xref: /netbsd/sys/kern/kern_clock.c (revision de09df2f)
1 /*	$NetBSD: kern_clock.c,v 1.150 2023/07/07 12:34:50 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  * This code is derived from software contributed to The NetBSD Foundation
11  * by Charles M. Hannum.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*-
36  * Copyright (c) 1982, 1986, 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * (c) UNIX System Laboratories, Inc.
39  * All or some portions of this file are derived from material licensed
40  * to the University of California by American Telephone and Telegraph
41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42  * the permission of UNIX System Laboratories, Inc.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
69  */
70 
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.150 2023/07/07 12:34:50 riastradh Exp $");
73 
74 #ifdef _KERNEL_OPT
75 #include "opt_dtrace.h"
76 #include "opt_gprof.h"
77 #include "opt_heartbeat.h"
78 #include "opt_multiprocessor.h"
79 #endif
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/kernel.h>
85 #include <sys/proc.h>
86 #include <sys/resourcevar.h>
87 #include <sys/signalvar.h>
88 #include <sys/sysctl.h>
89 #include <sys/timex.h>
90 #include <sys/sched.h>
91 #include <sys/time.h>
92 #include <sys/timetc.h>
93 #include <sys/cpu.h>
94 #include <sys/atomic.h>
95 #include <sys/rndsource.h>
96 #include <sys/heartbeat.h>
97 
98 #ifdef GPROF
99 #include <sys/gmon.h>
100 #endif
101 
102 #ifdef KDTRACE_HOOKS
103 #include <sys/dtrace_bsd.h>
104 #include <sys/cpu.h>
105 
106 cyclic_clock_func_t	cyclic_clock_func[MAXCPUS];
107 #endif
108 
109 static int sysctl_kern_clockrate(SYSCTLFN_PROTO);
110 
111 /*
112  * Clock handling routines.
113  *
114  * This code is written to operate with two timers that run independently of
115  * each other.  The main clock, running hz times per second, is used to keep
116  * track of real time.  The second timer handles kernel and user profiling,
117  * and does resource use estimation.  If the second timer is programmable,
118  * it is randomized to avoid aliasing between the two clocks.  For example,
119  * the randomization prevents an adversary from always giving up the CPU
120  * just before its quantum expires.  Otherwise, it would never accumulate
121  * CPU ticks.  The mean frequency of the second timer is stathz.
122  *
123  * If no second timer exists, stathz will be zero; in this case we drive
124  * profiling and statistics off the main clock.  This WILL NOT be accurate;
125  * do not do it unless absolutely necessary.
126  *
127  * The statistics clock may (or may not) be run at a higher rate while
128  * profiling.  This profile clock runs at profhz.  We require that profhz
129  * be an integral multiple of stathz.
130  *
131  * If the statistics clock is running fast, it must be divided by the ratio
132  * profhz/stathz for statistics.  (For profiling, every tick counts.)
133  */
134 
135 int	stathz;
136 int	profhz;
137 int	profsrc;
138 int	schedhz;
139 int	profprocs;
140 static int hardclock_ticks;
141 static int hardscheddiv; /* hard => sched divider (used if schedhz == 0) */
142 static int psdiv;			/* prof => stat divider */
143 int	psratio;			/* ratio: prof / stat */
144 
145 struct clockrnd {
146 	struct krndsource source;
147 	unsigned needed;
148 };
149 
150 static struct clockrnd hardclockrnd __aligned(COHERENCY_UNIT);
151 static struct clockrnd statclockrnd __aligned(COHERENCY_UNIT);
152 
153 static void
clockrnd_get(size_t needed,void * cookie)154 clockrnd_get(size_t needed, void *cookie)
155 {
156 	struct clockrnd *C = cookie;
157 
158 	/* Start sampling.  */
159 	atomic_store_relaxed(&C->needed, 2*NBBY*needed);
160 }
161 
162 static void
clockrnd_sample(struct clockrnd * C)163 clockrnd_sample(struct clockrnd *C)
164 {
165 	struct cpu_info *ci = curcpu();
166 
167 	/* If there's nothing needed right now, stop here.  */
168 	if (__predict_true(atomic_load_relaxed(&C->needed) == 0))
169 		return;
170 
171 	/*
172 	 * If we're not the primary core of a package, we're probably
173 	 * driven by the same clock as the primary core, so don't
174 	 * bother.
