xref: /linux/mm/madvise.c (revision 8be7258a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34 
35 #include <asm/tlb.h>
36 
37 #include "internal.h"
38 #include "swap.h"
39 
40 struct madvise_walk_private {
41 	struct mmu_gather *tlb;
42 	bool pageout;
43 };
44 
45 /*
46  * Any behaviour which results in changes to the vma->vm_flags needs to
47  * take mmap_lock for writing. Others, which simply traverse vmas, need
48  * to only take it for reading.
49  */
madvise_need_mmap_write(int behavior)50 static int madvise_need_mmap_write(int behavior)
51 {
52 	switch (behavior) {
53 	case MADV_REMOVE:
54 	case MADV_WILLNEED:
55 	case MADV_DONTNEED:
56 	case MADV_DONTNEED_LOCKED:
57 	case MADV_COLD:
58 	case MADV_PAGEOUT:
59 	case MADV_FREE:
60 	case MADV_POPULATE_READ:
61 	case MADV_POPULATE_WRITE:
62 	case MADV_COLLAPSE:
63 		return 0;
64 	default:
65 		/* be safe, default to 1. list exceptions explicitly */
66 		return 1;
67 	}
68 }
69 
70 #ifdef CONFIG_ANON_VMA_NAME
anon_vma_name_alloc(const char * name)71 struct anon_vma_name *anon_vma_name_alloc(const char *name)
72 {
73 	struct anon_vma_name *anon_name;
74 	size_t count;
75 
76 	/* Add 1 for NUL terminator at the end of the anon_name->name */
77 	count = strlen(name) + 1;
78 	anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
79 	if (anon_name) {
80 		kref_init(&anon_name->kref);
81 		memcpy(anon_name->name, name, count);
82 	}
83 
84 	return anon_name;
85 }
86 
anon_vma_name_free(struct kref * kref)87 void anon_vma_name_free(struct kref *kref)
88 {
89 	struct anon_vma_name *anon_name =
90 			container_of(kref, struct anon_vma_name, kref);
91 	kfree(anon_name);
92 }
93 
anon_vma_name(struct vm_area_struct * vma)94 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
95 {
96 	mmap_assert_locked(vma->vm_mm);
97 
98 	return vma->anon_name;
99 }
100 
101 /* mmap_lock should be write-locked */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)102 static int replace_anon_vma_name(struct vm_area_struct *vma,
103 				 struct anon_vma_name *anon_name)
104 {
105 	struct anon_vma_name *orig_name = anon_vma_name(vma);
106 
107 	if (!anon_name) {
108 		vma->anon_name = NULL;
109 		anon_vma_name_put(orig_name);
110 		return 0;
111 	}
112 
113 	if (anon_vma_name_eq(orig_name, anon_name))
114 		return 0;
115 
116 	vma->anon_name = anon_vma_name_reuse(anon_name);
117 	anon_vma_name_put(orig_name);
118 
119 	return 0;
120 }
121 #else /* CONFIG_ANON_VMA_NAME */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)122 static int replace_anon_vma_name(struct vm_area_struct *vma,
123 				 struct anon_vma_name *anon_name)
124 {
125 	if (anon_name)
126 		return -EINVAL;
127 
128 	return 0;
129 }
130 #endif /* CONFIG_ANON_VMA_NAME */
131 /*
132  * Update the vm_flags on region of a vma, splitting it or merging it as
133  * necessary.  Must be called with mmap_lock held for writing;
134  * Caller should ensure anon_name stability by raising its refcount even when
135  * anon_name belongs to a valid vma because this function might free that vma.
136  */
madvise_update_vma(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long new_flags,struct anon_vma_name * anon_name)137 static int madvise_update_vma(struct vm_area_struct *vma,
138 			      struct vm_area_struct **prev, unsigned long start,
139 			      unsigned long end, unsigned long new_flags,
140 			      struct anon_vma_name *anon_name)
141 {
142 	struct mm_struct *mm = vma->vm_mm;
143 	int error;
144 	VMA_ITERATOR(vmi, mm, start);
145 
146 	if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
147 		*prev = vma;
148 		return 0;
149 	}
150 
151 	vma = vma_modify_flags_name(&vmi, *prev, vma, start, end, new_flags,
152 				    anon_name);
153 	if (IS_ERR(vma))
154 		return PTR_ERR(vma);
155 
156 	*prev = vma;
157 
158 	/* vm_flags is protected by the mmap_lock held in write mode. */
159 	vma_start_write(vma);
160 	vm_flags_reset(vma, new_flags);
161 	if (!vma->vm_file || vma_is_anon_shmem(vma)) {
162 		error = replace_anon_vma_name(vma, anon_name);
163 		if (error)
164 			return error;
165 	}
166 
167 	return 0;
168 }
169 
170 #ifdef CONFIG_SWAP
swapin_walk_pmd_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)171 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
172 		unsigned long end, struct mm_walk *walk)
173 {
174 	struct vm_area_struct *vma = walk->private;
175 	struct swap_iocb *splug = NULL;
176 	pte_t *ptep = NULL;
177 	spinlock_t *ptl;
178 	unsigned long addr;
179 
180 	for (addr = start; addr < end; addr += PAGE_SIZE) {
181 		pte_t pte;
182 		swp_entry_t entry;
183 		struct folio *folio;
184 
185 		if (!ptep++) {
186 			ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
187 			if (!ptep)
188 				break;
189 		}
190 
191 		pte = ptep_get(ptep);
192 		if (!is_swap_pte(pte))
193 			continue;
194 		entry = pte_to_swp_entry(pte);
195 		if (unlikely(non_swap_entry(entry)))
196 			continue;
197 
198 		pte_unmap_unlock(ptep, ptl);
199 		ptep = NULL;
200 
201 		folio = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
202 					     vma, addr, &splug);
203 		if (folio)
204 			folio_put(folio);
205 	}
206 
207 	if (ptep)
208 		pte_unmap_unlock(ptep, ptl);
209 	swap_read_unplug(splug);
210 	cond_resched();
211 
212 	return 0;
213 }
214 
215 static const struct mm_walk_ops swapin_walk_ops = {
216 	.pmd_entry		= swapin_walk_pmd_entry,
217 	.walk_lock		= PGWALK_RDLOCK,
218 };
219 
shmem_swapin_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct address_space * mapping)220 static void shmem_swapin_range(struct vm_area_struct *vma,
221 		unsigned long start, unsigned long end,
222 		struct address_space *mapping)
223 {
224 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
225 	pgoff_t end_index = linear_page_index(vma, end) - 1;
226 	struct folio *folio;
227 	struct swap_iocb *splug = NULL;
228 
229 	rcu_read_lock();
230 	xas_for_each(&xas, folio, end_index) {
231 		unsigned long addr;
232 		swp_entry_t entry;
233 
234 		if (!xa_is_value(folio))
235 			continue;
236 		entry = radix_to_swp_entry(folio);
237 		/* There might be swapin error entries in shmem mapping. */
238 		if (non_swap_entry(entry))
239 			continue;
240 
241 		addr = vma->vm_start +
242 			((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT);
243 		xas_pause(&xas);
244 		rcu_read_unlock();
245 
246 		folio = read_swap_cache_async(entry, mapping_gfp_mask(mapping),
247 					     vma, addr, &splug);
248 		if (folio)
249 			folio_put(folio);
250 
251 		rcu_read_lock();
252 	}
253 	rcu_read_unlock();
254 	swap_read_unplug(splug);
255 }
256 #endif		/* CONFIG_SWAP */
257 
258 /*
259  * Schedule all required I/O operations.  Do not wait for completion.
