xref: /netbsd/sys/kern/kern_proc.c (revision 416a8a0e)
1 /*	$NetBSD: kern_proc.c,v 1.270 2023/04/09 09:18:09 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.270 2023/04/09 09:18:09 riastradh Exp $");
66 
67 #ifdef _KERNEL_OPT
68 #include "opt_kstack.h"
69 #include "opt_maxuprc.h"
70 #include "opt_dtrace.h"
71 #include "opt_compat_netbsd32.h"
72 #include "opt_kaslr.h"
73 #endif
74 
75 #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
76     && !defined(_RUMPKERNEL)
77 #define COMPAT_NETBSD32
78 #endif
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/proc.h>
84 #include <sys/resourcevar.h>
85 #include <sys/buf.h>
86 #include <sys/acct.h>
87 #include <sys/wait.h>
88 #include <sys/file.h>
89 #include <ufs/ufs/quota.h>
90 #include <sys/uio.h>
91 #include <sys/pool.h>
92 #include <sys/pset.h>
93 #include <sys/ioctl.h>
94 #include <sys/tty.h>
95 #include <sys/signalvar.h>
96 #include <sys/ras.h>
97 #include <sys/filedesc.h>
98 #include <sys/syscall_stats.h>
99 #include <sys/kauth.h>
100 #include <sys/sleepq.h>
101 #include <sys/atomic.h>
102 #include <sys/kmem.h>
103 #include <sys/namei.h>
104 #include <sys/dtrace_bsd.h>
105 #include <sys/sysctl.h>
106 #include <sys/exec.h>
107 #include <sys/cpu.h>
108 #include <sys/compat_stub.h>
109 #include <sys/futex.h>
110 #include <sys/pserialize.h>
111 
112 #include <uvm/uvm_extern.h>
113 
114 /*
115  * Process lists.
116  */
117 
118 struct proclist		allproc		__cacheline_aligned;
119 struct proclist		zombproc	__cacheline_aligned;
120 
121  kmutex_t		proc_lock	__cacheline_aligned;
122 static pserialize_t	proc_psz;
123 
124 /*
125  * pid to lwp/proc lookup is done by indexing the pid_table array.
126  * Since pid numbers are only allocated when an empty slot
127  * has been found, there is no need to search any lists ever.
128  * (an orphaned pgrp will lock the slot, a session will lock
129  * the pgrp with the same number.)
130  * If the table is too small it is reallocated with twice the
131  * previous size and the entries 'unzipped' into the two halves.
132  * A linked list of free entries is passed through the pt_lwp
133  * field of 'free' items - set odd to be an invalid ptr.  Two
134  * additional bits are also used to indicate if the slot is
135  * currently occupied by a proc or lwp, and if the PID is
136  * hidden from certain kinds of lookups.  We thus require a
137  * minimum alignment for proc and lwp structures (LWPs are
138  * at least 32-byte aligned).
139  */
140 
141 struct pid_table {
142 	uintptr_t	pt_slot;
143 	struct pgrp	*pt_pgrp;
144 	pid_t		pt_pid;
145 };
146 
147 #define	PT_F_FREE		((uintptr_t)__BIT(0))
148 #define	PT_F_LWP		0	/* pseudo-flag */
149 #define	PT_F_PROC		((uintptr_t)__BIT(1))
150 
151 #define	PT_F_TYPEBITS		(PT_F_FREE|PT_F_PROC)
152 #define	PT_F_ALLBITS		(PT_F_FREE|PT_F_PROC)
153 
154 #define	PT_VALID(s)		(((s) & PT_F_FREE) == 0)
155 #define	PT_RESERVED(s)		((s) == 0)
156 #define	PT_NEXT(s)		((u_int)(s) >> 1)
157 #define	PT_SET_FREE(pid)	(((pid) << 1) | PT_F_FREE)
158 #define	PT_SET_LWP(l)		((uintptr_t)(l))
159 #define	PT_SET_PROC(p)		(((uintptr_t)(p)) | PT_F_PROC)
160 #define	PT_SET_RESERVED		0
161 #define	PT_GET_LWP(s)		((struct lwp *)((s) & ~PT_F_ALLBITS))
162 #define	PT_GET_PROC(s)		((struct proc *)((s) & ~PT_F_ALLBITS))
163 #define	PT_GET_TYPE(s)		((s) & PT_F_TYPEBITS)
164 #define	PT_IS_LWP(s)		(PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
165 #define	PT_IS_PROC(s)		(PT_GET_TYPE(s) == PT_F_PROC)
166 
167 #define	MIN_PROC_ALIGNMENT	(PT_F_ALLBITS + 1)
168 
169 /*
170  * Table of process IDs (PIDs).
171  */
172 static struct pid_table *pid_table	__read_mostly;
173 
174 #define	INITIAL_PID_TABLE_SIZE		(1 << 5)
175 
176 /* Table mask, threshold for growing and number of allocated PIDs. */
177 static u_int		pid_tbl_mask	__read_mostly;
178 static u_int		pid_alloc_lim	__read_mostly;
179 static u_int		pid_alloc_cnt	__cacheline_aligned;
180 
181 /* Next free, last free and maximum PIDs. */
182 static u_int		next_free_pt	__cacheline_aligned;
183 static u_int		last_free_pt	__cacheline_aligned;
184 static pid_t		pid_max		__read_mostly;
185 
186 /* Components of the first process -- never freed. */
187 
188 struct session session0 = {
189 	.s_count = 1,
190 	.s_sid = 0,
191 };
192 struct pgrp pgrp0 = {
193 	.pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
194 	.pg_session = &session0,
195 };
196 filedesc_t filedesc0;
197 struct cwdinfo cwdi0 = {
198 	.cwdi_cmask = CMASK,
199 	.cwdi_refcnt = 1,
200 };
201 struct plimit limit0;
202 struct pstats pstat0;
203 struct vmspace vmspace0;
204 struct sigacts sigacts0;
205 struct proc proc0 = {
206 	.p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
207 	.p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
208 	.p_nlwps = 1,
209 	.p_nrlwps = 1,
210 	.p_pgrp = &pgrp0,
211 	.p_comm = "system",
212 	/*
213 	 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
214 	 * when they exit.  init(8) can easily wait them out for us.
215 	 */
216 	.p_flag = PK_SYSTEM | PK_NOCLDWAIT,
217 	.p_stat = SACTIVE,
218 	.p_nice = NZERO,
219 	.p_emul = &emul_netbsd,
220 	.p_cwdi = &cwdi0,
221 	.p_limit = &limit0,
222 	.p_fd = &filedesc0,
223 	.p_vmspace = &vmspace0,
224 	.p_stats = &pstat0,
225 	.p_sigacts = &sigacts0,
226 #ifdef PROC0_MD_INITIALIZERS
227 	PROC0_MD_INITIALIZERS
228 #endif
229 };
230 kauth_cred_t cred0;
231 
232 static const int	nofile	= NOFILE;
233 static const int	maxuprc	= MAXUPRC;
234 
235 static int sysctl_doeproc(SYSCTLFN_PROTO);
236 static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
237 static int sysctl_security_expose_address(SYSCTLFN_PROTO);
238 
239 #ifdef KASLR
240 static int kern_expose_address = 0;
241 #else
242 static int kern_expose_address = 1;
243 #endif
244 /*
245  * The process list descriptors, used during pid allocation and
246  * by sysctl.  No locking on this data structure is needed since
247  * it is completely static.
248  */
249 const struct proclist_desc proclists[] = {
250 	{ &allproc	},
251 	{ &zombproc	},
252 	{ NULL		},
253 };
254 
255 static struct pgrp *	pg_remove(pid_t);
256 static void		pg_delete(pid_t);
257 static void		orphanpg(struct pgrp *);
258 
259 static specificdata_domain_t proc_specificdata_domain;
260 
261 static pool_cache_t proc_cache;
262 
263 static kauth_listener_t proc_listener;
264 
265 static void fill_proc(const struct proc *, struct proc *, bool);
266 static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
267 static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
268 
269 static int
proc_listener_cb(kauth_cred_t cred,kauth_action_t action,void * cookie,void * arg0,void * arg1,void * arg2,void * arg3)270 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
271     void *arg0, void *arg1, void *arg2, void *arg3)
272 {
273 	struct proc *p;
274 	int result;
275 
276 	result = KAUTH_RESULT_DEFER;
277 	p = arg0;
278 
279 	switch (action) {
280 	case KAUTH_PROCESS_CANSEE: {
281 		enum kauth_process_req req;
282 
283 		req = (enum kauth_process_req)(uintptr_t)arg1;
284 
285 		switch (req) {
286 		case KAUTH_REQ_PROCESS_CANSEE_ARGS:
287 		case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
288 		case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
289 		case KAUTH_REQ_PROCESS_CANSEE_EPROC:
290 			result = KAUTH_RESULT_ALLOW;
291 			break;
292 
293 		case KAUTH_REQ_PROCESS_CANSEE_ENV:
294 			if (kauth_cred_getuid(cred) !=
295 			    kauth_cred_getuid(p->p_cred) ||
296 			    kauth_cred_getuid(cred) !=
297 			    kauth_cred_getsvuid(p->p_cred))
298 				break;
299 
300 			result = KAUTH_RESULT_ALLOW;
301 
302 			break;
303 
304 		case KAUTH_REQ_PROCESS_CANSEE_KPTR:
305 			if (!kern_expose_address)
306 				break;
307 
308 			if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
309 				break;
310 
311 			result = KAUTH_RESULT_ALLOW;
312 
313 			break;
314 
315 		default:
316 			break;
317 		}
318 
319 		break;
320 		}
321 
322 	case KAUTH_PROCESS_FORK: {
323 		int lnprocs = (int)(unsigned long)arg2;
324 
325 		/*
326 		 * Don't allow a nonprivileged user to use the last few
327 		 * processes. The variable lnprocs is the current number of
328 		 * processes, maxproc is the limit.
329 		 */
330 		if (__predict_false((lnprocs >= maxproc - 5)))
331 			break;
332 
333 		result = KAUTH_RESULT_ALLOW;
334 
335 		break;
336 		}
337 
338 	case KAUTH_PROCESS_CORENAME:
339 	case KAUTH_PROCESS_STOPFLAG:
340 		if (proc_uidmatch(cred, p->p_cred) == 0)
341 			result = KAUTH_RESULT_ALLOW;
342 
343 		break;
344 
345 	default:
346 		break;
347 	}
348 
349 	return result;
350 }
351 
352 static int
proc_ctor(void * arg __unused,void * obj,int flags __unused)353 proc_ctor(void *arg __unused, void *obj, int flags __unused)
354 {
355 	struct proc *p = obj;
356 
357 	memset(p, 0, sizeof(*p));
358 	klist_init(&p->p_klist);
359 
360 	/*
361 	 * There is no need for a proc_dtor() to do a klist_fini(),
362 	 * since knote_proc_exit() ensures that p->p_klist is empty
363 	 * when a process exits.
364 	 */
365 
366 	return 0;
367 }
368 
369 static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);
370 
371 /*
372  * Initialize global process hashing structures.
373  */
374 void
procinit(void)375 procinit(void)
376 {
377 	const struct proclist_desc *pd;
378 	u_int i;
379 #define	LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
380 
381 	for (pd = proclists; pd->pd_list != NULL; pd++)
382 		LIST_INIT(pd->pd_list);
383 
384 	mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE);
385 
386 	proc_psz = pserialize_create();
387 
388 	pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
389 	    * sizeof(struct pid_table), KM_SLEEP);
390 	pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
391 	pid_max = PID_MAX;
392 
393 	/* Set free list running through table...
394 	   Preset 'use count' above PID_MAX so we allocate pid 1 next. */
395 	for (i = 0; i <= pid_tbl_mask; i++) {
396 		pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
397 		pid_table[i].pt_pgrp = 0;
398 		pid_table[i].pt_pid = 0;
399 	}
400 	/* slot 0 is just grabbed */
401 	next_free_pt = 1;
402 	/* Need to fix last entry. */
403 	last_free_pt = pid_tbl_mask;
404 	pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
405 	/* point at which we grow table - to avoid reusing pids too often */
406 	pid_alloc_lim = pid_tbl_mask - 1;
407 #undef LINK_EMPTY
408 
409 	/* Reserve PID 1 for init(8). */	/* XXX slightly gross */
410 	mutex_enter(&proc_lock);
411 	if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
412 		panic("failed to reserve PID 1 for init(8)");
413 	mutex_exit(&proc_lock);
414 
415 	proc_specificdata_domain = specificdata_domain_create();
416 	KASSERT(proc_specificdata_domain != NULL);
417 
418 	size_t proc_alignment = coherency_unit;
419 	if (proc_alignment < MIN_PROC_ALIGNMENT)
420 		proc_alignment = MIN_PROC_ALIGNMENT;
421 
422 	proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
423 	    "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
424 
425 	proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
426 	    proc_listener_cb, NULL);
427 }
428 
429 void
procinit_sysctl(void)430 procinit_sysctl(void)
431 {
432 	static struct sysctllog *clog;
433 
434 	sysctl_createv(&clog, 0, NULL, NULL,
435 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
436 		       CTLTYPE_INT, "expose_address",
437 		       SYSCTL_DESCR("Enable exposing kernel addresses"),
438 		       sysctl_security_expose_address, 0,
439 		       &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
440 	sysctl_createv(&clog, 0, NULL, NULL,
441 		       CTLFLAG_PERMANENT,
442 		       CTLTYPE_NODE, "proc",
443 		       SYSCTL_DESCR("System-wide process information"),
444 		       sysctl_doeproc, 0, NULL, 0,
445 		       CTL_KERN, KERN_PROC, CTL_EOL);
446 	sysctl_createv(&clog, 0, NULL, NULL,
447 		       CTLFLAG_PERMANENT,
448 		       CTLTYPE_NODE, "proc2",
449 		       SYSCTL_DESCR("Machine-independent process information"),
450 		       sysctl_doeproc, 0, NULL, 0,
451 		       CTL_KERN, KERN_PROC2, CTL_EOL);
452 	sysctl_createv(&clog, 0, NULL, NULL,
453 		       CTLFLAG_PERMANENT,
454 		       CTLTYPE_NODE, "proc_args",
455 		       SYSCTL_DESCR("Process argument information"),
456 		       sysctl_kern_proc_args, 0, NULL, 0,
457 		       CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
458 
459 	/*
460 	  "nodes" under these:
461 
462 	  KERN_PROC_ALL
463 	  KERN_PROC_PID pid
464 	  KERN_PROC_PGRP pgrp
465 	  KERN_PROC_SESSION sess
466 	  KERN_PROC_TTY tty
467 	  KERN_PROC_UID uid
468 	  KERN_PROC_RUID uid
469 	  KERN_PROC_GID gid
470 	  KERN_PROC_RGID gid
471 
472 	  all in all, probably not worth the effort...
