 			 */
6957 			if (!atomic_fcmpset_long(pte, &oldpte, oldpte & ~PG_RW))
6958 				goto setpte;
6959 			oldpte &= ~PG_RW;
6960 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6961 			    " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
6962 			    (va & ~PDRMASK), pmap);
6963 		}
6964 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
6965 			counter_u64_add(pmap_pde_p_failures, 1);
6966 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6967 			    " in pmap %p", va, pmap);
6968 			return (false);
6969 		}
6970 		allpte_PG_A &= oldpte;
6971 		pa -= PAGE_SIZE;
6972 	}
6973 
6974 	/*
6975 	 * Unless all PTEs have PG_A set, clear it from the superpage mapping,
6976 	 * so that promotions triggered by speculative mappings, such as
6977 	 * pmap_enter_quick(), don't automatically mark the underlying pages
6978 	 * as referenced.
6979 	 */
6980 	newpde &= ~PG_A | allpte_PG_A;
6981 
6982 	/*
6983 	 * EPT PTEs with PG_M set and PG_A clear are not supported by early
6984 	 * MMUs supporting EPT.
6985 	 */
6986 	KASSERT((newpde & PG_A) != 0 || safe_to_clear_referenced(pmap, newpde),
6987 	    ("unsupported EPT PTE"));
6988 
6989 	/*
6990 	 * Save the PTP in its current state until the PDE mapping the
6991 	 * superpage is demoted by pmap_demote_pde() or destroyed by
6992 	 * pmap_remove_pde().  If PG_A is not set in every PTE, then request
6993 	 * that the PTP be refilled on demotion.
6994 	 */
6995 	if (mpte == NULL)
6996 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
6997 	KASSERT(mpte >= vm_page_array &&
6998 	    mpte < &vm_page_array[vm_page_array_size],
6999 	    ("pmap_promote_pde: page table page is out of range"));
7000 	KASSERT(mpte->pindex == pmap_pde_pindex(va),
7001 	    ("pmap_promote_pde: page table page's pindex is wrong "
7002 	    "mpte %p pidx %#lx va %#lx va pde pidx %#lx",
7003 	    mpte, mpte->pindex, va, pmap_pde_pindex(va)));
7004 	if (pmap_insert_pt_page(pmap, mpte, true, allpte_PG_A != 0)) {
7005 		counter_u64_add(pmap_pde_p_failures, 1);
7006 		CTR2(KTR_PMAP,
7007 		    "pmap_promote_pde: failure for va %#lx in pmap %p", va,
7008 		    pmap);
7009 		return (false);
7010 	}
7011 
7012 	/*
7013 	 * Promote the pv entries.
7014 	 */
7015 	if ((newpde & PG_MANAGED) != 0)
7016 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
7017 
7018 	/*
7019 	 * Propagate the PAT index to its proper position.
7020 	 */
7021 	newpde = pmap_swap_pat(pmap, newpde);
7022 
7023 	/*
7024 	 * Map the superpage.
7025 	 */
7026 	if (workaround_erratum383)
7027 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
7028 	else
7029 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
7030 
7031 	counter_u64_add(pmap_pde_promotions, 1);
7032 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
7033 	    " in pmap %p", va, pmap);
7034 	return (true);
7035 }
7036 #endif /* VM_NRESERVLEVEL > 0 */
7037 
7038 static int
pmap_enter_largepage(pmap_t pmap,vm_offset_t va,pt_entry_t newpte,int flags,int psind)7039 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
7040     int psind)
7041 {
7042 	vm_page_t mp;
7043 	pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
7044 
7045 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7046 	KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
7047 	    ("psind %d unexpected", psind));
7048 	KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
7049 	    ("unaligned phys address %#lx newpte %#lx psind %d",
7050 	    newpte & PG_FRAME, newpte, psind));
7051 	KASSERT((va & (pagesizes[psind] - 1)) == 0,
7052 	    ("unaligned va %#lx psind %d", va, psind));
7053 	KASSERT(va < VM_MAXUSER_ADDRESS,
7054 	    ("kernel mode non-transparent superpage")); /* XXXKIB */
7055 	KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
7056 	    ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
7057 
7058 	PG_V = pmap_valid_bit(pmap);
7059 
7060 restart:
7061 	if (!pmap_pkru_same(pmap, va, va + pagesizes[psind]))
7062 		return (KERN_PROTECTION_FAILURE);
7063 	pten = newpte;
7064 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7065 		pten |= pmap_pkru_get(pmap, va);
7066 
7067 	if (psind == 2) {	/* 1G */
7068 		pml4e = pmap_pml4e(pmap, va);
7069 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7070 			mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
7071 			    NULL, va);
7072 			if (mp == NULL)
7073 				goto allocf;
7074 			pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7075 			pdpe = &pdpe[pmap_pdpe_index(va)];
7076 			origpte = *pdpe;
7077 			MPASS(origpte == 0);
7078 		} else {
7079 			pdpe = pmap_pml4e_to_pdpe(pml4e, va);
7080 			KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
7081 			origpte = *pdpe;
7082 			if ((origpte & PG_V) == 0) {
7083 				mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
7084 				mp->ref_count++;
7085 			}
7086 		}
7087 		*pdpe = pten;
7088 	} else /* (psind == 1) */ {	/* 2M */
7089 		pde = pmap_pde(pmap, va);
7090 		if (pde == NULL) {
7091 			mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
7092 			    NULL, va);
7093 			if (mp == NULL)
7094 				goto allocf;
7095 			pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7096 			pde = &pde[pmap_pde_index(va)];
7097 			origpte = *pde;
7098 			MPASS(origpte == 0);
7099 		} else {
7100 			origpte = *pde;
7101 			if ((origpte & PG_V) == 0) {
7102 				pdpe = pmap_pdpe(pmap, va);
7103 				MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
7104 				mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
7105 				mp->ref_count++;
7106 			}
7107 		}
7108 		*pde = pten;
7109 	}
7110 	KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
7111 	    (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
7112 	    ("va %#lx changing %s phys page origpte %#lx pten %#lx",
7113 	    va, psind == 2 ? "1G" : "2M", origpte, pten));
7114 	if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
7115 		pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
7116 	else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
7117 		pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
7118 	if ((origpte & PG_V) == 0)
7119 		pmap_resident_count_adj(pmap, pagesizes[psind] / PAGE_SIZE);
7120 
7121 	return (KERN_SUCCESS);
7122 
7123 allocf:
7124 	if ((flags & PMAP_ENTER_NOSLEEP) != 0)
7125 		return (KERN_RESOURCE_SHORTAGE);
7126 	PMAP_UNLOCK(pmap);
7127 	vm_wait(NULL);
7128 	PMAP_LOCK(pmap);
7129 	goto restart;
7130 }
7131 
7132 /*
7133  *	Insert the given physical page (p) at
7134  *	the specified virtual address (v) in the
7135  *	target physical map with the protection requested.
7136  *
7137  *	If specified, the page will be wired down, meaning
7138  *	that the related pte can not be reclaimed.
7139  *
7140  *	NB:  This is the only routine which MAY NOT lazy-evaluate
7141  *	or lose information.  That is, this routine must actually
7142  *	insert this page into the given map NOW.
7143  *
7144  *	When destroying both a page table and PV entry, this function
7145  *	performs the TLB invalidation before releasing the PV list
7146  *	lock, so we do not need pmap_delayed_invl_page() calls here.
7147  */
7148 int
pmap_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)7149 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7150     u_int flags, int8_t psind)
7151 {
7152 	struct rwlock *lock;
7153 	pd_entry_t *pde;
7154 	pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
7155 	pt_entry_t newpte, origpte;
7156 	pv_entry_t pv;
7157 	vm_paddr_t opa, pa;
7158 	vm_page_t mpte, om;
7159 	int rv;
7160 	bool nosleep;
7161 
7162 	PG_A = pmap_accessed_bit(pmap);
7163 	PG_G = pmap_global_bit(pmap);
7164 	PG_M = pmap_modified_bit(pmap);
7165 	PG_V = pmap_valid_bit(pmap);
7166 	PG_RW = pmap_rw_bit(pmap);
7167 
7168 	va = trunc_page(va);
7169 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
7170 	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
7171 	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
7172 	    va));
7173 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
7174 	    ("pmap_enter: managed mapping within the clean submap"));
7175 	if ((m->oflags & VPO_UNMANAGED) == 0)
7176 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
7177 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
7178 	    ("pmap_enter: flags %u has reserved bits set", flags));
7179 	pa = VM_PAGE_TO_PHYS(m);
7180 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
7181 	if ((flags & VM_PROT_WRITE) != 0)
7182 		newpte |= PG_M;
7183 	if ((prot & VM_PROT_WRITE) != 0)
7184 		newpte |= PG_RW;
7185 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
7186 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
7187 	if ((prot & VM_PROT_EXECUTE) == 0)
7188 		newpte |= pg_nx;
7189 	if ((flags & PMAP_ENTER_WIRED) != 0)
7190 		newpte |= PG_W;
7191 	if (va < VM_MAXUSER_ADDRESS)
7192 		newpte |= PG_U;
7193 	if (pmap == kernel_pmap)
7194 		newpte |= PG_G;
7195 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
7196 
7197 	/*
7198 	 * Set modified bit gratuitously for writeable mappings if
7199 	 * the page is unmanaged. We do not want to take a fault
7200 	 * to do the dirty bit accounting for these mappings.
7201 	 */
7202 	if ((m->oflags & VPO_UNMANAGED) != 0) {
7203 		if ((newpte & PG_RW) != 0)
7204 			newpte |= PG_M;
7205 	} else
7206 		newpte |= PG_MANAGED;
7207 
7208 	lock = NULL;
7209 	PMAP_LOCK(pmap);
7210 	if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
7211 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
7212 		    ("managed largepage va %#lx flags %#x", va, flags));
7213 		rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
7214 		    psind);
7215 		goto out;
7216 	}
7217 	if (psind == 1) {
7218 		/* Assert the required virtual and physical alignment. */
7219 		KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
7220 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
7221 		rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
7222 		goto out;
7223 	}
7224 	mpte = NULL;
7225 
7226 	/*
7227 	 * In the case that a page table page is not
7228 	 * resident, we are creating it here.
7229 	 */
7230 retry:
7231 	pde = pmap_pde(pmap, va);
7232 	if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
7233 	    pmap_demote_pde_locked(pmap, pde, va, &lock))) {
7234 		pte = pmap_pde_to_pte(pde, va);
7235 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
7236 			mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7237 			mpte->ref_count++;
7238 		}
7239 	} else if (va < VM_MAXUSER_ADDRESS) {
7240 		/*
7241 		 * Here if the pte page isn't mapped, or if it has been
7242 		 * deallocated.
7243 		 */
7244 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
7245 		mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
7246 		    nosleep ? NULL : &lock, va);
7247 		if (mpte == NULL && nosleep) {
7248 			rv = KERN_RESOURCE_SHORTAGE;
7249 			goto out;
7250 		}
7251 		goto retry;
7252 	} else
7253 		panic("pmap_enter: invalid page directory va=%#lx", va);
7254 
7255 	origpte = *pte;
7256 	pv = NULL;
7257 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7258 		newpte |= pmap_pkru_get(pmap, va);
7259 
7260 	/*
7261 	 * Is the specified virtual address already mapped?
7262 	 */
7263 	if ((origpte & PG_V) != 0) {
7264 		/*
7265 		 * Wiring change, just update stats. We don't worry about
7266 		 * wiring PT pages as they remain resident as long as there
7267 		 * are valid mappings in them. Hence, if a user page is wired,
7268 		 * the PT page will be also.
7269 		 */
7270 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
7271 			pmap->pm_stats.wired_count++;
7272 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
7273 			pmap->pm_stats.wired_count--;
7274 
7275 		/*
7276 		 * Remove the extra PT page reference.
7277 		 */
7278 		if (mpte != NULL) {
7279 			mpte->ref_count--;
7280 			KASSERT(mpte->ref_count > 0,
7281 			    ("pmap_enter: missing reference to page table page,"
7282 			     " va: 0x%lx", va));
7283 		}
7284 
7285 		/*
7286 		 * Has the physical page changed?
7287 		 */
7288 		opa = origpte & PG_FRAME;
7289 		if (opa == pa) {
7290 			/*
7291 			 * No, might be a protection or wiring change.
7292 			 */
7293 			if ((origpte & PG_MANAGED) != 0 &&
7294 			    (newpte & PG_RW) != 0)
7295 				vm_page_aflag_set(m, PGA_WRITEABLE);
7296 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
7297 				goto unchanged;
7298 			goto validate;
7299 		}
7300 
7301 		/*
7302 		 * The physical page has changed.  Temporarily invalidate
7303 		 * the mapping.  This ensures that all threads sharing the
7304 		 * pmap keep a consistent view of the mapping, which is
7305 		 * necessary for the correct handling of COW faults.  It
7306 		 * also permits reuse of the old mapping's PV entry,
7307 		 * avoiding an allocation.
7308 		 *
7309 		 * For consistency, handle unmanaged mappings the same way.
7310 		 */
7311 		origpte = pte_load_clear(pte);
7312 		KASSERT((origpte & PG_FRAME) == opa,
7313 		    ("pmap_enter: unexpected pa update for %#lx", va));
7314 		if ((origpte & PG_MANAGED) != 0) {
7315 			om = PHYS_TO_VM_PAGE(opa);
7316 
7317 			/*
7318 			 * The pmap lock is sufficient to synchronize with
7319 			 * concurrent calls to pmap_page_test_mappings() and
7320 			 * pmap_ts_referenced().
7321 			 */
7322 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
7323 				vm_page_dirty(om);
7324 			if ((origpte & PG_A) != 0) {
7325 				pmap_invalidate_page(pmap, va);
7326 				vm_page_aflag_set(om, PGA_REFERENCED);
7327 			}
7328 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
7329 			pv = pmap_pvh_remove(&om->md, pmap, va);
7330 			KASSERT(pv != NULL,
7331 			    ("pmap_enter: no PV entry for %#lx", va));
7332 			if ((newpte & PG_MANAGED) == 0)
7333 				free_pv_entry(pmap, pv);
7334 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
7335 			    TAILQ_EMPTY(&om->md.pv_list) &&
7336 			    ((om->flags & PG_FICTITIOUS) != 0 ||
7337 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
7338 				vm_page_aflag_clear(om, PGA_WRITEABLE);
7339 		} else {
7340 			/*
7341 			 * Since this mapping is unmanaged, assume that PG_A
7342 			 * is set.
7343 			 */
7344 			pmap_invalidate_page(pmap, va);
7345 		}
7346 		origpte = 0;
7347 	} else {
7348 		/*
7349 		 * Increment the counters.
7350 		 */
7351 		if ((newpte & PG_W) != 0)
7352 			pmap->pm_stats.wired_count++;
7353 		pmap_resident_count_adj(pmap, 1);
7354 	}
7355 
7356 	/*
7357 	 * Enter on the PV list if part of our managed memory.
7358 	 */
7359 	if ((newpte & PG_MANAGED) != 0) {
7360 		if (pv == NULL) {
7361 			pv = get_pv_entry(pmap, &lock);
7362 			pv->pv_va = va;
7363 		}
7364 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
7365 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
7366 		m->md.pv_gen++;
7367 		if ((newpte & PG_RW) != 0)
7368 			vm_page_aflag_set(m, PGA_WRITEABLE);
7369 	}
7370 
7371 	/*
7372 	 * Update the PTE.
7373 	 */
7374 	if ((origpte & PG_V) != 0) {
7375 validate:
7376 		origpte = pte_load_store(pte, newpte);
7377 		KASSERT((origpte & PG_FRAME) == pa,
7378 		    ("pmap_enter: unexpected pa update for %#lx", va));
7379 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
7380 		    (PG_M | PG_RW)) {
7381 			if ((origpte & PG_MANAGED) != 0)
7382 				vm_page_dirty(m);
7383 
7384 			/*
7385 			 * Although the PTE may still have PG_RW set, TLB
7386 			 * invalidation may nonetheless be required because
7387 			 * the PTE no longer has PG_M set.
7388 			 */
7389 		} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
7390 			/*
7391 			 * This PTE change does not require TLB invalidation.
7392 			 */
7393 			goto unchanged;
7394 		}
7395 		if ((origpte & PG_A) != 0)
7396 			pmap_invalidate_page(pmap, va);
7397 	} else
7398 		pte_store(pte, newpte);
7399 
7400 unchanged:
7401 
7402 #if VM_NRESERVLEVEL > 0
7403 	/*
7404 	 * If both the page table page and the reservation are fully
7405 	 * populated, then attempt promotion.
7406 	 */
7407 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
7408 	    (m->flags & PG_FICTITIOUS) == 0 &&
7409 	    vm_reserv_level_iffullpop(m) == 0)
7410 		(void)pmap_promote_pde(pmap, pde, va, mpte, &lock);
7411 #endif
7412 
7413 	rv = KERN_SUCCESS;
7414 out:
7415 	if (lock != NULL)
7416 		rw_wunlock(lock);
7417 	PMAP_UNLOCK(pmap);
7418 	return (rv);
7419 }
7420 
7421 /*
7422  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns
7423  * KERN_SUCCESS if the mapping was created.  Otherwise, returns an error
7424  * value.  See pmap_enter_pde() for the possible error values when "no sleep",
7425  * "no replace", and "no reclaim" are specified.
7426  */
7427 static int
pmap_enter_2mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,struct rwlock ** lockp)7428 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7429     struct rwlock **lockp)
7430 {
7431 	pd_entry_t newpde;
7432 	pt_entry_t PG_V;
7433 
7434 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7435 	PG_V = pmap_valid_bit(pmap);
7436 	newpde = VM_PAGE_TO_PHYS(m) |
7437 	    pmap_cache_bits(pmap, m->md.pat_mode, true) | PG_PS | PG_V;
7438 	if ((m->oflags & VPO_UNMANAGED) == 0)
7439 		newpde |= PG_MANAGED;
7440 	if ((prot & VM_PROT_EXECUTE) == 0)
7441 		newpde |= pg_nx;
7442 	if (va < VM_MAXUSER_ADDRESS)
7443 		newpde |= PG_U;
7444 	return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
7445 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
7446 }
7447 
7448 /*
7449  * Returns true if every page table entry in the specified page table page is
7450  * zero.
7451  */
7452 static bool
pmap_every_pte_zero(vm_paddr_t pa)7453 pmap_every_pte_zero(vm_paddr_t pa)
7454 {
7455 	pt_entry_t *pt_end, *pte;
7456 
7457 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
7458 	pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
7459 	for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
7460 		if (*pte != 0)
7461 			return (false);
7462 	}
7463 	return (true);
7464 }
7465 
7466 /*
7467  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
7468  * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
7469  * KERN_PROTECTION_FAILURE, or KERN_RESOURCE_SHORTAGE otherwise.  Returns
7470  * KERN_FAILURE if either (1) PMAP_ENTER_NOREPLACE was specified and a 4KB
7471  * page mapping already exists within the 2MB virtual address range starting
7472  * at the specified virtual address or (2) the requested 2MB page mapping is
7473  * not supported due to hardware errata.  Returns KERN_NO_SPACE if
7474  * PMAP_ENTER_NOREPLACE was specified and a 2MB page mapping already exists at
7475  * the specified virtual address.  Returns KERN_PROTECTION_FAILURE if the PKRU
7476  * settings are not the same across the 2MB virtual address range starting at
7477  * the specified virtual address.  Returns KERN_RESOURCE_SHORTAGE if either
7478  * (1) PMAP_ENTER_NOSLEEP was specified and a page table page allocation
7479  * failed or (2) PMAP_ENTER_NORECLAIM was specified and a PV entry allocation
7480  * failed.
7481  *
7482  * The parameter "m" is only used when creating a managed, writeable mapping.
7483  */
7484 static int
pmap_enter_pde(pmap_t pmap,vm_offset_t va,pd_entry_t newpde,u_int flags,vm_page_t m,struct rwlock ** lockp)7485 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
7486     vm_page_t m, struct rwlock **lockp)
7487 {
7488 	struct spglist free;
7489 	pd_entry_t oldpde, *pde;
7490 	pt_entry_t PG_G, PG_RW, PG_V;
7491 	vm_page_t mt, pdpg;
7492 	vm_page_t uwptpg;
7493 
7494 	PG_G = pmap_global_bit(pmap);
7495 	PG_RW = pmap_rw_bit(pmap);
7496 	KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
7497 	    ("pmap_enter_pde: newpde is missing PG_M"));
7498 	PG_V = pmap_valid_bit(pmap);
7499 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7500 
7501 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
7502 	    newpde))) {
7503 		CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
7504 		    " in pmap %p", va, pmap);
7505 		return (KERN_FAILURE);
7506 	}
7507 	if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
7508 	    PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
7509 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7510 		    " in pmap %p", va, pmap);
7511 		return (KERN_RESOURCE_SHORTAGE);
7512 	}
7513 
7514 	/*
7515 	 * If pkru is not same for the whole pde range, return failure
7516 	 * and let vm_fault() cope.  Check after pde allocation, since
7517 	 * it could sleep.
7518 	 */
7519 	if (!pmap_pkru_same(pmap, va, va + NBPDR)) {
7520 		pmap_abort_ptp(pmap, va, pdpg);
7521 		return (KERN_PROTECTION_FAILURE);
7522 	}
7523 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86) {
7524 		newpde &= ~X86_PG_PKU_MASK;
7525 		newpde |= pmap_pkru_get(pmap, va);
7526 	}
7527 
7528 	/*
7529 	 * If there are existing mappings, either abort or remove them.
7530 	 */
7531 	oldpde = *pde;
7532 	if ((oldpde & PG_V) != 0) {
7533 		KASSERT(pdpg == NULL || pdpg->ref_count > 1,
7534 		    ("pmap_enter_pde: pdpg's reference count is too low"));
7535 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
7536 			if ((oldpde & PG_PS) != 0) {
7537 				if (pdpg != NULL)
7538 					pdpg->ref_count--;
7539 				CTR2(KTR_PMAP,
7540 				    "pmap_enter_pde: no space for va %#lx"
7541 				    " in pmap %p", va, pmap);
7542 				return (KERN_NO_SPACE);
7543 			} else if (va < VM_MAXUSER_ADDRESS ||
7544 			    !pmap_every_pte_zero(oldpde & PG_FRAME)) {
7545 				if (pdpg != NULL)
7546 					pdpg->ref_count--;
7547 				CTR2(KTR_PMAP,
7548 				    "pmap_enter_pde: failure for va %#lx"
7549 				    " in pmap %p", va, pmap);
7550 				return (KERN_FAILURE);
7551 			}
7552 		}
7553 		/* Break the existing mapping(s). */
7554 		SLIST_INIT(&free);
7555 		if ((oldpde & PG_PS) != 0) {
7556 			/*
7557 			 * The reference to the PD page that was acquired by
7558 			 * pmap_alloc_pde() ensures that it won't be freed.
7559 			 * However, if the PDE resulted from a promotion, then
7560 			 * a reserved PT page could be freed.
7561 			 */
7562 			(void)pmap_remove_pde(pmap, pde, va, &free, lockp);
7563 			if ((oldpde & PG_G) == 0)
7564 				pmap_invalidate_pde_page(pmap, va, oldpde);
7565 		} else {
7566 			pmap_delayed_invl_start();
7567 			if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
7568 			    lockp))
7569 		               pmap_invalidate_all(pmap);
7570 			pmap_delayed_invl_finish();
7571 		}
7572 		if (va < VM_MAXUSER_ADDRESS) {
7573 			vm_page_free_pages_toq(&free, true);
7574 			KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
7575 			    pde));
7576 		} else {
7577 			KASSERT(SLIST_EMPTY(&free),
7578 			    ("pmap_enter_pde: freed kernel page table page"));
7579 
7580 			/*
7581 			 * Both pmap_remove_pde() and pmap_remove_ptes() will
7582 			 * leave the kernel page table page zero filled.
7583 			 */
7584 			mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7585 			if (pmap_insert_pt_page(pmap, mt, false, false))
7586 				panic("pmap_enter_pde: trie insert failed");
7587 		}
7588 	}
7589 
7590 	/*
7591 	 * Allocate leaf ptpage for wired userspace pages.
