xref: /freebsd/sys/amd64/amd64/pmap.c (revision ddc09a10)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2003 Peter Wemm
11  * All rights reserved.
12  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
13  * All rights reserved.
14  *
15  * This code is derived from software contributed to Berkeley by
16  * the Systems Programming Group of the University of Utah Computer
17  * Science Department and William Jolitz of UUNET Technologies Inc.
18  *
19  * Redistribution and use in source and binary forms, with or without
20  * modification, are permitted provided that the following conditions
21  * are met:
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  * 3. All advertising materials mentioning features or use of this software
28  *    must display the following acknowledgement:
29  *	This product includes software developed by the University of
30  *	California, Berkeley and its contributors.
31  * 4. Neither the name of the University nor the names of its contributors
32  *    may be used to endorse or promote products derived from this software
33  *    without specific prior written permission.
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
36  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
38  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
39  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
40  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
41  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
42  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
43  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
44  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
45  * SUCH DAMAGE.
46  */
47 /*-
48  * Copyright (c) 2003 Networks Associates Technology, Inc.
49  * Copyright (c) 2014-2020 The FreeBSD Foundation
50  * All rights reserved.
51  *
52  * This software was developed for the FreeBSD Project by Jake Burkholder,
53  * Safeport Network Services, and Network Associates Laboratories, the
54  * Security Research Division of Network Associates, Inc. under
55  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
56  * CHATS research program.
57  *
58  * Portions of this software were developed by
59  * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
60  * the FreeBSD Foundation.
61  *
62  * Redistribution and use in source and binary forms, with or without
63  * modification, are permitted provided that the following conditions
64  * are met:
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in the
69  *    documentation and/or other materials provided with the distribution.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  */
83 
84 #define	AMD64_NPT_AWARE
85 
86 #include <sys/cdefs.h>
87 /*
88  *	Manages physical address maps.
89  *
90  *	Since the information managed by this module is
91  *	also stored by the logical address mapping module,
92  *	this module may throw away valid virtual-to-physical
93  *	mappings at almost any time.  However, invalidations
94  *	of virtual-to-physical mappings must be done as
95  *	requested.
96  *
97  *	In order to cope with hardware architectures which
98  *	make virtual-to-physical map invalidates expensive,
99  *	this module may delay invalidate or reduced protection
100  *	operations until such time as they are actually
101  *	necessary.  This module is given full information as
102  *	to which processors are currently using which maps,
103  *	and to when physical maps must be made correct.
104  */
105 
106 #include "opt_ddb.h"
107 #include "opt_pmap.h"
108 #include "opt_vm.h"
109 
110 #include <sys/param.h>
111 #include <sys/asan.h>
112 #include <sys/bitstring.h>
113 #include <sys/bus.h>
114 #include <sys/systm.h>
115 #include <sys/counter.h>
116 #include <sys/kernel.h>
117 #include <sys/ktr.h>
118 #include <sys/lock.h>
119 #include <sys/malloc.h>
120 #include <sys/mman.h>
121 #include <sys/msan.h>
122 #include <sys/mutex.h>
123 #include <sys/proc.h>
124 #include <sys/rangeset.h>
125 #include <sys/rwlock.h>
126 #include <sys/sbuf.h>
127 #include <sys/smr.h>
128 #include <sys/sx.h>
129 #include <sys/turnstile.h>
130 #include <sys/vmem.h>
131 #include <sys/vmmeter.h>
132 #include <sys/sched.h>
133 #include <sys/sysctl.h>
134 #include <sys/smp.h>
135 #ifdef DDB
136 #include <sys/kdb.h>
137 #include <ddb/ddb.h>
138 #endif
139 
140 #include <vm/vm.h>
141 #include <vm/vm_param.h>
142 #include <vm/vm_kern.h>
143 #include <vm/vm_page.h>
144 #include <vm/vm_map.h>
145 #include <vm/vm_object.h>
146 #include <vm/vm_extern.h>
147 #include <vm/vm_pageout.h>
148 #include <vm/vm_pager.h>
149 #include <vm/vm_phys.h>
150 #include <vm/vm_radix.h>
151 #include <vm/vm_reserv.h>
152 #include <vm/vm_dumpset.h>
153 #include <vm/uma.h>
154 
155 #include <machine/asan.h>
156 #include <machine/intr_machdep.h>
157 #include <x86/apicvar.h>
158 #include <x86/ifunc.h>
159 #include <machine/cpu.h>
160 #include <machine/cputypes.h>
161 #include <machine/md_var.h>
162 #include <machine/msan.h>
163 #include <machine/pcb.h>
164 #include <machine/specialreg.h>
165 #ifdef SMP
166 #include <machine/smp.h>
167 #endif
168 #include <machine/sysarch.h>
169 #include <machine/tss.h>
170 
171 #ifdef NUMA
172 #define	PMAP_MEMDOM	MAXMEMDOM
173 #else
174 #define	PMAP_MEMDOM	1
175 #endif
176 
177 static __inline bool
pmap_type_guest(pmap_t pmap)178 pmap_type_guest(pmap_t pmap)
179 {
180 
181 	return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
182 }
183 
184 static __inline bool
pmap_emulate_ad_bits(pmap_t pmap)185 pmap_emulate_ad_bits(pmap_t pmap)
186 {
187 
188 	return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
189 }
190 
191 static __inline pt_entry_t
pmap_valid_bit(pmap_t pmap)192 pmap_valid_bit(pmap_t pmap)
193 {
194 	pt_entry_t mask;
195 
196 	switch (pmap->pm_type) {
197 	case PT_X86:
198 	case PT_RVI:
199 		mask = X86_PG_V;
200 		break;
201 	case PT_EPT:
202 		if (pmap_emulate_ad_bits(pmap))
203 			mask = EPT_PG_EMUL_V;
204 		else
205 			mask = EPT_PG_READ;
206 		break;
207 	default:
208 		panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
209 	}
210 
211 	return (mask);
212 }
213 
214 static __inline pt_entry_t
pmap_rw_bit(pmap_t pmap)215 pmap_rw_bit(pmap_t pmap)
216 {
217 	pt_entry_t mask;
218 
219 	switch (pmap->pm_type) {
220 	case PT_X86:
221 	case PT_RVI:
222 		mask = X86_PG_RW;
223 		break;
224 	case PT_EPT:
225 		if (pmap_emulate_ad_bits(pmap))
226 			mask = EPT_PG_EMUL_RW;
227 		else
228 			mask = EPT_PG_WRITE;
229 		break;
230 	default:
231 		panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
232 	}
233 
234 	return (mask);
235 }
236 
237 static pt_entry_t pg_g;
238 
239 static __inline pt_entry_t
pmap_global_bit(pmap_t pmap)240 pmap_global_bit(pmap_t pmap)
241 {
242 	pt_entry_t mask;
243 
244 	switch (pmap->pm_type) {
245 	case PT_X86:
246 		mask = pg_g;
247 		break;
248 	case PT_RVI:
249 	case PT_EPT:
250 		mask = 0;
251 		break;
252 	default:
253 		panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
254 	}
255 
256 	return (mask);
257 }
258 
259 static __inline pt_entry_t
pmap_accessed_bit(pmap_t pmap)260 pmap_accessed_bit(pmap_t pmap)
261 {
262 	pt_entry_t mask;
263 
264 	switch (pmap->pm_type) {
265 	case PT_X86:
266 	case PT_RVI:
267 		mask = X86_PG_A;
268 		break;
269 	case PT_EPT:
270 		if (pmap_emulate_ad_bits(pmap))
271 			mask = EPT_PG_READ;
272 		else
273 			mask = EPT_PG_A;
274 		break;
275 	default:
276 		panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
277 	}
278 
279 	return (mask);
280 }
281 
282 static __inline pt_entry_t
pmap_modified_bit(pmap_t pmap)283 pmap_modified_bit(pmap_t pmap)
284 {
285 	pt_entry_t mask;
286 
287 	switch (pmap->pm_type) {
288 	case PT_X86:
289 	case PT_RVI:
290 		mask = X86_PG_M;
291 		break;
292 	case PT_EPT:
293 		if (pmap_emulate_ad_bits(pmap))
294 			mask = EPT_PG_WRITE;
295 		else
296 			mask = EPT_PG_M;
297 		break;
298 	default:
299 		panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
300 	}
301 
302 	return (mask);
303 }
304 
305 static __inline pt_entry_t
pmap_pku_mask_bit(pmap_t pmap)306 pmap_pku_mask_bit(pmap_t pmap)
307 {
308 
309 	return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
310 }
311 
312 static __inline bool
safe_to_clear_referenced(pmap_t pmap,pt_entry_t pte)313 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
314 {
315 
316 	if (!pmap_emulate_ad_bits(pmap))
317 		return (true);
318 
319 	KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
320 
321 	/*
322 	 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
323 	 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
324 	 * if the EPT_PG_WRITE bit is set.
325 	 */
326 	if ((pte & EPT_PG_WRITE) != 0)
327 		return (false);
328 
329 	/*
330 	 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
331 	 */
332 	if ((pte & EPT_PG_EXECUTE) == 0 ||
333 	    ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
334 		return (true);
335 	else
336 		return (false);
337 }
338 
339 #ifdef PV_STATS
340 #define PV_STAT(x)	do { x ; } while (0)
341 #else
342 #define PV_STAT(x)	do { } while (0)
343 #endif
344 
345 #undef pa_index
346 #ifdef NUMA
347 #define	pa_index(pa)	({					\
348 	KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end,	\
349 	    ("address %lx beyond the last segment", (pa)));	\
350 	(pa) >> PDRSHIFT;					\
351 })
352 #define	pa_to_pmdp(pa)	(&pv_table[pa_index(pa)])
353 #define	pa_to_pvh(pa)	(&(pa_to_pmdp(pa)->pv_page))
354 #define	PHYS_TO_PV_LIST_LOCK(pa)	({			\
355 	struct rwlock *_lock;					\
356 	if (__predict_false((pa) > pmap_last_pa))		\
357 		_lock = &pv_dummy_large.pv_lock;		\
358 	else							\
359 		_lock = &(pa_to_pmdp(pa)->pv_lock);		\
360 	_lock;							\
361 })
362 #else
363 #define	pa_index(pa)	((pa) >> PDRSHIFT)
364 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
365 
366 #define	NPV_LIST_LOCKS	MAXCPU
367 
368 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
369 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
370 #endif
371 
372 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
373 	struct rwlock **_lockp = (lockp);		\
374 	struct rwlock *_new_lock;			\
375 							\
376 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
377 	if (_new_lock != *_lockp) {			\
378 		if (*_lockp != NULL)			\
379 			rw_wunlock(*_lockp);		\
380 		*_lockp = _new_lock;			\
381 		rw_wlock(*_lockp);			\
382 	}						\
383 } while (0)
384 
385 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
386 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
387 
388 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
389 	struct rwlock **_lockp = (lockp);		\
390 							\
391 	if (*_lockp != NULL) {				\
392 		rw_wunlock(*_lockp);			\
393 		*_lockp = NULL;				\
394 	}						\
395 } while (0)
396 
397 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
398 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
399 
400 /*
401  * Statically allocate kernel pmap memory.  However, memory for
402  * pm_pcids is obtained after the dynamic allocator is operational.
403  * Initialize it with a non-canonical pointer to catch early accesses
404  * regardless of the active mapping.
405  */
406 struct pmap kernel_pmap_store = {
407 	.pm_pcidp = (void *)0xdeadbeefdeadbeef,
408 };
409 
410 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
411 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
412 
413 int nkpt;
414 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
415     "Number of kernel page table pages allocated on bootup");
416 
417 static int ndmpdp;
418 vm_paddr_t dmaplimit;
419 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
420 pt_entry_t pg_nx;
421 
422 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
423     "VM/pmap parameters");
424 
425 static int __read_frequently pg_ps_enabled = 1;
426 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
427     &pg_ps_enabled, 0, "Are large page mappings enabled?");
428 
429 int __read_frequently la57 = 0;
430 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
431     &la57, 0,
432     "5-level paging for host is enabled");
433 
434 static bool
pmap_is_la57(pmap_t pmap)435 pmap_is_la57(pmap_t pmap)
436 {
437 	if (pmap->pm_type == PT_X86)
438 		return (la57);
439 	return (false);		/* XXXKIB handle EPT */
440 }
441 
442 #define	PAT_INDEX_SIZE	8
443 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
444 
445 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
446 static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
447 static u_int64_t	KPDPphys;	/* phys addr of kernel level 3 */
448 u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
449 u_int64_t		KPML5phys;	/* phys addr of kernel level 5,
450 					   if supported */
451 
452 #ifdef KASAN
453 static uint64_t		KASANPDPphys;
454 #endif
455 #ifdef KMSAN
456 static uint64_t		KMSANSHADPDPphys;
457 static uint64_t		KMSANORIGPDPphys;
458 
459 /*
460  * To support systems with large amounts of memory, it is necessary to extend
461  * the maximum size of the direct map.  This could eat into the space reserved
462  * for the shadow map.
463  */
464 _Static_assert(DMPML4I + NDMPML4E <= KMSANSHADPML4I, "direct map overflow");
465 #endif
466 
467 static pml4_entry_t	*kernel_pml4;
468 static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
469 static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
470 static int		ndmpdpphys;	/* number of DMPDPphys pages */
471 
472 vm_paddr_t		kernphys;	/* phys addr of start of bootstrap data */
473 vm_paddr_t		KERNend;	/* and the end */
474 
475 /*
476  * pmap_mapdev support pre initialization (i.e. console)
477  */
478 #define	PMAP_PREINIT_MAPPING_COUNT	8
479 static struct pmap_preinit_mapping {
480 	vm_paddr_t	pa;
481 	vm_offset_t	va;
482 	vm_size_t	sz;
483 	int		mode;
484 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
485 static int pmap_initialized;
486 
487 /*
488  * Data for the pv entry allocation mechanism.
489  * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
490  */
491 #ifdef NUMA
492 static __inline int
pc_to_domain(struct pv_chunk * pc)493 pc_to_domain(struct pv_chunk *pc)
494 {
495 
496 	return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
497 }
498 #else
499 static __inline int
pc_to_domain(struct pv_chunk * pc __unused)500 pc_to_domain(struct pv_chunk *pc __unused)
501 {
502 
503 	return (0);
504 }
505 #endif
506 
507 struct pv_chunks_list {
508 	struct mtx pvc_lock;
509 	TAILQ_HEAD(pch, pv_chunk) pvc_list;
510 	int active_reclaims;
511 } __aligned(CACHE_LINE_SIZE);
512 
513 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
514 
515 #ifdef	NUMA
516 struct pmap_large_md_page {
517 	struct rwlock   pv_lock;
518 	struct md_page  pv_page;
519 	u_long pv_invl_gen;
520 };
521 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
522 #define pv_dummy pv_dummy_large.pv_page
523 __read_mostly static struct pmap_large_md_page *pv_table;
524 __read_mostly vm_paddr_t pmap_last_pa;
525 #else
526 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
527 static u_long pv_invl_gen[NPV_LIST_LOCKS];
528 static struct md_page *pv_table;
529 static struct md_page pv_dummy;
530 #endif
531 
532 /*
533  * All those kernel PT submaps that BSD is so fond of
534  */
535 pt_entry_t *CMAP1 = NULL;
536 caddr_t CADDR1 = 0;
537 static vm_offset_t qframe = 0;
538 static struct mtx qframe_mtx;
539 
540 static int pmap_flags = PMAP_PDE_SUPERPAGE;	/* flags for x86 pmaps */
541 
542 static vmem_t *large_vmem;
543 static u_int lm_ents;
544 #define	PMAP_ADDRESS_IN_LARGEMAP(va)	((va) >= LARGEMAP_MIN_ADDRESS && \
545 	(va) < LARGEMAP_MIN_ADDRESS + NBPML4 * (u_long)lm_ents)
546 
547 int pmap_pcid_enabled = 1;
548 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
549     &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
550 int invpcid_works = 0;
551 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
552     "Is the invpcid instruction available ?");
553 int pmap_pcid_invlpg_workaround = 0;
554 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_invlpg_workaround,
555     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
556     &pmap_pcid_invlpg_workaround, 0,
557     "Enable small core PCID/INVLPG workaround");
558 int pmap_pcid_invlpg_workaround_uena = 1;
559 
560 int __read_frequently pti = 0;
561 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
562     &pti, 0,
563     "Page Table Isolation enabled");
564 static vm_object_t pti_obj;
565 static pml4_entry_t *pti_pml4;
566 static vm_pindex_t pti_pg_idx;
567 static bool pti_finalized;
568 
569 struct pmap_pkru_range {
570 	struct rs_el	pkru_rs_el;
571 	u_int		pkru_keyidx;
572 	int		pkru_flags;
573 };
574 
575 static uma_zone_t pmap_pkru_ranges_zone;
576 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
577     pt_entry_t *pte);
578 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
579 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
580 static void *pkru_dup_range(void *ctx, void *data);
581 static void pkru_free_range(void *ctx, void *node);
582 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
583 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
584 static void pmap_pkru_deassign_all(pmap_t pmap);
585 
586 static COUNTER_U64_DEFINE_EARLY(pcid_save_cnt);
587 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLFLAG_RD,
588     &pcid_save_cnt, "Count of saved TLB context on switch");
589 
590 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
591     LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
592 static struct mtx invl_gen_mtx;
593 /* Fake lock object to satisfy turnstiles interface. */
594 static struct lock_object invl_gen_ts = {
595 	.lo_name = "invlts",
596 };
597 static struct pmap_invl_gen pmap_invl_gen_head = {
598 	.gen = 1,
599 	.next = NULL,
600 };
601 static u_long pmap_invl_gen = 1;
602 static int pmap_invl_waiters;
603 static struct callout pmap_invl_callout;
604 static bool pmap_invl_callout_inited;
605 
606 #define	PMAP_ASSERT_NOT_IN_DI() \
607     KASSERT(pmap_not_in_di(), ("DI already started"))
608 
609 static bool
pmap_di_locked(void)610 pmap_di_locked(void)
611 {
612 	int tun;
613 
614 	if ((cpu_feature2 & CPUID2_CX16) == 0)
615 		return (true);
616 	tun = 0;
617 	TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
618 	return (tun != 0);
619 }
620 
621 static int
sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)622 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
623 {
624 	int locked;
625 
626 	locked = pmap_di_locked();
627 	return (sysctl_handle_int(oidp, &locked, 0, req));
628 }
629 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
630     CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
631     "Locked delayed invalidation");
632 
633 static bool pmap_not_in_di_l(void);
634 static bool pmap_not_in_di_u(void);
635 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
636 {
637 
638 	return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
639 }
640 
641 static bool
pmap_not_in_di_l(void)642 pmap_not_in_di_l(void)
643 {
644 	struct pmap_invl_gen *invl_gen;
645 
646 	invl_gen = &curthread->td_md.md_invl_gen;
647 	return (invl_gen->gen == 0);
648 }
649 
650 static void
pmap_thread_init_invl_gen_l(struct thread * td)651 pmap_thread_init_invl_gen_l(struct thread *td)
652 {
653 	struct pmap_invl_gen *invl_gen;
654 
655 	invl_gen = &td->td_md.md_invl_gen;
656 	invl_gen->gen = 0;
657 }
658 
659 static void
pmap_delayed_invl_wait_block(u_long * m_gen,u_long * invl_gen)660 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
661 {
662 	struct turnstile *ts;
663 
664 	ts = turnstile_trywait(&invl_gen_ts);
665 	if (*m_gen > atomic_load_long(invl_gen))
666 		turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
667 	else
668 		turnstile_cancel(ts);
669 }
670 
671 static void
pmap_delayed_invl_finish_unblock(u_long new_gen)672 pmap_delayed_invl_finish_unblock(u_long new_gen)
673 {
674 	struct turnstile *ts;
675 
676 	turnstile_chain_lock(&invl_gen_ts);
677 	ts = turnstile_lookup(&invl_gen_ts);
678 	if (new_gen != 0)
679 		pmap_invl_gen = new_gen;
680 	if (ts != NULL) {
681 		turnstile_broadcast(ts, TS_SHARED_QUEUE);
682 		turnstile_unpend(ts);
683 	}
684 	turnstile_chain_unlock(&invl_gen_ts);
685 }
686 
687 /*
688  * Start a new Delayed Invalidation (DI) block of code, executed by
689  * the current thread.  Within a DI block, the current thread may
690  * destroy both the page table and PV list entries for a mapping and
691  * then release the corresponding PV list lock before ensuring that
692  * the mapping is flushed from the TLBs of any processors with the
693  * pmap active.
694  */
695 static void
pmap_delayed_invl_start_l(void)696 pmap_delayed_invl_start_l(void)
697 {
698 	struct pmap_invl_gen *invl_gen;
699 	u_long currgen;
700 
701 	invl_gen = &curthread->td_md.md_invl_gen;
702 	PMAP_ASSERT_NOT_IN_DI();
703 	mtx_lock(&invl_gen_mtx);
704 	if (LIST_EMPTY(&pmap_invl_gen_tracker))
705 		currgen = pmap_invl_gen;
706 	else
707 		currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
708 	invl_gen->gen = currgen + 1;
709 	LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
710 	mtx_unlock(&invl_gen_mtx);
711 }
712 
713 /*
714  * Finish the DI block, previously started by the current thread.  All
715  * required TLB flushes for the pages marked by
716  * pmap_delayed_invl_page() must be finished before this function is
717  * called.
718  *
719  * This function works by bumping the global DI generation number to
720  * the generation number of the current thread's DI, unless there is a
721  * pending DI that started earlier.  In the latter case, bumping the
722  * global DI generation number would incorrectly signal that the
723  * earlier DI had finished.  Instead, this function bumps the earlier
724  * DI's generation number to match the generation number of the
725  * current thread's DI.
726  */
727 static void
pmap_delayed_invl_finish_l(void)728 pmap_delayed_invl_finish_l(void)
729 {
730 	struct pmap_invl_gen *invl_gen, *next;
731 
732 	invl_gen = &curthread->td_md.md_invl_gen;
733 	KASSERT(invl_gen->gen != 0, ("missed invl_start"));
734 	mtx_lock(&invl_gen_mtx);
735 	next = LIST_NEXT(invl_gen, link);
736 	if (next == NULL)
737 		pmap_delayed_invl_finish_unblock(invl_gen->gen);
738 	else
739 		next->gen = invl_gen->gen;
740 	LIST_REMOVE(invl_gen, link);
741 	mtx_unlock(&invl_gen_mtx);
742 	invl_gen->gen = 0;
743 }
744 
745 static bool
pmap_not_in_di_u(void)746 pmap_not_in_di_u(void)
747 {
748 	struct pmap_invl_gen *invl_gen;
749 
750 	invl_gen = &curthread->td_md.md_invl_gen;
751 	return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
752 }
753 
754 static void
pmap_thread_init_invl_gen_u(struct thread * td)755 pmap_thread_init_invl_gen_u(struct thread *td)
756 {
757 	struct pmap_invl_gen *invl_gen;
758 
759 	invl_gen = &td->td_md.md_invl_gen;
760 	invl_gen->gen = 0;
761 	invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
762 }
763 
764 static bool
pmap_di_load_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * out)765 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
766 {
767 	uint64_t new_high, new_low, old_high, old_low;
768 	char res;
769 
770 	old_low = new_low = 0;
771 	old_high = new_high = (uintptr_t)0;
772 
773 	__asm volatile("lock;cmpxchg16b\t%1"
774 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
775 	    : "b"(new_low), "c" (new_high)
776 	    : "memory", "cc");
777 	if (res == 0) {
778 		if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
779 			return (false);
780 		out->gen = old_low;
781 		out->next = (void *)old_high;
782 	} else {
783 		out->gen = new_low;
784 		out->next = (void *)new_high;
785 	}
786 	return (true);
787 }
788 
789 static bool
pmap_di_store_invl(struct pmap_invl_gen * ptr,struct pmap_invl_gen * old_val,struct pmap_invl_gen * new_val)790 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
791     struct pmap_invl_gen *new_val)
792 {
793 	uint64_t new_high, new_low, old_high, old_low;
794 	char res;
795 
796 	new_low = new_val->gen;
797 	new_high = (uintptr_t)new_val->next;
798 	old_low = old_val->gen;
799 	old_high = (uintptr_t)old_val->next;
800 
801 	__asm volatile("lock;cmpxchg16b\t%1"
802 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
803 	    : "b"(new_low), "c" (new_high)
804 	    : "memory", "cc");
805 	return (res);
806 }
807 
808 static COUNTER_U64_DEFINE_EARLY(pv_page_count);
809 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_page_count, CTLFLAG_RD,
810     &pv_page_count, "Current number of allocated pv pages");
811 
812 static COUNTER_U64_DEFINE_EARLY(user_pt_page_count);
813 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, user_pt_page_count, CTLFLAG_RD,
814     &user_pt_page_count,
815     "Current number of allocated page table pages for userspace");
816 
817 static COUNTER_U64_DEFINE_EARLY(kernel_pt_page_count);
818 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, kernel_pt_page_count, CTLFLAG_RD,
819     &kernel_pt_page_count,
820     "Current number of allocated page table pages for the kernel");
821 
822 #ifdef PV_STATS
823 
824 static COUNTER_U64_DEFINE_EARLY(invl_start_restart);
825 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_start_restart,
826     CTLFLAG_RD, &invl_start_restart,
827     "Number of delayed TLB invalidation request restarts");
828 
829 static COUNTER_U64_DEFINE_EARLY(invl_finish_restart);
830 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
831     &invl_finish_restart,
832     "Number of delayed TLB invalidation completion restarts");
833 
834 static int invl_max_qlen;
835 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
836     &invl_max_qlen, 0,
837     "Maximum delayed TLB invalidation request queue length");
838 #endif
839 
840 #define di_delay	locks_delay
841 
842 static void
pmap_delayed_invl_start_u(void)843 pmap_delayed_invl_start_u(void)
844 {
845 	struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
846 	struct thread *td;
847 	struct lock_delay_arg lda;
848 	uintptr_t prevl;
849 	u_char pri;
850 #ifdef PV_STATS
851 	int i, ii;
852 #endif
853 
854 	td = curthread;
855 	invl_gen = &td->td_md.md_invl_gen;
856 	PMAP_ASSERT_NOT_IN_DI();
857 	lock_delay_arg_init(&lda, &di_delay);
858 	invl_gen->saved_pri = 0;
859 	pri = td->td_base_pri;
860 	if (pri > PVM) {
861 		thread_lock(td);
862 		pri = td->td_base_pri;
863 		if (pri > PVM) {
864 			invl_gen->saved_pri = pri;
865 			sched_prio(td, PVM);
866 		}
867 		thread_unlock(td);
868 	}
869 again:
870 	PV_STAT(i = 0);
871 	for (p = &pmap_invl_gen_head;; p = prev.next) {
872 		PV_STAT(i++);
873 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
874 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
875 			PV_STAT(counter_u64_add(invl_start_restart, 1));
876 			lock_delay(&lda);
877 			goto again;
878 		}
879 		if (prevl == 0)
880 			break;
881 		prev.next = (void *)prevl;
882 	}
883 #ifdef PV_STATS
884 	if ((ii = invl_max_qlen) < i)
885 		atomic_cmpset_int(&invl_max_qlen, ii, i);
886 #endif
887 
888 	if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
889 		PV_STAT(counter_u64_add(invl_start_restart, 1));
890 		lock_delay(&lda);
891 		goto again;
892 	}
893 
894 	new_prev.gen = prev.gen;
895 	new_prev.next = invl_gen;
896 	invl_gen->gen = prev.gen + 1;
897 
898 	/* Formal fence between store to invl->gen and updating *p. */
899 	atomic_thread_fence_rel();
900 
901 	/*
902 	 * After inserting an invl_gen element with invalid bit set,
903 	 * this thread blocks any other thread trying to enter the
904 	 * delayed invalidation block.  Do not allow to remove us from
905 	 * the CPU, because it causes starvation for other threads.
906 	 */
907 	critical_enter();
908 
909 	/*
910 	 * ABA for *p is not possible there, since p->gen can only
911 	 * increase.  So if the *p thread finished its di, then
912 	 * started a new one and got inserted into the list at the
913 	 * same place, its gen will appear greater than the previously
914 	 * read gen.
915 	 */
916 	if (!pmap_di_store_invl(p, &prev, &new_prev)) {
917 		critical_exit();
918 		PV_STAT(counter_u64_add(invl_start_restart, 1));
919 		lock_delay(&lda);
920 		goto again;
921 	}
922 
923 	/*
924 	 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
925 	 * invl_gen->next, allowing other threads to iterate past us.
926 	 * pmap_di_store_invl() provides fence between the generation
927 	 * write and the update of next.
928 	 */
929 	invl_gen->next = NULL;
930 	critical_exit();
931 }
932 
933 static bool
pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen * invl_gen,struct pmap_invl_gen * p)934 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
935     struct pmap_invl_gen *p)
936 {
937 	struct pmap_invl_gen prev, new_prev;
938 	u_long mygen;
939 
940 	/*
941 	 * Load invl_gen->gen after setting invl_gen->next
942 	 * PMAP_INVL_GEN_NEXT_INVALID.  This prevents larger
943 	 * generations to propagate to our invl_gen->gen.  Lock prefix
944 	 * in atomic_set_ptr() worked as seq_cst fence.
945 	 */
946 	mygen = atomic_load_long(&invl_gen->gen);
947 
948 	if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
949 		return (false);
950 
951 	KASSERT(prev.gen < mygen,
952 	    ("invalid di gen sequence %lu %lu", prev.gen, mygen));
953 	new_prev.gen = mygen;
954 	new_prev.next = (void *)((uintptr_t)invl_gen->next &
955 	    ~PMAP_INVL_GEN_NEXT_INVALID);
956 
957 	/* Formal fence between load of prev and storing update to it. */
958 	atomic_thread_fence_rel();
959 
960 	return (pmap_di_store_invl(p, &prev, &new_prev));
961 }
962 
963 static void
pmap_delayed_invl_finish_u(void)964 pmap_delayed_invl_finish_u(void)
965 {
966 	struct pmap_invl_gen *invl_gen, *p;
967 	struct thread *td;
968 	struct lock_delay_arg lda;
969 	uintptr_t prevl;
970 
971 	td = curthread;
972 	invl_gen = &td->td_md.md_invl_gen;
973 	KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
974 	KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
975 	    ("missed invl_start: INVALID"));
976 	lock_delay_arg_init(&lda, &di_delay);
977 
978 again:
979 	for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
980 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
981 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
982 			PV_STAT(counter_u64_add(invl_finish_restart, 1));
983 			lock_delay(&lda);
984 			goto again;
985 		}
986 		if ((void *)prevl == invl_gen)
987 			break;
988 	}
989 
990 	/*
991 	 * It is legitimate to not find ourself on the list if a
992 	 * thread before us finished its DI and started it again.
993 	 */
994 	if (__predict_false(p == NULL)) {
995 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
996 		lock_delay(&lda);
997 		goto again;
998 	}
999 
1000 	critical_enter();
1001 	atomic_set_ptr((uintptr_t *)&invl_gen->next,
1002 	    PMAP_INVL_GEN_NEXT_INVALID);
1003 	if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
1004 		atomic_clear_ptr((uintptr_t *)&invl_gen->next,
1005 		    PMAP_INVL_GEN_NEXT_INVALID);
1006 		critical_exit();
1007 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
1008 		lock_delay(&lda);
1009 		goto again;
1010 	}
1011 	critical_exit();
1012 	if (atomic_load_int(&pmap_invl_waiters) > 0)
1013 		pmap_delayed_invl_finish_unblock(0);
1014 	if (invl_gen->saved_pri != 0) {
1015 		thread_lock(td);
1016 		sched_prio(td, invl_gen->saved_pri);
1017 		thread_unlock(td);
1018 	}
1019 }
1020 
1021 #ifdef DDB
DB_SHOW_COMMAND(di_queue,pmap_di_queue)1022 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
1023 {
1024 	struct pmap_invl_gen *p, *pn;
1025 	struct thread *td;
1026 	uintptr_t nextl;
1027 	bool first;
1028 
1029 	for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
1030 	    first = false) {
1031 		nextl = (uintptr_t)atomic_load_ptr(&p->next);
1032 		pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
1033 		td = first ? NULL : __containerof(p, struct thread,
1034 		    td_md.md_invl_gen);
1035 		db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
1036 		    (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
1037 		    td != NULL ? td->td_tid : -1);
1038 	}
1039 }
1040 #endif
1041 
1042 #ifdef PV_STATS
1043 static COUNTER_U64_DEFINE_EARLY(invl_wait);
1044 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait,
1045     CTLFLAG_RD, &invl_wait,
1046     "Number of times DI invalidation blocked pmap_remove_all/write");
1047 
1048 static COUNTER_U64_DEFINE_EARLY(invl_wait_slow);
1049 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD,
1050      &invl_wait_slow, "Number of slow invalidation waits for lockless DI");
1051 
1052 #endif
1053 
1054 #ifdef NUMA
1055 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1056 pmap_delayed_invl_genp(vm_page_t m)
1057 {
1058 	vm_paddr_t pa;
1059 	u_long *gen;
1060 
1061 	pa = VM_PAGE_TO_PHYS(m);
1062 	if (__predict_false((pa) > pmap_last_pa))
1063 		gen = &pv_dummy_large.pv_invl_gen;
1064 	else
1065 		gen = &(pa_to_pmdp(pa)->pv_invl_gen);
1066 
1067 	return (gen);
1068 }
1069 #else
1070 static u_long *
pmap_delayed_invl_genp(vm_page_t m)1071 pmap_delayed_invl_genp(vm_page_t m)
1072 {
1073 
1074 	return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
1075 }
1076 #endif
1077 
1078 static void
pmap_delayed_invl_callout_func(void * arg __unused)1079 pmap_delayed_invl_callout_func(void *arg __unused)
1080 {
1081 
1082 	if (atomic_load_int(&pmap_invl_waiters) == 0)
1083 		return;
1084 	pmap_delayed_invl_finish_unblock(0);
1085 }
1086 
1087 static void
pmap_delayed_invl_callout_init(void * arg __unused)1088 pmap_delayed_invl_callout_init(void *arg __unused)
1089 {
1090 
1091 	if (pmap_di_locked())
1092 		return;
1093 	callout_init(&pmap_invl_callout, 1);
1094 	pmap_invl_callout_inited = true;
1095 }
1096 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
1097     pmap_delayed_invl_callout_init, NULL);
1098 
1099 /*
1100  * Ensure that all currently executing DI blocks, that need to flush
1101  * TLB for the given page m, actually flushed the TLB at the time the
1102  * function returned.  If the page m has an empty PV list and we call
1103  * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
1104  * valid mapping for the page m in either its page table or TLB.
1105  *
1106  * This function works by blocking until the global DI generation
1107  * number catches up with the generation number associated with the
1108  * given page m and its PV list.  Since this function's callers
1109  * typically own an object lock and sometimes own a page lock, it
1110  * cannot sleep.  Instead, it blocks on a turnstile to relinquish the
1111  * processor.
1112  */
1113 static void
pmap_delayed_invl_wait_l(vm_page_t m)1114 pmap_delayed_invl_wait_l(vm_page_t m)
1115 {
1116 	u_long *m_gen;
1117 #ifdef PV_STATS
1118 	bool accounted = false;
1119 #endif
1120 
1121 	m_gen = pmap_delayed_invl_genp(m);
1122 	while (*m_gen > pmap_invl_gen) {
1123 #ifdef PV_STATS
1124 		if (!accounted) {
1125 			counter_u64_add(invl_wait, 1);
1126 			accounted = true;
1127 		}
1128 #endif
1129 		pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
1130 	}
1131 }
1132 
1133 static void
pmap_delayed_invl_wait_u(vm_page_t m)1134 pmap_delayed_invl_wait_u(vm_page_t m)
1135 {
1136 	u_long *m_gen;
1137 	struct lock_delay_arg lda;
1138 	bool fast;
1139 
1140 	fast = true;
1141 	m_gen = pmap_delayed_invl_genp(m);
1142 	lock_delay_arg_init(&lda, &di_delay);
1143 	while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
1144 		if (fast || !pmap_invl_callout_inited) {
1145 			PV_STAT(counter_u64_add(invl_wait, 1));
1146 			lock_delay(&lda);
1147 			fast = false;
1148 		} else {
1149 			/*
1150 			 * The page's invalidation generation number
1151 			 * is still below the current thread's number.
1152 			 * Prepare to block so that we do not waste
1153 			 * CPU cycles or worse, suffer livelock.
1154 			 *
1155 			 * Since it is impossible to block without
1156 			 * racing with pmap_delayed_invl_finish_u(),
1157 			 * prepare for the race by incrementing
1158 			 * pmap_invl_waiters and arming a 1-tick
1159 			 * callout which will unblock us if we lose
1160 			 * the race.
1161 			 */
1162 			atomic_add_int(&pmap_invl_waiters, 1);
1163 
1164 			/*
1165 			 * Re-check the current thread's invalidation
1166 			 * generation after incrementing
1167 			 * pmap_invl_waiters, so that there is no race
1168 			 * with pmap_delayed_invl_finish_u() setting
1169 			 * the page generation and checking
1170 			 * pmap_invl_waiters.  The only race allowed
1171 			 * is for a missed unblock, which is handled
1172 			 * by the callout.
1173 			 */
1174 			if (*m_gen >
1175 			    atomic_load_long(&pmap_invl_gen_head.gen)) {
1176 				callout_reset(&pmap_invl_callout, 1,
1177 				    pmap_delayed_invl_callout_func, NULL);
1178 				PV_STAT(counter_u64_add(invl_wait_slow, 1));
1179 				pmap_delayed_invl_wait_block(m_gen,
1180 				    &pmap_invl_gen_head.gen);
1181 			}
1182 			atomic_add_int(&pmap_invl_waiters, -1);
1183 		}
1184 	}
1185 }
1186 
1187 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
1188 {
1189 
1190 	return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
1191 	    pmap_thread_init_invl_gen_u);
1192 }
1193 
1194 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
1195 {
1196 
1197 	return (pmap_di_locked() ? pmap_delayed_invl_start_l :
1198 	    pmap_delayed_invl_start_u);
1199 }
1200 
1201 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
1202 {
1203 
1204 	return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
1205 	    pmap_delayed_invl_finish_u);
1206 }
1207 
1208 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
1209 {
1210 
1211 	return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
1212 	    pmap_delayed_invl_wait_u);
1213 }
1214 
1215 /*
1216  * Mark the page m's PV list as participating in the current thread's
1217  * DI block.  Any threads concurrently using m's PV list to remove or
1218  * restrict all mappings to m will wait for the current thread's DI
1219  * block to complete before proceeding.
1220  *
1221  * The function works by setting the DI generation number for m's PV
1222  * list to at least the DI generation number of the current thread.
1223  * This forces a caller of pmap_delayed_invl_wait() to block until
1224  * current thread calls pmap_delayed_invl_finish().
1225  */
1226 static void
pmap_delayed_invl_page(vm_page_t m)1227 pmap_delayed_invl_page(vm_page_t m)
1228 {
1229 	u_long gen, *m_gen;
1230 
1231 	rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
1232 	gen = curthread->td_md.md_invl_gen.gen;
1233 	if (gen == 0)
1234 		return;
1235 	m_gen = pmap_delayed_invl_genp(m);
1236 	if (*m_gen < gen)
1237 		*m_gen = gen;
1238 }
1239 
1240 /*
1241  * Crashdump maps.
1242  */
1243 static caddr_t crashdumpmap;
1244 
1245 /*
1246  * Internal flags for pmap_enter()'s helper functions.
1247  */
1248 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
1249 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
1250 
1251 /*
1252  * Internal flags for pmap_mapdev_internal() and
1253  * pmap_change_props_locked().
1254  */
1255 #define	MAPDEV_FLUSHCACHE	0x00000001	/* Flush cache after mapping. */
1256 #define	MAPDEV_SETATTR		0x00000002	/* Modify existing attrs. */
1257 #define	MAPDEV_ASSERTVALID	0x00000004	/* Assert mapping validity. */
1258 
1259 TAILQ_HEAD(pv_chunklist, pv_chunk);
1260 
1261 static void	free_pv_chunk(struct pv_chunk *pc);
1262 static void	free_pv_chunk_batch(struct pv_chunklist *batch);
1263 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
1264 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
1265 static int	popcnt_pc_map_pq(uint64_t *map);
1266 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
1267 static void	reserve_pv_entries(pmap_t pmap, int needed,
1268 		    struct rwlock **lockp);
1269 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1270 		    struct rwlock **lockp);
1271 static bool	pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
1272 		    u_int flags, struct rwlock **lockp);
1273 #if VM_NRESERVLEVEL > 0
1274 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1275 		    struct rwlock **lockp);
1276 #endif
1277 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
1278 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
1279 		    vm_offset_t va);
1280 
1281 static void	pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
1282 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
1283     vm_prot_t prot, int mode, int flags);
1284 static bool	pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
1285 static bool	pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
1286     vm_offset_t va, struct rwlock **lockp);
1287 static bool	pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
1288     vm_offset_t va);
1289 static int	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
1290 		    vm_prot_t prot, struct rwlock **lockp);
1291 static int	pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
1292 		    u_int flags, vm_page_t m, struct rwlock **lockp);
1293 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
1294     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
1295 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
1296 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
1297     bool allpte_PG_A_set);
1298 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
1299     vm_offset_t eva);
1300 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
1301     vm_offset_t eva);
1302 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
1303 		    pd_entry_t pde);
1304 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
1305 static vm_page_t pmap_large_map_getptp_unlocked(void);
1306 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
1307 #if VM_NRESERVLEVEL > 0
1308 static bool pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
1309     vm_page_t mpte, struct rwlock **lockp);
1310 #endif
1311 static bool pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
1312     vm_prot_t prot);
1313 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
1314 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
1315     bool exec);
1316 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
1317 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
1318 static void pmap_pti_wire_pte(void *pte);
1319 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
1320     struct spglist *free, struct rwlock **lockp);
1321 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
1322     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
1323 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
1324 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1325     struct spglist *free);
1326 static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1327 		    pd_entry_t *pde, struct spglist *free,
1328 		    struct rwlock **lockp);
1329 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
1330     vm_page_t m, struct rwlock **lockp);
1331 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
1332     pd_entry_t newpde);
1333 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
1334 
1335 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
1336 		struct rwlock **lockp);
1337 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
1338 		struct rwlock **lockp, vm_offset_t va);
1339 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
1340 		struct rwlock **lockp, vm_offset_t va);
1341 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
1342 		struct rwlock **lockp);
1343 
1344 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
1345     struct spglist *free);
1346 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
1347 
1348 static vm_page_t pmap_alloc_pt_page(pmap_t, vm_pindex_t, int);
1349 static void pmap_free_pt_page(pmap_t, vm_page_t, bool);
1350 
1351 /********************/
1352 /* Inline functions */
1353 /********************/
1354 
1355 /*
1356  * Return a non-clipped indexes for a given VA, which are page table
1357  * pages indexes at the corresponding level.
1358  */
1359 static __inline vm_pindex_t
pmap_pde_pindex(vm_offset_t va)1360 pmap_pde_pindex(vm_offset_t va)
1361 {
1362 	return (va >> PDRSHIFT);
1363 }
1364 
1365 static __inline vm_pindex_t
pmap_pdpe_pindex(vm_offset_t va)1366 pmap_pdpe_pindex(vm_offset_t va)
1367 {
1368 	return (NUPDE + (va >> PDPSHIFT));
1369 }
1370 
1371 static __inline vm_pindex_t
pmap_pml4e_pindex(vm_offset_t va)1372 pmap_pml4e_pindex(vm_offset_t va)
1373 {
1374 	return (NUPDE + NUPDPE + (va >> PML4SHIFT));
1375 }
1376 
1377 static __inline vm_pindex_t
pmap_pml5e_pindex(vm_offset_t va)1378 pmap_pml5e_pindex(vm_offset_t va)
1379 {
1380 	return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
1381 }
1382 
1383 static __inline pml4_entry_t *
pmap_pml5e(pmap_t pmap,vm_offset_t va)1384 pmap_pml5e(pmap_t pmap, vm_offset_t va)
1385 {
1386 
1387 	MPASS(pmap_is_la57(pmap));
1388 	return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
1389 }
1390 
1391 static __inline pml4_entry_t *
pmap_pml5e_u(pmap_t pmap,vm_offset_t va)1392 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
1393 {
1394 
1395 	MPASS(pmap_is_la57(pmap));
1396 	return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
1397 }
1398 
1399 static __inline pml4_entry_t *
pmap_pml5e_to_pml4e(pml5_entry_t * pml5e,vm_offset_t va)1400 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
1401 {
1402 	pml4_entry_t *pml4e;
1403 
1404 	/* XXX MPASS(pmap_is_la57(pmap); */
1405 	pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1406 	return (&pml4e[pmap_pml4e_index(va)]);
1407 }
1408 
1409 /* Return a pointer to the PML4 slot that corresponds to a VA */
1410 static __inline pml4_entry_t *
pmap_pml4e(pmap_t pmap,vm_offset_t va)1411 pmap_pml4e(pmap_t pmap, vm_offset_t va)
1412 {
1413 	pml5_entry_t *pml5e;
1414 	pml4_entry_t *pml4e;
1415 	pt_entry_t PG_V;
1416 
1417 	if (pmap_is_la57(pmap)) {
1418 		pml5e = pmap_pml5e(pmap, va);
1419 		PG_V = pmap_valid_bit(pmap);
1420 		if ((*pml5e & PG_V) == 0)
1421 			return (NULL);
1422 		pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
1423 	} else {
1424 		pml4e = pmap->pm_pmltop;
1425 	}
1426 	return (&pml4e[pmap_pml4e_index(va)]);
1427 }
1428 
1429 static __inline pml4_entry_t *
pmap_pml4e_u(pmap_t pmap,vm_offset_t va)1430 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
1431 {
1432 	MPASS(!pmap_is_la57(pmap));
1433 	return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
1434 }
1435 
1436 /* Return a pointer to the PDP slot that corresponds to a VA */
1437 static __inline pdp_entry_t *
pmap_pml4e_to_pdpe(pml4_entry_t * pml4e,vm_offset_t va)1438 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
1439 {
1440 	pdp_entry_t *pdpe;
1441 
1442 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
1443 	return (&pdpe[pmap_pdpe_index(va)]);
1444 }
1445 
1446 /* Return a pointer to the PDP slot that corresponds to a VA */
1447 static __inline pdp_entry_t *
pmap_pdpe(pmap_t pmap,vm_offset_t va)1448 pmap_pdpe(pmap_t pmap, vm_offset_t va)
1449 {
1450 	pml4_entry_t *pml4e;
1451 	pt_entry_t PG_V;
1452 
1453 	PG_V = pmap_valid_bit(pmap);
1454 	pml4e = pmap_pml4e(pmap, va);
1455 	if (pml4e == NULL || (*pml4e & PG_V) == 0)
1456 		return (NULL);
1457 	return (pmap_pml4e_to_pdpe(pml4e, va));
1458 }
1459 
1460 /* Return a pointer to the PD slot that corresponds to a VA */
1461 static __inline pd_entry_t *
pmap_pdpe_to_pde(pdp_entry_t * pdpe,vm_offset_t va)1462 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
1463 {
1464 	pd_entry_t *pde;
1465 
1466 	KASSERT((*pdpe & PG_PS) == 0,
1467 	    ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
1468 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
1469 	return (&pde[pmap_pde_index(va)]);
1470 }
1471 
1472 /* Return a pointer to the PD slot that corresponds to a VA */
1473 static __inline pd_entry_t *
pmap_pde(pmap_t pmap,vm_offset_t va)1474 pmap_pde(pmap_t pmap, vm_offset_t va)
1475 {
1476 	pdp_entry_t *pdpe;
1477 	pt_entry_t PG_V;
1478 
1479 	PG_V = pmap_valid_bit(pmap);
1480 	pdpe = pmap_pdpe(pmap, va);
1481 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
1482 		return (NULL);
1483 	KASSERT((*pdpe & PG_PS) == 0,
1484 	    ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
1485 	return (pmap_pdpe_to_pde(pdpe, va));
1486 }
1487 
1488 /* Return a pointer to the PT slot that corresponds to a VA */
1489 static __inline pt_entry_t *
pmap_pde_to_pte(pd_entry_t * pde,vm_offset_t va)1490 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
1491 {
1492 	pt_entry_t *pte;
1493 
1494 	KASSERT((*pde & PG_PS) == 0,
1495 	    ("%s: pde %#lx is a leaf", __func__, *pde));
1496 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
1497 	return (&pte[pmap_pte_index(va)]);
1498 }
1499 
1500 /* Return a pointer to the PT slot that corresponds to a VA */
1501 static __inline pt_entry_t *
pmap_pte(pmap_t pmap,vm_offset_t va)1502 pmap_pte(pmap_t pmap, vm_offset_t va)
1503 {
1504 	pd_entry_t *pde;
1505 	pt_entry_t PG_V;
1506 
1507 	PG_V = pmap_valid_bit(pmap);
1508 	pde = pmap_pde(pmap, va);
1509 	if (pde == NULL || (*pde & PG_V) == 0)
1510 		return (NULL);
1511 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
1512 		return ((pt_entry_t *)pde);
1513 	return (pmap_pde_to_pte(pde, va));
1514 }
1515 
1516 static __inline void
pmap_resident_count_adj(pmap_t pmap,int count)1517 pmap_resident_count_adj(pmap_t pmap, int count)
1518 {
1519 
1520 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1521 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1522 	    ("pmap %p resident count underflow %ld %d", pmap,
1523 	    pmap->pm_stats.resident_count, count));
1524 	pmap->pm_stats.resident_count += count;
1525 }
1526 
1527 static __inline void
pmap_pt_page_count_pinit(pmap_t pmap,int count)1528 pmap_pt_page_count_pinit(pmap_t pmap, int count)
1529 {
1530 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
1531 	    ("pmap %p resident count underflow %ld %d", pmap,
1532 	    pmap->pm_stats.resident_count, count));
1533 	pmap->pm_stats.resident_count += count;
1534 }
1535 
1536 static __inline void
pmap_pt_page_count_adj(pmap_t pmap,int count)1537 pmap_pt_page_count_adj(pmap_t pmap, int count)
1538 {
1539 	if (pmap == kernel_pmap)
1540 		counter_u64_add(kernel_pt_page_count, count);
1541 	else {
1542 		if (pmap != NULL)
1543 			pmap_resident_count_adj(pmap, count);
1544 		counter_u64_add(user_pt_page_count, count);
1545 	}
1546 }
1547 
1548 pt_entry_t vtoptem __read_mostly = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
1549     NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1) << 3;
1550 vm_offset_t PTmap __read_mostly = (vm_offset_t)P4Tmap;
1551 
1552 pt_entry_t *
vtopte(vm_offset_t va)1553 vtopte(vm_offset_t va)
1554 {
1555 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
1556 
1557 	return ((pt_entry_t *)(PTmap + ((va >> (PAGE_SHIFT - 3)) & vtoptem)));
1558 }
1559 
1560 pd_entry_t vtopdem __read_mostly = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
1561     NPML4EPGSHIFT)) - 1) << 3;
1562 vm_offset_t PDmap __read_mostly = (vm_offset_t)P4Dmap;
1563 
1564 static __inline pd_entry_t *
vtopde(vm_offset_t va)1565 vtopde(vm_offset_t va)
1566 {
1567 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
1568 
1569 	return ((pt_entry_t *)(PDmap + ((va >> (PDRSHIFT - 3)) & vtopdem)));
1570 }
1571 
1572 static u_int64_t
allocpages(vm_paddr_t * firstaddr,int n)1573 allocpages(vm_paddr_t *firstaddr, int n)
1574 {
1575 	u_int64_t ret;
1576 
1577 	ret = *firstaddr;
1578 	bzero((void *)ret, n * PAGE_SIZE);
1579 	*firstaddr += n * PAGE_SIZE;
1580 	return (ret);
1581 }
1582 
1583 CTASSERT(powerof2(NDMPML4E));
1584 
1585 /* number of kernel PDP slots */
1586 #define	NKPDPE(ptpgs)		howmany(ptpgs, NPDEPG)
1587 
1588 static void
nkpt_init(vm_paddr_t addr)1589 nkpt_init(vm_paddr_t addr)
1590 {
1591 	int pt_pages;
1592 
1593 #ifdef NKPT
1594 	pt_pages = NKPT;
1595 #else
1596 	pt_pages = howmany(addr - kernphys, NBPDR) + 1; /* +1 for 2M hole @0 */
1597 	pt_pages += NKPDPE(pt_pages);
1598 
1599 	/*
1600 	 * Add some slop beyond the bare minimum required for bootstrapping
1601 	 * the kernel.
1602 	 *
1603 	 * This is quite important when allocating KVA for kernel modules.
1604 	 * The modules are required to be linked in the negative 2GB of
1605 	 * the address space.  If we run out of KVA in this region then
1606 	 * pmap_growkernel() will need to allocate page table pages to map
1607 	 * the entire 512GB of KVA space which is an unnecessary tax on
1608 	 * physical memory.
1609 	 *
1610 	 * Secondly, device memory mapped as part of setting up the low-
1611 	 * level console(s) is taken from KVA, starting at virtual_avail.
1612 	 * This is because cninit() is called after pmap_bootstrap() but
1613 	 * before vm_mem_init() and pmap_init(). 20MB for a frame buffer
1614 	 * is not uncommon.
1615 	 */
1616 	pt_pages += 32;		/* 64MB additional slop. */
1617 #endif
1618 	nkpt = pt_pages;
1619 }
1620 
1621 /*
1622  * Returns the proper write/execute permission for a physical page that is
1623  * part of the initial boot allocations.
1624  *
1625  * If the page has kernel text, it is marked as read-only. If the page has
1626  * kernel read-only data, it is marked as read-only/not-executable. If the
1627  * page has only read-write data, it is marked as read-write/not-executable.
1628  * If the page is below/above the kernel range, it is marked as read-write.
1629  *
1630  * This function operates on 2M pages, since we map the kernel space that
1631  * way.
1632  */
1633 static inline pt_entry_t
bootaddr_rwx(vm_paddr_t pa)1634 bootaddr_rwx(vm_paddr_t pa)
1635 {
1636 	/*
1637 	 * The kernel is loaded at a 2MB-aligned address, and memory below that
1638 	 * need not be executable.  The .bss section is padded to a 2MB
1639 	 * boundary, so memory following the kernel need not be executable
1640 	 * either.  Preloaded kernel modules have their mapping permissions
1641 	 * fixed up by the linker.
1642 	 */
1643 	if (pa < trunc_2mpage(kernphys + btext - KERNSTART) ||
1644 	    pa >= trunc_2mpage(kernphys + _end - KERNSTART))
1645 		return (X86_PG_RW | pg_nx);
1646 
1647 	/*
1648 	 * The linker should ensure that the read-only and read-write
1649 	 * portions don't share the same 2M page, so this shouldn't
1650 	 * impact read-only data. However, in any case, any page with
1651 	 * read-write data needs to be read-write.
1652 	 */
1653 	if (pa >= trunc_2mpage(kernphys + brwsection - KERNSTART))
1654 		return (X86_PG_RW | pg_nx);
1655 
1656 	/*
1657 	 * Mark any 2M page containing kernel text as read-only. Mark
1658 	 * other pages with read-only data as read-only and not executable.
1659 	 * (It is likely a small portion of the read-only data section will
1660 	 * be marked as read-only, but executable. This should be acceptable
1661 	 * since the read-only protection will keep the data from changing.)
1662 	 * Note that fixups to the .text section will still work until we
1663 	 * set CR0.WP.