260  */
madvise_willneed(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)261 static long madvise_willneed(struct vm_area_struct *vma,
262 			     struct vm_area_struct **prev,
263 			     unsigned long start, unsigned long end)
264 {
265 	struct mm_struct *mm = vma->vm_mm;
266 	struct file *file = vma->vm_file;
267 	loff_t offset;
268 
269 	*prev = vma;
270 #ifdef CONFIG_SWAP
271 	if (!file) {
272 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
273 		lru_add_drain(); /* Push any new pages onto the LRU now */
274 		return 0;
275 	}
276 
277 	if (shmem_mapping(file->f_mapping)) {
278 		shmem_swapin_range(vma, start, end, file->f_mapping);
279 		lru_add_drain(); /* Push any new pages onto the LRU now */
280 		return 0;
281 	}
282 #else
283 	if (!file)
284 		return -EBADF;
285 #endif
286 
287 	if (IS_DAX(file_inode(file))) {
288 		/* no bad return value, but ignore advice */
289 		return 0;
290 	}
291 
292 	/*
293 	 * Filesystem's fadvise may need to take various locks.  We need to
294 	 * explicitly grab a reference because the vma (and hence the
295 	 * vma's reference to the file) can go away as soon as we drop
296 	 * mmap_lock.
297 	 */
298 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
299 	get_file(file);
300 	offset = (loff_t)(start - vma->vm_start)
301 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
302 	mmap_read_unlock(mm);
303 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
304 	fput(file);
305 	mmap_read_lock(mm);
306 	return 0;
307 }
308 
can_do_file_pageout(struct vm_area_struct * vma)309 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
310 {
311 	if (!vma->vm_file)
312 		return false;
313 	/*
314 	 * paging out pagecache only for non-anonymous mappings that correspond
315 	 * to the files the calling process could (if tried) open for writing;
316 	 * otherwise we'd be including shared non-exclusive mappings, which
317 	 * opens a side channel.
318 	 */
319 	return inode_owner_or_capable(&nop_mnt_idmap,
320 				      file_inode(vma->vm_file)) ||
321 	       file_permission(vma->vm_file, MAY_WRITE) == 0;
322 }
323 
madvise_folio_pte_batch(unsigned long addr,unsigned long end,struct folio * folio,pte_t * ptep,pte_t pte,bool * any_young,bool * any_dirty)324 static inline int madvise_folio_pte_batch(unsigned long addr, unsigned long end,
325 					  struct folio *folio, pte_t *ptep,
326 					  pte_t pte, bool *any_young,
327 					  bool *any_dirty)
328 {
329 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
330 	int max_nr = (end - addr) / PAGE_SIZE;
331 
332 	return folio_pte_batch(folio, addr, ptep, pte, max_nr, fpb_flags, NULL,
333 			       any_young, any_dirty);
334 }
335 
madvise_cold_or_pageout_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)336 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
337 				unsigned long addr, unsigned long end,
338 				struct mm_walk *walk)
339 {
340 	struct madvise_walk_private *private = walk->private;
341 	struct mmu_gather *tlb = private->tlb;
342 	bool pageout = private->pageout;
343 	struct mm_struct *mm = tlb->mm;
344 	struct vm_area_struct *vma = walk->vma;
345 	pte_t *start_pte, *pte, ptent;
346 	spinlock_t *ptl;
347 	struct folio *folio = NULL;
348 	LIST_HEAD(folio_list);
349 	bool pageout_anon_only_filter;
350 	unsigned int batch_count = 0;
351 	int nr;
352 
353 	if (fatal_signal_pending(current))
354 		return -EINTR;
355 
356 	pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
357 					!can_do_file_pageout(vma);
358 
359 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
360 	if (pmd_trans_huge(*pmd)) {
361 		pmd_t orig_pmd;
362 		unsigned long next = pmd_addr_end(addr, end);
363 
364 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
365 		ptl = pmd_trans_huge_lock(pmd, vma);
366 		if (!ptl)
367 			return 0;
368 
369 		orig_pmd = *pmd;
370 		if (is_huge_zero_pmd(orig_pmd))
371 			goto huge_unlock;
372 
373 		if (unlikely(!pmd_present(orig_pmd))) {
374 			VM_BUG_ON(thp_migration_supported() &&
375 					!is_pmd_migration_entry(orig_pmd));
376 			goto huge_unlock;
377 		}
378 
379 		folio = pmd_folio(orig_pmd);
380 
381 		/* Do not interfere with other mappings of this folio */
382 		if (folio_likely_mapped_shared(folio))
383 			goto huge_unlock;
384 
385 		if (pageout_anon_only_filter && !folio_test_anon(folio))
386 			goto huge_unlock;
387 
388 		if (next - addr != HPAGE_PMD_SIZE) {
389 			int err;
390 
391 			folio_get(folio);
392 			spin_unlock(ptl);
393 			folio_lock(folio);
394 			err = split_folio(folio);
395 			folio_unlock(folio);
396 			folio_put(folio);
397 			if (!err)
398 				goto regular_folio;
399 			return 0;
400 		}
401 
402 		if (!pageout && pmd_young(orig_pmd)) {
403 			pmdp_invalidate(vma, addr, pmd);
404 			orig_pmd = pmd_mkold(orig_pmd);
405 
406 			set_pmd_at(mm, addr, pmd, orig_pmd);
407 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
408 		}
409 
410 		folio_clear_referenced(folio);
411 		folio_test_clear_young(folio);
412 		if (folio_test_active(folio))
413 			folio_set_workingset(folio);
414 		if (pageout) {
415 			if (folio_isolate_lru(folio)) {
416 				if (folio_test_unevictable(folio))
417 					folio_putback_lru(folio);
418 				else
419 					list_add(&folio->lru, &folio_list);
420 			}
421 		} else
422 			folio_deactivate(folio);
423 huge_unlock:
424 		spin_unlock(ptl);
425 		if (pageout)
426 			reclaim_pages(&folio_list);
427 		return 0;
428 	}
429 
430 regular_folio:
431 #endif
432 	tlb_change_page_size(tlb, PAGE_SIZE);
433 restart:
434 	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
435 	if (!start_pte)
436 		return 0;
437 	flush_tlb_batched_pending(mm);
438 	arch_enter_lazy_mmu_mode();
439 	for (; addr < end; pte += nr, addr += nr * PAGE_SIZE) {
440 		nr = 1;
441 		ptent = ptep_get(pte);
442 
443 		if (++batch_count == SWAP_CLUSTER_MAX) {
444 			batch_count = 0;
445 			if (need_resched()) {
446 				arch_leave_lazy_mmu_mode();
447 				pte_unmap_unlock(start_pte, ptl);
448 				cond_resched();
449 				goto restart;
450 			}
451 		}
452 
453 		if (pte_none(ptent))
454 			continue;
455 
456 		if (!pte_present(ptent))
457 			continue;
458 
459 		folio = vm_normal_folio(vma, addr, ptent);
460 		if (!folio || folio_is_zone_device(folio))
461 			continue;
462 
463 		/*
464 		 * If we encounter a large folio, only split it if it is not
465 		 * fully mapped within the range we are operating on. Otherwise
466 		 * leave it as is so that it can be swapped out whole. If we
467 		 * fail to split a folio, leave it in place and advance to the
468 		 * next pte in the range.