175 	 */
176 	if (ci != ci->ci_package1st)
177 		return;
178 
179 	/* Take a sample and enter it into the pool.  */
180 	rnd_add_uint32(&C->source, 0);
181 
182 	/*
183 	 * On the primary CPU, count down.  Using an atomic decrement
184 	 * here isn't really necessary -- on every platform we care
185 	 * about, stores to unsigned int are atomic, and the only other
186 	 * memory operation that could happen here is for another CPU
187 	 * to store a higher value for needed.  But using an atomic
188 	 * decrement avoids giving the impression of data races, and is
189 	 * unlikely to hurt because only one CPU will ever be writing
190 	 * to the location.
191 	 */
192 	if (CPU_IS_PRIMARY(curcpu())) {
193 		unsigned needed __diagused;
194 
195 		needed = atomic_dec_uint_nv(&C->needed);
196 		KASSERT(needed != UINT_MAX);
197 	}
198 }
199 
200 static u_int get_intr_timecount(struct timecounter *);
201 
202 static struct timecounter intr_timecounter = {
203 	.tc_get_timecount	= get_intr_timecount,
204 	.tc_poll_pps		= NULL,
205 	.tc_counter_mask	= ~0u,
206 	.tc_frequency		= 0,
207 	.tc_name		= "clockinterrupt",
208 	/* quality - minimum implementation level for a clock */
209 	.tc_quality		= 0,
210 	.tc_priv		= NULL,
211 };
212 
213 static u_int
get_intr_timecount(struct timecounter * tc)214 get_intr_timecount(struct timecounter *tc)
215 {
216 
217 	return (u_int)getticks();
218 }
219 
220 int
getticks(void)221 getticks(void)
222 {
223 	return atomic_load_relaxed(&hardclock_ticks);
224 }
225 
226 /*
227  * Initialize clock frequencies and start both clocks running.
228  */
229 void
initclocks(void)230 initclocks(void)
231 {
232 	static struct sysctllog *clog;
233 	int i;
234 
235 	/*
236 	 * Set divisors to 1 (normal case) and let the machine-specific
237 	 * code do its bit.
238 	 */
239 	psdiv = 1;
240 
241 	/*
242 	 * Call cpu_initclocks() before registering the default
243 	 * timecounter, in case it needs to adjust hz.
244 	 */
245 	const int old_hz = hz;
246 	cpu_initclocks();
247 	if (old_hz != hz) {
248 		tick = 1000000 / hz;
249 		tickadj = (240000 / (60 * hz)) ? (240000 / (60 * hz)) : 1;
250 	}
251 
252 	/*
253 	 * provide minimum default time counter
254 	 * will only run at interrupt resolution
255 	 */
256 	intr_timecounter.tc_frequency = hz;
257 	tc_init(&intr_timecounter);
258 
259 	/*
260 	 * Compute profhz and stathz, fix profhz if needed.
261 	 */
262 	i = stathz ? stathz : hz;
263 	if (profhz == 0)
264 		profhz = i;
265 	psratio = profhz / i;
266 	if (schedhz == 0) {
267 		/* 16Hz is best */
268 		hardscheddiv = hz / 16;
269 		if (hardscheddiv <= 0)
270 			panic("hardscheddiv");
271 	}
272 
273 	sysctl_createv(&clog, 0, NULL, NULL,
274 		       CTLFLAG_PERMANENT,
275 		       CTLTYPE_STRUCT, "clockrate",
276 		       SYSCTL_DESCR("Kernel clock rates"),
277 		       sysctl_kern_clockrate, 0, NULL,
278 		       sizeof(struct clockinfo),
279 		       CTL_KERN, KERN_CLOCKRATE, CTL_EOL);
280 	sysctl_createv(&clog, 0, NULL, NULL,
281 		       CTLFLAG_PERMANENT,
282 		       CTLTYPE_INT, "hardclock_ticks",
283 		       SYSCTL_DESCR("Number of hardclock ticks"),
284 		       NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks),
285 		       CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL);
286 
287 	rndsource_setcb(&hardclockrnd.source, clockrnd_get, &hardclockrnd);
288 	rnd_attach_source(&hardclockrnd.source, "hardclock", RND_TYPE_SKEW,
289 	    RND_FLAG_COLLECT_TIME|RND_FLAG_ESTIMATE_TIME|RND_FLAG_HASCB);
290 	if (stathz) {
291 		rndsource_setcb(&statclockrnd.source, clockrnd_get,
292 		    &statclockrnd);
293 		rnd_attach_source(&statclockrnd.source, "statclock",
294 		    RND_TYPE_SKEW,
295 		    (RND_FLAG_COLLECT_TIME|RND_FLAG_ESTIMATE_TIME|
296 			RND_FLAG_HASCB));
297 	}
298 }
299 
300 /*
301  * The real-time timer, interrupting hz times per second.