473 	*/
474 }
475 
476 /*
477  * Initialize process 0.
478  */
479 void
proc0_init(void)480 proc0_init(void)
481 {
482 	struct proc *p;
483 	struct pgrp *pg;
484 	struct rlimit *rlim;
485 	rlim_t lim;
486 	int i;
487 
488 	p = &proc0;
489 	pg = &pgrp0;
490 
491 	mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
492 	mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
493 	p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
494 
495 	rw_init(&p->p_reflock);
496 	cv_init(&p->p_waitcv, "wait");
497 	cv_init(&p->p_lwpcv, "lwpwait");
498 
499 	LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
500 
501 	KASSERT(lwp0.l_lid == 0);
502 	pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
503 	LIST_INSERT_HEAD(&allproc, p, p_list);
504 
505 	pid_table[lwp0.l_lid].pt_pgrp = pg;
506 	LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
507 
508 #ifdef __HAVE_SYSCALL_INTERN
509 	(*p->p_emul->e_syscall_intern)(p);
510 #endif
511 
512 	/* Create credentials. */
513 	cred0 = kauth_cred_alloc();
514 	p->p_cred = cred0;
515 
516 	/* Create the CWD info. */
517 	rw_init(&cwdi0.cwdi_lock);
518 
519 	/* Create the limits structures. */
520 	mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
521 
522 	rlim = limit0.pl_rlimit;
523 	for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
524 		rlim[i].rlim_cur = RLIM_INFINITY;
525 		rlim[i].rlim_max = RLIM_INFINITY;
526 	}
527 
528 	rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
529 	rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
530 
531 	rlim[RLIMIT_NPROC].rlim_max = maxproc;
532 	rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
533 
534 	lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false)));
535 	rlim[RLIMIT_RSS].rlim_max = lim;
536 	rlim[RLIMIT_MEMLOCK].rlim_max = lim;
537 	rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
538 
539 	rlim[RLIMIT_NTHR].rlim_max = maxlwp;
540 	rlim[RLIMIT_NTHR].rlim_cur = maxlwp / 2;
541 
542 	/* Note that default core name has zero length. */
543 	limit0.pl_corename = defcorename;
544 	limit0.pl_cnlen = 0;
545 	limit0.pl_refcnt = 1;
546 	limit0.pl_writeable = false;
547 	limit0.pl_sv_limit = NULL;
548 
549 	/* Configure virtual memory system, set vm rlimits. */
550 	uvm_init_limits(p);
551 
552 	/* Initialize file descriptor table for proc0. */
553 	fd_init(&filedesc0);
554 
555 	/*
556 	 * Initialize proc0's vmspace, which uses the kernel pmap.
557 	 * All kernel processes (which never have user space mappings)
558 	 * share proc0's vmspace, and thus, the kernel pmap.
559 	 */
560 	uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
561 	    trunc_page(VM_MAXUSER_ADDRESS),
562 #ifdef __USE_TOPDOWN_VM
563 	    true
564 #else
565 	    false
566 #endif
567 	    );
568 
569 	/* Initialize signal state for proc0. XXX IPL_SCHED */
570 	mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
571 	siginit(p);
572 
573 	proc_initspecific(p);
574 	kdtrace_proc_ctor(NULL, p);
575 }
576 
577 /*
578  * Session reference counting.
579  */
580 
581 void
proc_sesshold(struct session * ss)582 proc_sesshold(struct session *ss)
583 {
584 
585 	KASSERT(mutex_owned(&proc_lock));
586 	ss->s_count++;
587 }
588 
589 void
proc_sessrele(struct session * ss)590 proc_sessrele(struct session *ss)
591 {
592 	struct pgrp *pg;
593 
594 	KASSERT(mutex_owned(&proc_lock));
595 	KASSERT(ss->s_count > 0);
596 
597 	/*
598 	 * We keep the pgrp with the same id as the session in order to
599 	 * stop a process being given the same pid.  Since the pgrp holds
600 	 * a reference to the session, it must be a 'zombie' pgrp by now.
601 	 */
602 	if (--ss->s_count == 0) {
603 		pg = pg_remove(ss->s_sid);
604 	} else {
605 		pg = NULL;
606 		ss = NULL;
607 	}
608 
609 	mutex_exit(&proc_lock);
610 
611 	if (pg)
612 		kmem_free(pg, sizeof(struct pgrp));
613 	if (ss)
614 		kmem_free(ss, sizeof(struct session));
615 }
616 
617 /*
618  * Check that the specified process group is in the session of the
619  * specified process.
620  * Treats -ve ids as process ids.
621  * Used to validate TIOCSPGRP requests.
622  */
623 int
pgid_in_session(struct proc * p,pid_t pg_id)624 pgid_in_session(struct proc *p, pid_t pg_id)
625 {
626 	struct pgrp *pgrp;
627 	struct session *session;
628 	int error;
629 
630 	if (pg_id == INT_MIN)
631 		return EINVAL;
632 
633 	mutex_enter(&proc_lock);
634 	if (pg_id < 0) {
635 		struct proc *p1 = proc_find(-pg_id);
636 		if (p1 == NULL) {
637 			error = EINVAL;
638 			goto fail;
639 		}
640 		pgrp = p1->p_pgrp;
641 	} else {
642 		pgrp = pgrp_find(pg_id);
643 		if (pgrp == NULL) {
644 			error = EINVAL;
645 			goto fail;
646 		}
647 	}
648 	session = pgrp->pg_session;
649 	error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
650 fail:
651 	mutex_exit(&proc_lock);
652 	return error;
653 }
654 
655 /*
656  * p_inferior: is p an inferior of q?
657  */
658 static inline bool
p_inferior(struct proc * p,struct proc * q)659 p_inferior(struct proc *p, struct proc *q)
660 {
661 
662 	KASSERT(mutex_owned(&proc_lock));
663 
664 	for (; p != q; p = p->p_pptr)
665 		if (p->p_pid == 0)
666 			return false;
667 	return true;
668 }
669 
670 /*
671  * proc_find_lwp: locate an lwp in said proc by the ID.
672  *
673  * => Must be called with p::p_lock held.
674  * => LSIDL lwps are not returned because they are only partially
675  *    constructed while occupying the slot.
676  * => Callers need to be careful about lwp::l_stat of the returned
677  *    lwp.
678  */
679 struct lwp *
proc_find_lwp(proc_t * p,pid_t pid)680 proc_find_lwp(proc_t *p, pid_t pid)
681 {
682 	struct pid_table *pt;
683 	unsigned pt_mask;
684 	struct lwp *l = NULL;
685 	uintptr_t slot;
686 	int s;
687 
688 	KASSERT(mutex_owned(p->p_lock));
689 
690 	/*
691 	 * Look in the pid_table.  This is done unlocked inside a
692 	 * pserialize read section covering pid_table's memory
693 	 * allocation only, so take care to read things in the correct
694 	 * order:
695 	 *
696 	 * 1. First read the table mask -- this only ever increases, in
697 	 *    expand_pid_table, so a stale value is safely
698 	 *    conservative.
699 	 *
700 	 * 2. Next read the pid table -- this is always set _before_
701 	 *    the mask increases, so if we see a new table and stale
702 	 *    mask, the mask is still valid for the table.
703 	 */
704 	s = pserialize_read_enter();
705 	pt_mask = atomic_load_acquire(&pid_tbl_mask);
706 	pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
707 	slot = atomic_load_consume(&pt->pt_slot);
708 	if (__predict_false(!PT_IS_LWP(slot))) {
709 		pserialize_read_exit(s);
710 		return NULL;
711 	}
712 
713 	/*
714 	 * Check to see if the LWP is from the correct process.  We won't
715 	 * see entries in pid_table from a prior process that also used "p",
716 	 * by virtue of the fact that allocating "p" means all prior updates
717 	 * to dependant data structures are visible to this thread.
718 	 */
719 	l = PT_GET_LWP(slot);
720 	if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) {
721 		pserialize_read_exit(s);
722 		return NULL;
723 	}
724 
725 	/*
726 	 * We now know that p->p_lock holds this LWP stable.
727 	 *
728 	 * If the status is not LSIDL, it means the LWP is intended to be
729 	 * findable by LID and l_lid cannot change behind us.
730 	 *
731 	 * No need to acquire the LWP's lock to check for LSIDL, as
732 	 * p->p_lock must be held to transition in and out of LSIDL.
733 	 * Any other observed state of is no particular interest.
734 	 */
735 	pserialize_read_exit(s);
736 	return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL;
737 }
738 
739 /*
740  * proc_find_lwp_unlocked: locate an lwp in said proc by the ID.
741  *
742  * => Called in a pserialize read section with no locks held.
743  * => LSIDL lwps are not returned because they are only partially
744  *    constructed while occupying the slot.
745  * => Callers need to be careful about lwp::l_stat of the returned
746  *    lwp.
747  * => If an LWP is found, it's returned locked.
748  */
749 struct lwp *
proc_find_lwp_unlocked(proc_t * p,pid_t pid)750 proc_find_lwp_unlocked(proc_t *p, pid_t pid)
751 {
752 	struct pid_table *pt;
753 	unsigned pt_mask;
754 	struct lwp *l = NULL;
755 	uintptr_t slot;
756 
757 	KASSERT(pserialize_in_read_section());
758 
759 	/*
760 	 * Look in the pid_table.  This is done unlocked inside a
761 	 * pserialize read section covering pid_table's memory
762 	 * allocation only, so take care to read things in the correct
763 	 * order:
764 	 *
765 	 * 1. First read the table mask -- this only ever increases, in
766 	 *    expand_pid_table, so a stale value is safely
767 	 *    conservative.
768 	 *
769 	 * 2. Next read the pid table -- this is always set _before_
770 	 *    the mask increases, so if we see a new table and stale
771 	 *    mask, the mask is still valid for the table.
772 	 */
773 	pt_mask = atomic_load_acquire(&pid_tbl_mask);
774 	pt = &atomic_load_consume(&pid_table)[pid & pt_mask];
775 	slot = atomic_load_consume(&pt->pt_slot);
776 	if (__predict_false(!PT_IS_LWP(slot))) {
777 		return NULL;
778 	}
779 
780 	/*
781 	 * Lock the LWP we found to get it stable.  If it's embryonic or
782 	 * reaped (LSIDL) then none of the other fields can safely be
783 	 * checked.
784 	 */
785 	l = PT_GET_LWP(slot);
786 	lwp_lock(l);
787 	if (__predict_false(l->l_stat == LSIDL)) {
788 		lwp_unlock(l);
789 		return NULL;
790 	}
791 
792 	/*
793 	 * l_proc and l_lid are now known stable because the LWP is not
794 	 * LSIDL, so check those fields too to make sure we found the
795 	 * right thing.
796 	 */
797 	if (__predict_false(l->l_proc != p || l->l_lid != pid)) {
798 		lwp_unlock(l);
799 		return NULL;
800 	}
801 
802 	/* Everything checks out, return it locked. */
803 	return l;
804 }
805 
806 /*
807  * proc_find_lwp_acquire_proc: locate an lwp and acquire a lock
808  * on its containing proc.
809  *
810  * => Similar to proc_find_lwp(), but does not require you to have
811  *    the proc a priori.
812  * => Also returns proc * to caller, with p::p_lock held.
813  * => Same caveats apply.
814  */
815 struct lwp *
proc_find_lwp_acquire_proc(pid_t pid,struct proc ** pp)816 proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp)
817 {
818 	struct pid_table *pt;
819 	struct proc *p = NULL;
820 	struct lwp *l = NULL;
821 	uintptr_t slot;
822 
823 	KASSERT(pp != NULL);
824 	mutex_enter(&proc_lock);
825 	pt = &pid_table[pid & pid_tbl_mask];
826 
827 	slot = pt->pt_slot;
828 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
829 		l = PT_GET_LWP(slot);
830 		p = l->l_proc;
831 		mutex_enter(p->p_lock);
832 		if (__predict_false(l->l_stat == LSIDL)) {
833 			mutex_exit(p->p_lock);
834 			l = NULL;
835 			p = NULL;
836 		}
837 	}
838 	mutex_exit(&proc_lock);
839 
840 	KASSERT(p == NULL || mutex_owned(p->p_lock));
841 	*pp = p;
842 	return l;
843 }
844 
845 /*
846  * proc_find_raw_pid_table_locked: locate a process by the ID.
847  *
848  * => Must be called with proc_lock held.