1664 	 */
1665 	if (pa < round_2mpage(kernphys + etext - KERNSTART))
1666 		return (0);
1667 	return (pg_nx);
1668 }
1669 
1670 static void
create_pagetables(vm_paddr_t * firstaddr)1671 create_pagetables(vm_paddr_t *firstaddr)
1672 {
1673 	pd_entry_t *pd_p;
1674 	pdp_entry_t *pdp_p;
1675 	pml4_entry_t *p4_p;
1676 	uint64_t DMPDkernphys;
1677 	vm_paddr_t pax;
1678 #ifdef KASAN
1679 	pt_entry_t *pt_p;
1680 	uint64_t KASANPDphys, KASANPTphys, KASANphys;
1681 	vm_offset_t kasankernbase;
1682 	int kasankpdpi, kasankpdi, nkasanpte;
1683 #endif
1684 	int i, j, ndm1g, nkpdpe, nkdmpde;
1685 
1686 	TSENTER();
1687 	/* Allocate page table pages for the direct map */
1688 	ndmpdp = howmany(ptoa(Maxmem), NBPDP);
1689 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
1690 		ndmpdp = 4;
1691 	ndmpdpphys = howmany(ndmpdp, NPDPEPG);
1692 	if (ndmpdpphys > NDMPML4E) {
1693 		/*
1694 		 * Each NDMPML4E allows 512 GB, so limit to that,
1695 		 * and then readjust ndmpdp and ndmpdpphys.
1696 		 */
1697 		printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
1698 		Maxmem = atop(NDMPML4E * NBPML4);
1699 		ndmpdpphys = NDMPML4E;
1700 		ndmpdp = NDMPML4E * NPDEPG;
1701 	}
1702 	DMPDPphys = allocpages(firstaddr, ndmpdpphys);
1703 	ndm1g = 0;
1704 	if ((amd_feature & AMDID_PAGE1GB) != 0) {
1705 		/*
1706 		 * Calculate the number of 1G pages that will fully fit in
1707 		 * Maxmem.
1708 		 */
1709 		ndm1g = ptoa(Maxmem) >> PDPSHIFT;
1710 
1711 		/*
1712 		 * Allocate 2M pages for the kernel. These will be used in
1713 		 * place of the one or more 1G pages from ndm1g that maps
1714 		 * kernel memory into DMAP.
1715 		 */
1716 		nkdmpde = howmany((vm_offset_t)brwsection - KERNSTART +
1717 		    kernphys - rounddown2(kernphys, NBPDP), NBPDP);
1718 		DMPDkernphys = allocpages(firstaddr, nkdmpde);
1719 	}
1720 	if (ndm1g < ndmpdp)
1721 		DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
1722 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
1723 
1724 	/* Allocate pages. */
1725 	KPML4phys = allocpages(firstaddr, 1);
1726 	KPDPphys = allocpages(firstaddr, NKPML4E);
1727 #ifdef KASAN
1728 	KASANPDPphys = allocpages(firstaddr, NKASANPML4E);
1729 	KASANPDphys = allocpages(firstaddr, 1);
1730 #endif
1731 #ifdef KMSAN
1732 	/*
1733 	 * The KMSAN shadow maps are initially left unpopulated, since there is
1734 	 * no need to shadow memory above KERNBASE.
1735 	 */
1736 	KMSANSHADPDPphys = allocpages(firstaddr, NKMSANSHADPML4E);
1737 	KMSANORIGPDPphys = allocpages(firstaddr, NKMSANORIGPML4E);
1738 #endif
1739 
1740 	/*
1741 	 * Allocate the initial number of kernel page table pages required to
1742 	 * bootstrap.  We defer this until after all memory-size dependent
1743 	 * allocations are done (e.g. direct map), so that we don't have to
1744 	 * build in too much slop in our estimate.
1745 	 *
1746 	 * Note that when NKPML4E > 1, we have an empty page underneath
1747 	 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
1748 	 * pages.  (pmap_enter requires a PD page to exist for each KPML4E.)
1749 	 */
1750 	nkpt_init(*firstaddr);
1751 	nkpdpe = NKPDPE(nkpt);
1752 
1753 	KPTphys = allocpages(firstaddr, nkpt);
1754 	KPDphys = allocpages(firstaddr, nkpdpe);
1755 
1756 #ifdef KASAN
1757 	nkasanpte = howmany(nkpt, KASAN_SHADOW_SCALE);
1758 	KASANPTphys = allocpages(firstaddr, nkasanpte);
1759 	KASANphys = allocpages(firstaddr, nkasanpte * NPTEPG);
1760 #endif
1761 
1762 	/*
1763 	 * Connect the zero-filled PT pages to their PD entries.  This
1764 	 * implicitly maps the PT pages at their correct locations within
1765 	 * the PTmap.
1766 	 */
1767 	pd_p = (pd_entry_t *)KPDphys;
1768 	for (i = 0; i < nkpt; i++)
1769 		pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1770 
1771 	/*
1772 	 * Map from start of the kernel in physical memory (staging
1773 	 * area) to the end of loader preallocated memory using 2MB
1774 	 * pages.  This replaces some of the PD entries created above.
1775 	 * For compatibility, identity map 2M at the start.
1776 	 */
1777 	pd_p[0] = X86_PG_V | PG_PS | pg_g | X86_PG_M | X86_PG_A |
1778 	    X86_PG_RW | pg_nx;
1779 	for (i = 1, pax = kernphys; pax < KERNend; i++, pax += NBPDR) {
1780 		/* Preset PG_M and PG_A because demotion expects it. */
1781 		pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1782 		    X86_PG_A | bootaddr_rwx(pax);
1783 	}
1784 
1785 	/*
1786 	 * Because we map the physical blocks in 2M pages, adjust firstaddr
1787 	 * to record the physical blocks we've actually mapped into kernel
1788 	 * virtual address space.
1789 	 */
1790 	if (*firstaddr < round_2mpage(KERNend))
1791 		*firstaddr = round_2mpage(KERNend);
1792 
1793 	/* And connect up the PD to the PDP (leaving room for L4 pages) */
1794 	pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
1795 	for (i = 0; i < nkpdpe; i++)
1796 		pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
1797 
1798 #ifdef KASAN
1799 	kasankernbase = kasan_md_addr_to_shad(KERNBASE);
1800 	kasankpdpi = pmap_pdpe_index(kasankernbase);
1801 	kasankpdi = pmap_pde_index(kasankernbase);
1802 
1803 	pdp_p = (pdp_entry_t *)KASANPDPphys;
1804 	pdp_p[kasankpdpi] = (KASANPDphys | X86_PG_RW | X86_PG_V | pg_nx);
1805 
1806 	pd_p = (pd_entry_t *)KASANPDphys;
1807 	for (i = 0; i < nkasanpte; i++)
1808 		pd_p[i + kasankpdi] = (KASANPTphys + ptoa(i)) | X86_PG_RW |
1809 		    X86_PG_V | pg_nx;
1810 
1811 	pt_p = (pt_entry_t *)KASANPTphys;
1812 	for (i = 0; i < nkasanpte * NPTEPG; i++)
1813 		pt_p[i] = (KASANphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
1814 		    X86_PG_M | X86_PG_A | pg_nx;
1815 #endif
1816 
1817 	/*
1818 	 * Now, set up the direct map region using 2MB and/or 1GB pages.  If
1819 	 * the end of physical memory is not aligned to a 1GB page boundary,
1820 	 * then the residual physical memory is mapped with 2MB pages.  Later,
1821 	 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
1822 	 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
1823 	 * that are partially used.
1824 	 */
1825 	pd_p = (pd_entry_t *)DMPDphys;
1826 	for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
1827 		pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
1828 		/* Preset PG_M and PG_A because demotion expects it. */
1829 		pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1830 		    X86_PG_M | X86_PG_A | pg_nx;
1831 	}
1832 	pdp_p = (pdp_entry_t *)DMPDPphys;
1833 	for (i = 0; i < ndm1g; i++) {
1834 		pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
1835 		/* Preset PG_M and PG_A because demotion expects it. */
1836 		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
1837 		    X86_PG_M | X86_PG_A | pg_nx;
1838 	}
1839 	for (j = 0; i < ndmpdp; i++, j++) {
1840 		pdp_p[i] = DMPDphys + ptoa(j);
1841 		pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
1842 	}
1843 
1844 	/*
1845 	 * Instead of using a 1G page for the memory containing the kernel,
1846 	 * use 2M pages with read-only and no-execute permissions.  (If using 1G
1847 	 * pages, this will partially overwrite the PDPEs above.)
1848 	 */
1849 	if (ndm1g > 0) {
1850 		pd_p = (pd_entry_t *)DMPDkernphys;
1851 		for (i = 0, pax = rounddown2(kernphys, NBPDP);
1852 		    i < NPDEPG * nkdmpde; i++, pax += NBPDR) {
1853 			pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
1854 			    X86_PG_A | pg_nx | bootaddr_rwx(pax);
1855 		}
1856 		j = rounddown2(kernphys, NBPDP) >> PDPSHIFT;
1857 		for (i = 0; i < nkdmpde; i++) {
1858 			pdp_p[i + j] = (DMPDkernphys + ptoa(i)) |
1859 			    X86_PG_RW | X86_PG_V | pg_nx;
1860 		}
1861 	}
1862 
1863 	/* And recursively map PML4 to itself in order to get PTmap */
1864 	p4_p = (pml4_entry_t *)KPML4phys;
1865 	p4_p[PML4PML4I] = KPML4phys;
1866 	p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
1867 
1868 #ifdef KASAN
1869 	/* Connect the KASAN shadow map slots up to the PML4. */
1870 	for (i = 0; i < NKASANPML4E; i++) {
1871 		p4_p[KASANPML4I + i] = KASANPDPphys + ptoa(i);
1872 		p4_p[KASANPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1873 	}
1874 #endif
1875 
1876 #ifdef KMSAN
1877 	/* Connect the KMSAN shadow map slots up to the PML4. */
1878 	for (i = 0; i < NKMSANSHADPML4E; i++) {
1879 		p4_p[KMSANSHADPML4I + i] = KMSANSHADPDPphys + ptoa(i);
1880 		p4_p[KMSANSHADPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1881 	}
1882 
1883 	/* Connect the KMSAN origin map slots up to the PML4. */
1884 	for (i = 0; i < NKMSANORIGPML4E; i++) {
1885 		p4_p[KMSANORIGPML4I + i] = KMSANORIGPDPphys + ptoa(i);
1886 		p4_p[KMSANORIGPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1887 	}
1888 #endif
1889 
1890 	/* Connect the Direct Map slots up to the PML4. */
1891 	for (i = 0; i < ndmpdpphys; i++) {
1892 		p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
1893 		p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
1894 	}
1895 
1896 	/* Connect the KVA slots up to the PML4 */
1897 	for (i = 0; i < NKPML4E; i++) {
1898 		p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
1899 		p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
1900 	}
1901 
1902 	kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
1903 	TSEXIT();
1904 }
1905 
1906 /*
1907  *	Bootstrap the system enough to run with virtual memory.
1908  *
1909  *	On amd64 this is called after mapping has already been enabled
1910  *	and just syncs the pmap module with what has already been done.
1911  *	[We can't call it easily with mapping off since the kernel is not
1912  *	mapped with PA == VA, hence we would have to relocate every address
1913  *	from the linked base (virtual) address "KERNBASE" to the actual
1914  *	(physical) address starting relative to 0]
1915  */
1916 void
pmap_bootstrap(vm_paddr_t * firstaddr)1917 pmap_bootstrap(vm_paddr_t *firstaddr)
1918 {
1919 	vm_offset_t va;
1920 	pt_entry_t *pte, *pcpu_pte;
1921 	struct region_descriptor r_gdt;
1922 	uint64_t cr4, pcpu0_phys;
1923 	u_long res;
1924 	int i;
1925 
1926 	TSENTER();
1927 	KERNend = *firstaddr;
1928 	res = atop(KERNend - (vm_paddr_t)kernphys);
1929 
1930 	if (!pti)
1931 		pg_g = X86_PG_G;
1932 
1933 	/*
1934 	 * Create an initial set of page tables to run the kernel in.
1935 	 */
1936 	create_pagetables(firstaddr);
1937 
1938 	pcpu0_phys = allocpages(firstaddr, 1);
1939 
1940 	/*
1941 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
1942 	 * preallocated kernel page table pages so that vm_page structures
1943 	 * representing these pages will be created.  The vm_page structures
1944 	 * are required for promotion of the corresponding kernel virtual
1945 	 * addresses to superpage mappings.
1946 	 */
1947 	vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
1948 
1949 	/*
1950 	 * Account for the virtual addresses mapped by create_pagetables().
1951 	 */
1952 	virtual_avail = (vm_offset_t)KERNSTART + round_2mpage(KERNend -
1953 	    (vm_paddr_t)kernphys);
1954 	virtual_end = VM_MAX_KERNEL_ADDRESS;
1955 
1956 	/*
1957 	 * Enable PG_G global pages, then switch to the kernel page
1958 	 * table from the bootstrap page table.  After the switch, it
1959 	 * is possible to enable SMEP and SMAP since PG_U bits are
1960 	 * correct now.
1961 	 */
1962 	cr4 = rcr4();
1963 	cr4 |= CR4_PGE;
1964 	load_cr4(cr4);
1965 	load_cr3(KPML4phys);
1966 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
1967 		cr4 |= CR4_SMEP;
1968 	if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
1969 		cr4 |= CR4_SMAP;
1970 	load_cr4(cr4);
1971 
1972 	/*
1973 	 * Initialize the kernel pmap (which is statically allocated).
1974 	 * Count bootstrap data as being resident in case any of this data is
1975 	 * later unmapped (using pmap_remove()) and freed.
1976 	 */
1977 	PMAP_LOCK_INIT(kernel_pmap);
1978 	kernel_pmap->pm_pmltop = kernel_pml4;
1979 	kernel_pmap->pm_cr3 = KPML4phys;
1980 	kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
1981 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1982 	kernel_pmap->pm_stats.resident_count = res;
1983 	vm_radix_init(&kernel_pmap->pm_root);
1984 	kernel_pmap->pm_flags = pmap_flags;
1985 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
1986 		rangeset_init(&kernel_pmap->pm_pkru, pkru_dup_range,
1987 		    pkru_free_range, kernel_pmap, M_NOWAIT);
1988 	}
1989 
1990 	/*
1991 	 * The kernel pmap is always active on all CPUs.  Once CPUs are
1992 	 * enumerated, the mask will be set equal to all_cpus.
1993 	 */
1994 	CPU_FILL(&kernel_pmap->pm_active);
1995 
1996  	/*
1997 	 * Initialize the TLB invalidations generation number lock.
1998 	 */
1999 	mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
2000 
2001 	/*
2002 	 * Reserve some special page table entries/VA space for temporary
2003 	 * mapping of pages.
2004 	 */
2005 #define	SYSMAP(c, p, v, n)	\
2006 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
2007 
2008 	va = virtual_avail;
2009 	pte = vtopte(va);
2010 
2011 	/*
2012 	 * Crashdump maps.  The first page is reused as CMAP1 for the
2013 	 * memory test.
2014 	 */
2015 	SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
2016 	CADDR1 = crashdumpmap;
2017 
2018 	SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
2019 	virtual_avail = va;
2020 
2021 	/*
2022 	 * Map the BSP PCPU now, the rest of the PCPUs are mapped by
2023 	 * amd64_mp_alloc_pcpu()/start_all_aps() when we know the
2024 	 * number of CPUs and NUMA affinity.
2025 	 */
2026 	pcpu_pte[0] = pcpu0_phys | X86_PG_V | X86_PG_RW | pg_g | pg_nx |
2027 	    X86_PG_M | X86_PG_A;
2028 	for (i = 1; i < MAXCPU; i++)
2029 		pcpu_pte[i] = 0;
2030 
2031 	/*
2032 	 * Re-initialize PCPU area for BSP after switching.
2033 	 * Make hardware use gdt and common_tss from the new PCPU.
2034 	 */
2035 	STAILQ_INIT(&cpuhead);
2036 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2037 	pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
2038 	amd64_bsp_pcpu_init1(&__pcpu[0]);
2039 	amd64_bsp_ist_init(&__pcpu[0]);
2040 	__pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
2041 	    IOPERM_BITMAP_SIZE;
2042 	memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
2043 	    sizeof(struct user_segment_descriptor));
2044 	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
2045 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2046 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2047 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2048 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2049 	lgdt(&r_gdt);
2050 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2051 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2052 	__pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
2053 	__pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
2054 
2055 	/*
2056 	 * Initialize the PAT MSR.
2057 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
2058 	 * side-effect, invalidates stale PG_G TLB entries that might
2059 	 * have been created in our pre-boot environment.
2060 	 */
2061 	pmap_init_pat();
2062 
2063 	/* Initialize TLB Context Id. */
2064 	if (pmap_pcid_enabled) {
2065 		kernel_pmap->pm_pcidp = (void *)(uintptr_t)
2066 		    offsetof(struct pcpu, pc_kpmap_store);
2067 
2068 		PCPU_SET(kpmap_store.pm_pcid, PMAP_PCID_KERN);
2069 		PCPU_SET(kpmap_store.pm_gen, 1);
2070 
2071 		/*
2072 		 * PMAP_PCID_KERN + 1 is used for initialization of
2073 		 * proc0 pmap.  The pmap' pcid state might be used by
2074 		 * EFIRT entry before first context switch, so it
2075 		 * needs to be valid.
2076 		 */
2077 		PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
2078 		PCPU_SET(pcid_gen, 1);
2079 
2080 		/*
2081 		 * pcpu area for APs is zeroed during AP startup.
2082 		 * pc_pcid_next and pc_pcid_gen are initialized by AP
2083 		 * during pcpu setup.
2084 		 */
2085 		load_cr4(rcr4() | CR4_PCIDE);
2086 	}
2087 	TSEXIT();
2088 }
2089 
2090 /*
2091  * Setup the PAT MSR.
2092  */
2093 void
pmap_init_pat(void)2094 pmap_init_pat(void)
2095 {
2096 	uint64_t pat_msr;
2097 	u_long cr0, cr4;
2098 	int i;
2099 
2100 	/* Bail if this CPU doesn't implement PAT. */
2101 	if ((cpu_feature & CPUID_PAT) == 0)
2102 		panic("no PAT??");
2103 
2104 	/* Set default PAT index table. */
2105 	for (i = 0; i < PAT_INDEX_SIZE; i++)
2106 		pat_index[i] = -1;
2107 	pat_index[PAT_WRITE_BACK] = 0;
2108 	pat_index[PAT_WRITE_THROUGH] = 1;
2109 	pat_index[PAT_UNCACHEABLE] = 3;
2110 	pat_index[PAT_WRITE_COMBINING] = 6;
2111 	pat_index[PAT_WRITE_PROTECTED] = 5;
2112 	pat_index[PAT_UNCACHED] = 2;
2113 
2114 	/*
2115 	 * Initialize default PAT entries.
2116 	 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
2117 	 * Program 5 and 6 as WP and WC.
2118 	 *
2119 	 * Leave 4 and 7 as WB and UC.  Note that a recursive page table
2120 	 * mapping for a 2M page uses a PAT value with the bit 3 set due
2121 	 * to its overload with PG_PS.
2122 	 */
2123 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
2124 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
2125 	    PAT_VALUE(2, PAT_UNCACHED) |
2126 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
2127 	    PAT_VALUE(4, PAT_WRITE_BACK) |
2128 	    PAT_VALUE(5, PAT_WRITE_PROTECTED) |
2129 	    PAT_VALUE(6, PAT_WRITE_COMBINING) |
2130 	    PAT_VALUE(7, PAT_UNCACHEABLE);
2131 
2132 	/* Disable PGE. */
2133 	cr4 = rcr4();
2134 	load_cr4(cr4 & ~CR4_PGE);
2135 
2136 	/* Disable caches (CD = 1, NW = 0). */
2137 	cr0 = rcr0();
2138 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
2139 
2140 	/* Flushes caches and TLBs. */
2141 	wbinvd();
2142 	invltlb();
2143 
2144 	/* Update PAT and index table. */
2145 	wrmsr(MSR_PAT, pat_msr);
2146 
2147 	/* Flush caches and TLBs again. */
2148 	wbinvd();
2149 	invltlb();
2150 
2151 	/* Restore caches and PGE. */
2152 	load_cr0(cr0);
2153 	load_cr4(cr4);
2154 }
2155 
2156 vm_page_t
pmap_page_alloc_below_4g(bool zeroed)2157 pmap_page_alloc_below_4g(bool zeroed)
2158 {
2159 	return (vm_page_alloc_noobj_contig((zeroed ? VM_ALLOC_ZERO : 0),
2160 	    1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT));
2161 }
2162 
2163 extern const char la57_trampoline[], la57_trampoline_gdt_desc[],
2164     la57_trampoline_gdt[], la57_trampoline_end[];
2165 
2166 static void
pmap_bootstrap_la57(void * arg __unused)2167 pmap_bootstrap_la57(void *arg __unused)
2168 {
2169 	char *v_code;
2170 	pml5_entry_t *v_pml5;
2171 	pml4_entry_t *v_pml4;
2172 	pdp_entry_t *v_pdp;
2173 	pd_entry_t *v_pd;
2174 	pt_entry_t *v_pt;
2175 	vm_page_t m_code, m_pml4, m_pdp, m_pd, m_pt, m_pml5;
2176 	void (*la57_tramp)(uint64_t pml5);
2177 	struct region_descriptor r_gdt;
2178 
2179 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
2180 		return;
2181 	TUNABLE_INT_FETCH("vm.pmap.la57", &la57);
2182 	if (!la57)
2183 		return;
2184 
2185 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
2186 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
2187 
2188 	m_code = pmap_page_alloc_below_4g(true);
2189 	v_code = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_code));
2190 	m_pml5 = pmap_page_alloc_below_4g(true);
2191 	KPML5phys = VM_PAGE_TO_PHYS(m_pml5);
2192 	v_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(KPML5phys);
2193 	m_pml4 = pmap_page_alloc_below_4g(true);
2194 	v_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pml4));
2195 	m_pdp = pmap_page_alloc_below_4g(true);
2196 	v_pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pdp));
2197 	m_pd = pmap_page_alloc_below_4g(true);
2198 	v_pd = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd));
2199 	m_pt = pmap_page_alloc_below_4g(true);
2200 	v_pt = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pt));
2201 
2202 	/*
2203 	 * Map m_code 1:1, it appears below 4G in KVA due to physical
2204 	 * address being below 4G.  Since kernel KVA is in upper half,
2205 	 * the pml4e should be zero and free for temporary use.
2206 	 */
2207 	kernel_pmap->pm_pmltop[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2208 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2209 	    X86_PG_M;
2210 	v_pdp[pmap_pdpe_index(VM_PAGE_TO_PHYS(m_code))] =
2211 	    VM_PAGE_TO_PHYS(m_pd) | X86_PG_V | X86_PG_RW | X86_PG_A |
2212 	    X86_PG_M;
2213 	v_pd[pmap_pde_index(VM_PAGE_TO_PHYS(m_code))] =
2214 	    VM_PAGE_TO_PHYS(m_pt) | X86_PG_V | X86_PG_RW | X86_PG_A |
2215 	    X86_PG_M;
2216 	v_pt[pmap_pte_index(VM_PAGE_TO_PHYS(m_code))] =
2217 	    VM_PAGE_TO_PHYS(m_code) | X86_PG_V | X86_PG_RW | X86_PG_A |
2218 	    X86_PG_M;
2219 
2220 	/*
2221 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
2222 	 * entering all existing kernel mappings into level 5 table.
2223 	 */
2224 	v_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
2225 	    X86_PG_RW | X86_PG_A | X86_PG_M | pg_g;
2226 
2227 	/*
2228 	 * Add pml5 entry for 1:1 trampoline mapping after LA57 is turned on.
2229 	 */
2230 	v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))] =
2231 	    VM_PAGE_TO_PHYS(m_pml4) | X86_PG_V | X86_PG_RW | X86_PG_A |
2232 	    X86_PG_M;
2233 	v_pml4[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
2234 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
2235 	    X86_PG_M;
2236 
2237 	/*
2238 	 * Copy and call the 48->57 trampoline, hope we return there, alive.
2239 	 */
2240 	bcopy(la57_trampoline, v_code, la57_trampoline_end - la57_trampoline);
2241 	*(u_long *)(v_code + 2 + (la57_trampoline_gdt_desc - la57_trampoline)) =
2242 	    la57_trampoline_gdt - la57_trampoline + VM_PAGE_TO_PHYS(m_code);
2243 	la57_tramp = (void (*)(uint64_t))VM_PAGE_TO_PHYS(m_code);
2244 	invlpg((vm_offset_t)la57_tramp);
2245 	la57_tramp(KPML5phys);
2246 
2247 	/*
2248 	 * gdt was necessary reset, switch back to our gdt.
2249 	 */
2250 	lgdt(&r_gdt);
2251 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
2252 	load_ds(_udatasel);
2253 	load_es(_udatasel);
2254 	load_fs(_ufssel);
2255 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2256 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
2257 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
2258 
2259 	/*
2260 	 * Now unmap the trampoline, and free the pages.
2261 	 * Clear pml5 entry used for 1:1 trampoline mapping.
2262 	 */
2263 	pte_clear(&v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))]);
2264 	invlpg((vm_offset_t)v_code);
2265 	vm_page_free(m_code);
2266 	vm_page_free(m_pdp);
2267 	vm_page_free(m_pd);
2268 	vm_page_free(m_pt);
2269 
2270 	/*
2271 	 * Recursively map PML5 to itself in order to get PTmap and
2272 	 * PDmap.
2273 	 */
2274 	v_pml5[PML5PML5I] = KPML5phys | X86_PG_RW | X86_PG_V | pg_nx;
2275 
2276 	vtoptem = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
2277 	    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2278 	PTmap = (vm_offset_t)P5Tmap;
2279 	vtopdem = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
2280 	    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
2281 	PDmap = (vm_offset_t)P5Dmap;
2282 
2283 	kernel_pmap->pm_cr3 = KPML5phys;
2284 	kernel_pmap->pm_pmltop = v_pml5;
2285 	pmap_pt_page_count_adj(kernel_pmap, 1);
2286 }
2287 SYSINIT(la57, SI_SUB_KMEM, SI_ORDER_ANY, pmap_bootstrap_la57, NULL);
2288 
2289 /*
2290  *	Initialize a vm_page's machine-dependent fields.
2291  */
2292 void
pmap_page_init(vm_page_t m)2293 pmap_page_init(vm_page_t m)
2294 {
2295 
2296 	TAILQ_INIT(&m->md.pv_list);
2297 	m->md.pat_mode = PAT_WRITE_BACK;
2298 }
2299 
2300 static int pmap_allow_2m_x_ept;
2301 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
2302     &pmap_allow_2m_x_ept, 0,
2303     "Allow executable superpage mappings in EPT");
2304 
2305 void
pmap_allow_2m_x_ept_recalculate(void)2306 pmap_allow_2m_x_ept_recalculate(void)
2307 {
2308 	/*
2309 	 * SKL002, SKL012S.  Since the EPT format is only used by
2310 	 * Intel CPUs, the vendor check is merely a formality.
2311 	 */
2312 	if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
2313 	    (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
2314 	    (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
2315 	    (CPUID_TO_MODEL(cpu_id) == 0x26 ||	/* Atoms */
2316 	    CPUID_TO_MODEL(cpu_id) == 0x27 ||
2317 	    CPUID_TO_MODEL(cpu_id) == 0x35 ||
2318 	    CPUID_TO_MODEL(cpu_id) == 0x36 ||
2319 	    CPUID_TO_MODEL(cpu_id) == 0x37 ||
2320 	    CPUID_TO_MODEL(cpu_id) == 0x86 ||
2321 	    CPUID_TO_MODEL(cpu_id) == 0x1c ||
2322 	    CPUID_TO_MODEL(cpu_id) == 0x4a ||
2323 	    CPUID_TO_MODEL(cpu_id) == 0x4c ||
2324 	    CPUID_TO_MODEL(cpu_id) == 0x4d ||
2325 	    CPUID_TO_MODEL(cpu_id) == 0x5a ||
2326 	    CPUID_TO_MODEL(cpu_id) == 0x5c ||
2327 	    CPUID_TO_MODEL(cpu_id) == 0x5d ||
2328 	    CPUID_TO_MODEL(cpu_id) == 0x5f ||
2329 	    CPUID_TO_MODEL(cpu_id) == 0x6e ||
2330 	    CPUID_TO_MODEL(cpu_id) == 0x7a ||
2331 	    CPUID_TO_MODEL(cpu_id) == 0x57 ||	/* Knights */
2332 	    CPUID_TO_MODEL(cpu_id) == 0x85))))
2333 		pmap_allow_2m_x_ept = 1;
2334 #ifndef BURN_BRIDGES
2335 	TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2336 #endif
2337 	TUNABLE_INT_FETCH("vm.pmap.allow_2m_x_ept", &pmap_allow_2m_x_ept);
2338 }
2339 
2340 static bool
pmap_allow_2m_x_page(pmap_t pmap,bool executable)2341 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
2342 {
2343 
2344 	return (pmap->pm_type != PT_EPT || !executable ||
2345 	    !pmap_allow_2m_x_ept);
2346 }
2347 
2348 #ifdef NUMA
2349 static void
pmap_init_pv_table(void)2350 pmap_init_pv_table(void)
2351 {
2352 	struct pmap_large_md_page *pvd;
2353 	vm_size_t s;
2354 	long start, end, highest, pv_npg;
2355 	int domain, i, j, pages;
2356 
2357 	/*
2358 	 * For correctness we depend on the size being evenly divisible into a
2359 	 * page. As a tradeoff between performance and total memory use, the
2360 	 * entry is 64 bytes (aka one cacheline) in size. Not being smaller
2361 	 * avoids false-sharing, but not being 128 bytes potentially allows for
2362 	 * avoidable traffic due to adjacent cacheline prefetcher.
2363 	 *
2364 	 * Assert the size so that accidental changes fail to compile.
2365 	 */
2366 	CTASSERT((sizeof(*pvd) == 64));
2367 
2368 	/*
2369 	 * Calculate the size of the array.
2370 	 */
2371 	pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
2372 	pv_npg = howmany(pmap_last_pa, NBPDR);
2373 	s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
2374 	s = round_page(s);
2375 	pv_table = (struct pmap_large_md_page *)kva_alloc(s);
2376 	if (pv_table == NULL)
2377 		panic("%s: kva_alloc failed\n", __func__);
2378 
2379 	/*
2380 	 * Iterate physical segments to allocate space for respective pages.
2381 	 */
2382 	highest = -1;
2383 	s = 0;
2384 	for (i = 0; i < vm_phys_nsegs; i++) {
2385 		end = vm_phys_segs[i].end / NBPDR;
2386 		domain = vm_phys_segs[i].domain;
2387 
2388 		if (highest >= end)
2389 			continue;
2390 
2391 		start = highest + 1;
2392 		pvd = &pv_table[start];
2393 
2394 		pages = end - start + 1;
2395 		s = round_page(pages * sizeof(*pvd));
2396 		highest = start + (s / sizeof(*pvd)) - 1;
2397 
2398 		for (j = 0; j < s; j += PAGE_SIZE) {
2399 			vm_page_t m = vm_page_alloc_noobj_domain(domain, 0);
2400 			if (m == NULL)
2401 				panic("failed to allocate PV table page");
2402 			pmap_qenter((vm_offset_t)pvd + j, &m, 1);
2403 		}
2404 
2405 		for (j = 0; j < s / sizeof(*pvd); j++) {
2406 			rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
2407 			TAILQ_INIT(&pvd->pv_page.pv_list);
2408 			pvd->pv_page.pv_gen = 0;
2409 			pvd->pv_page.pat_mode = 0;
2410 			pvd->pv_invl_gen = 0;
2411 			pvd++;
2412 		}
2413 	}
2414 	pvd = &pv_dummy_large;
2415 	rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
2416 	TAILQ_INIT(&pvd->pv_page.pv_list);
2417 	pvd->pv_page.pv_gen = 0;
2418 	pvd->pv_page.pat_mode = 0;
2419 	pvd->pv_invl_gen = 0;
2420 }
2421 #else
2422 static void
pmap_init_pv_table(void)2423 pmap_init_pv_table(void)
2424 {
2425 	vm_size_t s;
2426 	long i, pv_npg;
2427 
2428 	/*
2429 	 * Initialize the pool of pv list locks.
2430 	 */
2431 	for (i = 0; i < NPV_LIST_LOCKS; i++)
2432 		rw_init(&pv_list_locks[i], "pmap pv list");
2433 
2434 	/*
2435 	 * Calculate the size of the pv head table for superpages.
2436 	 */
2437 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
2438 
2439 	/*
2440 	 * Allocate memory for the pv head table for superpages.
2441 	 */
2442 	s = (vm_size_t)pv_npg * sizeof(struct md_page);
2443 	s = round_page(s);
2444 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
2445 	for (i = 0; i < pv_npg; i++)
2446 		TAILQ_INIT(&pv_table[i].pv_list);
2447 	TAILQ_INIT(&pv_dummy.pv_list);
2448 }
2449 #endif
2450 
2451 /*
2452  *	Initialize the pmap module.
2453  *
2454  *	Called by vm_mem_init(), to initialize any structures that the pmap
2455  *	system needs to map virtual memory.
2456  */
2457 void
pmap_init(void)2458 pmap_init(void)
2459 {
2460 	struct pmap_preinit_mapping *ppim;
2461 	vm_page_t m, mpte;
2462 	int error, i, ret, skz63;
2463 
2464 	/* L1TF, reserve page @0 unconditionally */
2465 	vm_page_blacklist_add(0, bootverbose);
2466 
2467 	/* Detect bare-metal Skylake Server and Skylake-X. */
2468 	if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
2469 	    CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
2470 		/*
2471 		 * Skylake-X errata SKZ63. Processor May Hang When
2472 		 * Executing Code In an HLE Transaction Region between
2473 		 * 40000000H and 403FFFFFH.
2474 		 *
2475 		 * Mark the pages in the range as preallocated.  It
2476 		 * seems to be impossible to distinguish between
2477 		 * Skylake Server and Skylake X.
2478 		 */
2479 		skz63 = 1;
2480 		TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
2481 		if (skz63 != 0) {
2482 			if (bootverbose)
2483 				printf("SKZ63: skipping 4M RAM starting "
2484 				    "at physical 1G\n");
2485 			for (i = 0; i < atop(0x400000); i++) {
2486 				ret = vm_page_blacklist_add(0x40000000 +
2487 				    ptoa(i), false);
2488 				if (!ret && bootverbose)
2489 					printf("page at %#lx already used\n",
2490 					    0x40000000 + ptoa(i));
2491 			}
2492 		}
2493 	}
2494 
2495 	/* IFU */
2496 	pmap_allow_2m_x_ept_recalculate();
2497 
2498 	/*
2499 	 * Initialize the vm page array entries for the kernel pmap's
2500 	 * page table pages.
2501 	 */
2502 	PMAP_LOCK(kernel_pmap);
2503 	for (i = 0; i < nkpt; i++) {
2504 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
2505 		KASSERT(mpte >= vm_page_array &&
2506 		    mpte < &vm_page_array[vm_page_array_size],
2507 		    ("pmap_init: page table page is out of range"));
2508 		mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
2509 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
2510 		mpte->ref_count = 1;
2511 
2512 		/*
2513 		 * Collect the page table pages that were replaced by a 2MB
2514 		 * page in create_pagetables().  They are zero filled.
2515 		 */
2516 		if ((i == 0 ||
2517 		    kernphys + ((vm_paddr_t)(i - 1) << PDRSHIFT) < KERNend) &&
2518 		    pmap_insert_pt_page(kernel_pmap, mpte, false, false))
2519 			panic("pmap_init: pmap_insert_pt_page failed");
2520 	}
2521 	PMAP_UNLOCK(kernel_pmap);
2522 	vm_wire_add(nkpt);
2523 
2524 	/*
2525 	 * If the kernel is running on a virtual machine, then it must assume
2526 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
2527 	 * be prepared for the hypervisor changing the vendor and family that
2528 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
2529 	 * 10h Erratum 383 is enabled if the processor's feature set does not
2530 	 * include at least one feature that is only supported by older Intel
2531 	 * or newer AMD processors.
2532 	 */
2533 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
2534 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
2535 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
2536 	    AMDID2_FMA4)) == 0)
2537 		workaround_erratum383 = 1;
2538 
2539 	/*
2540 	 * Are large page mappings enabled?
2541 	 */
2542 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
2543 	if (pg_ps_enabled) {
2544 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
2545 		    ("pmap_init: can't assign to pagesizes[1]"));
2546 		pagesizes[1] = NBPDR;
2547 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
2548 			KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
2549 			    ("pmap_init: can't assign to pagesizes[2]"));
2550 			pagesizes[2] = NBPDP;
2551 		}
2552 	}
2553 
2554 	/*
2555 	 * Initialize pv chunk lists.
2556 	 */
2557 	for (i = 0; i < PMAP_MEMDOM; i++) {
2558 		mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
2559 		TAILQ_INIT(&pv_chunks[i].pvc_list);
2560 	}
2561 	pmap_init_pv_table();
2562 
2563 	pmap_initialized = 1;
2564 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
2565 		ppim = pmap_preinit_mapping + i;
2566 		if (ppim->va == 0)
2567 			continue;
2568 		/* Make the direct map consistent */
2569 		if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
2570 			(void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
2571 			    ppim->sz, ppim->mode);
2572 		}
2573 		if (!bootverbose)
2574 			continue;
2575 		printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
2576 		    ppim->pa, ppim->va, ppim->sz, ppim->mode);
2577 	}
2578 
2579 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
2580 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
2581 	    (vmem_addr_t *)&qframe);
2582 	if (error != 0)
2583 		panic("qframe allocation failed");
2584 
2585 	lm_ents = 8;
2586 	TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
2587 	if (lm_ents > LMEPML4I - LMSPML4I + 1)
2588 		lm_ents = LMEPML4I - LMSPML4I + 1;
2589 #ifdef KMSAN
2590 	if (lm_ents > KMSANORIGPML4I - LMSPML4I) {
2591 		printf(
2592 	    "pmap: shrinking large map for KMSAN (%d slots to %ld slots)\n",
2593 		    lm_ents, KMSANORIGPML4I - LMSPML4I);
2594 		lm_ents = KMSANORIGPML4I - LMSPML4I;
2595 	}
2596 #endif
2597 	if (bootverbose)
2598 		printf("pmap: large map %u PML4 slots (%lu GB)\n",
2599 		    lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
2600 	if (lm_ents != 0) {
2601 		large_vmem = vmem_create("large", LARGEMAP_MIN_ADDRESS,
2602 		    (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
2603 		if (large_vmem == NULL) {
2604 			printf("pmap: cannot create large map\n");
2605 			lm_ents = 0;
2606 		}
2607 		for (i = 0; i < lm_ents; i++) {
2608 			m = pmap_large_map_getptp_unlocked();
2609 			/* XXXKIB la57 */
2610 			kernel_pml4[LMSPML4I + i] = X86_PG_V |
2611 			    X86_PG_RW | X86_PG_A | X86_PG_M | pg_nx |
2612 			    VM_PAGE_TO_PHYS(m);
2613 		}
2614 	}
2615 }
2616 
2617 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
2618     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
2619     "Maximum number of PML4 entries for use by large map (tunable).  "
2620     "Each entry corresponds to 512GB of address space.");
2621 
2622 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2623     "2MB page mapping counters");
2624 
2625 static COUNTER_U64_DEFINE_EARLY(pmap_pde_demotions);
2626 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, demotions,
2627     CTLFLAG_RD, &pmap_pde_demotions, "2MB page demotions");
2628 
2629 static COUNTER_U64_DEFINE_EARLY(pmap_pde_mappings);
2630 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
2631     &pmap_pde_mappings, "2MB page mappings");
2632 
2633 static COUNTER_U64_DEFINE_EARLY(pmap_pde_p_failures);
2634 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
2635     &pmap_pde_p_failures, "2MB page promotion failures");
2636 
2637 static COUNTER_U64_DEFINE_EARLY(pmap_pde_promotions);
2638 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
2639     &pmap_pde_promotions, "2MB page promotions");
2640 
2641 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
2642     "1GB page mapping counters");
2643 
2644 static COUNTER_U64_DEFINE_EARLY(pmap_pdpe_demotions);
2645 SYSCTL_COUNTER_U64(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
2646     &pmap_pdpe_demotions, "1GB page demotions");
2647 
2648 /***************************************************
2649  * Low level helper routines.....
2650  ***************************************************/
2651 
2652 static pt_entry_t
pmap_swap_pat(pmap_t pmap,pt_entry_t entry)2653 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
2654 {
2655 	int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
2656 
2657 	switch (pmap->pm_type) {
2658 	case PT_X86:
2659 	case PT_RVI:
2660 		/* Verify that both PAT bits are not set at the same time */
2661 		KASSERT((entry & x86_pat_bits) != x86_pat_bits,
2662 		    ("Invalid PAT bits in entry %#lx", entry));
2663 
2664 		/* Swap the PAT bits if one of them is set */
2665 		if ((entry & x86_pat_bits) != 0)
2666 			entry ^= x86_pat_bits;
2667 		break;
2668 	case PT_EPT:
2669 		/*
2670 		 * Nothing to do - the memory attributes are represented
2671 		 * the same way for regular pages and superpages.
2672 		 */
2673 		break;
2674 	default:
2675 		panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
2676 	}
2677 
2678 	return (entry);
2679 }
2680 
2681 bool
pmap_is_valid_memattr(pmap_t pmap __unused,vm_memattr_t mode)2682 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
2683 {
2684 
2685 	return (mode >= 0 && mode < PAT_INDEX_SIZE &&
2686 	    pat_index[(int)mode] >= 0);
2687 }
2688 
2689 /*
2690  * Determine the appropriate bits to set in a PTE or PDE for a specified
2691  * caching mode.
2692  */
2693 int
pmap_cache_bits(pmap_t pmap,int mode,bool is_pde)2694 pmap_cache_bits(pmap_t pmap, int mode, bool is_pde)
2695 {
2696 	int cache_bits, pat_flag, pat_idx;
2697 
2698 	if (!pmap_is_valid_memattr(pmap, mode))
2699 		panic("Unknown caching mode %d\n", mode);
2700 
2701 	switch (pmap->pm_type) {
2702 	case PT_X86:
2703 	case PT_RVI:
2704 		/* The PAT bit is different for PTE's and PDE's. */
2705 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2706 
2707 		/* Map the caching mode to a PAT index. */
2708 		pat_idx = pat_index[mode];
2709 
2710 		/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
2711 		cache_bits = 0;
2712 		if (pat_idx & 0x4)
2713 			cache_bits |= pat_flag;
2714 		if (pat_idx & 0x2)
2715 			cache_bits |= PG_NC_PCD;
2716 		if (pat_idx & 0x1)
2717 			cache_bits |= PG_NC_PWT;
2718 		break;
2719 
2720 	case PT_EPT:
2721 		cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
2722 		break;
2723 
2724 	default:
2725 		panic("unsupported pmap type %d", pmap->pm_type);
2726 	}
2727 
2728 	return (cache_bits);
2729 }
2730 
2731 static int
pmap_cache_mask(pmap_t pmap,bool is_pde)2732 pmap_cache_mask(pmap_t pmap, bool is_pde)
2733 {
2734 	int mask;
2735 
2736 	switch (pmap->pm_type) {
2737 	case PT_X86:
2738 	case PT_RVI:
2739 		mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
2740 		break;
2741 	case PT_EPT:
2742 		mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
2743 		break;
2744 	default:
2745 		panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
2746 	}
2747 
2748 	return (mask);
2749 }
2750 
2751 static int
pmap_pat_index(pmap_t pmap,pt_entry_t pte,bool is_pde)2752 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
2753 {
2754 	int pat_flag, pat_idx;
2755 
2756 	pat_idx = 0;
2757 	switch (pmap->pm_type) {
2758 	case PT_X86:
2759 	case PT_RVI:
2760 		/* The PAT bit is different for PTE's and PDE's. */
2761 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
2762 
2763 		if ((pte & pat_flag) != 0)
2764 			pat_idx |= 0x4;
2765 		if ((pte & PG_NC_PCD) != 0)
2766 			pat_idx |= 0x2;
2767 		if ((pte & PG_NC_PWT) != 0)
2768 			pat_idx |= 0x1;
2769 		break;
2770 	case PT_EPT:
2771 		if ((pte & EPT_PG_IGNORE_PAT) != 0)
2772 			panic("EPT PTE %#lx has no PAT memory type", pte);
2773 		pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
2774 		break;
2775 	}
2776 
2777 	/* See pmap_init_pat(). */
2778 	if (pat_idx == 4)
2779 		pat_idx = 0;
2780 	if (pat_idx == 7)
2781 		pat_idx = 3;
2782 
2783 	return (pat_idx);
2784 }
2785 
2786 bool
pmap_ps_enabled(pmap_t pmap)2787 pmap_ps_enabled(pmap_t pmap)
2788 {
2789 
2790 	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
2791 }
2792 
2793 static void
pmap_update_pde_store(pmap_t pmap,pd_entry_t * pde,pd_entry_t newpde)2794 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
2795 {
2796 
2797 	switch (pmap->pm_type) {
2798 	case PT_X86:
2799 		break;
2800 	case PT_RVI:
2801 	case PT_EPT:
2802 		/*
2803 		 * XXX
2804 		 * This is a little bogus since the generation number is
2805 		 * supposed to be bumped up when a region of the address
2806 		 * space is invalidated in the page tables.
2807 		 *
2808 		 * In this case the old PDE entry is valid but yet we want
2809 		 * to make sure that any mappings using the old entry are
2810 		 * invalidated in the TLB.
2811 		 *
2812 		 * The reason this works as expected is because we rendezvous
2813 		 * "all" host cpus and force any vcpu context to exit as a
2814 		 * side-effect.
2815 		 */
2816 		atomic_add_long(&pmap->pm_eptgen, 1);
2817 		break;
2818 	default:
2819 		panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
2820 	}
2821 	pde_store(pde, newpde);
2822 }
2823 
2824 /*
2825  * After changing the page size for the specified virtual address in the page
2826  * table, flush the corresponding entries from the processor's TLB.  Only the
2827  * calling processor's TLB is affected.
2828  *
2829  * The calling thread must be pinned to a processor.
2830  */
2831 static void
pmap_update_pde_invalidate(pmap_t pmap,vm_offset_t va,pd_entry_t newpde)2832 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
2833 {
2834 	pt_entry_t PG_G;
2835 
2836 	if (pmap_type_guest(pmap))
2837 		return;
2838 
2839 	KASSERT(pmap->pm_type == PT_X86,
2840 	    ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
2841 
2842 	PG_G = pmap_global_bit(pmap);
2843 
2844 	if ((newpde & PG_PS) == 0)
2845 		/* Demotion: flush a specific 2MB page mapping. */
2846 		pmap_invlpg(pmap, va);
2847 	else if ((newpde & PG_G) == 0)
2848 		/*
2849 		 * Promotion: flush every 4KB page mapping from the TLB
2850 		 * because there are too many to flush individually.
2851 		 */
2852 		invltlb();
2853 	else {
2854 		/*
2855 		 * Promotion: flush every 4KB page mapping from the TLB,
2856 		 * including any global (PG_G) mappings.
2857 		 */
2858 		invltlb_glob();
2859 	}
2860 }
2861 
2862 /*
2863  * The amd64 pmap uses different approaches to TLB invalidation
2864  * depending on the kernel configuration, available hardware features,
2865  * and known hardware errata.  The kernel configuration option that
2866  * has the greatest operational impact on TLB invalidation is PTI,
2867  * which is enabled automatically on affected Intel CPUs.  The most
2868  * impactful hardware features are first PCID, and then INVPCID
2869  * instruction presence.  PCID usage is quite different for PTI
2870  * vs. non-PTI.
2871  *
2872  * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
2873  *   the Meltdown bug in some Intel CPUs.  Under PTI, each user address
2874  *   space is served by two page tables, user and kernel.  The user
2875  *   page table only maps user space and a kernel trampoline.  The
2876  *   kernel trampoline includes the entirety of the kernel text but
2877  *   only the kernel data that is needed to switch from user to kernel
2878  *   mode.  The kernel page table maps the user and kernel address
2879  *   spaces in their entirety.  It is identical to the per-process
2880  *   page table used in non-PTI mode.
2881  *
2882  *   User page tables are only used when the CPU is in user mode.
2883  *   Consequently, some TLB invalidations can be postponed until the
2884  *   switch from kernel to user mode.  In contrast, the user
2885  *   space part of the kernel page table is used for copyout(9), so
2886  *   TLB invalidations on this page table cannot be similarly postponed.
2887  *
2888  *   The existence of a user mode page table for the given pmap is
2889  *   indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
2890  *   which case pm_ucr3 contains the %cr3 register value for the user
2891  *   mode page table's root.
2892  *
2893  * * The pm_active bitmask indicates which CPUs currently have the
2894  *   pmap active.  A CPU's bit is set on context switch to the pmap, and
2895  *   cleared on switching off this CPU.  For the kernel page table,
2896  *   the pm_active field is immutable and contains all CPUs.  The
2897  *   kernel page table is always logically active on every processor,
2898  *   but not necessarily in use by the hardware, e.g., in PTI mode.
2899  *
2900  *   When requesting invalidation of virtual addresses with
2901  *   pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
2902  *   all CPUs recorded as active in pm_active.  Updates to and reads
2903  *   from pm_active are not synchronized, and so they may race with
2904  *   each other.  Shootdown handlers are prepared to handle the race.
2905  *
2906  * * PCID is an optional feature of the long mode x86 MMU where TLB
2907  *   entries are tagged with the 'Process ID' of the address space
2908  *   they belong to.  This feature provides a limited namespace for
2909  *   process identifiers, 12 bits, supporting 4095 simultaneous IDs
2910  *   total.
2911  *
2912  *   Allocation of a PCID to a pmap is done by an algorithm described
2913  *   in section 15.12, "Other TLB Consistency Algorithms", of
2914  *   Vahalia's book "Unix Internals".  A PCID cannot be allocated for
2915  *   the whole lifetime of a pmap in pmap_pinit() due to the limited
2916  *   namespace.  Instead, a per-CPU, per-pmap PCID is assigned when
2917  *   the CPU is about to start caching TLB entries from a pmap,
2918  *   i.e., on the context switch that activates the pmap on the CPU.
2919  *
2920  *   The PCID allocator maintains a per-CPU, per-pmap generation
2921  *   count, pm_gen, which is incremented each time a new PCID is
2922  *   allocated.  On TLB invalidation, the generation counters for the
2923  *   pmap are zeroed, which signals the context switch code that the
2924  *   previously allocated PCID is no longer valid.  Effectively,
2925  *   zeroing any of these counters triggers a TLB shootdown for the
2926  *   given CPU/address space, due to the allocation of a new PCID.
2927  *
2928  *   Zeroing can be performed remotely.  Consequently, if a pmap is
2929  *   inactive on a CPU, then a TLB shootdown for that pmap and CPU can
2930  *   be initiated by an ordinary memory access to reset the target
2931  *   CPU's generation count within the pmap.  The CPU initiating the
2932  *   TLB shootdown does not need to send an IPI to the target CPU.
2933  *
2934  * * PTI + PCID.  The available PCIDs are divided into two sets: PCIDs
2935  *   for complete (kernel) page tables, and PCIDs for user mode page
2936  *   tables.  A user PCID value is obtained from the kernel PCID value
2937  *   by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
2938  *
2939  *   User space page tables are activated on return to user mode, by
2940  *   loading pm_ucr3 into %cr3.  If the PCPU(ucr3_load_mask) requests
2941  *   clearing bit 63 of the loaded ucr3, this effectively causes
2942  *   complete invalidation of the user mode TLB entries for the
2943  *   current pmap.  In which case, local invalidations of individual
2944  *   pages in the user page table are skipped.
2945  *
2946  * * Local invalidation, all modes.  If the requested invalidation is
2947  *   for a specific address or the total invalidation of a currently
2948  *   active pmap, then the TLB is flushed using INVLPG for a kernel
2949  *   page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
2950  *   user space page table(s).
2951  *
2952  *   If the INVPCID instruction is available, it is used to flush user
2953  *   entries from the kernel page table.
2954  *
2955  *   When PCID is enabled, the INVLPG instruction invalidates all TLB
2956  *   entries for the given page that either match the current PCID or
2957  *   are global. Since TLB entries for the same page under different
2958  *   PCIDs are unaffected, kernel pages which reside in all address
2959  *   spaces could be problematic.  We avoid the problem by creating
2960  *   all kernel PTEs with the global flag (PG_G) set, when PTI is
2961  *   disabled.
2962  *
2963  * * mode: PTI disabled, PCID present.  The kernel reserves PCID 0 for its
2964  *   address space, all other 4095 PCIDs are used for user mode spaces
2965  *   as described above.  A context switch allocates a new PCID if
2966  *   the recorded PCID is zero or the recorded generation does not match
2967  *   the CPU's generation, effectively flushing the TLB for this address space.
2968  *   Total remote invalidation is performed by zeroing pm_gen for all CPUs.
2969  *	local user page: INVLPG
2970  *	local kernel page: INVLPG
2971  *	local user total: INVPCID(CTX)
2972  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2973  *	remote user page, inactive pmap: zero pm_gen
2974  *	remote user page, active pmap: zero pm_gen + IPI:INVLPG
2975  *	(Both actions are required to handle the aforementioned pm_active races.)
2976  *	remote kernel page: IPI:INVLPG
2977  *	remote user total, inactive pmap: zero pm_gen
2978  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
2979  *          reload %cr3)
2980  *	(See note above about pm_active races.)
2981  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2982  *
2983  * PTI enabled, PCID present.
2984  *	local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
2985  *          for upt
2986  *	local kernel page: INVLPG
2987  *	local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
2988  *          on loading UCR3 into %cr3 for upt
2989  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
2990  *	remote user page, inactive pmap: zero pm_gen
2991  *	remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
2992  *          INVPCID(ADDR) for upt)
2993  *	remote kernel page: IPI:INVLPG
2994  *	remote user total, inactive pmap: zero pm_gen
2995  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
2996  *          clear PCID_SAVE on loading UCR3 into $cr3 for upt)
2997  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
2998  *
2999  *  No PCID.
3000  *	local user page: INVLPG
3001  *	local kernel page: INVLPG
3002  *	local user total: reload %cr3
3003  *	local kernel total: invltlb_glob()
3004  *	remote user page, inactive pmap: -
3005  *	remote user page, active pmap: IPI:INVLPG
3006  *	remote kernel page: IPI:INVLPG
3007  *	remote user total, inactive pmap: -
3008  *	remote user total, active pmap: IPI:(reload %cr3)
3009  *	remote kernel total: IPI:invltlb_glob()
3010  *  Since on return to user mode, the reload of %cr3 with ucr3 causes
3011  *  TLB invalidation, no specific action is required for user page table.
3012  *
3013  * EPT.  EPT pmaps do not map KVA, all mappings are userspace.
3014  * XXX TODO
3015  */
3016 
3017 #ifdef SMP
3018 /*
3019  * Interrupt the cpus that are executing in the guest context.
3020  * This will force the vcpu to exit and the cached EPT mappings
3021  * will be invalidated by the host before the next vmresume.
3022  */
3023 static __inline void
pmap_invalidate_ept(pmap_t pmap)3024 pmap_invalidate_ept(pmap_t pmap)
3025 {
3026 	smr_seq_t goal;
3027 	int ipinum;
3028 
3029 	sched_pin();
3030 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
3031 	    ("pmap_invalidate_ept: absurd pm_active"));
3032 
3033 	/*
3034 	 * The TLB mappings associated with a vcpu context are not
3035 	 * flushed each time a different vcpu is chosen to execute.
