xref: /linux/fs/pnode.c (revision 2eea9ce4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/pnode.c
4  *
5  * (C) Copyright IBM Corporation 2005.
6  *	Author : Ram Pai (linuxram@us.ibm.com)
7  */
8 #include <linux/mnt_namespace.h>
9 #include <linux/mount.h>
10 #include <linux/fs.h>
11 #include <linux/nsproxy.h>
12 #include <uapi/linux/mount.h>
13 #include "internal.h"
14 #include "pnode.h"
15 
16 /* return the next shared peer mount of @p */
next_peer(struct mount * p)17 static inline struct mount *next_peer(struct mount *p)
18 {
19 	return list_entry(p->mnt_share.next, struct mount, mnt_share);
20 }
21 
first_slave(struct mount * p)22 static inline struct mount *first_slave(struct mount *p)
23 {
24 	return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
25 }
26 
last_slave(struct mount * p)27 static inline struct mount *last_slave(struct mount *p)
28 {
29 	return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave);
30 }
31 
next_slave(struct mount * p)32 static inline struct mount *next_slave(struct mount *p)
33 {
34 	return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
35 }
36 
get_peer_under_root(struct mount * mnt,struct mnt_namespace * ns,const struct path * root)37 static struct mount *get_peer_under_root(struct mount *mnt,
38 					 struct mnt_namespace *ns,
39 					 const struct path *root)
40 {
41 	struct mount *m = mnt;
42 
43 	do {
44 		/* Check the namespace first for optimization */
45 		if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
46 			return m;
47 
48 		m = next_peer(m);
49 	} while (m != mnt);
50 
51 	return NULL;
52 }
53 
54 /*
55  * Get ID of closest dominating peer group having a representative
56  * under the given root.
57  *
58  * Caller must hold namespace_sem
59  */
get_dominating_id(struct mount * mnt,const struct path * root)60 int get_dominating_id(struct mount *mnt, const struct path *root)
61 {
62 	struct mount *m;
63 
64 	for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
65 		struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
66 		if (d)
67 			return d->mnt_group_id;
68 	}
69 
70 	return 0;
71 }
72 
do_make_slave(struct mount * mnt)73 static int do_make_slave(struct mount *mnt)
74 {
75 	struct mount *master, *slave_mnt;
76 
77 	if (list_empty(&mnt->mnt_share)) {
78 		if (IS_MNT_SHARED(mnt)) {
79 			mnt_release_group_id(mnt);
80 			CLEAR_MNT_SHARED(mnt);
81 		}
82 		master = mnt->mnt_master;
83 		if (!master) {
84 			struct list_head *p = &mnt->mnt_slave_list;
85 			while (!list_empty(p)) {
86 				slave_mnt = list_first_entry(p,
87 						struct mount, mnt_slave);
88 				list_del_init(&slave_mnt->mnt_slave);
89 				slave_mnt->mnt_master = NULL;
90 			}
91 			return 0;
92 		}
93 	} else {
94 		struct mount *m;
95 		/*
96 		 * slave 'mnt' to a peer mount that has the
97 		 * same root dentry. If none is available then
98 		 * slave it to anything that is available.
99 		 */
100 		for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) {
101 			if (m->mnt.mnt_root == mnt->mnt.mnt_root) {
102 				master = m;
103 				break;
104 			}
105 		}
106 		list_del_init(&mnt->mnt_share);
107 		mnt->mnt_group_id = 0;
108 		CLEAR_MNT_SHARED(mnt);
109 	}
110 	list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
111 		slave_mnt->mnt_master = master;
112 	list_move(&mnt->mnt_slave, &master->mnt_slave_list);
113 	list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
114 	INIT_LIST_HEAD(&mnt->mnt_slave_list);
115 	mnt->mnt_master = master;
116 	return 0;
117 }
118 
119 /*
120  * vfsmount lock must be held for write
121  */
change_mnt_propagation(struct mount * mnt,int type)122 void change_mnt_propagation(struct mount *mnt, int type)
123 {
124 	if (type == MS_SHARED) {
125 		set_mnt_shared(mnt);
126 		return;
127 	}
128 	do_make_slave(mnt);
129 	if (type != MS_SLAVE) {
130 		list_del_init(&mnt->mnt_slave);
131 		mnt->mnt_master = NULL;
132 		if (type == MS_UNBINDABLE)
133 			mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
134 		else
135 			mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
136 	}
137 }
138 
139 /*
140  * get the next mount in the propagation tree.