469 		 */
470 		if (folio_test_large(folio)) {
471 			bool any_young;
472 
473 			nr = madvise_folio_pte_batch(addr, end, folio, pte,
474 						     ptent, &any_young, NULL);
475 			if (any_young)
476 				ptent = pte_mkyoung(ptent);
477 
478 			if (nr < folio_nr_pages(folio)) {
479 				int err;
480 
481 				if (folio_likely_mapped_shared(folio))
482 					continue;
483 				if (pageout_anon_only_filter && !folio_test_anon(folio))
484 					continue;
485 				if (!folio_trylock(folio))
486 					continue;
487 				folio_get(folio);
488 				arch_leave_lazy_mmu_mode();
489 				pte_unmap_unlock(start_pte, ptl);
490 				start_pte = NULL;
491 				err = split_folio(folio);
492 				folio_unlock(folio);
493 				folio_put(folio);
494 				start_pte = pte =
495 					pte_offset_map_lock(mm, pmd, addr, &ptl);
496 				if (!start_pte)
497 					break;
498 				arch_enter_lazy_mmu_mode();
499 				if (!err)
500 					nr = 0;
501 				continue;
502 			}
503 		}
504 
505 		/*
506 		 * Do not interfere with other mappings of this folio and
507 		 * non-LRU folio. If we have a large folio at this point, we
508 		 * know it is fully mapped so if its mapcount is the same as its
509 		 * number of pages, it must be exclusive.
510 		 */
511 		if (!folio_test_lru(folio) ||
512 		    folio_mapcount(folio) != folio_nr_pages(folio))
513 			continue;
514 
515 		if (pageout_anon_only_filter && !folio_test_anon(folio))
516 			continue;
517 
518 		if (!pageout && pte_young(ptent)) {
519 			clear_young_dirty_ptes(vma, addr, pte, nr,
520 					       CYDP_CLEAR_YOUNG);
521 			tlb_remove_tlb_entries(tlb, pte, nr, addr);
522 		}
523 
524 		/*
525 		 * We are deactivating a folio for accelerating reclaiming.
526 		 * VM couldn't reclaim the folio unless we clear PG_young.
527 		 * As a side effect, it makes confuse idle-page tracking
528 		 * because they will miss recent referenced history.
529 		 */
530 		folio_clear_referenced(folio);
531 		folio_test_clear_young(folio);
532 		if (folio_test_active(folio))
533 			folio_set_workingset(folio);
534 		if (pageout) {
535 			if (folio_isolate_lru(folio)) {
536 				if (folio_test_unevictable(folio))
537 					folio_putback_lru(folio);
538 				else
539 					list_add(&folio->lru, &folio_list);
540 			}
541 		} else
542 			folio_deactivate(folio);
543 	}
544 
545 	if (start_pte) {
546 		arch_leave_lazy_mmu_mode();
547 		pte_unmap_unlock(start_pte, ptl);
548 	}
549 	if (pageout)
550 		reclaim_pages(&folio_list);
551 	cond_resched();
552 
553 	return 0;
554 }
555 
556 static const struct mm_walk_ops cold_walk_ops = {
557 	.pmd_entry = madvise_cold_or_pageout_pte_range,
558 	.walk_lock = PGWALK_RDLOCK,
559 };
560 
madvise_cold_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)561 static void madvise_cold_page_range(struct mmu_gather *tlb,
562 			     struct vm_area_struct *vma,
563 			     unsigned long addr, unsigned long end)
564 {
565 	struct madvise_walk_private walk_private = {
566 		.pageout = false,
567 		.tlb = tlb,
568 	};
569 
570 	tlb_start_vma(tlb, vma);
571 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
572 	tlb_end_vma(tlb, vma);
573 }
574 
can_madv_lru_vma(struct vm_area_struct * vma)575 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
576 {
577 	return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
578 }
579 
madvise_cold(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)580 static long madvise_cold(struct vm_area_struct *vma,
581 			struct vm_area_struct **prev,
582 			unsigned long start_addr, unsigned long end_addr)
583 {
584 	struct mm_struct *mm = vma->vm_mm;
585 	struct mmu_gather tlb;
586 
587 	*prev = vma;
588 	if (!can_madv_lru_vma(vma))
589 		return -EINVAL;
590 
591 	lru_add_drain();
592 	tlb_gather_mmu(&tlb, mm);
593 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
594 	tlb_finish_mmu(&tlb);
595 
596 	return 0;
597 }
598 
madvise_pageout_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)599 static void madvise_pageout_page_range(struct mmu_gather *tlb,
600 			     struct vm_area_struct *vma,
601 			     unsigned long addr, unsigned long end)
602 {
603 	struct madvise_walk_private walk_private = {
604 		.pageout = true,
605 		.tlb = tlb,
606 	};
607 
608 	tlb_start_vma(tlb, vma);
609 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
610 	tlb_end_vma(tlb, vma);
611 }
612 
madvise_pageout(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)613 static long madvise_pageout(struct vm_area_struct *vma,
614 			struct vm_area_struct **prev,
615 			unsigned long start_addr, unsigned long end_addr)
616 {
617 	struct mm_struct *mm = vma->vm_mm;
618 	struct mmu_gather tlb;
619 
620 	*prev = vma;
621 	if (!can_madv_lru_vma(vma))
622 		return -EINVAL;
623 
624 	/*
625 	 * If the VMA belongs to a private file mapping, there can be private
626 	 * dirty pages which can be paged out if even this process is neither
627 	 * owner nor write capable of the file. We allow private file mappings
628 	 * further to pageout dirty anon pages.