849  */
850 static proc_t *
proc_find_raw_pid_table_locked(pid_t pid,bool any_lwpid)851 proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid)
852 {
853 	struct pid_table *pt;
854 	proc_t *p = NULL;
855 	uintptr_t slot;
856 
857 	/* No - used by DDB.  KASSERT(mutex_owned(&proc_lock)); */
858 	pt = &pid_table[pid & pid_tbl_mask];
859 
860 	slot = pt->pt_slot;
861 	if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
862 		/*
863 		 * When looking up processes, require a direct match
864 		 * on the PID assigned to the proc, not just one of
865 		 * its LWPs.
866 		 *
867 		 * N.B. We require lwp::l_proc of LSIDL LWPs to be
868 		 * valid here.
869 		 */
870 		p = PT_GET_LWP(slot)->l_proc;
871 		if (__predict_false(p->p_pid != pid && !any_lwpid))
872 			p = NULL;
873 	} else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
874 		p = PT_GET_PROC(slot);
875 	}
876 	return p;
877 }
878 
879 proc_t *
proc_find_raw(pid_t pid)880 proc_find_raw(pid_t pid)
881 {
882 
883 	return proc_find_raw_pid_table_locked(pid, false);
884 }
885 
886 static proc_t *
proc_find_internal(pid_t pid,bool any_lwpid)887 proc_find_internal(pid_t pid, bool any_lwpid)
888 {
889 	proc_t *p;
890 
891 	KASSERT(mutex_owned(&proc_lock));
892 
893 	p = proc_find_raw_pid_table_locked(pid, any_lwpid);
894 	if (__predict_false(p == NULL)) {
895 		return NULL;
896 	}
897 
898 	/*
899 	 * Only allow live processes to be found by PID.
900 	 * XXX: p_stat might change, since proc unlocked.
901 	 */
902 	if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
903 		return p;
904 	}
905 	return NULL;
906 }
907 
908 proc_t *
proc_find(pid_t pid)909 proc_find(pid_t pid)
910 {
911 	return proc_find_internal(pid, false);
912 }
913 
914 proc_t *
proc_find_lwpid(pid_t pid)915 proc_find_lwpid(pid_t pid)
916 {
917 	return proc_find_internal(pid, true);
918 }
919 
920 /*
921  * pgrp_find: locate a process group by the ID.
922  *
923  * => Must be called with proc_lock held.
924  */
925 struct pgrp *
pgrp_find(pid_t pgid)926 pgrp_find(pid_t pgid)
927 {
928 	struct pgrp *pg;
929 
930 	KASSERT(mutex_owned(&proc_lock));
931 
932 	pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
933 
934 	/*
935 	 * Cannot look up a process group that only exists because the
936 	 * session has not died yet (traditional).
937 	 */
938 	if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
939 		return NULL;
940 	}
941 	return pg;
942 }
943 
944 static void
expand_pid_table(void)945 expand_pid_table(void)
946 {
947 	size_t pt_size, tsz;
948 	struct pid_table *n_pt, *new_pt;
949 	uintptr_t slot;
950 	struct pgrp *pgrp;
951 	pid_t pid, rpid;
952 	u_int i;
953 	uint new_pt_mask;
954 
955 	KASSERT(mutex_owned(&proc_lock));
956 
957 	/* Unlock the pid_table briefly to allocate memory. */
958 	pt_size = pid_tbl_mask + 1;
959 	mutex_exit(&proc_lock);
960 
961 	tsz = pt_size * 2 * sizeof(struct pid_table);
962 	new_pt = kmem_alloc(tsz, KM_SLEEP);
963 	new_pt_mask = pt_size * 2 - 1;
964 
965 	/* XXX For now.  The pratical limit is much lower anyway. */
966 	KASSERT(new_pt_mask <= FUTEX_TID_MASK);
967 
968 	mutex_enter(&proc_lock);
969 	if (pt_size != pid_tbl_mask + 1) {
970 		/* Another process beat us to it... */
971 		mutex_exit(&proc_lock);
972 		kmem_free(new_pt, tsz);
973 		goto out;
974 	}
975 
976 	/*
977 	 * Copy entries from old table into new one.
978 	 * If 'pid' is 'odd' we need to place in the upper half,
979 	 * even pid's to the lower half.
980 	 * Free items stay in the low half so we don't have to
981 	 * fixup the reference to them.
982 	 * We stuff free items on the front of the freelist
983 	 * because we can't write to unmodified entries.
984 	 * Processing the table backwards maintains a semblance
985 	 * of issuing pid numbers that increase with time.
986 	 */
987 	i = pt_size - 1;
988 	n_pt = new_pt + i;
989 	for (; ; i--, n_pt--) {
990 		slot = pid_table[i].pt_slot;
991 		pgrp = pid_table[i].pt_pgrp;
992 		if (!PT_VALID(slot)) {
993 			/* Up 'use count' so that link is valid */
994 			pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
995 			rpid = 0;
996 			slot = PT_SET_FREE(pid);
997 			if (pgrp)
998 				pid = pgrp->pg_id;
999 		} else {
1000 			pid = pid_table[i].pt_pid;
1001 			rpid = pid;
1002 		}
1003 
1004 		/* Save entry in appropriate half of table */
1005 		n_pt[pid & pt_size].pt_slot = slot;
1006 		n_pt[pid & pt_size].pt_pgrp = pgrp;
1007 		n_pt[pid & pt_size].pt_pid = rpid;
1008 
1009 		/* Put other piece on start of free list */
1010 		pid = (pid ^ pt_size) & ~pid_tbl_mask;
1011 		n_pt[pid & pt_size].pt_slot =
1012 			PT_SET_FREE((pid & ~pt_size) | next_free_pt);
1013 		n_pt[pid & pt_size].pt_pgrp = 0;
1014 		n_pt[pid & pt_size].pt_pid = 0;
1015 
1016 		next_free_pt = i | (pid & pt_size);
1017 		if (i == 0)
1018 			break;
1019 	}
1020 
1021 	/* Save old table size and switch tables */
1022 	tsz = pt_size * sizeof(struct pid_table);
1023 	n_pt = pid_table;
1024 	atomic_store_release(&pid_table, new_pt);
1025 	KASSERT(new_pt_mask >= pid_tbl_mask);
1026 	atomic_store_release(&pid_tbl_mask, new_pt_mask);
1027 
1028 	/*
1029 	 * pid_max starts as PID_MAX (= 30000), once we have 16384
1030 	 * allocated pids we need it to be larger!
1031 	 */
1032 	if (pid_tbl_mask > PID_MAX) {
1033 		pid_max = pid_tbl_mask * 2 + 1;
1034 		pid_alloc_lim |= pid_alloc_lim << 1;
1035 	} else
1036 		pid_alloc_lim <<= 1;	/* doubles number of free slots... */
1037 
1038 	mutex_exit(&proc_lock);
1039 
1040 	/*
1041 	 * Make sure that unlocked access to the old pid_table is complete
1042 	 * and then free it.
1043 	 */
1044 	pserialize_perform(proc_psz);
1045 	kmem_free(n_pt, tsz);
1046 
1047  out:	/* Return with proc_lock held again. */
1048 	mutex_enter(&proc_lock);
1049 }
1050 
1051 struct proc *
proc_alloc(void)1052 proc_alloc(void)
1053 {
1054 	struct proc *p;
1055 
1056 	p = pool_cache_get(proc_cache, PR_WAITOK);
1057 	p->p_stat = SIDL;			/* protect against others */
1058 	proc_initspecific(p);
1059 	kdtrace_proc_ctor(NULL, p);
1060 
1061 	/*
1062 	 * Allocate a placeholder in the pid_table.  When we create the
1063 	 * first LWP for this process, it will take ownership of the
1064 	 * slot.
1065 	 */
1066 	if (__predict_false(proc_alloc_pid(p) == -1)) {
1067 		/* Allocating the PID failed; unwind. */
1068 		proc_finispecific(p);
1069 		proc_free_mem(p);
1070 		p = NULL;
1071 	}
1072 	return p;
1073 }
1074 
1075 /*
1076  * proc_alloc_pid_slot: allocate PID and record the occcupant so that
1077  * proc_find_raw() can find it by the PID.
1078  */
1079 static pid_t __noinline
proc_alloc_pid_slot(struct proc * p,uintptr_t slot)1080 proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
1081 {
1082 	struct pid_table *pt;
1083 	pid_t pid;
1084 	int nxt;
1085 
1086 	KASSERT(mutex_owned(&proc_lock));
1087 
1088 	for (;;expand_pid_table()) {
1089 		if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
1090 			/* ensure pids cycle through 2000+ values */
1091 			continue;
1092 		}
1093 		/*
1094 		 * The first user process *must* be given PID 1.
1095 		 * it has already been reserved for us.  This
1096 		 * will be coming in from the proc_alloc() call
1097 		 * above, and the entry will be usurped later when
1098 		 * the first user LWP is created.
1099 		 * XXX this is slightly gross.
1100 		 */
1101 		if (__predict_false(PT_RESERVED(pid_table[1].pt_slot) &&
1102 				    p != &proc0)) {
1103 			KASSERT(PT_IS_PROC(slot));
1104 			pt = &pid_table[1];
1105 			pt->pt_slot = slot;
1106 			return 1;
1107 		}
1108 		pt = &pid_table[next_free_pt];
1109 #ifdef DIAGNOSTIC
1110 		if (__predict_false(PT_VALID(pt->pt_slot) || pt->pt_pgrp))
1111 			panic("proc_alloc: slot busy");
1112 #endif
1113 		nxt = PT_NEXT(pt->pt_slot);
1114 		if (nxt & pid_tbl_mask)
1115 			break;
1116 		/* Table full - expand (NB last entry not used....) */
1117 	}
1118 
1119 	/* pid is 'saved use count' + 'size' + entry */
1120 	pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
1121 	if ((uint)pid > (uint)pid_max)
1122 		pid &= pid_tbl_mask;
1123 	next_free_pt = nxt & pid_tbl_mask;
1124 
1125 	/* XXX For now.  The pratical limit is much lower anyway. */
1126 	KASSERT(pid <= FUTEX_TID_MASK);
1127 
1128 	/* Grab table slot */
1129 	pt->pt_slot = slot;
1130 
1131 	KASSERT(pt->pt_pid == 0);
1132 	pt->pt_pid = pid;
1133 	pid_alloc_cnt++;
1134 
1135 	return pid;
1136 }
1137 
1138 pid_t
proc_alloc_pid(struct proc * p)1139 proc_alloc_pid(struct proc *p)
1140 {
1141 	pid_t pid;
1142 
1143 	KASSERT((((uintptr_t)p) & PT_F_ALLBITS) == 0);
1144 	KASSERT(p->p_stat == SIDL);
1145 
1146 	mutex_enter(&proc_lock);
1147 	pid = proc_alloc_pid_slot(p, PT_SET_PROC(p));
1148 	if (pid != -1)
1149 		p->p_pid = pid;
1150 	mutex_exit(&proc_lock);
1151 
1152 	return pid;
1153 }
1154 
1155 pid_t
proc_alloc_lwpid(struct proc * p,struct lwp * l)1156 proc_alloc_lwpid(struct proc *p, struct lwp *l)
1157 {
1158 	struct pid_table *pt;
1159 	pid_t pid;
1160 
1161 	KASSERT((((uintptr_t)l) & PT_F_ALLBITS) == 0);
1162 	KASSERT(l->l_proc == p);
1163 	KASSERT(l->l_stat == LSIDL);
1164 
1165 	/*
1166 	 * For unlocked lookup in proc_find_lwp(), make sure l->l_proc
1167 	 * is globally visible before the LWP becomes visible via the
1168 	 * pid_table.
1169 	 */
1170 #ifndef __HAVE_ATOMIC_AS_MEMBAR
1171 	membar_producer();
1172 #endif
1173 
1174 	/*
1175 	 * If the slot for p->p_pid currently points to the proc,
1176 	 * then we should usurp this ID for the LWP.  This happens
1177 	 * at least once per process (for the first LWP), and can
1178 	 * happen again if the first LWP for a process exits and
1179 	 * before the process creates another.
1180 	 */
1181 	mutex_enter(&proc_lock);
1182 	pid = p->p_pid;
1183 	pt = &pid_table[pid & pid_tbl_mask];
1184 	KASSERT(pt->pt_pid == pid);
1185 	if (PT_IS_PROC(pt->pt_slot)) {
1186 		KASSERT(PT_GET_PROC(pt->pt_slot) == p);
1187 		l->l_lid = pid;
1188 		pt->pt_slot = PT_SET_LWP(l);
1189 	} else {
1190 		/* Need to allocate a new slot. */
1191 		pid = proc_alloc_pid_slot(p, PT_SET_LWP(l));
1192 		if (pid != -1)
1193 			l->l_lid = pid;
1194 	}
1195 	mutex_exit(&proc_lock);
1196 
1197 	return pid;
1198 }
1199 
1200 static void __noinline
proc_free_pid_internal(pid_t pid,uintptr_t type __diagused)1201 proc_free_pid_internal(pid_t pid, uintptr_t type __diagused)
1202 {
1203 	struct pid_table *pt;
1204 
1205 	KASSERT(mutex_owned(&proc_lock));
1206 
1207 	pt = &pid_table[pid & pid_tbl_mask];
1208 
1209 	KASSERT(PT_GET_TYPE(pt->pt_slot) == type);
1210 	KASSERT(pt->pt_pid == pid);
1211 
1212 	/* save pid use count in slot */
1213 	pt->pt_slot = PT_SET_FREE(pid & ~pid_tbl_mask);
1214 	pt->pt_pid = 0;
1215 
1216 	if (pt->pt_pgrp == NULL) {
1217 		/* link last freed entry onto ours */
1218 		pid &= pid_tbl_mask;
1219 		pt = &pid_table[last_free_pt];
1220 		pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pid);
1221 		pt->pt_pid = 0;
1222 		last_free_pt = pid;
1223 		pid_alloc_cnt--;
1224 	}
1225 }
1226 
1227 /*
1228  * Free a process id - called from proc_free (in kern_exit.c)
1229  *
1230  * Called with the proc_lock held.