141  * @m: the mount seen last
142  * @origin: the original mount from where the tree walk initiated
143  *
144  * Note that peer groups form contiguous segments of slave lists.
145  * We rely on that in get_source() to be able to find out if
146  * vfsmount found while iterating with propagation_next() is
147  * a peer of one we'd found earlier.
148  */
propagation_next(struct mount * m,struct mount * origin)149 static struct mount *propagation_next(struct mount *m,
150 					 struct mount *origin)
151 {
152 	/* are there any slaves of this mount? */
153 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
154 		return first_slave(m);
155 
156 	while (1) {
157 		struct mount *master = m->mnt_master;
158 
159 		if (master == origin->mnt_master) {
160 			struct mount *next = next_peer(m);
161 			return (next == origin) ? NULL : next;
162 		} else if (m->mnt_slave.next != &master->mnt_slave_list)
163 			return next_slave(m);
164 
165 		/* back at master */
166 		m = master;
167 	}
168 }
169 
skip_propagation_subtree(struct mount * m,struct mount * origin)170 static struct mount *skip_propagation_subtree(struct mount *m,
171 						struct mount *origin)
172 {
173 	/*
174 	 * Advance m such that propagation_next will not return
175 	 * the slaves of m.
176 	 */
177 	if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
178 		m = last_slave(m);
179 
180 	return m;
181 }
182 
next_group(struct mount * m,struct mount * origin)183 static struct mount *next_group(struct mount *m, struct mount *origin)
184 {
185 	while (1) {
186 		while (1) {
187 			struct mount *next;
188 			if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
189 				return first_slave(m);
190 			next = next_peer(m);
191 			if (m->mnt_group_id == origin->mnt_group_id) {
192 				if (next == origin)
193 					return NULL;
194 			} else if (m->mnt_slave.next != &next->mnt_slave)
195 				break;
196 			m = next;
197 		}
198 		/* m is the last peer */
199 		while (1) {
200 			struct mount *master = m->mnt_master;
201 			if (m->mnt_slave.next != &master->mnt_slave_list)
202 				return next_slave(m);
203 			m = next_peer(master);
204 			if (master->mnt_group_id == origin->mnt_group_id)
205 				break;
206 			if (master->mnt_slave.next == &m->mnt_slave)
207 				break;
208 			m = master;
209 		}
210 		if (m == origin)
211 			return NULL;
212 	}
213 }
214 
215 /* all accesses are serialized by namespace_sem */
216 static struct mount *last_dest, *first_source, *last_source, *dest_master;
217 static struct hlist_head *list;
218 
peers(const struct mount * m1,const struct mount * m2)219 static inline bool peers(const struct mount *m1, const struct mount *m2)
220 {
221 	return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
222 }
223 
propagate_one(struct mount * m,struct mountpoint * dest_mp)224 static int propagate_one(struct mount *m, struct mountpoint *dest_mp)
225 {
226 	struct mount *child;
227 	int type;
228 	/* skip ones added by this propagate_mnt() */
229 	if (IS_MNT_NEW(m))
230 		return 0;
231 	/* skip if mountpoint isn't covered by it */
232 	if (!is_subdir(dest_mp->m_dentry, m->mnt.mnt_root))
233 		return 0;
234 	if (peers(m, last_dest)) {
235 		type = CL_MAKE_SHARED;
236 	} else {
237 		struct mount *n, *p;
238 		bool done;
239 		for (n = m; ; n = p) {
240 			p = n->mnt_master;
241 			if (p == dest_master || IS_MNT_MARKED(p))
242 				break;
243 		}
244 		do {
245 			struct mount *parent = last_source->mnt_parent;
246 			if (peers(last_source, first_source))
247 				break;
248 			done = parent->mnt_master == p;
249 			if (done && peers(n, parent))
250 				break;
251 			last_source = last_source->mnt_master;
252 		} while (!done);
253 
254 		type = CL_SLAVE;
255 		/* beginning of peer group among the slaves? */
256 		if (IS_MNT_SHARED(m))
257 			type |= CL_MAKE_SHARED;
258 	}
259 
260 	child = copy_tree(last_source, last_source->mnt.mnt_root, type);
261 	if (IS_ERR(child))
262 		return PTR_ERR(child);
263 	read_seqlock_excl(&mount_lock);
264 	mnt_set_mountpoint(m, dest_mp, child);
265 	if (m->mnt_master != dest_master)
266 		SET_MNT_MARK(m->mnt_master);
267 	read_sequnlock_excl(&mount_lock);
268 	last_dest = m;
269 	last_source = child;
270 	hlist_add_head(&child->mnt_hash, list);
271 	return count_mounts(m->mnt_ns, child);
272 }
273 
274 /*
275  * mount 'source_mnt' under the destination 'dest_mnt' at
276  * dentry 'dest_dentry'. And propagate that mount to
277  * all the peer and slave mounts of 'dest_mnt'.