3036 	 *
3037 	 * This is in contrast with a process's vtop mappings that
3038 	 * are flushed from the TLB on each context switch.
3039 	 *
3040 	 * Therefore we need to do more than just a TLB shootdown on
3041 	 * the active cpus in 'pmap->pm_active'. To do this we keep
3042 	 * track of the number of invalidations performed on this pmap.
3043 	 *
3044 	 * Each vcpu keeps a cache of this counter and compares it
3045 	 * just before a vmresume. If the counter is out-of-date an
3046 	 * invept will be done to flush stale mappings from the TLB.
3047 	 *
3048 	 * To ensure that all vCPU threads have observed the new counter
3049 	 * value before returning, we use SMR.  Ordering is important here:
3050 	 * the VMM enters an SMR read section before loading the counter
3051 	 * and after updating the pm_active bit set.  Thus, pm_active is
3052 	 * a superset of active readers, and any reader that has observed
3053 	 * the goal has observed the new counter value.
3054 	 */
3055 	atomic_add_long(&pmap->pm_eptgen, 1);
3056 
3057 	goal = smr_advance(pmap->pm_eptsmr);
3058 
3059 	/*
3060 	 * Force the vcpu to exit and trap back into the hypervisor.
3061 	 */
3062 	ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
3063 	ipi_selected(pmap->pm_active, ipinum);
3064 	sched_unpin();
3065 
3066 	/*
3067 	 * Ensure that all active vCPUs will observe the new generation counter
3068 	 * value before executing any more guest instructions.
3069 	 */
3070 	smr_wait(pmap->pm_eptsmr, goal);
3071 }
3072 
3073 static inline void
pmap_invalidate_preipi_pcid(pmap_t pmap)3074 pmap_invalidate_preipi_pcid(pmap_t pmap)
3075 {
3076 	struct pmap_pcid *pcidp;
3077 	u_int cpuid, i;
3078 
3079 	sched_pin();
3080 
3081 	cpuid = PCPU_GET(cpuid);
3082 	if (pmap != PCPU_GET(curpmap))
3083 		cpuid = 0xffffffff;	/* An impossible value */
3084 
3085 	CPU_FOREACH(i) {
3086 		if (cpuid != i) {
3087 			pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
3088 			pcidp->pm_gen = 0;
3089 		}
3090 	}
3091 
3092 	/*
3093 	 * The fence is between stores to pm_gen and the read of the
3094 	 * pm_active mask.  We need to ensure that it is impossible
3095 	 * for us to miss the bit update in pm_active and
3096 	 * simultaneously observe a non-zero pm_gen in
3097 	 * pmap_activate_sw(), otherwise TLB update is missed.
3098 	 * Without the fence, IA32 allows such an outcome.  Note that
3099 	 * pm_active is updated by a locked operation, which provides
3100 	 * the reciprocal fence.
3101 	 */
3102 	atomic_thread_fence_seq_cst();
3103 }
3104 
3105 static void
pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)3106 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
3107 {
3108 	sched_pin();
3109 }
3110 
3111 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
3112 {
3113 	return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
3114 	    pmap_invalidate_preipi_nopcid);
3115 }
3116 
3117 static inline void
pmap_invalidate_page_pcid_cb(pmap_t pmap,vm_offset_t va,const bool invpcid_works1)3118 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
3119     const bool invpcid_works1)
3120 {
3121 	struct invpcid_descr d;
3122 	uint64_t kcr3, ucr3;
3123 	uint32_t pcid;
3124 
3125 	/*
3126 	 * Because pm_pcid is recalculated on a context switch, we
3127 	 * must ensure there is no preemption, not just pinning.
3128 	 * Otherwise, we might use a stale value below.
3129 	 */
3130 	CRITICAL_ASSERT(curthread);
3131 
3132 	/*
3133 	 * No need to do anything with user page tables invalidation
3134 	 * if there is no user page table, or invalidation is deferred
3135 	 * until the return to userspace.  ucr3_load_mask is stable
3136 	 * because we have preemption disabled.
3137 	 */
3138 	if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
3139 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3140 		return;
3141 
3142 	pcid = pmap_get_pcid(pmap);
3143 	if (invpcid_works1) {
3144 		d.pcid = pcid | PMAP_PCID_USER_PT;
3145 		d.pad = 0;
3146 		d.addr = va;
3147 		invpcid(&d, INVPCID_ADDR);
3148 	} else {
3149 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3150 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3151 		pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3152 	}
3153 }
3154 
3155 static void
pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap,vm_offset_t va)3156 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
3157 {
3158 	pmap_invalidate_page_pcid_cb(pmap, va, true);
3159 }
3160 
3161 static void
pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t va)3162 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
3163 {
3164 	pmap_invalidate_page_pcid_cb(pmap, va, false);
3165 }
3166 
3167 static void
pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused,vm_offset_t va __unused)3168 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
3169 {
3170 }
3171 
3172 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
3173 {
3174 	if (pmap_pcid_enabled)
3175 		return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
3176 		    pmap_invalidate_page_pcid_noinvpcid_cb);
3177 	return (pmap_invalidate_page_nopcid_cb);
3178 }
3179 
3180 static void
pmap_invalidate_page_curcpu_cb(pmap_t pmap,vm_offset_t va,vm_offset_t addr2 __unused)3181 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
3182     vm_offset_t addr2 __unused)
3183 {
3184 	if (pmap == kernel_pmap) {
3185 		pmap_invlpg(kernel_pmap, va);
3186 	} else if (pmap == PCPU_GET(curpmap)) {
3187 		invlpg(va);
3188 		pmap_invalidate_page_cb(pmap, va);
3189 	}
3190 }
3191 
3192 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3193 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3194 {
3195 	if (pmap_type_guest(pmap)) {
3196 		pmap_invalidate_ept(pmap);
3197 		return;
3198 	}
3199 
3200 	KASSERT(pmap->pm_type == PT_X86,
3201 	    ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
3202 
3203 	pmap_invalidate_preipi(pmap);
3204 	smp_masked_invlpg(va, pmap, pmap_invalidate_page_curcpu_cb);
3205 }
3206 
3207 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
3208 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
3209 
3210 static void
pmap_invalidate_range_pcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,const bool invpcid_works1)3211 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
3212     const bool invpcid_works1)
3213 {
3214 	struct invpcid_descr d;
3215 	uint64_t kcr3, ucr3;
3216 	uint32_t pcid;
3217 
3218 	CRITICAL_ASSERT(curthread);
3219 
3220 	if (pmap != PCPU_GET(curpmap) ||
3221 	    pmap->pm_ucr3 == PMAP_NO_CR3 ||
3222 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
3223 		return;
3224 
3225 	pcid = pmap_get_pcid(pmap);
3226 	if (invpcid_works1) {
3227 		d.pcid = pcid | PMAP_PCID_USER_PT;
3228 		d.pad = 0;
3229 		for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
3230 			invpcid(&d, INVPCID_ADDR);
3231 	} else {
3232 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3233 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3234 		pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3235 	}
3236 }
3237 
3238 static void
pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3239 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
3240     vm_offset_t eva)
3241 {
3242 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
3243 }
3244 
3245 static void
pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3246 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
3247     vm_offset_t eva)
3248 {
3249 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
3250 }
3251 
3252 static void
pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused,vm_offset_t sva __unused,vm_offset_t eva __unused)3253 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
3254     vm_offset_t eva __unused)
3255 {
3256 }
3257 
3258 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
3259     vm_offset_t))
3260 {
3261 	if (pmap_pcid_enabled)
3262 		return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
3263 		    pmap_invalidate_range_pcid_noinvpcid_cb);
3264 	return (pmap_invalidate_range_nopcid_cb);
3265 }
3266 
3267 static void
pmap_invalidate_range_curcpu_cb(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3268 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3269 {
3270 	vm_offset_t addr;
3271 
3272 	if (pmap == kernel_pmap) {
3273 		if (PCPU_GET(pcid_invlpg_workaround)) {
3274 			struct invpcid_descr d = { 0 };
3275 
3276 			invpcid(&d, INVPCID_CTXGLOB);
3277 		} else {
3278 			for (addr = sva; addr < eva; addr += PAGE_SIZE)
3279 				invlpg(addr);
3280 		}
3281 	} else if (pmap == PCPU_GET(curpmap)) {
3282 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3283 			invlpg(addr);
3284 		pmap_invalidate_range_cb(pmap, sva, eva);
3285 	}
3286 }
3287 
3288 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3289 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3290 {
3291 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
3292 		pmap_invalidate_all(pmap);
3293 		return;
3294 	}
3295 
3296 	if (pmap_type_guest(pmap)) {
3297 		pmap_invalidate_ept(pmap);
3298 		return;
3299 	}
3300 
3301 	KASSERT(pmap->pm_type == PT_X86,
3302 	    ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
3303 
3304 	pmap_invalidate_preipi(pmap);
3305 	smp_masked_invlpg_range(sva, eva, pmap,
3306 	    pmap_invalidate_range_curcpu_cb);
3307 }
3308 
3309 static inline void
pmap_invalidate_all_pcid_cb(pmap_t pmap,bool invpcid_works1)3310 pmap_invalidate_all_pcid_cb(pmap_t pmap, bool invpcid_works1)
3311 {
3312 	struct invpcid_descr d;
3313 	uint64_t kcr3;
3314 	uint32_t pcid;
3315 
3316 	if (pmap == kernel_pmap) {
3317 		if (invpcid_works1) {
3318 			bzero(&d, sizeof(d));
3319 			invpcid(&d, INVPCID_CTXGLOB);
3320 		} else {
3321 			invltlb_glob();
3322 		}
3323 	} else if (pmap == PCPU_GET(curpmap)) {
3324 		CRITICAL_ASSERT(curthread);
3325 
3326 		pcid = pmap_get_pcid(pmap);
3327 		if (invpcid_works1) {
3328 			d.pcid = pcid;
3329 			d.pad = 0;
3330 			d.addr = 0;
3331 			invpcid(&d, INVPCID_CTX);
3332 		} else {
3333 			kcr3 = pmap->pm_cr3 | pcid;
3334 			load_cr3(kcr3);
3335 		}
3336 		if (pmap->pm_ucr3 != PMAP_NO_CR3)
3337 			PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
3338 	}
3339 }
3340 
3341 static void
pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)3342 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)
3343 {
3344 	pmap_invalidate_all_pcid_cb(pmap, true);
3345 }
3346 
3347 static void
pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)3348 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)
3349 {
3350 	pmap_invalidate_all_pcid_cb(pmap, false);
3351 }
3352 
3353 static void
pmap_invalidate_all_nopcid_cb(pmap_t pmap)3354 pmap_invalidate_all_nopcid_cb(pmap_t pmap)
3355 {
3356 	if (pmap == kernel_pmap)
3357 		invltlb_glob();
3358 	else if (pmap == PCPU_GET(curpmap))
3359 		invltlb();
3360 }
3361 
3362 DEFINE_IFUNC(static, void, pmap_invalidate_all_cb, (pmap_t))
3363 {
3364 	if (pmap_pcid_enabled)
3365 		return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
3366 		    pmap_invalidate_all_pcid_noinvpcid_cb);
3367 	return (pmap_invalidate_all_nopcid_cb);
3368 }
3369 
3370 static void
pmap_invalidate_all_curcpu_cb(pmap_t pmap,vm_offset_t addr1 __unused,vm_offset_t addr2 __unused)3371 pmap_invalidate_all_curcpu_cb(pmap_t pmap, vm_offset_t addr1 __unused,
3372     vm_offset_t addr2 __unused)
3373 {
3374 	pmap_invalidate_all_cb(pmap);
3375 }
3376 
3377 void
pmap_invalidate_all(pmap_t pmap)3378 pmap_invalidate_all(pmap_t pmap)
3379 {
3380 	if (pmap_type_guest(pmap)) {
3381 		pmap_invalidate_ept(pmap);
3382 		return;
3383 	}
3384 
3385 	KASSERT(pmap->pm_type == PT_X86,
3386 	    ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
3387 
3388 	pmap_invalidate_preipi(pmap);
3389 	smp_masked_invltlb(pmap, pmap_invalidate_all_curcpu_cb);
3390 }
3391 
3392 static void
pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused,vm_offset_t va __unused,vm_offset_t addr2 __unused)3393 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
3394     vm_offset_t addr2 __unused)
3395 {
3396 	wbinvd();
3397 }
3398 
3399 void
pmap_invalidate_cache(void)3400 pmap_invalidate_cache(void)
3401 {
3402 	sched_pin();
3403 	smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
3404 }
3405 
3406 struct pde_action {
3407 	cpuset_t invalidate;	/* processors that invalidate their TLB */
3408 	pmap_t pmap;
3409 	vm_offset_t va;
3410 	pd_entry_t *pde;
3411 	pd_entry_t newpde;
3412 	u_int store;		/* processor that updates the PDE */
3413 };
3414 
3415 static void
pmap_update_pde_action(void * arg)3416 pmap_update_pde_action(void *arg)
3417 {
3418 	struct pde_action *act = arg;
3419 
3420 	if (act->store == PCPU_GET(cpuid))
3421 		pmap_update_pde_store(act->pmap, act->pde, act->newpde);
3422 }
3423 
3424 static void
pmap_update_pde_teardown(void * arg)3425 pmap_update_pde_teardown(void *arg)
3426 {
3427 	struct pde_action *act = arg;
3428 
3429 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
3430 		pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
3431 }
3432 
3433 /*
3434  * Change the page size for the specified virtual address in a way that
3435  * prevents any possibility of the TLB ever having two entries that map the
3436  * same virtual address using different page sizes.  This is the recommended
3437  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
3438  * machine check exception for a TLB state that is improperly diagnosed as a
3439  * hardware error.
3440  */
3441 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3442 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3443 {
3444 	struct pde_action act;
3445 	cpuset_t active, other_cpus;
3446 	u_int cpuid;
3447 
3448 	sched_pin();
3449 	cpuid = PCPU_GET(cpuid);
3450 	other_cpus = all_cpus;
3451 	CPU_CLR(cpuid, &other_cpus);
3452 	if (pmap == kernel_pmap || pmap_type_guest(pmap))
3453 		active = all_cpus;
3454 	else {
3455 		active = pmap->pm_active;
3456 	}
3457 	if (CPU_OVERLAP(&active, &other_cpus)) {
3458 		act.store = cpuid;
3459 		act.invalidate = active;
3460 		act.va = va;
3461 		act.pmap = pmap;
3462 		act.pde = pde;
3463 		act.newpde = newpde;
3464 		CPU_SET(cpuid, &active);
3465 		smp_rendezvous_cpus(active,
3466 		    smp_no_rendezvous_barrier, pmap_update_pde_action,
3467 		    pmap_update_pde_teardown, &act);
3468 	} else {
3469 		pmap_update_pde_store(pmap, pde, newpde);
3470 		if (CPU_ISSET(cpuid, &active))
3471 			pmap_update_pde_invalidate(pmap, va, newpde);
3472 	}
3473 	sched_unpin();
3474 }
3475 #else /* !SMP */
3476 /*
3477  * Normal, non-SMP, invalidation functions.
3478  */
3479 void
pmap_invalidate_page(pmap_t pmap,vm_offset_t va)3480 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
3481 {
3482 	struct invpcid_descr d;
3483 	struct pmap_pcid *pcidp;
3484 	uint64_t kcr3, ucr3;
3485 	uint32_t pcid;
3486 
3487 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3488 		pmap->pm_eptgen++;
3489 		return;
3490 	}
3491 	KASSERT(pmap->pm_type == PT_X86,
3492 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3493 
3494 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3495 		invlpg(va);
3496 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3497 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3498 			critical_enter();
3499 			pcid = pmap_get_pcid(pmap);
3500 			if (invpcid_works) {
3501 				d.pcid = pcid | PMAP_PCID_USER_PT;
3502 				d.pad = 0;
3503 				d.addr = va;
3504 				invpcid(&d, INVPCID_ADDR);
3505 			} else {
3506 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3507 				ucr3 = pmap->pm_ucr3 | pcid |
3508 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3509 				pmap_pti_pcid_invlpg(ucr3, kcr3, va);
3510 			}
3511 			critical_exit();
3512 		}
3513 	} else if (pmap_pcid_enabled) {
3514 		pcidp = zpcpu_get(pmap->pm_pcidp);
3515 		pcidp->pm_gen = 0;
3516 	}
3517 }
3518 
3519 void
pmap_invalidate_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)3520 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3521 {
3522 	struct invpcid_descr d;
3523 	struct pmap_pcid *pcidp;
3524 	vm_offset_t addr;
3525 	uint64_t kcr3, ucr3;
3526 	uint32_t pcid;
3527 
3528 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3529 		pmap->pm_eptgen++;
3530 		return;
3531 	}
3532 	KASSERT(pmap->pm_type == PT_X86,
3533 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
3534 
3535 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
3536 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
3537 			invlpg(addr);
3538 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
3539 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
3540 			critical_enter();
3541 			pcid = pmap_get_pcid(pmap);
3542 			if (invpcid_works) {
3543 				d.pcid = pcid | PMAP_PCID_USER_PT;
3544 				d.pad = 0;
3545 				d.addr = sva;
3546 				for (; d.addr < eva; d.addr += PAGE_SIZE)
3547 					invpcid(&d, INVPCID_ADDR);
3548 			} else {
3549 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
3550 				ucr3 = pmap->pm_ucr3 | pcid |
3551 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
3552 				pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
3553 			}
3554 			critical_exit();
3555 		}
3556 	} else if (pmap_pcid_enabled) {
3557 		pcidp = zpcpu_get(pmap->pm_pcidp);
3558 		pcidp->pm_gen = 0;
3559 	}
3560 }
3561 
3562 void
pmap_invalidate_all(pmap_t pmap)3563 pmap_invalidate_all(pmap_t pmap)
3564 {
3565 	struct invpcid_descr d;
3566 	struct pmap_pcid *pcidp;
3567 	uint64_t kcr3, ucr3;
3568 	uint32_t pcid;
3569 
3570 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
3571 		pmap->pm_eptgen++;
3572 		return;
3573 	}
3574 	KASSERT(pmap->pm_type == PT_X86,
3575 	    ("pmap_invalidate_all: unknown type %d", pmap->pm_type));
3576 
3577 	if (pmap == kernel_pmap) {
3578 		if (pmap_pcid_enabled && invpcid_works) {
3579 			bzero(&d, sizeof(d));
3580 			invpcid(&d, INVPCID_CTXGLOB);
3581 		} else {
3582 			invltlb_glob();
3583 		}
3584 	} else if (pmap == PCPU_GET(curpmap)) {
3585 		if (pmap_pcid_enabled) {
3586 			critical_enter();
3587 			pcid = pmap_get_pcid(pmap);
3588 			if (invpcid_works) {
3589 				d.pcid = pcid;
3590 				d.pad = 0;
3591 				d.addr = 0;
3592 				invpcid(&d, INVPCID_CTX);
3593 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3594 					d.pcid |= PMAP_PCID_USER_PT;
3595 					invpcid(&d, INVPCID_CTX);
3596 				}
3597 			} else {
3598 				kcr3 = pmap->pm_cr3 | pcid;
3599 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
3600 					ucr3 = pmap->pm_ucr3 | pcid |
3601 					    PMAP_PCID_USER_PT;
3602 					pmap_pti_pcid_invalidate(ucr3, kcr3);
3603 				} else
3604 					load_cr3(kcr3);
3605 			}
3606 			critical_exit();
3607 		} else {
3608 			invltlb();
3609 		}
3610 	} else if (pmap_pcid_enabled) {
3611 		pcidp = zpcpu_get(pmap->pm_pcidp);
3612 		pcidp->pm_gen = 0;
3613 	}
3614 }
3615 
3616 void
pmap_invalidate_cache(void)3617 pmap_invalidate_cache(void)
3618 {
3619 
3620 	wbinvd();
3621 }
3622 
3623 static void
pmap_update_pde(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t newpde)3624 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
3625 {
3626 	struct pmap_pcid *pcidp;
3627 
3628 	pmap_update_pde_store(pmap, pde, newpde);
3629 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
3630 		pmap_update_pde_invalidate(pmap, va, newpde);
3631 	else {
3632 		pcidp = zpcpu_get(pmap->pm_pcidp);
3633 		pcidp->pm_gen = 0;
3634 	}
3635 }
3636 #endif /* !SMP */
3637 
3638 static void
pmap_invalidate_pde_page(pmap_t pmap,vm_offset_t va,pd_entry_t pde)3639 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
3640 {
3641 
3642 	/*
3643 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
3644 	 * by a promotion that did not invalidate the 512 4KB page mappings
3645 	 * that might exist in the TLB.  Consequently, at this point, the TLB
3646 	 * may hold both 4KB and 2MB page mappings for the address range [va,
3647 	 * va + NBPDR).  Therefore, the entire range must be invalidated here.
3648 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
3649 	 * 4KB page mappings for the address range [va, va + NBPDR), and so a
3650 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
3651 	 * TLB.
3652 	 */
3653 	if ((pde & PG_PROMOTED) != 0)
3654 		pmap_invalidate_range(pmap, va, va + NBPDR - 1);
3655 	else
3656 		pmap_invalidate_page(pmap, va);
3657 }
3658 
3659 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
3660     (vm_offset_t sva, vm_offset_t eva))
3661 {
3662 
3663 	if ((cpu_feature & CPUID_SS) != 0)
3664 		return (pmap_invalidate_cache_range_selfsnoop);
3665 	if ((cpu_feature & CPUID_CLFSH) != 0)
3666 		return (pmap_force_invalidate_cache_range);
3667 	return (pmap_invalidate_cache_range_all);
3668 }
3669 
3670 #define PMAP_CLFLUSH_THRESHOLD   (2 * 1024 * 1024)
3671 
3672 static void
pmap_invalidate_cache_range_check_align(vm_offset_t sva,vm_offset_t eva)3673 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
3674 {
3675 
3676 	KASSERT((sva & PAGE_MASK) == 0,
3677 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
3678 	KASSERT((eva & PAGE_MASK) == 0,
3679 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
3680 }
3681 
3682 static void
pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,vm_offset_t eva)3683 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
3684 {
3685 
3686 	pmap_invalidate_cache_range_check_align(sva, eva);
3687 }
3688 
3689 void
pmap_force_invalidate_cache_range(vm_offset_t sva,vm_offset_t eva)3690 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
3691 {
3692 
3693 	sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
3694 
3695 	/*
3696 	 * XXX: Some CPUs fault, hang, or trash the local APIC
3697 	 * registers if we use CLFLUSH on the local APIC range.  The
3698 	 * local APIC is always uncached, so we don't need to flush
3699 	 * for that range anyway.
3700 	 */
3701 	if (pmap_kextract(sva) == lapic_paddr)
3702 		return;
3703 
3704 	if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
3705 		/*
3706 		 * Do per-cache line flush.  Use a locked
3707 		 * instruction to insure that previous stores are
3708 		 * included in the write-back.  The processor
3709 		 * propagates flush to other processors in the cache
3710 		 * coherence domain.
3711 		 */
3712 		atomic_thread_fence_seq_cst();
3713 		for (; sva < eva; sva += cpu_clflush_line_size)
3714 			clflushopt(sva);
3715 		atomic_thread_fence_seq_cst();
3716 	} else {
3717 		/*
3718 		 * Writes are ordered by CLFLUSH on Intel CPUs.
3719 		 */
3720 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3721 			mfence();
3722 		for (; sva < eva; sva += cpu_clflush_line_size)
3723 			clflush(sva);
3724 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
3725 			mfence();
3726 	}
3727 }
3728 
3729 static void
pmap_invalidate_cache_range_all(vm_offset_t sva,vm_offset_t eva)3730 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
3731 {
3732 
3733 	pmap_invalidate_cache_range_check_align(sva, eva);
3734 	pmap_invalidate_cache();
3735 }
3736 
3737 /*
3738  * Remove the specified set of pages from the data and instruction caches.
3739  *
3740  * In contrast to pmap_invalidate_cache_range(), this function does not
3741  * rely on the CPU's self-snoop feature, because it is intended for use
3742  * when moving pages into a different cache domain.
3743  */
3744 void
pmap_invalidate_cache_pages(vm_page_t * pages,int count)3745 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
3746 {
3747 	vm_offset_t daddr, eva;
3748 	int i;
3749 	bool useclflushopt;
3750 
3751 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
3752 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
3753 	    ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
3754 		pmap_invalidate_cache();
3755 	else {
3756 		if (useclflushopt)
3757 			atomic_thread_fence_seq_cst();
3758 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3759 			mfence();
3760 		for (i = 0; i < count; i++) {
3761 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
3762 			eva = daddr + PAGE_SIZE;
3763 			for (; daddr < eva; daddr += cpu_clflush_line_size) {
3764 				if (useclflushopt)
3765 					clflushopt(daddr);
3766 				else
3767 					clflush(daddr);
3768 			}
3769 		}
3770 		if (useclflushopt)
3771 			atomic_thread_fence_seq_cst();
3772 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
3773 			mfence();
3774 	}
3775 }
3776 
3777 void
pmap_flush_cache_range(vm_offset_t sva,vm_offset_t eva)3778 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
3779 {
3780 
3781 	pmap_invalidate_cache_range_check_align(sva, eva);
3782 
3783 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
3784 		pmap_force_invalidate_cache_range(sva, eva);
3785 		return;
3786 	}
3787 
3788 	/* See comment in pmap_force_invalidate_cache_range(). */
3789 	if (pmap_kextract(sva) == lapic_paddr)
3790 		return;
3791 
3792 	atomic_thread_fence_seq_cst();
3793 	for (; sva < eva; sva += cpu_clflush_line_size)
3794 		clwb(sva);
3795 	atomic_thread_fence_seq_cst();
3796 }
3797 
3798 void
pmap_flush_cache_phys_range(vm_paddr_t spa,vm_paddr_t epa,vm_memattr_t mattr)3799 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
3800 {
3801 	pt_entry_t *pte;
3802 	vm_offset_t vaddr;
3803 	int error __diagused;
3804 	int pte_bits;
3805 
3806 	KASSERT((spa & PAGE_MASK) == 0,
3807 	    ("pmap_flush_cache_phys_range: spa not page-aligned"));
3808 	KASSERT((epa & PAGE_MASK) == 0,
3809 	    ("pmap_flush_cache_phys_range: epa not page-aligned"));
3810 
3811 	if (spa < dmaplimit) {
3812 		pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
3813 		    dmaplimit, epa)));
3814 		if (dmaplimit >= epa)
3815 			return;
3816 		spa = dmaplimit;
3817 	}
3818 
3819 	pte_bits = pmap_cache_bits(kernel_pmap, mattr, false) | X86_PG_RW |
3820 	    X86_PG_V;
3821 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
3822 	    &vaddr);
3823 	KASSERT(error == 0, ("vmem_alloc failed: %d", error));
3824 	pte = vtopte(vaddr);
3825 	for (; spa < epa; spa += PAGE_SIZE) {
3826 		sched_pin();
3827 		pte_store(pte, spa | pte_bits);
3828 		pmap_invlpg(kernel_pmap, vaddr);
3829 		/* XXXKIB atomic inside flush_cache_range are excessive */
3830 		pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
3831 		sched_unpin();
3832 	}
3833 	vmem_free(kernel_arena, vaddr, PAGE_SIZE);
3834 }
3835 
3836 /*
3837  *	Routine:	pmap_extract
3838  *	Function:
3839  *		Extract the physical page address associated
3840  *		with the given map/virtual_address pair.
3841  */
3842 vm_paddr_t
pmap_extract(pmap_t pmap,vm_offset_t va)3843 pmap_extract(pmap_t pmap, vm_offset_t va)
3844 {
3845 	pdp_entry_t *pdpe;
3846 	pd_entry_t *pde;
3847 	pt_entry_t *pte, PG_V;
3848 	vm_paddr_t pa;
3849 
3850 	pa = 0;
3851 	PG_V = pmap_valid_bit(pmap);
3852 	PMAP_LOCK(pmap);
3853 	pdpe = pmap_pdpe(pmap, va);
3854 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
3855 		if ((*pdpe & PG_PS) != 0)
3856 			pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
3857 		else {
3858 			pde = pmap_pdpe_to_pde(pdpe, va);
3859 			if ((*pde & PG_V) != 0) {
3860 				if ((*pde & PG_PS) != 0) {
3861 					pa = (*pde & PG_PS_FRAME) |
3862 					    (va & PDRMASK);
3863 				} else {
3864 					pte = pmap_pde_to_pte(pde, va);
3865 					pa = (*pte & PG_FRAME) |
3866 					    (va & PAGE_MASK);
3867 				}
3868 			}
3869 		}
3870 	}
3871 	PMAP_UNLOCK(pmap);
3872 	return (pa);
3873 }
3874 
3875 /*
3876  *	Routine:	pmap_extract_and_hold
3877  *	Function:
3878  *		Atomically extract and hold the physical page
3879  *		with the given pmap and virtual address pair
3880  *		if that mapping permits the given protection.
3881  */
3882 vm_page_t
pmap_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)3883 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
3884 {
3885 	pdp_entry_t pdpe, *pdpep;
3886 	pd_entry_t pde, *pdep;
3887 	pt_entry_t pte, PG_RW, PG_V;
3888 	vm_page_t m;
3889 
3890 	m = NULL;
3891 	PG_RW = pmap_rw_bit(pmap);
3892 	PG_V = pmap_valid_bit(pmap);
3893 	PMAP_LOCK(pmap);
3894 
3895 	pdpep = pmap_pdpe(pmap, va);
3896 	if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
3897 		goto out;
3898 	if ((pdpe & PG_PS) != 0) {
3899 		if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3900 			goto out;
3901 		m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
3902 		goto check_page;
3903 	}
3904 
3905 	pdep = pmap_pdpe_to_pde(pdpep, va);
3906 	if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
3907 		goto out;
3908 	if ((pde & PG_PS) != 0) {
3909 		if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
3910 			goto out;
3911 		m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
3912 		goto check_page;
3913 	}
3914 
3915 	pte = *pmap_pde_to_pte(pdep, va);
3916 	if ((pte & PG_V) == 0 ||
3917 	    ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
3918 		goto out;
3919 	m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
3920 
3921 check_page:
3922 	if (m != NULL && !vm_page_wire_mapped(m))
3923 		m = NULL;
3924 out:
3925 	PMAP_UNLOCK(pmap);
3926 	return (m);
3927 }
3928 
3929 /*
3930  *	Routine:	pmap_kextract
3931  *	Function:
3932  *		Extract the physical page address associated with the given kernel
3933  *		virtual address.
3934  */
3935 vm_paddr_t
pmap_kextract(vm_offset_t va)3936 pmap_kextract(vm_offset_t va)
3937 {
3938 	pd_entry_t pde;
3939 	vm_paddr_t pa;
3940 
3941 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
3942 		pa = DMAP_TO_PHYS(va);
3943 	} else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
3944 		pa = pmap_large_map_kextract(va);
3945 	} else {
3946 		pde = *vtopde(va);
3947 		if (pde & PG_PS) {
3948 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
3949 		} else {
3950 			/*
3951 			 * Beware of a concurrent promotion that changes the
3952 			 * PDE at this point!  For example, vtopte() must not
3953 			 * be used to access the PTE because it would use the
3954 			 * new PDE.  It is, however, safe to use the old PDE
3955 			 * because the page table page is preserved by the
3956 			 * promotion.
3957 			 */
3958 			pa = *pmap_pde_to_pte(&pde, va);
3959 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
3960 		}
3961 	}
3962 	return (pa);
3963 }
3964 
3965 /***************************************************
3966  * Low level mapping routines.....
3967  ***************************************************/
3968 
3969 /*
3970  * Add a wired page to the kva.
3971  * Note: not SMP coherent.
3972  */
3973 void
pmap_kenter(vm_offset_t va,vm_paddr_t pa)3974 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
3975 {
3976 	pt_entry_t *pte;
3977 
3978 	pte = vtopte(va);
3979 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3980 	    X86_PG_RW | X86_PG_V);
3981 }
3982 
3983 static __inline void
pmap_kenter_attr(vm_offset_t va,vm_paddr_t pa,int mode)3984 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
3985 {
3986 	pt_entry_t *pte;
3987 	int cache_bits;
3988 
3989 	pte = vtopte(va);
3990 	cache_bits = pmap_cache_bits(kernel_pmap, mode, false);
3991 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
3992 	    X86_PG_RW | X86_PG_V | cache_bits);
3993 }
3994 
3995 /*
3996  * Remove a page from the kernel pagetables.
3997  * Note: not SMP coherent.
3998  */
3999 void
pmap_kremove(vm_offset_t va)4000 pmap_kremove(vm_offset_t va)
4001 {
4002 	pt_entry_t *pte;
4003 
4004 	pte = vtopte(va);
4005 	pte_clear(pte);
4006 }
4007 
4008 /*
4009  *	Used to map a range of physical addresses into kernel
4010  *	virtual address space.
4011  *
4012  *	The value passed in '*virt' is a suggested virtual address for
4013  *	the mapping. Architectures which can support a direct-mapped
4014  *	physical to virtual region can return the appropriate address
4015  *	within that region, leaving '*virt' unchanged. Other
4016  *	architectures should map the pages starting at '*virt' and
4017  *	update '*virt' with the first usable address after the mapped
4018  *	region.
4019  */
4020 vm_offset_t
pmap_map(vm_offset_t * virt,vm_paddr_t start,vm_paddr_t end,int prot)4021 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
4022 {
4023 	return PHYS_TO_DMAP(start);
4024 }
4025 
4026 /*
4027  * Add a list of wired pages to the kva
4028  * this routine is only used for temporary
4029  * kernel mappings that do not need to have
4030  * page modification or references recorded.
4031  * Note that old mappings are simply written
4032  * over.  The page *must* be wired.
4033  * Note: SMP coherent.  Uses a ranged shootdown IPI.
4034  */
4035 void
pmap_qenter(vm_offset_t sva,vm_page_t * ma,int count)4036 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
4037 {
4038 	pt_entry_t *endpte, oldpte, pa, *pte;
4039 	vm_page_t m;
4040 	int cache_bits;
4041 
4042 	oldpte = 0;
4043 	pte = vtopte(sva);
4044 	endpte = pte + count;
4045 	while (pte < endpte) {
4046 		m = *ma++;
4047 		cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
4048 		pa = VM_PAGE_TO_PHYS(m) | cache_bits;
4049 		if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
4050 			oldpte |= *pte;
4051 			pte_store(pte, pa | pg_g | pg_nx | X86_PG_A |
4052 			    X86_PG_M | X86_PG_RW | X86_PG_V);
4053 		}
4054 		pte++;
4055 	}
4056 	if (__predict_false((oldpte & X86_PG_V) != 0))
4057 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
4058 		    PAGE_SIZE);
4059 }
4060 
4061 /*
4062  * This routine tears out page mappings from the
4063  * kernel -- it is meant only for temporary mappings.
4064  * Note: SMP coherent.  Uses a ranged shootdown IPI.
4065  */
4066 void
pmap_qremove(vm_offset_t sva,int count)4067 pmap_qremove(vm_offset_t sva, int count)
4068 {
4069 	vm_offset_t va;
4070 
4071 	va = sva;
4072 	while (count-- > 0) {
4073 		KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
4074 		pmap_kremove(va);
4075 		va += PAGE_SIZE;
4076 	}
4077 	pmap_invalidate_range(kernel_pmap, sva, va);
4078 }
4079 
4080 /***************************************************
4081  * Page table page management routines.....
4082  ***************************************************/
4083 /*
4084  * Schedule the specified unused page table page to be freed.  Specifically,
4085  * add the page to the specified list of pages that will be released to the
4086  * physical memory manager after the TLB has been updated.
4087  */
4088 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free,bool set_PG_ZERO)4089 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
4090 {
4091 
4092 	if (set_PG_ZERO)
4093 		m->flags |= PG_ZERO;
4094 	else
4095 		m->flags &= ~PG_ZERO;
4096 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
4097 }
4098 
4099 /*
4100  * Inserts the specified page table page into the specified pmap's collection
4101  * of idle page table pages.  Each of a pmap's page table pages is responsible
4102  * for mapping a distinct range of virtual addresses.  The pmap's collection is
4103  * ordered by this virtual address range.
4104  *
4105  * If "promoted" is false, then the page table page "mpte" must be zero filled;
4106  * "mpte"'s valid field will be set to 0.
4107  *
4108  * If "promoted" is true and "allpte_PG_A_set" is false, then "mpte" must
4109  * contain valid mappings with identical attributes except for PG_A; "mpte"'s
4110  * valid field will be set to 1.
4111  *
4112  * If "promoted" and "allpte_PG_A_set" are both true, then "mpte" must contain
4113  * valid mappings with identical attributes including PG_A; "mpte"'s valid
4114  * field will be set to VM_PAGE_BITS_ALL.
4115  */
4116 static __inline int
pmap_insert_pt_page(pmap_t pmap,vm_page_t mpte,bool promoted,bool allpte_PG_A_set)4117 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
4118     bool allpte_PG_A_set)
4119 {
4120 
4121 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4122 	KASSERT(promoted || !allpte_PG_A_set,
4123 	    ("a zero-filled PTP can't have PG_A set in every PTE"));
4124 	mpte->valid = promoted ? (allpte_PG_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
4125 	return (vm_radix_insert(&pmap->pm_root, mpte));
4126 }
4127 
4128 /*
4129  * Removes the page table page mapping the specified virtual address from the
4130  * specified pmap's collection of idle page table pages, and returns it.
4131  * Otherwise, returns NULL if there is no page table page corresponding to the
4132  * specified virtual address.
4133  */
4134 static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap,vm_offset_t va)4135 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
4136 {
4137 
4138 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4139 	return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
4140 }
4141 
4142 /*
4143  * Decrements a page table page's reference count, which is used to record the
4144  * number of valid page table entries within the page.  If the reference count
4145  * drops to zero, then the page table page is unmapped.  Returns true if the
4146  * page table page was unmapped and false otherwise.
4147  */
4148 static inline bool
pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4149 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4150 {
4151 
4152 	--m->ref_count;
4153 	if (m->ref_count == 0) {
4154 		_pmap_unwire_ptp(pmap, va, m, free);
4155 		return (true);
4156 	} else
4157 		return (false);
4158 }
4159 
4160 static void
_pmap_unwire_ptp(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)4161 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
4162 {
4163 	pml5_entry_t *pml5;
4164 	pml4_entry_t *pml4;
4165 	pdp_entry_t *pdp;
4166 	pd_entry_t *pd;
4167 	vm_page_t pdpg, pdppg, pml4pg;
4168 
4169 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4170 
4171 	/*
4172 	 * unmap the page table page
4173 	 */
4174 	if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
4175 		/* PML4 page */
4176 		MPASS(pmap_is_la57(pmap));
4177 		pml5 = pmap_pml5e(pmap, va);
4178 		*pml5 = 0;
4179 		if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
4180 			pml5 = pmap_pml5e_u(pmap, va);
4181 			*pml5 = 0;
4182 		}
4183 	} else if (m->pindex >= NUPDE + NUPDPE) {
4184 		/* PDP page */
4185 		pml4 = pmap_pml4e(pmap, va);
4186 		*pml4 = 0;
4187 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4188 		    va <= VM_MAXUSER_ADDRESS) {
4189 			pml4 = pmap_pml4e_u(pmap, va);
4190 			*pml4 = 0;
4191 		}
4192 	} else if (m->pindex >= NUPDE) {
4193 		/* PD page */
4194 		pdp = pmap_pdpe(pmap, va);
4195 		*pdp = 0;
4196 	} else {
4197 		/* PTE page */
4198 		pd = pmap_pde(pmap, va);
4199 		*pd = 0;
4200 	}
4201 	if (m->pindex < NUPDE) {
4202 		/* We just released a PT, unhold the matching PD */
4203 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
4204 		pmap_unwire_ptp(pmap, va, pdpg, free);
4205 	} else if (m->pindex < NUPDE + NUPDPE) {
4206 		/* We just released a PD, unhold the matching PDP */
4207 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
4208 		pmap_unwire_ptp(pmap, va, pdppg, free);
4209 	} else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
4210 		/* We just released a PDP, unhold the matching PML4 */
4211 		pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
4212 		pmap_unwire_ptp(pmap, va, pml4pg, free);
4213 	}
4214 
4215 	pmap_pt_page_count_adj(pmap, -1);
4216 
4217 	/*
4218 	 * Put page on a list so that it is released after
4219 	 * *ALL* TLB shootdown is done
4220 	 */
4221 	pmap_add_delayed_free_list(m, free, true);
4222 }
4223 
4224 /*
4225  * After removing a page table entry, this routine is used to
4226  * conditionally free the page, and manage the reference count.
4227  */
4228 static int
pmap_unuse_pt(pmap_t pmap,vm_offset_t va,pd_entry_t ptepde,struct spglist * free)4229 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
4230     struct spglist *free)
4231 {
4232 	vm_page_t mpte;
4233 
4234 	if (va >= VM_MAXUSER_ADDRESS)
4235 		return (0);
4236 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
4237 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
4238 	return (pmap_unwire_ptp(pmap, va, mpte, free));
4239 }
4240 
4241 /*
4242  * Release a page table page reference after a failed attempt to create a
4243  * mapping.
4244  */
4245 static void
pmap_abort_ptp(pmap_t pmap,vm_offset_t va,vm_page_t mpte)4246 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
4247 {
4248 	struct spglist free;
4249 
4250 	SLIST_INIT(&free);
4251 	if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
4252 		/*
4253 		 * Although "va" was never mapped, paging-structure caches
4254 		 * could nonetheless have entries that refer to the freed
4255 		 * page table pages.  Invalidate those entries.
4256 		 */
4257 		pmap_invalidate_page(pmap, va);
4258 		vm_page_free_pages_toq(&free, true);
4259 	}
4260 }
4261 
4262 static void
pmap_pinit_pcids(pmap_t pmap,uint32_t pcid,int gen)4263 pmap_pinit_pcids(pmap_t pmap, uint32_t pcid, int gen)
4264 {
4265 	struct pmap_pcid *pcidp;
4266 	int i;
4267 
4268 	CPU_FOREACH(i) {
4269 		pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
4270 		pcidp->pm_pcid = pcid;
4271 		pcidp->pm_gen = gen;
4272 	}
4273 }
4274 
4275 void
pmap_pinit0(pmap_t pmap)4276 pmap_pinit0(pmap_t pmap)
4277 {
4278 	struct proc *p;
4279 	struct thread *td;
4280 
4281 	PMAP_LOCK_INIT(pmap);
4282 	pmap->pm_pmltop = kernel_pmap->pm_pmltop;
4283 	pmap->pm_pmltopu = NULL;
4284 	pmap->pm_cr3 = kernel_pmap->pm_cr3;
4285 	/* hack to keep pmap_pti_pcid_invalidate() alive */
4286 	pmap->pm_ucr3 = PMAP_NO_CR3;
4287 	vm_radix_init(&pmap->pm_root);
4288 	CPU_ZERO(&pmap->pm_active);
4289 	TAILQ_INIT(&pmap->pm_pvchunk);
4290 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4291 	pmap->pm_flags = pmap_flags;
4292 	pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8, M_WAITOK);
4293 	pmap_pinit_pcids(pmap, PMAP_PCID_KERN + 1, 1);
4294 	pmap_activate_boot(pmap);
4295 	td = curthread;
4296 	if (pti) {
4297 		p = td->td_proc;
4298 		PROC_LOCK(p);
4299 		p->p_md.md_flags |= P_MD_KPTI;
4300 		PROC_UNLOCK(p);
4301 	}
4302 	pmap_thread_init_invl_gen(td);
4303 
4304 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4305 		pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
4306 		    sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
4307 		    UMA_ALIGN_PTR, 0);
4308 	}
4309 }
4310 
4311 void
pmap_pinit_pml4(vm_page_t pml4pg)4312 pmap_pinit_pml4(vm_page_t pml4pg)
4313 {
4314 	pml4_entry_t *pm_pml4;
4315 	int i;
4316 
4317 	pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
4318 
4319 	/* Wire in kernel global address entries. */
4320 	for (i = 0; i < NKPML4E; i++) {
4321 		pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
4322 		    X86_PG_V;
4323 	}
4324 #ifdef KASAN
4325 	for (i = 0; i < NKASANPML4E; i++) {
4326 		pm_pml4[KASANPML4I + i] = (KASANPDPphys + ptoa(i)) | X86_PG_RW |
4327 		    X86_PG_V | pg_nx;
4328 	}
4329 #endif
4330 #ifdef KMSAN
4331 	for (i = 0; i < NKMSANSHADPML4E; i++) {
4332 		pm_pml4[KMSANSHADPML4I + i] = (KMSANSHADPDPphys + ptoa(i)) |
4333 		    X86_PG_RW | X86_PG_V | pg_nx;
4334 	}
4335 	for (i = 0; i < NKMSANORIGPML4E; i++) {
4336 		pm_pml4[KMSANORIGPML4I + i] = (KMSANORIGPDPphys + ptoa(i)) |
4337 		    X86_PG_RW | X86_PG_V | pg_nx;
4338 	}
4339 #endif
4340 	for (i = 0; i < ndmpdpphys; i++) {
4341 		pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
4342 		    X86_PG_V;
4343 	}
4344 
4345 	/* install self-referential address mapping entry(s) */
4346 	pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
4347 	    X86_PG_A | X86_PG_M;
4348 
4349 	/* install large map entries if configured */
4350 	for (i = 0; i < lm_ents; i++)
4351 		pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
4352 }
4353 
4354 void
pmap_pinit_pml5(vm_page_t pml5pg)4355 pmap_pinit_pml5(vm_page_t pml5pg)
4356 {
4357 	pml5_entry_t *pm_pml5;
4358 
4359 	pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
4360 
4361 	/*
4362 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
4363 	 * entering all existing kernel mappings into level 5 table.
4364 	 */
4365 	pm_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
4366 	    X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
4367 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, false);
4368 
4369 	/*
4370 	 * Install self-referential address mapping entry.
4371 	 */
4372 	pm_pml5[PML5PML5I] = VM_PAGE_TO_PHYS(pml5pg) |
4373 	    X86_PG_RW | X86_PG_V | X86_PG_M | X86_PG_A |
4374 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, false);
4375 }
4376 
4377 static void
pmap_pinit_pml4_pti(vm_page_t pml4pgu)4378 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
4379 {
4380 	pml4_entry_t *pm_pml4u;
4381 	int i;
4382 
4383 	pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
4384 	for (i = 0; i < NPML4EPG; i++)
4385 		pm_pml4u[i] = pti_pml4[i];
4386 }
4387 
4388 static void
pmap_pinit_pml5_pti(vm_page_t pml5pgu)4389 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
4390 {
4391 	pml5_entry_t *pm_pml5u;
4392 
4393 	pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
4394 	pagezero(pm_pml5u);
4395 
4396 	/*
4397 	 * Add pml5 entry at top of KVA pointing to existing pml4 pti
4398 	 * table, entering all kernel mappings needed for usermode
4399 	 * into level 5 table.
4400 	 */
4401 	pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
4402 	    pmap_kextract((vm_offset_t)pti_pml4) |
4403 	    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
4404 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, false);
4405 }
4406 
4407 /* Allocate a page table page and do related bookkeeping */
4408 static vm_page_t
pmap_alloc_pt_page(pmap_t pmap,vm_pindex_t pindex,int flags)4409 pmap_alloc_pt_page(pmap_t pmap, vm_pindex_t pindex, int flags)
4410 {
4411 	vm_page_t m;
4412 
4413 	m = vm_page_alloc_noobj(flags);
4414 	if (__predict_false(m == NULL))
4415 		return (NULL);
4416 	m->pindex = pindex;
4417 	pmap_pt_page_count_adj(pmap, 1);
4418 	return (m);
4419 }
4420 
4421 static void
pmap_free_pt_page(pmap_t pmap,vm_page_t m,bool zerofilled)4422 pmap_free_pt_page(pmap_t pmap, vm_page_t m, bool zerofilled)
4423 {
4424 	/*
4425 	 * This function assumes the page will need to be unwired,
4426 	 * even though the counterpart allocation in pmap_alloc_pt_page()
4427 	 * doesn't enforce VM_ALLOC_WIRED.  However, all current uses
4428 	 * of pmap_free_pt_page() require unwiring.  The case in which
4429 	 * a PT page doesn't require unwiring because its ref_count has
4430 	 * naturally reached 0 is handled through _pmap_unwire_ptp().
4431 	 */
4432 	vm_page_unwire_noq(m);
4433 	if (zerofilled)
4434 		vm_page_free_zero(m);
4435 	else
4436 		vm_page_free(m);
4437 
4438 	pmap_pt_page_count_adj(pmap, -1);
4439 }
4440 
4441 _Static_assert(sizeof(struct pmap_pcid) == 8, "Fix pcpu zone for pm_pcidp");
4442 
4443 /*
4444  * Initialize a preallocated and zeroed pmap structure,
4445  * such as one in a vmspace structure.
4446  */
4447 int
pmap_pinit_type(pmap_t pmap,enum pmap_type pm_type,int flags)4448 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
4449 {
4450 	vm_page_t pmltop_pg, pmltop_pgu;
4451 	vm_paddr_t pmltop_phys;
4452 
4453 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
4454 
4455 	/*
4456 	 * Allocate the page directory page.  Pass NULL instead of a
4457 	 * pointer to the pmap here to avoid calling
4458 	 * pmap_resident_count_adj() through pmap_pt_page_count_adj(),
4459 	 * since that requires pmap lock.  Instead do the accounting
4460 	 * manually.
4461 	 *
4462 	 * Note that final call to pmap_remove() optimization that
4463 	 * checks for zero resident_count is basically disabled by
4464 	 * accounting for top-level page.  But the optimization was
4465 	 * not effective since we started using non-managed mapping of
4466 	 * the shared page.
4467 	 */
4468 	pmltop_pg = pmap_alloc_pt_page(NULL, 0, VM_ALLOC_WIRED | VM_ALLOC_ZERO |
4469 	    VM_ALLOC_WAITOK);
4470 	pmap_pt_page_count_pinit(pmap, 1);
4471 
4472 	pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
4473 	pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
4474 
4475 	if (pmap_pcid_enabled) {
4476 		if (pmap->pm_pcidp == NULL)
4477 			pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8,
4478 			    M_WAITOK);
4479 		pmap_pinit_pcids(pmap, PMAP_PCID_NONE, 0);
4480 	}
4481 	pmap->pm_cr3 = PMAP_NO_CR3;	/* initialize to an invalid value */
4482 	pmap->pm_ucr3 = PMAP_NO_CR3;
4483 	pmap->pm_pmltopu = NULL;
4484 
4485 	pmap->pm_type = pm_type;
4486 
4487 	/*
4488 	 * Do not install the host kernel mappings in the nested page
4489 	 * tables. These mappings are meaningless in the guest physical
4490 	 * address space.
4491 	 * Install minimal kernel mappings in PTI case.
4492 	 */
4493 	switch (pm_type) {
4494 	case PT_X86:
4495 		pmap->pm_cr3 = pmltop_phys;
4496 		if (pmap_is_la57(pmap))
4497 			pmap_pinit_pml5(pmltop_pg);
4498 		else
4499 			pmap_pinit_pml4(pmltop_pg);
4500 		if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
4501 			/*
4502 			 * As with pmltop_pg, pass NULL instead of a
4503 			 * pointer to the pmap to ensure that the PTI
4504 			 * page counted explicitly.
4505 			 */
4506 			pmltop_pgu = pmap_alloc_pt_page(NULL, 0,
4507 			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
4508 			pmap_pt_page_count_pinit(pmap, 1);
4509 			pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
4510 			    VM_PAGE_TO_PHYS(pmltop_pgu));
4511 			if (pmap_is_la57(pmap))
4512 				pmap_pinit_pml5_pti(pmltop_pgu);
4513 			else
4514 				pmap_pinit_pml4_pti(pmltop_pgu);
4515 			pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
4516 		}
4517 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
4518 			rangeset_init(&pmap->pm_pkru, pkru_dup_range,
4519 			    pkru_free_range, pmap, M_NOWAIT);
4520 		}
4521 		break;
4522 	case PT_EPT:
4523 	case PT_RVI:
4524 		pmap->pm_eptsmr = smr_create("pmap", 0, 0);
4525 		break;
4526 	}
4527 
4528 	vm_radix_init(&pmap->pm_root);
4529 	CPU_ZERO(&pmap->pm_active);
4530 	TAILQ_INIT(&pmap->pm_pvchunk);
4531 	pmap->pm_flags = flags;
4532 	pmap->pm_eptgen = 0;
4533 
4534 	return (1);
4535 }
4536 
4537 int
pmap_pinit(pmap_t pmap)4538 pmap_pinit(pmap_t pmap)
4539 {
4540 
4541 	return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
4542 }
4543 
4544 static void
pmap_allocpte_free_unref(pmap_t pmap,vm_offset_t va,pt_entry_t * pte)4545 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
4546 {
4547 	vm_page_t mpg;
4548 	struct spglist free;
4549 
4550 	mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
4551 	if (mpg->ref_count != 0)
4552 		return;
4553 	SLIST_INIT(&free);
4554 	_pmap_unwire_ptp(pmap, va, mpg, &free);
4555 	pmap_invalidate_page(pmap, va);
4556 	vm_page_free_pages_toq(&free, true);
4557 }
4558 
4559 static pml4_entry_t *
pmap_allocpte_getpml4(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4560 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4561     bool addref)
4562 {
4563 	vm_pindex_t pml5index;
4564 	pml5_entry_t *pml5;
4565 	pml4_entry_t *pml4;
4566 	vm_page_t pml4pg;
4567 	pt_entry_t PG_V;
4568 	bool allocated;
4569 
4570 	if (!pmap_is_la57(pmap))
4571 		return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
4572 
4573 	PG_V = pmap_valid_bit(pmap);
4574 	pml5index = pmap_pml5e_index(va);
4575 	pml5 = &pmap->pm_pmltop[pml5index];
4576 	if ((*pml5 & PG_V) == 0) {
4577 		if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
4578 		    va) == NULL)
4579 			return (NULL);
4580 		allocated = true;
4581 	} else {
4582 		allocated = false;
4583 	}
4584 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
4585 	pml4 = &pml4[pmap_pml4e_index(va)];
4586 	if ((*pml4 & PG_V) == 0) {
4587 		pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
4588 		if (allocated && !addref)
4589 			pml4pg->ref_count--;
4590 		else if (!allocated && addref)
4591 			pml4pg->ref_count++;
4592 	}
4593 	return (pml4);
4594 }
4595 
4596 static pdp_entry_t *
pmap_allocpte_getpdp(pmap_t pmap,struct rwlock ** lockp,vm_offset_t va,bool addref)4597 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
4598     bool addref)
4599 {
4600 	vm_page_t pdppg;
4601 	pml4_entry_t *pml4;
4602 	pdp_entry_t *pdp;
4603 	pt_entry_t PG_V;
4604 	bool allocated;
4605 
4606 	PG_V = pmap_valid_bit(pmap);
4607 
4608 	pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
4609 	if (pml4 == NULL)
4610 		return (NULL);
4611 
4612 	if ((*pml4 & PG_V) == 0) {
4613 		/* Have to allocate a new pdp, recurse */
4614 		if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
4615 		    va) == NULL) {
4616 			if (pmap_is_la57(pmap))
4617 				pmap_allocpte_free_unref(pmap, va,
4618 				    pmap_pml5e(pmap, va));
4619 			return (NULL);
4620 		}
4621 		allocated = true;
4622 	} else {
4623 		allocated = false;
4624 	}
4625 	pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
4626 	pdp = &pdp[pmap_pdpe_index(va)];
4627 	if ((*pdp & PG_V) == 0) {
4628 		pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
4629 		if (allocated && !addref)
4630 			pdppg->ref_count--;
4631 		else if (!allocated && addref)
4632 			pdppg->ref_count++;
4633 	}
4634 	return (pdp);
4635 }
4636 
4637 /*
4638  * The ptepindexes, i.e. page indices, of the page table pages encountered
4639  * while translating virtual address va are defined as follows:
4640  * - for the page table page (last level),
4641  *      ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
4642  *   in other words, it is just the index of the PDE that maps the page
4643  *   table page.