1231  */
1232 void
proc_free_pid(pid_t pid)1233 proc_free_pid(pid_t pid)
1234 {
1235 
1236 	KASSERT(mutex_owned(&proc_lock));
1237 	proc_free_pid_internal(pid, PT_F_PROC);
1238 }
1239 
1240 /*
1241  * Free a process id used by an LWP.  If this was the process's
1242  * first LWP, we convert the slot to point to the process; the
1243  * entry will get cleaned up later when the process finishes exiting.
1244  *
1245  * If not, then it's the same as proc_free_pid().
1246  */
1247 void
proc_free_lwpid(struct proc * p,pid_t pid)1248 proc_free_lwpid(struct proc *p, pid_t pid)
1249 {
1250 
1251 	KASSERT(mutex_owned(&proc_lock));
1252 
1253 	if (__predict_true(p->p_pid == pid)) {
1254 		struct pid_table *pt;
1255 
1256 		pt = &pid_table[pid & pid_tbl_mask];
1257 
1258 		KASSERT(pt->pt_pid == pid);
1259 		KASSERT(PT_IS_LWP(pt->pt_slot));
1260 		KASSERT(PT_GET_LWP(pt->pt_slot)->l_proc == p);
1261 
1262 		pt->pt_slot = PT_SET_PROC(p);
1263 		return;
1264 	}
1265 	proc_free_pid_internal(pid, PT_F_LWP);
1266 }
1267 
1268 void
proc_free_mem(struct proc * p)1269 proc_free_mem(struct proc *p)
1270 {
1271 
1272 	kdtrace_proc_dtor(NULL, p);
1273 	pool_cache_put(proc_cache, p);
1274 }
1275 
1276 /*
1277  * proc_enterpgrp: move p to a new or existing process group (and session).
1278  *
1279  * If we are creating a new pgrp, the pgid should equal
1280  * the calling process' pid.
1281  * If is only valid to enter a process group that is in the session
1282  * of the process.
1283  * Also mksess should only be set if we are creating a process group
1284  *
1285  * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return.
1286  */
1287 int
proc_enterpgrp(struct proc * curp,pid_t pid,pid_t pgid,bool mksess)1288 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
1289 {
1290 	struct pgrp *new_pgrp, *pgrp;
1291 	struct session *sess;
1292 	struct proc *p;
1293 	int rval;
1294 	pid_t pg_id = NO_PGID;
1295 
1296 	/* Allocate data areas we might need before doing any validity checks */
1297 	sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
1298 	new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
1299 
1300 	mutex_enter(&proc_lock);
1301 	rval = EPERM;	/* most common error (to save typing) */
1302 
1303 	/* Check pgrp exists or can be created */
1304 	pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
1305 	if (pgrp != NULL && pgrp->pg_id != pgid)
1306 		goto done;
1307 
1308 	/* Can only set another process under restricted circumstances. */
1309 	if (pid != curp->p_pid) {
1310 		/* Must exist and be one of our children... */
1311 		p = proc_find_internal(pid, false);
1312 		if (p == NULL || !p_inferior(p, curp)) {
1313 			rval = ESRCH;
1314 			goto done;
1315 		}
1316 		/* ... in the same session... */
1317 		if (sess != NULL || p->p_session != curp->p_session)
1318 			goto done;
1319 		/* ... existing pgid must be in same session ... */
1320 		if (pgrp != NULL && pgrp->pg_session != p->p_session)
1321 			goto done;
1322 		/* ... and not done an exec. */
1323 		if (p->p_flag & PK_EXEC) {
1324 			rval = EACCES;
1325 			goto done;
1326 		}
1327 	} else {
1328 		/* ... setsid() cannot re-enter a pgrp */
1329 		if (mksess && (curp->p_pgid == curp->p_pid ||
1330 		    pgrp_find(curp->p_pid)))
1331 			goto done;
1332 		p = curp;
1333 	}
1334 
1335 	/* Changing the process group/session of a session
1336 	   leader is definitely off limits. */
1337 	if (SESS_LEADER(p)) {
1338 		if (sess == NULL && p->p_pgrp == pgrp)
1339 			/* unless it's a definite noop */
1340 			rval = 0;
1341 		goto done;
1342 	}
1343 
1344 	/* Can only create a process group with id of process */
1345 	if (pgrp == NULL && pgid != pid)
1346 		goto done;
1347 
1348 	/* Can only create a session if creating pgrp */
1349 	if (sess != NULL && pgrp != NULL)
1350 		goto done;
1351 
1352 	/* Check we allocated memory for a pgrp... */
1353 	if (pgrp == NULL && new_pgrp == NULL)
1354 		goto done;
1355 
1356 	/* Don't attach to 'zombie' pgrp */
1357 	if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
1358 		goto done;
1359 
1360 	/* Expect to succeed now */
1361 	rval = 0;
1362 
1363 	if (pgrp == p->p_pgrp)
1364 		/* nothing to do */
1365 		goto done;
1366 
1367 	/* Ok all setup, link up required structures */
1368 
1369 	if (pgrp == NULL) {
1370 		pgrp = new_pgrp;
1371 		new_pgrp = NULL;
1372 		if (sess != NULL) {
1373 			sess->s_sid = p->p_pid;
1374 			sess->s_leader = p;
1375 			sess->s_count = 1;
1376 			sess->s_ttyvp = NULL;
1377 			sess->s_ttyp = NULL;
1378 			sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
1379 			memcpy(sess->s_login, p->p_session->s_login,
1380 			    sizeof(sess->s_login));
1381 			p->p_lflag &= ~PL_CONTROLT;
1382 		} else {
1383 			sess = p->p_pgrp->pg_session;
1384 			proc_sesshold(sess);
1385 		}
1386 		pgrp->pg_session = sess;
1387 		sess = NULL;
1388 
1389 		pgrp->pg_id = pgid;
1390 		LIST_INIT(&pgrp->pg_members);
1391 #ifdef DIAGNOSTIC
1392 		if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
1393 			panic("enterpgrp: pgrp table slot in use");
1394 		if (__predict_false(mksess && p != curp))
1395 			panic("enterpgrp: mksession and p != curproc");
1396 #endif
1397 		pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
1398 		pgrp->pg_jobc = 0;
1399 	}
1400 
1401 	/*
1402 	 * Adjust eligibility of affected pgrps to participate in job control.
1403 	 * Increment eligibility counts before decrementing, otherwise we
1404 	 * could reach 0 spuriously during the first call.
1405 	 */
1406 	fixjobc(p, pgrp, 1);
1407 	fixjobc(p, p->p_pgrp, 0);
1408 
1409 	/* Interlock with ttread(). */
1410 	mutex_spin_enter(&tty_lock);
1411 
1412 	/* Move process to requested group. */
1413 	LIST_REMOVE(p, p_pglist);
1414 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
1415 		/* defer delete until we've dumped the lock */
1416 		pg_id = p->p_pgrp->pg_id;
1417 	p->p_pgrp = pgrp;
1418 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
1419 
1420 	/* Done with the swap; we can release the tty mutex. */
1421 	mutex_spin_exit(&tty_lock);
1422 
1423     done:
1424 	if (pg_id != NO_PGID) {
1425 		/* Releases proc_lock. */
1426 		pg_delete(pg_id);
1427 	} else {
1428 		mutex_exit(&proc_lock);
1429 	}
1430 	if (sess != NULL)
1431 		kmem_free(sess, sizeof(*sess));
1432 	if (new_pgrp != NULL)
1433 		kmem_free(new_pgrp, sizeof(*new_pgrp));
1434 #ifdef DEBUG_PGRP
1435 	if (__predict_false(rval))
1436 		printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
1437 			pid, pgid, mksess, curp->p_pid, rval);
1438 #endif
1439 	return rval;
1440 }
1441 
1442 /*
1443  * proc_leavepgrp: remove a process from its process group.
1444  *  => must be called with the proc_lock held, which will be released;
1445  */
1446 void
proc_leavepgrp(struct proc * p)1447 proc_leavepgrp(struct proc *p)
1448 {
1449 	struct pgrp *pgrp;
1450 
1451 	KASSERT(mutex_owned(&proc_lock));
1452 
1453 	/* Interlock with ttread() */
1454 	mutex_spin_enter(&tty_lock);
1455 	pgrp = p->p_pgrp;
1456 	LIST_REMOVE(p, p_pglist);
1457 	p->p_pgrp = NULL;
1458 	mutex_spin_exit(&tty_lock);
1459 
1460 	if (LIST_EMPTY(&pgrp->pg_members)) {
1461 		/* Releases proc_lock. */
1462 		pg_delete(pgrp->pg_id);
1463 	} else {
1464 		mutex_exit(&proc_lock);
1465 	}
1466 }
1467 
1468 /*
1469  * pg_remove: remove a process group from the table.
1470  *  => must be called with the proc_lock held;
1471  *  => returns process group to free;
1472  */
1473 static struct pgrp *
pg_remove(pid_t pg_id)1474 pg_remove(pid_t pg_id)
1475 {
1476 	struct pgrp *pgrp;
1477 	struct pid_table *pt;
1478 
1479 	KASSERT(mutex_owned(&proc_lock));
1480 
1481 	pt = &pid_table[pg_id & pid_tbl_mask];
1482 	pgrp = pt->pt_pgrp;
1483 
1484 	KASSERT(pgrp != NULL);
1485 	KASSERT(pgrp->pg_id == pg_id);
1486 	KASSERT(LIST_EMPTY(&pgrp->pg_members));
1487 
1488 	pt->pt_pgrp = NULL;
1489 
1490 	if (!PT_VALID(pt->pt_slot)) {
1491 		/* Orphaned pgrp, put slot onto free list. */
1492 		KASSERT((PT_NEXT(pt->pt_slot) & pid_tbl_mask) == 0);
1493 		pg_id &= pid_tbl_mask;
1494 		pt = &pid_table[last_free_pt];
1495 		pt->pt_slot = PT_SET_FREE(PT_NEXT(pt->pt_slot) | pg_id);
1496 		KASSERT(pt->pt_pid == 0);
1497 		last_free_pt = pg_id;
1498 		pid_alloc_cnt--;
1499 	}
1500 	return pgrp;
1501 }
1502 
1503 /*
1504  * pg_delete: delete and free a process group.
1505  *  => must be called with the proc_lock held, which will be released.
1506  */
1507 static void
pg_delete(pid_t pg_id)1508 pg_delete(pid_t pg_id)
1509 {
1510 	struct pgrp *pg;
1511 	struct tty *ttyp;
1512 	struct session *ss;
1513 
1514 	KASSERT(mutex_owned(&proc_lock));
1515 
1516 	pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1517 	if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1518 		mutex_exit(&proc_lock);
1519 		return;
1520 	}
1521 
1522 	ss = pg->pg_session;
1523 
1524 	/* Remove reference (if any) from tty to this process group */
1525 	mutex_spin_enter(&tty_lock);
1526 	ttyp = ss->s_ttyp;
1527 	if (ttyp != NULL && ttyp->t_pgrp == pg) {
1528 		ttyp->t_pgrp = NULL;
1529 		KASSERT(ttyp->t_session == ss);
1530 	}
1531 	mutex_spin_exit(&tty_lock);
1532 
1533 	/*
1534 	 * The leading process group in a session is freed by proc_sessrele(),
1535 	 * if last reference.  It will also release the locks.
1536 	 */
1537 	pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1538 	proc_sessrele(ss);
1539 
1540 	if (pg != NULL) {
1541 		/* Free it, if was not done above. */
1542 		kmem_free(pg, sizeof(struct pgrp));
1543 	}
1544 }
1545 
1546 /*
1547  * Adjust pgrp jobc counters when specified process changes process group.
1548  * We count the number of processes in each process group that "qualify"
1549  * the group for terminal job control (those with a parent in a different
1550  * process group of the same session).  If that count reaches zero, the
1551  * process group becomes orphaned.  Check both the specified process'
1552  * process group and that of its children.
1553  * entering == 0 => p is leaving specified group.
1554  * entering == 1 => p is entering specified group.
1555  *
1556  * Call with proc_lock held.
1557  */
1558 void
fixjobc(struct proc * p,struct pgrp * pgrp,int entering)1559 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1560 {
1561 	struct pgrp *hispgrp;
1562 	struct session *mysession = pgrp->pg_session;
1563 	struct proc *child;
1564 
1565 	KASSERT(mutex_owned(&proc_lock));
1566 
1567 	/*
1568 	 * Check p's parent to see whether p qualifies its own process
1569 	 * group; if so, adjust count for p's process group.
1570 	 */
1571 	hispgrp = p->p_pptr->p_pgrp;
1572 	if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1573 		if (entering) {
1574 			pgrp->pg_jobc++;
1575 			p->p_lflag &= ~PL_ORPHANPG;
1576 		} else {
1577 			/* KASSERT(pgrp->pg_jobc > 0); */
1578 			if (--pgrp->pg_jobc == 0)
1579 				orphanpg(pgrp);
1580 		}
1581 	}
1582 
1583 	/*
1584 	 * Check this process' children to see whether they qualify
1585 	 * their process groups; if so, adjust counts for children's
1586 	 * process groups.
1587 	 */
1588 	LIST_FOREACH(child, &p->p_children, p_sibling) {
1589 		hispgrp = child->p_pgrp;
1590 		if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1591 		    !P_ZOMBIE(child)) {
1592 			if (entering) {
1593 				child->p_lflag &= ~PL_ORPHANPG;
1594 				hispgrp->pg_jobc++;
1595 			} else {
1596 				KASSERT(hispgrp->pg_jobc > 0);
1597 				if (--hispgrp->pg_jobc == 0)
1598 					orphanpg(hispgrp);
1599 			}
1600 		}
1601 	}
1602 }
1603 
1604 /*
1605  * A process group has become orphaned;
1606  * if there are any stopped processes in the group,
1607  * hang-up all process in that group.