302  */
303 void
hardclock(struct clockframe * frame)304 hardclock(struct clockframe *frame)
305 {
306 	struct lwp *l;
307 	struct cpu_info *ci;
308 
309 	clockrnd_sample(&hardclockrnd);
310 
311 	ci = curcpu();
312 	l = ci->ci_onproc;
313 
314 	ptimer_tick(l, CLKF_USERMODE(frame));
315 
316 	/*
317 	 * If no separate statistics clock is available, run it from here.
318 	 */
319 	if (stathz == 0)
320 		statclock(frame);
321 	/*
322 	 * If no separate schedclock is provided, call it here
323 	 * at about 16 Hz.
324 	 */
325 	if (schedhz == 0) {
326 		if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
327 			schedclock(l);
328 			ci->ci_schedstate.spc_schedticks = hardscheddiv;
329 		}
330 	}
331 	if ((--ci->ci_schedstate.spc_ticks) <= 0)
332 		sched_tick(ci);
333 
334 	if (CPU_IS_PRIMARY(ci)) {
335 		atomic_store_relaxed(&hardclock_ticks,
336 		    atomic_load_relaxed(&hardclock_ticks) + 1);
337 		tc_ticktock();
338 	}
339 
340 #ifdef HEARTBEAT
341 	/*
342 	 * Make sure the CPUs and timecounter are making progress.
343 	 */
344 	heartbeat();
345 #endif
346 
347 	/*
348 	 * Update real-time timeout queue.
349 	 */
350 	callout_hardclock();
351 }
352 
353 /*
354  * Start profiling on a process.
355  *
356  * Kernel profiling passes proc0 which never exits and hence
357  * keeps the profile clock running constantly.
358  */
359 void
startprofclock(struct proc * p)360 startprofclock(struct proc *p)
361 {
362 
363 	KASSERT(mutex_owned(&p->p_stmutex));
364 
365 	if ((p->p_stflag & PST_PROFIL) == 0) {
366 		p->p_stflag |= PST_PROFIL;
367 		/*
368 		 * This is only necessary if using the clock as the
369 		 * profiling source.
370 		 */
371 		if (++profprocs == 1 && stathz != 0)
372 			psdiv = psratio;
373 	}
374 }
375 
376 /*
377  * Stop profiling on a process.
378  */
379 void
stopprofclock(struct proc * p)380 stopprofclock(struct proc *p)
381 {
382 
383 	KASSERT(mutex_owned(&p->p_stmutex));
384 
385 	if (p->p_stflag & PST_PROFIL) {
386 		p->p_stflag &= ~PST_PROFIL;
387 		/*
388 		 * This is only necessary if using the clock as the
389 		 * profiling source.
390 		 */
391 		if (--profprocs == 0 && stathz != 0)
392 			psdiv = 1;
393 	}
394 }
395 
396 void
schedclock(struct lwp * l)397 schedclock(struct lwp *l)
398 {
399 	if ((l->l_flag & LW_IDLE) != 0)
400 		return;
401 
402 	sched_schedclock(l);
403 }
404 
405 /*
406  * Statistics clock.  Grab profile sample, and if divider reaches 0,
407  * do process and kernel statistics.
408  */
409 void
statclock(struct clockframe * frame)410 statclock(struct clockframe *frame)
411 {
412 #ifdef GPROF
413 	struct gmonparam *g;
414 	intptr_t i;
415 #endif
416 	struct cpu_info *ci = curcpu();
417 	struct schedstate_percpu *spc = &ci->ci_schedstate;
418 	struct proc *p;
419 	struct lwp *l;
420 
421 	if (stathz)
422 		clockrnd_sample(&statclockrnd);
423 
424 	/*
425 	 * Notice changes in divisor frequency, and adjust clock
426 	 * frequency accordingly.
427 	 */
428 	if (spc->spc_psdiv != psdiv) {
429 		spc->spc_psdiv = psdiv;
430 		spc->spc_pscnt = psdiv;
431 		if (psdiv == 1) {
432 			setstatclockrate(stathz);
433 		} else {
434 			setstatclockrate(profhz);
435 		}
436 	}
437 	l = ci->ci_onproc;
438 	if ((l->l_flag & LW_IDLE) != 0) {
439 		/*
440 		 * don't account idle lwps as swapper.