4644  * - for the page directory page,
4645  *      ptepindex = NUPDE (number of userland PD entries) +
4646  *          (pmap_pde_index(va) >> NPDEPGSHIFT)
4647  *   i.e. index of PDPE is put after the last index of PDE,
4648  * - for the page directory pointer page,
4649  *      ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
4650  *          NPML4EPGSHIFT),
4651  *   i.e. index of pml4e is put after the last index of PDPE,
4652  * - for the PML4 page (if LA57 mode is enabled),
4653  *      ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
4654  *          (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
4655  *   i.e. index of pml5e is put after the last index of PML4E.
4656  *
4657  * Define an order on the paging entries, where all entries of the
4658  * same height are put together, then heights are put from deepest to
4659  * root.  Then ptexpindex is the sequential number of the
4660  * corresponding paging entry in this order.
4661  *
4662  * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
4663  * LA57 paging structures even in LA48 paging mode. Moreover, the
4664  * ptepindexes are calculated as if the paging structures were 5-level
4665  * regardless of the actual mode of operation.
4666  *
4667  * The root page at PML4/PML5 does not participate in this indexing scheme,
4668  * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
4669  */
4670 static vm_page_t
pmap_allocpte_nosleep(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4671 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4672     vm_offset_t va)
4673 {
4674 	vm_pindex_t pml5index, pml4index;
4675 	pml5_entry_t *pml5, *pml5u;
4676 	pml4_entry_t *pml4, *pml4u;
4677 	pdp_entry_t *pdp;
4678 	pd_entry_t *pd;
4679 	vm_page_t m, pdpg;
4680 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
4681 
4682 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4683 
4684 	PG_A = pmap_accessed_bit(pmap);
4685 	PG_M = pmap_modified_bit(pmap);
4686 	PG_V = pmap_valid_bit(pmap);
4687 	PG_RW = pmap_rw_bit(pmap);
4688 
4689 	/*
4690 	 * Allocate a page table page.
4691 	 */
4692 	m = pmap_alloc_pt_page(pmap, ptepindex,
4693 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
4694 	if (m == NULL)
4695 		return (NULL);
4696 
4697 	/*
4698 	 * Map the pagetable page into the process address space, if
4699 	 * it isn't already there.
4700 	 */
4701 	if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
4702 		MPASS(pmap_is_la57(pmap));
4703 
4704 		pml5index = pmap_pml5e_index(va);
4705 		pml5 = &pmap->pm_pmltop[pml5index];
4706 		KASSERT((*pml5 & PG_V) == 0,
4707 		    ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
4708 		*pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4709 
4710 		if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
4711 			MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4712 			*pml5 |= pg_nx;
4713 
4714 			pml5u = &pmap->pm_pmltopu[pml5index];
4715 			*pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4716 			    PG_A | PG_M;
4717 		}
4718 	} else if (ptepindex >= NUPDE + NUPDPE) {
4719 		pml4index = pmap_pml4e_index(va);
4720 		/* Wire up a new PDPE page */
4721 		pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
4722 		if (pml4 == NULL) {
4723 			pmap_free_pt_page(pmap, m, true);
4724 			return (NULL);
4725 		}
4726 		KASSERT((*pml4 & PG_V) == 0,
4727 		    ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
4728 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4729 
4730 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
4731 		    pml4index < NUPML4E) {
4732 			MPASS(pmap->pm_ucr3 != PMAP_NO_CR3);
4733 
4734 			/*
4735 			 * PTI: Make all user-space mappings in the
4736 			 * kernel-mode page table no-execute so that
4737 			 * we detect any programming errors that leave
4738 			 * the kernel-mode page table active on return
4739 			 * to user space.
4740 			 */
4741 			*pml4 |= pg_nx;
4742 
4743 			pml4u = &pmap->pm_pmltopu[pml4index];
4744 			*pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
4745 			    PG_A | PG_M;
4746 		}
4747 	} else if (ptepindex >= NUPDE) {
4748 		/* Wire up a new PDE page */
4749 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
4750 		if (pdp == NULL) {
4751 			pmap_free_pt_page(pmap, m, true);
4752 			return (NULL);
4753 		}
4754 		KASSERT((*pdp & PG_V) == 0,
4755 		    ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
4756 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4757 	} else {
4758 		/* Wire up a new PTE page */
4759 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
4760 		if (pdp == NULL) {
4761 			pmap_free_pt_page(pmap, m, true);
4762 			return (NULL);
4763 		}
4764 		if ((*pdp & PG_V) == 0) {
4765 			/* Have to allocate a new pd, recurse */
4766 			if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
4767 			    lockp, va) == NULL) {
4768 				pmap_allocpte_free_unref(pmap, va,
4769 				    pmap_pml4e(pmap, va));
4770 				pmap_free_pt_page(pmap, m, true);
4771 				return (NULL);
4772 			}
4773 		} else {
4774 			/* Add reference to the pd page */
4775 			pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
4776 			pdpg->ref_count++;
4777 		}
4778 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
4779 
4780 		/* Now we know where the page directory page is */
4781 		pd = &pd[pmap_pde_index(va)];
4782 		KASSERT((*pd & PG_V) == 0,
4783 		    ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
4784 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
4785 	}
4786 
4787 	return (m);
4788 }
4789 
4790 /*
4791  * This routine is called if the desired page table page does not exist.
4792  *
4793  * If page table page allocation fails, this routine may sleep before
4794  * returning NULL.  It sleeps only if a lock pointer was given.  Sleep
4795  * occurs right before returning to the caller. This way, we never
4796  * drop pmap lock to sleep while a page table page has ref_count == 0,
4797  * which prevents the page from being freed under us.
4798  */
4799 static vm_page_t
pmap_allocpte_alloc(pmap_t pmap,vm_pindex_t ptepindex,struct rwlock ** lockp,vm_offset_t va)4800 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
4801     vm_offset_t va)
4802 {
4803 	vm_page_t m;
4804 
4805 	m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
4806 	if (m == NULL && lockp != NULL) {
4807 		RELEASE_PV_LIST_LOCK(lockp);
4808 		PMAP_UNLOCK(pmap);
4809 		PMAP_ASSERT_NOT_IN_DI();
4810 		vm_wait(NULL);
4811 		PMAP_LOCK(pmap);
4812 	}
4813 	return (m);
4814 }
4815 
4816 static pd_entry_t *
pmap_alloc_pde(pmap_t pmap,vm_offset_t va,vm_page_t * pdpgp,struct rwlock ** lockp)4817 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
4818     struct rwlock **lockp)
4819 {
4820 	pdp_entry_t *pdpe, PG_V;
4821 	pd_entry_t *pde;
4822 	vm_page_t pdpg;
4823 	vm_pindex_t pdpindex;
4824 
4825 	PG_V = pmap_valid_bit(pmap);
4826 
4827 retry:
4828 	pdpe = pmap_pdpe(pmap, va);
4829 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
4830 		pde = pmap_pdpe_to_pde(pdpe, va);
4831 		if (va < VM_MAXUSER_ADDRESS) {
4832 			/* Add a reference to the pd page. */
4833 			pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
4834 			pdpg->ref_count++;
4835 		} else
4836 			pdpg = NULL;
4837 	} else if (va < VM_MAXUSER_ADDRESS) {
4838 		/* Allocate a pd page. */
4839 		pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
4840 		pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
4841 		if (pdpg == NULL) {
4842 			if (lockp != NULL)
4843 				goto retry;
4844 			else
4845 				return (NULL);
4846 		}
4847 		pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
4848 		pde = &pde[pmap_pde_index(va)];
4849 	} else
4850 		panic("pmap_alloc_pde: missing page table page for va %#lx",
4851 		    va);
4852 	*pdpgp = pdpg;
4853 	return (pde);
4854 }
4855 
4856 static vm_page_t
pmap_allocpte(pmap_t pmap,vm_offset_t va,struct rwlock ** lockp)4857 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
4858 {
4859 	vm_pindex_t ptepindex;
4860 	pd_entry_t *pd, PG_V;
4861 	vm_page_t m;
4862 
4863 	PG_V = pmap_valid_bit(pmap);
4864 
4865 	/*
4866 	 * Calculate pagetable page index
4867 	 */
4868 	ptepindex = pmap_pde_pindex(va);
4869 retry:
4870 	/*
4871 	 * Get the page directory entry
4872 	 */
4873 	pd = pmap_pde(pmap, va);
4874 
4875 	/*
4876 	 * This supports switching from a 2MB page to a
4877 	 * normal 4K page.
4878 	 */
4879 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
4880 		if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
4881 			/*
4882 			 * Invalidation of the 2MB page mapping may have caused
4883 			 * the deallocation of the underlying PD page.
4884 			 */
4885 			pd = NULL;
4886 		}
4887 	}
4888 
4889 	/*
4890 	 * If the page table page is mapped, we just increment the
4891 	 * hold count, and activate it.
4892 	 */
4893 	if (pd != NULL && (*pd & PG_V) != 0) {
4894 		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
4895 		m->ref_count++;
4896 	} else {
4897 		/*
4898 		 * Here if the pte page isn't mapped, or if it has been
4899 		 * deallocated.
4900 		 */
4901 		m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
4902 		if (m == NULL && lockp != NULL)
4903 			goto retry;
4904 	}
4905 	return (m);
4906 }
4907 
4908 /***************************************************
4909  * Pmap allocation/deallocation routines.
4910  ***************************************************/
4911 
4912 /*
4913  * Release any resources held by the given physical map.
4914  * Called when a pmap initialized by pmap_pinit is being released.
4915  * Should only be called if the map contains no valid mappings.
4916  */
4917 void
pmap_release(pmap_t pmap)4918 pmap_release(pmap_t pmap)
4919 {
4920 	vm_page_t m;
4921 	int i;
4922 
4923 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
4924 	    ("pmap_release: pmap %p has reserved page table page(s)",
4925 	    pmap));
4926 	KASSERT(CPU_EMPTY(&pmap->pm_active),
4927 	    ("releasing active pmap %p", pmap));
4928 
4929 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
4930 
4931 	if (pmap_is_la57(pmap)) {
4932 		pmap->pm_pmltop[pmap_pml5e_index(UPT_MAX_ADDRESS)] = 0;
4933 		pmap->pm_pmltop[PML5PML5I] = 0;
4934 	} else {
4935 		for (i = 0; i < NKPML4E; i++)	/* KVA */
4936 			pmap->pm_pmltop[KPML4BASE + i] = 0;
4937 #ifdef KASAN
4938 		for (i = 0; i < NKASANPML4E; i++) /* KASAN shadow map */
4939 			pmap->pm_pmltop[KASANPML4I + i] = 0;
4940 #endif
4941 #ifdef KMSAN
4942 		for (i = 0; i < NKMSANSHADPML4E; i++) /* KMSAN shadow map */
4943 			pmap->pm_pmltop[KMSANSHADPML4I + i] = 0;
4944 		for (i = 0; i < NKMSANORIGPML4E; i++) /* KMSAN shadow map */
4945 			pmap->pm_pmltop[KMSANORIGPML4I + i] = 0;
4946 #endif
4947 		for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
4948 			pmap->pm_pmltop[DMPML4I + i] = 0;
4949 		pmap->pm_pmltop[PML4PML4I] = 0;	/* Recursive Mapping */
4950 		for (i = 0; i < lm_ents; i++)	/* Large Map */
4951 			pmap->pm_pmltop[LMSPML4I + i] = 0;
4952 	}
4953 
4954 	pmap_free_pt_page(NULL, m, true);
4955 	pmap_pt_page_count_pinit(pmap, -1);
4956 
4957 	if (pmap->pm_pmltopu != NULL) {
4958 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
4959 		    pm_pmltopu));
4960 		pmap_free_pt_page(NULL, m, false);
4961 		pmap_pt_page_count_pinit(pmap, -1);
4962 	}
4963 	if (pmap->pm_type == PT_X86 &&
4964 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
4965 		rangeset_fini(&pmap->pm_pkru);
4966 
4967 	KASSERT(pmap->pm_stats.resident_count == 0,
4968 	    ("pmap_release: pmap %p resident count %ld != 0",
4969 	    pmap, pmap->pm_stats.resident_count));
4970 }
4971 
4972 static int
kvm_size(SYSCTL_HANDLER_ARGS)4973 kvm_size(SYSCTL_HANDLER_ARGS)
4974 {
4975 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
4976 
4977 	return sysctl_handle_long(oidp, &ksize, 0, req);
4978 }
4979 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4980     0, 0, kvm_size, "LU",
4981     "Size of KVM");
4982 
4983 static int
kvm_free(SYSCTL_HANDLER_ARGS)4984 kvm_free(SYSCTL_HANDLER_ARGS)
4985 {
4986 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
4987 
4988 	return sysctl_handle_long(oidp, &kfree, 0, req);
4989 }
4990 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
4991     0, 0, kvm_free, "LU",
4992     "Amount of KVM free");
4993 
4994 #ifdef KMSAN
4995 static void
pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa,vm_size_t size)4996 pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa, vm_size_t size)
4997 {
4998 	pdp_entry_t *pdpe;
4999 	pd_entry_t *pde;
5000 	pt_entry_t *pte;
5001 	vm_paddr_t dummypa, dummypd, dummypt;
5002 	int i, npde, npdpg;
5003 
5004 	npdpg = howmany(size, NBPDP);
5005 	npde = size / NBPDR;
5006 
5007 	dummypa = vm_phys_early_alloc(-1, PAGE_SIZE);
5008 	pagezero((void *)PHYS_TO_DMAP(dummypa));
5009 
5010 	dummypt = vm_phys_early_alloc(-1, PAGE_SIZE);
5011 	pagezero((void *)PHYS_TO_DMAP(dummypt));
5012 	dummypd = vm_phys_early_alloc(-1, PAGE_SIZE * npdpg);
5013 	for (i = 0; i < npdpg; i++)
5014 		pagezero((void *)PHYS_TO_DMAP(dummypd + ptoa(i)));
5015 
5016 	pte = (pt_entry_t *)PHYS_TO_DMAP(dummypt);
5017 	for (i = 0; i < NPTEPG; i++)
5018 		pte[i] = (pt_entry_t)(dummypa | X86_PG_V | X86_PG_RW |
5019 		    X86_PG_A | X86_PG_M | pg_nx);
5020 
5021 	pde = (pd_entry_t *)PHYS_TO_DMAP(dummypd);
5022 	for (i = 0; i < npde; i++)
5023 		pde[i] = (pd_entry_t)(dummypt | X86_PG_V | X86_PG_RW | pg_nx);
5024 
5025 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(pdppa);
5026 	for (i = 0; i < npdpg; i++)
5027 		pdpe[i] = (pdp_entry_t)(dummypd + ptoa(i) | X86_PG_V |
5028 		    X86_PG_RW | pg_nx);
5029 }
5030 
5031 static void
pmap_kmsan_page_array_startup(vm_offset_t start,vm_offset_t end)5032 pmap_kmsan_page_array_startup(vm_offset_t start, vm_offset_t end)
5033 {
5034 	vm_size_t size;
5035 
5036 	KASSERT(start % NBPDP == 0, ("unaligned page array start address"));
5037 
5038 	/*
5039 	 * The end of the page array's KVA region is 2MB aligned, see
5040 	 * kmem_init().
5041 	 */
5042 	size = round_2mpage(end) - start;
5043 	pmap_kmsan_shadow_map_page_array(KMSANSHADPDPphys, size);
5044 	pmap_kmsan_shadow_map_page_array(KMSANORIGPDPphys, size);
5045 }
5046 #endif
5047 
5048 /*
5049  * Allocate physical memory for the vm_page array and map it into KVA,
5050  * attempting to back the vm_pages with domain-local memory.
5051  */
5052 void
pmap_page_array_startup(long pages)5053 pmap_page_array_startup(long pages)
5054 {
5055 	pdp_entry_t *pdpe;
5056 	pd_entry_t *pde, newpdir;
5057 	vm_offset_t va, start, end;
5058 	vm_paddr_t pa;
5059 	long pfn;
5060 	int domain, i;
5061 
5062 	vm_page_array_size = pages;
5063 
5064 	start = VM_MIN_KERNEL_ADDRESS;
5065 	end = start + pages * sizeof(struct vm_page);
5066 	for (va = start; va < end; va += NBPDR) {
5067 		pfn = first_page + (va - start) / sizeof(struct vm_page);
5068 		domain = vm_phys_domain(ptoa(pfn));
5069 		pdpe = pmap_pdpe(kernel_pmap, va);
5070 		if ((*pdpe & X86_PG_V) == 0) {
5071 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
5072 			dump_add_page(pa);
5073 			pagezero((void *)PHYS_TO_DMAP(pa));
5074 			*pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
5075 			    X86_PG_A | X86_PG_M);
5076 		}
5077 		pde = pmap_pdpe_to_pde(pdpe, va);
5078 		if ((*pde & X86_PG_V) != 0)
5079 			panic("Unexpected pde");
5080 		pa = vm_phys_early_alloc(domain, NBPDR);
5081 		for (i = 0; i < NPDEPG; i++)
5082 			dump_add_page(pa + i * PAGE_SIZE);
5083 		newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
5084 		    X86_PG_M | PG_PS | pg_g | pg_nx);
5085 		pde_store(pde, newpdir);
5086 	}
5087 	vm_page_array = (vm_page_t)start;
5088 
5089 #ifdef KMSAN
5090 	pmap_kmsan_page_array_startup(start, end);
5091 #endif
5092 }
5093 
5094 /*
5095  * grow the number of kernel page table entries, if needed
5096  */
5097 void
pmap_growkernel(vm_offset_t addr)5098 pmap_growkernel(vm_offset_t addr)
5099 {
5100 	vm_paddr_t paddr;
5101 	vm_page_t nkpg;
5102 	pd_entry_t *pde, newpdir;
5103 	pdp_entry_t *pdpe;
5104 	vm_offset_t end;
5105 
5106 	TSENTER();
5107 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
5108 
5109 	/*
5110 	 * The kernel map covers two distinct regions of KVA: that used
5111 	 * for dynamic kernel memory allocations, and the uppermost 2GB
5112 	 * of the virtual address space.  The latter is used to map the
5113 	 * kernel and loadable kernel modules.  This scheme enables the
5114 	 * use of a special code generation model for kernel code which
5115 	 * takes advantage of compact addressing modes in machine code.
5116 	 *
5117 	 * Both regions grow upwards; to avoid wasting memory, the gap
5118 	 * in between is unmapped.  If "addr" is above "KERNBASE", the
5119 	 * kernel's region is grown, otherwise the kmem region is grown.
5120 	 *
5121 	 * The correctness of this action is based on the following
5122 	 * argument: vm_map_insert() allocates contiguous ranges of the
5123 	 * kernel virtual address space.  It calls this function if a range
5124 	 * ends after "kernel_vm_end".  If the kernel is mapped between
5125 	 * "kernel_vm_end" and "addr", then the range cannot begin at
5126 	 * "kernel_vm_end".  In fact, its beginning address cannot be less
5127 	 * than the kernel.  Thus, there is no immediate need to allocate
5128 	 * any new kernel page table pages between "kernel_vm_end" and
5129 	 * "KERNBASE".
5130 	 */
5131 	if (KERNBASE < addr) {
5132 		end = KERNBASE + nkpt * NBPDR;
5133 		if (end == 0) {
5134 			TSEXIT();
5135 			return;
5136 		}
5137 	} else {
5138 		end = kernel_vm_end;
5139 	}
5140 
5141 	addr = roundup2(addr, NBPDR);
5142 	if (addr - 1 >= vm_map_max(kernel_map))
5143 		addr = vm_map_max(kernel_map);
5144 	if (addr <= end) {
5145 		/*
5146 		 * The grown region is already mapped, so there is
5147 		 * nothing to do.
5148 		 */
5149 		TSEXIT();
5150 		return;
5151 	}
5152 
5153 	kasan_shadow_map(end, addr - end);
5154 	kmsan_shadow_map(end, addr - end);
5155 	while (end < addr) {
5156 		pdpe = pmap_pdpe(kernel_pmap, end);
5157 		if ((*pdpe & X86_PG_V) == 0) {
5158 			nkpg = pmap_alloc_pt_page(kernel_pmap,
5159 			    pmap_pdpe_pindex(end), VM_ALLOC_INTERRUPT |
5160 			        VM_ALLOC_NOFREE | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
5161 			if (nkpg == NULL)
5162 				panic("pmap_growkernel: no memory to grow kernel");
5163 			paddr = VM_PAGE_TO_PHYS(nkpg);
5164 			*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
5165 			    X86_PG_A | X86_PG_M);
5166 			continue; /* try again */
5167 		}
5168 		pde = pmap_pdpe_to_pde(pdpe, end);
5169 		if ((*pde & X86_PG_V) != 0) {
5170 			end = (end + NBPDR) & ~PDRMASK;
5171 			if (end - 1 >= vm_map_max(kernel_map)) {
5172 				end = vm_map_max(kernel_map);
5173 				break;
5174 			}
5175 			continue;
5176 		}
5177 
5178 		nkpg = pmap_alloc_pt_page(kernel_pmap, pmap_pde_pindex(end),
5179 		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOFREE | VM_ALLOC_WIRED |
5180 			VM_ALLOC_ZERO);
5181 		if (nkpg == NULL)
5182 			panic("pmap_growkernel: no memory to grow kernel");
5183 		paddr = VM_PAGE_TO_PHYS(nkpg);
5184 		newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
5185 		pde_store(pde, newpdir);
5186 
5187 		end = (end + NBPDR) & ~PDRMASK;
5188 		if (end - 1 >= vm_map_max(kernel_map)) {
5189 			end = vm_map_max(kernel_map);
5190 			break;
5191 		}
5192 	}
5193 
5194 	if (end <= KERNBASE)
5195 		kernel_vm_end = end;
5196 	else
5197 		nkpt = howmany(end - KERNBASE, NBPDR);
5198 	TSEXIT();
5199 }
5200 
5201 /***************************************************
5202  * page management routines.
5203  ***************************************************/
5204 
5205 static const uint64_t pc_freemask[_NPCM] = {
5206 	[0 ... _NPCM - 2] = PC_FREEN,
5207 	[_NPCM - 1] = PC_FREEL
5208 };
5209 
5210 #ifdef PV_STATS
5211 
5212 static COUNTER_U64_DEFINE_EARLY(pc_chunk_count);
5213 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD,
5214     &pc_chunk_count, "Current number of pv entry cnunks");
5215 
5216 static COUNTER_U64_DEFINE_EARLY(pc_chunk_allocs);
5217 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD,
5218     &pc_chunk_allocs, "Total number of pv entry chunks allocated");
5219 
5220 static COUNTER_U64_DEFINE_EARLY(pc_chunk_frees);
5221 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD,
5222     &pc_chunk_frees, "Total number of pv entry chunks freed");
5223 
5224 static COUNTER_U64_DEFINE_EARLY(pc_chunk_tryfail);
5225 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD,
5226     &pc_chunk_tryfail,
5227     "Number of failed attempts to get a pv entry chunk page");
5228 
5229 static COUNTER_U64_DEFINE_EARLY(pv_entry_frees);
5230 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD,
5231     &pv_entry_frees, "Total number of pv entries freed");
5232 
5233 static COUNTER_U64_DEFINE_EARLY(pv_entry_allocs);
5234 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD,
5235     &pv_entry_allocs, "Total number of pv entries allocated");
5236 
5237 static COUNTER_U64_DEFINE_EARLY(pv_entry_count);
5238 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD,
5239     &pv_entry_count, "Current number of pv entries");
5240 
5241 static COUNTER_U64_DEFINE_EARLY(pv_entry_spare);
5242 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD,
5243     &pv_entry_spare, "Current number of spare pv entries");
5244 #endif
5245 
5246 static void
reclaim_pv_chunk_leave_pmap(pmap_t pmap,pmap_t locked_pmap,bool start_di)5247 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
5248 {
5249 
5250 	if (pmap == NULL)
5251 		return;
5252 	pmap_invalidate_all(pmap);
5253 	if (pmap != locked_pmap)
5254 		PMAP_UNLOCK(pmap);
5255 	if (start_di)
5256 		pmap_delayed_invl_finish();
5257 }
5258 
5259 /*
5260  * We are in a serious low memory condition.  Resort to
5261  * drastic measures to free some pages so we can allocate
5262  * another pv entry chunk.
5263  *
5264  * Returns NULL if PV entries were reclaimed from the specified pmap.
5265  *
5266  * We do not, however, unmap 2mpages because subsequent accesses will
5267  * allocate per-page pv entries until repromotion occurs, thereby
5268  * exacerbating the shortage of free pv entries.
5269  */
5270 static vm_page_t
reclaim_pv_chunk_domain(pmap_t locked_pmap,struct rwlock ** lockp,int domain)5271 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
5272 {
5273 	struct pv_chunks_list *pvc;
5274 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
5275 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
5276 	struct md_page *pvh;
5277 	pd_entry_t *pde;
5278 	pmap_t next_pmap, pmap;
5279 	pt_entry_t *pte, tpte;
5280 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
5281 	pv_entry_t pv;
5282 	vm_offset_t va;
5283 	vm_page_t m, m_pc;
5284 	struct spglist free;
5285 	uint64_t inuse;
5286 	int bit, field, freed;
5287 	bool start_di, restart;
5288 
5289 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
5290 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
5291 	pmap = NULL;
5292 	m_pc = NULL;
5293 	PG_G = PG_A = PG_M = PG_RW = 0;
5294 	SLIST_INIT(&free);
5295 	bzero(&pc_marker_b, sizeof(pc_marker_b));
5296 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
5297 	pc_marker = (struct pv_chunk *)&pc_marker_b;
5298 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
5299 
5300 	/*
5301 	 * A delayed invalidation block should already be active if
5302 	 * pmap_advise() or pmap_remove() called this function by way
5303 	 * of pmap_demote_pde_locked().
5304 	 */
5305 	start_di = pmap_not_in_di();
5306 
5307 	pvc = &pv_chunks[domain];
5308 	mtx_lock(&pvc->pvc_lock);
5309 	pvc->active_reclaims++;
5310 	TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
5311 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
5312 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
5313 	    SLIST_EMPTY(&free)) {
5314 		next_pmap = pc->pc_pmap;
5315 		if (next_pmap == NULL) {
5316 			/*
5317 			 * The next chunk is a marker.  However, it is
5318 			 * not our marker, so active_reclaims must be
5319 			 * > 1.  Consequently, the next_chunk code
5320 			 * will not rotate the pv_chunks list.
5321 			 */
5322 			goto next_chunk;
5323 		}
5324 		mtx_unlock(&pvc->pvc_lock);
5325 
5326 		/*
5327 		 * A pv_chunk can only be removed from the pc_lru list
5328 		 * when both pc_chunks_mutex is owned and the
5329 		 * corresponding pmap is locked.
5330 		 */
5331 		if (pmap != next_pmap) {
5332 			restart = false;
5333 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
5334 			    start_di);
5335 			pmap = next_pmap;
5336 			/* Avoid deadlock and lock recursion. */
5337 			if (pmap > locked_pmap) {
5338 				RELEASE_PV_LIST_LOCK(lockp);
5339 				PMAP_LOCK(pmap);
5340 				if (start_di)
5341 					pmap_delayed_invl_start();
5342 				mtx_lock(&pvc->pvc_lock);
5343 				restart = true;
5344 			} else if (pmap != locked_pmap) {
5345 				if (PMAP_TRYLOCK(pmap)) {
5346 					if (start_di)
5347 						pmap_delayed_invl_start();
5348 					mtx_lock(&pvc->pvc_lock);
5349 					restart = true;
5350 				} else {
5351 					pmap = NULL; /* pmap is not locked */
5352 					mtx_lock(&pvc->pvc_lock);
5353 					pc = TAILQ_NEXT(pc_marker, pc_lru);
5354 					if (pc == NULL ||
5355 					    pc->pc_pmap != next_pmap)
5356 						continue;
5357 					goto next_chunk;
5358 				}
5359 			} else if (start_di)
5360 				pmap_delayed_invl_start();
5361 			PG_G = pmap_global_bit(pmap);
5362 			PG_A = pmap_accessed_bit(pmap);
5363 			PG_M = pmap_modified_bit(pmap);
5364 			PG_RW = pmap_rw_bit(pmap);
5365 			if (restart)
5366 				continue;
5367 		}
5368 
5369 		/*
5370 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
5371 		 */
5372 		freed = 0;
5373 		for (field = 0; field < _NPCM; field++) {
5374 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
5375 			    inuse != 0; inuse &= ~(1UL << bit)) {
5376 				bit = bsfq(inuse);
5377 				pv = &pc->pc_pventry[field * 64 + bit];
5378 				va = pv->pv_va;
5379 				pde = pmap_pde(pmap, va);
5380 				if ((*pde & PG_PS) != 0)
5381 					continue;
5382 				pte = pmap_pde_to_pte(pde, va);
5383 				if ((*pte & PG_W) != 0)
5384 					continue;
5385 				tpte = pte_load_clear(pte);
5386 				if ((tpte & PG_G) != 0)
5387 					pmap_invalidate_page(pmap, va);
5388 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
5389 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5390 					vm_page_dirty(m);
5391 				if ((tpte & PG_A) != 0)
5392 					vm_page_aflag_set(m, PGA_REFERENCED);
5393 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5394 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5395 				m->md.pv_gen++;
5396 				if (TAILQ_EMPTY(&m->md.pv_list) &&
5397 				    (m->flags & PG_FICTITIOUS) == 0) {
5398 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5399 					if (TAILQ_EMPTY(&pvh->pv_list)) {
5400 						vm_page_aflag_clear(m,
5401 						    PGA_WRITEABLE);
5402 					}
5403 				}
5404 				pmap_delayed_invl_page(m);
5405 				pc->pc_map[field] |= 1UL << bit;
5406 				pmap_unuse_pt(pmap, va, *pde, &free);
5407 				freed++;
5408 			}
5409 		}
5410 		if (freed == 0) {
5411 			mtx_lock(&pvc->pvc_lock);
5412 			goto next_chunk;
5413 		}
5414 		/* Every freed mapping is for a 4 KB page. */
5415 		pmap_resident_count_adj(pmap, -freed);
5416 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
5417 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
5418 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
5419 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5420 		if (pc_is_free(pc)) {
5421 			PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5422 			PV_STAT(counter_u64_add(pc_chunk_count, -1));
5423 			PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5424 			/* Entire chunk is free; return it. */
5425 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5426 			dump_drop_page(m_pc->phys_addr);
5427 			mtx_lock(&pvc->pvc_lock);
5428 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5429 			break;
5430 		}
5431 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5432 		mtx_lock(&pvc->pvc_lock);
5433 		/* One freed pv entry in locked_pmap is sufficient. */
5434 		if (pmap == locked_pmap)
5435 			break;
5436 next_chunk:
5437 		TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5438 		TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
5439 		if (pvc->active_reclaims == 1 && pmap != NULL) {
5440 			/*
5441 			 * Rotate the pv chunks list so that we do not
5442 			 * scan the same pv chunks that could not be
5443 			 * freed (because they contained a wired
5444 			 * and/or superpage mapping) on every
5445 			 * invocation of reclaim_pv_chunk().
5446 			 */
5447 			while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
5448 				MPASS(pc->pc_pmap != NULL);
5449 				TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5450 				TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5451 			}
5452 		}
5453 	}
5454 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
5455 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
5456 	pvc->active_reclaims--;
5457 	mtx_unlock(&pvc->pvc_lock);
5458 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
5459 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
5460 		m_pc = SLIST_FIRST(&free);
5461 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
5462 		/* Recycle a freed page table page. */
5463 		m_pc->ref_count = 1;
5464 	}
5465 	vm_page_free_pages_toq(&free, true);
5466 	return (m_pc);
5467 }
5468 
5469 static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap,struct rwlock ** lockp)5470 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
5471 {
5472 	vm_page_t m;
5473 	int i, domain;
5474 
5475 	domain = PCPU_GET(domain);
5476 	for (i = 0; i < vm_ndomains; i++) {
5477 		m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
5478 		if (m != NULL)
5479 			break;
5480 		domain = (domain + 1) % vm_ndomains;
5481 	}
5482 
5483 	return (m);
5484 }
5485 
5486 /*
5487  * free the pv_entry back to the free list
5488  */
5489 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)5490 free_pv_entry(pmap_t pmap, pv_entry_t pv)
5491 {
5492 	struct pv_chunk *pc;
5493 	int idx, field, bit;
5494 
5495 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5496 	PV_STAT(counter_u64_add(pv_entry_frees, 1));
5497 	PV_STAT(counter_u64_add(pv_entry_spare, 1));
5498 	PV_STAT(counter_u64_add(pv_entry_count, -1));
5499 	pc = pv_to_chunk(pv);
5500 	idx = pv - &pc->pc_pventry[0];
5501 	field = idx / 64;
5502 	bit = idx % 64;
5503 	pc->pc_map[field] |= 1ul << bit;
5504 	if (!pc_is_free(pc)) {
5505 		/* 98% of the time, pc is already at the head of the list. */
5506 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
5507 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5508 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5509 		}
5510 		return;
5511 	}
5512 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5513 	free_pv_chunk(pc);
5514 }
5515 
5516 static void
free_pv_chunk_dequeued(struct pv_chunk * pc)5517 free_pv_chunk_dequeued(struct pv_chunk *pc)
5518 {
5519 	vm_page_t m;
5520 
5521 	PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
5522 	PV_STAT(counter_u64_add(pc_chunk_count, -1));
5523 	PV_STAT(counter_u64_add(pc_chunk_frees, 1));
5524 	counter_u64_add(pv_page_count, -1);
5525 	/* entire chunk is free, return it */
5526 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
5527 	dump_drop_page(m->phys_addr);
5528 	vm_page_unwire_noq(m);
5529 	vm_page_free(m);
5530 }
5531 
5532 static void
free_pv_chunk(struct pv_chunk * pc)5533 free_pv_chunk(struct pv_chunk *pc)
5534 {
5535 	struct pv_chunks_list *pvc;
5536 
5537 	pvc = &pv_chunks[pc_to_domain(pc)];
5538 	mtx_lock(&pvc->pvc_lock);
5539 	TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5540 	mtx_unlock(&pvc->pvc_lock);
5541 	free_pv_chunk_dequeued(pc);
5542 }
5543 
5544 static void
free_pv_chunk_batch(struct pv_chunklist * batch)5545 free_pv_chunk_batch(struct pv_chunklist *batch)
5546 {
5547 	struct pv_chunks_list *pvc;
5548 	struct pv_chunk *pc, *npc;
5549 	int i;
5550 
5551 	for (i = 0; i < vm_ndomains; i++) {
5552 		if (TAILQ_EMPTY(&batch[i]))
5553 			continue;
5554 		pvc = &pv_chunks[i];
5555 		mtx_lock(&pvc->pvc_lock);
5556 		TAILQ_FOREACH(pc, &batch[i], pc_list) {
5557 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
5558 		}
5559 		mtx_unlock(&pvc->pvc_lock);
5560 	}
5561 
5562 	for (i = 0; i < vm_ndomains; i++) {
5563 		TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
5564 			free_pv_chunk_dequeued(pc);
5565 		}
5566 	}
5567 }
5568 
5569 /*
5570  * Returns a new PV entry, allocating a new PV chunk from the system when
5571  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
5572  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
5573  * returned.
5574  *
5575  * The given PV list lock may be released.
5576  */
5577 static pv_entry_t
get_pv_entry(pmap_t pmap,struct rwlock ** lockp)5578 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
5579 {
5580 	struct pv_chunks_list *pvc;
5581 	int bit, field;
5582 	pv_entry_t pv;
5583 	struct pv_chunk *pc;
5584 	vm_page_t m;
5585 
5586 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5587 	PV_STAT(counter_u64_add(pv_entry_allocs, 1));
5588 retry:
5589 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5590 	if (pc != NULL) {
5591 		for (field = 0; field < _NPCM; field++) {
5592 			if (pc->pc_map[field]) {
5593 				bit = bsfq(pc->pc_map[field]);
5594 				break;
5595 			}
5596 		}
5597 		if (field < _NPCM) {
5598 			pv = &pc->pc_pventry[field * 64 + bit];
5599 			pc->pc_map[field] &= ~(1ul << bit);
5600 			/* If this was the last item, move it to tail */
5601 			if (pc_is_full(pc)) {
5602 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5603 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
5604 				    pc_list);
5605 			}
5606 			PV_STAT(counter_u64_add(pv_entry_count, 1));
5607 			PV_STAT(counter_u64_add(pv_entry_spare, -1));
5608 			return (pv);
5609 		}
5610 	}
5611 	/* No free items, allocate another chunk */
5612 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5613 	if (m == NULL) {
5614 		if (lockp == NULL) {
5615 			PV_STAT(counter_u64_add(pc_chunk_tryfail, 1));
5616 			return (NULL);
5617 		}
5618 		m = reclaim_pv_chunk(pmap, lockp);
5619 		if (m == NULL)
5620 			goto retry;
5621 	} else
5622 		counter_u64_add(pv_page_count, 1);
5623 	PV_STAT(counter_u64_add(pc_chunk_count, 1));
5624 	PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5625 	dump_add_page(m->phys_addr);
5626 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5627 	pc->pc_pmap = pmap;
5628 	pc->pc_map[0] = PC_FREEN & ~1ul;	/* preallocated bit 0 */
5629 	pc->pc_map[1] = PC_FREEN;
5630 	pc->pc_map[2] = PC_FREEL;
5631 	pvc = &pv_chunks[vm_page_domain(m)];
5632 	mtx_lock(&pvc->pvc_lock);
5633 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
5634 	mtx_unlock(&pvc->pvc_lock);
5635 	pv = &pc->pc_pventry[0];
5636 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5637 	PV_STAT(counter_u64_add(pv_entry_count, 1));
5638 	PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV - 1));
5639 	return (pv);
5640 }
5641 
5642 /*
5643  * Returns the number of one bits within the given PV chunk map.
5644  *
5645  * The erratas for Intel processors state that "POPCNT Instruction May
5646  * Take Longer to Execute Than Expected".  It is believed that the
5647  * issue is the spurious dependency on the destination register.
5648  * Provide a hint to the register rename logic that the destination
5649  * value is overwritten, by clearing it, as suggested in the
5650  * optimization manual.  It should be cheap for unaffected processors
5651  * as well.
5652  *
5653  * Reference numbers for erratas are
5654  * 4th Gen Core: HSD146
5655  * 5th Gen Core: BDM85
5656  * 6th Gen Core: SKL029
5657  */
5658 static int
popcnt_pc_map_pq(uint64_t * map)5659 popcnt_pc_map_pq(uint64_t *map)
5660 {
5661 	u_long result, tmp;
5662 
5663 	__asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
5664 	    "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
5665 	    "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
5666 	    : "=&r" (result), "=&r" (tmp)
5667 	    : "m" (map[0]), "m" (map[1]), "m" (map[2]));
5668 	return (result);
5669 }
5670 
5671 /*
5672  * Ensure that the number of spare PV entries in the specified pmap meets or
5673  * exceeds the given count, "needed".
5674  *
5675  * The given PV list lock may be released.
5676  */
5677 static void
reserve_pv_entries(pmap_t pmap,int needed,struct rwlock ** lockp)5678 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
5679 {
5680 	struct pv_chunks_list *pvc;
5681 	struct pch new_tail[PMAP_MEMDOM];
5682 	struct pv_chunk *pc;
5683 	vm_page_t m;
5684 	int avail, free, i;
5685 	bool reclaimed;
5686 
5687 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5688 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
5689 
5690 	/*
5691 	 * Newly allocated PV chunks must be stored in a private list until
5692 	 * the required number of PV chunks have been allocated.  Otherwise,
5693 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
5694 	 * contrast, these chunks must be added to the pmap upon allocation.
5695 	 */
5696 	for (i = 0; i < PMAP_MEMDOM; i++)
5697 		TAILQ_INIT(&new_tail[i]);
5698 retry:
5699 	avail = 0;
5700 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
5701 #ifndef __POPCNT__
5702 		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
5703 			bit_count((bitstr_t *)pc->pc_map, 0,
5704 			    sizeof(pc->pc_map) * NBBY, &free);
5705 		else
5706 #endif
5707 		free = popcnt_pc_map_pq(pc->pc_map);
5708 		if (free == 0)
5709 			break;
5710 		avail += free;
5711 		if (avail >= needed)
5712 			break;
5713 	}
5714 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
5715 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
5716 		if (m == NULL) {
5717 			m = reclaim_pv_chunk(pmap, lockp);
5718 			if (m == NULL)
5719 				goto retry;
5720 			reclaimed = true;
5721 		} else
5722 			counter_u64_add(pv_page_count, 1);
5723 		PV_STAT(counter_u64_add(pc_chunk_count, 1));
5724 		PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
5725 		dump_add_page(m->phys_addr);
5726 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
5727 		pc->pc_pmap = pmap;
5728 		pc->pc_map[0] = PC_FREEN;
5729 		pc->pc_map[1] = PC_FREEN;
5730 		pc->pc_map[2] = PC_FREEL;
5731 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
5732 		TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
5733 		PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV));
5734 
5735 		/*
5736 		 * The reclaim might have freed a chunk from the current pmap.
5737 		 * If that chunk contained available entries, we need to
5738 		 * re-count the number of available entries.
5739 		 */
5740 		if (reclaimed)
5741 			goto retry;
5742 	}
5743 	for (i = 0; i < vm_ndomains; i++) {
5744 		if (TAILQ_EMPTY(&new_tail[i]))
5745 			continue;
5746 		pvc = &pv_chunks[i];
5747 		mtx_lock(&pvc->pvc_lock);
5748 		TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
5749 		mtx_unlock(&pvc->pvc_lock);
5750 	}
5751 }
5752 
5753 /*
5754  * First find and then remove the pv entry for the specified pmap and virtual
5755  * address from the specified pv list.  Returns the pv entry if found and NULL
5756  * otherwise.  This operation can be performed on pv lists for either 4KB or
5757  * 2MB page mappings.
5758  */
5759 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5760 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5761 {
5762 	pv_entry_t pv;
5763 
5764 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5765 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
5766 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5767 			pvh->pv_gen++;
5768 			break;
5769 		}
5770 	}
5771 	return (pv);
5772 }
5773 
5774 /*
5775  * After demotion from a 2MB page mapping to 512 4KB page mappings,
5776  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
5777  * entries for each of the 4KB page mappings.
5778  */
5779 static void
pmap_pv_demote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5780 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5781     struct rwlock **lockp)
5782 {
5783 	struct md_page *pvh;
5784 	struct pv_chunk *pc;
5785 	pv_entry_t pv;
5786 	vm_offset_t va_last;
5787 	vm_page_t m;
5788 	int bit, field;
5789 
5790 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5791 	KASSERT((pa & PDRMASK) == 0,
5792 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
5793 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5794 
5795 	/*
5796 	 * Transfer the 2mpage's pv entry for this mapping to the first
5797 	 * page's pv list.  Once this transfer begins, the pv list lock
5798 	 * must not be released until the last pv entry is reinstantiated.
5799 	 */
5800 	pvh = pa_to_pvh(pa);
5801 	va = trunc_2mpage(va);
5802 	pv = pmap_pvh_remove(pvh, pmap, va);
5803 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
5804 	m = PHYS_TO_VM_PAGE(pa);
5805 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5806 	m->md.pv_gen++;
5807 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
5808 	PV_STAT(counter_u64_add(pv_entry_allocs, NPTEPG - 1));
5809 	va_last = va + NBPDR - PAGE_SIZE;
5810 	for (;;) {
5811 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
5812 		KASSERT(!pc_is_full(pc), ("pmap_pv_demote_pde: missing spare"));
5813 		for (field = 0; field < _NPCM; field++) {
5814 			while (pc->pc_map[field]) {
5815 				bit = bsfq(pc->pc_map[field]);
5816 				pc->pc_map[field] &= ~(1ul << bit);
5817 				pv = &pc->pc_pventry[field * 64 + bit];
5818 				va += PAGE_SIZE;
5819 				pv->pv_va = va;
5820 				m++;
5821 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5822 			    ("pmap_pv_demote_pde: page %p is not managed", m));
5823 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5824 				m->md.pv_gen++;
5825 				if (va == va_last)
5826 					goto out;
5827 			}
5828 		}
5829 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5830 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5831 	}
5832 out:
5833 	if (pc_is_full(pc)) {
5834 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
5835 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
5836 	}
5837 	PV_STAT(counter_u64_add(pv_entry_count, NPTEPG - 1));
5838 	PV_STAT(counter_u64_add(pv_entry_spare, -(NPTEPG - 1)));
5839 }
5840 
5841 #if VM_NRESERVLEVEL > 0
5842 /*
5843  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
5844  * replace the many pv entries for the 4KB page mappings by a single pv entry
5845  * for the 2MB page mapping.
5846  */
5847 static void
pmap_pv_promote_pde(pmap_t pmap,vm_offset_t va,vm_paddr_t pa,struct rwlock ** lockp)5848 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
5849     struct rwlock **lockp)
5850 {
5851 	struct md_page *pvh;
5852 	pv_entry_t pv;
5853 	vm_offset_t va_last;
5854 	vm_page_t m;
5855 
5856 	KASSERT((pa & PDRMASK) == 0,
5857 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
5858 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5859 
5860 	/*
5861 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
5862 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
5863 	 * a transfer avoids the possibility that get_pv_entry() calls
5864 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
5865 	 * mappings that is being promoted.
5866 	 */
5867 	m = PHYS_TO_VM_PAGE(pa);
5868 	va = trunc_2mpage(va);
5869 	pv = pmap_pvh_remove(&m->md, pmap, va);
5870 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
5871 	pvh = pa_to_pvh(pa);
5872 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5873 	pvh->pv_gen++;
5874 	/* Free the remaining NPTEPG - 1 pv entries. */
5875 	va_last = va + NBPDR - PAGE_SIZE;
5876 	do {
5877 		m++;
5878 		va += PAGE_SIZE;
5879 		pmap_pvh_free(&m->md, pmap, va);
5880 	} while (va < va_last);
5881 }
5882 #endif /* VM_NRESERVLEVEL > 0 */
5883 
5884 /*
5885  * First find and then destroy the pv entry for the specified pmap and virtual
5886  * address.  This operation can be performed on pv lists for either 4KB or 2MB
5887  * page mappings.
5888  */
5889 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)5890 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
5891 {
5892 	pv_entry_t pv;
5893 
5894 	pv = pmap_pvh_remove(pvh, pmap, va);
5895 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
5896 	free_pv_entry(pmap, pv);
5897 }
5898 
5899 /*
5900  * Conditionally create the PV entry for a 4KB page mapping if the required
5901  * memory can be allocated without resorting to reclamation.
5902  */
5903 static bool
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m,struct rwlock ** lockp)5904 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
5905     struct rwlock **lockp)
5906 {
5907 	pv_entry_t pv;
5908 
5909 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5910 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5911 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
5912 		pv->pv_va = va;
5913 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
5914 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5915 		m->md.pv_gen++;
5916 		return (true);
5917 	} else
5918 		return (false);
5919 }
5920 
5921 /*
5922  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
5923  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
5924  * false if the PV entry cannot be allocated without resorting to reclamation.
5925  */
5926 static bool
pmap_pv_insert_pde(pmap_t pmap,vm_offset_t va,pd_entry_t pde,u_int flags,struct rwlock ** lockp)5927 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
5928     struct rwlock **lockp)
5929 {
5930 	struct md_page *pvh;
5931 	pv_entry_t pv;
5932 	vm_paddr_t pa;
5933 
5934 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
5935 	/* Pass NULL instead of the lock pointer to disable reclamation. */
5936 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
5937 	    NULL : lockp)) == NULL)
5938 		return (false);
5939 	pv->pv_va = va;
5940 	pa = pde & PG_PS_FRAME;
5941 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
5942 	pvh = pa_to_pvh(pa);
5943 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5944 	pvh->pv_gen++;
5945 	return (true);
5946 }
5947 
5948 /*
5949  * Fills a page table page with mappings to consecutive physical pages.
5950  */
5951 static void
pmap_fill_ptp(pt_entry_t * firstpte,pt_entry_t newpte)5952 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
5953 {
5954 	pt_entry_t *pte;
5955 
5956 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
5957 		*pte = newpte;
5958 		newpte += PAGE_SIZE;
5959 	}
5960 }
5961 
5962 /*
5963  * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
5964  * mapping is invalidated.
5965  */
5966 static bool
pmap_demote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)5967 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
5968 {
5969 	struct rwlock *lock;
5970 	bool rv;
5971 
5972 	lock = NULL;
5973 	rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
5974 	if (lock != NULL)
5975 		rw_wunlock(lock);
5976 	return (rv);
5977 }
5978 
5979 static void
pmap_demote_pde_check(pt_entry_t * firstpte __unused,pt_entry_t newpte __unused)5980 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
5981 {
5982 #ifdef INVARIANTS
5983 #ifdef DIAGNOSTIC
5984 	pt_entry_t *xpte, *ypte;
5985 
5986 	for (xpte = firstpte; xpte < firstpte + NPTEPG;
5987 	    xpte++, newpte += PAGE_SIZE) {
5988 		if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
5989 			printf("pmap_demote_pde: xpte %zd and newpte map "
5990 			    "different pages: found %#lx, expected %#lx\n",
5991 			    xpte - firstpte, *xpte, newpte);
5992 			printf("page table dump\n");
5993 			for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
5994 				printf("%zd %#lx\n", ypte - firstpte, *ypte);
5995 			panic("firstpte");
5996 		}
5997 	}
5998 #else
5999 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
6000 	    ("pmap_demote_pde: firstpte and newpte map different physical"
6001 	    " addresses"));
6002 #endif
6003 #endif
6004 }
6005 
6006 static void
pmap_demote_pde_abort(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,pd_entry_t oldpde,struct rwlock ** lockp)6007 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6008     pd_entry_t oldpde, struct rwlock **lockp)
6009 {
6010 	struct spglist free;
6011 	vm_offset_t sva;
6012 
6013 	SLIST_INIT(&free);
6014 	sva = trunc_2mpage(va);
6015 	pmap_remove_pde(pmap, pde, sva, &free, lockp);
6016 	if ((oldpde & pmap_global_bit(pmap)) == 0)
6017 		pmap_invalidate_pde_page(pmap, sva, oldpde);
6018 	vm_page_free_pages_toq(&free, true);
6019 	CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
6020 	    va, pmap);
6021 }
6022 
6023 static bool
pmap_demote_pde_locked(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,struct rwlock ** lockp)6024 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
6025     struct rwlock **lockp)
6026 {
6027 	pd_entry_t newpde, oldpde;
6028 	pt_entry_t *firstpte, newpte;
6029 	pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6030 	vm_paddr_t mptepa;
6031 	vm_page_t mpte;
6032 	int PG_PTE_CACHE;
6033 	bool in_kernel;
6034 
6035 	PG_A = pmap_accessed_bit(pmap);
6036 	PG_G = pmap_global_bit(pmap);
6037 	PG_M = pmap_modified_bit(pmap);
6038 	PG_RW = pmap_rw_bit(pmap);
6039 	PG_V = pmap_valid_bit(pmap);
6040 	PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6041 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6042 
6043 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6044 	in_kernel = va >= VM_MAXUSER_ADDRESS;
6045 	oldpde = *pde;
6046 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
6047 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
6048 
6049 	/*
6050 	 * Invalidate the 2MB page mapping and return "failure" if the
6051 	 * mapping was never accessed.
6052 	 */
6053 	if ((oldpde & PG_A) == 0) {
6054 		KASSERT((oldpde & PG_W) == 0,
6055 		    ("pmap_demote_pde: a wired mapping is missing PG_A"));
6056 		pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6057 		return (false);
6058 	}
6059 
6060 	mpte = pmap_remove_pt_page(pmap, va);
6061 	if (mpte == NULL) {
6062 		KASSERT((oldpde & PG_W) == 0,
6063 		    ("pmap_demote_pde: page table page for a wired mapping"
6064 		    " is missing"));
6065 
6066 		/*
6067 		 * If the page table page is missing and the mapping
6068 		 * is for a kernel address, the mapping must belong to
6069 		 * the direct map.  Page table pages are preallocated
6070 		 * for every other part of the kernel address space,
6071 		 * so the direct map region is the only part of the
6072 		 * kernel address space that must be handled here.
6073 		 */
6074 		KASSERT(!in_kernel || (va >= DMAP_MIN_ADDRESS &&
6075 		    va < DMAP_MAX_ADDRESS),
6076 		    ("pmap_demote_pde: No saved mpte for va %#lx", va));
6077 
6078 		/*
6079 		 * If the 2MB page mapping belongs to the direct map
6080 		 * region of the kernel's address space, then the page
6081 		 * allocation request specifies the highest possible
6082 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the
6083 		 * priority is normal.
6084 		 */
6085 		mpte = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
6086 		    (in_kernel ? VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED);
6087 
6088 		/*
6089 		 * If the allocation of the new page table page fails,
6090 		 * invalidate the 2MB page mapping and return "failure".
6091 		 */
6092 		if (mpte == NULL) {
6093 			pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
6094 			return (false);
6095 		}
6096 
6097 		if (!in_kernel)
6098 			mpte->ref_count = NPTEPG;
6099 	}
6100 	mptepa = VM_PAGE_TO_PHYS(mpte);
6101 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
6102 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
6103 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
6104 	    ("pmap_demote_pde: oldpde is missing PG_M"));
6105 	newpte = oldpde & ~PG_PS;
6106 	newpte = pmap_swap_pat(pmap, newpte);
6107 
6108 	/*
6109 	 * If the PTP is not leftover from an earlier promotion or it does not
6110 	 * have PG_A set in every PTE, then fill it.  The new PTEs will all
6111 	 * have PG_A set.
6112 	 */
6113 	if (!vm_page_all_valid(mpte))
6114 		pmap_fill_ptp(firstpte, newpte);
6115 
6116 	pmap_demote_pde_check(firstpte, newpte);
6117 
6118 	/*
6119 	 * If the mapping has changed attributes, update the PTEs.
6120 	 */
6121 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
6122 		pmap_fill_ptp(firstpte, newpte);
6123 
6124 	/*
6125 	 * The spare PV entries must be reserved prior to demoting the
6126 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
6127 	 * of the PDE and the PV lists will be inconsistent, which can result
6128 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
6129 	 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
6130 	 * PV entry for the 2MB page mapping that is being demoted.
6131 	 */
6132 	if ((oldpde & PG_MANAGED) != 0)
6133 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
6134 
6135 	/*
6136 	 * Demote the mapping.  This pmap is locked.  The old PDE has
6137 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
6138 	 * set.  Thus, there is no danger of a race with another
6139 	 * processor changing the setting of PG_A and/or PG_M between
6140 	 * the read above and the store below.
6141 	 */
6142 	if (workaround_erratum383)
6143 		pmap_update_pde(pmap, va, pde, newpde);
6144 	else
6145 		pde_store(pde, newpde);
6146 
6147 	/*
6148 	 * Invalidate a stale recursive mapping of the page table page.
6149 	 */
6150 	if (in_kernel)
6151 		pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6152 
6153 	/*
6154 	 * Demote the PV entry.