1608  *
1609  * Call with proc_lock held.
1610  */
1611 static void
orphanpg(struct pgrp * pg)1612 orphanpg(struct pgrp *pg)
1613 {
1614 	struct proc *p;
1615 
1616 	KASSERT(mutex_owned(&proc_lock));
1617 
1618 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1619 		if (p->p_stat == SSTOP) {
1620 			p->p_lflag |= PL_ORPHANPG;
1621 			psignal(p, SIGHUP);
1622 			psignal(p, SIGCONT);
1623 		}
1624 	}
1625 }
1626 
1627 #ifdef DDB
1628 #include <ddb/db_output.h>
1629 void pidtbl_dump(void);
1630 void
pidtbl_dump(void)1631 pidtbl_dump(void)
1632 {
1633 	struct pid_table *pt;
1634 	struct proc *p;
1635 	struct pgrp *pgrp;
1636 	uintptr_t slot;
1637 	int id;
1638 
1639 	db_printf("pid table %p size %x, next %x, last %x\n",
1640 		pid_table, pid_tbl_mask+1,
1641 		next_free_pt, last_free_pt);
1642 	for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1643 		slot = pt->pt_slot;
1644 		if (!PT_VALID(slot) && !pt->pt_pgrp)
1645 			continue;
1646 		if (PT_IS_LWP(slot)) {
1647 			p = PT_GET_LWP(slot)->l_proc;
1648 		} else if (PT_IS_PROC(slot)) {
1649 			p = PT_GET_PROC(slot);
1650 		} else {
1651 			p = NULL;
1652 		}
1653 		db_printf("  id %x: ", id);
1654 		if (p != NULL)
1655 			db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1656 				pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1657 		else
1658 			db_printf("next %x use %x\n",
1659 				PT_NEXT(slot) & pid_tbl_mask,
1660 				PT_NEXT(slot) & ~pid_tbl_mask);
1661 		if ((pgrp = pt->pt_pgrp)) {
1662 			db_printf("\tsession %p, sid %d, count %d, login %s\n",
1663 			    pgrp->pg_session, pgrp->pg_session->s_sid,
1664 			    pgrp->pg_session->s_count,
1665 			    pgrp->pg_session->s_login);
1666 			db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1667 			    pgrp, pgrp->pg_id, pgrp->pg_jobc,
1668 			    LIST_FIRST(&pgrp->pg_members));
1669 			LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1670 				db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1671 				    p->p_pid, p, p->p_pgrp, p->p_comm);
1672 			}
1673 		}
1674 	}
1675 }
1676 #endif /* DDB */
1677 
1678 #ifdef KSTACK_CHECK_MAGIC
1679 
1680 #define	KSTACK_MAGIC	0xdeadbeaf
1681 
1682 /* XXX should be per process basis? */
1683 static int	kstackleftmin = KSTACK_SIZE;
1684 static int	kstackleftthres = KSTACK_SIZE / 8;
1685 
1686 void
kstack_setup_magic(const struct lwp * l)1687 kstack_setup_magic(const struct lwp *l)
1688 {
1689 	uint32_t *ip;
1690 	uint32_t const *end;
1691 
1692 	KASSERT(l != NULL);
1693 	KASSERT(l != &lwp0);
1694 
1695 	/*
1696 	 * fill all the stack with magic number
1697 	 * so that later modification on it can be detected.
1698 	 */
1699 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1700 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1701 	for (; ip < end; ip++) {
1702 		*ip = KSTACK_MAGIC;
1703 	}
1704 }
1705 
1706 void
kstack_check_magic(const struct lwp * l)1707 kstack_check_magic(const struct lwp *l)
1708 {
1709 	uint32_t const *ip, *end;
1710 	int stackleft;
1711 
1712 	KASSERT(l != NULL);
1713 
1714 	/* don't check proc0 */ /*XXX*/
1715 	if (l == &lwp0)
1716 		return;
1717 
1718 #ifdef __MACHINE_STACK_GROWS_UP
1719 	/* stack grows upwards (eg. hppa) */
1720 	ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1721 	end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1722 	for (ip--; ip >= end; ip--)
1723 		if (*ip != KSTACK_MAGIC)
1724 			break;
1725 
1726 	stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1727 #else /* __MACHINE_STACK_GROWS_UP */
1728 	/* stack grows downwards (eg. i386) */
1729 	ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1730 	end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1731 	for (; ip < end; ip++)
1732 		if (*ip != KSTACK_MAGIC)
1733 			break;
1734 
1735 	stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1736 #endif /* __MACHINE_STACK_GROWS_UP */
1737 
1738 	if (kstackleftmin > stackleft) {
1739 		kstackleftmin = stackleft;
1740 		if (stackleft < kstackleftthres)
1741 			printf("warning: kernel stack left %d bytes"
1742 			    "(pid %u:lid %u)\n", stackleft,
1743 			    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1744 	}
1745 
1746 	if (stackleft <= 0) {
1747 		panic("magic on the top of kernel stack changed for "
1748 		    "pid %u, lid %u: maybe kernel stack overflow",
1749 		    (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1750 	}
1751 }
1752 #endif /* KSTACK_CHECK_MAGIC */
1753 
1754 int
proclist_foreach_call(struct proclist * list,int (* callback)(struct proc *,void * arg),void * arg)1755 proclist_foreach_call(struct proclist *list,
1756     int (*callback)(struct proc *, void *arg), void *arg)
1757 {
1758 	struct proc marker;
1759 	struct proc *p;
1760 	int ret = 0;
1761 
1762 	marker.p_flag = PK_MARKER;
1763 	mutex_enter(&proc_lock);
1764 	for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1765 		if (p->p_flag & PK_MARKER) {
1766 			p = LIST_NEXT(p, p_list);
1767 			continue;
1768 		}
1769 		LIST_INSERT_AFTER(p, &marker, p_list);
1770 		ret = (*callback)(p, arg);
1771 		KASSERT(mutex_owned(&proc_lock));
1772 		p = LIST_NEXT(&marker, p_list);
1773 		LIST_REMOVE(&marker, p_list);
1774 	}
1775 	mutex_exit(&proc_lock);
1776 
1777 	return ret;
1778 }
1779 
1780 int
proc_vmspace_getref(struct proc * p,struct vmspace ** vm)1781 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1782 {
1783 
1784 	/* XXXCDC: how should locking work here? */
1785 
1786 	/* curproc exception is for coredump. */
1787 
1788 	if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1789 	    (p->p_vmspace->vm_refcnt < 1)) {
1790 		return EFAULT;
1791 	}
1792 
1793 	uvmspace_addref(p->p_vmspace);
1794 	*vm = p->p_vmspace;
1795 
1796 	return 0;
1797 }
1798 
1799 /*
1800  * Acquire a write lock on the process credential.
1801  */
1802 void
proc_crmod_enter(void)1803 proc_crmod_enter(void)
1804 {
1805 	struct lwp *l = curlwp;
1806 	struct proc *p = l->l_proc;
1807 	kauth_cred_t oc;
1808 
1809 	/* Reset what needs to be reset in plimit. */
1810 	if (p->p_limit->pl_corename != defcorename) {
1811 		lim_setcorename(p, defcorename, 0);
1812 	}
1813 
1814 	mutex_enter(p->p_lock);
1815 
1816 	/* Ensure the LWP cached credentials are up to date. */
1817 	if ((oc = l->l_cred) != p->p_cred) {
1818 		kauth_cred_hold(p->p_cred);
1819 		l->l_cred = p->p_cred;
1820 		kauth_cred_free(oc);
1821 	}
1822 }
1823 
1824 /*
1825  * Set in a new process credential, and drop the write lock.  The credential
1826  * must have a reference already.  Optionally, free a no-longer required
1827  * credential.
1828  */
1829 void
proc_crmod_leave(kauth_cred_t scred,kauth_cred_t fcred,bool sugid)1830 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1831 {
1832 	struct lwp *l = curlwp, *l2;
1833 	struct proc *p = l->l_proc;
1834 	kauth_cred_t oc;
1835 
1836 	KASSERT(mutex_owned(p->p_lock));
1837 
1838 	/* Is there a new credential to set in? */
1839 	if (scred != NULL) {
1840 		p->p_cred = scred;
1841 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1842 			if (l2 != l)
1843 				l2->l_prflag |= LPR_CRMOD;
1844 		}
1845 
1846 		/* Ensure the LWP cached credentials are up to date. */
1847 		if ((oc = l->l_cred) != scred) {
1848 			kauth_cred_hold(scred);
1849 			l->l_cred = scred;
1850 		}
1851 	} else
1852 		oc = NULL;	/* XXXgcc */
1853 
1854 	if (sugid) {
1855 		/*
1856 		 * Mark process as having changed credentials, stops
1857 		 * tracing etc.
1858 		 */
1859 		p->p_flag |= PK_SUGID;
1860 	}
1861 
1862 	mutex_exit(p->p_lock);
1863 
1864 	/* If there is a credential to be released, free it now. */
1865 	if (fcred != NULL) {
1866 		KASSERT(scred != NULL);
1867 		kauth_cred_free(fcred);
1868 		if (oc != scred)
1869 			kauth_cred_free(oc);
1870 	}
1871 }
1872 
1873 /*
1874  * proc_specific_key_create --
1875  *	Create a key for subsystem proc-specific data.
1876  */
1877 int
proc_specific_key_create(specificdata_key_t * keyp,specificdata_dtor_t dtor)1878 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1879 {
1880 
1881 	return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1882 }
1883 
1884 /*
1885  * proc_specific_key_delete --
1886  *	Delete a key for subsystem proc-specific data.
1887  */
1888 void
proc_specific_key_delete(specificdata_key_t key)1889 proc_specific_key_delete(specificdata_key_t key)
1890 {
1891 
1892 	specificdata_key_delete(proc_specificdata_domain, key);
1893 }
1894 
1895 /*
1896  * proc_initspecific --
1897  *	Initialize a proc's specificdata container.
1898  */
1899 void
proc_initspecific(struct proc * p)1900 proc_initspecific(struct proc *p)
1901 {
1902 	int error __diagused;
1903 
1904 	error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1905 	KASSERT(error == 0);
1906 }
1907 
1908 /*
1909  * proc_finispecific --
1910  *	Finalize a proc's specificdata container.
1911  */
1912 void
proc_finispecific(struct proc * p)1913 proc_finispecific(struct proc *p)
1914 {
1915 
1916 	specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1917 }
1918 
1919 /*
1920  * proc_getspecific --
1921  *	Return proc-specific data corresponding to the specified key.
1922  */
1923 void *
proc_getspecific(struct proc * p,specificdata_key_t key)1924 proc_getspecific(struct proc *p, specificdata_key_t key)
1925 {
1926 
1927 	return (specificdata_getspecific(proc_specificdata_domain,
1928 					 &p->p_specdataref, key));
1929 }
1930 
1931 /*
1932  * proc_setspecific --
1933  *	Set proc-specific data corresponding to the specified key.