278  * Link all the new mounts into a propagation tree headed at
279  * source_mnt. Also link all the new mounts using ->mnt_list
280  * headed at source_mnt's ->mnt_list
281  *
282  * @dest_mnt: destination mount.
283  * @dest_dentry: destination dentry.
284  * @source_mnt: source mount.
285  * @tree_list : list of heads of trees to be attached.
286  */
propagate_mnt(struct mount * dest_mnt,struct mountpoint * dest_mp,struct mount * source_mnt,struct hlist_head * tree_list)287 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
288 		    struct mount *source_mnt, struct hlist_head *tree_list)
289 {
290 	struct mount *m, *n;
291 	int ret = 0;
292 
293 	/*
294 	 * we don't want to bother passing tons of arguments to
295 	 * propagate_one(); everything is serialized by namespace_sem,
296 	 * so globals will do just fine.
297 	 */
298 	last_dest = dest_mnt;
299 	first_source = source_mnt;
300 	last_source = source_mnt;
301 	list = tree_list;
302 	dest_master = dest_mnt->mnt_master;
303 
304 	/* all peers of dest_mnt, except dest_mnt itself */
305 	for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
306 		ret = propagate_one(n, dest_mp);
307 		if (ret)
308 			goto out;
309 	}
310 
311 	/* all slave groups */
312 	for (m = next_group(dest_mnt, dest_mnt); m;
313 			m = next_group(m, dest_mnt)) {
314 		/* everything in that slave group */
315 		n = m;
316 		do {
317 			ret = propagate_one(n, dest_mp);
318 			if (ret)
319 				goto out;
320 			n = next_peer(n);
321 		} while (n != m);
322 	}
323 out:
324 	read_seqlock_excl(&mount_lock);
325 	hlist_for_each_entry(n, tree_list, mnt_hash) {
326 		m = n->mnt_parent;
327 		if (m->mnt_master != dest_mnt->mnt_master)
328 			CLEAR_MNT_MARK(m->mnt_master);
329 	}
330 	read_sequnlock_excl(&mount_lock);
331 	return ret;
332 }
333 
find_topper(struct mount * mnt)334 static struct mount *find_topper(struct mount *mnt)
335 {
336 	/* If there is exactly one mount covering mnt completely return it. */
337 	struct mount *child;
338 
339 	if (!list_is_singular(&mnt->mnt_mounts))
340 		return NULL;
341 
342 	child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child);
343 	if (child->mnt_mountpoint != mnt->mnt.mnt_root)
344 		return NULL;
345 
346 	return child;
347 }
348 
349 /*
350  * return true if the refcount is greater than count
351  */
do_refcount_check(struct mount * mnt,int count)352 static inline int do_refcount_check(struct mount *mnt, int count)
353 {
354 	return mnt_get_count(mnt) > count;
355 }
356 
357 /**
358  * propagation_would_overmount - check whether propagation from @from
359  *                               would overmount @to
360  * @from: shared mount
361  * @to:   mount to check
362  * @mp:   future mountpoint of @to on @from
363  *
364  * If @from propagates mounts to @to, @from and @to must either be peers
365  * or one of the masters in the hierarchy of masters of @to must be a
366  * peer of @from.
367  *
368  * If the root of the @to mount is equal to the future mountpoint @mp of
369  * the @to mount on @from then @to will be overmounted by whatever is
370  * propagated to it.
371  *
372  * Context: This function expects namespace_lock() to be held and that
373  *          @mp is stable.
374  * Return: If @from overmounts @to, true is returned, false if not.
375  */
propagation_would_overmount(const struct mount * from,const struct mount * to,const struct mountpoint * mp)376 bool propagation_would_overmount(const struct mount *from,
377 				 const struct mount *to,
378 				 const struct mountpoint *mp)
379 {
380 	if (!IS_MNT_SHARED(from))
381 		return false;
382 
383 	if (IS_MNT_NEW(to))
384 		return false;
385 
386 	if (to->mnt.mnt_root != mp->m_dentry)
387 		return false;
388 
389 	for (const struct mount *m = to; m; m = m->mnt_master) {
390 		if (peers(from, m))
391 			return true;
392 	}
393 
394 	return false;
395 }
396 
397 /*
398  * check if the mount 'mnt' can be unmounted successfully.