6155 	 */
6156 	if ((oldpde & PG_MANAGED) != 0)
6157 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
6158 
6159 	counter_u64_add(pmap_pde_demotions, 1);
6160 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
6161 	    va, pmap);
6162 	return (true);
6163 }
6164 
6165 /*
6166  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
6167  */
6168 static void
pmap_remove_kernel_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va)6169 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
6170 {
6171 	pd_entry_t newpde;
6172 	vm_paddr_t mptepa;
6173 	vm_page_t mpte;
6174 
6175 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
6176 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6177 	mpte = pmap_remove_pt_page(pmap, va);
6178 	if (mpte == NULL)
6179 		panic("pmap_remove_kernel_pde: Missing pt page.");
6180 
6181 	mptepa = VM_PAGE_TO_PHYS(mpte);
6182 	newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
6183 
6184 	/*
6185 	 * If this page table page was unmapped by a promotion, then it
6186 	 * contains valid mappings.  Zero it to invalidate those mappings.
6187 	 */
6188 	if (vm_page_any_valid(mpte))
6189 		pagezero((void *)PHYS_TO_DMAP(mptepa));
6190 
6191 	/*
6192 	 * Demote the mapping.
6193 	 */
6194 	if (workaround_erratum383)
6195 		pmap_update_pde(pmap, va, pde, newpde);
6196 	else
6197 		pde_store(pde, newpde);
6198 
6199 	/*
6200 	 * Invalidate a stale recursive mapping of the page table page.
6201 	 */
6202 	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
6203 }
6204 
6205 /*
6206  * pmap_remove_pde: do the things to unmap a superpage in a process
6207  */
6208 static int
pmap_remove_pde(pmap_t pmap,pd_entry_t * pdq,vm_offset_t sva,struct spglist * free,struct rwlock ** lockp)6209 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
6210     struct spglist *free, struct rwlock **lockp)
6211 {
6212 	struct md_page *pvh;
6213 	pd_entry_t oldpde;
6214 	vm_offset_t eva, va;
6215 	vm_page_t m, mpte;
6216 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
6217 
6218 	PG_G = pmap_global_bit(pmap);
6219 	PG_A = pmap_accessed_bit(pmap);
6220 	PG_M = pmap_modified_bit(pmap);
6221 	PG_RW = pmap_rw_bit(pmap);
6222 
6223 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6224 	KASSERT((sva & PDRMASK) == 0,
6225 	    ("pmap_remove_pde: sva is not 2mpage aligned"));
6226 	oldpde = pte_load_clear(pdq);
6227 	if (oldpde & PG_W)
6228 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
6229 	if ((oldpde & PG_G) != 0)
6230 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6231 	pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
6232 	if (oldpde & PG_MANAGED) {
6233 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
6234 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
6235 		pmap_pvh_free(pvh, pmap, sva);
6236 		eva = sva + NBPDR;
6237 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6238 		    va < eva; va += PAGE_SIZE, m++) {
6239 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
6240 				vm_page_dirty(m);
6241 			if (oldpde & PG_A)
6242 				vm_page_aflag_set(m, PGA_REFERENCED);
6243 			if (TAILQ_EMPTY(&m->md.pv_list) &&
6244 			    TAILQ_EMPTY(&pvh->pv_list))
6245 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6246 			pmap_delayed_invl_page(m);
6247 		}
6248 	}
6249 	if (pmap == kernel_pmap) {
6250 		pmap_remove_kernel_pde(pmap, pdq, sva);
6251 	} else {
6252 		mpte = pmap_remove_pt_page(pmap, sva);
6253 		if (mpte != NULL) {
6254 			KASSERT(vm_page_any_valid(mpte),
6255 			    ("pmap_remove_pde: pte page not promoted"));
6256 			pmap_pt_page_count_adj(pmap, -1);
6257 			KASSERT(mpte->ref_count == NPTEPG,
6258 			    ("pmap_remove_pde: pte page ref count error"));
6259 			mpte->ref_count = 0;
6260 			pmap_add_delayed_free_list(mpte, free, false);
6261 		}
6262 	}
6263 	return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
6264 }
6265 
6266 /*
6267  * pmap_remove_pte: do the things to unmap a page in a process
6268  */
6269 static int
pmap_remove_pte(pmap_t pmap,pt_entry_t * ptq,vm_offset_t va,pd_entry_t ptepde,struct spglist * free,struct rwlock ** lockp)6270 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
6271     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
6272 {
6273 	struct md_page *pvh;
6274 	pt_entry_t oldpte, PG_A, PG_M, PG_RW;
6275 	vm_page_t m;
6276 
6277 	PG_A = pmap_accessed_bit(pmap);
6278 	PG_M = pmap_modified_bit(pmap);
6279 	PG_RW = pmap_rw_bit(pmap);
6280 
6281 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6282 	oldpte = pte_load_clear(ptq);
6283 	if (oldpte & PG_W)
6284 		pmap->pm_stats.wired_count -= 1;
6285 	pmap_resident_count_adj(pmap, -1);
6286 	if (oldpte & PG_MANAGED) {
6287 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
6288 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6289 			vm_page_dirty(m);
6290 		if (oldpte & PG_A)
6291 			vm_page_aflag_set(m, PGA_REFERENCED);
6292 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
6293 		pmap_pvh_free(&m->md, pmap, va);
6294 		if (TAILQ_EMPTY(&m->md.pv_list) &&
6295 		    (m->flags & PG_FICTITIOUS) == 0) {
6296 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
6297 			if (TAILQ_EMPTY(&pvh->pv_list))
6298 				vm_page_aflag_clear(m, PGA_WRITEABLE);
6299 		}
6300 		pmap_delayed_invl_page(m);
6301 	}
6302 	return (pmap_unuse_pt(pmap, va, ptepde, free));
6303 }
6304 
6305 /*
6306  * Remove a single page from a process address space
6307  */
6308 static void
pmap_remove_page(pmap_t pmap,vm_offset_t va,pd_entry_t * pde,struct spglist * free)6309 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
6310     struct spglist *free)
6311 {
6312 	struct rwlock *lock;
6313 	pt_entry_t *pte, PG_V;
6314 
6315 	PG_V = pmap_valid_bit(pmap);
6316 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6317 	if ((*pde & PG_V) == 0)
6318 		return;
6319 	pte = pmap_pde_to_pte(pde, va);
6320 	if ((*pte & PG_V) == 0)
6321 		return;
6322 	lock = NULL;
6323 	pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
6324 	if (lock != NULL)
6325 		rw_wunlock(lock);
6326 	pmap_invalidate_page(pmap, va);
6327 }
6328 
6329 /*
6330  * Removes the specified range of addresses from the page table page.
6331  */
6332 static bool
pmap_remove_ptes(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pd_entry_t * pde,struct spglist * free,struct rwlock ** lockp)6333 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
6334     pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
6335 {
6336 	pt_entry_t PG_G, *pte;
6337 	vm_offset_t va;
6338 	bool anyvalid;
6339 
6340 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6341 	PG_G = pmap_global_bit(pmap);
6342 	anyvalid = false;
6343 	va = eva;
6344 	for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
6345 	    sva += PAGE_SIZE) {
6346 		if (*pte == 0) {
6347 			if (va != eva) {
6348 				pmap_invalidate_range(pmap, va, sva);
6349 				va = eva;
6350 			}
6351 			continue;
6352 		}
6353 		if ((*pte & PG_G) == 0)
6354 			anyvalid = true;
6355 		else if (va == eva)
6356 			va = sva;
6357 		if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
6358 			sva += PAGE_SIZE;
6359 			break;
6360 		}
6361 	}
6362 	if (va != eva)
6363 		pmap_invalidate_range(pmap, va, sva);
6364 	return (anyvalid);
6365 }
6366 
6367 static void
pmap_remove1(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,bool map_delete)6368 pmap_remove1(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool map_delete)
6369 {
6370 	struct rwlock *lock;
6371 	vm_page_t mt;
6372 	vm_offset_t va_next;
6373 	pml5_entry_t *pml5e;
6374 	pml4_entry_t *pml4e;
6375 	pdp_entry_t *pdpe;
6376 	pd_entry_t ptpaddr, *pde;
6377 	pt_entry_t PG_G, PG_V;
6378 	struct spglist free;
6379 	int anyvalid;
6380 
6381 	PG_G = pmap_global_bit(pmap);
6382 	PG_V = pmap_valid_bit(pmap);
6383 
6384 	/*
6385 	 * If there are no resident pages besides the top level page
6386 	 * table page(s), there is nothing to do.  Kernel pmap always
6387 	 * accounts whole preloaded area as resident, which makes its
6388 	 * resident count > 2.
6389 	 * Perform an unsynchronized read.  This is, however, safe.
6390 	 */
6391 	if (pmap->pm_stats.resident_count <= 1 + (pmap->pm_pmltopu != NULL ?
6392 	    1 : 0))
6393 		return;
6394 
6395 	anyvalid = 0;
6396 	SLIST_INIT(&free);
6397 
6398 	pmap_delayed_invl_start();
6399 	PMAP_LOCK(pmap);
6400 	if (map_delete)
6401 		pmap_pkru_on_remove(pmap, sva, eva);
6402 
6403 	/*
6404 	 * special handling of removing one page.  a very
6405 	 * common operation and easy to short circuit some
6406 	 * code.
6407 	 */
6408 	if (sva + PAGE_SIZE == eva) {
6409 		pde = pmap_pde(pmap, sva);
6410 		if (pde && (*pde & PG_PS) == 0) {
6411 			pmap_remove_page(pmap, sva, pde, &free);
6412 			goto out;
6413 		}
6414 	}
6415 
6416 	lock = NULL;
6417 	for (; sva < eva; sva = va_next) {
6418 		if (pmap->pm_stats.resident_count == 0)
6419 			break;
6420 
6421 		if (pmap_is_la57(pmap)) {
6422 			pml5e = pmap_pml5e(pmap, sva);
6423 			if ((*pml5e & PG_V) == 0) {
6424 				va_next = (sva + NBPML5) & ~PML5MASK;
6425 				if (va_next < sva)
6426 					va_next = eva;
6427 				continue;
6428 			}
6429 			pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
6430 		} else {
6431 			pml4e = pmap_pml4e(pmap, sva);
6432 		}
6433 		if ((*pml4e & PG_V) == 0) {
6434 			va_next = (sva + NBPML4) & ~PML4MASK;
6435 			if (va_next < sva)
6436 				va_next = eva;
6437 			continue;
6438 		}
6439 
6440 		va_next = (sva + NBPDP) & ~PDPMASK;
6441 		if (va_next < sva)
6442 			va_next = eva;
6443 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6444 		if ((*pdpe & PG_V) == 0)
6445 			continue;
6446 		if ((*pdpe & PG_PS) != 0) {
6447 			KASSERT(va_next <= eva,
6448 			    ("partial update of non-transparent 1G mapping "
6449 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6450 			    *pdpe, sva, eva, va_next));
6451 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6452 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
6453 			anyvalid = 1;
6454 			*pdpe = 0;
6455 			pmap_resident_count_adj(pmap, -NBPDP / PAGE_SIZE);
6456 			mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
6457 			pmap_unwire_ptp(pmap, sva, mt, &free);
6458 			continue;
6459 		}
6460 
6461 		/*
6462 		 * Calculate index for next page table.
6463 		 */
6464 		va_next = (sva + NBPDR) & ~PDRMASK;
6465 		if (va_next < sva)
6466 			va_next = eva;
6467 
6468 		pde = pmap_pdpe_to_pde(pdpe, sva);
6469 		ptpaddr = *pde;
6470 
6471 		/*
6472 		 * Weed out invalid mappings.
6473 		 */
6474 		if (ptpaddr == 0)
6475 			continue;
6476 
6477 		/*
6478 		 * Check for large page.
6479 		 */
6480 		if ((ptpaddr & PG_PS) != 0) {
6481 			/*
6482 			 * Are we removing the entire large page?  If not,
6483 			 * demote the mapping and fall through.
6484 			 */
6485 			if (sva + NBPDR == va_next && eva >= va_next) {
6486 				/*
6487 				 * The TLB entry for a PG_G mapping is
6488 				 * invalidated by pmap_remove_pde().
6489 				 */
6490 				if ((ptpaddr & PG_G) == 0)
6491 					anyvalid = 1;
6492 				pmap_remove_pde(pmap, pde, sva, &free, &lock);
6493 				continue;
6494 			} else if (!pmap_demote_pde_locked(pmap, pde, sva,
6495 			    &lock)) {
6496 				/* The large page mapping was destroyed. */
6497 				continue;
6498 			} else
6499 				ptpaddr = *pde;
6500 		}
6501 
6502 		/*
6503 		 * Limit our scan to either the end of the va represented
6504 		 * by the current page table page, or to the end of the
6505 		 * range being removed.
6506 		 */
6507 		if (va_next > eva)
6508 			va_next = eva;
6509 
6510 		if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
6511 			anyvalid = 1;
6512 	}
6513 	if (lock != NULL)
6514 		rw_wunlock(lock);
6515 out:
6516 	if (anyvalid)
6517 		pmap_invalidate_all(pmap);
6518 	PMAP_UNLOCK(pmap);
6519 	pmap_delayed_invl_finish();
6520 	vm_page_free_pages_toq(&free, true);
6521 }
6522 
6523 /*
6524  *	Remove the given range of addresses from the specified map.
6525  *
6526  *	It is assumed that the start and end are properly
6527  *	rounded to the page size.
6528  */
6529 void
pmap_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6530 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6531 {
6532 	pmap_remove1(pmap, sva, eva, false);
6533 }
6534 
6535 /*
6536  *	Remove the given range of addresses as part of a logical unmap
6537  *	operation. This has the effect of calling pmap_remove(), but
6538  *	also clears any metadata that should persist for the lifetime
6539  *	of a logical mapping.
6540  */
6541 void
pmap_map_delete(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)6542 pmap_map_delete(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
6543 {
6544 	pmap_remove1(pmap, sva, eva, true);
6545 }
6546 
6547 /*
6548  *	Routine:	pmap_remove_all
6549  *	Function:
6550  *		Removes this physical page from
6551  *		all physical maps in which it resides.
6552  *		Reflects back modify bits to the pager.
6553  *
6554  *	Notes:
6555  *		Original versions of this routine were very
6556  *		inefficient because they iteratively called
6557  *		pmap_remove (slow...)
6558  */
6559 
6560 void
pmap_remove_all(vm_page_t m)6561 pmap_remove_all(vm_page_t m)
6562 {
6563 	struct md_page *pvh;
6564 	pv_entry_t pv;
6565 	pmap_t pmap;
6566 	struct rwlock *lock;
6567 	pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
6568 	pd_entry_t *pde;
6569 	vm_offset_t va;
6570 	struct spglist free;
6571 	int pvh_gen, md_gen;
6572 
6573 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
6574 	    ("pmap_remove_all: page %p is not managed", m));
6575 	SLIST_INIT(&free);
6576 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
6577 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
6578 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
6579 	rw_wlock(lock);
6580 retry:
6581 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
6582 		pmap = PV_PMAP(pv);
6583 		if (!PMAP_TRYLOCK(pmap)) {
6584 			pvh_gen = pvh->pv_gen;
6585 			rw_wunlock(lock);
6586 			PMAP_LOCK(pmap);
6587 			rw_wlock(lock);
6588 			if (pvh_gen != pvh->pv_gen) {
6589 				PMAP_UNLOCK(pmap);
6590 				goto retry;
6591 			}
6592 		}
6593 		va = pv->pv_va;
6594 		pde = pmap_pde(pmap, va);
6595 		(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
6596 		PMAP_UNLOCK(pmap);
6597 	}
6598 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
6599 		pmap = PV_PMAP(pv);
6600 		if (!PMAP_TRYLOCK(pmap)) {
6601 			pvh_gen = pvh->pv_gen;
6602 			md_gen = m->md.pv_gen;
6603 			rw_wunlock(lock);
6604 			PMAP_LOCK(pmap);
6605 			rw_wlock(lock);
6606 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
6607 				PMAP_UNLOCK(pmap);
6608 				goto retry;
6609 			}
6610 		}
6611 		PG_A = pmap_accessed_bit(pmap);
6612 		PG_M = pmap_modified_bit(pmap);
6613 		PG_RW = pmap_rw_bit(pmap);
6614 		pmap_resident_count_adj(pmap, -1);
6615 		pde = pmap_pde(pmap, pv->pv_va);
6616 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
6617 		    " a 2mpage in page %p's pv list", m));
6618 		pte = pmap_pde_to_pte(pde, pv->pv_va);
6619 		tpte = pte_load_clear(pte);
6620 		if (tpte & PG_W)
6621 			pmap->pm_stats.wired_count--;
6622 		if (tpte & PG_A)
6623 			vm_page_aflag_set(m, PGA_REFERENCED);
6624 
6625 		/*
6626 		 * Update the vm_page_t clean and reference bits.
6627 		 */
6628 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
6629 			vm_page_dirty(m);
6630 		pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
6631 		pmap_invalidate_page(pmap, pv->pv_va);
6632 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
6633 		m->md.pv_gen++;
6634 		free_pv_entry(pmap, pv);
6635 		PMAP_UNLOCK(pmap);
6636 	}
6637 	vm_page_aflag_clear(m, PGA_WRITEABLE);
6638 	rw_wunlock(lock);
6639 	pmap_delayed_invl_wait(m);
6640 	vm_page_free_pages_toq(&free, true);
6641 }
6642 
6643 /*
6644  * pmap_protect_pde: do the things to protect a 2mpage in a process
6645  */
6646 static bool
pmap_protect_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t sva,vm_prot_t prot)6647 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
6648 {
6649 	pd_entry_t newpde, oldpde;
6650 	vm_page_t m, mt;
6651 	bool anychanged;
6652 	pt_entry_t PG_G, PG_M, PG_RW;
6653 
6654 	PG_G = pmap_global_bit(pmap);
6655 	PG_M = pmap_modified_bit(pmap);
6656 	PG_RW = pmap_rw_bit(pmap);
6657 
6658 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6659 	KASSERT((sva & PDRMASK) == 0,
6660 	    ("pmap_protect_pde: sva is not 2mpage aligned"));
6661 	anychanged = false;
6662 retry:
6663 	oldpde = newpde = *pde;
6664 	if ((prot & VM_PROT_WRITE) == 0) {
6665 		if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
6666 		    (PG_MANAGED | PG_M | PG_RW)) {
6667 			m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
6668 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
6669 				vm_page_dirty(mt);
6670 		}
6671 		newpde &= ~(PG_RW | PG_M);
6672 	}
6673 	if ((prot & VM_PROT_EXECUTE) == 0)
6674 		newpde |= pg_nx;
6675 	if (newpde != oldpde) {
6676 		/*
6677 		 * As an optimization to future operations on this PDE, clear
6678 		 * PG_PROMOTED.  The impending invalidation will remove any
6679 		 * lingering 4KB page mappings from the TLB.
6680 		 */
6681 		if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
6682 			goto retry;
6683 		if ((oldpde & PG_G) != 0)
6684 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
6685 		else
6686 			anychanged = true;
6687 	}
6688 	return (anychanged);
6689 }
6690 
6691 /*
6692  *	Set the physical protection on the
6693  *	specified range of this map as requested.
6694  */
6695 void
pmap_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)6696 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
6697 {
6698 	vm_page_t m;
6699 	vm_offset_t va_next;
6700 	pml4_entry_t *pml4e;
6701 	pdp_entry_t *pdpe;
6702 	pd_entry_t ptpaddr, *pde;
6703 	pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
6704 	pt_entry_t obits, pbits;
6705 	bool anychanged;
6706 
6707 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
6708 	if (prot == VM_PROT_NONE) {
6709 		pmap_remove(pmap, sva, eva);
6710 		return;
6711 	}
6712 
6713 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
6714 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
6715 		return;
6716 
6717 	PG_G = pmap_global_bit(pmap);
6718 	PG_M = pmap_modified_bit(pmap);
6719 	PG_V = pmap_valid_bit(pmap);
6720 	PG_RW = pmap_rw_bit(pmap);
6721 	anychanged = false;
6722 
6723 	/*
6724 	 * Although this function delays and batches the invalidation
6725 	 * of stale TLB entries, it does not need to call
6726 	 * pmap_delayed_invl_start() and
6727 	 * pmap_delayed_invl_finish(), because it does not
6728 	 * ordinarily destroy mappings.  Stale TLB entries from
6729 	 * protection-only changes need only be invalidated before the
6730 	 * pmap lock is released, because protection-only changes do
6731 	 * not destroy PV entries.  Even operations that iterate over
6732 	 * a physical page's PV list of mappings, like
6733 	 * pmap_remove_write(), acquire the pmap lock for each
6734 	 * mapping.  Consequently, for protection-only changes, the
6735 	 * pmap lock suffices to synchronize both page table and TLB
6736 	 * updates.
6737 	 *
6738 	 * This function only destroys a mapping if pmap_demote_pde()
6739 	 * fails.  In that case, stale TLB entries are immediately
6740 	 * invalidated.
6741 	 */
6742 
6743 	PMAP_LOCK(pmap);
6744 	for (; sva < eva; sva = va_next) {
6745 		pml4e = pmap_pml4e(pmap, sva);
6746 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
6747 			va_next = (sva + NBPML4) & ~PML4MASK;
6748 			if (va_next < sva)
6749 				va_next = eva;
6750 			continue;
6751 		}
6752 
6753 		va_next = (sva + NBPDP) & ~PDPMASK;
6754 		if (va_next < sva)
6755 			va_next = eva;
6756 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
6757 		if ((*pdpe & PG_V) == 0)
6758 			continue;
6759 		if ((*pdpe & PG_PS) != 0) {
6760 			KASSERT(va_next <= eva,
6761 			    ("partial update of non-transparent 1G mapping "
6762 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
6763 			    *pdpe, sva, eva, va_next));
6764 retry_pdpe:
6765 			obits = pbits = *pdpe;
6766 			MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
6767 			MPASS(pmap != kernel_pmap); /* XXXKIB */
6768 			if ((prot & VM_PROT_WRITE) == 0)
6769 				pbits &= ~(PG_RW | PG_M);
6770 			if ((prot & VM_PROT_EXECUTE) == 0)
6771 				pbits |= pg_nx;
6772 
6773 			if (pbits != obits) {
6774 				if (!atomic_cmpset_long(pdpe, obits, pbits))
6775 					/* PG_PS cannot be cleared under us, */
6776 					goto retry_pdpe;
6777 				anychanged = true;
6778 			}
6779 			continue;
6780 		}
6781 
6782 		va_next = (sva + NBPDR) & ~PDRMASK;
6783 		if (va_next < sva)
6784 			va_next = eva;
6785 
6786 		pde = pmap_pdpe_to_pde(pdpe, sva);
6787 		ptpaddr = *pde;
6788 
6789 		/*
6790 		 * Weed out invalid mappings.
6791 		 */
6792 		if (ptpaddr == 0)
6793 			continue;
6794 
6795 		/*
6796 		 * Check for large page.
6797 		 */
6798 		if ((ptpaddr & PG_PS) != 0) {
6799 			/*
6800 			 * Are we protecting the entire large page?
6801 			 */
6802 			if (sva + NBPDR == va_next && eva >= va_next) {
6803 				/*
6804 				 * The TLB entry for a PG_G mapping is
6805 				 * invalidated by pmap_protect_pde().
6806 				 */
6807 				if (pmap_protect_pde(pmap, pde, sva, prot))
6808 					anychanged = true;
6809 				continue;
6810 			}
6811 
6812 			/*
6813 			 * Does the large page mapping need to change?  If so,
6814 			 * demote it and fall through.
6815 			 */
6816 			pbits = ptpaddr;
6817 			if ((prot & VM_PROT_WRITE) == 0)
6818 				pbits &= ~(PG_RW | PG_M);
6819 			if ((prot & VM_PROT_EXECUTE) == 0)
6820 				pbits |= pg_nx;
6821 			if (ptpaddr == pbits || !pmap_demote_pde(pmap, pde,
6822 			    sva)) {
6823 				/*
6824 				 * Either the large page mapping doesn't need
6825 				 * to change, or it was destroyed during
6826 				 * demotion.
6827 				 */
6828 				continue;
6829 			}
6830 		}
6831 
6832 		if (va_next > eva)
6833 			va_next = eva;
6834 
6835 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
6836 		    sva += PAGE_SIZE) {
6837 retry:
6838 			obits = pbits = *pte;
6839 			if ((pbits & PG_V) == 0)
6840 				continue;
6841 
6842 			if ((prot & VM_PROT_WRITE) == 0) {
6843 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
6844 				    (PG_MANAGED | PG_M | PG_RW)) {
6845 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
6846 					vm_page_dirty(m);
6847 				}
6848 				pbits &= ~(PG_RW | PG_M);
6849 			}
6850 			if ((prot & VM_PROT_EXECUTE) == 0)
6851 				pbits |= pg_nx;
6852 
6853 			if (pbits != obits) {
6854 				if (!atomic_cmpset_long(pte, obits, pbits))
6855 					goto retry;
6856 				if (obits & PG_G)
6857 					pmap_invalidate_page(pmap, sva);
6858 				else
6859 					anychanged = true;
6860 			}
6861 		}
6862 	}
6863 	if (anychanged)
6864 		pmap_invalidate_all(pmap);
6865 	PMAP_UNLOCK(pmap);
6866 }
6867 
6868 static bool
pmap_pde_ept_executable(pmap_t pmap,pd_entry_t pde)6869 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
6870 {
6871 
6872 	if (pmap->pm_type != PT_EPT)
6873 		return (false);
6874 	return ((pde & EPT_PG_EXECUTE) != 0);
6875 }
6876 
6877 #if VM_NRESERVLEVEL > 0
6878 /*
6879  * Tries to promote the 512, contiguous 4KB page mappings that are within a
6880  * single page table page (PTP) to a single 2MB page mapping.  For promotion
6881  * to occur, two conditions must be met: (1) the 4KB page mappings must map
6882  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
6883  * identical characteristics.
6884  */
6885 static bool
pmap_promote_pde(pmap_t pmap,pd_entry_t * pde,vm_offset_t va,vm_page_t mpte,struct rwlock ** lockp)6886 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte,
6887     struct rwlock **lockp)
6888 {
6889 	pd_entry_t newpde;
6890 	pt_entry_t *firstpte, oldpte, pa, *pte;
6891 	pt_entry_t allpte_PG_A, PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
6892 	int PG_PTE_CACHE;
6893 
6894 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
6895 	if (!pmap_ps_enabled(pmap))
6896 		return (false);
6897 
6898 	PG_A = pmap_accessed_bit(pmap);
6899 	PG_G = pmap_global_bit(pmap);
6900 	PG_M = pmap_modified_bit(pmap);
6901 	PG_V = pmap_valid_bit(pmap);
6902 	PG_RW = pmap_rw_bit(pmap);
6903 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
6904 	PG_PTE_CACHE = pmap_cache_mask(pmap, false);
6905 
6906 	/*
6907 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
6908 	 * ineligible for promotion due to hardware errata, invalid, or does
6909 	 * not map the first 4KB physical page within a 2MB page.
6910 	 */
6911 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
6912 	newpde = *firstpte;
6913 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap, newpde)))
6914 		return (false);
6915 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
6916 		counter_u64_add(pmap_pde_p_failures, 1);
6917 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6918 		    " in pmap %p", va, pmap);
6919 		return (false);
6920 	}
6921 
6922 	/*
6923 	 * Both here and in the below "for" loop, to allow for repromotion
6924 	 * after MADV_FREE, conditionally write protect a clean PTE before
6925 	 * possibly aborting the promotion due to other PTE attributes.  Why?
6926 	 * Suppose that MADV_FREE is applied to a part of a superpage, the
6927 	 * address range [S, E).  pmap_advise() will demote the superpage
6928 	 * mapping, destroy the 4KB page mapping at the end of [S, E), and
6929 	 * clear PG_M and PG_A in the PTEs for the rest of [S, E).  Later,
6930 	 * imagine that the memory in [S, E) is recycled, but the last 4KB
6931 	 * page in [S, E) is not the last to be rewritten, or simply accessed.
6932 	 * In other words, there is still a 4KB page in [S, E), call it P,
6933 	 * that is writeable but PG_M and PG_A are clear in P's PTE.  Unless
6934 	 * we write protect P before aborting the promotion, if and when P is
6935 	 * finally rewritten, there won't be a page fault to trigger
6936 	 * repromotion.
6937 	 */
6938 setpde:
6939 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
6940 		/*
6941 		 * When PG_M is already clear, PG_RW can be cleared without
6942 		 * a TLB invalidation.
6943 		 */
6944 		if (!atomic_fcmpset_long(firstpte, &newpde, newpde & ~PG_RW))
6945 			goto setpde;
6946 		newpde &= ~PG_RW;
6947 		CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6948 		    " in pmap %p", va & ~PDRMASK, pmap);
6949 	}
6950 
6951 	/*
6952 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
6953 	 * PTE maps an unexpected 4KB physical page or does not have identical
6954 	 * characteristics to the first PTE.
6955 	 */
6956 	allpte_PG_A = newpde & PG_A;
6957 	pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
6958 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
6959 		oldpte = *pte;
6960 		if ((oldpte & (PG_FRAME | PG_V)) != pa) {
6961 			counter_u64_add(pmap_pde_p_failures, 1);
6962 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6963 			    " in pmap %p", va, pmap);
6964 			return (false);
6965 		}
6966 setpte:
6967 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
6968 			/*
6969 			 * When PG_M is already clear, PG_RW can be cleared
6970 			 * without a TLB invalidation.
6971 			 */
6972 			if (!atomic_fcmpset_long(pte, &oldpte, oldpte & ~PG_RW))
6973 				goto setpte;
6974 			oldpte &= ~PG_RW;
6975 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
6976 			    " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
6977 			    (va & ~PDRMASK), pmap);
6978 		}
6979 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
6980 			counter_u64_add(pmap_pde_p_failures, 1);
6981 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
6982 			    " in pmap %p", va, pmap);
6983 			return (false);
6984 		}
6985 		allpte_PG_A &= oldpte;
6986 		pa -= PAGE_SIZE;
6987 	}
6988 
6989 	/*
6990 	 * Unless all PTEs have PG_A set, clear it from the superpage mapping,
6991 	 * so that promotions triggered by speculative mappings, such as
6992 	 * pmap_enter_quick(), don't automatically mark the underlying pages
6993 	 * as referenced.
6994 	 */
6995 	newpde &= ~PG_A | allpte_PG_A;
6996 
6997 	/*
6998 	 * EPT PTEs with PG_M set and PG_A clear are not supported by early
6999 	 * MMUs supporting EPT.
7000 	 */
7001 	KASSERT((newpde & PG_A) != 0 || safe_to_clear_referenced(pmap, newpde),
7002 	    ("unsupported EPT PTE"));
7003 
7004 	/*
7005 	 * Save the PTP in its current state until the PDE mapping the
7006 	 * superpage is demoted by pmap_demote_pde() or destroyed by
7007 	 * pmap_remove_pde().  If PG_A is not set in every PTE, then request
7008 	 * that the PTP be refilled on demotion.
7009 	 */
7010 	if (mpte == NULL)
7011 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7012 	KASSERT(mpte >= vm_page_array &&
7013 	    mpte < &vm_page_array[vm_page_array_size],
7014 	    ("pmap_promote_pde: page table page is out of range"));
7015 	KASSERT(mpte->pindex == pmap_pde_pindex(va),
7016 	    ("pmap_promote_pde: page table page's pindex is wrong "
7017 	    "mpte %p pidx %#lx va %#lx va pde pidx %#lx",
7018 	    mpte, mpte->pindex, va, pmap_pde_pindex(va)));
7019 	if (pmap_insert_pt_page(pmap, mpte, true, allpte_PG_A != 0)) {
7020 		counter_u64_add(pmap_pde_p_failures, 1);
7021 		CTR2(KTR_PMAP,
7022 		    "pmap_promote_pde: failure for va %#lx in pmap %p", va,
7023 		    pmap);
7024 		return (false);
7025 	}
7026 
7027 	/*
7028 	 * Promote the pv entries.
7029 	 */
7030 	if ((newpde & PG_MANAGED) != 0)
7031 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
7032 
7033 	/*
7034 	 * Propagate the PAT index to its proper position.
7035 	 */
7036 	newpde = pmap_swap_pat(pmap, newpde);
7037 
7038 	/*
7039 	 * Map the superpage.
7040 	 */
7041 	if (workaround_erratum383)
7042 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
7043 	else
7044 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
7045 
7046 	counter_u64_add(pmap_pde_promotions, 1);
7047 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
7048 	    " in pmap %p", va, pmap);
7049 	return (true);
7050 }
7051 #endif /* VM_NRESERVLEVEL > 0 */
7052 
7053 static int
pmap_enter_largepage(pmap_t pmap,vm_offset_t va,pt_entry_t newpte,int flags,int psind)7054 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
7055     int psind)
7056 {
7057 	vm_page_t mp;
7058 	pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
7059 
7060 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7061 	KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
7062 	    ("psind %d unexpected", psind));
7063 	KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
7064 	    ("unaligned phys address %#lx newpte %#lx psind %d",
7065 	    newpte & PG_FRAME, newpte, psind));
7066 	KASSERT((va & (pagesizes[psind] - 1)) == 0,
7067 	    ("unaligned va %#lx psind %d", va, psind));
7068 	KASSERT(va < VM_MAXUSER_ADDRESS,
7069 	    ("kernel mode non-transparent superpage")); /* XXXKIB */
7070 	KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
7071 	    ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
7072 
7073 	PG_V = pmap_valid_bit(pmap);
7074 
7075 restart:
7076 	pten = newpte;
7077 	if (!pmap_pkru_same(pmap, va, va + pagesizes[psind], &pten))
7078 		return (KERN_PROTECTION_FAILURE);
7079 
7080 	if (psind == 2) {	/* 1G */
7081 		pml4e = pmap_pml4e(pmap, va);
7082 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7083 			mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
7084 			    NULL, va);
7085 			if (mp == NULL)
7086 				goto allocf;
7087 			pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7088 			pdpe = &pdpe[pmap_pdpe_index(va)];
7089 			origpte = *pdpe;
7090 			MPASS(origpte == 0);
7091 		} else {
7092 			pdpe = pmap_pml4e_to_pdpe(pml4e, va);
7093 			KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
7094 			origpte = *pdpe;
7095 			if ((origpte & PG_V) == 0) {
7096 				mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
7097 				mp->ref_count++;
7098 			}
7099 		}
7100 		*pdpe = pten;
7101 	} else /* (psind == 1) */ {	/* 2M */
7102 		pde = pmap_pde(pmap, va);
7103 		if (pde == NULL) {
7104 			mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
7105 			    NULL, va);
7106 			if (mp == NULL)
7107 				goto allocf;
7108 			pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
7109 			pde = &pde[pmap_pde_index(va)];
7110 			origpte = *pde;
7111 			MPASS(origpte == 0);
7112 		} else {
7113 			origpte = *pde;
7114 			if ((origpte & PG_V) == 0) {
7115 				pdpe = pmap_pdpe(pmap, va);
7116 				MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
7117 				mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
7118 				mp->ref_count++;
7119 			}
7120 		}
7121 		*pde = pten;
7122 	}
7123 	KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
7124 	    (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
7125 	    ("va %#lx changing %s phys page origpte %#lx pten %#lx",
7126 	    va, psind == 2 ? "1G" : "2M", origpte, pten));
7127 	if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
7128 		pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
7129 	else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
7130 		pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
7131 	if ((origpte & PG_V) == 0)
7132 		pmap_resident_count_adj(pmap, pagesizes[psind] / PAGE_SIZE);
7133 
7134 	return (KERN_SUCCESS);
7135 
7136 allocf:
7137 	if ((flags & PMAP_ENTER_NOSLEEP) != 0)
7138 		return (KERN_RESOURCE_SHORTAGE);
7139 	PMAP_UNLOCK(pmap);
7140 	vm_wait(NULL);
7141 	PMAP_LOCK(pmap);
7142 	goto restart;
7143 }
7144 
7145 /*
7146  *	Insert the given physical page (p) at
7147  *	the specified virtual address (v) in the
7148  *	target physical map with the protection requested.
7149  *
7150  *	If specified, the page will be wired down, meaning
7151  *	that the related pte can not be reclaimed.
7152  *
7153  *	NB:  This is the only routine which MAY NOT lazy-evaluate
7154  *	or lose information.  That is, this routine must actually
7155  *	insert this page into the given map NOW.
7156  *
7157  *	When destroying both a page table and PV entry, this function
7158  *	performs the TLB invalidation before releasing the PV list
7159  *	lock, so we do not need pmap_delayed_invl_page() calls here.
7160  */
7161 int
pmap_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)7162 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7163     u_int flags, int8_t psind)
7164 {
7165 	struct rwlock *lock;
7166 	pd_entry_t *pde;
7167 	pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
7168 	pt_entry_t newpte, origpte;
7169 	pv_entry_t pv;
7170 	vm_paddr_t opa, pa;
7171 	vm_page_t mpte, om;
7172 	int rv;
7173 	bool nosleep;
7174 
7175 	PG_A = pmap_accessed_bit(pmap);
7176 	PG_G = pmap_global_bit(pmap);
7177 	PG_M = pmap_modified_bit(pmap);
7178 	PG_V = pmap_valid_bit(pmap);
7179 	PG_RW = pmap_rw_bit(pmap);
7180 
7181 	va = trunc_page(va);
7182 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
7183 	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
7184 	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
7185 	    va));
7186 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
7187 	    ("pmap_enter: managed mapping within the clean submap"));
7188 	if ((m->oflags & VPO_UNMANAGED) == 0)
7189 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
7190 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
7191 	    ("pmap_enter: flags %u has reserved bits set", flags));
7192 	pa = VM_PAGE_TO_PHYS(m);
7193 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
7194 	if ((flags & VM_PROT_WRITE) != 0)
7195 		newpte |= PG_M;
7196 	if ((prot & VM_PROT_WRITE) != 0)
7197 		newpte |= PG_RW;
7198 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
7199 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
7200 	if ((prot & VM_PROT_EXECUTE) == 0)
7201 		newpte |= pg_nx;
7202 	if ((flags & PMAP_ENTER_WIRED) != 0)
7203 		newpte |= PG_W;
7204 	if (va < VM_MAXUSER_ADDRESS)
7205 		newpte |= PG_U;
7206 	if (pmap == kernel_pmap)
7207 		newpte |= PG_G;
7208 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
7209 
7210 	/*
7211 	 * Set modified bit gratuitously for writeable mappings if
7212 	 * the page is unmanaged. We do not want to take a fault
7213 	 * to do the dirty bit accounting for these mappings.
7214 	 */
7215 	if ((m->oflags & VPO_UNMANAGED) != 0) {
7216 		if ((newpte & PG_RW) != 0)
7217 			newpte |= PG_M;
7218 	} else
7219 		newpte |= PG_MANAGED;
7220 
7221 	lock = NULL;
7222 	PMAP_LOCK(pmap);
7223 	if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
7224 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
7225 		    ("managed largepage va %#lx flags %#x", va, flags));
7226 		rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
7227 		    psind);
7228 		goto out;
7229 	}
7230 	if (psind == 1) {
7231 		/* Assert the required virtual and physical alignment. */
7232 		KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
7233 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
7234 		rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
7235 		goto out;
7236 	}
7237 	mpte = NULL;
7238 
7239 	/*
7240 	 * In the case that a page table page is not
7241 	 * resident, we are creating it here.
7242 	 */
7243 retry:
7244 	pde = pmap_pde(pmap, va);
7245 	if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
7246 	    pmap_demote_pde_locked(pmap, pde, va, &lock))) {
7247 		pte = pmap_pde_to_pte(pde, va);
7248 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
7249 			mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7250 			mpte->ref_count++;
7251 		}
7252 	} else if (va < VM_MAXUSER_ADDRESS) {
7253 		/*
7254 		 * Here if the pte page isn't mapped, or if it has been
7255 		 * deallocated.
7256 		 */
7257 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
7258 		mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
7259 		    nosleep ? NULL : &lock, va);
7260 		if (mpte == NULL && nosleep) {
7261 			rv = KERN_RESOURCE_SHORTAGE;
7262 			goto out;
7263 		}
7264 		goto retry;
7265 	} else
7266 		panic("pmap_enter: invalid page directory va=%#lx", va);
7267 
7268 	origpte = *pte;
7269 	pv = NULL;
7270 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
7271 		newpte |= pmap_pkru_get(pmap, va);
7272 
7273 	/*
7274 	 * Is the specified virtual address already mapped?
7275 	 */
7276 	if ((origpte & PG_V) != 0) {
7277 		/*
7278 		 * Wiring change, just update stats. We don't worry about
7279 		 * wiring PT pages as they remain resident as long as there
7280 		 * are valid mappings in them. Hence, if a user page is wired,
7281 		 * the PT page will be also.
7282 		 */
7283 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
7284 			pmap->pm_stats.wired_count++;
7285 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
7286 			pmap->pm_stats.wired_count--;
7287 
7288 		/*
7289 		 * Remove the extra PT page reference.
7290 		 */
7291 		if (mpte != NULL) {
7292 			mpte->ref_count--;
7293 			KASSERT(mpte->ref_count > 0,
7294 			    ("pmap_enter: missing reference to page table page,"
7295 			     " va: 0x%lx", va));
7296 		}
7297 
7298 		/*
7299 		 * Has the physical page changed?
7300 		 */
7301 		opa = origpte & PG_FRAME;
7302 		if (opa == pa) {
7303 			/*
7304 			 * No, might be a protection or wiring change.
7305 			 */
7306 			if ((origpte & PG_MANAGED) != 0 &&
7307 			    (newpte & PG_RW) != 0)
7308 				vm_page_aflag_set(m, PGA_WRITEABLE);
7309 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
7310 				goto unchanged;
7311 			goto validate;
7312 		}
7313 
7314 		/*
7315 		 * The physical page has changed.  Temporarily invalidate
7316 		 * the mapping.  This ensures that all threads sharing the
7317 		 * pmap keep a consistent view of the mapping, which is
7318 		 * necessary for the correct handling of COW faults.  It
7319 		 * also permits reuse of the old mapping's PV entry,
7320 		 * avoiding an allocation.
7321 		 *
7322 		 * For consistency, handle unmanaged mappings the same way.
7323 		 */
7324 		origpte = pte_load_clear(pte);
7325 		KASSERT((origpte & PG_FRAME) == opa,
7326 		    ("pmap_enter: unexpected pa update for %#lx", va));
7327 		if ((origpte & PG_MANAGED) != 0) {
7328 			om = PHYS_TO_VM_PAGE(opa);
7329 
7330 			/*
7331 			 * The pmap lock is sufficient to synchronize with
7332 			 * concurrent calls to pmap_page_test_mappings() and
7333 			 * pmap_ts_referenced().
7334 			 */
7335 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
7336 				vm_page_dirty(om);
7337 			if ((origpte & PG_A) != 0) {
7338 				pmap_invalidate_page(pmap, va);
7339 				vm_page_aflag_set(om, PGA_REFERENCED);
7340 			}
7341 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
7342 			pv = pmap_pvh_remove(&om->md, pmap, va);
7343 			KASSERT(pv != NULL,
7344 			    ("pmap_enter: no PV entry for %#lx", va));
7345 			if ((newpte & PG_MANAGED) == 0)
7346 				free_pv_entry(pmap, pv);
7347 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
7348 			    TAILQ_EMPTY(&om->md.pv_list) &&
7349 			    ((om->flags & PG_FICTITIOUS) != 0 ||
7350 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
7351 				vm_page_aflag_clear(om, PGA_WRITEABLE);
7352 		} else {
7353 			/*
7354 			 * Since this mapping is unmanaged, assume that PG_A
7355 			 * is set.
7356 			 */
7357 			pmap_invalidate_page(pmap, va);
7358 		}
7359 		origpte = 0;
7360 	} else {
7361 		/*
7362 		 * Increment the counters.
7363 		 */
7364 		if ((newpte & PG_W) != 0)
7365 			pmap->pm_stats.wired_count++;
7366 		pmap_resident_count_adj(pmap, 1);
7367 	}
7368 
7369 	/*
7370 	 * Enter on the PV list if part of our managed memory.
7371 	 */
7372 	if ((newpte & PG_MANAGED) != 0) {
7373 		if (pv == NULL) {
7374 			pv = get_pv_entry(pmap, &lock);
7375 			pv->pv_va = va;
7376 		}
7377 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
7378 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
7379 		m->md.pv_gen++;
7380 		if ((newpte & PG_RW) != 0)
7381 			vm_page_aflag_set(m, PGA_WRITEABLE);
7382 	}
7383 
7384 	/*
7385 	 * Update the PTE.
7386 	 */
7387 	if ((origpte & PG_V) != 0) {
7388 validate:
7389 		origpte = pte_load_store(pte, newpte);
7390 		KASSERT((origpte & PG_FRAME) == pa,
7391 		    ("pmap_enter: unexpected pa update for %#lx", va));
7392 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
7393 		    (PG_M | PG_RW)) {
7394 			if ((origpte & PG_MANAGED) != 0)
7395 				vm_page_dirty(m);
7396 
7397 			/*
7398 			 * Although the PTE may still have PG_RW set, TLB
7399 			 * invalidation may nonetheless be required because
7400 			 * the PTE no longer has PG_M set.
7401 			 */
7402 		} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
7403 			/*
7404 			 * This PTE change does not require TLB invalidation.
7405 			 */
7406 			goto unchanged;
7407 		}
7408 		if ((origpte & PG_A) != 0)
7409 			pmap_invalidate_page(pmap, va);
7410 	} else
7411 		pte_store(pte, newpte);
7412 
7413 unchanged:
7414 
7415 #if VM_NRESERVLEVEL > 0
7416 	/*
7417 	 * If both the page table page and the reservation are fully
7418 	 * populated, then attempt promotion.
7419 	 */
7420 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
7421 	    (m->flags & PG_FICTITIOUS) == 0 &&
7422 	    vm_reserv_level_iffullpop(m) == 0)
7423 		(void)pmap_promote_pde(pmap, pde, va, mpte, &lock);
7424 #endif
7425 
7426 	rv = KERN_SUCCESS;
7427 out:
7428 	if (lock != NULL)
7429 		rw_wunlock(lock);
7430 	PMAP_UNLOCK(pmap);
7431 	return (rv);
7432 }
7433 
7434 /*
7435  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns
7436  * KERN_SUCCESS if the mapping was created.  Otherwise, returns an error
7437  * value.  See pmap_enter_pde() for the possible error values when "no sleep",
7438  * "no replace", and "no reclaim" are specified.
7439  */
7440 static int
pmap_enter_2mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,struct rwlock ** lockp)7441 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
7442     struct rwlock **lockp)
7443 {
7444 	pd_entry_t newpde;
7445 	pt_entry_t PG_V;
7446 
7447 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7448 	PG_V = pmap_valid_bit(pmap);
7449 	newpde = VM_PAGE_TO_PHYS(m) |
7450 	    pmap_cache_bits(pmap, m->md.pat_mode, true) | PG_PS | PG_V;
7451 	if ((m->oflags & VPO_UNMANAGED) == 0)
7452 		newpde |= PG_MANAGED;
7453 	if ((prot & VM_PROT_EXECUTE) == 0)
7454 		newpde |= pg_nx;
7455 	if (va < VM_MAXUSER_ADDRESS)
7456 		newpde |= PG_U;
7457 	return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
7458 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
7459 }
7460 
7461 /*
7462  * Returns true if every page table entry in the specified page table page is
7463  * zero.
7464  */
7465 static bool
pmap_every_pte_zero(vm_paddr_t pa)7466 pmap_every_pte_zero(vm_paddr_t pa)
7467 {
7468 	pt_entry_t *pt_end, *pte;
7469 
7470 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
7471 	pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
7472 	for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
7473 		if (*pte != 0)
7474 			return (false);
7475 	}
7476 	return (true);
7477 }
7478 
7479 /*
7480  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
7481  * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
7482  * KERN_PROTECTION_FAILURE, or KERN_RESOURCE_SHORTAGE otherwise.  Returns
7483  * KERN_FAILURE if either (1) PMAP_ENTER_NOREPLACE was specified and a 4KB
7484  * page mapping already exists within the 2MB virtual address range starting
7485  * at the specified virtual address or (2) the requested 2MB page mapping is
7486  * not supported due to hardware errata.  Returns KERN_NO_SPACE if
7487  * PMAP_ENTER_NOREPLACE was specified and a 2MB page mapping already exists at
7488  * the specified virtual address.  Returns KERN_PROTECTION_FAILURE if the PKRU
7489  * settings are not the same across the 2MB virtual address range starting at
7490  * the specified virtual address.  Returns KERN_RESOURCE_SHORTAGE if either
7491  * (1) PMAP_ENTER_NOSLEEP was specified and a page table page allocation
7492  * failed or (2) PMAP_ENTER_NORECLAIM was specified and a PV entry allocation
7493  * failed.
7494  *
7495  * The parameter "m" is only used when creating a managed, writeable mapping.
7496  */
7497 static int
pmap_enter_pde(pmap_t pmap,vm_offset_t va,pd_entry_t newpde,u_int flags,vm_page_t m,struct rwlock ** lockp)7498 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
7499     vm_page_t m, struct rwlock **lockp)
7500 {
7501 	struct spglist free;
7502 	pd_entry_t oldpde, *pde;
7503 	pt_entry_t PG_G, PG_RW, PG_V;
7504 	vm_page_t mt, pdpg;
7505 	vm_page_t uwptpg;
7506 
7507 	PG_G = pmap_global_bit(pmap);
7508 	PG_RW = pmap_rw_bit(pmap);
7509 	KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
7510 	    ("pmap_enter_pde: newpde is missing PG_M"));
7511 	PG_V = pmap_valid_bit(pmap);
7512 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7513 
7514 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
7515 	    newpde))) {
7516 		CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
7517 		    " in pmap %p", va, pmap);
7518 		return (KERN_FAILURE);
7519 	}
7520 	if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
7521 	    PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
7522 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7523 		    " in pmap %p", va, pmap);
7524 		return (KERN_RESOURCE_SHORTAGE);
7525 	}
7526 
7527 	/*
7528 	 * If pkru is not same for the whole pde range, return failure
7529 	 * and let vm_fault() cope.  Check after pde allocation, since
7530 	 * it could sleep.
7531 	 */
7532 	if (!pmap_pkru_same(pmap, va, va + NBPDR, &newpde)) {
7533 		pmap_abort_ptp(pmap, va, pdpg);
7534 		return (KERN_PROTECTION_FAILURE);
7535 	}
7536 
7537 	/*
7538 	 * If there are existing mappings, either abort or remove them.
7539 	 */
7540 	oldpde = *pde;
7541 	if ((oldpde & PG_V) != 0) {
7542 		KASSERT(pdpg == NULL || pdpg->ref_count > 1,
7543 		    ("pmap_enter_pde: pdpg's reference count is too low"));
7544 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
7545 			if ((oldpde & PG_PS) != 0) {
7546 				if (pdpg != NULL)
7547 					pdpg->ref_count--;
7548 				CTR2(KTR_PMAP,
7549 				    "pmap_enter_pde: no space for va %#lx"
7550 				    " in pmap %p", va, pmap);
7551 				return (KERN_NO_SPACE);
7552 			} else if (va < VM_MAXUSER_ADDRESS ||
7553 			    !pmap_every_pte_zero(oldpde & PG_FRAME)) {
7554 				if (pdpg != NULL)
7555 					pdpg->ref_count--;
7556 				CTR2(KTR_PMAP,
7557 				    "pmap_enter_pde: failure for va %#lx"
7558 				    " in pmap %p", va, pmap);
7559 				return (KERN_FAILURE);
7560 			}
7561 		}
7562 		/* Break the existing mapping(s). */
7563 		SLIST_INIT(&free);
7564 		if ((oldpde & PG_PS) != 0) {
7565 			/*
7566 			 * The reference to the PD page that was acquired by
7567 			 * pmap_alloc_pde() ensures that it won't be freed.
7568 			 * However, if the PDE resulted from a promotion, then
7569 			 * a reserved PT page could be freed.
7570 			 */
7571 			(void)pmap_remove_pde(pmap, pde, va, &free, lockp);
7572 			if ((oldpde & PG_G) == 0)
7573 				pmap_invalidate_pde_page(pmap, va, oldpde);
7574 		} else {
7575 			pmap_delayed_invl_start();
7576 			if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
7577 			    lockp))
7578 		               pmap_invalidate_all(pmap);
7579 			pmap_delayed_invl_finish();
7580 		}
7581 		if (va < VM_MAXUSER_ADDRESS) {
7582 			vm_page_free_pages_toq(&free, true);
7583 			KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
7584 			    pde));
7585 		} else {
7586 			KASSERT(SLIST_EMPTY(&free),
7587 			    ("pmap_enter_pde: freed kernel page table page"));
7588 
7589 			/*
7590 			 * Both pmap_remove_pde() and pmap_remove_ptes() will
7591 			 * leave the kernel page table page zero filled.
7592 			 */
7593 			mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7594 			if (pmap_insert_pt_page(pmap, mt, false, false))
7595 				panic("pmap_enter_pde: trie insert failed");
7596 		}
7597 	}
7598 
7599 	/*
7600 	 * Allocate leaf ptpage for wired userspace pages.
7601 	 */
7602 	uwptpg = NULL;
7603 	if ((newpde & PG_W) != 0 && pmap != kernel_pmap) {
7604 		uwptpg = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
7605 		    VM_ALLOC_WIRED);
7606 		if (uwptpg == NULL) {
7607 			pmap_abort_ptp(pmap, va, pdpg);
7608 			return (KERN_RESOURCE_SHORTAGE);
7609 		}
7610 		if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
7611 			pmap_free_pt_page(pmap, uwptpg, false);
7612 			pmap_abort_ptp(pmap, va, pdpg);
7613 			return (KERN_RESOURCE_SHORTAGE);
7614 		}
7615 
7616 		uwptpg->ref_count = NPTEPG;
7617 	}
7618 	if ((newpde & PG_MANAGED) != 0) {
7619 		/*
7620 		 * Abort this mapping if its PV entry could not be created.
7621 		 */
7622 		if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
7623 			if (pdpg != NULL)
7624 				pmap_abort_ptp(pmap, va, pdpg);
7625 			if (uwptpg != NULL) {
7626 				mt = pmap_remove_pt_page(pmap, va);
7627 				KASSERT(mt == uwptpg,
7628 				    ("removed pt page %p, expected %p", mt,
7629 				    uwptpg));
7630 				uwptpg->ref_count = 1;
7631 				pmap_free_pt_page(pmap, uwptpg, false);
7632 			}
7633 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
7634 			    " in pmap %p", va, pmap);
7635 			return (KERN_RESOURCE_SHORTAGE);
7636 		}
7637 		if ((newpde & PG_RW) != 0) {
7638 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
7639 				vm_page_aflag_set(mt, PGA_WRITEABLE);
7640 		}
7641 	}
7642 
7643 	/*
7644 	 * Increment counters.
7645 	 */
7646 	if ((newpde & PG_W) != 0)
7647 		pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
7648 	pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7649 
7650 	/*
7651 	 * Map the superpage.  (This is not a promoted mapping; there will not
7652 	 * be any lingering 4KB page mappings in the TLB.)
7653 	 */
7654 	pde_store(pde, newpde);
7655 
7656 	counter_u64_add(pmap_pde_mappings, 1);
7657 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
7658 	    va, pmap);
7659 	return (KERN_SUCCESS);
7660 }
7661 
7662 /*
7663  * Maps a sequence of resident pages belonging to the same object.
7664  * The sequence begins with the given page m_start.  This page is
7665  * mapped at the given virtual address start.  Each subsequent page is
7666  * mapped at a virtual address that is offset from start by the same
7667  * amount as the page is offset from m_start within the object.  The
7668  * last page in the sequence is the page with the largest offset from
7669  * m_start that can be mapped at a virtual address less than the given
7670  * virtual address end.  Not every virtual page between start and end
7671  * is mapped; only those for which a resident page exists with the
7672  * corresponding offset from m_start are mapped.