1934  */
1935 void
proc_setspecific(struct proc * p,specificdata_key_t key,void * data)1936 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1937 {
1938 
1939 	specificdata_setspecific(proc_specificdata_domain,
1940 				 &p->p_specdataref, key, data);
1941 }
1942 
1943 int
proc_uidmatch(kauth_cred_t cred,kauth_cred_t target)1944 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1945 {
1946 	int r = 0;
1947 
1948 	if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1949 	    kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1950 		/*
1951 		 * suid proc of ours or proc not ours
1952 		 */
1953 		r = EPERM;
1954 	} else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1955 		/*
1956 		 * sgid proc has sgid back to us temporarily
1957 		 */
1958 		r = EPERM;
1959 	} else {
1960 		/*
1961 		 * our rgid must be in target's group list (ie,
1962 		 * sub-processes started by a sgid process)
1963 		 */
1964 		int ismember = 0;
1965 
1966 		if (kauth_cred_ismember_gid(cred,
1967 		    kauth_cred_getgid(target), &ismember) != 0 ||
1968 		    !ismember)
1969 			r = EPERM;
1970 	}
1971 
1972 	return (r);
1973 }
1974 
1975 /*
1976  * sysctl stuff
1977  */
1978 
1979 #define KERN_PROCSLOP	(5 * sizeof(struct kinfo_proc))
1980 
1981 static const u_int sysctl_flagmap[] = {
1982 	PK_ADVLOCK, P_ADVLOCK,
1983 	PK_EXEC, P_EXEC,
1984 	PK_NOCLDWAIT, P_NOCLDWAIT,
1985 	PK_32, P_32,
1986 	PK_CLDSIGIGN, P_CLDSIGIGN,
1987 	PK_SUGID, P_SUGID,
1988 	0
1989 };
1990 
1991 static const u_int sysctl_sflagmap[] = {
1992 	PS_NOCLDSTOP, P_NOCLDSTOP,
1993 	PS_WEXIT, P_WEXIT,
1994 	PS_STOPFORK, P_STOPFORK,
1995 	PS_STOPEXEC, P_STOPEXEC,
1996 	PS_STOPEXIT, P_STOPEXIT,
1997 	0
1998 };
1999 
2000 static const u_int sysctl_slflagmap[] = {
2001 	PSL_TRACED, P_TRACED,
2002 	PSL_CHTRACED, P_CHTRACED,
2003 	PSL_SYSCALL, P_SYSCALL,
2004 	0
2005 };
2006 
2007 static const u_int sysctl_lflagmap[] = {
2008 	PL_CONTROLT, P_CONTROLT,
2009 	PL_PPWAIT, P_PPWAIT,
2010 	0
2011 };
2012 
2013 static const u_int sysctl_stflagmap[] = {
2014 	PST_PROFIL, P_PROFIL,
2015 	0
2016 
2017 };
2018 
2019 /* used by kern_lwp also */
2020 const u_int sysctl_lwpflagmap[] = {
2021 	LW_SINTR, L_SINTR,
2022 	LW_SYSTEM, L_SYSTEM,
2023 	0
2024 };
2025 
2026 /*
2027  * Find the most ``active'' lwp of a process and return it for ps display
2028  * purposes
2029  */
2030 static struct lwp *
proc_active_lwp(struct proc * p)2031 proc_active_lwp(struct proc *p)
2032 {
2033 	static const int ostat[] = {
2034 		0,
2035 		2,	/* LSIDL */
2036 		6,	/* LSRUN */
2037 		5,	/* LSSLEEP */
2038 		4,	/* LSSTOP */
2039 		0,	/* LSZOMB */
2040 		1,	/* LSDEAD */
2041 		7,	/* LSONPROC */
2042 		3	/* LSSUSPENDED */
2043 	};
2044 
2045 	struct lwp *l, *lp = NULL;
2046 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2047 		KASSERT(l->l_stat >= 0);
2048 		KASSERT(l->l_stat < __arraycount(ostat));
2049 		if (lp == NULL ||
2050 		    ostat[l->l_stat] > ostat[lp->l_stat] ||
2051 		    (ostat[l->l_stat] == ostat[lp->l_stat] &&
2052 		    l->l_cpticks > lp->l_cpticks)) {
2053 			lp = l;
2054 			continue;
2055 		}
2056 	}
2057 	return lp;
2058 }
2059 
2060 static int
sysctl_doeproc(SYSCTLFN_ARGS)2061 sysctl_doeproc(SYSCTLFN_ARGS)
2062 {
2063 	union {
2064 		struct kinfo_proc kproc;
2065 		struct kinfo_proc2 kproc2;
2066 	} *kbuf;
2067 	struct proc *p, *next, *marker;
2068 	char *where, *dp;
2069 	int type, op, arg, error;
2070 	u_int elem_size, kelem_size, elem_count;
2071 	size_t buflen, needed;
2072 	bool match, zombie, mmmbrains;
2073 	const bool allowaddr = get_expose_address(curproc);
2074 
2075 	if (namelen == 1 && name[0] == CTL_QUERY)
2076 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
2077 
2078 	dp = where = oldp;
2079 	buflen = where != NULL ? *oldlenp : 0;
2080 	error = 0;
2081 	needed = 0;
2082 	type = rnode->sysctl_num;
2083 
2084 	if (type == KERN_PROC) {
2085 		if (namelen == 0)
2086 			return EINVAL;
2087 		switch (op = name[0]) {
2088 		case KERN_PROC_ALL:
2089 			if (namelen != 1)
2090 				return EINVAL;
2091 			arg = 0;
2092 			break;
2093 		default:
2094 			if (namelen != 2)
2095 				return EINVAL;
2096 			arg = name[1];
2097 			break;
2098 		}
2099 		elem_count = 0;	/* Hush little compiler, don't you cry */
2100 		kelem_size = elem_size = sizeof(kbuf->kproc);
2101 	} else {
2102 		if (namelen != 4)
2103 			return EINVAL;
2104 		op = name[0];
2105 		arg = name[1];
2106 		elem_size = name[2];
2107 		elem_count = name[3];
2108 		kelem_size = sizeof(kbuf->kproc2);
2109 	}
2110 
2111 	sysctl_unlock();
2112 
2113 	kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
2114 	marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
2115 	marker->p_flag = PK_MARKER;
2116 
2117 	mutex_enter(&proc_lock);
2118 	/*
2119 	 * Start with zombies to prevent reporting processes twice, in case they
2120 	 * are dying and being moved from the list of alive processes to zombies.
2121 	 */
2122 	mmmbrains = true;
2123 	for (p = LIST_FIRST(&zombproc);; p = next) {
2124 		if (p == NULL) {
2125 			if (mmmbrains) {
2126 				p = LIST_FIRST(&allproc);
2127 				mmmbrains = false;
2128 			}
2129 			if (p == NULL)
2130 				break;
2131 		}
2132 		next = LIST_NEXT(p, p_list);
2133 		if ((p->p_flag & PK_MARKER) != 0)
2134 			continue;
2135 
2136 		/*
2137 		 * Skip embryonic processes.
2138 		 */
2139 		if (p->p_stat == SIDL)
2140 			continue;
2141 
2142 		mutex_enter(p->p_lock);
2143 		error = kauth_authorize_process(l->l_cred,
2144 		    KAUTH_PROCESS_CANSEE, p,
2145 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
2146 		if (error != 0) {
2147 			mutex_exit(p->p_lock);
2148 			continue;
2149 		}
2150 
2151 		/*
2152 		 * Hande all the operations in one switch on the cost of
2153 		 * algorithm complexity is on purpose. The win splitting this
2154 		 * function into several similar copies makes maintenance
2155 		 * burden, code grow and boost is negligible in practical
2156 		 * systems.
2157 		 */
2158 		switch (op) {
2159 		case KERN_PROC_PID:
2160 			match = (p->p_pid == (pid_t)arg);
2161 			break;
2162 
2163 		case KERN_PROC_PGRP:
2164 			match = (p->p_pgrp->pg_id == (pid_t)arg);
2165 			break;
2166 
2167 		case KERN_PROC_SESSION:
2168 			match = (p->p_session->s_sid == (pid_t)arg);
2169 			break;
2170 
2171 		case KERN_PROC_TTY:
2172 			match = true;
2173 			if (arg == (int) KERN_PROC_TTY_REVOKE) {
2174 				if ((p->p_lflag & PL_CONTROLT) == 0 ||
2175 				    p->p_session->s_ttyp == NULL ||
2176 				    p->p_session->s_ttyvp != NULL) {
2177 				    	match = false;
2178 				}
2179 			} else if ((p->p_lflag & PL_CONTROLT) == 0 ||
2180 			    p->p_session->s_ttyp == NULL) {
2181 				if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
2182 					match = false;
2183 				}
2184 			} else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
2185 				match = false;
2186 			}
2187 			break;
2188 
2189 		case KERN_PROC_UID:
2190 			match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
2191 			break;
2192 
2193 		case KERN_PROC_RUID:
2194 			match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
2195 			break;
2196 
2197 		case KERN_PROC_GID:
2198 			match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
2199 			break;
2200 
2201 		case KERN_PROC_RGID:
2202 			match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
2203 			break;
2204 
2205 		case KERN_PROC_ALL:
2206 			match = true;
2207 			/* allow everything */
2208 			break;
2209 
2210 		default:
2211 			error = EINVAL;
2212 			mutex_exit(p->p_lock);
2213 			goto cleanup;
2214 		}
2215 		if (!match) {
2216 			mutex_exit(p->p_lock);
2217 			continue;
2218 		}
2219 
2220 		/*
2221 		 * Grab a hold on the process.
2222 		 */
2223 		if (mmmbrains) {
2224 			zombie = true;
2225 		} else {
2226 			zombie = !rw_tryenter(&p->p_reflock, RW_READER);
2227 		}
2228 		if (zombie) {
2229 			LIST_INSERT_AFTER(p, marker, p_list);
2230 		}
2231 
2232 		if (buflen >= elem_size &&
2233 		    (type == KERN_PROC || elem_count > 0)) {
2234 			ruspace(p);	/* Update process vm resource use */
2235 
2236 			if (type == KERN_PROC) {
2237 				fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
2238 				fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
2239 				    allowaddr);
2240 			} else {
2241 				fill_kproc2(p, &kbuf->kproc2, zombie,
2242 				    allowaddr);
2243 				elem_count--;
2244 			}
2245 			mutex_exit(p->p_lock);
2246 			mutex_exit(&proc_lock);
2247 			/*
2248 			 * Copy out elem_size, but not larger than kelem_size
2249 			 */
2250 			error = sysctl_copyout(l, kbuf, dp,
2251 			    uimin(kelem_size, elem_size));
2252 			mutex_enter(&proc_lock);
2253 			if (error) {
2254 				goto bah;
2255 			}
2256 			dp += elem_size;
2257 			buflen -= elem_size;
2258 		} else {
2259 			mutex_exit(p->p_lock);
2260 		}
2261 		needed += elem_size;
2262 
2263 		/*
2264 		 * Release reference to process.
2265 		 */
2266 	 	if (zombie) {
2267 			next = LIST_NEXT(marker, p_list);
2268  			LIST_REMOVE(marker, p_list);
2269 		} else {
2270 			rw_exit(&p->p_reflock);
2271 			next = LIST_NEXT(p, p_list);
2272 		}
2273 
2274 		/*
2275 		 * Short-circuit break quickly!
2276 		 */
2277 		if (op == KERN_PROC_PID)
2278                 	break;
2279 	}
2280 	mutex_exit(&proc_lock);
2281 
2282 	if (where != NULL) {
2283 		*oldlenp = dp - where;
2284 		if (needed > *oldlenp) {
2285 			error = ENOMEM;
2286 			goto out;
2287 		}
2288 	} else {
2289 		needed += KERN_PROCSLOP;
2290 		*oldlenp = needed;
2291 	}
2292 	kmem_free(kbuf, sizeof(*kbuf));
2293 	kmem_free(marker, sizeof(*marker));
2294 	sysctl_relock();
2295 	return 0;
2296  bah:
2297  	if (zombie)
2298  		LIST_REMOVE(marker, p_list);
2299 	else
2300 		rw_exit(&p->p_reflock);
2301  cleanup:
2302 	mutex_exit(&proc_lock);
2303  out:
2304 	kmem_free(kbuf, sizeof(*kbuf));
2305 	kmem_free(marker, sizeof(*marker));
2306 	sysctl_relock();
2307 	return error;
2308 }
2309 
2310 int
copyin_psstrings(struct proc * p,struct ps_strings * arginfo)2311 copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
2312 {
2313 #if !defined(_RUMPKERNEL)
2314 	int retval;
2315 
2316 	if (p->p_flag & PK_32) {
2317 		MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
2318 		    enosys(), retval);
2319 		return retval;
2320 	}
2321 #endif /* !defined(_RUMPKERNEL) */
2322 
2323 	return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
2324 }
2325 
2326 static int
copy_procargs_sysctl_cb(void * cookie_,const void * src,size_t off,size_t len)2327 copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
2328 {
2329 	void **cookie = cookie_;
2330 	struct lwp *l = cookie[0];
2331 	char *dst = cookie[1];
2332 
2333 	return sysctl_copyout(l, src, dst + off, len);
2334 }
2335 
2336 /*
2337  * sysctl helper routine for kern.proc_args pseudo-subtree.
2338  */
2339 static int
sysctl_kern_proc_args(SYSCTLFN_ARGS)2340 sysctl_kern_proc_args(SYSCTLFN_ARGS)
2341 {
2342 	struct ps_strings pss;
2343 	struct proc *p;
2344 	pid_t pid;
2345 	int type, error;
2346 	void *cookie[2];
2347 
2348 	if (namelen == 1 && name[0] == CTL_QUERY)
2349 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
2350 
2351 	if (newp != NULL || namelen != 2)
2352 		return (EINVAL);
2353 	pid = name[0];
2354 	type = name[1];
2355 
2356 	switch (type) {
2357 	case KERN_PROC_PATHNAME:
2358 		sysctl_unlock();
2359 		error = fill_pathname(l, pid, oldp, oldlenp);
2360 		sysctl_relock();
2361 		return error;
2362 
2363 	case KERN_PROC_CWD:
2364 		sysctl_unlock();
2365 		error = fill_cwd(l, pid, oldp, oldlenp);
2366 		sysctl_relock();
2367 		return error;
2368 
2369 	case KERN_PROC_ARGV:
2370 	case KERN_PROC_NARGV:
2371 	case KERN_PROC_ENV:
2372 	case KERN_PROC_NENV:
2373 		/* ok */
2374 		break;
2375 	default:
2376 		return (EINVAL);
2377 	}
2378 
2379 	sysctl_unlock();
2380 
2381 	/* check pid */
2382 	mutex_enter(&proc_lock);
2383 	if ((p = proc_find(pid)) == NULL) {
2384 		error = EINVAL;
2385 		goto out_locked;
2386 	}
2387 	mutex_enter(p->p_lock);
2388 
2389 	/* Check permission. */
2390 	if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
2391 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2392 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
2393 	else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
2394 		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2395 		    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
2396 	else
2397 		error = EINVAL; /* XXXGCC */
2398 	if (error) {
2399 		mutex_exit(p->p_lock);
2400 		goto out_locked;
2401 	}
2402 
2403 	if (oldp == NULL) {
2404 		if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2405 			*oldlenp = sizeof (int);
2406 		else
2407 			*oldlenp = ARG_MAX;	/* XXX XXX XXX */
2408 		error = 0;
2409 		mutex_exit(p->p_lock);
2410 		goto out_locked;
2411 	}
2412 
2413 	/*
2414 	 * Zombies don't have a stack, so we can't read their psstrings.
2415 	 * System processes also don't have a user stack.
