1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software Foundation,
14  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
15  *
16  * The Original Code is Copyright (C) 2007 by Janne Karhu.
17  * All rights reserved.
18  * Adaptive time step
19  * Classical SPH
20  * Copyright 2011-2012 AutoCRC
21  */
22 
23 /** \file
24  * \ingroup bke
25  */
26 
27 #include <stddef.h>
28 
29 #include <math.h>
30 #include <stdlib.h>
31 #include <string.h>
32 
33 #include "MEM_guardedalloc.h"
34 
35 #include "DNA_anim_types.h"
36 #include "DNA_boid_types.h"
37 #include "DNA_curve_types.h"
38 #include "DNA_listBase.h"
39 #include "DNA_mesh_types.h"
40 #include "DNA_meshdata_types.h"
41 #include "DNA_modifier_types.h"
42 #include "DNA_object_force_types.h"
43 #include "DNA_object_types.h"
44 #include "DNA_particle_types.h"
45 #include "DNA_scene_types.h"
46 #include "DNA_texture_types.h"
47 
48 #include "BLI_blenlib.h"
49 #include "BLI_edgehash.h"
50 #include "BLI_kdopbvh.h"
51 #include "BLI_kdtree.h"
52 #include "BLI_linklist.h"
53 #include "BLI_math.h"
54 #include "BLI_rand.h"
55 #include "BLI_string_utils.h"
56 #include "BLI_task.h"
57 #include "BLI_threads.h"
58 #include "BLI_utildefines.h"
59 
60 #include "BKE_animsys.h"
61 #include "BKE_boids.h"
62 #include "BKE_collision.h"
63 #include "BKE_colortools.h"
64 #include "BKE_effect.h"
65 #include "BKE_lib_id.h"
66 #include "BKE_lib_query.h"
67 #include "BKE_particle.h"
68 
69 #include "BKE_bvhutils.h"
70 #include "BKE_cloth.h"
71 #include "BKE_collection.h"
72 #include "BKE_lattice.h"
73 #include "BKE_material.h"
74 #include "BKE_mesh.h"
75 #include "BKE_modifier.h"
76 #include "BKE_object.h"
77 #include "BKE_pointcache.h"
78 #include "BKE_scene.h"
79 
80 #include "DEG_depsgraph.h"
81 #include "DEG_depsgraph_physics.h"
82 #include "DEG_depsgraph_query.h"
83 
84 #include "PIL_time.h"
85 
86 #include "RE_shader_ext.h"
87 
88 /* FLUID sim particle import */
89 #ifdef WITH_FLUID
90 #  include "DNA_fluid_types.h"
91 #  include "manta_fluid_API.h"
92 #endif  // WITH_FLUID
93 
94 static ThreadRWMutex psys_bvhtree_rwlock = BLI_RWLOCK_INITIALIZER;
95 
96 /************************************************/
97 /*          Reacting to system events           */
98 /************************************************/
99 
particles_are_dynamic(ParticleSystem * psys)100 static int particles_are_dynamic(ParticleSystem *psys)
101 {
102   if (psys->pointcache->flag & PTCACHE_BAKED) {
103     return 0;
104   }
105 
106   if (psys->part->type == PART_HAIR) {
107     return psys->flag & PSYS_HAIR_DYNAMICS;
108   }
109 
110   return ELEM(psys->part->phystype, PART_PHYS_NEWTON, PART_PHYS_BOIDS, PART_PHYS_FLUID);
111 }
112 
psys_get_current_display_percentage(ParticleSystem * psys,const bool use_render_params)113 float psys_get_current_display_percentage(ParticleSystem *psys, const bool use_render_params)
114 {
115   ParticleSettings *part = psys->part;
116 
117   if ((use_render_params &&
118        !particles_are_dynamic(psys)) ||          /* non-dynamic particles can be rendered fully */
119       (part->child_nbr && part->childtype) ||    /* display percentage applies to children */
120       (psys->pointcache->flag & PTCACHE_BAKING)) /* baking is always done with full amount */
121   {
122     return 1.0f;
123   }
124 
125   return psys->part->disp / 100.0f;
126 }
127 
tot_particles(ParticleSystem * psys,PTCacheID * pid)128 static int tot_particles(ParticleSystem *psys, PTCacheID *pid)
129 {
130   if (pid && psys->pointcache->flag & PTCACHE_EXTERNAL) {
131     return pid->cache->totpoint;
132   }
133   if (psys->part->distr == PART_DISTR_GRID && psys->part->from != PART_FROM_VERT) {
134     return psys->part->grid_res * psys->part->grid_res * psys->part->grid_res - psys->totunexist;
135   }
136 
137   return psys->part->totpart - psys->totunexist;
138 }
139 
psys_reset(ParticleSystem * psys,int mode)140 void psys_reset(ParticleSystem *psys, int mode)
141 {
142   PARTICLE_P;
143 
144   if (ELEM(mode, PSYS_RESET_ALL, PSYS_RESET_DEPSGRAPH)) {
145     if (mode == PSYS_RESET_ALL || !(psys->flag & PSYS_EDITED)) {
146       /* don't free if not absolutely necessary */
147       if (psys->totpart != tot_particles(psys, NULL)) {
148         psys_free_particles(psys);
149         psys->totpart = 0;
150       }
151 
152       psys->totkeyed = 0;
153       psys->flag &= ~(PSYS_HAIR_DONE | PSYS_KEYED);
154 
155       if (psys->edit && psys->free_edit) {
156         psys->free_edit(psys->edit);
157         psys->edit = NULL;
158         psys->free_edit = NULL;
159       }
160     }
161   }
162   else if (mode == PSYS_RESET_CACHE_MISS) {
163     /* set all particles to be skipped */
164     LOOP_PARTICLES
165     {
166       pa->flag |= PARS_NO_DISP;
167     }
168   }
169 
170   /* reset children */
171   if (psys->child) {
172     MEM_freeN(psys->child);
173     psys->child = NULL;
174   }
175 
176   psys->totchild = 0;
177 