7673  */
7674 void
pmap_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)7675 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
7676     vm_page_t m_start, vm_prot_t prot)
7677 {
7678 	struct rwlock *lock;
7679 	vm_offset_t va;
7680 	vm_page_t m, mpte;
7681 	vm_pindex_t diff, psize;
7682 	int rv;
7683 
7684 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
7685 
7686 	psize = atop(end - start);
7687 	mpte = NULL;
7688 	m = m_start;
7689 	lock = NULL;
7690 	PMAP_LOCK(pmap);
7691 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
7692 		va = start + ptoa(diff);
7693 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
7694 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
7695 		    ((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
7696 		    KERN_SUCCESS || rv == KERN_NO_SPACE))
7697 			m = &m[NBPDR / PAGE_SIZE - 1];
7698 		else
7699 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
7700 			    mpte, &lock);
7701 		m = TAILQ_NEXT(m, listq);
7702 	}
7703 	if (lock != NULL)
7704 		rw_wunlock(lock);
7705 	PMAP_UNLOCK(pmap);
7706 }
7707 
7708 /*
7709  * this code makes some *MAJOR* assumptions:
7710  * 1. Current pmap & pmap exists.
7711  * 2. Not wired.
7712  * 3. Read access.
7713  * 4. No page table pages.
7714  * but is *MUCH* faster than pmap_enter...
7715  */
7716 
7717 void
pmap_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)7718 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
7719 {
7720 	struct rwlock *lock;
7721 
7722 	lock = NULL;
7723 	PMAP_LOCK(pmap);
7724 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
7725 	if (lock != NULL)
7726 		rw_wunlock(lock);
7727 	PMAP_UNLOCK(pmap);
7728 }
7729 
7730 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpte,struct rwlock ** lockp)7731 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
7732     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
7733 {
7734 	pd_entry_t *pde;
7735 	pt_entry_t newpte, *pte, PG_V;
7736 
7737 	KASSERT(!VA_IS_CLEANMAP(va) ||
7738 	    (m->oflags & VPO_UNMANAGED) != 0,
7739 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
7740 	PG_V = pmap_valid_bit(pmap);
7741 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
7742 	pde = NULL;
7743 
7744 	/*
7745 	 * In the case that a page table page is not
7746 	 * resident, we are creating it here.
7747 	 */
7748 	if (va < VM_MAXUSER_ADDRESS) {
7749 		pdp_entry_t *pdpe;
7750 		vm_pindex_t ptepindex;
7751 
7752 		/*
7753 		 * Calculate pagetable page index
7754 		 */
7755 		ptepindex = pmap_pde_pindex(va);
7756 		if (mpte && (mpte->pindex == ptepindex)) {
7757 			mpte->ref_count++;
7758 		} else {
7759 			/*
7760 			 * If the page table page is mapped, we just increment
7761 			 * the hold count, and activate it.  Otherwise, we
7762 			 * attempt to allocate a page table page, passing NULL
7763 			 * instead of the PV list lock pointer because we don't
7764 			 * intend to sleep.  If this attempt fails, we don't
7765 			 * retry.  Instead, we give up.
7766 			 */
7767 			pdpe = pmap_pdpe(pmap, va);
7768 			if (pdpe != NULL && (*pdpe & PG_V) != 0) {
7769 				if ((*pdpe & PG_PS) != 0)
7770 					return (NULL);
7771 				pde = pmap_pdpe_to_pde(pdpe, va);
7772 				if ((*pde & PG_V) != 0) {
7773 					if ((*pde & PG_PS) != 0)
7774 						return (NULL);
7775 					mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
7776 					mpte->ref_count++;
7777 				} else {
7778 					mpte = pmap_allocpte_alloc(pmap,
7779 					    ptepindex, NULL, va);
7780 					if (mpte == NULL)
7781 						return (NULL);
7782 				}
7783 			} else {
7784 				mpte = pmap_allocpte_alloc(pmap, ptepindex,
7785 				    NULL, va);
7786 				if (mpte == NULL)
7787 					return (NULL);
7788 			}
7789 		}
7790 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
7791 		pte = &pte[pmap_pte_index(va)];
7792 	} else {
7793 		mpte = NULL;
7794 		pte = vtopte(va);
7795 	}
7796 	if (*pte) {
7797 		if (mpte != NULL)
7798 			mpte->ref_count--;
7799 		return (NULL);
7800 	}
7801 
7802 	/*
7803 	 * Enter on the PV list if part of our managed memory.
7804 	 */
7805 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
7806 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
7807 		if (mpte != NULL)
7808 			pmap_abort_ptp(pmap, va, mpte);
7809 		return (NULL);
7810 	}
7811 
7812 	/*
7813 	 * Increment counters
7814 	 */
7815 	pmap_resident_count_adj(pmap, 1);
7816 
7817 	newpte = VM_PAGE_TO_PHYS(m) | PG_V |
7818 	    pmap_cache_bits(pmap, m->md.pat_mode, false);
7819 	if ((m->oflags & VPO_UNMANAGED) == 0)
7820 		newpte |= PG_MANAGED;
7821 	if ((prot & VM_PROT_EXECUTE) == 0)
7822 		newpte |= pg_nx;
7823 	if (va < VM_MAXUSER_ADDRESS)
7824 		newpte |= PG_U | pmap_pkru_get(pmap, va);
7825 	pte_store(pte, newpte);
7826 
7827 #if VM_NRESERVLEVEL > 0
7828 	/*
7829 	 * If both the PTP and the reservation are fully populated, then
7830 	 * attempt promotion.
7831 	 */
7832 	if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
7833 	    (mpte == NULL || mpte->ref_count == NPTEPG) &&
7834 	    (m->flags & PG_FICTITIOUS) == 0 &&
7835 	    vm_reserv_level_iffullpop(m) == 0) {
7836 		if (pde == NULL)
7837 			pde = pmap_pde(pmap, va);
7838 
7839 		/*
7840 		 * If promotion succeeds, then the next call to this function
7841 		 * should not be given the unmapped PTP as a hint.
7842 		 */
7843 		if (pmap_promote_pde(pmap, pde, va, mpte, lockp))
7844 			mpte = NULL;
7845 	}
7846 #endif
7847 
7848 	return (mpte);
7849 }
7850 
7851 /*
7852  * Make a temporary mapping for a physical address.  This is only intended
7853  * to be used for panic dumps.
7854  */
7855 void *
pmap_kenter_temporary(vm_paddr_t pa,int i)7856 pmap_kenter_temporary(vm_paddr_t pa, int i)
7857 {
7858 	vm_offset_t va;
7859 
7860 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
7861 	pmap_kenter(va, pa);
7862 	pmap_invlpg(kernel_pmap, va);
7863 	return ((void *)crashdumpmap);
7864 }
7865 
7866 /*
7867  * This code maps large physical mmap regions into the
7868  * processor address space.  Note that some shortcuts
7869  * are taken, but the code works.
7870  */
7871 void
pmap_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)7872 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
7873     vm_pindex_t pindex, vm_size_t size)
7874 {
7875 	pd_entry_t *pde;
7876 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
7877 	vm_paddr_t pa, ptepa;
7878 	vm_page_t p, pdpg;
7879 	int pat_mode;
7880 
7881 	PG_A = pmap_accessed_bit(pmap);
7882 	PG_M = pmap_modified_bit(pmap);
7883 	PG_V = pmap_valid_bit(pmap);
7884 	PG_RW = pmap_rw_bit(pmap);
7885 
7886 	VM_OBJECT_ASSERT_WLOCKED(object);
7887 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
7888 	    ("pmap_object_init_pt: non-device object"));
7889 	if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
7890 		if (!pmap_ps_enabled(pmap))
7891 			return;
7892 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
7893 			return;
7894 		p = vm_page_lookup(object, pindex);
7895 		KASSERT(vm_page_all_valid(p),
7896 		    ("pmap_object_init_pt: invalid page %p", p));
7897 		pat_mode = p->md.pat_mode;
7898 
7899 		/*
7900 		 * Abort the mapping if the first page is not physically
7901 		 * aligned to a 2MB page boundary.
7902 		 */
7903 		ptepa = VM_PAGE_TO_PHYS(p);
7904 		if (ptepa & (NBPDR - 1))
7905 			return;
7906 
7907 		/*
7908 		 * Skip the first page.  Abort the mapping if the rest of
7909 		 * the pages are not physically contiguous or have differing
7910 		 * memory attributes.
7911 		 */
7912 		p = TAILQ_NEXT(p, listq);
7913 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
7914 		    pa += PAGE_SIZE) {
7915 			KASSERT(vm_page_all_valid(p),
7916 			    ("pmap_object_init_pt: invalid page %p", p));
7917 			if (pa != VM_PAGE_TO_PHYS(p) ||
7918 			    pat_mode != p->md.pat_mode)
7919 				return;
7920 			p = TAILQ_NEXT(p, listq);
7921 		}
7922 
7923 		/*
7924 		 * Map using 2MB pages.  Since "ptepa" is 2M aligned and
7925 		 * "size" is a multiple of 2M, adding the PAT setting to "pa"
7926 		 * will not affect the termination of this loop.
7927 		 */
7928 		PMAP_LOCK(pmap);
7929 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, true);
7930 		    pa < ptepa + size; pa += NBPDR) {
7931 			pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
7932 			if (pde == NULL) {
7933 				/*
7934 				 * The creation of mappings below is only an
7935 				 * optimization.  If a page directory page
7936 				 * cannot be allocated without blocking,
7937 				 * continue on to the next mapping rather than
7938 				 * blocking.
7939 				 */
7940 				addr += NBPDR;
7941 				continue;
7942 			}
7943 			if ((*pde & PG_V) == 0) {
7944 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
7945 				    PG_U | PG_RW | PG_V);
7946 				pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
7947 				counter_u64_add(pmap_pde_mappings, 1);
7948 			} else {
7949 				/* Continue on if the PDE is already valid. */
7950 				pdpg->ref_count--;
7951 				KASSERT(pdpg->ref_count > 0,
7952 				    ("pmap_object_init_pt: missing reference "
7953 				    "to page directory page, va: 0x%lx", addr));
7954 			}
7955 			addr += NBPDR;
7956 		}
7957 		PMAP_UNLOCK(pmap);
7958 	}
7959 }
7960 
7961 /*
7962  *	Clear the wired attribute from the mappings for the specified range of
7963  *	addresses in the given pmap.  Every valid mapping within that range
7964  *	must have the wired attribute set.  In contrast, invalid mappings
7965  *	cannot have the wired attribute set, so they are ignored.
7966  *
7967  *	The wired attribute of the page table entry is not a hardware
7968  *	feature, so there is no need to invalidate any TLB entries.
7969  *	Since pmap_demote_pde() for the wired entry must never fail,
7970  *	pmap_delayed_invl_start()/finish() calls around the
7971  *	function are not needed.
7972  */
7973 void
pmap_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)7974 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
7975 {
7976 	vm_offset_t va_next;
7977 	pml4_entry_t *pml4e;
7978 	pdp_entry_t *pdpe;
7979 	pd_entry_t *pde;
7980 	pt_entry_t *pte, PG_V, PG_G __diagused;
7981 
7982 	PG_V = pmap_valid_bit(pmap);
7983 	PG_G = pmap_global_bit(pmap);
7984 	PMAP_LOCK(pmap);
7985 	for (; sva < eva; sva = va_next) {
7986 		pml4e = pmap_pml4e(pmap, sva);
7987 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
7988 			va_next = (sva + NBPML4) & ~PML4MASK;
7989 			if (va_next < sva)
7990 				va_next = eva;
7991 			continue;
7992 		}
7993 
7994 		va_next = (sva + NBPDP) & ~PDPMASK;
7995 		if (va_next < sva)
7996 			va_next = eva;
7997 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
7998 		if ((*pdpe & PG_V) == 0)
7999 			continue;
8000 		if ((*pdpe & PG_PS) != 0) {
8001 			KASSERT(va_next <= eva,
8002 			    ("partial update of non-transparent 1G mapping "
8003 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8004 			    *pdpe, sva, eva, va_next));
8005 			MPASS(pmap != kernel_pmap); /* XXXKIB */
8006 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
8007 			atomic_clear_long(pdpe, PG_W);
8008 			pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
8009 			continue;
8010 		}
8011 
8012 		va_next = (sva + NBPDR) & ~PDRMASK;
8013 		if (va_next < sva)
8014 			va_next = eva;
8015 		pde = pmap_pdpe_to_pde(pdpe, sva);
8016 		if ((*pde & PG_V) == 0)
8017 			continue;
8018 		if ((*pde & PG_PS) != 0) {
8019 			if ((*pde & PG_W) == 0)
8020 				panic("pmap_unwire: pde %#jx is missing PG_W",
8021 				    (uintmax_t)*pde);
8022 
8023 			/*
8024 			 * Are we unwiring the entire large page?  If not,
8025 			 * demote the mapping and fall through.
8026 			 */
8027 			if (sva + NBPDR == va_next && eva >= va_next) {
8028 				atomic_clear_long(pde, PG_W);
8029 				pmap->pm_stats.wired_count -= NBPDR /
8030 				    PAGE_SIZE;
8031 				continue;
8032 			} else if (!pmap_demote_pde(pmap, pde, sva))
8033 				panic("pmap_unwire: demotion failed");
8034 		}
8035 		if (va_next > eva)
8036 			va_next = eva;
8037 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
8038 		    sva += PAGE_SIZE) {
8039 			if ((*pte & PG_V) == 0)
8040 				continue;
8041 			if ((*pte & PG_W) == 0)
8042 				panic("pmap_unwire: pte %#jx is missing PG_W",
8043 				    (uintmax_t)*pte);
8044 
8045 			/*
8046 			 * PG_W must be cleared atomically.  Although the pmap
8047 			 * lock synchronizes access to PG_W, another processor
8048 			 * could be setting PG_M and/or PG_A concurrently.
8049 			 */
8050 			atomic_clear_long(pte, PG_W);
8051 			pmap->pm_stats.wired_count--;
8052 		}
8053 	}
8054 	PMAP_UNLOCK(pmap);
8055 }
8056 
8057 /*
8058  *	Copy the range specified by src_addr/len
8059  *	from the source map to the range dst_addr/len
8060  *	in the destination map.
8061  *
8062  *	This routine is only advisory and need not do anything.
8063  */
8064 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)8065 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
8066     vm_offset_t src_addr)
8067 {
8068 	struct rwlock *lock;
8069 	pml4_entry_t *pml4e;
8070 	pdp_entry_t *pdpe;
8071 	pd_entry_t *pde, srcptepaddr;
8072 	pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
8073 	vm_offset_t addr, end_addr, va_next;
8074 	vm_page_t dst_pdpg, dstmpte, srcmpte;
8075 
8076 	if (dst_addr != src_addr)
8077 		return;
8078 
8079 	if (dst_pmap->pm_type != src_pmap->pm_type)
8080 		return;
8081 
8082 	/*
8083 	 * EPT page table entries that require emulation of A/D bits are
8084 	 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
8085 	 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
8086 	 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
8087 	 * implementations flag an EPT misconfiguration for exec-only
8088 	 * mappings we skip this function entirely for emulated pmaps.
8089 	 */
8090 	if (pmap_emulate_ad_bits(dst_pmap))
8091 		return;
8092 
8093 	end_addr = src_addr + len;
8094 	lock = NULL;
8095 	if (dst_pmap < src_pmap) {
8096 		PMAP_LOCK(dst_pmap);
8097 		PMAP_LOCK(src_pmap);
8098 	} else {
8099 		PMAP_LOCK(src_pmap);
8100 		PMAP_LOCK(dst_pmap);
8101 	}
8102 
8103 	PG_A = pmap_accessed_bit(dst_pmap);
8104 	PG_M = pmap_modified_bit(dst_pmap);
8105 	PG_V = pmap_valid_bit(dst_pmap);
8106 
8107 	for (addr = src_addr; addr < end_addr; addr = va_next) {
8108 		KASSERT(addr < UPT_MIN_ADDRESS,
8109 		    ("pmap_copy: invalid to pmap_copy page tables"));
8110 
8111 		pml4e = pmap_pml4e(src_pmap, addr);
8112 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
8113 			va_next = (addr + NBPML4) & ~PML4MASK;
8114 			if (va_next < addr)
8115 				va_next = end_addr;
8116 			continue;
8117 		}
8118 
8119 		va_next = (addr + NBPDP) & ~PDPMASK;
8120 		if (va_next < addr)
8121 			va_next = end_addr;
8122 		pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
8123 		if ((*pdpe & PG_V) == 0)
8124 			continue;
8125 		if ((*pdpe & PG_PS) != 0) {
8126 			KASSERT(va_next <= end_addr,
8127 			    ("partial update of non-transparent 1G mapping "
8128 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8129 			    *pdpe, addr, end_addr, va_next));
8130 			MPASS((addr & PDPMASK) == 0);
8131 			MPASS((*pdpe & PG_MANAGED) == 0);
8132 			srcptepaddr = *pdpe;
8133 			pdpe = pmap_pdpe(dst_pmap, addr);
8134 			if (pdpe == NULL) {
8135 				if (pmap_allocpte_alloc(dst_pmap,
8136 				    pmap_pml4e_pindex(addr), NULL, addr) ==
8137 				    NULL)
8138 					break;
8139 				pdpe = pmap_pdpe(dst_pmap, addr);
8140 			} else {
8141 				pml4e = pmap_pml4e(dst_pmap, addr);
8142 				dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
8143 				dst_pdpg->ref_count++;
8144 			}
8145 			KASSERT(*pdpe == 0,
8146 			    ("1G mapping present in dst pmap "
8147 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
8148 			    *pdpe, addr, end_addr, va_next));
8149 			*pdpe = srcptepaddr & ~PG_W;
8150 			pmap_resident_count_adj(dst_pmap, NBPDP / PAGE_SIZE);
8151 			continue;
8152 		}
8153 
8154 		va_next = (addr + NBPDR) & ~PDRMASK;
8155 		if (va_next < addr)
8156 			va_next = end_addr;
8157 
8158 		pde = pmap_pdpe_to_pde(pdpe, addr);
8159 		srcptepaddr = *pde;
8160 		if (srcptepaddr == 0)
8161 			continue;
8162 
8163 		if (srcptepaddr & PG_PS) {
8164 			/*
8165 			 * We can only virtual copy whole superpages.
8166 			 */
8167 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
8168 				continue;
8169 			pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
8170 			if (pde == NULL)
8171 				break;
8172 			if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
8173 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
8174 			    PMAP_ENTER_NORECLAIM, &lock))) {
8175 				/*
8176 				 * We leave the dirty bit unchanged because
8177 				 * managed read/write superpage mappings are
8178 				 * required to be dirty.  However, managed
8179 				 * superpage mappings are not required to
8180 				 * have their accessed bit set, so we clear
8181 				 * it because we don't know if this mapping
8182 				 * will be used.
8183 				 */
8184 				srcptepaddr &= ~PG_W;
8185 				if ((srcptepaddr & PG_MANAGED) != 0)
8186 					srcptepaddr &= ~PG_A;
8187 				*pde = srcptepaddr;
8188 				pmap_resident_count_adj(dst_pmap, NBPDR /
8189 				    PAGE_SIZE);
8190 				counter_u64_add(pmap_pde_mappings, 1);
8191 			} else
8192 				pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
8193 			continue;
8194 		}
8195 
8196 		srcptepaddr &= PG_FRAME;
8197 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
8198 		KASSERT(srcmpte->ref_count > 0,
8199 		    ("pmap_copy: source page table page is unused"));
8200 
8201 		if (va_next > end_addr)
8202 			va_next = end_addr;
8203 
8204 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
8205 		src_pte = &src_pte[pmap_pte_index(addr)];
8206 		dstmpte = NULL;
8207 		for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
8208 			ptetemp = *src_pte;
8209 
8210 			/*
8211 			 * We only virtual copy managed pages.
8212 			 */
8213 			if ((ptetemp & PG_MANAGED) == 0)
8214 				continue;
8215 
8216 			if (dstmpte != NULL) {
8217 				KASSERT(dstmpte->pindex ==
8218 				    pmap_pde_pindex(addr),
8219 				    ("dstmpte pindex/addr mismatch"));
8220 				dstmpte->ref_count++;
8221 			} else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
8222 			    NULL)) == NULL)
8223 				goto out;
8224 			dst_pte = (pt_entry_t *)
8225 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
8226 			dst_pte = &dst_pte[pmap_pte_index(addr)];
8227 			if (*dst_pte == 0 &&
8228 			    pmap_try_insert_pv_entry(dst_pmap, addr,
8229 			    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
8230 				/*
8231 				 * Clear the wired, modified, and accessed
8232 				 * (referenced) bits during the copy.
8233 				 */
8234 				*dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
8235 				pmap_resident_count_adj(dst_pmap, 1);
8236 			} else {
8237 				pmap_abort_ptp(dst_pmap, addr, dstmpte);
8238 				goto out;
8239 			}
8240 			/* Have we copied all of the valid mappings? */
8241 			if (dstmpte->ref_count >= srcmpte->ref_count)
8242 				break;
8243 		}
8244 	}
8245 out:
8246 	if (lock != NULL)
8247 		rw_wunlock(lock);
8248 	PMAP_UNLOCK(src_pmap);
8249 	PMAP_UNLOCK(dst_pmap);
8250 }
8251 
8252 int
pmap_vmspace_copy(pmap_t dst_pmap,pmap_t src_pmap)8253 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
8254 {
8255 	int error;
8256 
8257 	if (dst_pmap->pm_type != src_pmap->pm_type ||
8258 	    dst_pmap->pm_type != PT_X86 ||
8259 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
8260 		return (0);
8261 	for (;;) {
8262 		if (dst_pmap < src_pmap) {
8263 			PMAP_LOCK(dst_pmap);
8264 			PMAP_LOCK(src_pmap);
8265 		} else {
8266 			PMAP_LOCK(src_pmap);
8267 			PMAP_LOCK(dst_pmap);
8268 		}
8269 		error = pmap_pkru_copy(dst_pmap, src_pmap);
8270 		/* Clean up partial copy on failure due to no memory. */
8271 		if (error == ENOMEM)
8272 			pmap_pkru_deassign_all(dst_pmap);
8273 		PMAP_UNLOCK(src_pmap);
8274 		PMAP_UNLOCK(dst_pmap);
8275 		if (error != ENOMEM)
8276 			break;
8277 		vm_wait(NULL);
8278 	}
8279 	return (error);
8280 }
8281 
8282 /*
8283  * Zero the specified hardware page.
8284  */
8285 void
pmap_zero_page(vm_page_t m)8286 pmap_zero_page(vm_page_t m)
8287 {
8288 	vm_offset_t va;
8289 
8290 #ifdef TSLOG_PAGEZERO
8291 	TSENTER();
8292 #endif
8293 	va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8294 	pagezero((void *)va);
8295 #ifdef TSLOG_PAGEZERO
8296 	TSEXIT();
8297 #endif
8298 }
8299 
8300 /*
8301  * Zero an area within a single hardware page.  off and size must not
8302  * cover an area beyond a single hardware page.
8303  */
8304 void
pmap_zero_page_area(vm_page_t m,int off,int size)8305 pmap_zero_page_area(vm_page_t m, int off, int size)
8306 {
8307 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
8308 
8309 	if (off == 0 && size == PAGE_SIZE)
8310 		pagezero((void *)va);
8311 	else
8312 		bzero((char *)va + off, size);
8313 }
8314 
8315 /*
8316  * Copy 1 specified hardware page to another.
8317  */
8318 void
pmap_copy_page(vm_page_t msrc,vm_page_t mdst)8319 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
8320 {
8321 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
8322 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
8323 
8324 	pagecopy((void *)src, (void *)dst);
8325 }
8326 
8327 int unmapped_buf_allowed = 1;
8328 
8329 void
pmap_copy_pages(vm_page_t ma[],vm_offset_t a_offset,vm_page_t mb[],vm_offset_t b_offset,int xfersize)8330 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
8331     vm_offset_t b_offset, int xfersize)
8332 {
8333 	void *a_cp, *b_cp;
8334 	vm_page_t pages[2];
8335 	vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
8336 	int cnt;
8337 	bool mapped;
8338 
8339 	while (xfersize > 0) {
8340 		a_pg_offset = a_offset & PAGE_MASK;
8341 		pages[0] = ma[a_offset >> PAGE_SHIFT];
8342 		b_pg_offset = b_offset & PAGE_MASK;
8343 		pages[1] = mb[b_offset >> PAGE_SHIFT];
8344 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
8345 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
8346 		mapped = pmap_map_io_transient(pages, vaddr, 2, false);
8347 		a_cp = (char *)vaddr[0] + a_pg_offset;
8348 		b_cp = (char *)vaddr[1] + b_pg_offset;
8349 		bcopy(a_cp, b_cp, cnt);
8350 		if (__predict_false(mapped))
8351 			pmap_unmap_io_transient(pages, vaddr, 2, false);
8352 		a_offset += cnt;
8353 		b_offset += cnt;
8354 		xfersize -= cnt;
8355 	}
8356 }
8357 
8358 /*
8359  * Returns true if the pmap's pv is one of the first
8360  * 16 pvs linked to from this page.  This count may
8361  * be changed upwards or downwards in the future; it
8362  * is only necessary that true be returned for a small
8363  * subset of pmaps for proper page aging.
8364  */
8365 bool
pmap_page_exists_quick(pmap_t pmap,vm_page_t m)8366 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
8367 {
8368 	struct md_page *pvh;
8369 	struct rwlock *lock;
8370 	pv_entry_t pv;
8371 	int loops = 0;
8372 	bool rv;
8373 
8374 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8375 	    ("pmap_page_exists_quick: page %p is not managed", m));
8376 	rv = false;
8377 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8378 	rw_rlock(lock);
8379 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8380 		if (PV_PMAP(pv) == pmap) {
8381 			rv = true;
8382 			break;
8383 		}
8384 		loops++;
8385 		if (loops >= 16)
8386 			break;
8387 	}
8388 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
8389 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8390 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8391 			if (PV_PMAP(pv) == pmap) {
8392 				rv = true;
8393 				break;
8394 			}
8395 			loops++;
8396 			if (loops >= 16)
8397 				break;
8398 		}
8399 	}
8400 	rw_runlock(lock);
8401 	return (rv);
8402 }
8403 
8404 /*
8405  *	pmap_page_wired_mappings:
8406  *
8407  *	Return the number of managed mappings to the given physical page
8408  *	that are wired.
8409  */
8410 int
pmap_page_wired_mappings(vm_page_t m)8411 pmap_page_wired_mappings(vm_page_t m)
8412 {
8413 	struct rwlock *lock;
8414 	struct md_page *pvh;
8415 	pmap_t pmap;
8416 	pt_entry_t *pte;
8417 	pv_entry_t pv;
8418 	int count, md_gen, pvh_gen;
8419 
8420 	if ((m->oflags & VPO_UNMANAGED) != 0)
8421 		return (0);
8422 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8423 	rw_rlock(lock);
8424 restart:
8425 	count = 0;
8426 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8427 		pmap = PV_PMAP(pv);
8428 		if (!PMAP_TRYLOCK(pmap)) {
8429 			md_gen = m->md.pv_gen;
8430 			rw_runlock(lock);
8431 			PMAP_LOCK(pmap);
8432 			rw_rlock(lock);
8433 			if (md_gen != m->md.pv_gen) {
8434 				PMAP_UNLOCK(pmap);
8435 				goto restart;
8436 			}
8437 		}
8438 		pte = pmap_pte(pmap, pv->pv_va);
8439 		if ((*pte & PG_W) != 0)
8440 			count++;
8441 		PMAP_UNLOCK(pmap);
8442 	}
8443 	if ((m->flags & PG_FICTITIOUS) == 0) {
8444 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8445 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8446 			pmap = PV_PMAP(pv);
8447 			if (!PMAP_TRYLOCK(pmap)) {
8448 				md_gen = m->md.pv_gen;
8449 				pvh_gen = pvh->pv_gen;
8450 				rw_runlock(lock);
8451 				PMAP_LOCK(pmap);
8452 				rw_rlock(lock);
8453 				if (md_gen != m->md.pv_gen ||
8454 				    pvh_gen != pvh->pv_gen) {
8455 					PMAP_UNLOCK(pmap);
8456 					goto restart;
8457 				}
8458 			}
8459 			pte = pmap_pde(pmap, pv->pv_va);
8460 			if ((*pte & PG_W) != 0)
8461 				count++;
8462 			PMAP_UNLOCK(pmap);
8463 		}
8464 	}
8465 	rw_runlock(lock);
8466 	return (count);
8467 }
8468 
8469 /*
8470  * Returns true if the given page is mapped individually or as part of
8471  * a 2mpage.  Otherwise, returns false.
8472  */
8473 bool
pmap_page_is_mapped(vm_page_t m)8474 pmap_page_is_mapped(vm_page_t m)
8475 {
8476 	struct rwlock *lock;
8477 	bool rv;
8478 
8479 	if ((m->oflags & VPO_UNMANAGED) != 0)
8480 		return (false);
8481 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8482 	rw_rlock(lock);
8483 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
8484 	    ((m->flags & PG_FICTITIOUS) == 0 &&
8485 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
8486 	rw_runlock(lock);
8487 	return (rv);
8488 }
8489 
8490 /*
8491  * Destroy all managed, non-wired mappings in the given user-space
8492  * pmap.  This pmap cannot be active on any processor besides the
8493  * caller.
8494  *
8495  * This function cannot be applied to the kernel pmap.  Moreover, it
8496  * is not intended for general use.  It is only to be used during
8497  * process termination.  Consequently, it can be implemented in ways
8498  * that make it faster than pmap_remove().  First, it can more quickly
8499  * destroy mappings by iterating over the pmap's collection of PV
8500  * entries, rather than searching the page table.  Second, it doesn't
8501  * have to test and clear the page table entries atomically, because
8502  * no processor is currently accessing the user address space.  In
8503  * particular, a page table entry's dirty bit won't change state once
8504  * this function starts.
8505  *
8506  * Although this function destroys all of the pmap's managed,
8507  * non-wired mappings, it can delay and batch the invalidation of TLB
8508  * entries without calling pmap_delayed_invl_start() and
8509  * pmap_delayed_invl_finish().  Because the pmap is not active on
8510  * any other processor, none of these TLB entries will ever be used
8511  * before their eventual invalidation.  Consequently, there is no need
8512  * for either pmap_remove_all() or pmap_remove_write() to wait for
8513  * that eventual TLB invalidation.
8514  */
8515 void
pmap_remove_pages(pmap_t pmap)8516 pmap_remove_pages(pmap_t pmap)
8517 {
8518 	pd_entry_t ptepde;
8519 	pt_entry_t *pte, tpte;
8520 	pt_entry_t PG_M, PG_RW, PG_V;
8521 	struct spglist free;
8522 	struct pv_chunklist free_chunks[PMAP_MEMDOM];
8523 	vm_page_t m, mpte, mt;
8524 	pv_entry_t pv;
8525 	struct md_page *pvh;
8526 	struct pv_chunk *pc, *npc;
8527 	struct rwlock *lock;
8528 	int64_t bit;
8529 	uint64_t inuse, bitmask;
8530 	int allfree, field, i, idx;
8531 #ifdef PV_STATS
8532 	int freed;
8533 #endif
8534 	bool superpage;
8535 	vm_paddr_t pa;
8536 
8537 	/*
8538 	 * Assert that the given pmap is only active on the current
8539 	 * CPU.  Unfortunately, we cannot block another CPU from
8540 	 * activating the pmap while this function is executing.
8541 	 */
8542 	KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
8543 #ifdef INVARIANTS
8544 	{
8545 		cpuset_t other_cpus;
8546 
8547 		other_cpus = all_cpus;
8548 		critical_enter();
8549 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
8550 		CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
8551 		critical_exit();
8552 		KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
8553 	}
8554 #endif
8555 
8556 	lock = NULL;
8557 	PG_M = pmap_modified_bit(pmap);
8558 	PG_V = pmap_valid_bit(pmap);
8559 	PG_RW = pmap_rw_bit(pmap);
8560 
8561 	for (i = 0; i < PMAP_MEMDOM; i++)
8562 		TAILQ_INIT(&free_chunks[i]);
8563 	SLIST_INIT(&free);
8564 	PMAP_LOCK(pmap);
8565 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
8566 		allfree = 1;
8567 #ifdef PV_STATS
8568 		freed = 0;
8569 #endif
8570 		for (field = 0; field < _NPCM; field++) {
8571 			inuse = ~pc->pc_map[field] & pc_freemask[field];
8572 			while (inuse != 0) {
8573 				bit = bsfq(inuse);
8574 				bitmask = 1UL << bit;
8575 				idx = field * 64 + bit;
8576 				pv = &pc->pc_pventry[idx];
8577 				inuse &= ~bitmask;
8578 
8579 				pte = pmap_pdpe(pmap, pv->pv_va);
8580 				ptepde = *pte;
8581 				pte = pmap_pdpe_to_pde(pte, pv->pv_va);
8582 				tpte = *pte;
8583 				if ((tpte & (PG_PS | PG_V)) == PG_V) {
8584 					superpage = false;
8585 					ptepde = tpte;
8586 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
8587 					    PG_FRAME);
8588 					pte = &pte[pmap_pte_index(pv->pv_va)];
8589 					tpte = *pte;
8590 				} else {
8591 					/*
8592 					 * Keep track whether 'tpte' is a
8593 					 * superpage explicitly instead of
8594 					 * relying on PG_PS being set.
8595 					 *
8596 					 * This is because PG_PS is numerically
8597 					 * identical to PG_PTE_PAT and thus a
8598 					 * regular page could be mistaken for
8599 					 * a superpage.
8600 					 */
8601 					superpage = true;
8602 				}
8603 
8604 				if ((tpte & PG_V) == 0) {
8605 					panic("bad pte va %lx pte %lx",
8606 					    pv->pv_va, tpte);
8607 				}
8608 
8609 /*
8610  * We cannot remove wired pages from a process' mapping at this time
8611  */
8612 				if (tpte & PG_W) {
8613 					allfree = 0;
8614 					continue;
8615 				}
8616 
8617 				/* Mark free */
8618 				pc->pc_map[field] |= bitmask;
8619 
8620 				/*
8621 				 * Because this pmap is not active on other
8622 				 * processors, the dirty bit cannot have
8623 				 * changed state since we last loaded pte.
8624 				 */
8625 				pte_clear(pte);
8626 
8627 				if (superpage)
8628 					pa = tpte & PG_PS_FRAME;
8629 				else
8630 					pa = tpte & PG_FRAME;
8631 
8632 				m = PHYS_TO_VM_PAGE(pa);
8633 				KASSERT(m->phys_addr == pa,
8634 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
8635 				    m, (uintmax_t)m->phys_addr,
8636 				    (uintmax_t)tpte));
8637 
8638 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
8639 				    m < &vm_page_array[vm_page_array_size],
8640 				    ("pmap_remove_pages: bad tpte %#jx",
8641 				    (uintmax_t)tpte));
8642 
8643 				/*
8644 				 * Update the vm_page_t clean/reference bits.
8645 				 */
8646 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
8647 					if (superpage) {
8648 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8649 							vm_page_dirty(mt);
8650 					} else
8651 						vm_page_dirty(m);
8652 				}
8653 
8654 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
8655 
8656 				if (superpage) {
8657 					pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
8658 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
8659 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
8660 					pvh->pv_gen++;
8661 					if (TAILQ_EMPTY(&pvh->pv_list)) {
8662 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
8663 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
8664 							    TAILQ_EMPTY(&mt->md.pv_list))
8665 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
8666 					}
8667 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
8668 					if (mpte != NULL) {
8669 						KASSERT(vm_page_any_valid(mpte),
8670 						    ("pmap_remove_pages: pte page not promoted"));
8671 						pmap_pt_page_count_adj(pmap, -1);
8672 						KASSERT(mpte->ref_count == NPTEPG,
8673 						    ("pmap_remove_pages: pte page reference count error"));
8674 						mpte->ref_count = 0;
8675 						pmap_add_delayed_free_list(mpte, &free, false);
8676 					}
8677 				} else {
8678 					pmap_resident_count_adj(pmap, -1);
8679 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
8680 					m->md.pv_gen++;
8681 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
8682 					    TAILQ_EMPTY(&m->md.pv_list) &&
8683 					    (m->flags & PG_FICTITIOUS) == 0) {
8684 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8685 						if (TAILQ_EMPTY(&pvh->pv_list))
8686 							vm_page_aflag_clear(m, PGA_WRITEABLE);
8687 					}
8688 				}
8689 				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
8690 #ifdef PV_STATS
8691 				freed++;
8692 #endif
8693 			}
8694 		}
8695 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
8696 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
8697 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
8698 		if (allfree) {
8699 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
8700 			TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
8701 		}
8702 	}
8703 	if (lock != NULL)
8704 		rw_wunlock(lock);
8705 	pmap_invalidate_all(pmap);
8706 	pmap_pkru_deassign_all(pmap);
8707 	free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
8708 	PMAP_UNLOCK(pmap);
8709 	vm_page_free_pages_toq(&free, true);
8710 }
8711 
8712 static bool
pmap_page_test_mappings(vm_page_t m,bool accessed,bool modified)8713 pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
8714 {
8715 	struct rwlock *lock;
8716 	pv_entry_t pv;
8717 	struct md_page *pvh;
8718 	pt_entry_t *pte, mask;
8719 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
8720 	pmap_t pmap;
8721 	int md_gen, pvh_gen;
8722 	bool rv;
8723 
8724 	rv = false;
8725 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8726 	rw_rlock(lock);
8727 restart:
8728 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8729 		pmap = PV_PMAP(pv);
8730 		if (!PMAP_TRYLOCK(pmap)) {
8731 			md_gen = m->md.pv_gen;
8732 			rw_runlock(lock);
8733 			PMAP_LOCK(pmap);
8734 			rw_rlock(lock);
8735 			if (md_gen != m->md.pv_gen) {
8736 				PMAP_UNLOCK(pmap);
8737 				goto restart;
8738 			}
8739 		}
8740 		pte = pmap_pte(pmap, pv->pv_va);
8741 		mask = 0;
8742 		if (modified) {
8743 			PG_M = pmap_modified_bit(pmap);
8744 			PG_RW = pmap_rw_bit(pmap);
8745 			mask |= PG_RW | PG_M;
8746 		}
8747 		if (accessed) {
8748 			PG_A = pmap_accessed_bit(pmap);
8749 			PG_V = pmap_valid_bit(pmap);
8750 			mask |= PG_V | PG_A;
8751 		}
8752 		rv = (*pte & mask) == mask;
8753 		PMAP_UNLOCK(pmap);
8754 		if (rv)
8755 			goto out;
8756 	}
8757 	if ((m->flags & PG_FICTITIOUS) == 0) {
8758 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
8759 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
8760 			pmap = PV_PMAP(pv);
8761 			if (!PMAP_TRYLOCK(pmap)) {
8762 				md_gen = m->md.pv_gen;
8763 				pvh_gen = pvh->pv_gen;
8764 				rw_runlock(lock);
8765 				PMAP_LOCK(pmap);
8766 				rw_rlock(lock);
8767 				if (md_gen != m->md.pv_gen ||
8768 				    pvh_gen != pvh->pv_gen) {
8769 					PMAP_UNLOCK(pmap);
8770 					goto restart;
8771 				}
8772 			}
8773 			pte = pmap_pde(pmap, pv->pv_va);
8774 			mask = 0;
8775 			if (modified) {
8776 				PG_M = pmap_modified_bit(pmap);
8777 				PG_RW = pmap_rw_bit(pmap);
8778 				mask |= PG_RW | PG_M;
8779 			}
8780 			if (accessed) {
8781 				PG_A = pmap_accessed_bit(pmap);
8782 				PG_V = pmap_valid_bit(pmap);
8783 				mask |= PG_V | PG_A;
8784 			}
8785 			rv = (*pte & mask) == mask;
8786 			PMAP_UNLOCK(pmap);
8787 			if (rv)
8788 				goto out;
8789 		}
8790 	}
8791 out:
8792 	rw_runlock(lock);
8793 	return (rv);
8794 }
8795 
8796 /*
8797  *	pmap_is_modified:
8798  *
8799  *	Return whether or not the specified physical page was modified
8800  *	in any physical maps.
8801  */
8802 bool
pmap_is_modified(vm_page_t m)8803 pmap_is_modified(vm_page_t m)
8804 {
8805 
8806 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8807 	    ("pmap_is_modified: page %p is not managed", m));
8808 
8809 	/*
8810 	 * If the page is not busied then this check is racy.
8811 	 */
8812 	if (!pmap_page_is_write_mapped(m))
8813 		return (false);
8814 	return (pmap_page_test_mappings(m, false, true));
8815 }
8816 
8817 /*
8818  *	pmap_is_prefaultable:
8819  *
8820  *	Return whether or not the specified virtual address is eligible
8821  *	for prefault.
8822  */
8823 bool
pmap_is_prefaultable(pmap_t pmap,vm_offset_t addr)8824 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
8825 {
8826 	pd_entry_t *pde;
8827 	pt_entry_t *pte, PG_V;
8828 	bool rv;
8829 
8830 	PG_V = pmap_valid_bit(pmap);
8831 
8832 	/*
8833 	 * Return true if and only if the PTE for the specified virtual
8834 	 * address is allocated but invalid.
8835 	 */
8836 	rv = false;
8837 	PMAP_LOCK(pmap);
8838 	pde = pmap_pde(pmap, addr);
8839 	if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
8840 		pte = pmap_pde_to_pte(pde, addr);
8841 		rv = (*pte & PG_V) == 0;
8842 	}
8843 	PMAP_UNLOCK(pmap);
8844 	return (rv);
8845 }
8846 
8847 /*
8848  *	pmap_is_referenced:
8849  *
8850  *	Return whether or not the specified physical page was referenced
8851  *	in any physical maps.
8852  */
8853 bool
pmap_is_referenced(vm_page_t m)8854 pmap_is_referenced(vm_page_t m)
8855 {
8856 
8857 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8858 	    ("pmap_is_referenced: page %p is not managed", m));
8859 	return (pmap_page_test_mappings(m, true, false));
8860 }
8861 
8862 /*
8863  * Clear the write and modified bits in each of the given page's mappings.
8864  */
8865 void
pmap_remove_write(vm_page_t m)8866 pmap_remove_write(vm_page_t m)
8867 {
8868 	struct md_page *pvh;
8869 	pmap_t pmap;
8870 	struct rwlock *lock;
8871 	pv_entry_t next_pv, pv;
8872 	pd_entry_t *pde;
8873 	pt_entry_t oldpte, *pte, PG_M, PG_RW;
8874 	vm_offset_t va;
8875 	int pvh_gen, md_gen;
8876 
8877 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8878 	    ("pmap_remove_write: page %p is not managed", m));
8879 
8880 	vm_page_assert_busied(m);
8881 	if (!pmap_page_is_write_mapped(m))
8882 		return;
8883 
8884 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
8885 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
8886 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
8887 	rw_wlock(lock);
8888 retry:
8889 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
8890 		pmap = PV_PMAP(pv);
8891 		if (!PMAP_TRYLOCK(pmap)) {
8892 			pvh_gen = pvh->pv_gen;
8893 			rw_wunlock(lock);
8894 			PMAP_LOCK(pmap);
8895 			rw_wlock(lock);
8896 			if (pvh_gen != pvh->pv_gen) {
8897 				PMAP_UNLOCK(pmap);
8898 				goto retry;
8899 			}
8900 		}
8901 		PG_RW = pmap_rw_bit(pmap);
8902 		va = pv->pv_va;
8903 		pde = pmap_pde(pmap, va);
8904 		if ((*pde & PG_RW) != 0)
8905 			(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
8906 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
8907 		    ("inconsistent pv lock %p %p for page %p",
8908 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
8909 		PMAP_UNLOCK(pmap);
8910 	}
8911 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
8912 		pmap = PV_PMAP(pv);
8913 		if (!PMAP_TRYLOCK(pmap)) {
8914 			pvh_gen = pvh->pv_gen;
8915 			md_gen = m->md.pv_gen;
8916 			rw_wunlock(lock);
8917 			PMAP_LOCK(pmap);
8918 			rw_wlock(lock);
8919 			if (pvh_gen != pvh->pv_gen ||
8920 			    md_gen != m->md.pv_gen) {
8921 				PMAP_UNLOCK(pmap);
8922 				goto retry;
8923 			}
8924 		}
8925 		PG_M = pmap_modified_bit(pmap);
8926 		PG_RW = pmap_rw_bit(pmap);
8927 		pde = pmap_pde(pmap, pv->pv_va);
8928 		KASSERT((*pde & PG_PS) == 0,
8929 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
8930 		    m));
8931 		pte = pmap_pde_to_pte(pde, pv->pv_va);
8932 		oldpte = *pte;
8933 		if (oldpte & PG_RW) {
8934 			while (!atomic_fcmpset_long(pte, &oldpte, oldpte &
8935 			    ~(PG_RW | PG_M)))
8936 				cpu_spinwait();
8937 			if ((oldpte & PG_M) != 0)
8938 				vm_page_dirty(m);
8939 			pmap_invalidate_page(pmap, pv->pv_va);
8940 		}
8941 		PMAP_UNLOCK(pmap);
8942 	}
8943 	rw_wunlock(lock);
8944 	vm_page_aflag_clear(m, PGA_WRITEABLE);
8945 	pmap_delayed_invl_wait(m);
8946 }
8947 
8948 /*
8949  *	pmap_ts_referenced:
8950  *
8951  *	Return a count of reference bits for a page, clearing those bits.
8952  *	It is not necessary for every reference bit to be cleared, but it
8953  *	is necessary that 0 only be returned when there are truly no
8954  *	reference bits set.
8955  *
8956  *	As an optimization, update the page's dirty field if a modified bit is
8957  *	found while counting reference bits.  This opportunistic update can be
8958  *	performed at low cost and can eliminate the need for some future calls
8959  *	to pmap_is_modified().  However, since this function stops after
8960  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
8961  *	dirty pages.  Those dirty pages will only be detected by a future call
8962  *	to pmap_is_modified().
8963  *
8964  *	A DI block is not needed within this function, because
8965  *	invalidations are performed before the PV list lock is
8966  *	released.
8967  */
8968 int
pmap_ts_referenced(vm_page_t m)8969 pmap_ts_referenced(vm_page_t m)
8970 {
8971 	struct md_page *pvh;
8972 	pv_entry_t pv, pvf;
8973 	pmap_t pmap;
8974 	struct rwlock *lock;
8975 	pd_entry_t oldpde, *pde;
8976 	pt_entry_t *pte, PG_A, PG_M, PG_RW;
8977 	vm_offset_t va;
8978 	vm_paddr_t pa;
8979 	int cleared, md_gen, not_cleared, pvh_gen;
8980 	struct spglist free;
8981 	bool demoted;
8982 
8983 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
8984 	    ("pmap_ts_referenced: page %p is not managed", m));
8985 	SLIST_INIT(&free);
8986 	cleared = 0;
8987 	pa = VM_PAGE_TO_PHYS(m);
8988 	lock = PHYS_TO_PV_LIST_LOCK(pa);
8989 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
8990 	rw_wlock(lock);
8991 retry:
8992 	not_cleared = 0;
8993 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
8994 		goto small_mappings;
8995 	pv = pvf;
8996 	do {
8997 		if (pvf == NULL)
8998 			pvf = pv;
8999 		pmap = PV_PMAP(pv);
9000 		if (!PMAP_TRYLOCK(pmap)) {
9001 			pvh_gen = pvh->pv_gen;
9002 			rw_wunlock(lock);
9003 			PMAP_LOCK(pmap);
9004 			rw_wlock(lock);
9005 			if (pvh_gen != pvh->pv_gen) {
9006 				PMAP_UNLOCK(pmap);
9007 				goto retry;
9008 			}
9009 		}
9010 		PG_A = pmap_accessed_bit(pmap);
9011 		PG_M = pmap_modified_bit(pmap);
9012 		PG_RW = pmap_rw_bit(pmap);
9013 		va = pv->pv_va;
9014 		pde = pmap_pde(pmap, pv->pv_va);
9015 		oldpde = *pde;
9016 		if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9017 			/*
9018 			 * Although "oldpde" is mapping a 2MB page, because
9019 			 * this function is called at a 4KB page granularity,
9020 			 * we only update the 4KB page under test.
9021 			 */
9022 			vm_page_dirty(m);
9023 		}
9024 		if ((oldpde & PG_A) != 0) {
9025 			/*
9026 			 * Since this reference bit is shared by 512 4KB
9027 			 * pages, it should not be cleared every time it is
9028 			 * tested.  Apply a simple "hash" function on the
9029 			 * physical page number, the virtual superpage number,
9030 			 * and the pmap address to select one 4KB page out of
9031 			 * the 512 on which testing the reference bit will
9032 			 * result in clearing that reference bit.  This
9033 			 * function is designed to avoid the selection of the
9034 			 * same 4KB page for every 2MB page mapping.
9035 			 *
9036 			 * On demotion, a mapping that hasn't been referenced
9037 			 * is simply destroyed.  To avoid the possibility of a
9038 			 * subsequent page fault on a demoted wired mapping,
9039 			 * always leave its reference bit set.  Moreover,
9040 			 * since the superpage is wired, the current state of
9041 			 * its reference bit won't affect page replacement.
9042 			 */
9043 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
9044 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
9045 			    (oldpde & PG_W) == 0) {
9046 				if (safe_to_clear_referenced(pmap, oldpde)) {
9047 					atomic_clear_long(pde, PG_A);
9048 					pmap_invalidate_page(pmap, pv->pv_va);
9049 					demoted = false;
9050 				} else if (pmap_demote_pde_locked(pmap, pde,
9051 				    pv->pv_va, &lock)) {
9052 					/*
9053 					 * Remove the mapping to a single page
9054 					 * so that a subsequent access may
9055 					 * repromote.  Since the underlying
9056 					 * page table page is fully populated,
9057 					 * this removal never frees a page
9058 					 * table page.
9059 					 */
9060 					demoted = true;
9061 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
9062 					    PG_PS_FRAME);
9063 					pte = pmap_pde_to_pte(pde, va);
9064 					pmap_remove_pte(pmap, pte, va, *pde,
9065 					    NULL, &lock);
9066 					pmap_invalidate_page(pmap, va);
9067 				} else
9068 					demoted = true;
9069 
9070 				if (demoted) {
9071 					/*
9072 					 * The superpage mapping was removed
9073 					 * entirely and therefore 'pv' is no
9074 					 * longer valid.
9075 					 */
9076 					if (pvf == pv)
9077 						pvf = NULL;
9078 					pv = NULL;
9079 				}
9080 				cleared++;
9081 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9082 				    ("inconsistent pv lock %p %p for page %p",
9083 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9084 			} else
9085 				not_cleared++;
9086 		}
9087 		PMAP_UNLOCK(pmap);
9088 		/* Rotate the PV list if it has more than one entry. */
9089 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9090 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
9091 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
9092 			pvh->pv_gen++;
9093 		}
9094 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
9095 			goto out;
9096 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
9097 small_mappings:
9098 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
9099 		goto out;
9100 	pv = pvf;
9101 	do {
9102 		if (pvf == NULL)
9103 			pvf = pv;
9104 		pmap = PV_PMAP(pv);
9105 		if (!PMAP_TRYLOCK(pmap)) {
9106 			pvh_gen = pvh->pv_gen;
9107 			md_gen = m->md.pv_gen;
9108 			rw_wunlock(lock);
9109 			PMAP_LOCK(pmap);
9110 			rw_wlock(lock);
9111 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9112 				PMAP_UNLOCK(pmap);
9113 				goto retry;
9114 			}
9115 		}
9116 		PG_A = pmap_accessed_bit(pmap);
9117 		PG_M = pmap_modified_bit(pmap);
9118 		PG_RW = pmap_rw_bit(pmap);
9119 		pde = pmap_pde(pmap, pv->pv_va);
9120 		KASSERT((*pde & PG_PS) == 0,
9121 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
9122 		    m));
9123 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9124 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
9125 			vm_page_dirty(m);
9126 		if ((*pte & PG_A) != 0) {
9127 			if (safe_to_clear_referenced(pmap, *pte)) {
9128 				atomic_clear_long(pte, PG_A);
9129 				pmap_invalidate_page(pmap, pv->pv_va);
9130 				cleared++;
9131 			} else if ((*pte & PG_W) == 0) {
9132 				/*
9133 				 * Wired pages cannot be paged out so
9134 				 * doing accessed bit emulation for
9135 				 * them is wasted effort. We do the
9136 				 * hard work for unwired pages only.
9137 				 */
9138 				pmap_remove_pte(pmap, pte, pv->pv_va,
9139 				    *pde, &free, &lock);
9140 				pmap_invalidate_page(pmap, pv->pv_va);
9141 				cleared++;
9142 				if (pvf == pv)
9143 					pvf = NULL;
9144 				pv = NULL;
9145 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
9146 				    ("inconsistent pv lock %p %p for page %p",
9147 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
9148 			} else
9149 				not_cleared++;
9150 		}
9151 		PMAP_UNLOCK(pmap);
9152 		/* Rotate the PV list if it has more than one entry. */
9153 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
9154 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
9155 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
9156 			m->md.pv_gen++;
9157 		}
9158 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
9159 	    not_cleared < PMAP_TS_REFERENCED_MAX);
9160 out:
9161 	rw_wunlock(lock);
9162 	vm_page_free_pages_toq(&free, true);
9163 	return (cleared + not_cleared);
9164 }
9165 
9166 /*
9167  *	Apply the given advice to the specified range of addresses within the
9168  *	given pmap.  Depending on the advice, clear the referenced and/or
9169  *	modified flags in each mapping and set the mapped page's dirty field.
9170  */
9171 void
pmap_advise(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,int advice)9172 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
9173 {
9174 	struct rwlock *lock;
9175 	pml4_entry_t *pml4e;
9176 	pdp_entry_t *pdpe;
9177 	pd_entry_t oldpde, *pde;
9178 	pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
9179 	vm_offset_t va, va_next;
9180 	vm_page_t m;
9181 	bool anychanged;
9182 
9183 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
9184 		return;
9185 
9186 	/*
9187 	 * A/D bit emulation requires an alternate code path when clearing
9188 	 * the modified and accessed bits below. Since this function is
9189 	 * advisory in nature we skip it entirely for pmaps that require
9190 	 * A/D bit emulation.
9191 	 */
9192 	if (pmap_emulate_ad_bits(pmap))
9193 		return;
9194 
9195 	PG_A = pmap_accessed_bit(pmap);
9196 	PG_G = pmap_global_bit(pmap);
9197 	PG_M = pmap_modified_bit(pmap);
9198 	PG_V = pmap_valid_bit(pmap);
9199 	PG_RW = pmap_rw_bit(pmap);
9200 	anychanged = false;
9201 	pmap_delayed_invl_start();
9202 	PMAP_LOCK(pmap);
9203 	for (; sva < eva; sva = va_next) {
9204 		pml4e = pmap_pml4e(pmap, sva);
9205 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
9206 			va_next = (sva + NBPML4) & ~PML4MASK;
9207 			if (va_next < sva)
9208 				va_next = eva;
9209 			continue;
9210 		}
9211 
9212 		va_next = (sva + NBPDP) & ~PDPMASK;
9213 		if (va_next < sva)
9214 			va_next = eva;
9215 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
9216 		if ((*pdpe & PG_V) == 0)
9217 			continue;
9218 		if ((*pdpe & PG_PS) != 0)
9219 			continue;
9220 
9221 		va_next = (sva + NBPDR) & ~PDRMASK;
9222 		if (va_next < sva)
9223 			va_next = eva;
9224 		pde = pmap_pdpe_to_pde(pdpe, sva);
9225 		oldpde = *pde;
9226 		if ((oldpde & PG_V) == 0)
9227 			continue;
9228 		else if ((oldpde & PG_PS) != 0) {
9229 			if ((oldpde & PG_MANAGED) == 0)
9230 				continue;
9231 			lock = NULL;
9232 			if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
9233 				if (lock != NULL)
9234 					rw_wunlock(lock);
9235 
9236 				/*
9237 				 * The large page mapping was destroyed.