7592 	 */
7593 	uwptpg = NULL;
7594 	if ((newpde & PG_W) != 0 && pmap != kernel_pmap) {
7595 		uwptpg = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
7596 		    VM_ALLOC_WIRED);
7597 		if (uwptpg == NULL)
7598 			return (KERN_RESOURCE_SHORTAGE);
7599 		if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
7600 			pmap_free_pt_page(pmap, uwptpg, false);
7601 			return (KERN_RESOURCE_SHORTAGE);
7602 		}
7603 
7604 		uwptpg->ref_count = NPTEPG;
7605 	}
7606 	if ((newpde & PG_MANAGED) != 0) {
7607 		/*
7608 		 * Abort this mapping if its PV entry could not be created.
7609 		 */
7610 		if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
7611 			if (pdpg != NULL)
7612 				pmap_abort_ptp(pmap, va, pdpg);
7613 			if (uwptpg != NULL) {
7614 				mt = pmap_remove_pt_page(pmap, va);
7615 				KASSERT(mt == uwptpg,
7616 				    ("removed pt page %p, expected %p", mt,
7617 				    uwptpg));
7618 				uwptpg->ref_count = 1;
7619 				pmap_free_pt_page(pmap, uwptpg, false);
7620 			}
7621 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7622 			    " in pmap %p", va, pmap);
7623 			return (KERN_RESOURCE_SHORTAGE);
7624 		}
7625 		if ((newpde & PG_RW) != 0) {
7626 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
7627 				vm_page_aflag_set(mt, PGA_WRITEABLE);
7628 		}
7629 	}
7630 
7631 	/*
7632 	 * Increment counters.
7633 	 */
7634 	if ((newpde & PG_W) != 0)
7635 		pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
7636 	pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7637 
7638 	/*
7639 	 * Map the superpage.  (This is not a promoted mapping; there will not
7640 	 * be any lingering 4KB page mappings in the TLB.)
7641 	 */
7642 	pde_store(pde, newpde);
7643 
7644 	counter_u64_add(pmap_pde_mappings, 1);
7645 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
7646 	    va, pmap);
7647 	return (KERN_SUCCESS);
7648 }
7649 
7650 /*
7651  * Maps a sequence of resident pages belonging to the same object.
7652  * The sequence begins with the given page m_start.  This page is
7653  * mapped at the given virtual address start.  Each subsequent page is
7654  * mapped at a virtual address that is offset from start by the same
7655  * amount as the page is offset from m_start within the object.  The
7656  * last page in the sequence is the page with the largest offset from
7657  * m_start that can be mapped at a virtual address less than the given
7658  * virtual address end.  Not every virtual page between start and end
7659  * is mapped; only those for which a resident page exists with the
7660  * corresponding offset from m_start are mapped.
7661  */
7662 void
pmap_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)7663 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
7664     vm_page_t m_start, vm_prot_t prot)
7665 {
7666 	struct rwlock *lock;
7667 	vm_offset_t va;
7668 	vm_page_t m, mpte;
7669 	vm_pindex_t diff, psize;
7670 	int rv;
7671 
7672 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
7673 
7674 	psize = atop(end - start);
7675 	mpte = NULL;
7676 	m = m_start;
7677 	lock = NULL;
7678 	PMAP_LOCK(pmap);
7679 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
7680 		va = start + ptoa(diff);
7681 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
7682 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
7683 		    ((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
7684 		    KERN_SUCCESS || rv == KERN_NO_SPACE))
7685 			m = &m[NBPDR / PAGE_SIZE - 1];
7686 		else
7687 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
7688 			    mpte, &lock);
7689 		m = TAILQ_NEXT(m, listq);
7690 	}
7691 	if (lock != NULL)
7692 		rw_wunlock(lock);
7693 	PMAP_UNLOCK(pmap);
7694 }
7695 
7696 /*
7697  * this code makes some *MAJOR* assumptions:
7698  * 1. Current pmap & pmap exists.
7699  * 2. Not wired.
7700  * 3. Read access.
7701  * 4. No page table pages.
7702  * but is *MUCH* faster than pmap_enter...
7703  */
7704 
7705 void
pmap_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)7706 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
7707 {
7708 	struct rwlock *lock;
7709 
7710 	lock = NULL;
7711 	PMAP_LOCK(pmap);
7712 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
7713 	if (lock != NULL)
7714 		rw_wunlock(lock);
7715 	PMAP_UNLOCK(pmap);
7716 }
7717 
7718 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte,struct rwlock ** lockp)7719 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
7720     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
7721 {
7722 	pd_entry_t *pde;
7723 	pt_entry_t newpte, *pte, PG_V;
7724 
7725 	KASSERT(!VA_IS_CLEANMAP(va) ||
7726 	    (m->oflags & VPO_UNMANAGED) != 0,
7727 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
7728 	PG_V = pmap_valid_bit(pmap);
7729 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7730 	pde = NULL;
7731 
7732 	/*
7733 	 * In the case that a page table page is not
7734 	 * resident, we are creating it here.
7735 	 */
7736 	if (va < VM_MAXUSER_ADDRESS) {
7737 		pdp_entry_t *pdpe;
7738 		vm_pindex_t ptepindex;
7739 
7740 		/*
7741 		 * Calculate pagetable page index
7742 		 */
7743 		ptepindex = pmap_pde_pindex(va);
7744 		if (mpte && (mpte->pindex == ptepindex)) {
7745 			mpte->ref_count++;
7746 		} else {
7747 			/*
7748 			 * If the page table page is mapped, we just increment
7749 			 * the hold count, and activate it.  Otherwise, we
7750 			 * attempt to allocate a page table page, passing NULL
7751 			 * instead of the PV list lock pointer because we don't
7752 			 * intend to sleep.  If this attempt fails, we don't
7753 			 * retry.  Instead, we give up.
7754 			 */
7755 			pdpe = pmap_pdpe(pmap, va);
7756 			if (pdpe != NULL && (*pdpe & PG_V) != 0) {
7757 				if ((*pdpe & PG_PS) != 0)
7758 					return (NULL);
7759 				pde = pmap_pdpe_to_pde(pdpe, va);
7760 				if ((*pde & PG_V) != 0) {
7761 					if ((*pde & PG_PS) != 0)
7762 						return (NULL);
7763 					mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7764 					mpte->ref_count++;
7765 				} else {
7766 					mpte = pmap_allocpte_alloc(pmap,
7767 					    ptepindex, NULL, va);
7768 					if (mpte == NULL)
7769 						return (NULL);
7770 				}
7771 			} else {
7772 				mpte = pmap_allocpte_alloc(pmap, ptepindex,
7773 				    NULL, va);
7774 				if (mpte == NULL)
7775 					return (NULL);
7776 			}
7777 		}
7778 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
7779 		pte = &pte[pmap_pte_index(va)];
7780 	} else {
7781 		mpte = NULL;
7782 		pte = vtopte(va);
7783 	}
7784 	if (*pte) {
7785 		if (mpte != NULL)
7786 			mpte->ref_count--;
7787 		return (NULL);
7788 	}
7789 
7790 	/*
7791 	 * Enter on the PV list if part of our managed memory.
7792 	 */
7793 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
7794 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
7795 		if (mpte != NULL)
7796 			pmap_abort_ptp(pmap, va, mpte);
7797 		return (NULL);
7798 	}
7799 
7800 	/*
7801 	 * Increment counters
7802 	 */
7803 	pmap_resident_count_adj(pmap, 1);
7804 
7805 	newpte = VM_PAGE_TO_PHYS(m) | PG_V |
7806 	    pmap_cache_bits(pmap, m->md.pat_mode, false);
7807 	if ((m->oflags & VPO_UNMANAGED) == 0)
7808 		newpte |= PG_MANAGED;
7809 	if ((prot & VM_PROT_EXECUTE) == 0)
7810 		newpte |= pg_nx;
7811 	if (va < VM_MAXUSER_ADDRESS)
7812 		newpte |= PG_U | pmap_pkru_get(pmap, va);
7813 	pte_store(pte, newpte);
7814 
7815 #if VM_NRESERVLEVEL > 0
7816 	/*
7817 	 * If both the PTP and the reservation are fully populated, then
7818 	 * attempt promotion.
7819 	 */
7820 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
7821 	    (m->flags & PG_FICTITIOUS) == 0 &&
7822 	    vm_reserv_level_iffullpop(m) == 0) {
7823 		if (pde == NULL)
7824 			pde = pmap_pde(pmap, va);
7825 
7826 		/*
7827 		 * If promotion succeeds, then the next call to this function
7828 		 * should not be given the unmapped PTP as a hint.
7829 		 */
7830 		if (pmap_promote_pde(pmap, pde, va, mpte, lockp))
7831 			mpte = NULL;
7832 	}
7833 #endif
7834 
7835 	return (mpte);
7836 }
7837 
7838 /*
7839  * Make a temporary mapping for a physical address.  This is only intended
7840  * to be used for panic dumps.
7841  */
7842 void *
pmap_kenter_temporary(vm_paddr_t pa,int i)7843 pmap_kenter_temporary(vm_paddr_t pa, int i)
7844 {
7845 	vm_offset_t va;
7846 
7847 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
7848 	pmap_kenter(va, pa);
7849 	pmap_invlpg(kernel_pmap, va);
7850 	return ((void *)crashdumpmap);
7851 }
7852 
7853 /*
7854  * This code maps large physical mmap regions into the
7855  * processor address space.  Note that some shortcuts
7856  * are taken, but the code works.
7857  */
7858 void
pmap_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)7859 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
7860     vm_pindex_t pindex, vm_size_t size)
7861 {
7862 	pd_entry_t *pde;
7863 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
7864 	vm_paddr_t pa, ptepa;
7865 	vm_page_t p, pdpg;
7866 	int pat_mode;
7867 
7868 	PG_A = pmap_accessed_bit(pmap);
7869 	PG_M = pmap_modified_bit(pmap);
7870 	PG_V = pmap_valid_bit(pmap);
7871 	PG_RW = pmap_rw_bit(pmap);
7872 
7873 	VM_OBJECT_ASSERT_WLOCKED(object);
7874 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
7875 	    ("pmap_object_init_pt: non-device object"));
7876 	if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
7877 		if (!pmap_ps_enabled(pmap))
7878 			return;
7879 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
7880 			return;
7881 		p = vm_page_lookup(object, pindex);
7882 		KASSERT(vm_page_all_valid(p),
7883 		    ("pmap_object_init_pt: invalid page %p", p));
7884 		pat_mode = p->md.pat_mode;
7885 
7886 		/*
7887 		 * Abort the mapping if the first page is not physically
7888 		 * aligned to a 2MB page boundary.
7889 		 */
7890 		ptepa = VM_PAGE_TO_PHYS(p);
7891 		if (ptepa & (NBPDR - 1))
7892 			return;
7893 
7894 		/*
7895 		 * Skip the first page.  Abort the mapping if the rest of
7896 		 * the pages are not physically contiguous or have differing
7897 		 * memory attributes.
7898 		 */
7899 		p = TAILQ_NEXT(p, listq);
7900 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
7901 		    pa += PAGE_SIZE) {
7902 			KASSERT(vm_page_all_valid(p),
7903 			    ("pmap_object_init_pt: invalid page %p", p));
7904 			if (pa != VM_PAGE_TO_PHYS(p) ||
7905 			    pat_mode != p->md.pat_mode)
7906 				return;
7907 			p = TAILQ_NEXT(p, listq);
7908 		}
7909 
7910 		/*
7911 		 * Map using 2MB pages.  Since "ptepa" is 2M aligned and
7912 		 * "size" is a multiple of 2M, adding the PAT setting to "pa"
7913 		 * will not affect the termination of this loop.
7914 		 */
7915 		PMAP_LOCK(pmap);
7916 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, true);
7917 		    pa < ptepa + size; pa += NBPDR) {
7918 			pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
7919 			if (pde == NULL) {
7920 				/*
7921 				 * The creation of mappings below is only an
7922 				 * optimization.  If a page directory page
7923 				 * cannot be allocated without blocking,
7924 				 * continue on to the next mapping rather than
7925 				 * blocking.
7926 				 */
7927 				addr += NBPDR;
7928 				continue;
7929 			}
7930 			if ((*pde & PG_V) == 0) {
7931 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
7932 				    PG_U | PG_RW | PG_V);
7933 				pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7934 				counter_u64_add(pmap_pde_mappings, 1);
7935 			} else {
7936 				/* Continue on if the PDE is already valid. */
7937 				pdpg->ref_count--;
7938 				KASSERT(pdpg->ref_count > 0,
7939 				    ("pmap_object_init_pt: missing reference "
7940 				    "to page directory page, va: 0x%lx", addr));
7941 			}
7942 			addr += NBPDR;
7943 		}
7944 		PMAP_UNLOCK(pmap);
7945 	}
7946 }
7947 
7948 /*
7949  *	Clear the wired attribute from the mappings for the specified range of
7950  *	addresses in the given pmap.  Every valid mapping within that range
7951  *	must have the wired attribute set.  In contrast, invalid mappings
7952  *	cannot have the wired attribute set, so they are ignored.
7953  *
7954  *	The wired attribute of the page table entry is not a hardware
7955  *	feature, so there is no need to invalidate any TLB entries.
7956  *	Since pmap_demote_pde() for the wired entry must never fail,
7957  *	pmap_delayed_invl_start()/finish() calls around the
7958  *	function are not needed.
7959  */
7960 void
pmap_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)7961 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
7962 {
7963 	vm_offset_t va_next;
7964 	pml4_entry_t *pml4e;
7965 	pdp_entry_t *pdpe;
7966 	pd_entry_t *pde;
7967 	pt_entry_t *pte, PG_V, PG_G __diagused;
7968 
7969 	PG_V = pmap_valid_bit(pmap);
7970 	PG_G = pmap_global_bit(pmap);
7971 	PMAP_LOCK(pmap);
7972 	for (; sva < eva; sva = va_next) {
7973 		pml4e = pmap_pml4e(pmap, sva);
7974 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7975 			va_next = (sva + NBPML4) & ~PML4MASK;
7976 			if (va_next < sva)
7977 				va_next = eva;
7978 			continue;
7979 		}
7980 
7981 		va_next = (sva + NBPDP) & ~PDPMASK;
7982 		if (va_next < sva)
7983 			va_next = eva;
7984 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
7985 		if ((*pdpe & PG_V) == 0)
7986 			continue;
7987 		if ((*pdpe & PG_PS) != 0) {
7988 			KASSERT(va_next <= eva,
7989 			    ("partial update of non-transparent 1G mapping "
7990 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
7991 			    *pdpe, sva, eva, va_next));
7992 			MPASS(pmap != kernel_pmap); /* XXXKIB */
7993 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
7994 			atomic_clear_long(pdpe, PG_W);
7995 			pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
7996 			continue;
7997 		}
7998 
7999 		va_next = (sva + NBPDR) & ~PDRMASK;
8000 		if (va_next < sva)
8001 			va_next = eva;
8002 		pde = pmap_pdpe_to_pde(pdpe, sva);
8003 		if ((*pde & PG_V) == 0)
8004 			continue;
8005 		if ((*pde & PG_PS) != 0) {
8006 			if ((*pde & PG_W) == 0)
8007 				panic("pmap_unwire: pde %#jx is missing PG_W",
8008 				    (uintmax_t)*pde);
8009 
8010 			/*
8011 			 * Are we unwiring the entire large page?  If not,
8012 			 * demote the mapping and fall through.
8013 			 */
8014 			if (sva + NBPDR == va_next && eva >= va_next) {
8015 				atomic_clear_long(pde, PG_W);
8016 				pmap->pm_stats.wired_count -= NBPDR /
8017 				    PAGE_SIZE;
8018 				continue;
8019 			} else if (!pmap_demote_pde(pmap, pde, sva))
8020 				panic("pmap_unwire: demotion failed");
8021 		}
8022 		if (va_next > eva)
8023 			va_next = eva;
8024 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
8025 		    sva += PAGE_SIZE) {
8026 			if ((*pte & PG_V) == 0)
8027 				continue;
8028 			if ((*pte & PG_W) == 0)
8029 				panic("pmap_unwire: pte %#jx is missing PG_W",
8030 				    (uintmax_t)*pte);
8031 
8032 			/*
8033 			 * PG_W must be cleared atomically.  Although the pmap
8034 			 * lock synchronizes access to PG_W, another processor
8035 			 * could be setting PG_M and/or PG_A concurrently.
8036 			 */
8037 			atomic_clear_long(pte, PG_W);
8038 			pmap->pm_stats.wired_count--;
8039 		}
8040 	}
8041 	PMAP_UNLOCK(pmap);
8042 }
8043 
8044 /*
8045  *	Copy the range specified by src_addr/len
8046  *	from the source map to the range dst_addr/len
8047  *	in the destination map.
8048  *
8049  *	This routine is only advisory and need not do anything.
8050  */
8051 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)8052 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
8053     vm_offset_t src_addr)
8054 {
8055 	struct rwlock *lock;
8056 	pml4_entry_t *pml4e;
8057 	pdp_entry_t *pdpe;
8058 	pd_entry_t *pde, srcptepaddr;
8059 	pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
8060 	vm_offset_t addr, end_addr, va_next;
8061 	vm_page_t dst_pdpg, dstmpte, srcmpte;
8062 
8063 	if (dst_addr != src_addr)
8064 		return;
8065 
8066 	if (dst_pmap->pm_type != src_pmap->pm_type)
8067 		return;
8068 
8069 	/*
8070 	 * EPT page table entries that require emulation of A/D bits are
8071 	 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
8072 	 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
8073 	 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
8074 	 * implementations flag an EPT misconfiguration for exec-only
8075 	 * mappings we skip this function entirely for emulated pmaps.
8076 	 */
8077 	if (pmap_emulate_ad_bits(dst_pmap))
8078 		return;
8079 
8080 	end_addr = src_addr + len;
8081 	lock = NULL;
8082 	if (dst_pmap < src_pmap) {
8083 		PMAP_LOCK(dst_pmap);
8084 		PMAP_LOCK(src_pmap);
8085 	} else {
8086 		PMAP_LOCK(src_pmap);
8087 		PMAP_LOCK(dst_pmap);
8088 	}
8089 
8090 	PG_A = pmap_accessed_bit(dst_pmap);
8091 	PG_M = pmap_modified_bit(dst_pmap);
8092 	PG_V = pmap_valid_bit(dst_pmap);
8093 
8094 	for (addr = src_addr; addr < end_addr; addr = va_next) {
8095 		KASSERT(addr < UPT_MIN_ADDRESS,
8096 		    ("pmap_copy: invalid to pmap_copy page tables"));
8097 
8098 		pml4e = pmap_pml4e(src_pmap, addr);
8099 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8100 			va_next = (addr + NBPML4) & ~PML4MASK;
8101 			if (va_next < addr)
8102 				va_next = end_addr;
8103 			continue;
8104 		}
8105 
8106 		va_next = (addr + NBPDP) & ~PDPMASK;
8107 		if (va_next < addr)
8108 			va_next = end_addr;
8109 		pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
8110 		if ((*pdpe & PG_V) == 0)
8111 			continue;
8112 		if ((*pdpe & PG_PS) != 0) {
8113 			KASSERT(va_next <= end_addr,
8114 			    ("partial update of non-transparent 1G mapping "
8115 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8116 			    *pdpe, addr, end_addr, va_next));
8117 			MPASS((addr & PDPMASK) == 0);
8118 			MPASS((*pdpe & PG_MANAGED) == 0);
8119 			srcptepaddr = *pdpe;
8120 			pdpe = pmap_pdpe(dst_pmap, addr);
8121 			if (pdpe == NULL) {
8122 				if (pmap_allocpte_alloc(dst_pmap,
8123 				    pmap_pml4e_pindex(addr), NULL, addr) ==
8124 				    NULL)
8125 					break;
8126 				pdpe = pmap_pdpe(dst_pmap, addr);
8127 			} else {
8128 				pml4e = pmap_pml4e(dst_pmap, addr);
8129 				dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
8130 				dst_pdpg->ref_count++;
8131 			}
8132 			KASSERT(*pdpe == 0,
8133 			    ("1G mapping present in dst pmap "
8134 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8135 			    *pdpe, addr, end_addr, va_next));
8136 			*pdpe = srcptepaddr & ~PG_W;
8137 			pmap_resident_count_adj(dst_pmap, NBPDP / PAGE_SIZE);
8138 			continue;
8139 		}
8140 
8141 		va_next = (addr + NBPDR) & ~PDRMASK;
8142 		if (va_next < addr)
8143 			va_next = end_addr;
8144 
8145 		pde = pmap_pdpe_to_pde(pdpe, addr);
8146 		srcptepaddr = *pde;
8147 		if (srcptepaddr == 0)
8148 			continue;
8149 
8150 		if (srcptepaddr & PG_PS) {
8151 			/*
8152 			 * We can only virtual copy whole superpages.
8153 			 */
8154 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
8155 				continue;
8156 			pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
8157 			if (pde == NULL)
8158 				break;
8159 			if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
8160 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
8161 			    PMAP_ENTER_NORECLAIM, &lock))) {
8162 				/*
8163 				 * We leave the dirty bit unchanged because
8164 				 * managed read/write superpage mappings are
8165 				 * required to be dirty.  However, managed
8166 				 * superpage mappings are not required to
8167 				 * have their accessed bit set, so we clear
8168 				 * it because we don't know if this mapping
8169 				 * will be used.
8170 				 */
8171 				srcptepaddr &= ~PG_W;
8172 				if ((srcptepaddr & PG_MANAGED) != 0)
8173 					srcptepaddr &= ~PG_A;
8174 				*pde = srcptepaddr;
8175 				pmap_resident_count_adj(dst_pmap, NBPDR /
8176 				    PAGE_SIZE);
8177 				counter_u64_add(pmap_pde_mappings, 1);
8178 			} else
8179 				pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
8180 			continue;
8181 		}
8182 
8183 		srcptepaddr &= PG_FRAME;
8184 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
8185 		KASSERT(srcmpte->ref_count > 0,
8186 		    ("pmap_copy: source page table page is unused"));
8187 
8188 		if (va_next > end_addr)
8189 			va_next = end_addr;
8190 
8191 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
8192 		src_pte = &src_pte[pmap_pte_index(addr)];
8193 		dstmpte = NULL;
8194 		for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
8195 			ptetemp = *src_pte;
8196 
8197 			/*
8198 			 * We only virtual copy managed pages.
8199 			 */
8200 			if ((ptetemp & PG_MANAGED) == 0)
8201 				continue;
8202 
8203 			if (dstmpte != NULL) {
8204 				KASSERT(dstmpte->pindex ==
8205 				    pmap_pde_pindex(addr),
8206 				    ("dstmpte pindex/addr mismatch"));
8207 				dstmpte->ref_count++;
8208 			} else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
8209 			    NULL)) == NULL)
8210 				goto out;
8211 			dst_pte = (pt_entry_t *)
8212 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
8213 			dst_pte = &dst_pte[pmap_pte_index(addr)];
8214 			if (*dst_pte == 0 &&
8215 			    pmap_try_insert_pv_entry(dst_pmap, addr,
8216 			    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
8217 				/*
8218 				 * Clear the wired, modified, and accessed
8219 				 * (referenced) bits during the copy.