629 	 */
630 	if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
631 				(vma->vm_flags & VM_MAYSHARE)))
632 		return 0;
633 
634 	lru_add_drain();
635 	tlb_gather_mmu(&tlb, mm);
636 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
637 	tlb_finish_mmu(&tlb);
638 
639 	return 0;
640 }
641 
madvise_free_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)642 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
643 				unsigned long end, struct mm_walk *walk)
644 
645 {
646 	const cydp_t cydp_flags = CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY;
647 	struct mmu_gather *tlb = walk->private;
648 	struct mm_struct *mm = tlb->mm;
649 	struct vm_area_struct *vma = walk->vma;
650 	spinlock_t *ptl;
651 	pte_t *start_pte, *pte, ptent;
652 	struct folio *folio;
653 	int nr_swap = 0;
654 	unsigned long next;
655 	int nr, max_nr;
656 
657 	next = pmd_addr_end(addr, end);
658 	if (pmd_trans_huge(*pmd))
659 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
660 			return 0;
661 
662 	tlb_change_page_size(tlb, PAGE_SIZE);
663 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
664 	if (!start_pte)
665 		return 0;
666 	flush_tlb_batched_pending(mm);
667 	arch_enter_lazy_mmu_mode();
668 	for (; addr != end; pte += nr, addr += PAGE_SIZE * nr) {
669 		nr = 1;
670 		ptent = ptep_get(pte);
671 
672 		if (pte_none(ptent))
673 			continue;
674 		/*
675 		 * If the pte has swp_entry, just clear page table to
676 		 * prevent swap-in which is more expensive rather than
677 		 * (page allocation + zeroing).
678 		 */
679 		if (!pte_present(ptent)) {
680 			swp_entry_t entry;
681 
682 			entry = pte_to_swp_entry(ptent);
683 			if (!non_swap_entry(entry)) {
684 				max_nr = (end - addr) / PAGE_SIZE;
685 				nr = swap_pte_batch(pte, max_nr, ptent);
686 				nr_swap -= nr;
687 				free_swap_and_cache_nr(entry, nr);
688 				clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
689 			} else if (is_hwpoison_entry(entry) ||
690 				   is_poisoned_swp_entry(entry)) {
691 				pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
692 			}
693 			continue;
694 		}
695 
696 		folio = vm_normal_folio(vma, addr, ptent);
697 		if (!folio || folio_is_zone_device(folio))
698 			continue;
699 
700 		/*
701 		 * If we encounter a large folio, only split it if it is not
702 		 * fully mapped within the range we are operating on. Otherwise
703 		 * leave it as is so that it can be marked as lazyfree. If we
704 		 * fail to split a folio, leave it in place and advance to the
705 		 * next pte in the range.
706 		 */
707 		if (folio_test_large(folio)) {
708 			bool any_young, any_dirty;
709 
710 			nr = madvise_folio_pte_batch(addr, end, folio, pte,
711 						     ptent, &any_young, &any_dirty);
712 
713 			if (nr < folio_nr_pages(folio)) {
714 				int err;
715 
716 				if (folio_likely_mapped_shared(folio))
717 					continue;
718 				if (!folio_trylock(folio))
719 					continue;
720 				folio_get(folio);
721 				arch_leave_lazy_mmu_mode();
722 				pte_unmap_unlock(start_pte, ptl);
723 				start_pte = NULL;
724 				err = split_folio(folio);
725 				folio_unlock(folio);
726 				folio_put(folio);
727 				pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
728 				start_pte = pte;
729 				if (!start_pte)
730 					break;
731 				arch_enter_lazy_mmu_mode();
732 				if (!err)
733 					nr = 0;
734 				continue;
735 			}
736 
737 			if (any_young)
738 				ptent = pte_mkyoung(ptent);
739 			if (any_dirty)
740 				ptent = pte_mkdirty(ptent);
741 		}
742 
743 		if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
744 			if (!folio_trylock(folio))
745 				continue;
746 			/*
747 			 * If we have a large folio at this point, we know it is
748 			 * fully mapped so if its mapcount is the same as its
749 			 * number of pages, it must be exclusive.
750 			 */
751 			if (folio_mapcount(folio) != folio_nr_pages(folio)) {
752 				folio_unlock(folio);
753 				continue;
754 			}
755 
756 			if (folio_test_swapcache(folio) &&
757 			    !folio_free_swap(folio)) {
758 				folio_unlock(folio);
759 				continue;
760 			}
761 
762 			folio_clear_dirty(folio);
763 			folio_unlock(folio);
764 		}
765 
766 		if (pte_young(ptent) || pte_dirty(ptent)) {
767 			clear_young_dirty_ptes(vma, addr, pte, nr, cydp_flags);
768 			tlb_remove_tlb_entries(tlb, pte, nr, addr);
769 		}
770 		folio_mark_lazyfree(folio);
771 	}
772 
773 	if (nr_swap)
774 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
775 	if (start_pte) {
776 		arch_leave_lazy_mmu_mode();
777 		pte_unmap_unlock(start_pte, ptl);
778 	}
779 	cond_resched();
780 
781 	return 0;
782 }
783 
784 static const struct mm_walk_ops madvise_free_walk_ops = {
785 	.pmd_entry		= madvise_free_pte_range,
786 	.walk_lock		= PGWALK_RDLOCK,
787 };
788 
madvise_free_single_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)789 static int madvise_free_single_vma(struct vm_area_struct *vma,
790 			unsigned long start_addr, unsigned long end_addr)
791 {
792 	struct mm_struct *mm = vma->vm_mm;
793 	struct mmu_notifier_range range;
794 	struct mmu_gather tlb;
795 
796 	/* MADV_FREE works for only anon vma at the moment */
797 	if (!vma_is_anonymous(vma))
798 		return -EINVAL;
799 
800 	range.start = max(vma->vm_start, start_addr);
801 	if (range.start >= vma->vm_end)
802 		return -EINVAL;
803 	range.end = min(vma->vm_end, end_addr);
804 	if (range.end <= vma->vm_start)
805 		return -EINVAL;
806 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
807 				range.start, range.end);
808 
809 	lru_add_drain();
810 	tlb_gather_mmu(&tlb, mm);
811 	update_hiwater_rss(mm);
812 
813 	mmu_notifier_invalidate_range_start(&range);
814 	tlb_start_vma(&tlb, vma);
815 	walk_page_range(vma->vm_mm, range.start, range.end,
816 			&madvise_free_walk_ops, &tlb);
817 	tlb_end_vma(&tlb, vma);
818 	mmu_notifier_invalidate_range_end(&range);
819 	tlb_finish_mmu(&tlb);
820 
821 	return 0;
822 }
823 
824 /*
825  * Application no longer needs these pages.  If the pages are dirty,
826  * it's OK to just throw them away.  The app will be more careful about
827  * data it wants to keep.  Be sure to free swap resources too.  The
828  * zap_page_range_single call sets things up for shrink_active_list to actually
829  * free these pages later if no one else has touched them in the meantime,
830  * although we could add these pages to a global reuse list for
831  * shrink_active_list to pick up before reclaiming other pages.