399  * @mnt: the mount to be checked for unmount
400  * NOTE: unmounting 'mnt' would naturally propagate to all
401  * other mounts its parent propagates to.
402  * Check if any of these mounts that **do not have submounts**
403  * have more references than 'refcnt'. If so return busy.
404  *
405  * vfsmount lock must be held for write
406  */
propagate_mount_busy(struct mount * mnt,int refcnt)407 int propagate_mount_busy(struct mount *mnt, int refcnt)
408 {
409 	struct mount *m, *child, *topper;
410 	struct mount *parent = mnt->mnt_parent;
411 
412 	if (mnt == parent)
413 		return do_refcount_check(mnt, refcnt);
414 
415 	/*
416 	 * quickly check if the current mount can be unmounted.
417 	 * If not, we don't have to go checking for all other
418 	 * mounts
419 	 */
420 	if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
421 		return 1;
422 
423 	for (m = propagation_next(parent, parent); m;
424 	     		m = propagation_next(m, parent)) {
425 		int count = 1;
426 		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
427 		if (!child)
428 			continue;
429 
430 		/* Is there exactly one mount on the child that covers
431 		 * it completely whose reference should be ignored?
432 		 */
433 		topper = find_topper(child);
434 		if (topper)
435 			count += 1;
436 		else if (!list_empty(&child->mnt_mounts))
437 			continue;
438 
439 		if (do_refcount_check(child, count))
440 			return 1;
441 	}
442 	return 0;
443 }
444 
445 /*
446  * Clear MNT_LOCKED when it can be shown to be safe.
447  *
448  * mount_lock lock must be held for write
449  */
propagate_mount_unlock(struct mount * mnt)450 void propagate_mount_unlock(struct mount *mnt)
451 {
452 	struct mount *parent = mnt->mnt_parent;
453 	struct mount *m, *child;
454 
455 	BUG_ON(parent == mnt);
456 
457 	for (m = propagation_next(parent, parent); m;
458 			m = propagation_next(m, parent)) {
459 		child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
460 		if (child)
461 			child->mnt.mnt_flags &= ~MNT_LOCKED;
462 	}
463 }
464 
umount_one(struct mount * mnt,struct list_head * to_umount)465 static void umount_one(struct mount *mnt, struct list_head *to_umount)
466 {
467 	CLEAR_MNT_MARK(mnt);
468 	mnt->mnt.mnt_flags |= MNT_UMOUNT;
469 	list_del_init(&mnt->mnt_child);
470 	list_del_init(&mnt->mnt_umounting);
471 	move_from_ns(mnt, to_umount);
472 }
473 
474 /*
475  * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
476  * parent propagates to.
477  */
__propagate_umount(struct mount * mnt,struct list_head * to_umount,struct list_head * to_restore)478 static bool __propagate_umount(struct mount *mnt,
479 			       struct list_head *to_umount,
480 			       struct list_head *to_restore)
481 {
482 	bool progress = false;
483 	struct mount *child;
484 
485 	/*
486 	 * The state of the parent won't change if this mount is
487 	 * already unmounted or marked as without children.
488 	 */
489 	if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED))
490 		goto out;
491 
492 	/* Verify topper is the only grandchild that has not been
493 	 * speculatively unmounted.