8220 				 */
8221 				*dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
8222 				pmap_resident_count_adj(dst_pmap, 1);
8223 			} else {
8224 				pmap_abort_ptp(dst_pmap, addr, dstmpte);
8225 				goto out;
8226 			}
8227 			/* Have we copied all of the valid mappings? */
8228 			if (dstmpte->ref_count >= srcmpte->ref_count)
8229 				break;
8230 		}
8231 	}
8232 out:
8233 	if (lock != NULL)
8234 		rw_wunlock(lock);
8235 	PMAP_UNLOCK(src_pmap);
8236 	PMAP_UNLOCK(dst_pmap);
8237 }
8238 
8239 int
pmap_vmspace_copy(pmap_t dst_pmap,pmap_t src_pmap)8240 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
8241 {
8242 	int error;
8243 
8244 	if (dst_pmap->pm_type != src_pmap->pm_type ||
8245 	    dst_pmap->pm_type != PT_X86 ||
8246 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
8247 		return (0);
8248 	for (;;) {
8249 		if (dst_pmap < src_pmap) {
8250 			PMAP_LOCK(dst_pmap);
8251 			PMAP_LOCK(src_pmap);
8252 		} else {
8253 			PMAP_LOCK(src_pmap);
8254 			PMAP_LOCK(dst_pmap);
8255 		}
8256 		error = pmap_pkru_copy(dst_pmap, src_pmap);
8257 		/* Clean up partial copy on failure due to no memory. */
8258 		if (error == ENOMEM)
8259 			pmap_pkru_deassign_all(dst_pmap);
8260 		PMAP_UNLOCK(src_pmap);
8261 		PMAP_UNLOCK(dst_pmap);
8262 		if (error != ENOMEM)
8263 			break;
8264 		vm_wait(NULL);
8265 	}
8266 	return (error);
8267 }
8268 
8269 /*
8270  * Zero the specified hardware page.
8271  */
8272 void
pmap_zero_page(vm_page_t m)8273 pmap_zero_page(vm_page_t m)
8274 {
8275 	vm_offset_t va;
8276 
8277 #ifdef TSLOG_PAGEZERO
8278 	TSENTER();
8279 #endif
8280 	va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8281 	pagezero((void *)va);
8282 #ifdef TSLOG_PAGEZERO
8283 	TSEXIT();
8284 #endif
8285 }
8286 
8287 /*
8288  * Zero an area within a single hardware page.  off and size must not
8289  * cover an area beyond a single hardware page.
8290  */
8291 void
pmap_zero_page_area(vm_page_t m,int off,int size)8292 pmap_zero_page_area(vm_page_t m, int off, int size)
8293 {
8294 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8295 
8296 	if (off == 0 && size == PAGE_SIZE)
8297 		pagezero((void *)va);
8298 	else
8299 		bzero((char *)va + off, size);
8300 }
8301 
8302 /*
8303  * Copy 1 specified hardware page to another.
8304  */
8305 void
pmap_copy_page(vm_page_t msrc,vm_page_t mdst)8306 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
8307 {
8308 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
8309 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
8310 
8311 	pagecopy((void *)src, (void *)dst);
8312 }
8313 
8314 int unmapped_buf_allowed = 1;
8315 
8316 void
pmap_copy_pages(vm_page_t ma[],vm_offset_t a_offset,vm_page_t mb[],vm_offset_t b_offset,int xfersize)8317 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
8318     vm_offset_t b_offset, int xfersize)
8319 {
8320 	void *a_cp, *b_cp;
8321 	vm_page_t pages[2];
8322 	vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
8323 	int cnt;
8324 	bool mapped;
8325 
8326 	while (xfersize > 0) {
8327 		a_pg_offset = a_offset & PAGE_MASK;
8328 		pages[0] = ma[a_offset >> PAGE_SHIFT];
8329 		b_pg_offset = b_offset & PAGE_MASK;
8330 		pages[1] = mb[b_offset >> PAGE_SHIFT];
8331 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
8332 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
8333 		mapped = pmap_map_io_transient(pages, vaddr, 2, false);
8334 		a_cp = (char *)vaddr[0] + a_pg_offset;
8335 		b_cp = (char *)vaddr[1] + b_pg_offset;
8336 		bcopy(a_cp, b_cp, cnt);
8337 		if (__predict_false(mapped))
8338 			pmap_unmap_io_transient(pages, vaddr, 2, false);
8339 		a_offset += cnt;
8340 		b_offset += cnt;
8341 		xfersize -= cnt;
8342 	}
8343 }
8344 
8345 /*
8346  * Returns true if the pmap's pv is one of the first
8347  * 16 pvs linked to from this page.  This count may
8348  * be changed upwards or downwards in the future; it
8349  * is only necessary that true be returned for a small
8350  * subset of pmaps for proper page aging.
8351  */
8352 bool
pmap_page_exists_quick(pmap_t pmap,vm_page_t m)8353 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
8354 {
8355 	struct md_page *pvh;
8356 	struct rwlock *lock;
8357 	pv_entry_t pv;
8358 	int loops = 0;
8359 	bool rv;
8360 
8361 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8362 	    ("pmap_page_exists_quick: page %p is not managed", m));
8363 	rv = false;
8364 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8365 	rw_rlock(lock);
8366 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8367 		if (PV_PMAP(pv) == pmap) {
8368 			rv = true;
8369 			break;
8370 		}
8371 		loops++;
8372 		if (loops >= 16)
8373 			break;
8374 	}
8375 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
8376 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8377 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8378 			if (PV_PMAP(pv) == pmap) {
8379 				rv = true;
8380 				break;
8381 			}
8382 			loops++;
8383 			if (loops >= 16)
8384 				break;
8385 		}
8386 	}
8387 	rw_runlock(lock);
8388 	return (rv);
8389 }
8390 
8391 /*
8392  *	pmap_page_wired_mappings:
8393  *
8394  *	Return the number of managed mappings to the given physical page
8395  *	that are wired.
8396  */
8397 int
pmap_page_wired_mappings(vm_page_t m)8398 pmap_page_wired_mappings(vm_page_t m)
8399 {
8400 	struct rwlock *lock;
8401 	struct md_page *pvh;
8402 	pmap_t pmap;
8403 	pt_entry_t *pte;
8404 	pv_entry_t pv;
8405 	int count, md_gen, pvh_gen;
8406 
8407 	if ((m->oflags & VPO_UNMANAGED) != 0)
8408 		return (0);
8409 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8410 	rw_rlock(lock);
8411 restart:
8412 	count = 0;
8413 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8414 		pmap = PV_PMAP(pv);
8415 		if (!PMAP_TRYLOCK(pmap)) {
8416 			md_gen = m->md.pv_gen;
8417 			rw_runlock(lock);
8418 			PMAP_LOCK(pmap);
8419 			rw_rlock(lock);
8420 			if (md_gen != m->md.pv_gen) {
8421 				PMAP_UNLOCK(pmap);
8422 				goto restart;
8423 			}
8424 		}
8425 		pte = pmap_pte(pmap, pv->pv_va);
8426 		if ((*pte & PG_W) != 0)
8427 			count++;
8428 		PMAP_UNLOCK(pmap);
8429 	}
8430 	if ((m->flags & PG_FICTITIOUS) == 0) {
8431 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8432 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8433 			pmap = PV_PMAP(pv);
8434 			if (!PMAP_TRYLOCK(pmap)) {
8435 				md_gen = m->md.pv_gen;
8436 				pvh_gen = pvh->pv_gen;
8437 				rw_runlock(lock);
8438 				PMAP_LOCK(pmap);
8439 				rw_rlock(lock);
8440 				if (md_gen != m->md.pv_gen ||
8441 				    pvh_gen != pvh->pv_gen) {
8442 					PMAP_UNLOCK(pmap);
8443 					goto restart;
8444 				}
8445 			}
8446 			pte = pmap_pde(pmap, pv->pv_va);
8447 			if ((*pte & PG_W) != 0)
8448 				count++;
8449 			PMAP_UNLOCK(pmap);
8450 		}
8451 	}
8452 	rw_runlock(lock);
8453 	return (count);
8454 }
8455 
8456 /*
8457  * Returns true if the given page is mapped individually or as part of
8458  * a 2mpage.  Otherwise, returns false.
8459  */
8460 bool
pmap_page_is_mapped(vm_page_t m)8461 pmap_page_is_mapped(vm_page_t m)
8462 {
8463 	struct rwlock *lock;
8464 	bool rv;
8465 
8466 	if ((m->oflags & VPO_UNMANAGED) != 0)
8467 		return (false);
8468 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8469 	rw_rlock(lock);
8470 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
8471 	    ((m->flags & PG_FICTITIOUS) == 0 &&
8472 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
8473 	rw_runlock(lock);
8474 	return (rv);
8475 }
8476 
8477 /*
8478  * Destroy all managed, non-wired mappings in the given user-space
8479  * pmap.  This pmap cannot be active on any processor besides the
8480  * caller.
8481  *
8482  * This function cannot be applied to the kernel pmap.  Moreover, it
8483  * is not intended for general use.  It is only to be used during
8484  * process termination.  Consequently, it can be implemented in ways
8485  * that make it faster than pmap_remove().  First, it can more quickly
8486  * destroy mappings by iterating over the pmap's collection of PV
8487  * entries, rather than searching the page table.  Second, it doesn't
8488  * have to test and clear the page table entries atomically, because
8489  * no processor is currently accessing the user address space.  In
8490  * particular, a page table entry's dirty bit won't change state once
8491  * this function starts.
8492  *
8493  * Although this function destroys all of the pmap's managed,
8494  * non-wired mappings, it can delay and batch the invalidation of TLB
8495  * entries without calling pmap_delayed_invl_start() and
8496  * pmap_delayed_invl_finish().  Because the pmap is not active on
8497  * any other processor, none of these TLB entries will ever be used
8498  * before their eventual invalidation.  Consequently, there is no need
8499  * for either pmap_remove_all() or pmap_remove_write() to wait for
8500  * that eventual TLB invalidation.
8501  */
8502 void
pmap_remove_pages(pmap_t pmap)8503 pmap_remove_pages(pmap_t pmap)
8504 {
8505 	pd_entry_t ptepde;
8506 	pt_entry_t *pte, tpte;
8507 	pt_entry_t PG_M, PG_RW, PG_V;
8508 	struct spglist free;
8509 	struct pv_chunklist free_chunks[PMAP_MEMDOM];
8510 	vm_page_t m, mpte, mt;
8511 	pv_entry_t pv;
8512 	struct md_page *pvh;
8513 	struct pv_chunk *pc, *npc;
8514 	struct rwlock *lock;
8515 	int64_t bit;
8516 	uint64_t inuse, bitmask;
8517 	int allfree, field, i, idx;
8518 #ifdef PV_STATS
8519 	int freed;
8520 #endif
8521 	bool superpage;
8522 	vm_paddr_t pa;
8523 
8524 	/*
8525 	 * Assert that the given pmap is only active on the current
8526 	 * CPU.  Unfortunately, we cannot block another CPU from
8527 	 * activating the pmap while this function is executing.
8528 	 */
8529 	KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
8530 #ifdef INVARIANTS
8531 	{
8532 		cpuset_t other_cpus;
8533 
8534 		other_cpus = all_cpus;
8535 		critical_enter();
8536 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
8537 		CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
8538 		critical_exit();
8539 		KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
8540 	}
8541 #endif
8542 
8543 	lock = NULL;
8544 	PG_M = pmap_modified_bit(pmap);
8545 	PG_V = pmap_valid_bit(pmap);
8546 	PG_RW = pmap_rw_bit(pmap);
8547 
8548 	for (i = 0; i < PMAP_MEMDOM; i++)
8549 		TAILQ_INIT(&free_chunks[i]);
8550 	SLIST_INIT(&free);
8551 	PMAP_LOCK(pmap);
8552 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
8553 		allfree = 1;
8554 #ifdef PV_STATS
8555 		freed = 0;
8556 #endif
8557 		for (field = 0; field < _NPCM; field++) {
8558 			inuse = ~pc->pc_map[field] & pc_freemask[field];
8559 			while (inuse != 0) {
8560 				bit = bsfq(inuse);
8561 				bitmask = 1UL << bit;
8562 				idx = field * 64 + bit;
8563 				pv = &pc->pc_pventry[idx];
8564 				inuse &= ~bitmask;
8565 
8566 				pte = pmap_pdpe(pmap, pv->pv_va);
8567 				ptepde = *pte;
8568 				pte = pmap_pdpe_to_pde(pte, pv->pv_va);
8569 				tpte = *pte;
8570 				if ((tpte & (PG_PS | PG_V)) == PG_V) {
8571 					superpage = false;
8572 					ptepde = tpte;
8573 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
8574 					    PG_FRAME);
8575 					pte = &pte[pmap_pte_index(pv->pv_va)];
8576 					tpte = *pte;
8577 				} else {
8578 					/*
8579 					 * Keep track whether 'tpte' is a
8580 					 * superpage explicitly instead of
8581 					 * relying on PG_PS being set.
8582 					 *
8583 					 * This is because PG_PS is numerically
8584 					 * identical to PG_PTE_PAT and thus a
8585 					 * regular page could be mistaken for
8586 					 * a superpage.
8587 					 */
8588 					superpage = true;
8589 				}
8590 
8591 				if ((tpte & PG_V) == 0) {
8592 					panic("bad pte va %lx pte %lx",
8593 					    pv->pv_va, tpte);
8594 				}
8595 
8596 /*
8597  * We cannot remove wired pages from a process' mapping at this time
8598  */
8599 				if (tpte & PG_W) {
8600 					allfree = 0;
8601 					continue;
8602 				}
8603 
8604 				/* Mark free */
8605 				pc->pc_map[field] |= bitmask;
8606 
8607 				/*
8608 				 * Because this pmap is not active on other
8609 				 * processors, the dirty bit cannot have
8610 				 * changed state since we last loaded pte.
8611 				 */
8612 				pte_clear(pte);
8613 
8614 				if (superpage)
8615 					pa = tpte & PG_PS_FRAME;
8616 				else
8617 					pa = tpte & PG_FRAME;
8618 
8619 				m = PHYS_TO_VM_PAGE(pa);
8620 				KASSERT(m->phys_addr == pa,
8621 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
8622 				    m, (uintmax_t)m->phys_addr,
8623 				    (uintmax_t)tpte));
8624 
8625 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
8626 				    m < &vm_page_array[vm_page_array_size],
8627 				    ("pmap_remove_pages: bad tpte %#jx",
8628 				    (uintmax_t)tpte));
8629 
8630 				/*
8631 				 * Update the vm_page_t clean/reference bits.
8632 				 */
8633 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8634 					if (superpage) {
8635 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8636 							vm_page_dirty(mt);
8637 					} else
8638 						vm_page_dirty(m);
8639 				}
8640 
8641 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
8642 
8643 				if (superpage) {
8644 					pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
8645 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
8646 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8647 					pvh->pv_gen++;
8648 					if (TAILQ_EMPTY(&pvh->pv_list)) {
8649 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8650 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
8651 							    TAILQ_EMPTY(&mt->md.pv_list))
8652 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
8653 					}
8654 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
8655 					if (mpte != NULL) {
8656 						KASSERT(vm_page_any_valid(mpte),
8657 						    ("pmap_remove_pages: pte page not promoted"));
8658 						pmap_pt_page_count_adj(pmap, -1);
8659 						KASSERT(mpte->ref_count == NPTEPG,
8660 						    ("pmap_remove_pages: pte page reference count error"));
8661 						mpte->ref_count = 0;
8662 						pmap_add_delayed_free_list(mpte, &free, false);
8663 					}
8664 				} else {
8665 					pmap_resident_count_adj(pmap, -1);
8666 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8667 					m->md.pv_gen++;
8668 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
8669 					    TAILQ_EMPTY(&m->md.pv_list) &&
8670 					    (m->flags & PG_FICTITIOUS) == 0) {
8671 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8672 						if (TAILQ_EMPTY(&pvh->pv_list))
8673 							vm_page_aflag_clear(m, PGA_WRITEABLE);
8674 					}
8675 				}
8676 				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
8677 #ifdef PV_STATS
8678 				freed++;
8679 #endif
8680 			}
8681 		}
8682 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
8683 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
8684 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
8685 		if (allfree) {
8686 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
8687 			TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
8688 		}
8689 	}
8690 	if (lock != NULL)
8691 		rw_wunlock(lock);
8692 	pmap_invalidate_all(pmap);
8693 	pmap_pkru_deassign_all(pmap);
8694 	free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
8695 	PMAP_UNLOCK(pmap);
8696 	vm_page_free_pages_toq(&free, true);
8697 }
8698 
8699 static bool
pmap_page_test_mappings(vm_page_t m,bool accessed,bool modified)8700 pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
8701 {
8702 	struct rwlock *lock;
8703 	pv_entry_t pv;
8704 	struct md_page *pvh;
8705 	pt_entry_t *pte, mask;
8706 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
8707 	pmap_t pmap;
8708 	int md_gen, pvh_gen;
8709 	bool rv;
8710 
8711 	rv = false;
8712 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8713 	rw_rlock(lock);
8714 restart:
8715 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8716 		pmap = PV_PMAP(pv);
8717 		if (!PMAP_TRYLOCK(pmap)) {
8718 			md_gen = m->md.pv_gen;
8719 			rw_runlock(lock);
8720 			PMAP_LOCK(pmap);
8721 			rw_rlock(lock);
8722 			if (md_gen != m->md.pv_gen) {
8723 				PMAP_UNLOCK(pmap);
8724 				goto restart;
8725 			}
8726 		}
8727 		pte = pmap_pte(pmap, pv->pv_va);
8728 		mask = 0;
8729 		if (modified) {
8730 			PG_M = pmap_modified_bit(pmap);
8731 			PG_RW = pmap_rw_bit(pmap);
8732 			mask |= PG_RW | PG_M;
8733 		}
8734 		if (accessed) {
8735 			PG_A = pmap_accessed_bit(pmap);
8736 			PG_V = pmap_valid_bit(pmap);
8737 			mask |= PG_V | PG_A;
8738 		}
8739 		rv = (*pte & mask) == mask;
8740 		PMAP_UNLOCK(pmap);
8741 		if (rv)
8742 			goto out;
8743 	}
8744 	if ((m->flags & PG_FICTITIOUS) == 0) {
8745 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8746 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8747 			pmap = PV_PMAP(pv);
8748 			if (!PMAP_TRYLOCK(pmap)) {
8749 				md_gen = m->md.pv_gen;
8750 				pvh_gen = pvh->pv_gen;
8751 				rw_runlock(lock);
8752 				PMAP_LOCK(pmap);
8753 				rw_rlock(lock);
8754 				if (md_gen != m->md.pv_gen ||
8755 				    pvh_gen != pvh->pv_gen) {
8756 					PMAP_UNLOCK(pmap);
8757 					goto restart;
8758 				}
8759 			}
8760 			pte = pmap_pde(pmap, pv->pv_va);
8761 			mask = 0;
8762 			if (modified) {
8763 				PG_M = pmap_modified_bit(pmap);
8764 				PG_RW = pmap_rw_bit(pmap);
8765 				mask |= PG_RW | PG_M;
8766 			}
8767 			if (accessed) {
8768 				PG_A = pmap_accessed_bit(pmap);
8769 				PG_V = pmap_valid_bit(pmap);
8770 				mask |= PG_V | PG_A;
8771 			}
8772 			rv = (*pte & mask) == mask;
8773 			PMAP_UNLOCK(pmap);
8774 			if (rv)
8775 				goto out;
8776 		}
8777 	}
8778 out:
8779 	rw_runlock(lock);
8780 	return (rv);
8781 }
8782 
8783 /*
8784  *	pmap_is_modified:
8785  *
8786  *	Return whether or not the specified physical page was modified
8787  *	in any physical maps.
8788  */
8789 bool
pmap_is_modified(vm_page_t m)8790 pmap_is_modified(vm_page_t m)
8791 {
8792 
8793 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8794 	    ("pmap_is_modified: page %p is not managed", m));
8795 
8796 	/*
8797 	 * If the page is not busied then this check is racy.
8798 	 */
8799 	if (!pmap_page_is_write_mapped(m))
8800 		return (false);
8801 	return (pmap_page_test_mappings(m, false, true));
8802 }
8803 
8804 /*
8805  *	pmap_is_prefaultable:
8806  *
8807  *	Return whether or not the specified virtual address is eligible
8808  *	for prefault.
8809  */
8810 bool
pmap_is_prefaultable(pmap_t pmap,vm_offset_t addr)8811 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
8812 {
8813 	pd_entry_t *pde;
8814 	pt_entry_t *pte, PG_V;
8815 	bool rv;
8816 
8817 	PG_V = pmap_valid_bit(pmap);
8818 
8819 	/*
8820 	 * Return true if and only if the PTE for the specified virtual
8821 	 * address is allocated but invalid.
8822 	 */
8823 	rv = false;
8824 	PMAP_LOCK(pmap);
8825 	pde = pmap_pde(pmap, addr);
8826 	if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
8827 		pte = pmap_pde_to_pte(pde, addr);
8828 		rv = (*pte & PG_V) == 0;
8829 	}
8830 	PMAP_UNLOCK(pmap);
8831 	return (rv);
8832 }
8833 
8834 /*
8835  *	pmap_is_referenced:
8836  *
8837  *	Return whether or not the specified physical page was referenced
8838  *	in any physical maps.
8839  */
8840 bool
pmap_is_referenced(vm_page_t m)8841 pmap_is_referenced(vm_page_t m)
8842 {
8843 
8844 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8845 	    ("pmap_is_referenced: page %p is not managed", m));
8846 	return (pmap_page_test_mappings(m, true, false));
8847 }
8848 
8849 /*
8850  * Clear the write and modified bits in each of the given page's mappings.
8851  */
8852 void
pmap_remove_write(vm_page_t m)8853 pmap_remove_write(vm_page_t m)
8854 {
8855 	struct md_page *pvh;
8856 	pmap_t pmap;
8857 	struct rwlock *lock;
8858 	pv_entry_t next_pv, pv;
8859 	pd_entry_t *pde;
8860 	pt_entry_t oldpte, *pte, PG_M, PG_RW;
8861 	vm_offset_t va;
8862 	int pvh_gen, md_gen;
8863 
8864 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8865 	    ("pmap_remove_write: page %p is not managed", m));
8866 
8867 	vm_page_assert_busied(m);
8868 	if (!pmap_page_is_write_mapped(m))
8869 		return;
8870 
8871 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8872 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8873 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
8874 	rw_wlock(lock);
8875 retry:
8876 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8877 		pmap = PV_PMAP(pv);
8878 		if (!PMAP_TRYLOCK(pmap)) {
8879 			pvh_gen = pvh->pv_gen;
8880 			rw_wunlock(lock);
8881 			PMAP_LOCK(pmap);
8882 			rw_wlock(lock);
8883 			if (pvh_gen != pvh->pv_gen) {
8884 				PMAP_UNLOCK(pmap);
8885 				goto retry;
8886 			}
8887 		}
8888 		PG_RW = pmap_rw_bit(pmap);
8889 		va = pv->pv_va;
8890 		pde = pmap_pde(pmap, va);
8891 		if ((*pde & PG_RW) != 0)
8892 			(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
8893 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8894 		    ("inconsistent pv lock %p %p for page %p",
8895 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8896 		PMAP_UNLOCK(pmap);
8897 	}
8898 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8899 		pmap = PV_PMAP(pv);
8900 		if (!PMAP_TRYLOCK(pmap)) {
8901 			pvh_gen = pvh->pv_gen;
8902 			md_gen = m->md.pv_gen;
8903 			rw_wunlock(lock);
8904 			PMAP_LOCK(pmap);
8905 			rw_wlock(lock);
8906 			if (pvh_gen != pvh->pv_gen ||
8907 			    md_gen != m->md.pv_gen) {
8908 				PMAP_UNLOCK(pmap);
8909 				goto retry;
8910 			}
8911 		}
8912 		PG_M = pmap_modified_bit(pmap);
8913 		PG_RW = pmap_rw_bit(pmap);
8914 		pde = pmap_pde(pmap, pv->pv_va);
8915 		KASSERT((*pde & PG_PS) == 0,
8916 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
8917 		    m));
8918 		pte = pmap_pde_to_pte(pde, pv->pv_va);
8919 		oldpte = *pte;
8920 		if (oldpte & PG_RW) {
8921 			while (!atomic_fcmpset_long(pte, &oldpte, oldpte &
8922 			    ~(PG_RW | PG_M)))
8923 				cpu_spinwait();
8924 			if ((oldpte & PG_M) != 0)
8925 				vm_page_dirty(m);
8926 			pmap_invalidate_page(pmap, pv->pv_va);
8927 		}
8928 		PMAP_UNLOCK(pmap);
8929 	}
8930 	rw_wunlock(lock);
8931 	vm_page_aflag_clear(m, PGA_WRITEABLE);
8932 	pmap_delayed_invl_wait(m);
8933 }
8934 
8935 /*
8936  *	pmap_ts_referenced:
8937  *
8938  *	Return a count of reference bits for a page, clearing those bits.