832  *
833  * NB: This interface discards data rather than pushes it out to swap,
834  * as some implementations do.  This has performance implications for
835  * applications like large transactional databases which want to discard
836  * pages in anonymous maps after committing to backing store the data
837  * that was kept in them.  There is no reason to write this data out to
838  * the swap area if the application is discarding it.
839  *
840  * An interface that causes the system to free clean pages and flush
841  * dirty pages is already available as msync(MS_INVALIDATE).
842  */
madvise_dontneed_single_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)843 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
844 					unsigned long start, unsigned long end)
845 {
846 	zap_page_range_single(vma, start, end - start, NULL);
847 	return 0;
848 }
849 
madvise_dontneed_free_valid_vma(struct vm_area_struct * vma,unsigned long start,unsigned long * end,int behavior)850 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
851 					    unsigned long start,
852 					    unsigned long *end,
853 					    int behavior)
854 {
855 	if (!is_vm_hugetlb_page(vma)) {
856 		unsigned int forbidden = VM_PFNMAP;
857 
858 		if (behavior != MADV_DONTNEED_LOCKED)
859 			forbidden |= VM_LOCKED;
860 
861 		return !(vma->vm_flags & forbidden);
862 	}
863 
864 	if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
865 		return false;
866 	if (start & ~huge_page_mask(hstate_vma(vma)))
867 		return false;
868 
869 	/*
870 	 * Madvise callers expect the length to be rounded up to PAGE_SIZE
871 	 * boundaries, and may be unaware that this VMA uses huge pages.
872 	 * Avoid unexpected data loss by rounding down the number of
873 	 * huge pages freed.
874 	 */
875 	*end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma)));
876 
877 	return true;
878 }
879 
madvise_dontneed_free(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)880 static long madvise_dontneed_free(struct vm_area_struct *vma,
881 				  struct vm_area_struct **prev,
882 				  unsigned long start, unsigned long end,
883 				  int behavior)
884 {
885 	struct mm_struct *mm = vma->vm_mm;
886 
887 	*prev = vma;
888 	if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
889 		return -EINVAL;
890 
891 	if (start == end)
892 		return 0;
893 
894 	if (!userfaultfd_remove(vma, start, end)) {
895 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
896 
897 		mmap_read_lock(mm);
898 		vma = vma_lookup(mm, start);
899 		if (!vma)
900 			return -ENOMEM;
901 		/*
902 		 * Potential end adjustment for hugetlb vma is OK as
903 		 * the check below keeps end within vma.
904 		 */
905 		if (!madvise_dontneed_free_valid_vma(vma, start, &end,
906 						     behavior))
907 			return -EINVAL;
908 		if (end > vma->vm_end) {
909 			/*
910 			 * Don't fail if end > vma->vm_end. If the old
911 			 * vma was split while the mmap_lock was
912 			 * released the effect of the concurrent
913 			 * operation may not cause madvise() to
914 			 * have an undefined result. There may be an
915 			 * adjacent next vma that we'll walk
916 			 * next. userfaultfd_remove() will generate an
917 			 * UFFD_EVENT_REMOVE repetition on the
918 			 * end-vma->vm_end range, but the manager can
919 			 * handle a repetition fine.
920 			 */
921 			end = vma->vm_end;
922 		}
923 		VM_WARN_ON(start >= end);
924 	}
925 
926 	if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
927 		return madvise_dontneed_single_vma(vma, start, end);
928 	else if (behavior == MADV_FREE)
929 		return madvise_free_single_vma(vma, start, end);
930 	else
931 		return -EINVAL;
932 }
933 
madvise_populate(struct mm_struct * mm,unsigned long start,unsigned long end,int behavior)934 static long madvise_populate(struct mm_struct *mm, unsigned long start,
935 		unsigned long end, int behavior)
936 {
937 	const bool write = behavior == MADV_POPULATE_WRITE;
938 	int locked = 1;
939 	long pages;
940 
941 	while (start < end) {
942 		/* Populate (prefault) page tables readable/writable. */
943 		pages = faultin_page_range(mm, start, end, write, &locked);
944 		if (!locked) {
945 			mmap_read_lock(mm);
946 			locked = 1;
947 		}
948 		if (pages < 0) {
949 			switch (pages) {
950 			case -EINTR:
951 				return -EINTR;
952 			case -EINVAL: /* Incompatible mappings / permissions. */
953 				return -EINVAL;
954 			case -EHWPOISON:
955 				return -EHWPOISON;
956 			case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
957 				return -EFAULT;
958 			default:
959 				pr_warn_once("%s: unhandled return value: %ld\n",
960 					     __func__, pages);
961 				fallthrough;
962 			case -ENOMEM: /* No VMA or out of memory. */
963 				return -ENOMEM;
964 			}
965 		}
966 		start += pages * PAGE_SIZE;
967 	}
968 	return 0;
969 }
970 
971 /*
972  * Application wants to free up the pages and associated backing store.
973  * This is effectively punching a hole into the middle of a file.
974  */
madvise_remove(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)975 static long madvise_remove(struct vm_area_struct *vma,
976 				struct vm_area_struct **prev,
977 				unsigned long start, unsigned long end)
978 {
979 	loff_t offset;
980 	int error;
981 	struct file *f;
982 	struct mm_struct *mm = vma->vm_mm;
983 
984 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
985 
986 	if (vma->vm_flags & VM_LOCKED)
987 		return -EINVAL;
988 
989 	f = vma->vm_file;
990 
991 	if (!f || !f->f_mapping || !f->f_mapping->host) {
992 			return -EINVAL;
993 	}
994 
995 	if (!vma_is_shared_maywrite(vma))
996 		return -EACCES;
997 
998 	offset = (loff_t)(start - vma->vm_start)
999 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
1000 
1001 	/*
1002 	 * Filesystem's fallocate may need to take i_rwsem.  We need to
1003 	 * explicitly grab a reference because the vma (and hence the
1004 	 * vma's reference to the file) can go away as soon as we drop
1005 	 * mmap_lock.