494 	 */
495 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
496 		if (child->mnt_mountpoint == mnt->mnt.mnt_root)
497 			continue;
498 		if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child))
499 			continue;
500 		/* Found a mounted child */
501 		goto children;
502 	}
503 
504 	/* Mark mounts that can be unmounted if not locked */
505 	SET_MNT_MARK(mnt);
506 	progress = true;
507 
508 	/* If a mount is without children and not locked umount it. */
509 	if (!IS_MNT_LOCKED(mnt)) {
510 		umount_one(mnt, to_umount);
511 	} else {
512 children:
513 		list_move_tail(&mnt->mnt_umounting, to_restore);
514 	}
515 out:
516 	return progress;
517 }
518 
umount_list(struct list_head * to_umount,struct list_head * to_restore)519 static void umount_list(struct list_head *to_umount,
520 			struct list_head *to_restore)
521 {
522 	struct mount *mnt, *child, *tmp;
523 	list_for_each_entry(mnt, to_umount, mnt_list) {
524 		list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) {
525 			/* topper? */
526 			if (child->mnt_mountpoint == mnt->mnt.mnt_root)
527 				list_move_tail(&child->mnt_umounting, to_restore);
528 			else
529 				umount_one(child, to_umount);
530 		}
531 	}
532 }
533 
restore_mounts(struct list_head * to_restore)534 static void restore_mounts(struct list_head *to_restore)
535 {
536 	/* Restore mounts to a clean working state */
537 	while (!list_empty(to_restore)) {
538 		struct mount *mnt, *parent;
539 		struct mountpoint *mp;
540 
541 		mnt = list_first_entry(to_restore, struct mount, mnt_umounting);
542 		CLEAR_MNT_MARK(mnt);
543 		list_del_init(&mnt->mnt_umounting);
544 
545 		/* Should this mount be reparented? */
546 		mp = mnt->mnt_mp;
547 		parent = mnt->mnt_parent;
548 		while (parent->mnt.mnt_flags & MNT_UMOUNT) {
549 			mp = parent->mnt_mp;
550 			parent = parent->mnt_parent;
551 		}
552 		if (parent != mnt->mnt_parent)
553 			mnt_change_mountpoint(parent, mp, mnt);
554 	}
555 }
556 
cleanup_umount_visitations(struct list_head * visited)557 static void cleanup_umount_visitations(struct list_head *visited)
558 {
559 	while (!list_empty(visited)) {
560 		struct mount *mnt =
561 			list_first_entry(visited, struct mount, mnt_umounting);
562 		list_del_init(&mnt->mnt_umounting);
563 	}
564 }
565 
566 /*
567  * collect all mounts that receive propagation from the mount in @list,
568  * and return these additional mounts in the same list.
569  * @list: the list of mounts to be unmounted.
570  *
571  * vfsmount lock must be held for write
572  */
propagate_umount(struct list_head * list)573 int propagate_umount(struct list_head *list)
574 {
575 	struct mount *mnt;
576 	LIST_HEAD(to_restore);
577 	LIST_HEAD(to_umount);
578 	LIST_HEAD(visited);
579 
580 	/* Find candidates for unmounting */
581 	list_for_each_entry_reverse(mnt, list, mnt_list) {
582 		struct mount *parent = mnt->mnt_parent;
583 		struct mount *m;
584 
585 		/*
586 		 * If this mount has already been visited it is known that it's
587 		 * entire peer group and all of their slaves in the propagation
588 		 * tree for the mountpoint has already been visited and there is
589 		 * no need to visit them again.
590 		 */
591 		if (!list_empty(&mnt->mnt_umounting))
592 			continue;
593 
594 		list_add_tail(&mnt->mnt_umounting, &visited);
595 		for (m = propagation_next(parent, parent); m;
596 		     m = propagation_next(m, parent)) {
597 			struct mount *child = __lookup_mnt(&m->mnt,
598 							   mnt->mnt_mountpoint);
599 			if (!child)
600 				continue;
601 
602 			if (!list_empty(&child->mnt_umounting)) {
603 				/*
604 				 * If the child has already been visited it is
605 				 * know that it's entire peer group and all of
606 				 * their slaves in the propgation tree for the
607 				 * mountpoint has already been visited and there
608 				 * is no need to visit this subtree again.
609 				 */
610 				m = skip_propagation_subtree(m, parent);
611 				continue;
612 			} else if (child->mnt.mnt_flags & MNT_UMOUNT) {
613 				/*
614 				 * We have come accross an partially unmounted
615 				 * mount in list that has not been visited yet.
616 				 * Remember it has been visited and continue
617 				 * about our merry way.
618 				 */
619 				list_add_tail(&child->mnt_umounting, &visited);
620 				continue;
621 			}
622 
623 			/* Check the child and parents while progress is made */
624 			while (__propagate_umount(child,
625 						  &to_umount, &to_restore)) {
626 				/* Is the parent a umount candidate? */
627 				child = child->mnt_parent;
628 				if (list_empty(&child->mnt_umounting))
629 					break;
630 			}
631 		}
632 	}
633 
634 	umount_list(&to_umount, &to_restore);
635 	restore_mounts(&to_restore);
636 	cleanup_umount_visitations(&visited);
637 	list_splice_tail(&to_umount, list);
638 
639 	return 0;
640 }
641