1 /* This testcase is part of GDB, the GNU debugger.
2 
3    Copyright 2004 Free Software Foundation, Inc.
4 
5    This program is free software; you can redistribute it and/or modify
6    it under the terms of the GNU General Public License as published by
7    the Free Software Foundation; either version 2 of the License, or
8    (at your option) any later version.
9 
10    This program is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13    GNU General Public License for more details.
14 
15    You should have received a copy of the GNU General Public License
16    along with this program; if not, write to the Free Software
17    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 
19    Please email any bugs, comments, and/or additions to this file to:
20    bug-gdb@prep.ai.mit.edu  */
21 
22 /* Get 64-bit stuff if on a GNU system.  */
23 #define _GNU_SOURCE
24 
25 #include <sys/types.h>
26 #include <sys/time.h>
27 #include <sys/resource.h>
28 #include <sys/stat.h>
29 #include <fcntl.h>
30 
31 #include <stdlib.h>
32 #include <unistd.h>
33 
34 /* Print routines:
35 
36    The following are so that printf et.al. can be avoided.  Those
37    might try to use malloc() and that, for this code, would be a
38    disaster.  */
39 
40 #define printf do not use
41 
42 const char digit[] = "0123456789abcdefghijklmnopqrstuvwxyz";
43 
44 static void
print_char(char c)45 print_char (char c)
46 {
47   write (1, &c, sizeof (c));
48 }
49 
50 static void
print_unsigned(unsigned long long u)51 print_unsigned (unsigned long long u)
52 {
53   if (u >= 10)
54     print_unsigned (u / 10);
55   print_char (digit[u % 10]);
56 }
57 
58 static void
print_hex(unsigned long long u)59 print_hex (unsigned long long u)
60 {
61   if (u >= 16)
62     print_hex (u / 16);
63   print_char (digit[u % 16]);
64 }
65 
66 static void
print_string(const char * s)67 print_string (const char *s)
68 {
69   for (; (*s) != '\0'; s++)
70     print_char ((*s));
71 }
72 
73 static void
print_address(const void * a)74 print_address (const void *a)
75 {
76   print_string ("0x");
77   print_hex ((unsigned long) a);
78 }
79 
80 static void
print_byte_count(unsigned long long u)81 print_byte_count (unsigned long long u)
82 {
83   print_unsigned (u);
84   print_string (" (");
85   print_string ("0x");
86   print_hex (u);
87   print_string (") bytes");
88 }
89 
90 /* Print the current values of RESOURCE.  */
91 
92 static void
print_rlimit(int resource)93 print_rlimit (int resource)
94 {
95   struct rlimit rl;
96   getrlimit (resource, &rl);
97   print_string ("cur=0x");
98   print_hex (rl.rlim_cur);
99   print_string (" max=0x");
100   print_hex (rl.rlim_max);
101 }
102 
103 static void
maximize_rlimit(int resource,const char * prefix)104 maximize_rlimit (int resource, const char *prefix)
105 {
106   struct rlimit rl;
107   print_string ("  ");
108   print_string (prefix);
109   print_string (": ");
110   print_rlimit (resource);
111   getrlimit (resource, &rl);
112   rl.rlim_cur = rl.rlim_max;
113   setrlimit (resource, &rl);
114   print_string (" -> ");
115   print_rlimit (resource);
116   print_string ("\n");
117 }
118 
119 /* Maintain a doublely linked list.  */
120 struct list
121 {
122   struct list *next;
123   struct list *prev;
124   size_t size;
125 };
126 
127 /* Put the "heap" in the DATA section.  That way it is more likely
128    that the variable will occur early in the core file (an address
129    before the heap) and hence more likely that GDB will at least get
130    its value right.