8939  *	It is not necessary for every reference bit to be cleared, but it
8940  *	is necessary that 0 only be returned when there are truly no
8941  *	reference bits set.
8942  *
8943  *	As an optimization, update the page's dirty field if a modified bit is
8944  *	found while counting reference bits.  This opportunistic update can be
8945  *	performed at low cost and can eliminate the need for some future calls
8946  *	to pmap_is_modified().  However, since this function stops after
8947  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
8948  *	dirty pages.  Those dirty pages will only be detected by a future call
8949  *	to pmap_is_modified().
8950  *
8951  *	A DI block is not needed within this function, because
8952  *	invalidations are performed before the PV list lock is
8953  *	released.
8954  */
8955 int
pmap_ts_referenced(vm_page_t m)8956 pmap_ts_referenced(vm_page_t m)
8957 {
8958 	struct md_page *pvh;
8959 	pv_entry_t pv, pvf;
8960 	pmap_t pmap;
8961 	struct rwlock *lock;
8962 	pd_entry_t oldpde, *pde;
8963 	pt_entry_t *pte, PG_A, PG_M, PG_RW;
8964 	vm_offset_t va;
8965 	vm_paddr_t pa;
8966 	int cleared, md_gen, not_cleared, pvh_gen;
8967 	struct spglist free;
8968 	bool demoted;
8969 
8970 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8971 	    ("pmap_ts_referenced: page %p is not managed", m));
8972 	SLIST_INIT(&free);
8973 	cleared = 0;
8974 	pa = VM_PAGE_TO_PHYS(m);
8975 	lock = PHYS_TO_PV_LIST_LOCK(pa);
8976 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
8977 	rw_wlock(lock);
8978 retry:
8979 	not_cleared = 0;
8980 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
8981 		goto small_mappings;
8982 	pv = pvf;
8983 	do {
8984 		if (pvf == NULL)
8985 			pvf = pv;
8986 		pmap = PV_PMAP(pv);
8987 		if (!PMAP_TRYLOCK(pmap)) {
8988 			pvh_gen = pvh->pv_gen;
8989 			rw_wunlock(lock);
8990 			PMAP_LOCK(pmap);
8991 			rw_wlock(lock);
8992 			if (pvh_gen != pvh->pv_gen) {
8993 				PMAP_UNLOCK(pmap);
8994 				goto retry;
8995 			}
8996 		}
8997 		PG_A = pmap_accessed_bit(pmap);
8998 		PG_M = pmap_modified_bit(pmap);
8999 		PG_RW = pmap_rw_bit(pmap);
9000 		va = pv->pv_va;
9001 		pde = pmap_pde(pmap, pv->pv_va);
9002 		oldpde = *pde;
9003 		if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9004 			/*
9005 			 * Although "oldpde" is mapping a 2MB page, because
9006 			 * this function is called at a 4KB page granularity,
9007 			 * we only update the 4KB page under test.
9008 			 */
9009 			vm_page_dirty(m);
9010 		}
9011 		if ((oldpde & PG_A) != 0) {
9012 			/*
9013 			 * Since this reference bit is shared by 512 4KB
9014 			 * pages, it should not be cleared every time it is
9015 			 * tested.  Apply a simple "hash" function on the
9016 			 * physical page number, the virtual superpage number,
9017 			 * and the pmap address to select one 4KB page out of
9018 			 * the 512 on which testing the reference bit will
9019 			 * result in clearing that reference bit.  This
9020 			 * function is designed to avoid the selection of the
9021 			 * same 4KB page for every 2MB page mapping.
9022 			 *
9023 			 * On demotion, a mapping that hasn't been referenced
9024 			 * is simply destroyed.  To avoid the possibility of a
9025 			 * subsequent page fault on a demoted wired mapping,
9026 			 * always leave its reference bit set.  Moreover,
9027 			 * since the superpage is wired, the current state of
9028 			 * its reference bit won't affect page replacement.
9029 			 */
9030 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
9031 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
9032 			    (oldpde & PG_W) == 0) {
9033 				if (safe_to_clear_referenced(pmap, oldpde)) {
9034 					atomic_clear_long(pde, PG_A);
9035 					pmap_invalidate_page(pmap, pv->pv_va);
9036 					demoted = false;
9037 				} else if (pmap_demote_pde_locked(pmap, pde,
9038 				    pv->pv_va, &lock)) {
9039 					/*
9040 					 * Remove the mapping to a single page
9041 					 * so that a subsequent access may
9042 					 * repromote.  Since the underlying
9043 					 * page table page is fully populated,
9044 					 * this removal never frees a page
9045 					 * table page.
9046 					 */
9047 					demoted = true;
9048 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
9049 					    PG_PS_FRAME);
9050 					pte = pmap_pde_to_pte(pde, va);
9051 					pmap_remove_pte(pmap, pte, va, *pde,
9052 					    NULL, &lock);
9053 					pmap_invalidate_page(pmap, va);
9054 				} else
9055 					demoted = true;
9056 
9057 				if (demoted) {
9058 					/*
9059 					 * The superpage mapping was removed
9060 					 * entirely and therefore 'pv' is no
9061 					 * longer valid.
9062 					 */
9063 					if (pvf == pv)
9064 						pvf = NULL;
9065 					pv = NULL;
9066 				}
9067 				cleared++;
9068 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9069 				    ("inconsistent pv lock %p %p for page %p",
9070 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9071 			} else
9072 				not_cleared++;
9073 		}
9074 		PMAP_UNLOCK(pmap);
9075 		/* Rotate the PV list if it has more than one entry. */
9076 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9077 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
9078 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
9079 			pvh->pv_gen++;
9080 		}
9081 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
9082 			goto out;
9083 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
9084 small_mappings:
9085 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
9086 		goto out;
9087 	pv = pvf;
9088 	do {
9089 		if (pvf == NULL)
9090 			pvf = pv;
9091 		pmap = PV_PMAP(pv);
9092 		if (!PMAP_TRYLOCK(pmap)) {
9093 			pvh_gen = pvh->pv_gen;
9094 			md_gen = m->md.pv_gen;
9095 			rw_wunlock(lock);
9096 			PMAP_LOCK(pmap);
9097 			rw_wlock(lock);
9098 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9099 				PMAP_UNLOCK(pmap);
9100 				goto retry;
9101 			}
9102 		}
9103 		PG_A = pmap_accessed_bit(pmap);
9104 		PG_M = pmap_modified_bit(pmap);
9105 		PG_RW = pmap_rw_bit(pmap);
9106 		pde = pmap_pde(pmap, pv->pv_va);
9107 		KASSERT((*pde & PG_PS) == 0,
9108 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
9109 		    m));
9110 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9111 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
9112 			vm_page_dirty(m);
9113 		if ((*pte & PG_A) != 0) {
9114 			if (safe_to_clear_referenced(pmap, *pte)) {
9115 				atomic_clear_long(pte, PG_A);
9116 				pmap_invalidate_page(pmap, pv->pv_va);
9117 				cleared++;
9118 			} else if ((*pte & PG_W) == 0) {
9119 				/*
9120 				 * Wired pages cannot be paged out so
9121 				 * doing accessed bit emulation for
9122 				 * them is wasted effort. We do the
9123 				 * hard work for unwired pages only.
9124 				 */
9125 				pmap_remove_pte(pmap, pte, pv->pv_va,
9126 				    *pde, &free, &lock);
9127 				pmap_invalidate_page(pmap, pv->pv_va);
9128 				cleared++;
9129 				if (pvf == pv)
9130 					pvf = NULL;
9131 				pv = NULL;
9132 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9133 				    ("inconsistent pv lock %p %p for page %p",
9134 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9135 			} else
9136 				not_cleared++;
9137 		}
9138 		PMAP_UNLOCK(pmap);
9139 		/* Rotate the PV list if it has more than one entry. */
9140 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9141 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
9142 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
9143 			m->md.pv_gen++;
9144 		}
9145 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
9146 	    not_cleared < PMAP_TS_REFERENCED_MAX);
9147 out:
9148 	rw_wunlock(lock);
9149 	vm_page_free_pages_toq(&free, true);
9150 	return (cleared + not_cleared);
9151 }
9152 
9153 /*
9154  *	Apply the given advice to the specified range of addresses within the
9155  *	given pmap.  Depending on the advice, clear the referenced and/or
9156  *	modified flags in each mapping and set the mapped page's dirty field.
9157  */
9158 void
pmap_advise(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,int advice)9159 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
9160 {
9161 	struct rwlock *lock;
9162 	pml4_entry_t *pml4e;
9163 	pdp_entry_t *pdpe;
9164 	pd_entry_t oldpde, *pde;
9165 	pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
9166 	vm_offset_t va, va_next;
9167 	vm_page_t m;
9168 	bool anychanged;
9169 
9170 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
9171 		return;
9172 
9173 	/*
9174 	 * A/D bit emulation requires an alternate code path when clearing
9175 	 * the modified and accessed bits below. Since this function is
9176 	 * advisory in nature we skip it entirely for pmaps that require
9177 	 * A/D bit emulation.
9178 	 */
9179 	if (pmap_emulate_ad_bits(pmap))
9180 		return;
9181 
9182 	PG_A = pmap_accessed_bit(pmap);
9183 	PG_G = pmap_global_bit(pmap);
9184 	PG_M = pmap_modified_bit(pmap);
9185 	PG_V = pmap_valid_bit(pmap);
9186 	PG_RW = pmap_rw_bit(pmap);
9187 	anychanged = false;
9188 	pmap_delayed_invl_start();
9189 	PMAP_LOCK(pmap);
9190 	for (; sva < eva; sva = va_next) {
9191 		pml4e = pmap_pml4e(pmap, sva);
9192 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
9193 			va_next = (sva + NBPML4) & ~PML4MASK;
9194 			if (va_next < sva)
9195 				va_next = eva;
9196 			continue;
9197 		}
9198 
9199 		va_next = (sva + NBPDP) & ~PDPMASK;
9200 		if (va_next < sva)
9201 			va_next = eva;
9202 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
9203 		if ((*pdpe & PG_V) == 0)
9204 			continue;
9205 		if ((*pdpe & PG_PS) != 0)
9206 			continue;
9207 
9208 		va_next = (sva + NBPDR) & ~PDRMASK;
9209 		if (va_next < sva)
9210 			va_next = eva;
9211 		pde = pmap_pdpe_to_pde(pdpe, sva);
9212 		oldpde = *pde;
9213 		if ((oldpde & PG_V) == 0)
9214 			continue;
9215 		else if ((oldpde & PG_PS) != 0) {
9216 			if ((oldpde & PG_MANAGED) == 0)
9217 				continue;
9218 			lock = NULL;
9219 			if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
9220 				if (lock != NULL)
9221 					rw_wunlock(lock);
9222 
9223 				/*
9224 				 * The large page mapping was destroyed.
9225 				 */
9226 				continue;
9227 			}
9228 
9229 			/*
9230 			 * Unless the page mappings are wired, remove the
9231 			 * mapping to a single page so that a subsequent
9232 			 * access may repromote.  Choosing the last page
9233 			 * within the address range [sva, min(va_next, eva))
9234 			 * generally results in more repromotions.  Since the
9235 			 * underlying page table page is fully populated, this
9236 			 * removal never frees a page table page.
9237 			 */
9238 			if ((oldpde & PG_W) == 0) {
9239 				va = eva;
9240 				if (va > va_next)
9241 					va = va_next;
9242 				va -= PAGE_SIZE;
9243 				KASSERT(va >= sva,
9244 				    ("pmap_advise: no address gap"));
9245 				pte = pmap_pde_to_pte(pde, va);
9246 				KASSERT((*pte & PG_V) != 0,
9247 				    ("pmap_advise: invalid PTE"));
9248 				pmap_remove_pte(pmap, pte, va, *pde, NULL,
9249 				    &lock);
9250 				anychanged = true;
9251 			}
9252 			if (lock != NULL)
9253 				rw_wunlock(lock);
9254 		}
9255 		if (va_next > eva)
9256 			va_next = eva;
9257 		va = va_next;
9258 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
9259 		    sva += PAGE_SIZE) {
9260 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
9261 				goto maybe_invlrng;
9262 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9263 				if (advice == MADV_DONTNEED) {
9264 					/*
9265 					 * Future calls to pmap_is_modified()
9266 					 * can be avoided by making the page
9267 					 * dirty now.
9268 					 */
9269 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
9270 					vm_page_dirty(m);
9271 				}
9272 				atomic_clear_long(pte, PG_M | PG_A);
9273 			} else if ((*pte & PG_A) != 0)
9274 				atomic_clear_long(pte, PG_A);
9275 			else
9276 				goto maybe_invlrng;
9277 
9278 			if ((*pte & PG_G) != 0) {
9279 				if (va == va_next)
9280 					va = sva;
9281 			} else
9282 				anychanged = true;
9283 			continue;
9284 maybe_invlrng:
9285 			if (va != va_next) {
9286 				pmap_invalidate_range(pmap, va, sva);
9287 				va = va_next;
9288 			}
9289 		}
9290 		if (va != va_next)
9291 			pmap_invalidate_range(pmap, va, sva);
9292 	}
9293 	if (anychanged)
9294 		pmap_invalidate_all(pmap);
9295 	PMAP_UNLOCK(pmap);
9296 	pmap_delayed_invl_finish();
9297 }
9298 
9299 /*
9300  *	Clear the modify bits on the specified physical page.
9301  */
9302 void
pmap_clear_modify(vm_page_t m)9303 pmap_clear_modify(vm_page_t m)
9304 {
9305 	struct md_page *pvh;
9306 	pmap_t pmap;
9307 	pv_entry_t next_pv, pv;
9308 	pd_entry_t oldpde, *pde;
9309 	pt_entry_t *pte, PG_M, PG_RW;
9310 	struct rwlock *lock;
9311 	vm_offset_t va;
9312 	int md_gen, pvh_gen;
9313 
9314 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9315 	    ("pmap_clear_modify: page %p is not managed", m));
9316 	vm_page_assert_busied(m);
9317 
9318 	if (!pmap_page_is_write_mapped(m))
9319 		return;
9320 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
9321 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
9322 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
9323 	rw_wlock(lock);
9324 restart:
9325 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
9326 		pmap = PV_PMAP(pv);
9327 		if (!PMAP_TRYLOCK(pmap)) {
9328 			pvh_gen = pvh->pv_gen;
9329 			rw_wunlock(lock);
9330 			PMAP_LOCK(pmap);
9331 			rw_wlock(lock);
9332 			if (pvh_gen != pvh->pv_gen) {
9333 				PMAP_UNLOCK(pmap);
9334 				goto restart;
9335 			}
9336 		}
9337 		PG_M = pmap_modified_bit(pmap);
9338 		PG_RW = pmap_rw_bit(pmap);
9339 		va = pv->pv_va;
9340 		pde = pmap_pde(pmap, va);
9341 		oldpde = *pde;
9342 		/* If oldpde has PG_RW set, then it also has PG_M set. */
9343 		if ((oldpde & PG_RW) != 0 &&
9344 		    pmap_demote_pde_locked(pmap, pde, va, &lock) &&
9345 		    (oldpde & PG_W) == 0) {
9346 			/*
9347 			 * Write protect the mapping to a single page so that
9348 			 * a subsequent write access may repromote.
9349 			 */
9350 			va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
9351 			pte = pmap_pde_to_pte(pde, va);
9352 			atomic_clear_long(pte, PG_M | PG_RW);
9353 			vm_page_dirty(m);
9354 			pmap_invalidate_page(pmap, va);
9355 		}
9356 		PMAP_UNLOCK(pmap);
9357 	}
9358 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
9359 		pmap = PV_PMAP(pv);
9360 		if (!PMAP_TRYLOCK(pmap)) {
9361 			md_gen = m->md.pv_gen;
9362 			pvh_gen = pvh->pv_gen;
9363 			rw_wunlock(lock);
9364 			PMAP_LOCK(pmap);
9365 			rw_wlock(lock);
9366 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9367 				PMAP_UNLOCK(pmap);
9368 				goto restart;
9369 			}
9370 		}
9371 		PG_M = pmap_modified_bit(pmap);
9372 		PG_RW = pmap_rw_bit(pmap);
9373 		pde = pmap_pde(pmap, pv->pv_va);
9374 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
9375 		    " a 2mpage in page %p's pv list", m));
9376 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9377 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9378 			atomic_clear_long(pte, PG_M);
9379 			pmap_invalidate_page(pmap, pv->pv_va);
9380 		}
9381 		PMAP_UNLOCK(pmap);
9382 	}
9383 	rw_wunlock(lock);
9384 }
9385 
9386 /*
9387  * Miscellaneous support routines follow
9388  */
9389 
9390 /* Adjust the properties for a leaf page table entry. */
9391 static __inline void
pmap_pte_props(pt_entry_t * pte,u_long bits,u_long mask)9392 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
9393 {
9394 	u_long opte, npte;
9395 
9396 	opte = *(u_long *)pte;
9397 	do {
9398 		npte = opte & ~mask;
9399 		npte |= bits;
9400 	} while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
9401 	    npte));
9402 }
9403 
9404 /*
9405  * Map a set of physical memory pages into the kernel virtual
9406  * address space. Return a pointer to where it is mapped. This
9407  * routine is intended to be used for mapping device memory,
9408  * NOT real memory.
9409  */
9410 static void *
pmap_mapdev_internal(vm_paddr_t pa,vm_size_t size,int mode,int flags)9411 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
9412 {
9413 	struct pmap_preinit_mapping *ppim;
9414 	vm_offset_t va, offset;
9415 	vm_size_t tmpsize;
9416 	int i;
9417 
9418 	offset = pa & PAGE_MASK;
9419 	size = round_page(offset + size);
9420 	pa = trunc_page(pa);
9421 
9422 	if (!pmap_initialized) {
9423 		va = 0;
9424 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9425 			ppim = pmap_preinit_mapping + i;
9426 			if (ppim->va == 0) {
9427 				ppim->pa = pa;
9428 				ppim->sz = size;
9429 				ppim->mode = mode;
9430 				ppim->va = virtual_avail;
9431 				virtual_avail += size;
9432 				va = ppim->va;
9433 				break;
9434 			}
9435 		}
9436 		if (va == 0)
9437 			panic("%s: too many preinit mappings", __func__);
9438 	} else {
9439 		/*
9440 		 * If we have a preinit mapping, reuse it.
9441 		 */
9442 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9443 			ppim = pmap_preinit_mapping + i;
9444 			if (ppim->pa == pa && ppim->sz == size &&
9445 			    (ppim->mode == mode ||
9446 			    (flags & MAPDEV_SETATTR) == 0))
9447 				return ((void *)(ppim->va + offset));
9448 		}
9449 		/*
9450 		 * If the specified range of physical addresses fits within
9451 		 * the direct map window, use the direct map.
9452 		 */
9453 		if (pa < dmaplimit && pa + size <= dmaplimit) {
9454 			va = PHYS_TO_DMAP(pa);
9455 			if ((flags & MAPDEV_SETATTR) != 0) {
9456 				PMAP_LOCK(kernel_pmap);
9457 				i = pmap_change_props_locked(va, size,
9458 				    PROT_NONE, mode, flags);
9459 				PMAP_UNLOCK(kernel_pmap);
9460 			} else
9461 				i = 0;
9462 			if (!i)
9463 				return ((void *)(va + offset));
9464 		}
9465 		va = kva_alloc(size);
9466 		if (va == 0)
9467 			panic("%s: Couldn't allocate KVA", __func__);
9468 	}
9469 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
9470 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
9471 	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
9472 	if ((flags & MAPDEV_FLUSHCACHE) != 0)
9473 		pmap_invalidate_cache_range(va, va + tmpsize);
9474 	return ((void *)(va + offset));
9475 }
9476 
9477 void *
pmap_mapdev_attr(vm_paddr_t pa,vm_size_t size,int mode)9478 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
9479 {
9480 
9481 	return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
9482 	    MAPDEV_SETATTR));
9483 }
9484 
9485 void *
pmap_mapdev(vm_paddr_t pa,vm_size_t size)9486 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
9487 {
9488 
9489 	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
9490 }
9491 
9492 void *
pmap_mapdev_pciecfg(vm_paddr_t pa,vm_size_t size)9493 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
9494 {
9495 
9496 	return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
9497 	    MAPDEV_SETATTR));
9498 }
9499 
9500 void *
pmap_mapbios(vm_paddr_t pa,vm_size_t size)9501 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
9502 {
9503 
9504 	return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
9505 	    MAPDEV_FLUSHCACHE));
9506 }
9507 
9508 void
pmap_unmapdev(void * p,vm_size_t size)9509 pmap_unmapdev(void *p, vm_size_t size)
9510 {
9511 	struct pmap_preinit_mapping *ppim;
9512 	vm_offset_t offset, va;
9513 	int i;
9514 
9515 	va = (vm_offset_t)p;
9516 
9517 	/* If we gave a direct map region in pmap_mapdev, do nothing */
9518 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
9519 		return;
9520 	offset = va & PAGE_MASK;
9521 	size = round_page(offset + size);
9522 	va = trunc_page(va);
9523 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9524 		ppim = pmap_preinit_mapping + i;
9525 		if (ppim->va == va && ppim->sz == size) {
9526 			if (pmap_initialized)
9527 				return;
9528 			ppim->pa = 0;
9529 			ppim->va = 0;
9530 			ppim->sz = 0;
9531 			ppim->mode = 0;
9532 			if (va + size == virtual_avail)
9533 				virtual_avail = va;
9534 			return;
9535 		}
9536 	}
9537 	if (pmap_initialized) {
9538 		pmap_qremove(va, atop(size));
9539 		kva_free(va, size);
9540 	}
9541 }
9542 
9543 /*
9544  * Tries to demote a 1GB page mapping.
9545  */
9546 static bool
pmap_demote_pdpe(pmap_t pmap,pdp_entry_t * pdpe,vm_offset_t va)9547 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
9548 {
9549 	pdp_entry_t newpdpe, oldpdpe;
9550 	pd_entry_t *firstpde, newpde, *pde;
9551 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
9552 	vm_paddr_t pdpgpa;
9553 	vm_page_t pdpg;
9554 
9555 	PG_A = pmap_accessed_bit(pmap);
9556 	PG_M = pmap_modified_bit(pmap);
9557 	PG_V = pmap_valid_bit(pmap);
9558 	PG_RW = pmap_rw_bit(pmap);
9559 
9560 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9561 	oldpdpe = *pdpe;
9562 	KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
9563 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
9564 	pdpg = pmap_alloc_pt_page(pmap, va >> PDPSHIFT,
9565 	    VM_ALLOC_WIRED | VM_ALLOC_INTERRUPT);
9566 	if (pdpg  == NULL) {
9567 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
9568 		    " in pmap %p", va, pmap);
9569 		return (false);
9570 	}
9571 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
9572 	firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
9573 	newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
9574 	KASSERT((oldpdpe & PG_A) != 0,
9575 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
9576 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
9577 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
9578 	newpde = oldpdpe;
9579 
9580 	/*
9581 	 * Initialize the page directory page.
9582 	 */
9583 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
9584 		*pde = newpde;
9585 		newpde += NBPDR;
9586 	}
9587 
9588 	/*
9589 	 * Demote the mapping.
9590 	 */
9591 	*pdpe = newpdpe;
9592 
9593 	/*
9594 	 * Invalidate a stale recursive mapping of the page directory page.
9595 	 */
9596 	pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
9597 
9598 	counter_u64_add(pmap_pdpe_demotions, 1);
9599 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
9600 	    " in pmap %p", va, pmap);
9601 	return (true);
9602 }
9603 
9604 /*
9605  * Sets the memory attribute for the specified page.
9606  */
9607 void
pmap_page_set_memattr(vm_page_t m,vm_memattr_t ma)9608 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
9609 {
9610 
9611 	m->md.pat_mode = ma;
9612 
9613 	/*
9614 	 * If "m" is a normal page, update its direct mapping.  This update
9615 	 * can be relied upon to perform any cache operations that are
9616 	 * required for data coherence.