1006 	 */
1007 	get_file(f);
1008 	if (userfaultfd_remove(vma, start, end)) {
1009 		/* mmap_lock was not released by userfaultfd_remove() */
1010 		mmap_read_unlock(mm);
1011 	}
1012 	error = vfs_fallocate(f,
1013 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
1014 				offset, end - start);
1015 	fput(f);
1016 	mmap_read_lock(mm);
1017 	return error;
1018 }
1019 
1020 /*
1021  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
1022  * will handle splitting a vm area into separate areas, each area with its own
1023  * behavior.
1024  */
madvise_vma_behavior(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long behavior)1025 static int madvise_vma_behavior(struct vm_area_struct *vma,
1026 				struct vm_area_struct **prev,
1027 				unsigned long start, unsigned long end,
1028 				unsigned long behavior)
1029 {
1030 	int error;
1031 	struct anon_vma_name *anon_name;
1032 	unsigned long new_flags = vma->vm_flags;
1033 
1034 	switch (behavior) {
1035 	case MADV_REMOVE:
1036 		return madvise_remove(vma, prev, start, end);
1037 	case MADV_WILLNEED:
1038 		return madvise_willneed(vma, prev, start, end);
1039 	case MADV_COLD:
1040 		return madvise_cold(vma, prev, start, end);
1041 	case MADV_PAGEOUT:
1042 		return madvise_pageout(vma, prev, start, end);
1043 	case MADV_FREE:
1044 	case MADV_DONTNEED:
1045 	case MADV_DONTNEED_LOCKED:
1046 		return madvise_dontneed_free(vma, prev, start, end, behavior);
1047 	case MADV_NORMAL:
1048 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1049 		break;
1050 	case MADV_SEQUENTIAL:
1051 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1052 		break;
1053 	case MADV_RANDOM:
1054 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1055 		break;
1056 	case MADV_DONTFORK:
1057 		new_flags |= VM_DONTCOPY;
1058 		break;
1059 	case MADV_DOFORK:
1060 		if (vma->vm_flags & VM_IO)
1061 			return -EINVAL;
1062 		new_flags &= ~VM_DONTCOPY;
1063 		break;
1064 	case MADV_WIPEONFORK:
1065 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
1066 		if (vma->vm_file || vma->vm_flags & VM_SHARED)
1067 			return -EINVAL;
1068 		new_flags |= VM_WIPEONFORK;
1069 		break;
1070 	case MADV_KEEPONFORK:
1071 		new_flags &= ~VM_WIPEONFORK;
1072 		break;
1073 	case MADV_DONTDUMP:
1074 		new_flags |= VM_DONTDUMP;
1075 		break;
1076 	case MADV_DODUMP:
1077 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
1078 			return -EINVAL;
1079 		new_flags &= ~VM_DONTDUMP;
1080 		break;
1081 	case MADV_MERGEABLE:
1082 	case MADV_UNMERGEABLE:
1083 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
1084 		if (error)
1085 			goto out;
1086 		break;
1087 	case MADV_HUGEPAGE:
1088 	case MADV_NOHUGEPAGE:
1089 		error = hugepage_madvise(vma, &new_flags, behavior);
1090 		if (error)
1091 			goto out;
1092 		break;
1093 	case MADV_COLLAPSE:
1094 		return madvise_collapse(vma, prev, start, end);
1095 	}
1096 
1097 	anon_name = anon_vma_name(vma);
1098 	anon_vma_name_get(anon_name);
1099 	error = madvise_update_vma(vma, prev, start, end, new_flags,
1100 				   anon_name);
1101 	anon_vma_name_put(anon_name);
1102 
1103 out:
1104 	/*
1105 	 * madvise() returns EAGAIN if kernel resources, such as
1106 	 * slab, are temporarily unavailable.
1107 	 */
1108 	if (error == -ENOMEM)
1109 		error = -EAGAIN;
1110 	return error;
1111 }
1112 
1113 #ifdef CONFIG_MEMORY_FAILURE
1114 /*
1115  * Error injection support for memory error handling.
1116  */
madvise_inject_error(int behavior,unsigned long start,unsigned long end)1117 static int madvise_inject_error(int behavior,
1118 		unsigned long start, unsigned long end)
1119 {
1120 	unsigned long size;
1121 
1122 	if (!capable(CAP_SYS_ADMIN))
1123 		return -EPERM;
1124 
1125 
1126 	for (; start < end; start += size) {
1127 		unsigned long pfn;
1128 		struct page *page;
1129 		int ret;
1130 
1131 		ret = get_user_pages_fast(start, 1, 0, &page);
1132 		if (ret != 1)
1133 			return ret;
1134 		pfn = page_to_pfn(page);
1135 
1136 		/*
1137 		 * When soft offlining hugepages, after migrating the page
1138 		 * we dissolve it, therefore in the second loop "page" will
1139 		 * no longer be a compound page.