9238 				 */
9239 				continue;
9240 			}
9241 
9242 			/*
9243 			 * Unless the page mappings are wired, remove the
9244 			 * mapping to a single page so that a subsequent
9245 			 * access may repromote.  Choosing the last page
9246 			 * within the address range [sva, min(va_next, eva))
9247 			 * generally results in more repromotions.  Since the
9248 			 * underlying page table page is fully populated, this
9249 			 * removal never frees a page table page.
9250 			 */
9251 			if ((oldpde & PG_W) == 0) {
9252 				va = eva;
9253 				if (va > va_next)
9254 					va = va_next;
9255 				va -= PAGE_SIZE;
9256 				KASSERT(va >= sva,
9257 				    ("pmap_advise: no address gap"));
9258 				pte = pmap_pde_to_pte(pde, va);
9259 				KASSERT((*pte & PG_V) != 0,
9260 				    ("pmap_advise: invalid PTE"));
9261 				pmap_remove_pte(pmap, pte, va, *pde, NULL,
9262 				    &lock);
9263 				anychanged = true;
9264 			}
9265 			if (lock != NULL)
9266 				rw_wunlock(lock);
9267 		}
9268 		if (va_next > eva)
9269 			va_next = eva;
9270 		va = va_next;
9271 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
9272 		    sva += PAGE_SIZE) {
9273 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
9274 				goto maybe_invlrng;
9275 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9276 				if (advice == MADV_DONTNEED) {
9277 					/*
9278 					 * Future calls to pmap_is_modified()
9279 					 * can be avoided by making the page
9280 					 * dirty now.
9281 					 */
9282 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
9283 					vm_page_dirty(m);
9284 				}
9285 				atomic_clear_long(pte, PG_M | PG_A);
9286 			} else if ((*pte & PG_A) != 0)
9287 				atomic_clear_long(pte, PG_A);
9288 			else
9289 				goto maybe_invlrng;
9290 
9291 			if ((*pte & PG_G) != 0) {
9292 				if (va == va_next)
9293 					va = sva;
9294 			} else
9295 				anychanged = true;
9296 			continue;
9297 maybe_invlrng:
9298 			if (va != va_next) {
9299 				pmap_invalidate_range(pmap, va, sva);
9300 				va = va_next;
9301 			}
9302 		}
9303 		if (va != va_next)
9304 			pmap_invalidate_range(pmap, va, sva);
9305 	}
9306 	if (anychanged)
9307 		pmap_invalidate_all(pmap);
9308 	PMAP_UNLOCK(pmap);
9309 	pmap_delayed_invl_finish();
9310 }
9311 
9312 /*
9313  *	Clear the modify bits on the specified physical page.
9314  */
9315 void
pmap_clear_modify(vm_page_t m)9316 pmap_clear_modify(vm_page_t m)
9317 {
9318 	struct md_page *pvh;
9319 	pmap_t pmap;
9320 	pv_entry_t next_pv, pv;
9321 	pd_entry_t oldpde, *pde;
9322 	pt_entry_t *pte, PG_M, PG_RW;
9323 	struct rwlock *lock;
9324 	vm_offset_t va;
9325 	int md_gen, pvh_gen;
9326 
9327 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
9328 	    ("pmap_clear_modify: page %p is not managed", m));
9329 	vm_page_assert_busied(m);
9330 
9331 	if (!pmap_page_is_write_mapped(m))
9332 		return;
9333 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
9334 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
9335 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
9336 	rw_wlock(lock);
9337 restart:
9338 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
9339 		pmap = PV_PMAP(pv);
9340 		if (!PMAP_TRYLOCK(pmap)) {
9341 			pvh_gen = pvh->pv_gen;
9342 			rw_wunlock(lock);
9343 			PMAP_LOCK(pmap);
9344 			rw_wlock(lock);
9345 			if (pvh_gen != pvh->pv_gen) {
9346 				PMAP_UNLOCK(pmap);
9347 				goto restart;
9348 			}
9349 		}
9350 		PG_M = pmap_modified_bit(pmap);
9351 		PG_RW = pmap_rw_bit(pmap);
9352 		va = pv->pv_va;
9353 		pde = pmap_pde(pmap, va);
9354 		oldpde = *pde;
9355 		/* If oldpde has PG_RW set, then it also has PG_M set. */
9356 		if ((oldpde & PG_RW) != 0 &&
9357 		    pmap_demote_pde_locked(pmap, pde, va, &lock) &&
9358 		    (oldpde & PG_W) == 0) {
9359 			/*
9360 			 * Write protect the mapping to a single page so that
9361 			 * a subsequent write access may repromote.
9362 			 */
9363 			va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
9364 			pte = pmap_pde_to_pte(pde, va);
9365 			atomic_clear_long(pte, PG_M | PG_RW);
9366 			vm_page_dirty(m);
9367 			pmap_invalidate_page(pmap, va);
9368 		}
9369 		PMAP_UNLOCK(pmap);
9370 	}
9371 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
9372 		pmap = PV_PMAP(pv);
9373 		if (!PMAP_TRYLOCK(pmap)) {
9374 			md_gen = m->md.pv_gen;
9375 			pvh_gen = pvh->pv_gen;
9376 			rw_wunlock(lock);
9377 			PMAP_LOCK(pmap);
9378 			rw_wlock(lock);
9379 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
9380 				PMAP_UNLOCK(pmap);
9381 				goto restart;
9382 			}
9383 		}
9384 		PG_M = pmap_modified_bit(pmap);
9385 		PG_RW = pmap_rw_bit(pmap);
9386 		pde = pmap_pde(pmap, pv->pv_va);
9387 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
9388 		    " a 2mpage in page %p's pv list", m));
9389 		pte = pmap_pde_to_pte(pde, pv->pv_va);
9390 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
9391 			atomic_clear_long(pte, PG_M);
9392 			pmap_invalidate_page(pmap, pv->pv_va);
9393 		}
9394 		PMAP_UNLOCK(pmap);
9395 	}
9396 	rw_wunlock(lock);
9397 }
9398 
9399 /*
9400  * Miscellaneous support routines follow
9401  */
9402 
9403 /* Adjust the properties for a leaf page table entry. */
9404 static __inline void
pmap_pte_props(pt_entry_t * pte,u_long bits,u_long mask)9405 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
9406 {
9407 	u_long opte, npte;
9408 
9409 	opte = *(u_long *)pte;
9410 	do {
9411 		npte = opte & ~mask;
9412 		npte |= bits;
9413 	} while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
9414 	    npte));
9415 }
9416 
9417 /*
9418  * Map a set of physical memory pages into the kernel virtual
9419  * address space. Return a pointer to where it is mapped. This
9420  * routine is intended to be used for mapping device memory,
9421  * NOT real memory.
9422  */
9423 static void *
pmap_mapdev_internal(vm_paddr_t pa,vm_size_t size,int mode,int flags)9424 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
9425 {
9426 	struct pmap_preinit_mapping *ppim;
9427 	vm_offset_t va, offset;
9428 	vm_size_t tmpsize;
9429 	int i;
9430 
9431 	offset = pa & PAGE_MASK;
9432 	size = round_page(offset + size);
9433 	pa = trunc_page(pa);
9434 
9435 	if (!pmap_initialized) {
9436 		va = 0;
9437 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9438 			ppim = pmap_preinit_mapping + i;
9439 			if (ppim->va == 0) {
9440 				ppim->pa = pa;
9441 				ppim->sz = size;
9442 				ppim->mode = mode;
9443 				ppim->va = virtual_avail;
9444 				virtual_avail += size;
9445 				va = ppim->va;
9446 				break;
9447 			}
9448 		}
9449 		if (va == 0)
9450 			panic("%s: too many preinit mappings", __func__);
9451 	} else {
9452 		/*
9453 		 * If we have a preinit mapping, reuse it.
9454 		 */
9455 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9456 			ppim = pmap_preinit_mapping + i;
9457 			if (ppim->pa == pa && ppim->sz == size &&
9458 			    (ppim->mode == mode ||
9459 			    (flags & MAPDEV_SETATTR) == 0))
9460 				return ((void *)(ppim->va + offset));
9461 		}
9462 		/*
9463 		 * If the specified range of physical addresses fits within
9464 		 * the direct map window, use the direct map.
9465 		 */
9466 		if (pa < dmaplimit && pa + size <= dmaplimit) {
9467 			va = PHYS_TO_DMAP(pa);
9468 			if ((flags & MAPDEV_SETATTR) != 0) {
9469 				PMAP_LOCK(kernel_pmap);
9470 				i = pmap_change_props_locked(va, size,
9471 				    PROT_NONE, mode, flags);
9472 				PMAP_UNLOCK(kernel_pmap);
9473 			} else
9474 				i = 0;
9475 			if (!i)
9476 				return ((void *)(va + offset));
9477 		}
9478 		va = kva_alloc(size);
9479 		if (va == 0)
9480 			panic("%s: Couldn't allocate KVA", __func__);
9481 	}
9482 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
9483 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
9484 	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
9485 	if ((flags & MAPDEV_FLUSHCACHE) != 0)
9486 		pmap_invalidate_cache_range(va, va + tmpsize);
9487 	return ((void *)(va + offset));
9488 }
9489 
9490 void *
pmap_mapdev_attr(vm_paddr_t pa,vm_size_t size,int mode)9491 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
9492 {
9493 
9494 	return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
9495 	    MAPDEV_SETATTR));
9496 }
9497 
9498 void *
pmap_mapdev(vm_paddr_t pa,vm_size_t size)9499 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
9500 {
9501 
9502 	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
9503 }
9504 
9505 void *
pmap_mapdev_pciecfg(vm_paddr_t pa,vm_size_t size)9506 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
9507 {
9508 
9509 	return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
9510 	    MAPDEV_SETATTR));
9511 }
9512 
9513 void *
pmap_mapbios(vm_paddr_t pa,vm_size_t size)9514 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
9515 {
9516 
9517 	return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
9518 	    MAPDEV_FLUSHCACHE));
9519 }
9520 
9521 void
pmap_unmapdev(void * p,vm_size_t size)9522 pmap_unmapdev(void *p, vm_size_t size)
9523 {
9524 	struct pmap_preinit_mapping *ppim;
9525 	vm_offset_t offset, va;
9526 	int i;
9527 
9528 	va = (vm_offset_t)p;
9529 
9530 	/* If we gave a direct map region in pmap_mapdev, do nothing */
9531 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
9532 		return;
9533 	offset = va & PAGE_MASK;
9534 	size = round_page(offset + size);
9535 	va = trunc_page(va);
9536 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
9537 		ppim = pmap_preinit_mapping + i;
9538 		if (ppim->va == va && ppim->sz == size) {
9539 			if (pmap_initialized)
9540 				return;
9541 			ppim->pa = 0;
9542 			ppim->va = 0;
9543 			ppim->sz = 0;
9544 			ppim->mode = 0;
9545 			if (va + size == virtual_avail)
9546 				virtual_avail = va;
9547 			return;
9548 		}
9549 	}
9550 	if (pmap_initialized) {
9551 		pmap_qremove(va, atop(size));
9552 		kva_free(va, size);
9553 	}
9554 }
9555 
9556 /*
9557  * Tries to demote a 1GB page mapping.
9558  */
9559 static bool
pmap_demote_pdpe(pmap_t pmap,pdp_entry_t * pdpe,vm_offset_t va)9560 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
9561 {
9562 	pdp_entry_t newpdpe, oldpdpe;
9563 	pd_entry_t *firstpde, newpde, *pde;
9564 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
9565 	vm_paddr_t pdpgpa;
9566 	vm_page_t pdpg;
9567 
9568 	PG_A = pmap_accessed_bit(pmap);
9569 	PG_M = pmap_modified_bit(pmap);
9570 	PG_V = pmap_valid_bit(pmap);
9571 	PG_RW = pmap_rw_bit(pmap);
9572 
9573 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
9574 	oldpdpe = *pdpe;
9575 	KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
9576 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
9577 	pdpg = pmap_alloc_pt_page(pmap, va >> PDPSHIFT,
9578 	    VM_ALLOC_WIRED | VM_ALLOC_INTERRUPT);
9579 	if (pdpg  == NULL) {
9580 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
9581 		    " in pmap %p", va, pmap);
9582 		return (false);
9583 	}
9584 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
9585 	firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
9586 	newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
9587 	KASSERT((oldpdpe & PG_A) != 0,
9588 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
9589 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
9590 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
9591 	newpde = oldpdpe;
9592 
9593 	/*
9594 	 * Initialize the page directory page.
9595 	 */
9596 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
9597 		*pde = newpde;
9598 		newpde += NBPDR;
9599 	}
9600 
9601 	/*
9602 	 * Demote the mapping.
9603 	 */
9604 	*pdpe = newpdpe;
9605 
9606 	/*
9607 	 * Invalidate a stale recursive mapping of the page directory page.
9608 	 */
9609 	pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
9610 
9611 	counter_u64_add(pmap_pdpe_demotions, 1);
9612 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
9613 	    " in pmap %p", va, pmap);
9614 	return (true);
9615 }
9616 
9617 /*
9618  * Sets the memory attribute for the specified page.
9619  */
9620 void
pmap_page_set_memattr(vm_page_t m,vm_memattr_t ma)9621 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
9622 {
9623 
9624 	m->md.pat_mode = ma;
9625 
9626 	/*
9627 	 * If "m" is a normal page, update its direct mapping.  This update
9628 	 * can be relied upon to perform any cache operations that are
9629 	 * required for data coherence.
9630 	 */
9631 	if ((m->flags & PG_FICTITIOUS) == 0 &&
9632 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
9633 	    m->md.pat_mode))
9634 		panic("memory attribute change on the direct map failed");
9635 }
9636 
9637 void
pmap_page_set_memattr_noflush(vm_page_t m,vm_memattr_t ma)9638 pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma)
9639 {
9640 	int error;
9641 
9642 	m->md.pat_mode = ma;
9643 
9644 	if ((m->flags & PG_FICTITIOUS) != 0)
9645 		return;
9646 	PMAP_LOCK(kernel_pmap);
9647 	error = pmap_change_props_locked(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
9648 	    PAGE_SIZE, PROT_NONE, m->md.pat_mode, 0);
9649 	PMAP_UNLOCK(kernel_pmap);
9650 	if (error != 0)
9651 		panic("memory attribute change on the direct map failed");
9652 }
9653 
9654 /*
9655  * Changes the specified virtual address range's memory type to that given by
9656  * the parameter "mode".  The specified virtual address range must be
9657  * completely contained within either the direct map or the kernel map.  If
9658  * the virtual address range is contained within the kernel map, then the
9659  * memory type for each of the corresponding ranges of the direct map is also
9660  * changed.  (The corresponding ranges of the direct map are those ranges that
9661  * map the same physical pages as the specified virtual address range.)  These
9662  * changes to the direct map are necessary because Intel describes the
9663  * behavior of their processors as "undefined" if two or more mappings to the
9664  * same physical page have different memory types.
9665  *
9666  * Returns zero if the change completed successfully, and either EINVAL or
9667  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
9668  * of the virtual address range was not mapped, and ENOMEM is returned if
9669  * there was insufficient memory available to complete the change.  In the
9670  * latter case, the memory type may have been changed on some part of the
9671  * virtual address range or the direct map.
9672  */
9673 int
pmap_change_attr(vm_offset_t va,vm_size_t size,int mode)9674 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
9675 {
9676 	int error;
9677 
9678 	PMAP_LOCK(kernel_pmap);
9679 	error = pmap_change_props_locked(va, size, PROT_NONE, mode,
9680 	    MAPDEV_FLUSHCACHE);
9681 	PMAP_UNLOCK(kernel_pmap);
9682 	return (error);
9683 }
9684 
9685 /*
9686  * Changes the specified virtual address range's protections to those
9687  * specified by "prot".  Like pmap_change_attr(), protections for aliases
9688  * in the direct map are updated as well.  Protections on aliasing mappings may
9689  * be a subset of the requested protections; for example, mappings in the direct
9690  * map are never executable.
9691  */
9692 int
pmap_change_prot(vm_offset_t va,vm_size_t size,vm_prot_t prot)9693 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
9694 {
9695 	int error;
9696 
9697 	/* Only supported within the kernel map. */
9698 	if (va < VM_MIN_KERNEL_ADDRESS)
9699 		return (EINVAL);
9700 
9701 	PMAP_LOCK(kernel_pmap);
9702 	error = pmap_change_props_locked(va, size, prot, -1,
9703 	    MAPDEV_ASSERTVALID);
9704 	PMAP_UNLOCK(kernel_pmap);
9705 	return (error);
9706 }
9707 
9708 static int
pmap_change_props_locked(vm_offset_t va,vm_size_t size,vm_prot_t prot,int mode,int flags)9709 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
9710     int mode, int flags)
9711 {
9712 	vm_offset_t base, offset, tmpva;
9713 	vm_paddr_t pa_start, pa_end, pa_end1;
9714 	pdp_entry_t *pdpe;
9715 	pd_entry_t *pde, pde_bits, pde_mask;
9716 	pt_entry_t *pte, pte_bits, pte_mask;
9717 	int error;
9718 	bool changed;
9719 
9720 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
9721 	base = trunc_page(va);
9722 	offset = va & PAGE_MASK;
9723 	size = round_page(offset + size);
9724 
9725 	/*
9726 	 * Only supported on kernel virtual addresses, including the direct
9727 	 * map but excluding the recursive map.
9728 	 */
9729 	if (base < DMAP_MIN_ADDRESS)
9730 		return (EINVAL);
9731 
9732 	/*
9733 	 * Construct our flag sets and masks.  "bits" is the subset of
9734 	 * "mask" that will be set in each modified PTE.
9735 	 *
9736 	 * Mappings in the direct map are never allowed to be executable.
9737 	 */
9738 	pde_bits = pte_bits = 0;
9739 	pde_mask = pte_mask = 0;
9740 	if (mode != -1) {
9741 		pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
9742 		pde_mask |= X86_PG_PDE_CACHE;
9743 		pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
9744 		pte_mask |= X86_PG_PTE_CACHE;
9745 	}
9746 	if (prot != VM_PROT_NONE) {
9747 		if ((prot & VM_PROT_WRITE) != 0) {
9748 			pde_bits |= X86_PG_RW;
9749 			pte_bits |= X86_PG_RW;
9750 		}
9751 		if ((prot & VM_PROT_EXECUTE) == 0 ||
9752 		    va < VM_MIN_KERNEL_ADDRESS) {
9753 			pde_bits |= pg_nx;
9754 			pte_bits |= pg_nx;
9755 		}
9756 		pde_mask |= X86_PG_RW | pg_nx;
9757 		pte_mask |= X86_PG_RW | pg_nx;
9758 	}
9759 
9760 	/*
9761 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
9762 	 * into 4KB pages if required.
9763 	 */
9764 	for (tmpva = base; tmpva < base + size; ) {
9765 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9766 		if (pdpe == NULL || *pdpe == 0) {
9767 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9768 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9769 			return (EINVAL);
9770 		}
9771 		if (*pdpe & PG_PS) {
9772 			/*
9773 			 * If the current 1GB page already has the required
9774 			 * properties, then we need not demote this page.  Just
9775 			 * increment tmpva to the next 1GB page frame.
9776 			 */
9777 			if ((*pdpe & pde_mask) == pde_bits) {
9778 				tmpva = trunc_1gpage(tmpva) + NBPDP;
9779 				continue;
9780 			}
9781 
9782 			/*
9783 			 * If the current offset aligns with a 1GB page frame
9784 			 * and there is at least 1GB left within the range, then
9785 			 * we need not break down this page into 2MB pages.
9786 			 */
9787 			if ((tmpva & PDPMASK) == 0 &&
9788 			    tmpva + PDPMASK < base + size) {
9789 				tmpva += NBPDP;
9790 				continue;
9791 			}
9792 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
9793 				return (ENOMEM);
9794 		}
9795 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9796 		if (*pde == 0) {
9797 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9798 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9799 			return (EINVAL);
9800 		}
9801 		if (*pde & PG_PS) {
9802 			/*
9803 			 * If the current 2MB page already has the required
9804 			 * properties, then we need not demote this page.  Just
9805 			 * increment tmpva to the next 2MB page frame.
9806 			 */
9807 			if ((*pde & pde_mask) == pde_bits) {
9808 				tmpva = trunc_2mpage(tmpva) + NBPDR;
9809 				continue;
9810 			}
9811 
9812 			/*
9813 			 * If the current offset aligns with a 2MB page frame
9814 			 * and there is at least 2MB left within the range, then
9815 			 * we need not break down this page into 4KB pages.
9816 			 */
9817 			if ((tmpva & PDRMASK) == 0 &&
9818 			    tmpva + PDRMASK < base + size) {
9819 				tmpva += NBPDR;
9820 				continue;
9821 			}
9822 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
9823 				return (ENOMEM);
9824 		}
9825 		pte = pmap_pde_to_pte(pde, tmpva);
9826 		if (*pte == 0) {
9827 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
9828 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
9829 			return (EINVAL);
9830 		}
9831 		tmpva += PAGE_SIZE;
9832 	}
9833 	error = 0;
9834 
9835 	/*
9836 	 * Ok, all the pages exist, so run through them updating their
9837 	 * properties if required.
9838 	 */
9839 	changed = false;
9840 	pa_start = pa_end = 0;
9841 	for (tmpva = base; tmpva < base + size; ) {
9842 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
9843 		if (*pdpe & PG_PS) {
9844 			if ((*pdpe & pde_mask) != pde_bits) {
9845 				pmap_pte_props(pdpe, pde_bits, pde_mask);
9846 				changed = true;
9847 			}
9848 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9849 			    (*pdpe & PG_PS_FRAME) < dmaplimit) {
9850 				if (pa_start == pa_end) {
9851 					/* Start physical address run. */
9852 					pa_start = *pdpe & PG_PS_FRAME;
9853 					pa_end = pa_start + NBPDP;
9854 				} else if (pa_end == (*pdpe & PG_PS_FRAME))
9855 					pa_end += NBPDP;
9856 				else {
9857 					/* Run ended, update direct map. */
9858 					error = pmap_change_props_locked(
9859 					    PHYS_TO_DMAP(pa_start),
9860 					    pa_end - pa_start, prot, mode,
9861 					    flags);
9862 					if (error != 0)
9863 						break;
9864 					/* Start physical address run. */
9865 					pa_start = *pdpe & PG_PS_FRAME;
9866 					pa_end = pa_start + NBPDP;
9867 				}
9868 			}
9869 			tmpva = trunc_1gpage(tmpva) + NBPDP;
9870 			continue;
9871 		}
9872 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
9873 		if (*pde & PG_PS) {
9874 			if ((*pde & pde_mask) != pde_bits) {
9875 				pmap_pte_props(pde, pde_bits, pde_mask);
9876 				changed = true;
9877 			}
9878 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9879 			    (*pde & PG_PS_FRAME) < dmaplimit) {
9880 				if (pa_start == pa_end) {
9881 					/* Start physical address run. */
9882 					pa_start = *pde & PG_PS_FRAME;
9883 					pa_end = pa_start + NBPDR;
9884 				} else if (pa_end == (*pde & PG_PS_FRAME))
9885 					pa_end += NBPDR;
9886 				else {
9887 					/* Run ended, update direct map. */
9888 					error = pmap_change_props_locked(
9889 					    PHYS_TO_DMAP(pa_start),
9890 					    pa_end - pa_start, prot, mode,
9891 					    flags);
9892 					if (error != 0)
9893 						break;
9894 					/* Start physical address run. */
9895 					pa_start = *pde & PG_PS_FRAME;
9896 					pa_end = pa_start + NBPDR;
9897 				}
9898 			}
9899 			tmpva = trunc_2mpage(tmpva) + NBPDR;
9900 		} else {
9901 			pte = pmap_pde_to_pte(pde, tmpva);
9902 			if ((*pte & pte_mask) != pte_bits) {
9903 				pmap_pte_props(pte, pte_bits, pte_mask);
9904 				changed = true;
9905 			}
9906 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
9907 			    (*pte & PG_FRAME) < dmaplimit) {
9908 				if (pa_start == pa_end) {
9909 					/* Start physical address run. */
9910 					pa_start = *pte & PG_FRAME;
9911 					pa_end = pa_start + PAGE_SIZE;
9912 				} else if (pa_end == (*pte & PG_FRAME))
9913 					pa_end += PAGE_SIZE;
9914 				else {
9915 					/* Run ended, update direct map. */
9916 					error = pmap_change_props_locked(
9917 					    PHYS_TO_DMAP(pa_start),
9918 					    pa_end - pa_start, prot, mode,
9919 					    flags);
9920 					if (error != 0)
9921 						break;
9922 					/* Start physical address run. */
9923 					pa_start = *pte & PG_FRAME;
9924 					pa_end = pa_start + PAGE_SIZE;
9925 				}
9926 			}
9927 			tmpva += PAGE_SIZE;
9928 		}
9929 	}
9930 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
9931 		pa_end1 = MIN(pa_end, dmaplimit);
9932 		if (pa_start != pa_end1)
9933 			error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
9934 			    pa_end1 - pa_start, prot, mode, flags);
9935 	}
9936 
9937 	/*
9938 	 * Flush CPU caches if required to make sure any data isn't cached that
9939 	 * shouldn't be, etc.
9940 	 */
9941 	if (changed) {
9942 		pmap_invalidate_range(kernel_pmap, base, tmpva);
9943 		if ((flags & MAPDEV_FLUSHCACHE) != 0)
9944 			pmap_invalidate_cache_range(base, tmpva);
9945 	}
9946 	return (error);
9947 }
9948 
9949 /*
9950  * Demotes any mapping within the direct map region that covers more than the
9951  * specified range of physical addresses.  This range's size must be a power
9952  * of two and its starting address must be a multiple of its size.  Since the
9953  * demotion does not change any attributes of the mapping, a TLB invalidation
9954  * is not mandatory.  The caller may, however, request a TLB invalidation.
9955  */
9956 void
pmap_demote_DMAP(vm_paddr_t base,vm_size_t len,bool invalidate)9957 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, bool invalidate)
9958 {
9959 	pdp_entry_t *pdpe;
9960 	pd_entry_t *pde;
9961 	vm_offset_t va;
9962 	bool changed;
9963 
9964 	if (len == 0)
9965 		return;
9966 	KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
9967 	KASSERT((base & (len - 1)) == 0,
9968 	    ("pmap_demote_DMAP: base is not a multiple of len"));
9969 	if (len < NBPDP && base < dmaplimit) {
9970 		va = PHYS_TO_DMAP(base);
9971 		changed = false;
9972 		PMAP_LOCK(kernel_pmap);
9973 		pdpe = pmap_pdpe(kernel_pmap, va);
9974 		if ((*pdpe & X86_PG_V) == 0)
9975 			panic("pmap_demote_DMAP: invalid PDPE");
9976 		if ((*pdpe & PG_PS) != 0) {
9977 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
9978 				panic("pmap_demote_DMAP: PDPE failed");
9979 			changed = true;
9980 		}
9981 		if (len < NBPDR) {
9982 			pde = pmap_pdpe_to_pde(pdpe, va);
9983 			if ((*pde & X86_PG_V) == 0)
9984 				panic("pmap_demote_DMAP: invalid PDE");
9985 			if ((*pde & PG_PS) != 0) {
9986 				if (!pmap_demote_pde(kernel_pmap, pde, va))
9987 					panic("pmap_demote_DMAP: PDE failed");
9988 				changed = true;
9989 			}
9990 		}
9991 		if (changed && invalidate)
9992 			pmap_invalidate_page(kernel_pmap, va);
9993 		PMAP_UNLOCK(kernel_pmap);
9994 	}
9995 }
9996 
9997 /*
9998  * Perform the pmap work for mincore(2).  If the page is not both referenced and
9999  * modified by this pmap, returns its physical address so that the caller can
10000  * find other mappings.
10001  */
10002 int
pmap_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)10003 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
10004 {
10005 	pdp_entry_t *pdpe;
10006 	pd_entry_t *pdep;
10007 	pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
10008 	vm_paddr_t pa;
10009 	int val;
10010 
10011 	PG_A = pmap_accessed_bit(pmap);
10012 	PG_M = pmap_modified_bit(pmap);
10013 	PG_V = pmap_valid_bit(pmap);
10014 	PG_RW = pmap_rw_bit(pmap);
10015 
10016 	PMAP_LOCK(pmap);
10017 	pte = 0;
10018 	pa = 0;
10019 	val = 0;
10020 	pdpe = pmap_pdpe(pmap, addr);
10021 	if (pdpe == NULL)
10022 		goto out;
10023 	if ((*pdpe & PG_V) != 0) {
10024 		if ((*pdpe & PG_PS) != 0) {
10025 			pte = *pdpe;
10026 			pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
10027 			    PG_FRAME;
10028 			val = MINCORE_PSIND(2);
10029 		} else {
10030 			pdep = pmap_pde(pmap, addr);
10031 			if (pdep != NULL && (*pdep & PG_V) != 0) {
10032 				if ((*pdep & PG_PS) != 0) {
10033 					pte = *pdep;
10034 			/* Compute the physical address of the 4KB page. */
10035 					pa = ((pte & PG_PS_FRAME) | (addr &
10036 					    PDRMASK)) & PG_FRAME;
10037 					val = MINCORE_PSIND(1);
10038 				} else {
10039 					pte = *pmap_pde_to_pte(pdep, addr);
10040 					pa = pte & PG_FRAME;
10041 					val = 0;
10042 				}
10043 			}
10044 		}
10045 	}
10046 	if ((pte & PG_V) != 0) {
10047 		val |= MINCORE_INCORE;
10048 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
10049 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
10050 		if ((pte & PG_A) != 0)
10051 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
10052 	}
10053 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
10054 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
10055 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
10056 		*pap = pa;
10057 	}
10058 out:
10059 	PMAP_UNLOCK(pmap);
10060 	return (val);
10061 }
10062 
10063 static uint64_t
pmap_pcid_alloc(pmap_t pmap,struct pmap_pcid * pcidp)10064 pmap_pcid_alloc(pmap_t pmap, struct pmap_pcid *pcidp)
10065 {
10066 	uint32_t gen, new_gen, pcid_next;
10067 
10068 	CRITICAL_ASSERT(curthread);
10069 	gen = PCPU_GET(pcid_gen);
10070 	if (pcidp->pm_pcid == PMAP_PCID_KERN)
10071 		return (pti ? 0 : CR3_PCID_SAVE);
10072 	if (pcidp->pm_gen == gen)
10073 		return (CR3_PCID_SAVE);
10074 	pcid_next = PCPU_GET(pcid_next);
10075 	KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
10076 	    (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
10077 	    ("cpu %d pcid_next %#x", PCPU_GET(cpuid), pcid_next));
10078 	if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
10079 	    (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
10080 		new_gen = gen + 1;
10081 		if (new_gen == 0)
10082 			new_gen = 1;
10083 		PCPU_SET(pcid_gen, new_gen);
10084 		pcid_next = PMAP_PCID_KERN + 1;
10085 	} else {
10086 		new_gen = gen;
10087 	}
10088 	pcidp->pm_pcid = pcid_next;
10089 	pcidp->pm_gen = new_gen;
10090 	PCPU_SET(pcid_next, pcid_next + 1);
10091 	return (0);
10092 }
10093 
10094 static uint64_t
pmap_pcid_alloc_checked(pmap_t pmap,struct pmap_pcid * pcidp)10095 pmap_pcid_alloc_checked(pmap_t pmap, struct pmap_pcid *pcidp)
10096 {
10097 	uint64_t cached;
10098 
10099 	cached = pmap_pcid_alloc(pmap, pcidp);
10100 	KASSERT(pcidp->pm_pcid < PMAP_PCID_OVERMAX,
10101 	    ("pmap %p cpu %d pcid %#x", pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10102 	KASSERT(pcidp->pm_pcid != PMAP_PCID_KERN || pmap == kernel_pmap,
10103 	    ("non-kernel pmap pmap %p cpu %d pcid %#x",
10104 	    pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
10105 	return (cached);
10106 }
10107 
10108 static void
pmap_activate_sw_pti_post(struct thread * td,pmap_t pmap)10109 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
10110 {
10111 
10112 	PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
10113 	    PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
10114 }
10115 
10116 static void
pmap_activate_sw_pcid_pti(struct thread * td,pmap_t pmap,u_int cpuid)10117 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
10118 {
10119 	pmap_t old_pmap;
10120 	struct pmap_pcid *pcidp, *old_pcidp;
10121 	uint64_t cached, cr3, kcr3, ucr3;
10122 
10123 	KASSERT((read_rflags() & PSL_I) == 0,
10124 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10125 
10126 	/* See the comment in pmap_invalidate_page_pcid(). */
10127 	if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
10128 		PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
10129 		old_pmap = PCPU_GET(curpmap);
10130 		MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
10131 		old_pcidp = zpcpu_get_cpu(old_pmap->pm_pcidp, cpuid);
10132 		old_pcidp->pm_gen = 0;
10133 	}
10134 
10135 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10136 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
10137 	cr3 = rcr3();
10138 	if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10139 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid);
10140 	PCPU_SET(curpmap, pmap);
10141 	kcr3 = pmap->pm_cr3 | pcidp->pm_pcid;
10142 	ucr3 = pmap->pm_ucr3 | pcidp->pm_pcid | PMAP_PCID_USER_PT;
10143 
10144 	if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
10145 		PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
10146 
10147 	PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
10148 	PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
10149 	if (cached)
10150 		counter_u64_add(pcid_save_cnt, 1);
10151 
10152 	pmap_activate_sw_pti_post(td, pmap);
10153 }
10154 
10155 static void
pmap_activate_sw_pcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid)10156 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
10157     u_int cpuid)
10158 {
10159 	struct pmap_pcid *pcidp;
10160 	uint64_t cached, cr3;
10161 
10162 	KASSERT((read_rflags() & PSL_I) == 0,
10163 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
10164 
10165 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
10166 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
10167 	cr3 = rcr3();
10168 	if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
10169 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid | cached);
10170 	PCPU_SET(curpmap, pmap);
10171 	if (cached)
10172 		counter_u64_add(pcid_save_cnt, 1);
10173 }
10174 
10175 static void
pmap_activate_sw_nopcid_nopti(struct thread * td __unused,pmap_t pmap,u_int cpuid __unused)10176 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
10177     u_int cpuid __unused)
10178 {
10179 
10180 	load_cr3(pmap->pm_cr3);
10181 	PCPU_SET(curpmap, pmap);
10182 }
10183 
10184 static void
pmap_activate_sw_nopcid_pti(struct thread * td,pmap_t pmap,u_int cpuid __unused)10185 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
10186     u_int cpuid __unused)
10187 {
10188 
10189 	pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
10190 	PCPU_SET(kcr3, pmap->pm_cr3);
10191 	PCPU_SET(ucr3, pmap->pm_ucr3);
10192 	pmap_activate_sw_pti_post(td, pmap);
10193 }
10194 
10195 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
10196     u_int))
10197 {
10198 
10199 	if (pmap_pcid_enabled && pti)
10200 		return (pmap_activate_sw_pcid_pti);
10201 	else if (pmap_pcid_enabled && !pti)
10202 		return (pmap_activate_sw_pcid_nopti);
10203 	else if (!pmap_pcid_enabled && pti)
10204 		return (pmap_activate_sw_nopcid_pti);
10205 	else /* if (!pmap_pcid_enabled && !pti) */
10206 		return (pmap_activate_sw_nopcid_nopti);
10207 }
10208 
10209 void
pmap_activate_sw(struct thread * td)10210 pmap_activate_sw(struct thread *td)
10211 {
10212 	pmap_t oldpmap, pmap;
10213 	u_int cpuid;
10214 
10215 	oldpmap = PCPU_GET(curpmap);
10216 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
10217 	if (oldpmap == pmap) {
10218 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
10219 			mfence();
10220 		return;
10221 	}
10222 	cpuid = PCPU_GET(cpuid);
10223 #ifdef SMP
10224 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10225 #else
10226 	CPU_SET(cpuid, &pmap->pm_active);
10227 #endif
10228 	pmap_activate_sw_mode(td, pmap, cpuid);
10229 #ifdef SMP
10230 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
10231 #else
10232 	CPU_CLR(cpuid, &oldpmap->pm_active);
10233 #endif
10234 }
10235 
10236 void
pmap_activate(struct thread * td)10237 pmap_activate(struct thread *td)
10238 {
10239 	/*
10240 	 * invltlb_{invpcid,}_pcid_handler() is used to handle an
10241 	 * invalidate_all IPI, which checks for curpmap ==
10242 	 * smp_tlb_pmap.  The below sequence of operations has a
10243 	 * window where %CR3 is loaded with the new pmap's PML4
10244 	 * address, but the curpmap value has not yet been updated.
10245 	 * This causes the invltlb IPI handler, which is called
10246 	 * between the updates, to execute as a NOP, which leaves
10247 	 * stale TLB entries.
10248 	 *
10249 	 * Note that the most common use of pmap_activate_sw(), from
10250 	 * a context switch, is immune to this race, because
10251 	 * interrupts are disabled (while the thread lock is owned),
10252 	 * so the IPI is delayed until after curpmap is updated.  Protect
10253 	 * other callers in a similar way, by disabling interrupts
10254 	 * around the %cr3 register reload and curpmap assignment.
10255 	 */
10256 	spinlock_enter();
10257 	pmap_activate_sw(td);
10258 	spinlock_exit();
10259 }
10260 
10261 void
pmap_activate_boot(pmap_t pmap)10262 pmap_activate_boot(pmap_t pmap)
10263 {
10264 	uint64_t kcr3;
10265 	u_int cpuid;
10266 
10267 	/*
10268 	 * kernel_pmap must be never deactivated, and we ensure that
10269 	 * by never activating it at all.
10270 	 */
10271 	MPASS(pmap != kernel_pmap);
10272 
10273 	cpuid = PCPU_GET(cpuid);
10274 #ifdef SMP
10275 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
10276 #else
10277 	CPU_SET(cpuid, &pmap->pm_active);
10278 #endif
10279 	PCPU_SET(curpmap, pmap);
10280 	if (pti) {
10281 		kcr3 = pmap->pm_cr3;
10282 		if (pmap_pcid_enabled)
10283 			kcr3 |= pmap_get_pcid(pmap) | CR3_PCID_SAVE;
10284 	} else {
10285 		kcr3 = PMAP_NO_CR3;
10286 	}
10287 	PCPU_SET(kcr3, kcr3);
10288 	PCPU_SET(ucr3, PMAP_NO_CR3);
10289 }
10290 
10291 void
pmap_active_cpus(pmap_t pmap,cpuset_t * res)10292 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
10293 {
10294 	*res = pmap->pm_active;
10295 }
10296 
10297 void
pmap_sync_icache(pmap_t pm,vm_offset_t va,vm_size_t sz)10298 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
10299 {
10300 }
10301 
10302 /*
10303  *	Increase the starting virtual address of the given mapping if a
10304  *	different alignment might result in more superpage mappings.
10305  */
10306 void
pmap_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)10307 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
10308     vm_offset_t *addr, vm_size_t size)
10309 {
10310 	vm_offset_t superpage_offset;
10311 
10312 	if (size < NBPDR)
10313 		return;
10314 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
10315 		offset += ptoa(object->pg_color);
10316 	superpage_offset = offset & PDRMASK;
10317 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
10318 	    (*addr & PDRMASK) == superpage_offset)
10319 		return;
10320 	if ((*addr & PDRMASK) < superpage_offset)
10321 		*addr = (*addr & ~PDRMASK) + superpage_offset;
10322 	else
10323 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
10324 }
10325 
10326 #ifdef INVARIANTS
10327 static unsigned long num_dirty_emulations;
10328 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
10329 	     &num_dirty_emulations, 0, NULL);
10330 
10331 static unsigned long num_accessed_emulations;
10332 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
10333 	     &num_accessed_emulations, 0, NULL);
10334 
10335 static unsigned long num_superpage_accessed_emulations;
10336 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
10337 	     &num_superpage_accessed_emulations, 0, NULL);
10338 
10339 static unsigned long ad_emulation_superpage_promotions;
10340 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
10341 	     &ad_emulation_superpage_promotions, 0, NULL);
10342 #endif	/* INVARIANTS */
10343 
10344 int
pmap_emulate_accessed_dirty(pmap_t pmap,vm_offset_t va,int ftype)10345 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
10346 {
10347 	int rv;
10348 	struct rwlock *lock;
10349 #if VM_NRESERVLEVEL > 0
10350 	vm_page_t m, mpte;
10351 #endif
10352 	pd_entry_t *pde;
10353 	pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
10354 
10355 	KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
10356 	    ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
10357 
10358 	if (!pmap_emulate_ad_bits(pmap))
10359 		return (-1);
10360 
10361 	PG_A = pmap_accessed_bit(pmap);
10362 	PG_M = pmap_modified_bit(pmap);
10363 	PG_V = pmap_valid_bit(pmap);
10364 	PG_RW = pmap_rw_bit(pmap);
10365 
10366 	rv = -1;
10367 	lock = NULL;
10368 	PMAP_LOCK(pmap);
10369 
10370 	pde = pmap_pde(pmap, va);
10371 	if (pde == NULL || (*pde & PG_V) == 0)
10372 		goto done;
10373 
10374 	if ((*pde & PG_PS) != 0) {
10375 		if (ftype == VM_PROT_READ) {
10376 #ifdef INVARIANTS
10377 			atomic_add_long(&num_superpage_accessed_emulations, 1);
10378 #endif
10379 			*pde |= PG_A;
10380 			rv = 0;
10381 		}
10382 		goto done;
10383 	}
10384 
10385 	pte = pmap_pde_to_pte(pde, va);
10386 	if ((*pte & PG_V) == 0)
10387 		goto done;
10388 
10389 	if (ftype == VM_PROT_WRITE) {
10390 		if ((*pte & PG_RW) == 0)
10391 			goto done;
10392 		/*
10393 		 * Set the modified and accessed bits simultaneously.
10394 		 *
10395 		 * Intel EPT PTEs that do software emulation of A/D bits map
10396 		 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
10397 		 * An EPT misconfiguration is triggered if the PTE is writable
10398 		 * but not readable (WR=10). This is avoided by setting PG_A
10399 		 * and PG_M simultaneously.
10400 		 */
10401 		*pte |= PG_M | PG_A;
10402 	} else {
10403 		*pte |= PG_A;
10404 	}
10405 
10406 #if VM_NRESERVLEVEL > 0
10407 	/* try to promote the mapping */
10408 	if (va < VM_MAXUSER_ADDRESS)
10409 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
10410 	else
10411 		mpte = NULL;
10412 
10413 	m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
10414 
10415 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
10416 	    (m->flags & PG_FICTITIOUS) == 0 &&
10417 	    vm_reserv_level_iffullpop(m) == 0 &&
10418 	    pmap_promote_pde(pmap, pde, va, mpte, &lock)) {
10419 #ifdef INVARIANTS
10420 		atomic_add_long(&ad_emulation_superpage_promotions, 1);
10421 #endif
10422 	}
10423 #endif
10424 
10425 #ifdef INVARIANTS
10426 	if (ftype == VM_PROT_WRITE)
10427 		atomic_add_long(&num_dirty_emulations, 1);
10428 	else
10429 		atomic_add_long(&num_accessed_emulations, 1);
10430 #endif
10431 	rv = 0;		/* success */
10432 done:
10433 	if (lock != NULL)
10434 		rw_wunlock(lock);
10435 	PMAP_UNLOCK(pmap);
10436 	return (rv);
10437 }
10438 
10439 void
pmap_get_mapping(pmap_t pmap,vm_offset_t va,uint64_t * ptr,int * num)10440 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
10441 {
10442 	pml4_entry_t *pml4;
10443 	pdp_entry_t *pdp;
10444 	pd_entry_t *pde;
10445 	pt_entry_t *pte, PG_V;
10446 	int idx;
10447 
10448 	idx = 0;
10449 	PG_V = pmap_valid_bit(pmap);
10450 	PMAP_LOCK(pmap);
10451 
10452 	pml4 = pmap_pml4e(pmap, va);
10453 	if (pml4 == NULL)
10454 		goto done;
10455 	ptr[idx++] = *pml4;
10456 	if ((*pml4 & PG_V) == 0)
10457 		goto done;
10458 
10459 	pdp = pmap_pml4e_to_pdpe(pml4, va);
10460 	ptr[idx++] = *pdp;
10461 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
10462 		goto done;
10463 
10464 	pde = pmap_pdpe_to_pde(pdp, va);
10465 	ptr[idx++] = *pde;
10466 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
10467 		goto done;
10468 
10469 	pte = pmap_pde_to_pte(pde, va);
10470 	ptr[idx++] = *pte;
10471 
10472 done:
10473 	PMAP_UNLOCK(pmap);
10474 	*num = idx;
10475 }
10476 
10477 /**
10478  * Get the kernel virtual address of a set of physical pages. If there are
10479  * physical addresses not covered by the DMAP perform a transient mapping
10480  * that will be removed when calling pmap_unmap_io_transient.
10481  *
10482  * \param page        The pages the caller wishes to obtain the virtual
10483  *                    address on the kernel memory map.
10484  * \param vaddr       On return contains the kernel virtual memory address
10485  *                    of the pages passed in the page parameter.
10486  * \param count       Number of pages passed in.
10487  * \param can_fault   true if the thread using the mapped pages can take
10488  *                    page faults, false otherwise.
10489  *
10490  * \returns true if the caller must call pmap_unmap_io_transient when
10491  *          finished or false otherwise.
10492  *
10493  */
10494 bool
pmap_map_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10495 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10496     bool can_fault)
10497 {
10498 	vm_paddr_t paddr;
10499 	bool needs_mapping;
10500 	pt_entry_t *pte;
10501 	int cache_bits, error __unused, i;
10502 
10503 	/*
10504 	 * Allocate any KVA space that we need, this is done in a separate
10505 	 * loop to prevent calling vmem_alloc while pinned.
10506 	 */
10507 	needs_mapping = false;
10508 	for (i = 0; i < count; i++) {
10509 		paddr = VM_PAGE_TO_PHYS(page[i]);
10510 		if (__predict_false(paddr >= dmaplimit)) {
10511 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
10512 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
10513 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
10514 			needs_mapping = true;
10515 		} else {
10516 			vaddr[i] = PHYS_TO_DMAP(paddr);
10517 		}
10518 	}
10519 
10520 	/* Exit early if everything is covered by the DMAP */
10521 	if (!needs_mapping)
10522 		return (false);
10523 
10524 	/*
10525 	 * NB:  The sequence of updating a page table followed by accesses
10526 	 * to the corresponding pages used in the !DMAP case is subject to
10527 	 * the situation described in the "AMD64 Architecture Programmer's
10528 	 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
10529 	 * Coherency Considerations".  Therefore, issuing the INVLPG right
10530 	 * after modifying the PTE bits is crucial.
10531 	 */
10532 	if (!can_fault)
10533 		sched_pin();
10534 	for (i = 0; i < count; i++) {
10535 		paddr = VM_PAGE_TO_PHYS(page[i]);
10536 		if (paddr >= dmaplimit) {
10537 			if (can_fault) {
10538 				/*
10539 				 * Slow path, since we can get page faults
10540 				 * while mappings are active don't pin the
10541 				 * thread to the CPU and instead add a global
10542 				 * mapping visible to all CPUs.
10543 				 */
10544 				pmap_qenter(vaddr[i], &page[i], 1);
10545 			} else {
10546 				pte = vtopte(vaddr[i]);
10547 				cache_bits = pmap_cache_bits(kernel_pmap,
10548 				    page[i]->md.pat_mode, false);
10549 				pte_store(pte, paddr | X86_PG_RW | X86_PG_V |
10550 				    cache_bits);
10551 				pmap_invlpg(kernel_pmap, vaddr[i]);
10552 			}
10553 		}
10554 	}
10555 
10556 	return (needs_mapping);
10557 }
10558 
10559 void
pmap_unmap_io_transient(vm_page_t page[],vm_offset_t vaddr[],int count,bool can_fault)10560 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
10561     bool can_fault)
10562 {
10563 	vm_paddr_t paddr;
10564 	int i;
10565 
10566 	if (!can_fault)
10567 		sched_unpin();
10568 	for (i = 0; i < count; i++) {
10569 		paddr = VM_PAGE_TO_PHYS(page[i]);
10570 		if (paddr >= dmaplimit) {
10571 			if (can_fault)
10572 				pmap_qremove(vaddr[i], 1);
10573 			vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
10574 		}
10575 	}
10576 }
10577 
10578 vm_offset_t
pmap_quick_enter_page(vm_page_t m)10579 pmap_quick_enter_page(vm_page_t m)
10580 {
10581 	vm_paddr_t paddr;
10582 
10583 	paddr = VM_PAGE_TO_PHYS(m);
10584 	if (paddr < dmaplimit)
10585 		return (PHYS_TO_DMAP(paddr));
10586 	mtx_lock_spin(&qframe_mtx);
10587 	KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
10588 
10589 	/*
10590 	 * Since qframe is exclusively mapped by us, and we do not set
10591 	 * PG_G, we can use INVLPG here.
10592 	 */
10593 	invlpg(qframe);
10594 
10595 	pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
10596 	    X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, false));
10597 	return (qframe);
10598 }
10599 
10600 void
pmap_quick_remove_page(vm_offset_t addr)10601 pmap_quick_remove_page(vm_offset_t addr)
10602 {
10603 
10604 	if (addr != qframe)
10605 		return;
10606 	pte_store(vtopte(qframe), 0);
10607 	mtx_unlock_spin(&qframe_mtx);
10608 }
10609 
10610 /*
10611  * Pdp pages from the large map are managed differently from either
10612  * kernel or user page table pages.  They are permanently allocated at
10613  * initialization time, and their reference count is permanently set to
10614  * zero.  The pml4 entries pointing to those pages are copied into
10615  * each allocated pmap.
10616  *
10617  * In contrast, pd and pt pages are managed like user page table
10618  * pages.  They are dynamically allocated, and their reference count
10619  * represents the number of valid entries within the page.
10620  */
10621 static vm_page_t
pmap_large_map_getptp_unlocked(void)10622 pmap_large_map_getptp_unlocked(void)
10623 {
10624 	return (pmap_alloc_pt_page(kernel_pmap, 0, VM_ALLOC_ZERO));
10625 }
10626 
10627 static vm_page_t
pmap_large_map_getptp(void)10628 pmap_large_map_getptp(void)
10629 {
10630 	vm_page_t m;
10631 
10632 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
10633 	m = pmap_large_map_getptp_unlocked();
10634 	if (m == NULL) {
10635 		PMAP_UNLOCK(kernel_pmap);
10636 		vm_wait(NULL);
10637 		PMAP_LOCK(kernel_pmap);
10638 		/* Callers retry. */
10639 	}
10640 	return (m);
10641 }
10642 
10643 static pdp_entry_t *
pmap_large_map_pdpe(vm_offset_t va)10644 pmap_large_map_pdpe(vm_offset_t va)
10645 {
10646 	vm_pindex_t pml4_idx;
10647 	vm_paddr_t mphys;
10648 
10649 	pml4_idx = pmap_pml4e_index(va);
10650 	KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
10651 	    ("pmap_large_map_pdpe: va %#jx out of range idx %#jx LMSPML4I "
10652 	    "%#jx lm_ents %d",
10653 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10654 	KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
10655 	    ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
10656 	    "LMSPML4I %#jx lm_ents %d",
10657 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
10658 	mphys = kernel_pml4[pml4_idx] & PG_FRAME;
10659 	return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
10660 }
10661 
10662 static pd_entry_t *
pmap_large_map_pde(vm_offset_t va)10663 pmap_large_map_pde(vm_offset_t va)
10664 {
10665 	pdp_entry_t *pdpe;
10666 	vm_page_t m;
10667 	vm_paddr_t mphys;
10668 
10669 retry:
10670 	pdpe = pmap_large_map_pdpe(va);
10671 	if (*pdpe == 0) {
10672 		m = pmap_large_map_getptp();
10673 		if (m == NULL)
10674 			goto retry;
10675 		mphys = VM_PAGE_TO_PHYS(m);
10676 		*pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10677 	} else {
10678 		MPASS((*pdpe & X86_PG_PS) == 0);
10679 		mphys = *pdpe & PG_FRAME;
10680 	}
10681 	return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
10682 }
10683 
10684 static pt_entry_t *
pmap_large_map_pte(vm_offset_t va)10685 pmap_large_map_pte(vm_offset_t va)
10686 {
10687 	pd_entry_t *pde;
10688 	vm_page_t m;
10689 	vm_paddr_t mphys;
10690 
10691 retry:
10692 	pde = pmap_large_map_pde(va);
10693 	if (*pde == 0) {
10694 		m = pmap_large_map_getptp();
10695 		if (m == NULL)
10696 			goto retry;
10697 		mphys = VM_PAGE_TO_PHYS(m);
10698 		*pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
10699 		PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
10700 	} else {
10701 		MPASS((*pde & X86_PG_PS) == 0);
10702 		mphys = *pde & PG_FRAME;
10703 	}
10704 	return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
10705 }
10706 
10707 static vm_paddr_t
pmap_large_map_kextract(vm_offset_t va)10708 pmap_large_map_kextract(vm_offset_t va)
10709 {
10710 	pdp_entry_t *pdpe, pdp;
10711 	pd_entry_t *pde, pd;
10712 	pt_entry_t *pte, pt;
10713 
10714 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
10715 	    ("not largemap range %#lx", (u_long)va));
10716 	pdpe = pmap_large_map_pdpe(va);
10717 	pdp = *pdpe;
10718 	KASSERT((pdp & X86_PG_V) != 0,
10719 	    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10720 	    (u_long)pdpe, pdp));
10721 	if ((pdp & X86_PG_PS) != 0) {
10722 		KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10723 		    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10724 		    (u_long)pdpe, pdp));
10725 		return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
10726 	}
10727 	pde = pmap_pdpe_to_pde(pdpe, va);
10728 	pd = *pde;
10729 	KASSERT((pd & X86_PG_V) != 0,
10730 	    ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
10731 	if ((pd & X86_PG_PS) != 0)
10732 		return ((pd & PG_PS_FRAME) | (va & PDRMASK));
10733 	pte = pmap_pde_to_pte(pde, va);
10734 	pt = *pte;
10735 	KASSERT((pt & X86_PG_V) != 0,
10736 	    ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
10737 	return ((pt & PG_FRAME) | (va & PAGE_MASK));
10738 }
10739 
10740 static int
pmap_large_map_getva(vm_size_t len,vm_offset_t align,vm_offset_t phase,vmem_addr_t * vmem_res)10741 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
10742     vmem_addr_t *vmem_res)
10743 {
10744 
10745 	/*
10746 	 * Large mappings are all but static.  Consequently, there
10747 	 * is no point in waiting for an earlier allocation to be
10748 	 * freed.