9617 	 */
9618 	if ((m->flags & PG_FICTITIOUS) == 0 &&
9619 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
9620 	    m->md.pat_mode))
9621 		panic("memory attribute change on the direct map failed");
9622 }
9623 
9624 void
pmap_page_set_memattr_noflush(vm_page_t m,vm_memattr_t ma)9625 pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma)
9626 {
9627 	int error;
9628 
9629 	m->md.pat_mode = ma;
9630 
9631 	if ((m->flags & PG_FICTITIOUS) != 0)
9632 		return;
9633 	PMAP_LOCK(kernel_pmap);
9634 	error = pmap_change_props_locked(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
9635 	    PAGE_SIZE, PROT_NONE, m->md.pat_mode, 0);
9636 	PMAP_UNLOCK(kernel_pmap);
9637 	if (error != 0)
9638 		panic("memory attribute change on the direct map failed");
9639 }
9640 
9641 /*
9642  * Changes the specified virtual address range's memory type to that given by
9643  * the parameter "mode".  The specified virtual address range must be
9644  * completely contained within either the direct map or the kernel map.  If
9645  * the virtual address range is contained within the kernel map, then the
9646  * memory type for each of the corresponding ranges of the direct map is also
9647  * changed.  (The corresponding ranges of the direct map are those ranges that
9648  * map the same physical pages as the specified virtual address range.)  These
9649  * changes to the direct map are necessary because Intel describes the
9650  * behavior of their processors as "undefined" if two or more mappings to the
9651  * same physical page have different memory types.
9652  *
9653  * Returns zero if the change completed successfully, and either EINVAL or
9654  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
9655  * of the virtual address range was not mapped, and ENOMEM is returned if
9656  * there was insufficient memory available to complete the change.  In the
9657  * latter case, the memory type may have been changed on some part of the
9658  * virtual address range or the direct map.
9659  */
9660 int
pmap_change_attr(vm_offset_t va,vm_size_t size,int mode)9661 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
9662 {
9663 	int error;
9664 
9665 	PMAP_LOCK(kernel_pmap);
9666 	error = pmap_change_props_locked(va, size, PROT_NONE, mode,
9667 	    MAPDEV_FLUSHCACHE);
9668 	PMAP_UNLOCK(kernel_pmap);
9669 	return (error);
9670 }
9671 
9672 /*
9673  * Changes the specified virtual address range's protections to those
9674  * specified by "prot".  Like pmap_change_attr(), protections for aliases
9675  * in the direct map are updated as well.  Protections on aliasing mappings may
9676  * be a subset of the requested protections; for example, mappings in the direct
9677  * map are never executable.
9678  */
9679 int
pmap_change_prot(vm_offset_t va,vm_size_t size,vm_prot_t prot)9680 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
9681 {
9682 	int error;
9683 
9684 	/* Only supported within the kernel map. */
9685 	if (va < VM_MIN_KERNEL_ADDRESS)
9686 		return (EINVAL);
9687 
9688 	PMAP_LOCK(kernel_pmap);
9689 	error = pmap_change_props_locked(va, size, prot, -1,
9690 	    MAPDEV_ASSERTVALID);
9691 	PMAP_UNLOCK(kernel_pmap);
9692 	return (error);
9693 }
9694 
9695 static int
pmap_change_props_locked(vm_offset_t va,vm_size_t size,vm_prot_t prot,int mode,int flags)9696 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
9697     int mode, int flags)
9698 {
9699 	vm_offset_t base, offset, tmpva;
9700 	vm_paddr_t pa_start, pa_end, pa_end1;
9701 	pdp_entry_t *pdpe;
9702 	pd_entry_t *pde, pde_bits, pde_mask;
9703 	pt_entry_t *pte, pte_bits, pte_mask;
9704 	int error;
9705 	bool changed;
9706 
9707 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
9708 	base = trunc_page(va);
9709 	offset = va & PAGE_MASK;
9710 	size = round_page(offset + size);
9711 
9712 	/*
9713 	 * Only supported on kernel virtual addresses, including the direct
9714 	 * map but excluding the recursive map.
9715 	 */
9716 	if (base < DMAP_MIN_ADDRESS)
9717 		return (EINVAL);
9718 
9719 	/*
9720 	 * Construct our flag sets and masks.  "bits" is the subset of
9721 	 * "mask" that will be set in each modified PTE.
9722 	 *
9723 	 * Mappings in the direct map are never allowed to be executable.
9724 	 */
9725 	pde_bits = pte_bits = 0;
9726 	pde_mask = pte_mask = 0;
9727 	if (mode != -1) {
9728 		pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
9729 		pde_mask |= X86_PG_PDE_CACHE;
9730 		pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
9731 		pte_mask |= X86_PG_PTE_CACHE;
9732 	}
9733 	if (prot != VM_PROT_NONE) {
9734 		if ((prot & VM_PROT_WRITE) != 0) {
9735 			pde_bits |= X86_PG_RW;
9736 			pte_bits |= X86_PG_RW;
9737 		}
9738 		if ((prot & VM_PROT_EXECUTE) == 0 ||
9739 		    va < VM_MIN_KERNEL_ADDRESS) {
9740 			pde_bits |= pg_nx;
9741 			pte_bits |= pg_nx;
9742 		}
9743 		pde_mask |= X86_PG_RW | pg_nx;
9744 		pte_mask |= X86_PG_RW | pg_nx;
9745 	}
9746 
9747 	/*
9748 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
9749 	 * into 4KB pages if required.
9750 	 */
9751 	for (tmpva = base; tmpva < base + size; ) {
9752 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9753 		if (pdpe == NULL || *pdpe == 0) {
9754 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9755 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9756 			return (EINVAL);
9757 		}
9758 		if (*pdpe & PG_PS) {
9759 			/*
9760 			 * If the current 1GB page already has the required
9761 			 * properties, then we need not demote this page.  Just
9762 			 * increment tmpva to the next 1GB page frame.
9763 			 */
9764 			if ((*pdpe & pde_mask) == pde_bits) {
9765 				tmpva = trunc_1gpage(tmpva) + NBPDP;
9766 				continue;
9767 			}
9768 
9769 			/*
9770 			 * If the current offset aligns with a 1GB page frame
9771 			 * and there is at least 1GB left within the range, then
9772 			 * we need not break down this page into 2MB pages.
9773 			 */
9774 			if ((tmpva & PDPMASK) == 0 &&
9775 			    tmpva + PDPMASK < base + size) {
9776 				tmpva += NBPDP;
9777 				continue;
9778 			}
9779 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
9780 				return (ENOMEM);
9781 		}
9782 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9783 		if (*pde == 0) {
9784 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9785 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9786 			return (EINVAL);
9787 		}
9788 		if (*pde & PG_PS) {
9789 			/*
9790 			 * If the current 2MB page already has the required
9791 			 * properties, then we need not demote this page.  Just
9792 			 * increment tmpva to the next 2MB page frame.
9793 			 */
9794 			if ((*pde & pde_mask) == pde_bits) {
9795 				tmpva = trunc_2mpage(tmpva) + NBPDR;
9796 				continue;
9797 			}
9798 
9799 			/*
9800 			 * If the current offset aligns with a 2MB page frame
9801 			 * and there is at least 2MB left within the range, then
9802 			 * we need not break down this page into 4KB pages.
9803 			 */
9804 			if ((tmpva & PDRMASK) == 0 &&
9805 			    tmpva + PDRMASK < base + size) {
9806 				tmpva += NBPDR;
9807 				continue;
9808 			}
9809 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
9810 				return (ENOMEM);
9811 		}
9812 		pte = pmap_pde_to_pte(pde, tmpva);
9813 		if (*pte == 0) {
9814 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9815 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9816 			return (EINVAL);
9817 		}
9818 		tmpva += PAGE_SIZE;
9819 	}
9820 	error = 0;
9821 
9822 	/*
9823 	 * Ok, all the pages exist, so run through them updating their
9824 	 * properties if required.
9825 	 */
9826 	changed = false;
9827 	pa_start = pa_end = 0;
9828 	for (tmpva = base; tmpva < base + size; ) {
9829 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9830 		if (*pdpe & PG_PS) {
9831 			if ((*pdpe & pde_mask) != pde_bits) {
9832 				pmap_pte_props(pdpe, pde_bits, pde_mask);
9833 				changed = true;
9834 			}
9835 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9836 			    (*pdpe & PG_PS_FRAME) < dmaplimit) {
9837 				if (pa_start == pa_end) {
9838 					/* Start physical address run. */
9839 					pa_start = *pdpe & PG_PS_FRAME;
9840 					pa_end = pa_start + NBPDP;
9841 				} else if (pa_end == (*pdpe & PG_PS_FRAME))
9842 					pa_end += NBPDP;
9843 				else {
9844 					/* Run ended, update direct map. */
9845 					error = pmap_change_props_locked(
9846 					    PHYS_TO_DMAP(pa_start),
9847 					    pa_end - pa_start, prot, mode,
9848 					    flags);
9849 					if (error != 0)
9850 						break;
9851 					/* Start physical address run. */
9852 					pa_start = *pdpe & PG_PS_FRAME;
9853 					pa_end = pa_start + NBPDP;
9854 				}
9855 			}
9856 			tmpva = trunc_1gpage(tmpva) + NBPDP;
9857 			continue;
9858 		}
9859 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9860 		if (*pde & PG_PS) {
9861 			if ((*pde & pde_mask) != pde_bits) {
9862 				pmap_pte_props(pde, pde_bits, pde_mask);
9863 				changed = true;
9864 			}
9865 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9866 			    (*pde & PG_PS_FRAME) < dmaplimit) {
9867 				if (pa_start == pa_end) {
9868 					/* Start physical address run. */
9869 					pa_start = *pde & PG_PS_FRAME;
9870 					pa_end = pa_start + NBPDR;
9871 				} else if (pa_end == (*pde & PG_PS_FRAME))
9872 					pa_end += NBPDR;
9873 				else {
9874 					/* Run ended, update direct map. */
9875 					error = pmap_change_props_locked(
9876 					    PHYS_TO_DMAP(pa_start),
9877 					    pa_end - pa_start, prot, mode,
9878 					    flags);
9879 					if (error != 0)
9880 						break;
9881 					/* Start physical address run. */
9882 					pa_start = *pde & PG_PS_FRAME;
9883 					pa_end = pa_start + NBPDR;
9884 				}
9885 			}
9886 			tmpva = trunc_2mpage(tmpva) + NBPDR;
9887 		} else {
9888 			pte = pmap_pde_to_pte(pde, tmpva);
9889 			if ((*pte & pte_mask) != pte_bits) {
9890 				pmap_pte_props(pte, pte_bits, pte_mask);
9891 				changed = true;
9892 			}
9893 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9894 			    (*pte & PG_FRAME) < dmaplimit) {
9895 				if (pa_start == pa_end) {
9896 					/* Start physical address run. */
9897 					pa_start = *pte & PG_FRAME;
9898 					pa_end = pa_start + PAGE_SIZE;
9899 				} else if (pa_end == (*pte & PG_FRAME))
9900 					pa_end += PAGE_SIZE;
9901 				else {
9902 					/* Run ended, update direct map. */
9903 					error = pmap_change_props_locked(
9904 					    PHYS_TO_DMAP(pa_start),
9905 					    pa_end - pa_start, prot, mode,
9906 					    flags);
9907 					if (error != 0)
9908 						break;
9909 					/* Start physical address run. */
9910 					pa_start = *pte & PG_FRAME;
9911 					pa_end = pa_start + PAGE_SIZE;
9912 				}
9913 			}
9914 			tmpva += PAGE_SIZE;
9915 		}
9916 	}
9917 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
9918 		pa_end1 = MIN(pa_end, dmaplimit);
9919 		if (pa_start != pa_end1)
9920 			error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
9921 			    pa_end1 - pa_start, prot, mode, flags);
9922 	}
9923 
9924 	/*
9925 	 * Flush CPU caches if required to make sure any data isn't cached that
9926 	 * shouldn't be, etc.
9927 	 */
9928 	if (changed) {
9929 		pmap_invalidate_range(kernel_pmap, base, tmpva);
9930 		if ((flags & MAPDEV_FLUSHCACHE) != 0)
9931 			pmap_invalidate_cache_range(base, tmpva);
9932 	}
9933 	return (error);
9934 }
9935 
9936 /*
9937  * Demotes any mapping within the direct map region that covers more than the
9938  * specified range of physical addresses.  This range's size must be a power
9939  * of two and its starting address must be a multiple of its size.  Since the
9940  * demotion does not change any attributes of the mapping, a TLB invalidation
9941  * is not mandatory.  The caller may, however, request a TLB invalidation.
9942  */
9943 void
pmap_demote_DMAP(vm_paddr_t base,vm_size_t len,bool invalidate)9944 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, bool invalidate)
9945 {
9946 	pdp_entry_t *pdpe;
9947 	pd_entry_t *pde;
9948 	vm_offset_t va;
9949 	bool changed;
9950 
9951 	if (len == 0)
9952 		return;
9953 	KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
9954 	KASSERT((base & (len - 1)) == 0,
9955 	    ("pmap_demote_DMAP: base is not a multiple of len"));
9956 	if (len < NBPDP && base < dmaplimit) {
9957 		va = PHYS_TO_DMAP(base);
9958 		changed = false;
9959 		PMAP_LOCK(kernel_pmap);
9960 		pdpe = pmap_pdpe(kernel_pmap, va);
9961 		if ((*pdpe & X86_PG_V) == 0)
9962 			panic("pmap_demote_DMAP: invalid PDPE");
9963 		if ((*pdpe & PG_PS) != 0) {
9964 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
9965 				panic("pmap_demote_DMAP: PDPE failed");
9966 			changed = true;
9967 		}
9968 		if (len < NBPDR) {
9969 			pde = pmap_pdpe_to_pde(pdpe, va);
9970 			if ((*pde & X86_PG_V) == 0)
9971 				panic("pmap_demote_DMAP: invalid PDE");
9972 			if ((*pde & PG_PS) != 0) {
9973 				if (!pmap_demote_pde(kernel_pmap, pde, va))
9974 					panic("pmap_demote_DMAP: PDE failed");
9975 				changed = true;
9976 			}
9977 		}
9978 		if (changed && invalidate)
9979 			pmap_invalidate_page(kernel_pmap, va);
9980 		PMAP_UNLOCK(kernel_pmap);
9981 	}
9982 }
9983 
9984 /*
9985  * Perform the pmap work for mincore(2).  If the page is not both referenced and
9986  * modified by this pmap, returns its physical address so that the caller can
9987  * find other mappings.
9988  */
9989 int
pmap_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)9990 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
9991 {
9992 	pdp_entry_t *pdpe;
9993 	pd_entry_t *pdep;
9994 	pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
9995 	vm_paddr_t pa;
9996 	int val;
9997 
9998 	PG_A = pmap_accessed_bit(pmap);
9999 	PG_M = pmap_modified_bit(pmap);
10000 	PG_V = pmap_valid_bit(pmap);
10001 	PG_RW = pmap_rw_bit(pmap);
10002 
10003 	PMAP_LOCK(pmap);
10004 	pte = 0;
10005 	pa = 0;
10006 	val = 0;
10007 	pdpe = pmap_pdpe(pmap, addr);
10008 	if (pdpe == NULL)
10009 		goto out;
10010 	if ((*pdpe & PG_V) != 0) {
10011 		if ((*pdpe & PG_PS) != 0) {
10012 			pte = *pdpe;
10013 			pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
10014 			    PG_FRAME;
10015 			val = MINCORE_PSIND(2);
10016 		} else {
10017 			pdep = pmap_pde(pmap, addr);
10018 			if (pdep != NULL && (*pdep & PG_V) != 0) {
10019 				if ((*pdep & PG_PS) != 0) {
10020 					pte = *pdep;
10021 			/* Compute the physical address of the 4KB page. */
10022 					pa = ((pte & PG_PS_FRAME) | (addr &
10023 					    PDRMASK)) & PG_FRAME;
10024 					val = MINCORE_PSIND(1);
10025 				} else {
10026 					pte = *pmap_pde_to_pte(pdep, addr);
10027 					pa = pte & PG_FRAME;
10028 					val = 0;
10029 				}
10030 			}
10031 		}
10032 	}
10033 	if ((pte & PG_V) != 0) {
10034 		val |= MINCORE_INCORE;
10035 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
10036 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
10037 		if ((pte & PG_A) != 0)
10038 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
10039 	}
10040 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
10041 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
10042 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
10043 		*pap = pa;
10044 	}
10045 out:
10046 	PMAP_UNLOCK(pmap);
10047 	return (val);
10048 }
10049 
10050 static uint64_t
pmap_pcid_alloc(pmap_t pmap,struct pmap_pcid * pcidp)10051 pmap_pcid_alloc(pmap_t pmap, struct pmap_pcid *pcidp)
10052 {
10053 	uint32_t gen, new_gen, pcid_next;
10054 
10055 	CRITICAL_ASSERT(curthread);
10056 	gen = PCPU_GET(pcid_gen);
10057 	if (pcidp->pm_pcid == PMAP_PCID_KERN)
10058 		return (pti ? 0 : CR3_PCID_SAVE);
10059 	if (pcidp->pm_gen == gen)
10060 		return (CR3_PCID_SAVE);
10061 	pcid_next = PCPU_GET(pcid_next);
10062 	KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
10063 	    (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
10064 	    ("cpu %d pcid_next %#x", PCPU_GET(cpuid), pcid_next));
10065 	if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
10066 	    (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
10067 		new_gen = gen + 1;
10068 		if (new_gen == 0)
10069 			new_gen = 1;
10070 		PCPU_SET(pcid_gen, new_gen);
10071 		pcid_next = PMAP_PCID_KERN + 1;
10072 	} else {
10073 		new_gen = gen;
10074 	}
10075 	pcidp->pm_pcid = pcid_next;
10076 	pcidp->pm_gen = new_gen;
10077 	PCPU_SET(pcid_next, pcid_next + 1);
10078 	return (0);
10079 }
10080 
10081 static uint64_t
pmap_pcid_alloc_checked(pmap_t pmap,struct pmap_pcid * pcidp)10082 pmap_pcid_alloc_checked(pmap_t pmap, struct pmap_pcid *pcidp)
10083 {
10084 	uint64_t cached;
10085 
10086 	cached = pmap_pcid_alloc(pmap, pcidp);
10087 	KASSERT(pcidp->pm_pcid < PMAP_PCID_OVERMAX,
10088 	    ("pmap %p cpu %d pcid %#x", pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10089 	KASSERT(pcidp->pm_pcid != PMAP_PCID_KERN || pmap == kernel_pmap,
10090 	    ("non-kernel pmap pmap %p cpu %d pcid %#x",
10091 	    pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10092 	return (cached);
10093 }
10094 
10095 static void
pmap_activate_sw_pti_post(struct thread * td,pmap_t pmap)10096 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
10097 {
10098 
10099 	PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
10100 	    PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
10101 }
10102 
10103 static void
pmap_activate_sw_pcid_pti(struct thread * td,pmap_t pmap,u_int cpuid)10104 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
10105 {
10106 	pmap_t old_pmap;
10107 	struct pmap_pcid *pcidp, *old_pcidp;
10108 	uint64_t cached, cr3, kcr3, ucr3;
10109 
10110 	KASSERT((read_rflags() & PSL_I) == 0,
10111 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10112 
10113 	/* See the comment in pmap_invalidate_page_pcid(). */
10114 	if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
10115 		PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
10116 		old_pmap = PCPU_GET(curpmap);
10117 		MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
10118 		old_pcidp = zpcpu_get_cpu(old_pmap->pm_pcidp, cpuid);
10119 		old_pcidp->pm_gen = 0;
10120 	}
10121 
10122 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10123 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
10124 	cr3 = rcr3();
10125 	if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10126 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid);
10127 	PCPU_SET(curpmap, pmap);
10128 	kcr3 = pmap->pm_cr3 | pcidp->pm_pcid;
10129 	ucr3 = pmap->pm_ucr3 | pcidp->pm_pcid | PMAP_PCID_USER_PT;
10130 
10131 	if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
10132 		PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
10133 
10134 	PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
10135 	PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
10136 	if (cached)
10137 		counter_u64_add(pcid_save_cnt, 1);
10138 
10139 	pmap_activate_sw_pti_post(td, pmap);
10140 }
10141 
10142 static void
pmap_activate_sw_pcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid)10143 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
10144     u_int cpuid)
10145 {
10146 	struct pmap_pcid *pcidp;
10147 	uint64_t cached, cr3;
10148 
10149 	KASSERT((read_rflags() & PSL_I) == 0,
10150 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10151 
10152 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10153 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
10154 	cr3 = rcr3();
10155 	if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10156 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid | cached);
10157 	PCPU_SET(curpmap, pmap);
10158 	if (cached)
10159 		counter_u64_add(pcid_save_cnt, 1);
10160 }
10161 
10162 static void
pmap_activate_sw_nopcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid __unused)10163 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
10164     u_int cpuid __unused)
10165 {
10166 
10167 	load_cr3(pmap->pm_cr3);
10168 	PCPU_SET(curpmap, pmap);
10169 }
10170 
10171 static void
pmap_activate_sw_nopcid_pti(struct thread * td,pmap_t pmap,u_int cpuid __unused)10172 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
10173     u_int cpuid __unused)
10174 {
10175 
10176 	pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
10177 	PCPU_SET(kcr3, pmap->pm_cr3);
10178 	PCPU_SET(ucr3, pmap->pm_ucr3);
10179 	pmap_activate_sw_pti_post(td, pmap);
10180 }
10181 
10182 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
10183     u_int))
10184 {
10185 
10186 	if (pmap_pcid_enabled && pti)
10187 		return (pmap_activate_sw_pcid_pti);
10188 	else if (pmap_pcid_enabled && !pti)
10189 		return (pmap_activate_sw_pcid_nopti);
10190 	else if (!pmap_pcid_enabled && pti)
10191 		return (pmap_activate_sw_nopcid_pti);
10192 	else /* if (!pmap_pcid_enabled && !pti) */
10193 		return (pmap_activate_sw_nopcid_nopti);
10194 }
10195 
10196 void
pmap_activate_sw(struct thread * td)10197 pmap_activate_sw(struct thread *td)
10198 {
10199 	pmap_t oldpmap, pmap;
10200 	u_int cpuid;
10201 
10202 	oldpmap = PCPU_GET(curpmap);
10203 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
10204 	if (oldpmap == pmap) {
10205 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
10206 			mfence();
10207 		return;
10208 	}
10209 	cpuid = PCPU_GET(cpuid);
10210 #ifdef SMP
10211 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10212 #else
10213 	CPU_SET(cpuid, &pmap->pm_active);
10214 #endif
10215 	pmap_activate_sw_mode(td, pmap, cpuid);
10216 #ifdef SMP
10217 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
10218 #else
10219 	CPU_CLR(cpuid, &oldpmap->pm_active);
10220 #endif
10221 }
10222 
10223 void
pmap_activate(struct thread * td)10224 pmap_activate(struct thread *td)
10225 {
10226 	/*
10227 	 * invltlb_{invpcid,}_pcid_handler() is used to handle an
10228 	 * invalidate_all IPI, which checks for curpmap ==
10229 	 * smp_tlb_pmap.  The below sequence of operations has a
10230 	 * window where %CR3 is loaded with the new pmap's PML4
10231 	 * address, but the curpmap value has not yet been updated.
10232 	 * This causes the invltlb IPI handler, which is called
10233 	 * between the updates, to execute as a NOP, which leaves
10234 	 * stale TLB entries.
10235 	 *
10236 	 * Note that the most common use of pmap_activate_sw(), from
10237 	 * a context switch, is immune to this race, because
10238 	 * interrupts are disabled (while the thread lock is owned),
10239 	 * so the IPI is delayed until after curpmap is updated.  Protect
10240 	 * other callers in a similar way, by disabling interrupts
10241 	 * around the %cr3 register reload and curpmap assignment.
10242 	 */
10243 	spinlock_enter();
10244 	pmap_activate_sw(td);
10245 	spinlock_exit();
10246 }
10247 
10248 void
pmap_activate_boot(pmap_t pmap)10249 pmap_activate_boot(pmap_t pmap)
10250 {
10251 	uint64_t kcr3;
10252 	u_int cpuid;
10253 
10254 	/*
10255 	 * kernel_pmap must be never deactivated, and we ensure that
10256 	 * by never activating it at all.