2416 	 */
2417 	if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
2418 		error = EINVAL;
2419 		mutex_exit(p->p_lock);
2420 		goto out_locked;
2421 	}
2422 
2423 	error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
2424 	mutex_exit(p->p_lock);
2425 	if (error) {
2426 		goto out_locked;
2427 	}
2428 	mutex_exit(&proc_lock);
2429 
2430 	if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2431 		int value;
2432 		if ((error = copyin_psstrings(p, &pss)) == 0) {
2433 			if (type == KERN_PROC_NARGV)
2434 				value = pss.ps_nargvstr;
2435 			else
2436 				value = pss.ps_nenvstr;
2437 			error = sysctl_copyout(l, &value, oldp, sizeof(value));
2438 			*oldlenp = sizeof(value);
2439 		}
2440 	} else {
2441 		cookie[0] = l;
2442 		cookie[1] = oldp;
2443 		error = copy_procargs(p, type, oldlenp,
2444 		    copy_procargs_sysctl_cb, cookie);
2445 	}
2446 	rw_exit(&p->p_reflock);
2447 	sysctl_relock();
2448 	return error;
2449 
2450 out_locked:
2451 	mutex_exit(&proc_lock);
2452 	sysctl_relock();
2453 	return error;
2454 }
2455 
2456 int
copy_procargs(struct proc * p,int oid,size_t * limit,int (* cb)(void *,const void *,size_t,size_t),void * cookie)2457 copy_procargs(struct proc *p, int oid, size_t *limit,
2458     int (*cb)(void *, const void *, size_t, size_t), void *cookie)
2459 {
2460 	struct ps_strings pss;
2461 	size_t len, i, loaded, entry_len;
2462 	struct uio auio;
2463 	struct iovec aiov;
2464 	int error, argvlen;
2465 	char *arg;
2466 	char **argv;
2467 	vaddr_t user_argv;
2468 	struct vmspace *vmspace;
2469 
2470 	/*
2471 	 * Allocate a temporary buffer to hold the argument vector and
2472 	 * the arguments themselve.
2473 	 */
2474 	arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2475 	argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2476 
2477 	/*
2478 	 * Lock the process down in memory.
2479 	 */
2480 	vmspace = p->p_vmspace;
2481 	uvmspace_addref(vmspace);
2482 
2483 	/*
2484 	 * Read in the ps_strings structure.
2485 	 */
2486 	if ((error = copyin_psstrings(p, &pss)) != 0)
2487 		goto done;
2488 
2489 	/*
2490 	 * Now read the address of the argument vector.
2491 	 */
2492 	switch (oid) {
2493 	case KERN_PROC_ARGV:
2494 		user_argv = (uintptr_t)pss.ps_argvstr;
2495 		argvlen = pss.ps_nargvstr;
2496 		break;
2497 	case KERN_PROC_ENV:
2498 		user_argv = (uintptr_t)pss.ps_envstr;
2499 		argvlen = pss.ps_nenvstr;
2500 		break;
2501 	default:
2502 		error = EINVAL;
2503 		goto done;
2504 	}
2505 
2506 	if (argvlen < 0) {
2507 		error = EIO;
2508 		goto done;
2509 	}
2510 
2511 
2512 	/*
2513 	 * Now copy each string.
2514 	 */
2515 	len = 0; /* bytes written to user buffer */
2516 	loaded = 0; /* bytes from argv already processed */
2517 	i = 0; /* To make compiler happy */
2518 	entry_len = PROC_PTRSZ(p);
2519 
2520 	for (; argvlen; --argvlen) {
2521 		int finished = 0;
2522 		vaddr_t base;
2523 		size_t xlen;
2524 		int j;
2525 
2526 		if (loaded == 0) {
2527 			size_t rem = entry_len * argvlen;
2528 			loaded = MIN(rem, PAGE_SIZE);
2529 			error = copyin_vmspace(vmspace,
2530 			    (const void *)user_argv, argv, loaded);
2531 			if (error)
2532 				break;
2533 			user_argv += loaded;
2534 			i = 0;
2535 		}
2536 
2537 #if !defined(_RUMPKERNEL)
2538 		if (p->p_flag & PK_32)
2539 			MODULE_HOOK_CALL(kern_proc32_base_hook,
2540 			    (argv, i++), 0, base);
2541 		else
2542 #endif /* !defined(_RUMPKERNEL) */
2543 			base = (vaddr_t)argv[i++];
2544 		loaded -= entry_len;
2545 
2546 		/*
2547 		 * The program has messed around with its arguments,
2548 		 * possibly deleting some, and replacing them with
2549 		 * NULL's. Treat this as the last argument and not
2550 		 * a failure.
2551 		 */
2552 		if (base == 0)
2553 			break;
2554 
2555 		while (!finished) {
2556 			xlen = PAGE_SIZE - (base & PAGE_MASK);
2557 
2558 			aiov.iov_base = arg;
2559 			aiov.iov_len = PAGE_SIZE;
2560 			auio.uio_iov = &aiov;
2561 			auio.uio_iovcnt = 1;
2562 			auio.uio_offset = base;
2563 			auio.uio_resid = xlen;
2564 			auio.uio_rw = UIO_READ;
2565 			UIO_SETUP_SYSSPACE(&auio);
2566 			error = uvm_io(&vmspace->vm_map, &auio, 0);
2567 			if (error)
2568 				goto done;
2569 
2570 			/* Look for the end of the string */
2571 			for (j = 0; j < xlen; j++) {
2572 				if (arg[j] == '\0') {
2573 					xlen = j + 1;
2574 					finished = 1;
2575 					break;
2576 				}
2577 			}
2578 
2579 			/* Check for user buffer overflow */
2580 			if (len + xlen > *limit) {
2581 				finished = 1;
2582 				if (len > *limit)
2583 					xlen = 0;
2584 				else
2585 					xlen = *limit - len;
2586 			}
2587 
2588 			/* Copyout the page */
2589 			error = (*cb)(cookie, arg, len, xlen);
2590 			if (error)
2591 				goto done;
2592 
2593 			len += xlen;
2594 			base += xlen;
2595 		}
2596 	}
2597 	*limit = len;
2598 
2599 done:
2600 	kmem_free(argv, PAGE_SIZE);
2601 	kmem_free(arg, PAGE_SIZE);
2602 	uvmspace_free(vmspace);
2603 	return error;
2604 }
2605 
2606 /*
2607  * Fill in a proc structure for the specified process.
2608  */
2609 static void
fill_proc(const struct proc * psrc,struct proc * p,bool allowaddr)2610 fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
2611 {
2612 	COND_SET_STRUCT(p->p_list, psrc->p_list, allowaddr);
2613 	memset(&p->p_auxlock, 0, sizeof(p->p_auxlock));
2614 	COND_SET_STRUCT(p->p_lock, psrc->p_lock, allowaddr);
2615 	memset(&p->p_stmutex, 0, sizeof(p->p_stmutex));
2616 	memset(&p->p_reflock, 0, sizeof(p->p_reflock));
2617 	COND_SET_STRUCT(p->p_waitcv, psrc->p_waitcv, allowaddr);
2618 	COND_SET_STRUCT(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
2619 	COND_SET_PTR(p->p_cred, psrc->p_cred, allowaddr);
2620 	COND_SET_PTR(p->p_fd, psrc->p_fd, allowaddr);
2621 	COND_SET_PTR(p->p_cwdi, psrc->p_cwdi, allowaddr);
2622 	COND_SET_PTR(p->p_stats, psrc->p_stats, allowaddr);
2623 	COND_SET_PTR(p->p_limit, psrc->p_limit, allowaddr);
2624 	COND_SET_PTR(p->p_vmspace, psrc->p_vmspace, allowaddr);
2625 	COND_SET_PTR(p->p_sigacts, psrc->p_sigacts, allowaddr);
2626 	COND_SET_PTR(p->p_aio, psrc->p_aio, allowaddr);
2627 	p->p_mqueue_cnt = psrc->p_mqueue_cnt;
2628 	memset(&p->p_specdataref, 0, sizeof(p->p_specdataref));
2629 	p->p_exitsig = psrc->p_exitsig;
2630 	p->p_flag = psrc->p_flag;
2631 	p->p_sflag = psrc->p_sflag;
2632 	p->p_slflag = psrc->p_slflag;
2633 	p->p_lflag = psrc->p_lflag;
2634 	p->p_stflag = psrc->p_stflag;
2635 	p->p_stat = psrc->p_stat;
2636 	p->p_trace_enabled = psrc->p_trace_enabled;
2637 	p->p_pid = psrc->p_pid;
2638 	COND_SET_STRUCT(p->p_pglist, psrc->p_pglist, allowaddr);
2639 	COND_SET_PTR(p->p_pptr, psrc->p_pptr, allowaddr);
2640 	COND_SET_STRUCT(p->p_sibling, psrc->p_sibling, allowaddr);
2641 	COND_SET_STRUCT(p->p_children, psrc->p_children, allowaddr);
2642 	COND_SET_STRUCT(p->p_lwps, psrc->p_lwps, allowaddr);
2643 	COND_SET_PTR(p->p_raslist, psrc->p_raslist, allowaddr);
2644 	p->p_nlwps = psrc->p_nlwps;
2645 	p->p_nzlwps = psrc->p_nzlwps;
2646 	p->p_nrlwps = psrc->p_nrlwps;
2647 	p->p_nlwpwait = psrc->p_nlwpwait;
2648 	p->p_ndlwps = psrc->p_ndlwps;
2649 	p->p_nstopchild = psrc->p_nstopchild;
2650 	p->p_waited = psrc->p_waited;
2651 	COND_SET_PTR(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
2652 	COND_SET_PTR(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
2653 	COND_SET_PTR(p->p_sched_info, psrc->p_sched_info, allowaddr);
2654 	p->p_estcpu = psrc->p_estcpu;
2655 	p->p_estcpu_inherited = psrc->p_estcpu_inherited;
2656 	p->p_forktime = psrc->p_forktime;
2657 	p->p_pctcpu = psrc->p_pctcpu;
2658 	COND_SET_PTR(p->p_opptr, psrc->p_opptr, allowaddr);
2659 	COND_SET_PTR(p->p_timers, psrc->p_timers, allowaddr);
2660 	p->p_rtime = psrc->p_rtime;
2661 	p->p_uticks = psrc->p_uticks;
2662 	p->p_sticks = psrc->p_sticks;
2663 	p->p_iticks = psrc->p_iticks;
2664 	p->p_xutime = psrc->p_xutime;
2665 	p->p_xstime = psrc->p_xstime;
2666 	p->p_traceflag = psrc->p_traceflag;
2667 	COND_SET_PTR(p->p_tracep, psrc->p_tracep, allowaddr);
2668 	COND_SET_PTR(p->p_textvp, psrc->p_textvp, allowaddr);
2669 	COND_SET_PTR(p->p_emul, psrc->p_emul, allowaddr);
2670 	COND_SET_PTR(p->p_emuldata, psrc->p_emuldata, allowaddr);
2671 	COND_SET_CPTR(p->p_execsw, psrc->p_execsw, allowaddr);
2672 	COND_SET_STRUCT(p->p_klist, psrc->p_klist, allowaddr);
2673 	COND_SET_STRUCT(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
2674 	COND_SET_STRUCT(p->p_sigpend.sp_info, psrc->p_sigpend.sp_info,
2675 	    allowaddr);
2676 	p->p_sigpend.sp_set = psrc->p_sigpend.sp_set;
2677 	COND_SET_PTR(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
2678 	p->p_ppid = psrc->p_ppid;
2679 	p->p_oppid = psrc->p_oppid;
2680 	COND_SET_PTR(p->p_path, psrc->p_path, allowaddr);
2681 	p->p_sigctx = psrc->p_sigctx;
2682 	p->p_nice = psrc->p_nice;
2683 	memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
2684 	COND_SET_PTR(p->p_pgrp, psrc->p_pgrp, allowaddr);
2685 	COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
2686 	p->p_pax = psrc->p_pax;
2687 	p->p_xexit = psrc->p_xexit;
2688 	p->p_xsig = psrc->p_xsig;
2689 	p->p_acflag = psrc->p_acflag;
2690 	COND_SET_STRUCT(p->p_md, psrc->p_md, allowaddr);
2691 	p->p_stackbase = psrc->p_stackbase;
2692 	COND_SET_PTR(p->p_dtrace, psrc->p_dtrace, allowaddr);
2693 }
2694 
2695 /*
2696  * Fill in an eproc structure for the specified process.
2697  */
2698 void
fill_eproc(struct proc * p,struct eproc * ep,bool zombie,bool allowaddr)2699 fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
2700 {
2701 	struct tty *tp;
2702 	struct lwp *l;
2703 
2704 	KASSERT(mutex_owned(&proc_lock));
2705 	KASSERT(mutex_owned(p->p_lock));
2706 
2707 	COND_SET_PTR(ep->e_paddr, p, allowaddr);
2708 	COND_SET_PTR(ep->e_sess, p->p_session, allowaddr);
2709 	if (p->p_cred) {
2710 		kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2711 		kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2712 	}
2713 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2714 		struct vmspace *vm = p->p_vmspace;
2715 
2716 		ep->e_vm.vm_rssize = vm_resident_count(vm);
2717 		ep->e_vm.vm_tsize = vm->vm_tsize;
2718 		ep->e_vm.vm_dsize = vm->vm_dsize;
2719 		ep->e_vm.vm_ssize = vm->vm_ssize;
2720 		ep->e_vm.vm_map.size = vm->vm_map.size;
2721 
2722 		/* Pick the primary (first) LWP */
2723 		l = proc_active_lwp(p);
2724 		KASSERT(l != NULL);
2725 		lwp_lock(l);
2726 		if (l->l_wchan)
2727 			strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2728 		lwp_unlock(l);
2729 	}
2730 	ep->e_ppid = p->p_ppid;
2731 	if (p->p_pgrp && p->p_session) {
2732 		ep->e_pgid = p->p_pgrp->pg_id;
2733 		ep->e_jobc = p->p_pgrp->pg_jobc;
2734 		ep->e_sid = p->p_session->s_sid;
2735 		if ((p->p_lflag & PL_CONTROLT) &&
2736 		    (tp = p->p_session->s_ttyp)) {
2737 			ep->e_tdev = tp->t_dev;
2738 			ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2739 			COND_SET_PTR(ep->e_tsess, tp->t_session, allowaddr);
2740 		} else
2741 			ep->e_tdev = (uint32_t)NODEV;
2742 		ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
2743 		if (SESS_LEADER(p))
2744 			ep->e_flag |= EPROC_SLEADER;
2745 		strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
2746 	}
2747 	ep->e_xsize = ep->e_xrssize = 0;
2748 	ep->e_xccount = ep->e_xswrss = 0;
2749 }
2750 
2751 /*
2752  * Fill in a kinfo_proc2 structure for the specified process.