441 		 */
442 		p = NULL;
443 	} else {
444 		p = l->l_proc;
445 		mutex_spin_enter(&p->p_stmutex);
446 	}
447 
448 	if (CLKF_USERMODE(frame)) {
449 		KASSERT(p != NULL);
450 		if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK)
451 			addupc_intr(l, CLKF_PC(frame));
452 		if (--spc->spc_pscnt > 0) {
453 			mutex_spin_exit(&p->p_stmutex);
454 			return;
455 		}
456 
457 		/*
458 		 * Came from user mode; CPU was in user state.
459 		 * If this process is being profiled record the tick.
460 		 */
461 		p->p_uticks++;
462 		if (p->p_nice > NZERO)
463 			spc->spc_cp_time[CP_NICE]++;
464 		else
465 			spc->spc_cp_time[CP_USER]++;
466 	} else {
467 #ifdef GPROF
468 		/*
469 		 * Kernel statistics are just like addupc_intr, only easier.
470 		 */
471 #if defined(MULTIPROCESSOR) && !defined(_RUMPKERNEL)
472 		g = curcpu()->ci_gmon;
473 		if (g != NULL &&
474 		    profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
475 #else
476 		g = &_gmonparam;
477 		if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
478 #endif
479 			i = CLKF_PC(frame) - g->lowpc;
480 			if (i < g->textsize) {
481 				i /= HISTFRACTION * sizeof(*g->kcount);
482 				g->kcount[i]++;
483 			}
484 		}
485 #endif
486 #ifdef LWP_PC
487 		if (p != NULL && profsrc == PROFSRC_CLOCK &&
488 		    (p->p_stflag & PST_PROFIL)) {
489 			addupc_intr(l, LWP_PC(l));
490 		}
491 #endif
492 		if (--spc->spc_pscnt > 0) {
493 			if (p != NULL)
494 				mutex_spin_exit(&p->p_stmutex);
495 			return;
496 		}
497 		/*
498 		 * Came from kernel mode, so we were:
499 		 * - handling an interrupt,
500 		 * - doing syscall or trap work on behalf of the current
501 		 *   user process, or
502 		 * - spinning in the idle loop.
503 		 * Whichever it is, charge the time as appropriate.
504 		 * Note that we charge interrupts to the current process,
505 		 * regardless of whether they are ``for'' that process,
506 		 * so that we know how much of its real time was spent
507 		 * in ``non-process'' (i.e., interrupt) work.
508 		 */
509 		if (CLKF_INTR(frame) || (curlwp->l_pflag & LP_INTR) != 0) {
510 			if (p != NULL) {
511 				p->p_iticks++;
512 			}
513 			spc->spc_cp_time[CP_INTR]++;
514 		} else if (p != NULL) {
515 			p->p_sticks++;
516 			spc->spc_cp_time[CP_SYS]++;
517 		} else {
518 			spc->spc_cp_time[CP_IDLE]++;
519 		}
520 	}
521 	spc->spc_pscnt = psdiv;
522 
523 	if (p != NULL) {
524 		atomic_inc_uint(&l->l_cpticks);
525 		mutex_spin_exit(&p->p_stmutex);
526 	}
527 
528 #ifdef KDTRACE_HOOKS
529 	cyclic_clock_func_t func = cyclic_clock_func[cpu_index(ci)];
530 	if (func) {
531 		(*func)((struct clockframe *)frame);
532 	}
533 #endif
534 }
535 
536 /*
537  * sysctl helper routine for kern.clockrate. Assembles a struct on
538  * the fly to be returned to the caller.
539  */
540 static int
541 sysctl_kern_clockrate(SYSCTLFN_ARGS)
542 {
543 	struct clockinfo clkinfo;
544 	struct sysctlnode node;
545 
546 	clkinfo.tick = tick;
547 	clkinfo.tickadj = tickadj;
548 	clkinfo.hz = hz;
549 	clkinfo.profhz = profhz;
550 	clkinfo.stathz = stathz ? stathz : hz;
551 
552 	node = *rnode;
553 	node.sysctl_data = &clkinfo;
554 	return (sysctl_lookup(SYSCTLFN_CALL(&node)));
555 }
556