10257 	 */
10258 	MPASS(pmap != kernel_pmap);
10259 
10260 	cpuid = PCPU_GET(cpuid);
10261 #ifdef SMP
10262 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10263 #else
10264 	CPU_SET(cpuid, &pmap->pm_active);
10265 #endif
10266 	PCPU_SET(curpmap, pmap);
10267 	if (pti) {
10268 		kcr3 = pmap->pm_cr3;
10269 		if (pmap_pcid_enabled)
10270 			kcr3 |= pmap_get_pcid(pmap) | CR3_PCID_SAVE;
10271 	} else {
10272 		kcr3 = PMAP_NO_CR3;
10273 	}
10274 	PCPU_SET(kcr3, kcr3);
10275 	PCPU_SET(ucr3, PMAP_NO_CR3);
10276 }
10277 
10278 void
pmap_active_cpus(pmap_t pmap,cpuset_t * res)10279 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
10280 {
10281 	*res = pmap->pm_active;
10282 }
10283 
10284 void
pmap_sync_icache(pmap_t pm,vm_offset_t va,vm_size_t sz)10285 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
10286 {
10287 }
10288 
10289 /*
10290  *	Increase the starting virtual address of the given mapping if a
10291  *	different alignment might result in more superpage mappings.
10292  */
10293 void
pmap_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)10294 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
10295     vm_offset_t *addr, vm_size_t size)
10296 {
10297 	vm_offset_t superpage_offset;
10298 
10299 	if (size < NBPDR)
10300 		return;
10301 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
10302 		offset += ptoa(object->pg_color);
10303 	superpage_offset = offset & PDRMASK;
10304 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
10305 	    (*addr & PDRMASK) == superpage_offset)
10306 		return;
10307 	if ((*addr & PDRMASK) < superpage_offset)
10308 		*addr = (*addr & ~PDRMASK) + superpage_offset;
10309 	else
10310 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
10311 }
10312 
10313 #ifdef INVARIANTS
10314 static unsigned long num_dirty_emulations;
10315 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
10316 	     &num_dirty_emulations, 0, NULL);
10317 
10318 static unsigned long num_accessed_emulations;
10319 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
10320 	     &num_accessed_emulations, 0, NULL);
10321 
10322 static unsigned long num_superpage_accessed_emulations;
10323 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
10324 	     &num_superpage_accessed_emulations, 0, NULL);
10325 
10326 static unsigned long ad_emulation_superpage_promotions;
10327 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
10328 	     &ad_emulation_superpage_promotions, 0, NULL);
10329 #endif	/* INVARIANTS */
10330 
10331 int
pmap_emulate_accessed_dirty(pmap_t pmap,vm_offset_t va,int ftype)10332 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
10333 {
10334 	int rv;
10335 	struct rwlock *lock;
10336 #if VM_NRESERVLEVEL > 0
10337 	vm_page_t m, mpte;
10338 #endif
10339 	pd_entry_t *pde;
10340 	pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
10341 
10342 	KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
10343 	    ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
10344 
10345 	if (!pmap_emulate_ad_bits(pmap))
10346 		return (-1);
10347 
10348 	PG_A = pmap_accessed_bit(pmap);
10349 	PG_M = pmap_modified_bit(pmap);
10350 	PG_V = pmap_valid_bit(pmap);
10351 	PG_RW = pmap_rw_bit(pmap);
10352 
10353 	rv = -1;
10354 	lock = NULL;
10355 	PMAP_LOCK(pmap);
10356 
10357 	pde = pmap_pde(pmap, va);
10358 	if (pde == NULL || (*pde & PG_V) == 0)
10359 		goto done;
10360 
10361 	if ((*pde & PG_PS) != 0) {
10362 		if (ftype == VM_PROT_READ) {
10363 #ifdef INVARIANTS
10364 			atomic_add_long(&num_superpage_accessed_emulations, 1);
10365 #endif
10366 			*pde |= PG_A;
10367 			rv = 0;
10368 		}
10369 		goto done;
10370 	}
10371 
10372 	pte = pmap_pde_to_pte(pde, va);
10373 	if ((*pte & PG_V) == 0)
10374 		goto done;
10375 
10376 	if (ftype == VM_PROT_WRITE) {
10377 		if ((*pte & PG_RW) == 0)
10378 			goto done;
10379 		/*
10380 		 * Set the modified and accessed bits simultaneously.
10381 		 *
10382 		 * Intel EPT PTEs that do software emulation of A/D bits map
10383 		 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
10384 		 * An EPT misconfiguration is triggered if the PTE is writable
10385 		 * but not readable (WR=10). This is avoided by setting PG_A
10386 		 * and PG_M simultaneously.
10387 		 */
10388 		*pte |= PG_M | PG_A;
10389 	} else {
10390 		*pte |= PG_A;
10391 	}
10392 
10393 #if VM_NRESERVLEVEL > 0
10394 	/* try to promote the mapping */
10395 	if (va < VM_MAXUSER_ADDRESS)
10396 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
10397 	else
10398 		mpte = NULL;
10399 
10400 	m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
10401 
10402 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
10403 	    (m->flags & PG_FICTITIOUS) == 0 &&
10404 	    vm_reserv_level_iffullpop(m) == 0 &&
10405 	    pmap_promote_pde(pmap, pde, va, mpte, &lock)) {
10406 #ifdef INVARIANTS
10407 		atomic_add_long(&ad_emulation_superpage_promotions, 1);
10408 #endif
10409 	}
10410 #endif
10411 
10412 #ifdef INVARIANTS
10413 	if (ftype == VM_PROT_WRITE)
10414 		atomic_add_long(&num_dirty_emulations, 1);
10415 	else
10416 		atomic_add_long(&num_accessed_emulations, 1);
10417 #endif
10418 	rv = 0;		/* success */
10419 done:
10420 	if (lock != NULL)
10421 		rw_wunlock(lock);
10422 	PMAP_UNLOCK(pmap);
10423 	return (rv);
10424 }
10425 
10426 void
pmap_get_mapping(pmap_t pmap,vm_offset_t va,uint64_t * ptr,int * num)10427 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
10428 {
10429 	pml4_entry_t *pml4;
10430 	pdp_entry_t *pdp;
10431 	pd_entry_t *pde;
10432 	pt_entry_t *pte, PG_V;
10433 	int idx;
10434 
10435 	idx = 0;
10436 	PG_V = pmap_valid_bit(pmap);
10437 	PMAP_LOCK(pmap);
10438 
10439 	pml4 = pmap_pml4e(pmap, va);
10440 	if (pml4 == NULL)
10441 		goto done;
10442 	ptr[idx++] = *pml4;
10443 	if ((*pml4 & PG_V) == 0)
10444 		goto done;
10445 
10446 	pdp = pmap_pml4e_to_pdpe(pml4, va);
10447 	ptr[idx++] = *pdp;
10448 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
10449 		goto done;
10450 
10451 	pde = pmap_pdpe_to_pde(pdp, va);
10452 	ptr[idx++] = *pde;
10453 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
10454 		goto done;
10455 
10456 	pte = pmap_pde_to_pte(pde, va);
10457 	ptr[idx++] = *pte;
10458 
10459 done:
10460 	PMAP_UNLOCK(pmap);
10461 	*num = idx;
10462 }
10463 
10464 /**
10465  * Get the kernel virtual address of a set of physical pages. If there are
10466  * physical addresses not covered by the DMAP perform a transient mapping
10467  * that will be removed when calling pmap_unmap_io_transient.
10468  *
10469  * \param page        The pages the caller wishes to obtain the virtual
10470  *                    address on the kernel memory map.
10471  * \param vaddr       On return contains the kernel virtual memory address
10472  *                    of the pages passed in the page parameter.
10473  * \param count       Number of pages passed in.
10474  * \param can_fault   true if the thread using the mapped pages can take
10475  *                    page faults, false otherwise.
10476  *
10477  * \returns true if the caller must call pmap_unmap_io_transient when
10478  *          finished or false otherwise.
10479  *
10480  */
10481 bool
pmap_map_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10482 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10483     bool can_fault)
10484 {
10485 	vm_paddr_t paddr;
10486 	bool needs_mapping;
10487 	pt_entry_t *pte;
10488 	int cache_bits, error __unused, i;
10489 
10490 	/*
10491 	 * Allocate any KVA space that we need, this is done in a separate
10492 	 * loop to prevent calling vmem_alloc while pinned.
10493 	 */
10494 	needs_mapping = false;
10495 	for (i = 0; i < count; i++) {
10496 		paddr = VM_PAGE_TO_PHYS(page[i]);
10497 		if (__predict_false(paddr >= dmaplimit)) {
10498 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
10499 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
10500 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
10501 			needs_mapping = true;
10502 		} else {
10503 			vaddr[i] = PHYS_TO_DMAP(paddr);
10504 		}
10505 	}
10506 
10507 	/* Exit early if everything is covered by the DMAP */
10508 	if (!needs_mapping)
10509 		return (false);
10510 
10511 	/*
10512 	 * NB:  The sequence of updating a page table followed by accesses
10513 	 * to the corresponding pages used in the !DMAP case is subject to
10514 	 * the situation described in the "AMD64 Architecture Programmer's
10515 	 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
10516 	 * Coherency Considerations".  Therefore, issuing the INVLPG right
10517 	 * after modifying the PTE bits is crucial.
10518 	 */
10519 	if (!can_fault)
10520 		sched_pin();
10521 	for (i = 0; i < count; i++) {
10522 		paddr = VM_PAGE_TO_PHYS(page[i]);
10523 		if (paddr >= dmaplimit) {
10524 			if (can_fault) {
10525 				/*
10526 				 * Slow path, since we can get page faults
10527 				 * while mappings are active don't pin the
10528 				 * thread to the CPU and instead add a global
10529 				 * mapping visible to all CPUs.
10530 				 */
10531 				pmap_qenter(vaddr[i], &page[i], 1);
10532 			} else {
10533 				pte = vtopte(vaddr[i]);
10534 				cache_bits = pmap_cache_bits(kernel_pmap,
10535 				    page[i]->md.pat_mode, false);
10536 				pte_store(pte, paddr | X86_PG_RW | X86_PG_V |
10537 				    cache_bits);
10538 				pmap_invlpg(kernel_pmap, vaddr[i]);
10539 			}
10540 		}
10541 	}
10542 
10543 	return (needs_mapping);
10544 }
10545 
10546 void
pmap_unmap_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10547 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10548     bool can_fault)
10549 {
10550 	vm_paddr_t paddr;
10551 	int i;
10552 
10553 	if (!can_fault)
10554 		sched_unpin();
10555 	for (i = 0; i < count; i++) {
10556 		paddr = VM_PAGE_TO_PHYS(page[i]);
10557 		if (paddr >= dmaplimit) {
10558 			if (can_fault)
10559 				pmap_qremove(vaddr[i], 1);
10560 			vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
10561 		}
10562 	}
10563 }
10564 
10565 vm_offset_t
pmap_quick_enter_page(vm_page_t m)10566 pmap_quick_enter_page(vm_page_t m)
10567 {
10568 	vm_paddr_t paddr;
10569 
10570 	paddr = VM_PAGE_TO_PHYS(m);
10571 	if (paddr < dmaplimit)
10572 		return (PHYS_TO_DMAP(paddr));
10573 	mtx_lock_spin(&qframe_mtx);
10574 	KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
10575 
10576 	/*
10577 	 * Since qframe is exclusively mapped by us, and we do not set
10578 	 * PG_G, we can use INVLPG here.
10579 	 */
10580 	invlpg(qframe);
10581 
10582 	pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
10583 	    X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, false));
10584 	return (qframe);
10585 }
10586 
10587 void
pmap_quick_remove_page(vm_offset_t addr)10588 pmap_quick_remove_page(vm_offset_t addr)
10589 {
10590 
10591 	if (addr != qframe)
10592 		return;
10593 	pte_store(vtopte(qframe), 0);
10594 	mtx_unlock_spin(&qframe_mtx);
10595 }
10596 
10597 /*
10598  * Pdp pages from the large map are managed differently from either
10599  * kernel or user page table pages.  They are permanently allocated at
10600  * initialization time, and their reference count is permanently set to
10601  * zero.  The pml4 entries pointing to those pages are copied into
10602  * each allocated pmap.
10603  *
10604  * In contrast, pd and pt pages are managed like user page table
10605  * pages.  They are dynamically allocated, and their reference count
10606  * represents the number of valid entries within the page.
10607  */
10608 static vm_page_t
pmap_large_map_getptp_unlocked(void)10609 pmap_large_map_getptp_unlocked(void)
10610 {
10611 	return (pmap_alloc_pt_page(kernel_pmap, 0, VM_ALLOC_ZERO));
10612 }
10613 
10614 static vm_page_t
pmap_large_map_getptp(void)10615 pmap_large_map_getptp(void)
10616 {
10617 	vm_page_t m;
10618 
10619 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
10620 	m = pmap_large_map_getptp_unlocked();
10621 	if (m == NULL) {
10622 		PMAP_UNLOCK(kernel_pmap);
10623 		vm_wait(NULL);
10624 		PMAP_LOCK(kernel_pmap);
10625 		/* Callers retry. */
10626 	}
10627 	return (m);
10628 }
10629 
10630 static pdp_entry_t *
pmap_large_map_pdpe(vm_offset_t va)10631 pmap_large_map_pdpe(vm_offset_t va)
10632 {
10633 	vm_pindex_t pml4_idx;
10634 	vm_paddr_t mphys;
10635 
10636 	pml4_idx = pmap_pml4e_index(va);
10637 	KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
10638 	    ("pmap_large_map_pdpe: va %#jx out of range idx %#jx LMSPML4I "
10639 	    "%#jx lm_ents %d",
10640 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10641 	KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
10642 	    ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
10643 	    "LMSPML4I %#jx lm_ents %d",
10644 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10645 	mphys = kernel_pml4[pml4_idx] & PG_FRAME;
10646 	return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
10647 }
10648 
10649 static pd_entry_t *
pmap_large_map_pde(vm_offset_t va)10650 pmap_large_map_pde(vm_offset_t va)
10651 {
10652 	pdp_entry_t *pdpe;
10653 	vm_page_t m;
10654 	vm_paddr_t mphys;
10655 
10656 retry:
10657 	pdpe = pmap_large_map_pdpe(va);
10658 	if (*pdpe == 0) {
10659 		m = pmap_large_map_getptp();
10660 		if (m == NULL)
10661 			goto retry;
10662 		mphys = VM_PAGE_TO_PHYS(m);
10663 		*pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10664 	} else {
10665 		MPASS((*pdpe & X86_PG_PS) == 0);
10666 		mphys = *pdpe & PG_FRAME;
10667 	}
10668 	return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
10669 }
10670 
10671 static pt_entry_t *
pmap_large_map_pte(vm_offset_t va)10672 pmap_large_map_pte(vm_offset_t va)
10673 {
10674 	pd_entry_t *pde;
10675 	vm_page_t m;
10676 	vm_paddr_t mphys;
10677 
10678 retry:
10679 	pde = pmap_large_map_pde(va);
10680 	if (*pde == 0) {
10681 		m = pmap_large_map_getptp();
10682 		if (m == NULL)
10683 			goto retry;
10684 		mphys = VM_PAGE_TO_PHYS(m);
10685 		*pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10686 		PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
10687 	} else {
10688 		MPASS((*pde & X86_PG_PS) == 0);
10689 		mphys = *pde & PG_FRAME;
10690 	}
10691 	return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
10692 }
10693 
10694 static vm_paddr_t
pmap_large_map_kextract(vm_offset_t va)10695 pmap_large_map_kextract(vm_offset_t va)
10696 {
10697 	pdp_entry_t *pdpe, pdp;
10698 	pd_entry_t *pde, pd;
10699 	pt_entry_t *pte, pt;
10700 
10701 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
10702 	    ("not largemap range %#lx", (u_long)va));
10703 	pdpe = pmap_large_map_pdpe(va);
10704 	pdp = *pdpe;
10705 	KASSERT((pdp & X86_PG_V) != 0,
10706 	    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10707 	    (u_long)pdpe, pdp));
10708 	if ((pdp & X86_PG_PS) != 0) {
10709 		KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10710 		    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10711 		    (u_long)pdpe, pdp));
10712 		return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
10713 	}
10714 	pde = pmap_pdpe_to_pde(pdpe, va);
10715 	pd = *pde;
10716 	KASSERT((pd & X86_PG_V) != 0,
10717 	    ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
10718 	if ((pd & X86_PG_PS) != 0)
10719 		return ((pd & PG_PS_FRAME) | (va & PDRMASK));
10720 	pte = pmap_pde_to_pte(pde, va);
10721 	pt = *pte;
10722 	KASSERT((pt & X86_PG_V) != 0,
10723 	    ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
10724 	return ((pt & PG_FRAME) | (va & PAGE_MASK));
10725 }
10726 
10727 static int
pmap_large_map_getva(vm_size_t len,vm_offset_t align,vm_offset_t phase,vmem_addr_t * vmem_res)10728 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
10729     vmem_addr_t *vmem_res)
10730 {
10731 
10732 	/*
10733 	 * Large mappings are all but static.  Consequently, there
10734 	 * is no point in waiting for an earlier allocation to be
10735 	 * freed.
10736 	 */
10737 	return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
10738 	    VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
10739 }
10740 
10741 int
pmap_large_map(vm_paddr_t spa,vm_size_t len,void ** addr,vm_memattr_t mattr)10742 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
10743     vm_memattr_t mattr)
10744 {
10745 	pdp_entry_t *pdpe;
10746 	pd_entry_t *pde;
10747 	pt_entry_t *pte;
10748 	vm_offset_t va, inc;
10749 	vmem_addr_t vmem_res;
10750 	vm_paddr_t pa;
10751 	int error;
10752 
10753 	if (len == 0 || spa + len < spa)
10754 		return (EINVAL);
10755 
10756 	/* See if DMAP can serve. */
10757 	if (spa + len <= dmaplimit) {
10758 		va = PHYS_TO_DMAP(spa);
10759 		*addr = (void *)va;
10760 		return (pmap_change_attr(va, len, mattr));
10761 	}
10762 
10763 	/*
10764 	 * No, allocate KVA.  Fit the address with best possible
10765 	 * alignment for superpages.  Fall back to worse align if
10766 	 * failed.
10767 	 */
10768 	error = ENOMEM;
10769 	if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
10770 	    NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
10771 		error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
10772 		    &vmem_res);
10773 	if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
10774 	    NBPDR) + NBPDR)
10775 		error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
10776 		    &vmem_res);
10777 	if (error != 0)
10778 		error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
10779 	if (error != 0)
10780 		return (error);
10781 
10782 	/*
10783 	 * Fill pagetable.  PG_M is not pre-set, we scan modified bits
10784 	 * in the pagetable to minimize flushing.  No need to
10785 	 * invalidate TLB, since we only update invalid entries.
10786 	 */
10787 	PMAP_LOCK(kernel_pmap);
10788 	for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
10789 	    len -= inc) {
10790 		if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
10791 		    (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
10792 			pdpe = pmap_large_map_pdpe(va);
10793 			MPASS(*pdpe == 0);
10794 			*pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
10795 			    X86_PG_V | X86_PG_A | pg_nx |
10796 			    pmap_cache_bits(kernel_pmap, mattr, true);
10797 			inc = NBPDP;
10798 		} else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
10799 		    (va & PDRMASK) == 0) {
10800 			pde = pmap_large_map_pde(va);
10801 			MPASS(*pde == 0);
10802 			*pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
10803 			    X86_PG_V | X86_PG_A | pg_nx |
10804 			    pmap_cache_bits(kernel_pmap, mattr, true);
10805 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
10806 			    ref_count++;
10807 			inc = NBPDR;
10808 		} else {
10809 			pte = pmap_large_map_pte(va);
10810 			MPASS(*pte == 0);
10811 			*pte = pa | pg_g | X86_PG_RW | X86_PG_V |
10812 			    X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
10813 			    mattr, false);
10814 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
10815 			    ref_count++;
10816 			inc = PAGE_SIZE;
10817 		}
10818 	}
10819 	PMAP_UNLOCK(kernel_pmap);
10820 	MPASS(len == 0);
10821 
10822 	*addr = (void *)vmem_res;
10823 	return (0);
10824 }
10825 
10826 void
pmap_large_unmap(void * svaa,vm_size_t len)10827 pmap_large_unmap(void *svaa, vm_size_t len)
10828 {
10829 	vm_offset_t sva, va;
10830 	vm_size_t inc;
10831 	pdp_entry_t *pdpe, pdp;
10832 	pd_entry_t *pde, pd;
10833 	pt_entry_t *pte;
10834 	vm_page_t m;
10835 	struct spglist spgf;
10836 
10837 	sva = (vm_offset_t)svaa;
10838 	if (len == 0 || sva + len < sva || (sva >= DMAP_MIN_ADDRESS &&
10839 	    sva + len <= DMAP_MIN_ADDRESS + dmaplimit))
10840 		return;
10841 
10842 	SLIST_INIT(&spgf);
10843 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
10844 	    PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
10845 	    ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
10846 	PMAP_LOCK(kernel_pmap);
10847 	for (va = sva; va < sva + len; va += inc) {
10848 		pdpe = pmap_large_map_pdpe(va);
10849 		pdp = *pdpe;
10850 		KASSERT((pdp & X86_PG_V) != 0,
10851 		    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10852 		    (u_long)pdpe, pdp));
10853 		if ((pdp & X86_PG_PS) != 0) {
10854 			KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10855 			    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10856 			    (u_long)pdpe, pdp));
10857 			KASSERT((va & PDPMASK) == 0,
10858 			    ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
10859 			    (u_long)pdpe, pdp));
10860 			KASSERT(va + NBPDP <= sva + len,
10861 			    ("unmap covers partial 1GB page, sva %#lx va %#lx "
10862 			    "pdpe %#lx pdp %#lx len %#lx", sva, va,
10863 			    (u_long)pdpe, pdp, len));
10864 			*pdpe = 0;
10865 			inc = NBPDP;
10866 			continue;
10867 		}
10868 		pde = pmap_pdpe_to_pde(pdpe, va);
10869 		pd = *pde;
10870 		KASSERT((pd & X86_PG_V) != 0,
10871 		    ("invalid pd va %#lx pde %#lx pd %#lx", va,
10872 		    (u_long)pde, pd));
10873 		if ((pd & X86_PG_PS) != 0) {
10874 			KASSERT((va & PDRMASK) == 0,
10875 			    ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
10876 			    (u_long)pde, pd));
10877 			KASSERT(va + NBPDR <= sva + len,
10878 			    ("unmap covers partial 2MB page, sva %#lx va %#lx "
10879 			    "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
10880 			    pd, len));
10881 			pde_store(pde, 0);
10882 			inc = NBPDR;
10883 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10884 			m->ref_count--;
10885 			if (m->ref_count == 0) {
10886 				*pdpe = 0;
10887 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10888 			}
10889 			continue;
10890 		}
10891 		pte = pmap_pde_to_pte(pde, va);
10892 		KASSERT((*pte & X86_PG_V) != 0,
10893 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
10894 		    (u_long)pte, *pte));
10895 		pte_clear(pte);
10896 		inc = PAGE_SIZE;
10897 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
10898 		m->ref_count--;
10899 		if (m->ref_count == 0) {
10900 			*pde = 0;
10901 			SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10902 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10903 			m->ref_count--;
10904 			if (m->ref_count == 0) {
10905 				*pdpe = 0;
10906 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10907 			}
10908 		}
10909 	}
10910 	pmap_invalidate_range(kernel_pmap, sva, sva + len);
10911 	PMAP_UNLOCK(kernel_pmap);
10912 	vm_page_free_pages_toq(&spgf, false);
10913 	vmem_free(large_vmem, sva, len);
10914 }
10915 
10916 static void
pmap_large_map_wb_fence_mfence(void)10917 pmap_large_map_wb_fence_mfence(void)
10918 {
10919 
10920 	mfence();
10921 }
10922 
10923 static void
pmap_large_map_wb_fence_atomic(void)10924 pmap_large_map_wb_fence_atomic(void)
10925 {
10926 
10927 	atomic_thread_fence_seq_cst();
10928 }
10929 
10930 static void
pmap_large_map_wb_fence_nop(void)10931 pmap_large_map_wb_fence_nop(void)
10932 {
10933 }
10934 
10935 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
10936 {
10937 
10938 	if (cpu_vendor_id != CPU_VENDOR_INTEL)
10939 		return (pmap_large_map_wb_fence_mfence);
10940 	else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
10941 	    CPUID_STDEXT_CLFLUSHOPT)) == 0)
10942 		return (pmap_large_map_wb_fence_atomic);
10943 	else
10944 		/* clflush is strongly enough ordered */
10945 		return (pmap_large_map_wb_fence_nop);
10946 }
10947 
10948 static void
pmap_large_map_flush_range_clwb(vm_offset_t va,vm_size_t len)10949 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
10950 {
10951 
10952 	for (; len > 0; len -= cpu_clflush_line_size,
10953 	    va += cpu_clflush_line_size)
10954 		clwb(va);
10955 }
10956 
10957 static void
pmap_large_map_flush_range_clflushopt(vm_offset_t va,vm_size_t len)10958 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
10959 {
10960 
10961 	for (; len > 0; len -= cpu_clflush_line_size,
10962 	    va += cpu_clflush_line_size)
10963 		clflushopt(va);
10964 }
10965 
10966 static void
pmap_large_map_flush_range_clflush(vm_offset_t va,vm_size_t len)10967 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
10968 {
10969 
10970 	for (; len > 0; len -= cpu_clflush_line_size,
10971 	    va += cpu_clflush_line_size)
10972 		clflush(va);
10973 }
10974 
10975 static void
pmap_large_map_flush_range_nop(vm_offset_t sva __unused,vm_size_t len __unused)10976 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
10977 {
10978 }
10979 
10980 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
10981 {
10982 
10983 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
10984 		return (pmap_large_map_flush_range_clwb);
10985 	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
10986 		return (pmap_large_map_flush_range_clflushopt);
10987 	else if ((cpu_feature & CPUID_CLFSH) != 0)
10988 		return (pmap_large_map_flush_range_clflush);
10989 	else
10990 		return (pmap_large_map_flush_range_nop);
10991 }
10992 
10993 static void
pmap_large_map_wb_large(vm_offset_t sva,vm_offset_t eva)10994 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
10995 {
10996 	volatile u_long *pe;
10997 	u_long p;
10998 	vm_offset_t va;
10999 	vm_size_t inc;
11000 	bool seen_other;
11001 
11002 	for (va = sva; va < eva; va += inc) {
11003 		inc = 0;
11004 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
11005 			pe = (volatile u_long *)pmap_large_map_pdpe(va);
11006 			p = *pe;
11007 			if ((p & X86_PG_PS) != 0)
11008 				inc = NBPDP;
11009 		}
11010 		if (inc == 0) {
11011 			pe = (volatile u_long *)pmap_large_map_pde(va);
11012 			p = *pe;
11013 			if ((p & X86_PG_PS) != 0)
11014 				inc = NBPDR;
11015 		}
11016 		if (inc == 0) {
11017 			pe = (volatile u_long *)pmap_large_map_pte(va);
11018 			p = *pe;
11019 			inc = PAGE_SIZE;
11020 		}
11021 		seen_other = false;
11022 		for (;;) {
11023 			if ((p & X86_PG_AVAIL1) != 0) {
11024 				/*
11025 				 * Spin-wait for the end of a parallel
11026 				 * write-back.