131 
132    To simplify the list append logic, start the heap out with one
133    entry (that lives in the BSS section).  */
134 
135 static struct list dummy;
136 static struct list heap = { &dummy, &dummy };
137 
138 static unsigned long bytes_allocated;
139 
140 #ifdef O_LARGEFILE
141 #define large_off_t off64_t
142 #define large_lseek lseek64
143 #else
144 #define large_off_t off_t
145 #define O_LARGEFILE 0
146 #define large_lseek lseek
147 #endif
148 
149 int
main()150 main ()
151 {
152   size_t max_chunk_size;
153   large_off_t max_core_size;
154 
155   /* Try to expand all the resource limits beyond the point of sanity
156      - we're after the biggest possible core file.  */
157 
158   print_string ("Maximize resource limits ...\n");
159 #ifdef RLIMIT_CORE
160   maximize_rlimit (RLIMIT_CORE, "core");
161 #endif
162 #ifdef RLIMIT_DATA
163   maximize_rlimit (RLIMIT_DATA, "data");
164 #endif
165 #ifdef RLIMIT_STACK
166   maximize_rlimit (RLIMIT_STACK, "stack");
167 #endif
168 #ifdef RLIMIT_AS
169   maximize_rlimit (RLIMIT_AS, "stack");
170 #endif
171 
172   print_string ("Maximize allocation limits ...\n");
173 
174   /* Compute the largest possible corefile size.  No point in trying
175      to create a corefile larger than the largest file supported by
176      the file system.  What about 64-bit lseek64?  */
177   {
178     int fd;
179     large_off_t tmp;
180     unlink ("bigcore.corefile");
181     fd = open ("bigcore.corefile", O_RDWR | O_CREAT | O_TRUNC | O_LARGEFILE);
182     for (tmp = 1; tmp > 0; tmp <<= 1)
183       {
184 	if (large_lseek (fd, tmp, SEEK_SET) > 0)
185 	  max_core_size = tmp;
186       }
187     close (fd);
188   }
189 
190   /* Compute an initial chunk size.  The math is dodgy but it works
191      for the moment.  Perhaphs there's a constant around somewhere.
192      Limit this to max_core_size bytes - no point in trying to
193      allocate more than can be written to the corefile.  */
194   {
195     size_t tmp;
196     for (tmp = 1; tmp > 0 && tmp < max_core_size; tmp <<= 1)
197       max_chunk_size = tmp;
198   }
199 
200   print_string ("  core: ");
201   print_byte_count (max_core_size);
202   print_string ("\n");
203   print_string ("  chunk: ");
204   print_byte_count (max_chunk_size);
205   print_string ("\n");
206   print_string ("  large? ");
207   if (O_LARGEFILE)
208     print_string ("yes\n");
209   else
210     print_string ("no\n");
211 
212   /* Allocate as much memory as possible creating a linked list of
213      each section.  The linking ensures that some, but not all, the
214      memory is allocated.  NB: Some kernels handle this efficiently -
215      only allocating and writing out referenced pages leaving holes in
216      the file for unmodified pages - while others handle this poorly -
217      writing out all pages including those that weren't modified.  */
218 
219   print_string ("Alocating the entire heap ...\n");
220   {
221     size_t chunk_size;
222     unsigned long chunks_allocated = 0;
223     /* Create a linked list of memory chunks.  Start with
224        MAX_CHUNK_SIZE blocks of memory and then try allocating smaller
225        and smaller amounts until all (well at least most) memory has
226        been allocated.  */
227     for (chunk_size = max_chunk_size;
228 	 chunk_size >= sizeof (struct list);
229 	 chunk_size >>= 1)
230       {
231 	unsigned long count = 0;
232 	print_string ("  ");
233 	print_byte_count (chunk_size);
234 	print_string (" ... ");
235 	while (bytes_allocated + (1 + count) * chunk_size
236 	       < max_core_size)
237 	  {
238 	    struct list *chunk = malloc (chunk_size);
239 	    if (chunk == NULL)
240 	      break;
241 	    chunk->size = chunk_size;
242 	    /* Link it in.  */
243 	    chunk->next = NULL;
244 	    chunk->prev = heap.prev;
245 	    heap.prev->next = chunk;
246 	    heap.prev = chunk;
247 	    count++;
248 	  }
249 	print_unsigned (count);
250 	print_string (" chunks\n");
251 	chunks_allocated += count;
252 	bytes_allocated += chunk_size * count;
253       }
254     print_string ("Total of ");
255     print_byte_count (bytes_allocated);
256     print_string (" bytes ");
257     print_unsigned (chunks_allocated);
258     print_string (" chunks\n");
259   }
260 
261   /* Push everything out to disk.  */
262 
263   print_string ("Dump core ....\n");
264   *(char*)0 = 0;
265 }
266