1140 		 */
1141 		size = page_size(compound_head(page));
1142 
1143 		if (behavior == MADV_SOFT_OFFLINE) {
1144 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1145 				 pfn, start);
1146 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1147 		} else {
1148 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1149 				 pfn, start);
1150 			ret = memory_failure(pfn, MF_COUNT_INCREASED | MF_SW_SIMULATED);
1151 			if (ret == -EOPNOTSUPP)
1152 				ret = 0;
1153 		}
1154 
1155 		if (ret)
1156 			return ret;
1157 	}
1158 
1159 	return 0;
1160 }
1161 #endif
1162 
1163 static bool
madvise_behavior_valid(int behavior)1164 madvise_behavior_valid(int behavior)
1165 {
1166 	switch (behavior) {
1167 	case MADV_DOFORK:
1168 	case MADV_DONTFORK:
1169 	case MADV_NORMAL:
1170 	case MADV_SEQUENTIAL:
1171 	case MADV_RANDOM:
1172 	case MADV_REMOVE:
1173 	case MADV_WILLNEED:
1174 	case MADV_DONTNEED:
1175 	case MADV_DONTNEED_LOCKED:
1176 	case MADV_FREE:
1177 	case MADV_COLD:
1178 	case MADV_PAGEOUT:
1179 	case MADV_POPULATE_READ:
1180 	case MADV_POPULATE_WRITE:
1181 #ifdef CONFIG_KSM
1182 	case MADV_MERGEABLE:
1183 	case MADV_UNMERGEABLE:
1184 #endif
1185 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1186 	case MADV_HUGEPAGE:
1187 	case MADV_NOHUGEPAGE:
1188 	case MADV_COLLAPSE:
1189 #endif
1190 	case MADV_DONTDUMP:
1191 	case MADV_DODUMP:
1192 	case MADV_WIPEONFORK:
1193 	case MADV_KEEPONFORK:
1194 #ifdef CONFIG_MEMORY_FAILURE
1195 	case MADV_SOFT_OFFLINE:
1196 	case MADV_HWPOISON:
1197 #endif
1198 		return true;
1199 
1200 	default:
1201 		return false;
1202 	}
1203 }
1204 
process_madvise_behavior_valid(int behavior)1205 static bool process_madvise_behavior_valid(int behavior)
1206 {
1207 	switch (behavior) {
1208 	case MADV_COLD:
1209 	case MADV_PAGEOUT:
1210 	case MADV_WILLNEED:
1211 	case MADV_COLLAPSE:
1212 		return true;
1213 	default:
1214 		return false;
1215 	}
1216 }
1217 
1218 /*
1219  * Walk the vmas in range [start,end), and call the visit function on each one.
1220  * The visit function will get start and end parameters that cover the overlap
1221  * between the current vma and the original range.  Any unmapped regions in the
1222  * original range will result in this function returning -ENOMEM while still
1223  * calling the visit function on all of the existing vmas in the range.
1224  * Must be called with the mmap_lock held for reading or writing.
1225  */
1226 static
madvise_walk_vmas(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long arg,int (* visit)(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long arg))1227 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1228 		      unsigned long end, unsigned long arg,
1229 		      int (*visit)(struct vm_area_struct *vma,
1230 				   struct vm_area_struct **prev, unsigned long start,
1231 				   unsigned long end, unsigned long arg))
1232 {
1233 	struct vm_area_struct *vma;
1234 	struct vm_area_struct *prev;
1235 	unsigned long tmp;
1236 	int unmapped_error = 0;
1237 
1238 	/*
1239 	 * If the interval [start,end) covers some unmapped address
1240 	 * ranges, just ignore them, but return -ENOMEM at the end.
1241 	 * - different from the way of handling in mlock etc.
1242 	 */
1243 	vma = find_vma_prev(mm, start, &prev);
1244 	if (vma && start > vma->vm_start)
1245 		prev = vma;
1246 
1247 	for (;;) {
1248 		int error;
1249 
1250 		/* Still start < end. */
1251 		if (!vma)
1252 			return -ENOMEM;
1253 
1254 		/* Here start < (end|vma->vm_end). */
1255 		if (start < vma->vm_start) {
1256 			unmapped_error = -ENOMEM;
1257 			start = vma->vm_start;
1258 			if (start >= end)
1259 				break;
1260 		}
1261 
1262 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1263 		tmp = vma->vm_end;
1264 		if (end < tmp)
1265 			tmp = end;
1266 
1267 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1268 		error = visit(vma, &prev, start, tmp, arg);
1269 		if (error)
1270 			return error;
1271 		start = tmp;
1272 		if (prev && start < prev->vm_end)
1273 			start = prev->vm_end;
1274 		if (start >= end)
1275 			break;
1276 		if (prev)
1277 			vma = find_vma(mm, prev->vm_end);
1278 		else	/* madvise_remove dropped mmap_lock */
1279 			vma = find_vma(mm, start);
1280 	}
1281 
1282 	return unmapped_error;
1283 }
1284 
1285 #ifdef CONFIG_ANON_VMA_NAME
madvise_vma_anon_name(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long anon_name)1286 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1287 				 struct vm_area_struct **prev,
1288 				 unsigned long start, unsigned long end,
1289 				 unsigned long anon_name)
1290 {
1291 	int error;
1292 
1293 	/* Only anonymous mappings can be named */
1294 	if (vma->vm_file && !vma_is_anon_shmem(vma))
1295 		return -EBADF;
1296 
1297 	error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1298 				   (struct anon_vma_name *)anon_name);
1299 
1300 	/*
1301 	 * madvise() returns EAGAIN if kernel resources, such as
1302 	 * slab, are temporarily unavailable.
1303 	 */
1304 	if (error == -ENOMEM)
1305 		error = -EAGAIN;
1306 	return error;
1307 }
1308 
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)1309 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1310 			  unsigned long len_in, struct anon_vma_name *anon_name)
1311 {
1312 	unsigned long end;
1313 	unsigned long len;
1314 
1315 	if (start & ~PAGE_MASK)
1316 		return -EINVAL;
1317 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1318 
1319 	/* Check to see whether len was rounded up from small -ve to zero */
1320 	if (len_in && !len)
1321 		return -EINVAL;
1322 
1323 	end = start + len;
1324 	if (end < start)
1325 		return -EINVAL;
1326 
1327 	if (end == start)
1328 		return 0;
1329 
1330 	return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1331 				 madvise_vma_anon_name);
1332 }
1333 #endif /* CONFIG_ANON_VMA_NAME */
1334 /*
1335  * The madvise(2) system call.
1336  *
1337  * Applications can use madvise() to advise the kernel how it should
1338  * handle paging I/O in this VM area.  The idea is to help the kernel
1339  * use appropriate read-ahead and caching techniques.  The information
1340  * provided is advisory only, and can be safely disregarded by the
1341  * kernel without affecting the correct operation of the application.
1342  *
1343  * behavior values:
1344  *  MADV_NORMAL - the default behavior is to read clusters.  This
1345  *		results in some read-ahead and read-behind.
1346  *  MADV_RANDOM - the system should read the minimum amount of data
1347  *		on any access, since it is unlikely that the appli-
1348  *		cation will need more than what it asks for.
1349  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1350  *		once, so they can be aggressively read ahead, and
1351  *		can be freed soon after they are accessed.
1352  *  MADV_WILLNEED - the application is notifying the system to read
1353  *		some pages ahead.
1354  *  MADV_DONTNEED - the application is finished with the given range,
1355  *		so the kernel can free resources associated with it.
1356  *  MADV_FREE - the application marks pages in the given range as lazy free,
1357  *		where actual purges are postponed until memory pressure happens.
1358  *  MADV_REMOVE - the application wants to free up the given range of
1359  *		pages and associated backing store.
1360  *  MADV_DONTFORK - omit this area from child's address space when forking:
1361  *		typically, to avoid COWing pages pinned by get_user_pages().