11027 				 */
11028 				cpu_spinwait();
11029 				p = *pe;
11030 
11031 				/*
11032 				 * If we saw other write-back
11033 				 * occurring, we cannot rely on PG_M to
11034 				 * indicate state of the cache.  The
11035 				 * PG_M bit is cleared before the
11036 				 * flush to avoid ignoring new writes,
11037 				 * and writes which are relevant for
11038 				 * us might happen after.
11039 				 */
11040 				seen_other = true;
11041 				continue;
11042 			}
11043 
11044 			if ((p & X86_PG_M) != 0 || seen_other) {
11045 				if (!atomic_fcmpset_long(pe, &p,
11046 				    (p & ~X86_PG_M) | X86_PG_AVAIL1))
11047 					/*
11048 					 * If we saw PG_M without
11049 					 * PG_AVAIL1, and then on the
11050 					 * next attempt we do not
11051 					 * observe either PG_M or
11052 					 * PG_AVAIL1, the other
11053 					 * write-back started after us
11054 					 * and finished before us.  We
11055 					 * can rely on it doing our
11056 					 * work.
11057 					 */
11058 					continue;
11059 				pmap_large_map_flush_range(va, inc);
11060 				atomic_clear_long(pe, X86_PG_AVAIL1);
11061 			}
11062 			break;
11063 		}
11064 		maybe_yield();
11065 	}
11066 }
11067 
11068 /*
11069  * Write-back cache lines for the given address range.
11070  *
11071  * Must be called only on the range or sub-range returned from
11072  * pmap_large_map().  Must not be called on the coalesced ranges.
11073  *
11074  * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
11075  * instructions support.
11076  */
11077 void
pmap_large_map_wb(void * svap,vm_size_t len)11078 pmap_large_map_wb(void *svap, vm_size_t len)
11079 {
11080 	vm_offset_t eva, sva;
11081 
11082 	sva = (vm_offset_t)svap;
11083 	eva = sva + len;
11084 	pmap_large_map_wb_fence();
11085 	if (sva >= DMAP_MIN_ADDRESS && eva <= DMAP_MIN_ADDRESS + dmaplimit) {
11086 		pmap_large_map_flush_range(sva, len);
11087 	} else {
11088 		KASSERT(sva >= LARGEMAP_MIN_ADDRESS &&
11089 		    eva <= LARGEMAP_MIN_ADDRESS + lm_ents * NBPML4,
11090 		    ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
11091 		pmap_large_map_wb_large(sva, eva);
11092 	}
11093 	pmap_large_map_wb_fence();
11094 }
11095 
11096 static vm_page_t
pmap_pti_alloc_page(void)11097 pmap_pti_alloc_page(void)
11098 {
11099 	vm_page_t m;
11100 
11101 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11102 	m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_WIRED | VM_ALLOC_ZERO);
11103 	return (m);
11104 }
11105 
11106 static bool
pmap_pti_free_page(vm_page_t m)11107 pmap_pti_free_page(vm_page_t m)
11108 {
11109 	if (!vm_page_unwire_noq(m))
11110 		return (false);
11111 	vm_page_xbusy_claim(m);
11112 	vm_page_free_zero(m);
11113 	return (true);
11114 }
11115 
11116 static void
pmap_pti_init(void)11117 pmap_pti_init(void)
11118 {
11119 	vm_page_t pml4_pg;
11120 	pdp_entry_t *pdpe;
11121 	vm_offset_t va;
11122 	int i;
11123 
11124 	if (!pti)
11125 		return;
11126 	pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
11127 	VM_OBJECT_WLOCK(pti_obj);
11128 	pml4_pg = pmap_pti_alloc_page();
11129 	pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
11130 	for (va = VM_MIN_KERNEL_ADDRESS; va <= VM_MAX_KERNEL_ADDRESS &&
11131 	    va >= VM_MIN_KERNEL_ADDRESS && va > NBPML4; va += NBPML4) {
11132 		pdpe = pmap_pti_pdpe(va);
11133 		pmap_pti_wire_pte(pdpe);
11134 	}
11135 	pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
11136 	    (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
11137 	pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
11138 	    sizeof(struct gate_descriptor) * NIDT, false);
11139 	CPU_FOREACH(i) {
11140 		/* Doublefault stack IST 1 */
11141 		va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
11142 		pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
11143 		/* NMI stack IST 2 */
11144 		va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
11145 		pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
11146 		/* MC# stack IST 3 */
11147 		va = __pcpu[i].pc_common_tss.tss_ist3 +
11148 		    sizeof(struct nmi_pcpu);
11149 		pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
11150 		/* DB# stack IST 4 */
11151 		va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
11152 		pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
11153 	}
11154 	pmap_pti_add_kva_locked((vm_offset_t)KERNSTART, (vm_offset_t)etext,
11155 	    true);
11156 	pti_finalized = true;
11157 	VM_OBJECT_WUNLOCK(pti_obj);
11158 }
11159 
11160 static void
pmap_cpu_init(void * arg __unused)11161 pmap_cpu_init(void *arg __unused)
11162 {
11163 	CPU_COPY(&all_cpus, &kernel_pmap->pm_active);
11164 	pmap_pti_init();
11165 }
11166 SYSINIT(pmap_cpu, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_cpu_init, NULL);
11167 
11168 static pdp_entry_t *
pmap_pti_pdpe(vm_offset_t va)11169 pmap_pti_pdpe(vm_offset_t va)
11170 {
11171 	pml4_entry_t *pml4e;
11172 	pdp_entry_t *pdpe;
11173 	vm_page_t m;
11174 	vm_pindex_t pml4_idx;
11175 	vm_paddr_t mphys;
11176 
11177 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11178 
11179 	pml4_idx = pmap_pml4e_index(va);
11180 	pml4e = &pti_pml4[pml4_idx];
11181 	m = NULL;
11182 	if (*pml4e == 0) {
11183 		if (pti_finalized)
11184 			panic("pml4 alloc after finalization\n");
11185 		m = pmap_pti_alloc_page();
11186 		if (*pml4e != 0) {
11187 			pmap_pti_free_page(m);
11188 			mphys = *pml4e & ~PAGE_MASK;
11189 		} else {
11190 			mphys = VM_PAGE_TO_PHYS(m);
11191 			*pml4e = mphys | X86_PG_RW | X86_PG_V;
11192 		}
11193 	} else {
11194 		mphys = *pml4e & ~PAGE_MASK;
11195 	}
11196 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
11197 	return (pdpe);
11198 }
11199 
11200 static void
pmap_pti_wire_pte(void * pte)11201 pmap_pti_wire_pte(void *pte)
11202 {
11203 	vm_page_t m;
11204 
11205 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11206 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11207 	m->ref_count++;
11208 }
11209 
11210 static void
pmap_pti_unwire_pde(void * pde,bool only_ref)11211 pmap_pti_unwire_pde(void *pde, bool only_ref)
11212 {
11213 	vm_page_t m;
11214 
11215 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11216 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
11217 	MPASS(only_ref || m->ref_count > 1);
11218 	pmap_pti_free_page(m);
11219 }
11220 
11221 static void
pmap_pti_unwire_pte(void * pte,vm_offset_t va)11222 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
11223 {
11224 	vm_page_t m;
11225 	pd_entry_t *pde;
11226 
11227 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11228 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11229 	if (pmap_pti_free_page(m)) {
11230 		pde = pmap_pti_pde(va);
11231 		MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
11232 		*pde = 0;
11233 		pmap_pti_unwire_pde(pde, false);
11234 	}
11235 }
11236 
11237 static pd_entry_t *
pmap_pti_pde(vm_offset_t va)11238 pmap_pti_pde(vm_offset_t va)
11239 {
11240 	pdp_entry_t *pdpe;
11241 	pd_entry_t *pde;
11242 	vm_page_t m;
11243 	vm_pindex_t pd_idx;
11244 	vm_paddr_t mphys;
11245 
11246 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11247 
11248 	pdpe = pmap_pti_pdpe(va);
11249 	if (*pdpe == 0) {
11250 		m = pmap_pti_alloc_page();
11251 		if (*pdpe != 0) {
11252 			pmap_pti_free_page(m);
11253 			MPASS((*pdpe & X86_PG_PS) == 0);
11254 			mphys = *pdpe & ~PAGE_MASK;
11255 		} else {
11256 			mphys =  VM_PAGE_TO_PHYS(m);
11257 			*pdpe = mphys | X86_PG_RW | X86_PG_V;
11258 		}
11259 	} else {
11260 		MPASS((*pdpe & X86_PG_PS) == 0);
11261 		mphys = *pdpe & ~PAGE_MASK;
11262 	}
11263 
11264 	pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
11265 	pd_idx = pmap_pde_index(va);
11266 	pde += pd_idx;
11267 	return (pde);
11268 }
11269 
11270 static pt_entry_t *
pmap_pti_pte(vm_offset_t va,bool * unwire_pde)11271 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
11272 {
11273 	pd_entry_t *pde;
11274 	pt_entry_t *pte;
11275 	vm_page_t m;
11276 	vm_paddr_t mphys;
11277 
11278 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11279 
11280 	pde = pmap_pti_pde(va);
11281 	if (unwire_pde != NULL) {
11282 		*unwire_pde = true;
11283 		pmap_pti_wire_pte(pde);
11284 	}
11285 	if (*pde == 0) {
11286 		m = pmap_pti_alloc_page();
11287 		if (*pde != 0) {
11288 			pmap_pti_free_page(m);
11289 			MPASS((*pde & X86_PG_PS) == 0);
11290 			mphys = *pde & ~(PAGE_MASK | pg_nx);
11291 		} else {
11292 			mphys = VM_PAGE_TO_PHYS(m);
11293 			*pde = mphys | X86_PG_RW | X86_PG_V;
11294 			if (unwire_pde != NULL)
11295 				*unwire_pde = false;
11296 		}
11297 	} else {
11298 		MPASS((*pde & X86_PG_PS) == 0);
11299 		mphys = *pde & ~(PAGE_MASK | pg_nx);
11300 	}
11301 
11302 	pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
11303 	pte += pmap_pte_index(va);
11304 
11305 	return (pte);
11306 }
11307 
11308 static void
pmap_pti_add_kva_locked(vm_offset_t sva,vm_offset_t eva,bool exec)11309 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
11310 {
11311 	vm_paddr_t pa;
11312 	pd_entry_t *pde;
11313 	pt_entry_t *pte, ptev;
11314 	bool unwire_pde;
11315 
11316 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11317 
11318 	sva = trunc_page(sva);
11319 	MPASS(sva > VM_MAXUSER_ADDRESS);
11320 	eva = round_page(eva);
11321 	MPASS(sva < eva);
11322 	for (; sva < eva; sva += PAGE_SIZE) {
11323 		pte = pmap_pti_pte(sva, &unwire_pde);
11324 		pa = pmap_kextract(sva);
11325 		ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
11326 		    (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
11327 		    VM_MEMATTR_DEFAULT, false);
11328 		if (*pte == 0) {
11329 			pte_store(pte, ptev);
11330 			pmap_pti_wire_pte(pte);
11331 		} else {
11332 			KASSERT(!pti_finalized,
11333 			    ("pti overlap after fin %#lx %#lx %#lx",
11334 			    sva, *pte, ptev));
11335 			KASSERT(*pte == ptev,
11336 			    ("pti non-identical pte after fin %#lx %#lx %#lx",
11337 			    sva, *pte, ptev));
11338 		}
11339 		if (unwire_pde) {
11340 			pde = pmap_pti_pde(sva);
11341 			pmap_pti_unwire_pde(pde, true);
11342 		}
11343 	}
11344 }
11345 
11346 void
pmap_pti_add_kva(vm_offset_t sva,vm_offset_t eva,bool exec)11347 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
11348 {
11349 
11350 	if (!pti)
11351 		return;
11352 	VM_OBJECT_WLOCK(pti_obj);
11353 	pmap_pti_add_kva_locked(sva, eva, exec);
11354 	VM_OBJECT_WUNLOCK(pti_obj);
11355 }
11356 
11357 void
pmap_pti_remove_kva(vm_offset_t sva,vm_offset_t eva)11358 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
11359 {
11360 	pt_entry_t *pte;
11361 	vm_offset_t va;
11362 
11363 	if (!pti)
11364 		return;
11365 	sva = rounddown2(sva, PAGE_SIZE);
11366 	MPASS(sva > VM_MAXUSER_ADDRESS);
11367 	eva = roundup2(eva, PAGE_SIZE);
11368 	MPASS(sva < eva);
11369 	VM_OBJECT_WLOCK(pti_obj);
11370 	for (va = sva; va < eva; va += PAGE_SIZE) {
11371 		pte = pmap_pti_pte(va, NULL);
11372 		KASSERT((*pte & X86_PG_V) != 0,
11373 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
11374 		    (u_long)pte, *pte));
11375 		pte_clear(pte);
11376 		pmap_pti_unwire_pte(pte, va);
11377 	}
11378 	pmap_invalidate_range(kernel_pmap, sva, eva);
11379 	VM_OBJECT_WUNLOCK(pti_obj);
11380 }
11381 
11382 static void *
pkru_dup_range(void * ctx __unused,void * data)11383 pkru_dup_range(void *ctx __unused, void *data)
11384 {
11385 	struct pmap_pkru_range *node, *new_node;
11386 
11387 	new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11388 	if (new_node == NULL)
11389 		return (NULL);
11390 	node = data;
11391 	memcpy(new_node, node, sizeof(*node));
11392 	return (new_node);
11393 }
11394 
11395 static void
pkru_free_range(void * ctx __unused,void * node)11396 pkru_free_range(void *ctx __unused, void *node)
11397 {
11398 
11399 	uma_zfree(pmap_pkru_ranges_zone, node);
11400 }
11401 
11402 static int
pmap_pkru_assign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11403 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11404     int flags)
11405 {
11406 	struct pmap_pkru_range *ppr;
11407 	int error;
11408 
11409 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11410 	MPASS(pmap->pm_type == PT_X86);
11411 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11412 	if ((flags & AMD64_PKRU_EXCL) != 0 &&
11413 	    !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
11414 		return (EBUSY);
11415 	ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11416 	if (ppr == NULL)
11417 		return (ENOMEM);
11418 	ppr->pkru_keyidx = keyidx;
11419 	ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
11420 	error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
11421 	if (error != 0)
11422 		uma_zfree(pmap_pkru_ranges_zone, ppr);
11423 	return (error);
11424 }
11425 
11426 static int
pmap_pkru_deassign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11427 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11428 {
11429 
11430 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11431 	MPASS(pmap->pm_type == PT_X86);
11432 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11433 	return (rangeset_remove(&pmap->pm_pkru, sva, eva));
11434 }
11435 
11436 static void
pmap_pkru_deassign_all(pmap_t pmap)11437 pmap_pkru_deassign_all(pmap_t pmap)
11438 {
11439 
11440 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11441 	if (pmap->pm_type == PT_X86 &&
11442 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
11443 		rangeset_remove_all(&pmap->pm_pkru);
11444 }
11445 
11446 static bool
pmap_pkru_same(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11447 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11448 {
11449 	struct pmap_pkru_range *ppr, *prev_ppr;
11450 	vm_offset_t va;
11451 
11452 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11453 	if (pmap->pm_type != PT_X86 ||
11454 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11455 	    sva >= VM_MAXUSER_ADDRESS)
11456 		return (true);
11457 	MPASS(eva <= VM_MAXUSER_ADDRESS);
11458 	for (va = sva; va < eva; prev_ppr = ppr) {
11459 		ppr = rangeset_lookup(&pmap->pm_pkru, va);
11460 		if (va == sva)
11461 			prev_ppr = ppr;
11462 		else if ((ppr == NULL) ^ (prev_ppr == NULL))
11463 			return (false);
11464 		if (ppr == NULL) {
11465 			va += PAGE_SIZE;
11466 			continue;
11467 		}
11468 		if (prev_ppr->pkru_keyidx != ppr->pkru_keyidx)
11469 			return (false);
11470 		va = ppr->pkru_rs_el.re_end;
11471 	}
11472 	return (true);
11473 }
11474 
11475 static pt_entry_t
pmap_pkru_get(pmap_t pmap,vm_offset_t va)11476 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
11477 {
11478 	struct pmap_pkru_range *ppr;
11479 
11480 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11481 	if (pmap->pm_type != PT_X86 ||
11482 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11483 	    va >= VM_MAXUSER_ADDRESS)
11484 		return (0);
11485 	ppr = rangeset_lookup(&pmap->pm_pkru, va);
11486 	if (ppr != NULL)
11487 		return (X86_PG_PKU(ppr->pkru_keyidx));
11488 	return (0);
11489 }
11490 
11491 static bool
pred_pkru_on_remove(void * ctx __unused,void * r)11492 pred_pkru_on_remove(void *ctx __unused, void *r)
11493 {
11494 	struct pmap_pkru_range *ppr;
11495 
11496 	ppr = r;
11497 	return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
11498 }
11499 
11500 static void
pmap_pkru_on_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11501 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11502 {
11503 
11504 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11505 	if (pmap->pm_type == PT_X86 &&
11506 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
11507 		rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
11508 		    pred_pkru_on_remove);
11509 	}
11510 }
11511 
11512 static int
pmap_pkru_copy(pmap_t dst_pmap,pmap_t src_pmap)11513 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
11514 {
11515 
11516 	PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
11517 	PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
11518 	MPASS(dst_pmap->pm_type == PT_X86);
11519 	MPASS(src_pmap->pm_type == PT_X86);
11520 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11521 	if (src_pmap->pm_pkru.rs_data_ctx == NULL)
11522 		return (0);
11523 	return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
11524 }
11525 
11526 static void
pmap_pkru_update_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx)11527 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11528     u_int keyidx)
11529 {
11530 	pml4_entry_t *pml4e;
11531 	pdp_entry_t *pdpe;
11532 	pd_entry_t newpde, ptpaddr, *pde;
11533 	pt_entry_t newpte, *ptep, pte;
11534 	vm_offset_t va, va_next;
11535 	bool changed;
11536 
11537 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11538 	MPASS(pmap->pm_type == PT_X86);
11539 	MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
11540 
11541 	for (changed = false, va = sva; va < eva; va = va_next) {
11542 		pml4e = pmap_pml4e(pmap, va);
11543 		if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
11544 			va_next = (va + NBPML4) & ~PML4MASK;
11545 			if (va_next < va)
11546 				va_next = eva;
11547 			continue;
11548 		}
11549 
11550 		pdpe = pmap_pml4e_to_pdpe(pml4e, va);
11551 		if ((*pdpe & X86_PG_V) == 0) {
11552 			va_next = (va + NBPDP) & ~PDPMASK;
11553 			if (va_next < va)
11554 				va_next = eva;
11555 			continue;
11556 		}
11557 
11558 		va_next = (va + NBPDR) & ~PDRMASK;
11559 		if (va_next < va)
11560 			va_next = eva;
11561 
11562 		pde = pmap_pdpe_to_pde(pdpe, va);
11563 		ptpaddr = *pde;
11564 		if (ptpaddr == 0)
11565 			continue;
11566 
11567 		MPASS((ptpaddr & X86_PG_V) != 0);
11568 		if ((ptpaddr & PG_PS) != 0) {
11569 			if (va + NBPDR == va_next && eva >= va_next) {
11570 				newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
11571 				    X86_PG_PKU(keyidx);
11572 				if (newpde != ptpaddr) {
11573 					*pde = newpde;
11574 					changed = true;
11575 				}
11576 				continue;
11577 			} else if (!pmap_demote_pde(pmap, pde, va)) {
11578 				continue;
11579 			}
11580 		}
11581 
11582 		if (va_next > eva)
11583 			va_next = eva;
11584 
11585 		for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
11586 		    ptep++, va += PAGE_SIZE) {
11587 			pte = *ptep;
11588 			if ((pte & X86_PG_V) == 0)
11589 				continue;
11590 			newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
11591 			if (newpte != pte) {
11592 				*ptep = newpte;
11593 				changed = true;
11594 			}
11595 		}
11596 	}
11597 	if (changed)
11598 		pmap_invalidate_range(pmap, sva, eva);
11599 }
11600 
11601 static int
pmap_pkru_check_uargs(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11602 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11603     u_int keyidx, int flags)
11604 {
11605 
11606 	if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
11607 	    (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
11608 		return (EINVAL);
11609 	if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
11610 		return (EFAULT);
11611 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
11612 		return (ENOTSUP);
11613 	return (0);
11614 }
11615 
11616 int
pmap_pkru_set(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11617 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11618     int flags)
11619 {
11620 	int error;
11621 
11622 	sva = trunc_page(sva);
11623 	eva = round_page(eva);
11624 	error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
11625 	if (error != 0)
11626 		return (error);
11627 	for (;;) {
11628 		PMAP_LOCK(pmap);
11629 		error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
11630 		if (error == 0)
11631 			pmap_pkru_update_range(pmap, sva, eva, keyidx);
11632 		PMAP_UNLOCK(pmap);
11633 		if (error != ENOMEM)
11634 			break;
11635 		vm_wait(NULL);
11636 	}
11637 	return (error);
11638 }
11639 
11640 int
pmap_pkru_clear(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11641 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11642 {
11643 	int error;
11644 
11645 	sva = trunc_page(sva);
11646 	eva = round_page(eva);
11647 	error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
11648 	if (error != 0)
11649 		return (error);
11650 	for (;;) {
11651 		PMAP_LOCK(pmap);
11652 		error = pmap_pkru_deassign(pmap, sva, eva);
11653 		if (error == 0)
11654 			pmap_pkru_update_range(pmap, sva, eva, 0);
11655 		PMAP_UNLOCK(pmap);
11656 		if (error != ENOMEM)
11657 			break;
11658 		vm_wait(NULL);
11659 	}
11660 	return (error);
11661 }
11662 
11663 #if defined(KASAN) || defined(KMSAN)
11664 
11665 /*
11666  * Reserve enough memory to:
11667  * 1) allocate PDP pages for the shadow map(s),
11668  * 2) shadow the boot stack of KSTACK_PAGES pages,
11669  * so we need one PD page, one or two PT pages, and KSTACK_PAGES shadow pages
11670  * per shadow map.