10749 	 */
10750 	return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
10751 	    VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
10752 }
10753 
10754 int
pmap_large_map(vm_paddr_t spa,vm_size_t len,void ** addr,vm_memattr_t mattr)10755 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
10756     vm_memattr_t mattr)
10757 {
10758 	pdp_entry_t *pdpe;
10759 	pd_entry_t *pde;
10760 	pt_entry_t *pte;
10761 	vm_offset_t va, inc;
10762 	vmem_addr_t vmem_res;
10763 	vm_paddr_t pa;
10764 	int error;
10765 
10766 	if (len == 0 || spa + len < spa)
10767 		return (EINVAL);
10768 
10769 	/* See if DMAP can serve. */
10770 	if (spa + len <= dmaplimit) {
10771 		va = PHYS_TO_DMAP(spa);
10772 		*addr = (void *)va;
10773 		return (pmap_change_attr(va, len, mattr));
10774 	}
10775 
10776 	/*
10777 	 * No, allocate KVA.  Fit the address with best possible
10778 	 * alignment for superpages.  Fall back to worse align if
10779 	 * failed.
10780 	 */
10781 	error = ENOMEM;
10782 	if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
10783 	    NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
10784 		error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
10785 		    &vmem_res);
10786 	if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
10787 	    NBPDR) + NBPDR)
10788 		error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
10789 		    &vmem_res);
10790 	if (error != 0)
10791 		error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
10792 	if (error != 0)
10793 		return (error);
10794 
10795 	/*
10796 	 * Fill pagetable.  PG_M is not pre-set, we scan modified bits
10797 	 * in the pagetable to minimize flushing.  No need to
10798 	 * invalidate TLB, since we only update invalid entries.
10799 	 */
10800 	PMAP_LOCK(kernel_pmap);
10801 	for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
10802 	    len -= inc) {
10803 		if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
10804 		    (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
10805 			pdpe = pmap_large_map_pdpe(va);
10806 			MPASS(*pdpe == 0);
10807 			*pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
10808 			    X86_PG_V | X86_PG_A | pg_nx |
10809 			    pmap_cache_bits(kernel_pmap, mattr, true);
10810 			inc = NBPDP;
10811 		} else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
10812 		    (va & PDRMASK) == 0) {
10813 			pde = pmap_large_map_pde(va);
10814 			MPASS(*pde == 0);
10815 			*pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
10816 			    X86_PG_V | X86_PG_A | pg_nx |
10817 			    pmap_cache_bits(kernel_pmap, mattr, true);
10818 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
10819 			    ref_count++;
10820 			inc = NBPDR;
10821 		} else {
10822 			pte = pmap_large_map_pte(va);
10823 			MPASS(*pte == 0);
10824 			*pte = pa | pg_g | X86_PG_RW | X86_PG_V |
10825 			    X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
10826 			    mattr, false);
10827 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
10828 			    ref_count++;
10829 			inc = PAGE_SIZE;
10830 		}
10831 	}
10832 	PMAP_UNLOCK(kernel_pmap);
10833 	MPASS(len == 0);
10834 
10835 	*addr = (void *)vmem_res;
10836 	return (0);
10837 }
10838 
10839 void
pmap_large_unmap(void * svaa,vm_size_t len)10840 pmap_large_unmap(void *svaa, vm_size_t len)
10841 {
10842 	vm_offset_t sva, va;
10843 	vm_size_t inc;
10844 	pdp_entry_t *pdpe, pdp;
10845 	pd_entry_t *pde, pd;
10846 	pt_entry_t *pte;
10847 	vm_page_t m;
10848 	struct spglist spgf;
10849 
10850 	sva = (vm_offset_t)svaa;
10851 	if (len == 0 || sva + len < sva || (sva >= DMAP_MIN_ADDRESS &&
10852 	    sva + len <= DMAP_MIN_ADDRESS + dmaplimit))
10853 		return;
10854 
10855 	SLIST_INIT(&spgf);
10856 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
10857 	    PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
10858 	    ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
10859 	PMAP_LOCK(kernel_pmap);
10860 	for (va = sva; va < sva + len; va += inc) {
10861 		pdpe = pmap_large_map_pdpe(va);
10862 		pdp = *pdpe;
10863 		KASSERT((pdp & X86_PG_V) != 0,
10864 		    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
10865 		    (u_long)pdpe, pdp));
10866 		if ((pdp & X86_PG_PS) != 0) {
10867 			KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
10868 			    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
10869 			    (u_long)pdpe, pdp));
10870 			KASSERT((va & PDPMASK) == 0,
10871 			    ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
10872 			    (u_long)pdpe, pdp));
10873 			KASSERT(va + NBPDP <= sva + len,
10874 			    ("unmap covers partial 1GB page, sva %#lx va %#lx "
10875 			    "pdpe %#lx pdp %#lx len %#lx", sva, va,
10876 			    (u_long)pdpe, pdp, len));
10877 			*pdpe = 0;
10878 			inc = NBPDP;
10879 			continue;
10880 		}
10881 		pde = pmap_pdpe_to_pde(pdpe, va);
10882 		pd = *pde;
10883 		KASSERT((pd & X86_PG_V) != 0,
10884 		    ("invalid pd va %#lx pde %#lx pd %#lx", va,
10885 		    (u_long)pde, pd));
10886 		if ((pd & X86_PG_PS) != 0) {
10887 			KASSERT((va & PDRMASK) == 0,
10888 			    ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
10889 			    (u_long)pde, pd));
10890 			KASSERT(va + NBPDR <= sva + len,
10891 			    ("unmap covers partial 2MB page, sva %#lx va %#lx "
10892 			    "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
10893 			    pd, len));
10894 			pde_store(pde, 0);
10895 			inc = NBPDR;
10896 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10897 			m->ref_count--;
10898 			if (m->ref_count == 0) {
10899 				*pdpe = 0;
10900 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10901 			}
10902 			continue;
10903 		}
10904 		pte = pmap_pde_to_pte(pde, va);
10905 		KASSERT((*pte & X86_PG_V) != 0,
10906 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
10907 		    (u_long)pte, *pte));
10908 		pte_clear(pte);
10909 		inc = PAGE_SIZE;
10910 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
10911 		m->ref_count--;
10912 		if (m->ref_count == 0) {
10913 			*pde = 0;
10914 			SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10915 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
10916 			m->ref_count--;
10917 			if (m->ref_count == 0) {
10918 				*pdpe = 0;
10919 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
10920 			}
10921 		}
10922 	}
10923 	pmap_invalidate_range(kernel_pmap, sva, sva + len);
10924 	PMAP_UNLOCK(kernel_pmap);
10925 	vm_page_free_pages_toq(&spgf, false);
10926 	vmem_free(large_vmem, sva, len);
10927 }
10928 
10929 static void
pmap_large_map_wb_fence_mfence(void)10930 pmap_large_map_wb_fence_mfence(void)
10931 {
10932 
10933 	mfence();
10934 }
10935 
10936 static void
pmap_large_map_wb_fence_atomic(void)10937 pmap_large_map_wb_fence_atomic(void)
10938 {
10939 
10940 	atomic_thread_fence_seq_cst();
10941 }
10942 
10943 static void
pmap_large_map_wb_fence_nop(void)10944 pmap_large_map_wb_fence_nop(void)
10945 {
10946 }
10947 
10948 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
10949 {
10950 
10951 	if (cpu_vendor_id != CPU_VENDOR_INTEL)
10952 		return (pmap_large_map_wb_fence_mfence);
10953 	else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
10954 	    CPUID_STDEXT_CLFLUSHOPT)) == 0)
10955 		return (pmap_large_map_wb_fence_atomic);
10956 	else
10957 		/* clflush is strongly enough ordered */
10958 		return (pmap_large_map_wb_fence_nop);
10959 }
10960 
10961 static void
pmap_large_map_flush_range_clwb(vm_offset_t va,vm_size_t len)10962 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
10963 {
10964 
10965 	for (; len > 0; len -= cpu_clflush_line_size,
10966 	    va += cpu_clflush_line_size)
10967 		clwb(va);
10968 }
10969 
10970 static void
pmap_large_map_flush_range_clflushopt(vm_offset_t va,vm_size_t len)10971 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
10972 {
10973 
10974 	for (; len > 0; len -= cpu_clflush_line_size,
10975 	    va += cpu_clflush_line_size)
10976 		clflushopt(va);
10977 }
10978 
10979 static void
pmap_large_map_flush_range_clflush(vm_offset_t va,vm_size_t len)10980 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
10981 {
10982 
10983 	for (; len > 0; len -= cpu_clflush_line_size,
10984 	    va += cpu_clflush_line_size)
10985 		clflush(va);
10986 }
10987 
10988 static void
pmap_large_map_flush_range_nop(vm_offset_t sva __unused,vm_size_t len __unused)10989 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
10990 {
10991 }
10992 
10993 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
10994 {
10995 
10996 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
10997 		return (pmap_large_map_flush_range_clwb);
10998 	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
10999 		return (pmap_large_map_flush_range_clflushopt);
11000 	else if ((cpu_feature & CPUID_CLFSH) != 0)
11001 		return (pmap_large_map_flush_range_clflush);
11002 	else
11003 		return (pmap_large_map_flush_range_nop);
11004 }
11005 
11006 static void
pmap_large_map_wb_large(vm_offset_t sva,vm_offset_t eva)11007 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
11008 {
11009 	volatile u_long *pe;
11010 	u_long p;
11011 	vm_offset_t va;
11012 	vm_size_t inc;
11013 	bool seen_other;
11014 
11015 	for (va = sva; va < eva; va += inc) {
11016 		inc = 0;
11017 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
11018 			pe = (volatile u_long *)pmap_large_map_pdpe(va);
11019 			p = *pe;
11020 			if ((p & X86_PG_PS) != 0)
11021 				inc = NBPDP;
11022 		}
11023 		if (inc == 0) {
11024 			pe = (volatile u_long *)pmap_large_map_pde(va);
11025 			p = *pe;
11026 			if ((p & X86_PG_PS) != 0)
11027 				inc = NBPDR;
11028 		}
11029 		if (inc == 0) {
11030 			pe = (volatile u_long *)pmap_large_map_pte(va);
11031 			p = *pe;
11032 			inc = PAGE_SIZE;
11033 		}
11034 		seen_other = false;
11035 		for (;;) {
11036 			if ((p & X86_PG_AVAIL1) != 0) {
11037 				/*
11038 				 * Spin-wait for the end of a parallel
11039 				 * write-back.
11040 				 */
11041 				cpu_spinwait();
11042 				p = *pe;
11043 
11044 				/*
11045 				 * If we saw other write-back
11046 				 * occurring, we cannot rely on PG_M to
11047 				 * indicate state of the cache.  The
11048 				 * PG_M bit is cleared before the
11049 				 * flush to avoid ignoring new writes,
11050 				 * and writes which are relevant for
11051 				 * us might happen after.
11052 				 */
11053 				seen_other = true;
11054 				continue;
11055 			}
11056 
11057 			if ((p & X86_PG_M) != 0 || seen_other) {
11058 				if (!atomic_fcmpset_long(pe, &p,
11059 				    (p & ~X86_PG_M) | X86_PG_AVAIL1))
11060 					/*
11061 					 * If we saw PG_M without
11062 					 * PG_AVAIL1, and then on the
11063 					 * next attempt we do not
11064 					 * observe either PG_M or
11065 					 * PG_AVAIL1, the other
11066 					 * write-back started after us
11067 					 * and finished before us.  We
11068 					 * can rely on it doing our
11069 					 * work.
11070 					 */
11071 					continue;
11072 				pmap_large_map_flush_range(va, inc);
11073 				atomic_clear_long(pe, X86_PG_AVAIL1);
11074 			}
11075 			break;
11076 		}
11077 		maybe_yield();
11078 	}
11079 }
11080 
11081 /*
11082  * Write-back cache lines for the given address range.
11083  *
11084  * Must be called only on the range or sub-range returned from
11085  * pmap_large_map().  Must not be called on the coalesced ranges.
11086  *
11087  * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
11088  * instructions support.
11089  */
11090 void
pmap_large_map_wb(void * svap,vm_size_t len)11091 pmap_large_map_wb(void *svap, vm_size_t len)
11092 {
11093 	vm_offset_t eva, sva;
11094 
11095 	sva = (vm_offset_t)svap;
11096 	eva = sva + len;
11097 	pmap_large_map_wb_fence();
11098 	if (sva >= DMAP_MIN_ADDRESS && eva <= DMAP_MIN_ADDRESS + dmaplimit) {
11099 		pmap_large_map_flush_range(sva, len);
11100 	} else {
11101 		KASSERT(sva >= LARGEMAP_MIN_ADDRESS &&
11102 		    eva <= LARGEMAP_MIN_ADDRESS + lm_ents * NBPML4,
11103 		    ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
11104 		pmap_large_map_wb_large(sva, eva);
11105 	}
11106 	pmap_large_map_wb_fence();
11107 }
11108 
11109 static vm_page_t
pmap_pti_alloc_page(void)11110 pmap_pti_alloc_page(void)
11111 {
11112 	vm_page_t m;
11113 
11114 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11115 	m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_WIRED | VM_ALLOC_ZERO);
11116 	return (m);
11117 }
11118 
11119 static bool
pmap_pti_free_page(vm_page_t m)11120 pmap_pti_free_page(vm_page_t m)
11121 {
11122 	if (!vm_page_unwire_noq(m))
11123 		return (false);
11124 	vm_page_xbusy_claim(m);
11125 	vm_page_free_zero(m);
11126 	return (true);
11127 }
11128 
11129 static void
pmap_pti_init(void)11130 pmap_pti_init(void)
11131 {
11132 	vm_page_t pml4_pg;
11133 	pdp_entry_t *pdpe;
11134 	vm_offset_t va;
11135 	int i;
11136 
11137 	if (!pti)
11138 		return;
11139 	pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
11140 	VM_OBJECT_WLOCK(pti_obj);
11141 	pml4_pg = pmap_pti_alloc_page();
11142 	pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
11143 	for (va = VM_MIN_KERNEL_ADDRESS; va <= VM_MAX_KERNEL_ADDRESS &&
11144 	    va >= VM_MIN_KERNEL_ADDRESS && va > NBPML4; va += NBPML4) {
11145 		pdpe = pmap_pti_pdpe(va);
11146 		pmap_pti_wire_pte(pdpe);
11147 	}
11148 	pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
11149 	    (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
11150 	pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
11151 	    sizeof(struct gate_descriptor) * NIDT, false);
11152 	CPU_FOREACH(i) {
11153 		/* Doublefault stack IST 1 */
11154 		va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
11155 		pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
11156 		/* NMI stack IST 2 */
11157 		va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
11158 		pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
11159 		/* MC# stack IST 3 */
11160 		va = __pcpu[i].pc_common_tss.tss_ist3 +
11161 		    sizeof(struct nmi_pcpu);
11162 		pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
11163 		/* DB# stack IST 4 */
11164 		va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
11165 		pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
11166 	}
11167 	pmap_pti_add_kva_locked((vm_offset_t)KERNSTART, (vm_offset_t)etext,
11168 	    true);
11169 	pti_finalized = true;
11170 	VM_OBJECT_WUNLOCK(pti_obj);
11171 }
11172 
11173 static void
pmap_cpu_init(void * arg __unused)11174 pmap_cpu_init(void *arg __unused)
11175 {
11176 	CPU_COPY(&all_cpus, &kernel_pmap->pm_active);
11177 	pmap_pti_init();
11178 }
11179 SYSINIT(pmap_cpu, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_cpu_init, NULL);
11180 
11181 static pdp_entry_t *
pmap_pti_pdpe(vm_offset_t va)11182 pmap_pti_pdpe(vm_offset_t va)
11183 {
11184 	pml4_entry_t *pml4e;
11185 	pdp_entry_t *pdpe;
11186 	vm_page_t m;
11187 	vm_pindex_t pml4_idx;
11188 	vm_paddr_t mphys;
11189 
11190 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11191 
11192 	pml4_idx = pmap_pml4e_index(va);
11193 	pml4e = &pti_pml4[pml4_idx];
11194 	m = NULL;
11195 	if (*pml4e == 0) {
11196 		if (pti_finalized)
11197 			panic("pml4 alloc after finalization\n");
11198 		m = pmap_pti_alloc_page();
11199 		if (*pml4e != 0) {
11200 			pmap_pti_free_page(m);
11201 			mphys = *pml4e & ~PAGE_MASK;
11202 		} else {
11203 			mphys = VM_PAGE_TO_PHYS(m);
11204 			*pml4e = mphys | X86_PG_RW | X86_PG_V;
11205 		}
11206 	} else {
11207 		mphys = *pml4e & ~PAGE_MASK;
11208 	}
11209 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
11210 	return (pdpe);
11211 }
11212 
11213 static void
pmap_pti_wire_pte(void * pte)11214 pmap_pti_wire_pte(void *pte)
11215 {
11216 	vm_page_t m;
11217 
11218 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11219 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11220 	m->ref_count++;
11221 }
11222 
11223 static void
pmap_pti_unwire_pde(void * pde,bool only_ref)11224 pmap_pti_unwire_pde(void *pde, bool only_ref)
11225 {
11226 	vm_page_t m;
11227 
11228 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11229 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
11230 	MPASS(only_ref || m->ref_count > 1);
11231 	pmap_pti_free_page(m);
11232 }
11233 
11234 static void
pmap_pti_unwire_pte(void * pte,vm_offset_t va)11235 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
11236 {
11237 	vm_page_t m;
11238 	pd_entry_t *pde;
11239 
11240 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11241 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
11242 	if (pmap_pti_free_page(m)) {
11243 		pde = pmap_pti_pde(va);
11244 		MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
11245 		*pde = 0;
11246 		pmap_pti_unwire_pde(pde, false);
11247 	}
11248 }
11249 
11250 static pd_entry_t *
pmap_pti_pde(vm_offset_t va)11251 pmap_pti_pde(vm_offset_t va)
11252 {
11253 	pdp_entry_t *pdpe;
11254 	pd_entry_t *pde;
11255 	vm_page_t m;
11256 	vm_pindex_t pd_idx;
11257 	vm_paddr_t mphys;
11258 
11259 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11260 
11261 	pdpe = pmap_pti_pdpe(va);
11262 	if (*pdpe == 0) {
11263 		m = pmap_pti_alloc_page();
11264 		if (*pdpe != 0) {
11265 			pmap_pti_free_page(m);
11266 			MPASS((*pdpe & X86_PG_PS) == 0);
11267 			mphys = *pdpe & ~PAGE_MASK;
11268 		} else {
11269 			mphys =  VM_PAGE_TO_PHYS(m);
11270 			*pdpe = mphys | X86_PG_RW | X86_PG_V;
11271 		}
11272 	} else {
11273 		MPASS((*pdpe & X86_PG_PS) == 0);
11274 		mphys = *pdpe & ~PAGE_MASK;
11275 	}
11276 
11277 	pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
11278 	pd_idx = pmap_pde_index(va);
11279 	pde += pd_idx;
11280 	return (pde);
11281 }
11282 
11283 static pt_entry_t *
pmap_pti_pte(vm_offset_t va,bool * unwire_pde)11284 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
11285 {
11286 	pd_entry_t *pde;
11287 	pt_entry_t *pte;
11288 	vm_page_t m;
11289 	vm_paddr_t mphys;
11290 
11291 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11292 
11293 	pde = pmap_pti_pde(va);
11294 	if (unwire_pde != NULL) {
11295 		*unwire_pde = true;
11296 		pmap_pti_wire_pte(pde);
11297 	}
11298 	if (*pde == 0) {
11299 		m = pmap_pti_alloc_page();
11300 		if (*pde != 0) {
11301 			pmap_pti_free_page(m);
11302 			MPASS((*pde & X86_PG_PS) == 0);
11303 			mphys = *pde & ~(PAGE_MASK | pg_nx);
11304 		} else {
11305 			mphys = VM_PAGE_TO_PHYS(m);
11306 			*pde = mphys | X86_PG_RW | X86_PG_V;
11307 			if (unwire_pde != NULL)
11308 				*unwire_pde = false;
11309 		}
11310 	} else {
11311 		MPASS((*pde & X86_PG_PS) == 0);
11312 		mphys = *pde & ~(PAGE_MASK | pg_nx);
11313 	}
11314 
11315 	pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
11316 	pte += pmap_pte_index(va);
11317 
11318 	return (pte);
11319 }
11320 
11321 static void
pmap_pti_add_kva_locked(vm_offset_t sva,vm_offset_t eva,bool exec)11322 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
11323 {
11324 	vm_paddr_t pa;
11325 	pd_entry_t *pde;
11326 	pt_entry_t *pte, ptev;
11327 	bool unwire_pde;
11328 
11329 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
11330 
11331 	sva = trunc_page(sva);
11332 	MPASS(sva > VM_MAXUSER_ADDRESS);
11333 	eva = round_page(eva);
11334 	MPASS(sva < eva);
11335 	for (; sva < eva; sva += PAGE_SIZE) {
11336 		pte = pmap_pti_pte(sva, &unwire_pde);
11337 		pa = pmap_kextract(sva);
11338 		ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
11339 		    (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
11340 		    VM_MEMATTR_DEFAULT, false);
11341 		if (*pte == 0) {
11342 			pte_store(pte, ptev);
11343 			pmap_pti_wire_pte(pte);
11344 		} else {
11345 			KASSERT(!pti_finalized,
11346 			    ("pti overlap after fin %#lx %#lx %#lx",
11347 			    sva, *pte, ptev));
11348 			KASSERT(*pte == ptev,
11349 			    ("pti non-identical pte after fin %#lx %#lx %#lx",
11350 			    sva, *pte, ptev));
11351 		}
11352 		if (unwire_pde) {
11353 			pde = pmap_pti_pde(sva);
11354 			pmap_pti_unwire_pde(pde, true);
11355 		}
11356 	}
11357 }
11358 
11359 void
pmap_pti_add_kva(vm_offset_t sva,vm_offset_t eva,bool exec)11360 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
11361 {
11362 
11363 	if (!pti)
11364 		return;
11365 	VM_OBJECT_WLOCK(pti_obj);
11366 	pmap_pti_add_kva_locked(sva, eva, exec);
11367 	VM_OBJECT_WUNLOCK(pti_obj);
11368 }
11369 
11370 void
pmap_pti_remove_kva(vm_offset_t sva,vm_offset_t eva)11371 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
11372 {
11373 	pt_entry_t *pte;
11374 	vm_offset_t va;
11375 
11376 	if (!pti)
11377 		return;
11378 	sva = rounddown2(sva, PAGE_SIZE);
11379 	MPASS(sva > VM_MAXUSER_ADDRESS);
11380 	eva = roundup2(eva, PAGE_SIZE);
11381 	MPASS(sva < eva);
11382 	VM_OBJECT_WLOCK(pti_obj);
11383 	for (va = sva; va < eva; va += PAGE_SIZE) {
11384 		pte = pmap_pti_pte(va, NULL);
11385 		KASSERT((*pte & X86_PG_V) != 0,
11386 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
11387 		    (u_long)pte, *pte));
11388 		pte_clear(pte);
11389 		pmap_pti_unwire_pte(pte, va);
11390 	}
11391 	pmap_invalidate_range(kernel_pmap, sva, eva);
11392 	VM_OBJECT_WUNLOCK(pti_obj);
11393 }
11394 
11395 static void *
pkru_dup_range(void * ctx __unused,void * data)11396 pkru_dup_range(void *ctx __unused, void *data)
11397 {
11398 	struct pmap_pkru_range *node, *new_node;
11399 
11400 	new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11401 	if (new_node == NULL)
11402 		return (NULL);
11403 	node = data;
11404 	memcpy(new_node, node, sizeof(*node));
11405 	return (new_node);
11406 }
11407 
11408 static void
pkru_free_range(void * ctx __unused,void * node)11409 pkru_free_range(void *ctx __unused, void *node)
11410 {
11411 
11412 	uma_zfree(pmap_pkru_ranges_zone, node);
11413 }
11414 
11415 static int
pmap_pkru_assign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11416 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11417     int flags)
11418 {
11419 	struct pmap_pkru_range *ppr;
11420 	int error;
11421 
11422 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11423 	MPASS(pmap->pm_type == PT_X86);
11424 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11425 	if ((flags & AMD64_PKRU_EXCL) != 0 &&
11426 	    !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
11427 		return (EBUSY);
11428 	ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
11429 	if (ppr == NULL)
11430 		return (ENOMEM);
11431 	ppr->pkru_keyidx = keyidx;
11432 	ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
11433 	error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
11434 	if (error != 0)
11435 		uma_zfree(pmap_pkru_ranges_zone, ppr);
11436 	return (error);
11437 }
11438 
11439 static int
pmap_pkru_deassign(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11440 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11441 {
11442 
11443 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11444 	MPASS(pmap->pm_type == PT_X86);
11445 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11446 	return (rangeset_remove(&pmap->pm_pkru, sva, eva));
11447 }
11448 
11449 static void
pmap_pkru_deassign_all(pmap_t pmap)11450 pmap_pkru_deassign_all(pmap_t pmap)
11451 {
11452 
11453 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11454 	if (pmap->pm_type == PT_X86 &&
11455 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
11456 		rangeset_remove_all(&pmap->pm_pkru);
11457 }
11458 
11459 /*
11460  * Returns true if the PKU setting is the same across the specified address
11461  * range, and false otherwise.  When returning true, updates the referenced PTE
11462  * to reflect the PKU setting.
11463  */
11464 static bool
pmap_pkru_same(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,pt_entry_t * pte)11465 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, pt_entry_t *pte)
11466 {
11467 	struct pmap_pkru_range *next_ppr, *ppr;
11468 	vm_offset_t va;
11469 	u_int keyidx;
11470 
11471 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11472 	KASSERT(pmap->pm_type != PT_X86 || (*pte & X86_PG_PKU_MASK) == 0,
11473 	    ("pte %p has unexpected PKU %ld", pte, *pte & X86_PG_PKU_MASK));
11474 	if (pmap->pm_type != PT_X86 ||
11475 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11476 	    sva >= VM_MAXUSER_ADDRESS)
11477 		return (true);
11478 	MPASS(eva <= VM_MAXUSER_ADDRESS);
11479 	ppr = rangeset_lookup(&pmap->pm_pkru, sva);
11480 	if (ppr == NULL) {
11481 		ppr = rangeset_next(&pmap->pm_pkru, sva);
11482 		return (ppr == NULL ||
11483 		    ppr->pkru_rs_el.re_start >= eva);
11484 	}
11485 	keyidx = ppr->pkru_keyidx;
11486 	while ((va = ppr->pkru_rs_el.re_end) < eva) {
11487 		next_ppr = rangeset_next(&pmap->pm_pkru, va);
11488 		if (next_ppr == NULL ||
11489 		    va != next_ppr->pkru_rs_el.re_start ||
11490 		    keyidx != next_ppr->pkru_keyidx)
11491 			return (false);
11492 		ppr = next_ppr;
11493 	}
11494 	*pte |= X86_PG_PKU(keyidx);
11495 	return (true);
11496 }
11497 
11498 static pt_entry_t
pmap_pkru_get(pmap_t pmap,vm_offset_t va)11499 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
11500 {
11501 	struct pmap_pkru_range *ppr;
11502 
11503 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11504 	if (pmap->pm_type != PT_X86 ||
11505 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
11506 	    va >= VM_MAXUSER_ADDRESS)
11507 		return (0);
11508 	ppr = rangeset_lookup(&pmap->pm_pkru, va);
11509 	if (ppr != NULL)
11510 		return (X86_PG_PKU(ppr->pkru_keyidx));
11511 	return (0);
11512 }
11513 
11514 static bool
pred_pkru_on_remove(void * ctx __unused,void * r)11515 pred_pkru_on_remove(void *ctx __unused, void *r)
11516 {
11517 	struct pmap_pkru_range *ppr;
11518 
11519 	ppr = r;
11520 	return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
11521 }
11522 
11523 static void
pmap_pkru_on_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11524 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11525 {
11526 
11527 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11528 	if (pmap->pm_type == PT_X86 &&
11529 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
11530 		rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
11531 		    pred_pkru_on_remove);
11532 	}
11533 }
11534 
11535 static int
pmap_pkru_copy(pmap_t dst_pmap,pmap_t src_pmap)11536 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
11537 {
11538 
11539 	PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
11540 	PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
11541 	MPASS(dst_pmap->pm_type == PT_X86);
11542 	MPASS(src_pmap->pm_type == PT_X86);
11543 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
11544 	if (src_pmap->pm_pkru.rs_data_ctx == NULL)
11545 		return (0);
11546 	return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
11547 }
11548 
11549 static void
pmap_pkru_update_range(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx)11550 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11551     u_int keyidx)
11552 {
11553 	pml4_entry_t *pml4e;
11554 	pdp_entry_t *pdpe;
11555 	pd_entry_t newpde, ptpaddr, *pde;
11556 	pt_entry_t newpte, *ptep, pte;
11557 	vm_offset_t va, va_next;
11558 	bool changed;
11559 
11560 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
11561 	MPASS(pmap->pm_type == PT_X86);
11562 	MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
11563 
11564 	for (changed = false, va = sva; va < eva; va = va_next) {
11565 		pml4e = pmap_pml4e(pmap, va);
11566 		if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
11567 			va_next = (va + NBPML4) & ~PML4MASK;
11568 			if (va_next < va)
11569 				va_next = eva;
11570 			continue;
11571 		}
11572 
11573 		pdpe = pmap_pml4e_to_pdpe(pml4e, va);
11574 		if ((*pdpe & X86_PG_V) == 0) {
11575 			va_next = (va + NBPDP) & ~PDPMASK;
11576 			if (va_next < va)
11577 				va_next = eva;
11578 			continue;
11579 		}
11580 
11581 		va_next = (va + NBPDR) & ~PDRMASK;
11582 		if (va_next < va)
11583 			va_next = eva;
11584 
11585 		pde = pmap_pdpe_to_pde(pdpe, va);
11586 		ptpaddr = *pde;
11587 		if (ptpaddr == 0)
11588 			continue;
11589 
11590 		MPASS((ptpaddr & X86_PG_V) != 0);
11591 		if ((ptpaddr & PG_PS) != 0) {
11592 			if (va + NBPDR == va_next && eva >= va_next) {
11593 				newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
11594 				    X86_PG_PKU(keyidx);
11595 				if (newpde != ptpaddr) {
11596 					*pde = newpde;
11597 					changed = true;
11598 				}
11599 				continue;
11600 			} else if (!pmap_demote_pde(pmap, pde, va)) {
11601 				continue;
11602 			}
11603 		}
11604 
11605 		if (va_next > eva)
11606 			va_next = eva;
11607 
11608 		for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
11609 		    ptep++, va += PAGE_SIZE) {
11610 			pte = *ptep;
11611 			if ((pte & X86_PG_V) == 0)
11612 				continue;
11613 			newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
11614 			if (newpte != pte) {
11615 				*ptep = newpte;
11616 				changed = true;
11617 			}
11618 		}
11619 	}
11620 	if (changed)
11621 		pmap_invalidate_range(pmap, sva, eva);
11622 }
11623 
11624 static int
pmap_pkru_check_uargs(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11625 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
11626     u_int keyidx, int flags)
11627 {
11628 
11629 	if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
11630 	    (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
11631 		return (EINVAL);
11632 	if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
11633 		return (EFAULT);
11634 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
11635 		return (ENOTSUP);
11636 	return (0);
11637 }
11638 
11639 int
pmap_pkru_set(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,u_int keyidx,int flags)11640 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
11641     int flags)
11642 {
11643 	int error;
11644 
11645 	sva = trunc_page(sva);
11646 	eva = round_page(eva);
11647 	error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
11648 	if (error != 0)
11649 		return (error);
11650 	for (;;) {
11651 		PMAP_LOCK(pmap);
11652 		error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
11653 		if (error == 0)
11654 			pmap_pkru_update_range(pmap, sva, eva, keyidx);
11655 		PMAP_UNLOCK(pmap);
11656 		if (error != ENOMEM)
11657 			break;
11658 		vm_wait(NULL);
11659 	}
11660 	return (error);
11661 }
11662 
11663 int
pmap_pkru_clear(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)11664 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
11665 {
11666 	int error;
11667 
11668 	sva = trunc_page(sva);
11669 	eva = round_page(eva);
11670 	error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
11671 	if (error != 0)
11672 		return (error);
11673 	for (;;) {
11674 		PMAP_LOCK(pmap);
11675 		error = pmap_pkru_deassign(pmap, sva, eva);
11676 		if (error == 0)
11677 			pmap_pkru_update_range(pmap, sva, eva, 0);
11678 		PMAP_UNLOCK(pmap);
11679 		if (error != ENOMEM)
11680 			break;
11681 		vm_wait(NULL);
11682 	}
11683 	return (error);
11684 }
11685 
11686 #if defined(KASAN) || defined(KMSAN)
11687 
11688 /*
11689  * Reserve enough memory to:
11690  * 1) allocate PDP pages for the shadow map(s),
11691  * 2) shadow the boot stack of KSTACK_PAGES pages,
11692  * 3) assuming that the kernel stack does not cross a 1GB boundary,
11693  * so we need one or two PD pages, one or two PT pages, and KSTACK_PAGES shadow
11694  * pages per shadow map.
11695  */
11696 #ifdef KASAN
11697 #define	SAN_EARLY_PAGES	\
11698 	(NKASANPML4E + 2 + 2 + howmany(KSTACK_PAGES, KASAN_SHADOW_SCALE))
11699 #else
11700 #define	SAN_EARLY_PAGES	\
11701 	(NKMSANSHADPML4E + NKMSANORIGPML4E + 2 * (2 + 2 + KSTACK_PAGES))
11702 #endif
11703 
11704 static uint64_t __nosanitizeaddress __nosanitizememory
pmap_san_enter_early_alloc_4k(uint64_t pabase)11705 pmap_san_enter_early_alloc_4k(uint64_t pabase)
11706 {
11707 	static uint8_t data[PAGE_SIZE * SAN_EARLY_PAGES] __aligned(PAGE_SIZE);
11708 	static size_t offset = 0;
11709 	uint64_t pa;
11710 
11711 	if (offset == sizeof(data)) {
11712 		panic("%s: ran out of memory for the bootstrap shadow map",
11713 		    __func__);
11714 	}
11715 
11716 	pa = pabase + ((vm_offset_t)&data[offset] - KERNSTART);
11717 	offset += PAGE_SIZE;
11718 	return (pa);
11719 }
11720 
11721 /*
11722  * Map a shadow page, before the kernel has bootstrapped its page tables.  This
11723  * is currently only used to shadow the temporary boot stack set up by locore.
11724  */
11725 static void __nosanitizeaddress __nosanitizememory
pmap_san_enter_early(vm_offset_t va)11726 pmap_san_enter_early(vm_offset_t va)
11727 {
11728 	static bool first = true;
11729 	pml4_entry_t *pml4e;
11730 	pdp_entry_t *pdpe;
11731 	pd_entry_t *pde;
11732 	pt_entry_t *pte;
11733 	uint64_t cr3, pa, base;
11734 	int i;
11735 
11736 	base = amd64_loadaddr();
11737 	cr3 = rcr3();
11738 
11739 	if (first) {
11740 		/*
11741 		 * If this the first call, we need to allocate new PML4Es for
11742 		 * the bootstrap shadow map(s).  We don't know how the PML4 page
11743 		 * was initialized by the boot loader, so we can't simply test
11744 		 * whether the shadow map's PML4Es are zero.
11745 		 */
11746 		first = false;
11747 #ifdef KASAN
11748 		for (i = 0; i < NKASANPML4E; i++) {
11749 			pa = pmap_san_enter_early_alloc_4k(base);
11750 
11751 			pml4e = (pml4_entry_t *)cr3 +
11752 			    pmap_pml4e_index(KASAN_MIN_ADDRESS + i * NBPML4);
11753 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11754 		}
11755 #else
11756 		for (i = 0; i < NKMSANORIGPML4E; i++) {
11757 			pa = pmap_san_enter_early_alloc_4k(base);
11758 
11759 			pml4e = (pml4_entry_t *)cr3 +
11760 			    pmap_pml4e_index(KMSAN_ORIG_MIN_ADDRESS +
11761 			    i * NBPML4);
11762 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11763 		}
11764 		for (i = 0; i < NKMSANSHADPML4E; i++) {
11765 			pa = pmap_san_enter_early_alloc_4k(base);
11766 
11767 			pml4e = (pml4_entry_t *)cr3 +
11768 			    pmap_pml4e_index(KMSAN_SHAD_MIN_ADDRESS +
11769 			    i * NBPML4);
11770 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
11771 		}
11772 #endif
11773 	}
11774 	pml4e = (pml4_entry_t *)cr3 + pmap_pml4e_index(va);
11775 	pdpe = (pdp_entry_t *)(*pml4e & PG_FRAME) + pmap_pdpe_index(va);
11776 	if (*pdpe == 0) {
11777 		pa = pmap_san_enter_early_alloc_4k(base);
11778 		*pdpe = (pdp_entry_t)(pa | X86_PG_RW | X86_PG_V);
11779 	}
11780 	pde = (pd_entry_t *)(*pdpe & PG_FRAME) + pmap_pde_index(va);
11781 	if (*pde == 0) {
11782 		pa = pmap_san_enter_early_alloc_4k(base);
11783 		*pde = (pd_entry_t)(pa | X86_PG_RW | X86_PG_V);
11784 	}
11785 	pte = (pt_entry_t *)(*pde & PG_FRAME) + pmap_pte_index(va);
11786 	if (*pte != 0)
11787 		panic("%s: PTE for %#lx is already initialized", __func__, va);
11788 	pa = pmap_san_enter_early_alloc_4k(base);
11789 	*pte = (pt_entry_t)(pa | X86_PG_A | X86_PG_M | X86_PG_RW | X86_PG_V);
11790 }
11791 
11792 static vm_page_t
pmap_san_enter_alloc_4k(void)11793 pmap_san_enter_alloc_4k(void)
11794 {
11795 	vm_page_t m;
11796 
11797 	m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
11798 	    VM_ALLOC_ZERO);
11799 	if (m == NULL)
11800 		panic("%s: no memory to grow shadow map", __func__);
11801 	return (m);
11802 }
11803 
11804 static vm_page_t
pmap_san_enter_alloc_2m(void)11805 pmap_san_enter_alloc_2m(void)
11806 {
11807 	return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
11808 	    NPTEPG, 0, ~0ul, NBPDR, 0, VM_MEMATTR_DEFAULT));
11809 }
11810 
11811 /*
11812  * Grow a shadow map by at least one 4KB page at the specified address.  Use 2MB
11813  * pages when possible.
11814  */
11815 void __nosanitizeaddress __nosanitizememory
pmap_san_enter(vm_offset_t va)11816 pmap_san_enter(vm_offset_t va)
11817 {
11818 	pdp_entry_t *pdpe;
11819 	pd_entry_t *pde;
11820 	pt_entry_t *pte;
11821 	vm_page_t m;
11822 
11823 	if (kernphys == 0) {
11824 		/*
11825 		 * We're creating a temporary shadow map for the boot stack.
11826 		 */
11827 		pmap_san_enter_early(va);
11828 		return;
11829 	}
11830 
11831 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
11832 
11833 	pdpe = pmap_pdpe(kernel_pmap, va);
11834 	if ((*pdpe & X86_PG_V) == 0) {
11835 		m = pmap_san_enter_alloc_4k();
11836 		*pdpe = (pdp_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11837 		    X86_PG_V | pg_nx);
11838 	}
11839 	pde = pmap_pdpe_to_pde(pdpe, va);
11840 	if ((*pde & X86_PG_V) == 0) {
11841 		m = pmap_san_enter_alloc_2m();
11842 		if (m != NULL) {
11843 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11844 			    X86_PG_PS | X86_PG_V | X86_PG_A | X86_PG_M | pg_nx);
11845 		} else {
11846 			m = pmap_san_enter_alloc_4k();
11847 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
11848 			    X86_PG_V | pg_nx);
11849 		}
11850 	}
11851 	if ((*pde & X86_PG_PS) != 0)
11852 		return;
11853 	pte = pmap_pde_to_pte(pde, va);
11854 	if ((*pte & X86_PG_V) != 0)
11855 		return;
11856 	m = pmap_san_enter_alloc_4k();
11857 	*pte = (pt_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW | X86_PG_V |
11858 	    X86_PG_M | X86_PG_A | pg_nx);
11859 }
11860 #endif
11861 
11862 /*
11863  * Track a range of the kernel's virtual address space that is contiguous
11864  * in various mapping attributes.
11865  */
11866 struct pmap_kernel_map_range {
11867 	vm_offset_t sva;
11868 	pt_entry_t attrs;
11869 	int ptes;
11870 	int pdes;
11871 	int pdpes;
11872 };
11873 
11874 static void
sysctl_kmaps_dump(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t eva)11875 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
11876     vm_offset_t eva)
11877 {
11878 	const char *mode;
11879 	int i, pat_idx;
11880 
11881 	if (eva <= range->sva)
11882 		return;
11883 
11884 	pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
11885 	for (i = 0; i < PAT_INDEX_SIZE; i++)
11886 		if (pat_index[i] == pat_idx)
11887 			break;
11888 
11889 	switch (i) {
11890 	case PAT_WRITE_BACK:
11891 		mode = "WB";
11892 		break;
11893 	case PAT_WRITE_THROUGH:
11894 		mode = "WT";
11895 		break;
11896 	case PAT_UNCACHEABLE:
11897 		mode = "UC";
11898 		break;
11899 	case PAT_UNCACHED:
11900 		mode = "U-";
11901 		break;
11902 	case PAT_WRITE_PROTECTED:
11903 		mode = "WP";
11904 		break;
11905 	case PAT_WRITE_COMBINING:
11906 		mode = "WC";
11907 		break;
11908 	default:
11909 		printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
11910 		    __func__, pat_idx, range->sva, eva);
11911 		mode = "??";
11912 		break;
11913 	}
11914 
11915 	sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
11916 	    range->sva, eva,
11917 	    (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
11918 	    (range->attrs & pg_nx) != 0 ? '-' : 'x',
11919 	    (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
11920 	    (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
11921 	    mode, range->pdpes, range->pdes, range->ptes);
11922 
11923 	/* Reset to sentinel value. */
11924 	range->sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
11925 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
11926 	    NPDEPG - 1, NPTEPG - 1);
11927 }
11928 
11929 /*
11930  * Determine whether the attributes specified by a page table entry match those
11931  * being tracked by the current range.  This is not quite as simple as a direct
11932  * flag comparison since some PAT modes have multiple representations.
11933  */
11934 static bool
sysctl_kmaps_match(struct pmap_kernel_map_range * range,pt_entry_t attrs)11935 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
11936 {
11937 	pt_entry_t diff, mask;
11938 
11939 	mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
11940 	diff = (range->attrs ^ attrs) & mask;
11941 	if (diff == 0)
11942 		return (true);
11943 	if ((diff & ~X86_PG_PDE_PAT) == 0 &&
11944 	    pmap_pat_index(kernel_pmap, range->attrs, true) ==
11945 	    pmap_pat_index(kernel_pmap, attrs, true))
11946 		return (true);
11947 	return (false);
11948 }
11949 
11950 static void
sysctl_kmaps_reinit(struct pmap_kernel_map_range * range,vm_offset_t va,pt_entry_t attrs)11951 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
11952     pt_entry_t attrs)
11953 {
11954 
11955 	memset(range, 0, sizeof(*range));
11956 	range->sva = va;
11957 	range->attrs = attrs;
11958 }
11959 
11960 /*
11961  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
11962  * those of the current run, dump the address range and its attributes, and
11963  * begin a new run.
11964  */
11965 static void
sysctl_kmaps_check(struct sbuf * sb,struct pmap_kernel_map_range * range,vm_offset_t va,pml4_entry_t pml4e,pdp_entry_t pdpe,pd_entry_t pde,pt_entry_t pte)11966 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
11967     vm_offset_t va, pml4_entry_t pml4e, pdp_entry_t pdpe, pd_entry_t pde,
11968     pt_entry_t pte)
11969 {
11970 	pt_entry_t attrs;
11971 
11972 	attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
11973 
11974 	attrs |= pdpe & pg_nx;
11975 	attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
11976 	if ((pdpe & PG_PS) != 0) {
11977 		attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
11978 	} else if (pde != 0) {
11979 		attrs |= pde & pg_nx;
11980 		attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
11981 	}
11982 	if ((pde & PG_PS) != 0) {
11983 		attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
11984 	} else if (pte != 0) {
11985 		attrs |= pte & pg_nx;
11986 		attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
11987 		attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
11988 
11989 		/* Canonicalize by always using the PDE PAT bit. */
11990 		if ((attrs & X86_PG_PTE_PAT) != 0)
11991 			attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
11992 	}
11993 
11994 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
11995 		sysctl_kmaps_dump(sb, range, va);
11996 		sysctl_kmaps_reinit(range, va, attrs);
11997 	}
11998 }
11999 
12000 static int
sysctl_kmaps(SYSCTL_HANDLER_ARGS)12001 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
12002 {
12003 	struct pmap_kernel_map_range range;
12004 	struct sbuf sbuf, *sb;
12005 	pml4_entry_t pml4e;
12006 	pdp_entry_t *pdp, pdpe;
12007 	pd_entry_t *pd, pde;
12008 	pt_entry_t *pt, pte;
12009 	vm_offset_t sva;
12010 	vm_paddr_t pa;
12011 	int error, i, j, k, l;
12012 
12013 	error = sysctl_wire_old_buffer(req, 0);
12014 	if (error != 0)
12015 		return (error);
12016 	sb = &sbuf;
12017 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
12018 
12019 	/* Sentinel value. */
12020 	range.sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
12021 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
12022 	    NPDEPG - 1, NPTEPG - 1);
12023 
12024 	/*
12025 	 * Iterate over the kernel page tables without holding the kernel pmap
12026 	 * lock.  Outside of the large map, kernel page table pages are never
12027 	 * freed, so at worst we will observe inconsistencies in the output.
12028 	 * Within the large map, ensure that PDP and PD page addresses are
12029 	 * valid before descending.
12030 	 */
12031 	for (sva = 0, i = pmap_pml4e_index(sva); i < NPML4EPG; i++) {
12032 		switch (i) {
12033 		case PML4PML4I:
12034 			sbuf_printf(sb, "\nRecursive map:\n");
12035 			break;
12036 		case DMPML4I:
12037 			sbuf_printf(sb, "\nDirect map:\n");
12038 			break;
12039 #ifdef KASAN
12040 		case KASANPML4I:
12041 			sbuf_printf(sb, "\nKASAN shadow map:\n");
12042 			break;
12043 #endif
12044 #ifdef KMSAN
12045 		case KMSANSHADPML4I:
12046 			sbuf_printf(sb, "\nKMSAN shadow map:\n");
12047 			break;
12048 		case KMSANORIGPML4I:
12049 			sbuf_printf(sb, "\nKMSAN origin map:\n");
12050 			break;
12051 #endif
12052 		case KPML4BASE:
12053 			sbuf_printf(sb, "\nKernel map:\n");
12054 			break;
12055 		case LMSPML4I:
12056 			sbuf_printf(sb, "\nLarge map:\n");
12057 			break;
12058 		}
12059 
12060 		/* Convert to canonical form. */
12061 		if (sva == 1ul << 47)
12062 			sva |= -1ul << 48;
12063 
12064 restart:
12065 		pml4e = kernel_pml4[i];
12066 		if ((pml4e & X86_PG_V) == 0) {
12067 			sva = rounddown2(sva, NBPML4);
12068 			sysctl_kmaps_dump(sb, &range, sva);
12069 			sva += NBPML4;
12070 			continue;
12071 		}
12072 		pa = pml4e & PG_FRAME;
12073 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
12074 
12075 		for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
12076 			pdpe = pdp[j];
12077 			if ((pdpe & X86_PG_V) == 0) {
12078 				sva = rounddown2(sva, NBPDP);
12079 				sysctl_kmaps_dump(sb, &range, sva);
12080 				sva += NBPDP;
12081 				continue;
12082 			}
12083 			pa = pdpe & PG_FRAME;
12084 			if ((pdpe & PG_PS) != 0) {
12085 				sva = rounddown2(sva, NBPDP);
12086 				sysctl_kmaps_check(sb, &range, sva, pml4e, pdpe,
12087 				    0, 0);
12088 				range.pdpes++;
12089 				sva += NBPDP;
12090 				continue;
12091 			}
12092 			if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12093 			    vm_phys_paddr_to_vm_page(pa) == NULL) {
12094 				/*
12095 				 * Page table pages for the large map may be
12096 				 * freed.  Validate the next-level address
12097 				 * before descending.
12098 				 */
12099 				goto restart;
12100 			}
12101 			pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
12102 
12103 			for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
12104 				pde = pd[k];
12105 				if ((pde & X86_PG_V) == 0) {
12106 					sva = rounddown2(sva, NBPDR);
12107 					sysctl_kmaps_dump(sb, &range, sva);
12108 					sva += NBPDR;
12109 					continue;
12110 				}
12111 				pa = pde & PG_FRAME;
12112 				if ((pde & PG_PS) != 0) {
12113 					sva = rounddown2(sva, NBPDR);
12114 					sysctl_kmaps_check(sb, &range, sva,
12115 					    pml4e, pdpe, pde, 0);
12116 					range.pdes++;
12117 					sva += NBPDR;
12118 					continue;
12119 				}
12120 				if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
12121 				    vm_phys_paddr_to_vm_page(pa) == NULL) {
12122 					/*
12123 					 * Page table pages for the large map
12124 					 * may be freed.  Validate the
12125 					 * next-level address before descending.
12126 					 */
12127 					goto restart;
12128 				}
12129 				pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
12130 
12131 				for (l = pmap_pte_index(sva); l < NPTEPG; l++,
12132 				    sva += PAGE_SIZE) {
12133 					pte = pt[l];
12134 					if ((pte & X86_PG_V) == 0) {
12135 						sysctl_kmaps_dump(sb, &range,
12136 						    sva);
12137 						continue;
12138 					}
12139 					sysctl_kmaps_check(sb, &range, sva,
12140 					    pml4e, pdpe, pde, pte);
12141 					range.ptes++;
12142 				}
12143 			}
12144 		}
12145 	}
12146 
12147 	error = sbuf_finish(sb);
12148 	sbuf_delete(sb);
12149 	return (error);
12150 }
12151 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
12152     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
12153     NULL, 0, sysctl_kmaps, "A",
12154     "Dump kernel address layout");
12155 
12156 #ifdef DDB
DB_SHOW_COMMAND(pte,pmap_print_pte)12157 DB_SHOW_COMMAND(pte, pmap_print_pte)
12158 {
12159 	pmap_t pmap;
12160 	pml5_entry_t *pml5;
12161 	pml4_entry_t *pml4;
12162 	pdp_entry_t *pdp;
12163 	pd_entry_t *pde;
12164 	pt_entry_t *pte, PG_V;
12165 	vm_offset_t va;
12166 
12167 	if (!have_addr) {
12168 		db_printf("show pte addr\n");
12169 		return;
12170 	}
12171 	va = (vm_offset_t)addr;
12172 
12173 	if (kdb_thread != NULL)
12174 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
12175 	else
12176 		pmap = PCPU_GET(curpmap);
12177 
12178 	PG_V = pmap_valid_bit(pmap);
12179 	db_printf("VA 0x%016lx", va);
12180 
12181 	if (pmap_is_la57(pmap)) {
12182 		pml5 = pmap_pml5e(pmap, va);
12183 		db_printf(" pml5e 0x%016lx", *pml5);
12184 		if ((*pml5 & PG_V) == 0) {
12185 			db_printf("\n");
12186 			return;
12187 		}
12188 		pml4 = pmap_pml5e_to_pml4e(pml5, va);
12189 	} else {
12190 		pml4 = pmap_pml4e(pmap, va);
12191 	}
12192 	db_printf(" pml4e 0x%016lx", *pml4);
12193 	if ((*pml4 & PG_V) == 0) {
12194 		db_printf("\n");
12195 		return;
12196 	}
12197 	pdp = pmap_pml4e_to_pdpe(pml4, va);
12198 	db_printf(" pdpe 0x%016lx", *pdp);
12199 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
12200 		db_printf("\n");
12201 		return;
12202 	}
12203 	pde = pmap_pdpe_to_pde(pdp, va);
12204 	db_printf(" pde 0x%016lx", *pde);
12205 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
12206 		db_printf("\n");
12207 		return;
12208 	}
12209 	pte = pmap_pde_to_pte(pde, va);
12210 	db_printf(" pte 0x%016lx\n", *pte);
12211 }
12212 
DB_SHOW_COMMAND(phys2dmap,pmap_phys2dmap)12213 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
12214 {
12215 	vm_paddr_t a;
12216 
12217 	if (have_addr) {
12218 		a = (vm_paddr_t)addr;
12219 		db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
12220 	} else {
12221 		db_printf("show phys2dmap addr\n");
12222 	}
12223 }
12224 
12225 static void
ptpages_show_page(int level,int idx,vm_page_t pg)12226 ptpages_show_page(int level, int idx, vm_page_t pg)
12227 {
12228 	db_printf("l %d i %d pg %p phys %#lx ref %x\n",
12229 	    level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
12230 }
12231 
12232 static void
ptpages_show_complain(int level,int idx,uint64_t pte)12233 ptpages_show_complain(int level, int idx, uint64_t pte)
12234 {
12235 	db_printf("l %d i %d pte %#lx\n", level, idx, pte);
12236 }
12237 
12238 static void
ptpages_show_pml4(vm_page_t pg4,int num_entries,uint64_t PG_V)12239 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
12240 {
12241 	vm_page_t pg3, pg2, pg1;
12242 	pml4_entry_t *pml4;
12243 	pdp_entry_t *pdp;
12244 	pd_entry_t *pd;
12245 	int i4, i3, i2;
12246 
12247 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
12248 	for (i4 = 0; i4 < num_entries; i4++) {
12249 		if ((pml4[i4] & PG_V) == 0)
12250 			continue;
12251 		pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
12252 		if (pg3 == NULL) {
12253 			ptpages_show_complain(3, i4, pml4[i4]);
12254 			continue;
12255 		}
12256 		ptpages_show_page(3, i4, pg3);
12257 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
12258 		for (i3 = 0; i3 < NPDPEPG; i3++) {
12259 			if ((pdp[i3] & PG_V) == 0)
12260 				continue;
12261 			pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
12262 			if (pg3 == NULL) {
12263 				ptpages_show_complain(2, i3, pdp[i3]);
12264 				continue;
12265 			}
12266 			ptpages_show_page(2, i3, pg2);
12267 			pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
12268 			for (i2 = 0; i2 < NPDEPG; i2++) {
12269 				if ((pd[i2] & PG_V) == 0)
12270 					continue;
12271 				pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
12272 				if (pg1 == NULL) {
12273 					ptpages_show_complain(1, i2, pd[i2]);
12274 					continue;
12275 				}
12276 				ptpages_show_page(1, i2, pg1);
12277 			}
12278 		}
12279 	}
12280 }
12281 
DB_SHOW_COMMAND(ptpages,pmap_ptpages)12282 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
12283 {
12284 	pmap_t pmap;
12285 	vm_page_t pg;
12286 	pml5_entry_t *pml5;
12287 	uint64_t PG_V;
12288 	int i5;
12289 
12290 	if (have_addr)
12291 		pmap = (pmap_t)addr;
12292 	else
12293 		pmap = PCPU_GET(curpmap);
12294 
12295 	PG_V = pmap_valid_bit(pmap);
12296 
12297 	if (pmap_is_la57(pmap)) {
12298 		pml5 = pmap->pm_pmltop;
12299 		for (i5 = 0; i5 < NUPML5E; i5++) {
12300 			if ((pml5[i5] & PG_V) == 0)
12301 				continue;
12302 			pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
12303 			if (pg == NULL) {
12304 				ptpages_show_complain(4, i5, pml5[i5]);
12305 				continue;
12306 			}
12307 			ptpages_show_page(4, i5, pg);
12308 			ptpages_show_pml4(pg, NPML4EPG, PG_V);
12309 		}
12310 	} else {
12311 		ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
12312 		    (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
12313 	}
12314 }
12315 #endif
12316