2753  */
2754 void
fill_kproc2(struct proc * p,struct kinfo_proc2 * ki,bool zombie,bool allowaddr)2755 fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
2756 {
2757 	struct tty *tp;
2758 	struct lwp *l, *l2;
2759 	struct timeval ut, st, rt;
2760 	sigset_t ss1, ss2;
2761 	struct rusage ru;
2762 	struct vmspace *vm;
2763 
2764 	KASSERT(mutex_owned(&proc_lock));
2765 	KASSERT(mutex_owned(p->p_lock));
2766 
2767 	sigemptyset(&ss1);
2768 	sigemptyset(&ss2);
2769 
2770 	COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
2771 	COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
2772 	COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
2773 	COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
2774 	COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
2775 	COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
2776 	COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
2777 	COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
2778 	ki->p_tsess = 0;	/* may be changed if controlling tty below */
2779 	COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
2780 	ki->p_eflag = 0;
2781 	ki->p_exitsig = p->p_exitsig;
2782 	ki->p_flag = L_INMEM;   /* Process never swapped out */
2783 	ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2784 	ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2785 	ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2786 	ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2787 	ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2788 	ki->p_pid = p->p_pid;
2789 	ki->p_ppid = p->p_ppid;
2790 	ki->p_uid = kauth_cred_geteuid(p->p_cred);
2791 	ki->p_ruid = kauth_cred_getuid(p->p_cred);
2792 	ki->p_gid = kauth_cred_getegid(p->p_cred);
2793 	ki->p_rgid = kauth_cred_getgid(p->p_cred);
2794 	ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2795 	ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2796 	ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2797 	kauth_cred_getgroups(p->p_cred, ki->p_groups,
2798 	    uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2799 	    UIO_SYSSPACE);
2800 
2801 	ki->p_uticks = p->p_uticks;
2802 	ki->p_sticks = p->p_sticks;
2803 	ki->p_iticks = p->p_iticks;
2804 	ki->p_tpgid = NO_PGID;	/* may be changed if controlling tty below */
2805 	COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
2806 	ki->p_traceflag = p->p_traceflag;
2807 
2808 	memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2809 	memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2810 
2811 	ki->p_cpticks = 0;
2812 	ki->p_pctcpu = p->p_pctcpu;
2813 	ki->p_estcpu = 0;
2814 	ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2815 	ki->p_realstat = p->p_stat;
2816 	ki->p_nice = p->p_nice;
2817 	ki->p_xstat = P_WAITSTATUS(p);
2818 	ki->p_acflag = p->p_acflag;
2819 
2820 	strncpy(ki->p_comm, p->p_comm,
2821 	    uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
2822 	strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2823 
2824 	ki->p_nlwps = p->p_nlwps;
2825 	ki->p_realflag = ki->p_flag;
2826 
2827 	if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2828 		vm = p->p_vmspace;
2829 		ki->p_vm_rssize = vm_resident_count(vm);
2830 		ki->p_vm_tsize = vm->vm_tsize;
2831 		ki->p_vm_dsize = vm->vm_dsize;
2832 		ki->p_vm_ssize = vm->vm_ssize;
2833 		ki->p_vm_vsize = atop(vm->vm_map.size);
2834 		/*
2835 		 * Since the stack is initially mapped mostly with
2836 		 * PROT_NONE and grown as needed, adjust the "mapped size"
2837 		 * to skip the unused stack portion.
2838 		 */
2839 		ki->p_vm_msize =
2840 		    atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2841 
2842 		/* Pick the primary (first) LWP */
2843 		l = proc_active_lwp(p);
2844 		KASSERT(l != NULL);
2845 		lwp_lock(l);
2846 		ki->p_nrlwps = p->p_nrlwps;
2847 		ki->p_forw = 0;
2848 		ki->p_back = 0;
2849 		COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
2850 		ki->p_stat = l->l_stat;
2851 		ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2852 		ki->p_swtime = l->l_swtime;
2853 		ki->p_slptime = l->l_slptime;
2854 		if (l->l_stat == LSONPROC)
2855 			ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2856 		else
2857 			ki->p_schedflags = 0;
2858 		ki->p_priority = lwp_eprio(l);
2859 		ki->p_usrpri = l->l_priority;
2860 		if (l->l_wchan)
2861 			strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2862 		COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
2863 		ki->p_cpuid = cpu_index(l->l_cpu);
2864 		lwp_unlock(l);
2865 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2866 			/* This is hardly correct, but... */
2867 			sigplusset(&l->l_sigpend.sp_set, &ss1);
2868 			sigplusset(&l->l_sigmask, &ss2);
2869 			ki->p_cpticks += l->l_cpticks;
2870 			ki->p_pctcpu += l->l_pctcpu;
2871 			ki->p_estcpu += l->l_estcpu;
2872 		}
2873 	}
2874 	sigplusset(&p->p_sigpend.sp_set, &ss1);
2875 	memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2876 	memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2877 
2878 	if (p->p_session != NULL) {
2879 		ki->p_sid = p->p_session->s_sid;
2880 		ki->p__pgid = p->p_pgrp->pg_id;
2881 		if (p->p_session->s_ttyvp)
2882 			ki->p_eflag |= EPROC_CTTY;
2883 		if (SESS_LEADER(p))
2884 			ki->p_eflag |= EPROC_SLEADER;
2885 		strncpy(ki->p_login, p->p_session->s_login,
2886 		    uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2887 		ki->p_jobc = p->p_pgrp->pg_jobc;
2888 		if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2889 			ki->p_tdev = tp->t_dev;
2890 			ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2891 			COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
2892 			    allowaddr);
2893 		} else {
2894 			ki->p_tdev = (int32_t)NODEV;
2895 		}
2896 	}
2897 
2898 	if (!P_ZOMBIE(p) && !zombie) {
2899 		ki->p_uvalid = 1;
2900 		ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2901 		ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2902 
2903 		calcru(p, &ut, &st, NULL, &rt);
2904 		ki->p_rtime_sec = rt.tv_sec;
2905 		ki->p_rtime_usec = rt.tv_usec;
2906 		ki->p_uutime_sec = ut.tv_sec;
2907 		ki->p_uutime_usec = ut.tv_usec;
2908 		ki->p_ustime_sec = st.tv_sec;
2909 		ki->p_ustime_usec = st.tv_usec;
2910 
2911 		memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2912 		ki->p_uru_nvcsw = 0;
2913 		ki->p_uru_nivcsw = 0;
2914 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
2915 			ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
2916 			ki->p_uru_nivcsw += l2->l_nivcsw;
2917 			ruadd(&ru, &l2->l_ru);
2918 		}
2919 		ki->p_uru_maxrss = ru.ru_maxrss;
2920 		ki->p_uru_ixrss = ru.ru_ixrss;
2921 		ki->p_uru_idrss = ru.ru_idrss;
2922 		ki->p_uru_isrss = ru.ru_isrss;
2923 		ki->p_uru_minflt = ru.ru_minflt;
2924 		ki->p_uru_majflt = ru.ru_majflt;
2925 		ki->p_uru_nswap = ru.ru_nswap;
2926 		ki->p_uru_inblock = ru.ru_inblock;
2927 		ki->p_uru_oublock = ru.ru_oublock;
2928 		ki->p_uru_msgsnd = ru.ru_msgsnd;
2929 		ki->p_uru_msgrcv = ru.ru_msgrcv;
2930 		ki->p_uru_nsignals = ru.ru_nsignals;
2931 
2932 		timeradd(&p->p_stats->p_cru.ru_utime,
2933 			 &p->p_stats->p_cru.ru_stime, &ut);
2934 		ki->p_uctime_sec = ut.tv_sec;
2935 		ki->p_uctime_usec = ut.tv_usec;
2936 	}
2937 }
2938 
2939 
2940 int
proc_find_locked(struct lwp * l,struct proc ** p,pid_t pid)2941 proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
2942 {
2943 	int error;
2944 
2945 	mutex_enter(&proc_lock);
2946 	if (pid == -1)
2947 		*p = l->l_proc;
2948 	else
2949 		*p = proc_find(pid);
2950 
2951 	if (*p == NULL) {
2952 		if (pid != -1)
2953 			mutex_exit(&proc_lock);
2954 		return ESRCH;
2955 	}
2956 	if (pid != -1)
2957 		mutex_enter((*p)->p_lock);
2958 	mutex_exit(&proc_lock);
2959 
2960 	error = kauth_authorize_process(l->l_cred,
2961 	    KAUTH_PROCESS_CANSEE, *p,
2962 	    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
2963 	if (error) {
2964 		if (pid != -1)
2965 			mutex_exit((*p)->p_lock);
2966 	}
2967 	return error;
2968 }
2969 
2970 static int
fill_pathname(struct lwp * l,pid_t pid,void * oldp,size_t * oldlenp)2971 fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2972 {
2973 	int error;
2974 	struct proc *p;
2975 
2976 	if ((error = proc_find_locked(l, &p, pid)) != 0)
2977 		return error;
2978 
2979 	if (p->p_path == NULL) {
2980 		if (pid != -1)
2981 			mutex_exit(p->p_lock);
2982 		return ENOENT;
2983 	}
2984 
2985 	size_t len = strlen(p->p_path) + 1;
2986 	if (oldp != NULL) {
2987 		size_t copylen = uimin(len, *oldlenp);
2988 		error = sysctl_copyout(l, p->p_path, oldp, copylen);
2989 		if (error == 0 && *oldlenp < len)
2990 			error = ENOSPC;
2991 	}
2992 	*oldlenp = len;
2993 	if (pid != -1)
2994 		mutex_exit(p->p_lock);
2995 	return error;
2996 }
2997 
2998 static int
fill_cwd(struct lwp * l,pid_t pid,void * oldp,size_t * oldlenp)2999 fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
3000 {
3001 	int error;
3002 	struct proc *p;
3003 	char *path;
3004 	char *bp, *bend;
3005 	struct cwdinfo *cwdi;
3006 	struct vnode *vp;
3007 	size_t len, lenused;
3008 
3009 	if ((error = proc_find_locked(l, &p, pid)) != 0)
3010 		return error;
3011 
3012 	len = MAXPATHLEN * 4;
3013 
3014 	path = kmem_alloc(len, KM_SLEEP);
3015 
3016 	bp = &path[len];
3017 	bend = bp;
3018 	*(--bp) = '\0';
3019 
3020 	cwdi = p->p_cwdi;
3021 	rw_enter(&cwdi->cwdi_lock, RW_READER);
3022 	vp = cwdi->cwdi_cdir;
3023 	error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
3024 	rw_exit(&cwdi->cwdi_lock);
3025 
3026 	if (error)
3027 		goto out;
3028 
3029 	lenused = bend - bp;
3030 
3031 	if (oldp != NULL) {
3032 		size_t copylen = uimin(lenused, *oldlenp);
3033 		error = sysctl_copyout(l, bp, oldp, copylen);
3034 		if (error == 0 && *oldlenp < lenused)
3035 			error = ENOSPC;
3036 	}
3037 	*oldlenp = lenused;
3038 out:
3039 	if (pid != -1)
3040 		mutex_exit(p->p_lock);
3041 	kmem_free(path, len);
3042 	return error;
3043 }
3044 
3045 int
proc_getauxv(struct proc * p,void ** buf,size_t * len)3046 proc_getauxv(struct proc *p, void **buf, size_t *len)
3047 {
3048 	struct ps_strings pss;
3049 	int error;
3050 	void *uauxv, *kauxv;
3051 	size_t size;
3052 
3053 	if ((error = copyin_psstrings(p, &pss)) != 0)
3054 		return error;
3055 	if (pss.ps_envstr == NULL)
3056 		return EIO;
3057 
3058 	size = p->p_execsw->es_arglen;
3059 	if (size == 0)
3060 		return EIO;
3061 
3062 	size_t ptrsz = PROC_PTRSZ(p);
3063 	uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
3064 
3065 	kauxv = kmem_alloc(size, KM_SLEEP);
3066 
3067 	error = copyin_proc(p, uauxv, kauxv, size);
3068 	if (error) {
3069 		kmem_free(kauxv, size);
3070 		return error;
3071 	}
3072 
3073 	*buf = kauxv;
3074 	*len = size;
3075 
3076 	return 0;
3077 }
3078 
3079 
3080 static int
sysctl_security_expose_address(SYSCTLFN_ARGS)3081 sysctl_security_expose_address(SYSCTLFN_ARGS)
3082 {
3083 	int expose_address, error;
3084 	struct sysctlnode node;
3085 
3086 	node = *rnode;
3087 	node.sysctl_data = &expose_address;
3088 	expose_address = *(int *)rnode->sysctl_data;
3089 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3090 	if (error || newp == NULL)
3091 		return error;
3092 
3093 	if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
3094 	    0, NULL, NULL, NULL))
3095 		return EPERM;
3096 
3097 	switch (expose_address) {
3098 	case 0:
3099 	case 1:
3100 	case 2:
3101 		break;
3102 	default:
3103 		return EINVAL;
3104 	}
3105 
3106 	*(int *)rnode->sysctl_data = expose_address;
3107 
3108 	return 0;
3109 }
3110 
3111 bool
get_expose_address(struct proc * p)3112 get_expose_address(struct proc *p)
3113 {
3114 	/* allow only if sysctl variable is set or privileged */
3115 	return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
3116 	    p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
3117 }
3118