11671  */
11672 #ifdef KASAN
11673 #define	SAN_EARLY_PAGES	\
11674 	(NKASANPML4E + 1 + 2 + howmany(KSTACK_PAGES, KASAN_SHADOW_SCALE))
11675 #else
11676 #define	SAN_EARLY_PAGES	\
11677 	(NKMSANSHADPML4E + NKMSANORIGPML4E + 2 * (1 + 2 + KSTACK_PAGES))
11678 #endif
11679 
11680 static uint64_t __nosanitizeaddress __nosanitizememory
pmap_san_enter_early_alloc_4k(uint64_t pabase)11681 pmap_san_enter_early_alloc_4k(uint64_t pabase)
11682 {
11683 	static uint8_t data[PAGE_SIZE * SAN_EARLY_PAGES] __aligned(PAGE_SIZE);
11684 	static size_t offset = 0;
11685 	uint64_t pa;
11686 
11687 	if (offset == sizeof(data)) {
11688 		panic("%s: ran out of memory for the bootstrap shadow map",
11689 		    __func__);
11690 	}
11691 
11692 	pa = pabase + ((vm_offset_t)&data[offset] - KERNSTART);
11693 	offset += PAGE_SIZE;
11694 	return (pa);
11695 }
11696 
11697 /*
11698  * Map a shadow page, before the kernel has bootstrapped its page tables.  This
11699  * is currently only used to shadow the temporary boot stack set up by locore.
11700  */
11701 static void __nosanitizeaddress __nosanitizememory
pmap_san_enter_early(vm_offset_t va)11702 pmap_san_enter_early(vm_offset_t va)
11703 {
11704 	static bool first = true;
11705 	pml4_entry_t *pml4e;
11706 	pdp_entry_t *pdpe;
11707 	pd_entry_t *pde;
11708 	pt_entry_t *pte;
11709 	uint64_t cr3, pa, base;
11710 	int i;
11711 
11712 	base = amd64_loadaddr();
11713 	cr3 = rcr3();
11714 
11715 	if (first) {
11716 		/*
11717 		 * If this the first call, we need to allocate new PML4Es for
11718 		 * the bootstrap shadow map(s).  We don't know how the PML4 page
11719 		 * was initialized by the boot loader, so we can't simply test
11720 		 * whether the shadow map's PML4Es are zero.
11721 		 */
11722 		first = false;
11723 #ifdef KASAN
11724 		for (i = 0; i < NKASANPML4E; i++) {
11725 			pa = pmap_san_enter_early_alloc_4k(base);
11726 
11727 			pml4e = (pml4_entry_t *)cr3 +
11728 			    pmap_pml4e_index(KASAN_MIN_ADDRESS + i * NBPML4);
11729 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11730 		}
11731 #else
11732 		for (i = 0; i < NKMSANORIGPML4E; i++) {
11733 			pa = pmap_san_enter_early_alloc_4k(base);
11734 
11735 			pml4e = (pml4_entry_t *)cr3 +
11736 			    pmap_pml4e_index(KMSAN_ORIG_MIN_ADDRESS +
11737 			    i * NBPML4);
11738 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11739 		}
11740 		for (i = 0; i < NKMSANSHADPML4E; i++) {
11741 			pa = pmap_san_enter_early_alloc_4k(base);
11742 
11743 			pml4e = (pml4_entry_t *)cr3 +
11744 			    pmap_pml4e_index(KMSAN_SHAD_MIN_ADDRESS +
11745 			    i * NBPML4);
11746 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11747 		}
11748 #endif
11749 	}
11750 	pml4e = (pml4_entry_t *)cr3 + pmap_pml4e_index(va);
11751 	pdpe = (pdp_entry_t *)(*pml4e & PG_FRAME) + pmap_pdpe_index(va);
11752 	if (*pdpe == 0) {
11753 		pa = pmap_san_enter_early_alloc_4k(base);
11754 		*pdpe = (pdp_entry_t)(pa | X86_PG_RW | X86_PG_V);
11755 	}
11756 	pde = (pd_entry_t *)(*pdpe & PG_FRAME) + pmap_pde_index(va);
11757 	if (*pde == 0) {
11758 		pa = pmap_san_enter_early_alloc_4k(base);
11759 		*pde = (pd_entry_t)(pa | X86_PG_RW | X86_PG_V);
11760 	}
11761 	pte = (pt_entry_t *)(*pde & PG_FRAME) + pmap_pte_index(va);
11762 	if (*pte != 0)
11763 		panic("%s: PTE for %#lx is already initialized", __func__, va);
11764 	pa = pmap_san_enter_early_alloc_4k(base);
11765 	*pte = (pt_entry_t)(pa | X86_PG_A | X86_PG_M | X86_PG_RW | X86_PG_V);
11766 }
11767 
11768 static vm_page_t
pmap_san_enter_alloc_4k(void)11769 pmap_san_enter_alloc_4k(void)
11770 {
11771 	vm_page_t m;
11772 
11773 	m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
11774 	    VM_ALLOC_ZERO);
11775 	if (m == NULL)
11776 		panic("%s: no memory to grow shadow map", __func__);
11777 	return (m);
11778 }
11779 
11780 static vm_page_t
pmap_san_enter_alloc_2m(void)11781 pmap_san_enter_alloc_2m(void)
11782 {
11783 	return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
11784 	    NPTEPG, 0, ~0ul, NBPDR, 0, VM_MEMATTR_DEFAULT));
11785 }
11786 
11787 /*
11788  * Grow a shadow map by at least one 4KB page at the specified address.  Use 2MB
11789  * pages when possible.
11790  */
11791 void __nosanitizeaddress __nosanitizememory
pmap_san_enter(vm_offset_t va)11792 pmap_san_enter(vm_offset_t va)
11793 {
11794 	pdp_entry_t *pdpe;
11795 	pd_entry_t *pde;
11796 	pt_entry_t *pte;
11797 	vm_page_t m;
11798 
11799 	if (kernphys == 0) {
11800 		/*
11801 		 * We're creating a temporary shadow map for the boot stack.
11802 		 */
11803 		pmap_san_enter_early(va);
11804 		return;
11805 	}
11806 
11807 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
11808 
11809 	pdpe = pmap_pdpe(kernel_pmap, va);
11810 	if ((*pdpe & X86_PG_V) == 0) {
11811 		m = pmap_san_enter_alloc_4k();
11812 		*pdpe = (pdp_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11813 		    X86_PG_V | pg_nx);
11814 	}
11815 	pde = pmap_pdpe_to_pde(pdpe, va);
11816 	if ((*pde & X86_PG_V) == 0) {
11817 		m = pmap_san_enter_alloc_2m();
11818 		if (m != NULL) {
11819 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11820 			    X86_PG_PS | X86_PG_V | X86_PG_A | X86_PG_M | pg_nx);
11821 		} else {
11822 			m = pmap_san_enter_alloc_4k();
11823 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11824 			    X86_PG_V | pg_nx);
11825 		}
11826 	}
11827 	if ((*pde & X86_PG_PS) != 0)
11828 		return;
11829 	pte = pmap_pde_to_pte(pde, va);
11830 	if ((*pte & X86_PG_V) != 0)
11831 		return;
11832 	m = pmap_san_enter_alloc_4k();
11833 	*pte = (pt_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW | X86_PG_V |
11834 	    X86_PG_M | X86_PG_A | pg_nx);
11835 }
11836 #endif
11837 
11838 /*
11839  * Track a range of the kernel's virtual address space that is contiguous
11840  * in various mapping attributes.
11841  */
11842 struct pmap_kernel_map_range {
11843 	vm_offset_t sva;
11844 	pt_entry_t attrs;
11845 	int ptes;
11846 	int pdes;
11847 	int pdpes;
11848 };
11849 
11850 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)11851 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
11852     vm_offset_t eva)
11853 {
11854 	const char *mode;
11855 	int i, pat_idx;
11856 
11857 	if (eva <= range->sva)
11858 		return;
11859 
11860 	pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
11861 	for (i = 0; i < PAT_INDEX_SIZE; i++)
11862 		if (pat_index[i] == pat_idx)
11863 			break;
11864 
11865 	switch (i) {
11866 	case PAT_WRITE_BACK:
11867 		mode = "WB";
11868 		break;
11869 	case PAT_WRITE_THROUGH:
11870 		mode = "WT";
11871 		break;
11872 	case PAT_UNCACHEABLE:
11873 		mode = "UC";
11874 		break;
11875 	case PAT_UNCACHED:
11876 		mode = "U-";
11877 		break;
11878 	case PAT_WRITE_PROTECTED:
11879 		mode = "WP";
11880 		break;
11881 	case PAT_WRITE_COMBINING:
11882 		mode = "WC";
11883 		break;
11884 	default:
11885 		printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
11886 		    __func__, pat_idx, range->sva, eva);
11887 		mode = "??";
11888 		break;
11889 	}
11890 
11891 	sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
11892 	    range->sva, eva,
11893 	    (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
11894 	    (range->attrs & pg_nx) != 0 ? '-' : 'x',
11895 	    (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
11896 	    (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
11897 	    mode, range->pdpes, range->pdes, range->ptes);
11898 
11899 	/* Reset to sentinel value. */
11900 	range->sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11901 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11902 	    NPDEPG - 1, NPTEPG - 1);
11903 }
11904 
11905 /*
11906  * Determine whether the attributes specified by a page table entry match those
11907  * being tracked by the current range.  This is not quite as simple as a direct
11908  * flag comparison since some PAT modes have multiple representations.
11909  */
11910 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)11911 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
11912 {
11913 	pt_entry_t diff, mask;
11914 
11915 	mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
11916 	diff = (range->attrs ^ attrs) & mask;
11917 	if (diff == 0)
11918 		return (true);
11919 	if ((diff & ~X86_PG_PDE_PAT) == 0 &&
11920 	    pmap_pat_index(kernel_pmap, range->attrs, true) ==
11921 	    pmap_pat_index(kernel_pmap, attrs, true))
11922 		return (true);
11923 	return (false);
11924 }
11925 
11926 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)11927 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
11928     pt_entry_t attrs)
11929 {
11930 
11931 	memset(range, 0, sizeof(*range));
11932 	range->sva = va;
11933 	range->attrs = attrs;
11934 }
11935 
11936 /*
11937  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
11938  * those of the current run, dump the address range and its attributes, and
11939  * begin a new run.
11940  */
11941 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pml4_entry_t pml4e,pdp_entry_t pdpe,pd_entry_t pde,pt_entry_t pte)11942 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
11943     vm_offset_t va, pml4_entry_t pml4e, pdp_entry_t pdpe, pd_entry_t pde,
11944     pt_entry_t pte)
11945 {
11946 	pt_entry_t attrs;
11947 
11948 	attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
11949 
11950 	attrs |= pdpe & pg_nx;
11951 	attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
11952 	if ((pdpe & PG_PS) != 0) {
11953 		attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
11954 	} else if (pde != 0) {
11955 		attrs |= pde & pg_nx;
11956 		attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
11957 	}
11958 	if ((pde & PG_PS) != 0) {
11959 		attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
11960 	} else if (pte != 0) {
11961 		attrs |= pte & pg_nx;
11962 		attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
11963 		attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
11964 
11965 		/* Canonicalize by always using the PDE PAT bit. */
11966 		if ((attrs & X86_PG_PTE_PAT) != 0)
11967 			attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
11968 	}
11969 
11970 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
11971 		sysctl_kmaps_dump(sb, range, va);
11972 		sysctl_kmaps_reinit(range, va, attrs);
11973 	}
11974 }
11975 
11976 static int
sysctl_kmaps(SYSCTL_HANDLER_ARGS)11977 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
11978 {
11979 	struct pmap_kernel_map_range range;
11980 	struct sbuf sbuf, *sb;
11981 	pml4_entry_t pml4e;
11982 	pdp_entry_t *pdp, pdpe;
11983 	pd_entry_t *pd, pde;
11984 	pt_entry_t *pt, pte;
11985 	vm_offset_t sva;
11986 	vm_paddr_t pa;
11987 	int error, i, j, k, l;
11988 
11989 	error = sysctl_wire_old_buffer(req, 0);
11990 	if (error != 0)
11991 		return (error);
11992 	sb = &sbuf;
11993 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
11994 
11995 	/* Sentinel value. */
11996 	range.sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11997 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11998 	    NPDEPG - 1, NPTEPG - 1);
11999 
12000 	/*
12001 	 * Iterate over the kernel page tables without holding the kernel pmap
12002 	 * lock.  Outside of the large map, kernel page table pages are never
12003 	 * freed, so at worst we will observe inconsistencies in the output.
12004 	 * Within the large map, ensure that PDP and PD page addresses are
12005 	 * valid before descending.
12006 	 */
12007 	for (sva = 0, i = pmap_pml4e_index(sva); i < NPML4EPG; i++) {
12008 		switch (i) {
12009 		case PML4PML4I:
12010 			sbuf_printf(sb, "\nRecursive map:\n");
12011 			break;
12012 		case DMPML4I:
12013 			sbuf_printf(sb, "\nDirect map:\n");
12014 			break;
12015 #ifdef KASAN
12016 		case KASANPML4I:
12017 			sbuf_printf(sb, "\nKASAN shadow map:\n");
12018 			break;
12019 #endif
12020 #ifdef KMSAN
12021 		case KMSANSHADPML4I:
12022 			sbuf_printf(sb, "\nKMSAN shadow map:\n");
12023 			break;
12024 		case KMSANORIGPML4I:
12025 			sbuf_printf(sb, "\nKMSAN origin map:\n");
12026 			break;
12027 #endif
12028 		case KPML4BASE:
12029 			sbuf_printf(sb, "\nKernel map:\n");
12030 			break;
12031 		case LMSPML4I:
12032 			sbuf_printf(sb, "\nLarge map:\n");
12033 			break;
12034 		}
12035 
12036 		/* Convert to canonical form. */
12037 		if (sva == 1ul << 47)
12038 			sva |= -1ul << 48;
12039 
12040 restart:
12041 		pml4e = kernel_pml4[i];
12042 		if ((pml4e & X86_PG_V) == 0) {
12043 			sva = rounddown2(sva, NBPML4);
12044 			sysctl_kmaps_dump(sb, &range, sva);
12045 			sva += NBPML4;
12046 			continue;
12047 		}
12048 		pa = pml4e & PG_FRAME;
12049 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
12050 
12051 		for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
12052 			pdpe = pdp[j];
12053 			if ((pdpe & X86_PG_V) == 0) {
12054 				sva = rounddown2(sva, NBPDP);
12055 				sysctl_kmaps_dump(sb, &range, sva);
12056 				sva += NBPDP;
12057 				continue;
12058 			}
12059 			pa = pdpe & PG_FRAME;
12060 			if ((pdpe & PG_PS) != 0) {
12061 				sva = rounddown2(sva, NBPDP);
12062 				sysctl_kmaps_check(sb, &range, sva, pml4e, pdpe,
12063 				    0, 0);
12064 				range.pdpes++;
12065 				sva += NBPDP;
12066 				continue;
12067 			}
12068 			if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12069 			    vm_phys_paddr_to_vm_page(pa) == NULL) {
12070 				/*
12071 				 * Page table pages for the large map may be
12072 				 * freed.  Validate the next-level address
12073 				 * before descending.
12074 				 */
12075 				goto restart;
12076 			}
12077 			pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
12078 
12079 			for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
12080 				pde = pd[k];
12081 				if ((pde & X86_PG_V) == 0) {
12082 					sva = rounddown2(sva, NBPDR);
12083 					sysctl_kmaps_dump(sb, &range, sva);
12084 					sva += NBPDR;
12085 					continue;
12086 				}
12087 				pa = pde & PG_FRAME;
12088 				if ((pde & PG_PS) != 0) {
12089 					sva = rounddown2(sva, NBPDR);
12090 					sysctl_kmaps_check(sb, &range, sva,
12091 					    pml4e, pdpe, pde, 0);
12092 					range.pdes++;
12093 					sva += NBPDR;
12094 					continue;
12095 				}
12096 				if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12097 				    vm_phys_paddr_to_vm_page(pa) == NULL) {
12098 					/*
12099 					 * Page table pages for the large map
12100 					 * may be freed.  Validate the
12101 					 * next-level address before descending.
12102 					 */
12103 					goto restart;
12104 				}
12105 				pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
12106 
12107 				for (l = pmap_pte_index(sva); l < NPTEPG; l++,
12108 				    sva += PAGE_SIZE) {
12109 					pte = pt[l];
12110 					if ((pte & X86_PG_V) == 0) {
12111 						sysctl_kmaps_dump(sb, &range,
12112 						    sva);
12113 						continue;
12114 					}
12115 					sysctl_kmaps_check(sb, &range, sva,
12116 					    pml4e, pdpe, pde, pte);
12117 					range.ptes++;
12118 				}
12119 			}
12120 		}
12121 	}
12122 
12123 	error = sbuf_finish(sb);
12124 	sbuf_delete(sb);
12125 	return (error);
12126 }
12127 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
12128     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
12129     NULL, 0, sysctl_kmaps, "A",
12130     "Dump kernel address layout");
12131 
12132 #ifdef DDB
DB_SHOW_COMMAND(pte,pmap_print_pte)12133 DB_SHOW_COMMAND(pte, pmap_print_pte)
12134 {
12135 	pmap_t pmap;
12136 	pml5_entry_t *pml5;
12137 	pml4_entry_t *pml4;
12138 	pdp_entry_t *pdp;
12139 	pd_entry_t *pde;
12140 	pt_entry_t *pte, PG_V;
12141 	vm_offset_t va;
12142 
12143 	if (!have_addr) {
12144 		db_printf("show pte addr\n");
12145 		return;
12146 	}
12147 	va = (vm_offset_t)addr;
12148 
12149 	if (kdb_thread != NULL)
12150 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
12151 	else
12152 		pmap = PCPU_GET(curpmap);
12153 
12154 	PG_V = pmap_valid_bit(pmap);
12155 	db_printf("VA 0x%016lx", va);
12156 
12157 	if (pmap_is_la57(pmap)) {
12158 		pml5 = pmap_pml5e(pmap, va);
12159 		db_printf(" pml5e 0x%016lx", *pml5);
12160 		if ((*pml5 & PG_V) == 0) {
12161 			db_printf("\n");
12162 			return;
12163 		}
12164 		pml4 = pmap_pml5e_to_pml4e(pml5, va);
12165 	} else {
12166 		pml4 = pmap_pml4e(pmap, va);
12167 	}
12168 	db_printf(" pml4e 0x%016lx", *pml4);
12169 	if ((*pml4 & PG_V) == 0) {
12170 		db_printf("\n");
12171 		return;
12172 	}
12173 	pdp = pmap_pml4e_to_pdpe(pml4, va);
12174 	db_printf(" pdpe 0x%016lx", *pdp);
12175 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
12176 		db_printf("\n");
12177 		return;
12178 	}
12179 	pde = pmap_pdpe_to_pde(pdp, va);
12180 	db_printf(" pde 0x%016lx", *pde);
12181 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
12182 		db_printf("\n");
12183 		return;
12184 	}
12185 	pte = pmap_pde_to_pte(pde, va);
12186 	db_printf(" pte 0x%016lx\n", *pte);
12187 }
12188 
DB_SHOW_COMMAND(phys2dmap,pmap_phys2dmap)12189 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
12190 {
12191 	vm_paddr_t a;
12192 
12193 	if (have_addr) {
12194 		a = (vm_paddr_t)addr;
12195 		db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
12196 	} else {
12197 		db_printf("show phys2dmap addr\n");
12198 	}
12199 }
12200 
12201 static void
ptpages_show_page(int level,int idx,vm_page_t pg)12202 ptpages_show_page(int level, int idx, vm_page_t pg)
12203 {
12204 	db_printf("l %d i %d pg %p phys %#lx ref %x\n",
12205 	    level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
12206 }
12207 
12208 static void
ptpages_show_complain(int level,int idx,uint64_t pte)12209 ptpages_show_complain(int level, int idx, uint64_t pte)
12210 {
12211 	db_printf("l %d i %d pte %#lx\n", level, idx, pte);
12212 }
12213 
12214 static void
ptpages_show_pml4(vm_page_t pg4,int num_entries,uint64_t PG_V)12215 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
12216 {
12217 	vm_page_t pg3, pg2, pg1;
12218 	pml4_entry_t *pml4;
12219 	pdp_entry_t *pdp;
12220 	pd_entry_t *pd;
12221 	int i4, i3, i2;
12222 
12223 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
12224 	for (i4 = 0; i4 < num_entries; i4++) {
12225 		if ((pml4[i4] & PG_V) == 0)
12226 			continue;
12227 		pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
12228 		if (pg3 == NULL) {
12229 			ptpages_show_complain(3, i4, pml4[i4]);
12230 			continue;
12231 		}
12232 		ptpages_show_page(3, i4, pg3);
12233 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
12234 		for (i3 = 0; i3 < NPDPEPG; i3++) {
12235 			if ((pdp[i3] & PG_V) == 0)
12236 				continue;
12237 			pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
12238 			if (pg3 == NULL) {
12239 				ptpages_show_complain(2, i3, pdp[i3]);
12240 				continue;
12241 			}
12242 			ptpages_show_page(2, i3, pg2);
12243 			pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
12244 			for (i2 = 0; i2 < NPDEPG; i2++) {
12245 				if ((pd[i2] & PG_V) == 0)
12246 					continue;
12247 				pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
12248 				if (pg1 == NULL) {
12249 					ptpages_show_complain(1, i2, pd[i2]);
12250 					continue;
12251 				}
12252 				ptpages_show_page(1, i2, pg1);
12253 			}
12254 		}
12255 	}
12256 }
12257 
DB_SHOW_COMMAND(ptpages,pmap_ptpages)12258 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
12259 {
12260 	pmap_t pmap;
12261 	vm_page_t pg;
12262 	pml5_entry_t *pml5;
12263 	uint64_t PG_V;
12264 	int i5;
12265 
12266 	if (have_addr)
12267 		pmap = (pmap_t)addr;
12268 	else
12269 		pmap = PCPU_GET(curpmap);
12270 
12271 	PG_V = pmap_valid_bit(pmap);
12272 
12273 	if (pmap_is_la57(pmap)) {
12274 		pml5 = pmap->pm_pmltop;
12275 		for (i5 = 0; i5 < NUPML5E; i5++) {
12276 			if ((pml5[i5] & PG_V) == 0)
12277 				continue;
12278 			pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
12279 			if (pg == NULL) {
12280 				ptpages_show_complain(4, i5, pml5[i5]);
12281 				continue;
12282 			}
12283 			ptpages_show_page(4, i5, pg);
12284 			ptpages_show_pml4(pg, NPML4EPG, PG_V);
12285 		}
12286 	} else {
12287 		ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
12288 		    (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
12289 	}
12290 }
12291 #endif
12292