1362  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1363  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1364  *              range after a fork.
1365  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1366  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1367  *		were corrupted by unrecoverable hardware memory failure.
1368  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1369  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1370  *		this area with pages of identical content from other such areas.
1371  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1372  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1373  *		huge pages in the future. Existing pages might be coalesced and
1374  *		new pages might be allocated as THP.
1375  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1376  *		transparent huge pages so the existing pages will not be
1377  *		coalesced into THP and new pages will not be allocated as THP.
1378  *  MADV_COLLAPSE - synchronously coalesce pages into new THP.
1379  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1380  *		from being included in its core dump.
1381  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1382  *  MADV_COLD - the application is not expected to use this memory soon,
1383  *		deactivate pages in this range so that they can be reclaimed
1384  *		easily if memory pressure happens.
1385  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1386  *		page out the pages in this range immediately.
1387  *  MADV_POPULATE_READ - populate (prefault) page tables readable by
1388  *		triggering read faults if required
1389  *  MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1390  *		triggering write faults if required
1391  *
1392  * return values:
1393  *  zero    - success
1394  *  -EINVAL - start + len < 0, start is not page-aligned,
1395  *		"behavior" is not a valid value, or application
1396  *		is attempting to release locked or shared pages,
1397  *		or the specified address range includes file, Huge TLB,
1398  *		MAP_SHARED or VMPFNMAP range.
1399  *  -ENOMEM - addresses in the specified range are not currently
1400  *		mapped, or are outside the AS of the process.
1401  *  -EIO    - an I/O error occurred while paging in data.
1402  *  -EBADF  - map exists, but area maps something that isn't a file.
1403  *  -EAGAIN - a kernel resource was temporarily unavailable.
1404  *  -EPERM  - memory is sealed.
1405  */
do_madvise(struct mm_struct * mm,unsigned long start,size_t len_in,int behavior)1406 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1407 {
1408 	unsigned long end;
1409 	int error;
1410 	int write;
1411 	size_t len;
1412 	struct blk_plug plug;
1413 
1414 	if (!madvise_behavior_valid(behavior))
1415 		return -EINVAL;
1416 
1417 	if (!PAGE_ALIGNED(start))
1418 		return -EINVAL;
1419 	len = PAGE_ALIGN(len_in);
1420 
1421 	/* Check to see whether len was rounded up from small -ve to zero */
1422 	if (len_in && !len)
1423 		return -EINVAL;
1424 
1425 	end = start + len;
1426 	if (end < start)
1427 		return -EINVAL;
1428 
1429 	if (end == start)
1430 		return 0;
1431 
1432 #ifdef CONFIG_MEMORY_FAILURE
1433 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1434 		return madvise_inject_error(behavior, start, start + len_in);
1435 #endif
1436 
1437 	write = madvise_need_mmap_write(behavior);
1438 	if (write) {
1439 		if (mmap_write_lock_killable(mm))
1440 			return -EINTR;
1441 	} else {
1442 		mmap_read_lock(mm);
1443 	}
1444 
1445 	start = untagged_addr_remote(mm, start);
1446 	end = start + len;
1447 
1448 	/*
1449 	 * Check if the address range is sealed for do_madvise().
1450 	 * can_modify_mm_madv assumes we have acquired the lock on MM.
1451 	 */
1452 	if (unlikely(!can_modify_mm_madv(mm, start, end, behavior))) {
1453 		error = -EPERM;
1454 		goto out;
1455 	}
1456 
1457 	blk_start_plug(&plug);
1458 	switch (behavior) {
1459 	case MADV_POPULATE_READ:
1460 	case MADV_POPULATE_WRITE:
1461 		error = madvise_populate(mm, start, end, behavior);
1462 		break;
1463 	default:
1464 		error = madvise_walk_vmas(mm, start, end, behavior,
1465 					  madvise_vma_behavior);
1466 		break;
1467 	}
1468 	blk_finish_plug(&plug);
1469 
1470 out:
1471 	if (write)
1472 		mmap_write_unlock(mm);
1473 	else
1474 		mmap_read_unlock(mm);
1475 
1476 	return error;
1477 }
1478 
SYSCALL_DEFINE3(madvise,unsigned long,start,size_t,len_in,int,behavior)1479 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1480 {
1481 	return do_madvise(current->mm, start, len_in, behavior);
1482 }
1483 
SYSCALL_DEFINE5(process_madvise,int,pidfd,const struct iovec __user *,vec,size_t,vlen,int,behavior,unsigned int,flags)1484 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1485 		size_t, vlen, int, behavior, unsigned int, flags)
1486 {
1487 	ssize_t ret;
1488 	struct iovec iovstack[UIO_FASTIOV];
1489 	struct iovec *iov = iovstack;
1490 	struct iov_iter iter;
1491 	struct task_struct *task;
1492 	struct mm_struct *mm;
1493 	size_t total_len;
1494 	unsigned int f_flags;
1495 
1496 	if (flags != 0) {
1497 		ret = -EINVAL;
1498 		goto out;
1499 	}
1500 
1501 	ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1502 	if (ret < 0)
1503 		goto out;
1504 
1505 	task = pidfd_get_task(pidfd, &f_flags);
1506 	if (IS_ERR(task)) {
1507 		ret = PTR_ERR(task);
1508 		goto free_iov;
1509 	}
1510 
1511 	if (!process_madvise_behavior_valid(behavior)) {
1512 		ret = -EINVAL;
1513 		goto release_task;
1514 	}
1515 
1516 	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1517 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1518 	if (IS_ERR_OR_NULL(mm)) {
1519 		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1520 		goto release_task;
1521 	}
1522 
1523 	/*
1524 	 * Require CAP_SYS_NICE for influencing process performance. Note that
1525 	 * only non-destructive hints are currently supported.
1526 	 */
1527 	if (!capable(CAP_SYS_NICE)) {
1528 		ret = -EPERM;
1529 		goto release_mm;
1530 	}
1531 
1532 	total_len = iov_iter_count(&iter);
1533 
1534 	while (iov_iter_count(&iter)) {
1535 		ret = do_madvise(mm, (unsigned long)iter_iov_addr(&iter),
1536 					iter_iov_len(&iter), behavior);
1537 		if (ret < 0)
1538 			break;
1539 		iov_iter_advance(&iter, iter_iov_len(&iter));
1540 	}
1541 
1542 	ret = (total_len - iov_iter_count(&iter)) ? : ret;
1543 
1544 release_mm:
1545 	mmput(mm);
1546 release_task:
1547 	put_task_struct(task);
1548 free_iov:
1549 	kfree(iov);
1550 out:
1551 	return ret;
1552 }
1553