178   /* reset path cache */
179   psys_free_path_cache(psys, psys->edit);
180 
181   /* reset point cache */
182   BKE_ptcache_invalidate(psys->pointcache);
183 
184   if (psys->fluid_springs) {
185     MEM_freeN(psys->fluid_springs);
186     psys->fluid_springs = NULL;
187   }
188 
189   psys->tot_fluidsprings = psys->alloc_fluidsprings = 0;
190 }
191 
psys_unique_name(Object * object,ParticleSystem * psys,const char * defname)192 void psys_unique_name(Object *object, ParticleSystem *psys, const char *defname)
193 {
194   BLI_uniquename(&object->particlesystem,
195                  psys,
196                  defname,
197                  '.',
198                  offsetof(ParticleSystem, name),
199                  sizeof(psys->name));
200 }
201 
realloc_particles(ParticleSimulationData * sim,int new_totpart)202 static void realloc_particles(ParticleSimulationData *sim, int new_totpart)
203 {
204   ParticleSystem *psys = sim->psys;
205   ParticleSettings *part = psys->part;
206   ParticleData *newpars = NULL;
207   BoidParticle *newboids = NULL;
208   PARTICLE_P;
209   int totpart, totsaved = 0;
210 
211   if (new_totpart < 0) {
212     if ((part->distr == PART_DISTR_GRID) && (part->from != PART_FROM_VERT)) {
213       totpart = part->grid_res;
214       totpart *= totpart * totpart;
215     }
216     else {
217       totpart = part->totpart;
218     }
219   }
220   else {
221     totpart = new_totpart;
222   }
223 
224   if (totpart != psys->totpart) {
225     if (psys->edit && psys->free_edit) {
226       psys->free_edit(psys->edit);
227       psys->edit = NULL;
228       psys->free_edit = NULL;
229     }
230 
231     if (totpart) {
232       newpars = MEM_callocN(totpart * sizeof(ParticleData), "particles");
233       if (newpars == NULL) {
234         return;
235       }
236 
237       if (psys->part->phystype == PART_PHYS_BOIDS) {
238         newboids = MEM_callocN(totpart * sizeof(BoidParticle), "boid particles");
239 
240         if (newboids == NULL) {
241           /* allocation error! */
242           if (newpars) {
243             MEM_freeN(newpars);
244           }
245           return;
246         }
247       }
248     }
249 
250     if (psys->particles) {
251       totsaved = MIN2(psys->totpart, totpart);
252       /*save old pars*/
253       if (totsaved) {
254         memcpy(newpars, psys->particles, totsaved * sizeof(ParticleData));
255 
256         if (psys->particles->boid) {
257           memcpy(newboids, psys->particles->boid, totsaved * sizeof(BoidParticle));
258         }
259       }
260 
261       if (psys->particles->keys) {
262         MEM_freeN(psys->particles->keys);
263       }
264 
265       if (psys->particles->boid) {
266         MEM_freeN(psys->particles->boid);
267       }
268 
269       for (p = 0, pa = newpars; p < totsaved; p++, pa++) {
270         if (pa->keys) {
271           pa->keys = NULL;
272           pa->totkey = 0;
273         }
274       }
275 
276       for (p = totsaved, pa = psys->particles + totsaved; p < psys->totpart; p++, pa++) {
277         if (pa->hair) {
278           MEM_freeN(pa->hair);
279         }
280       }
281 
282       MEM_freeN(psys->particles);
283       psys_free_pdd(psys);
284     }
285 
286     psys->particles = newpars;
287     psys->totpart = totpart;
288 
289     if (newboids) {
290       LOOP_PARTICLES
291       {
292         pa->boid = newboids++;
293       }
294     }
295   }
296 
297   if (psys->child) {
298     MEM_freeN(psys->child);
299     psys->child = NULL;
300     psys->totchild = 0;
301   }
302 }
303 
psys_get_child_number(Scene * scene,ParticleSystem * psys,const bool use_render_params)304 int psys_get_child_number(Scene *scene, ParticleSystem *psys, const bool use_render_params)
305 {
306   int nbr;
307 
308   if (!psys->part->childtype) {
309     return 0;
310   }
311 
312   if (use_render_params) {
313     nbr = psys->part->ren_child_nbr;
314   }
315   else {
316     nbr = psys->part->child_nbr;
317   }
318 
319   return get_render_child_particle_number(&scene->r, nbr, use_render_params);
320 }
321 
psys_get_tot_child(Scene * scene,ParticleSystem * psys,const bool use_render_params)322 int psys_get_tot_child(Scene *scene, ParticleSystem *psys, const bool use_render_params)
323 {
324   return psys->totpart * psys_get_child_number(scene, psys, use_render_params);
325 }
326 
327 /************************************************/
328 /*          Distribution                        */
329 /************************************************/
330 
psys_calc_dmcache(Object * ob,Mesh * mesh_final,Mesh * mesh_original,ParticleSystem * psys)331 void psys_calc_dmcache(Object *ob, Mesh *mesh_final, Mesh *mesh_original, ParticleSystem *psys)
332 {
333   /* use for building derived mesh mapping info:
334    *
335    * node: the allocated links - total derived mesh element count
336    * nodearray: the array of nodes aligned with the base mesh's elements, so
337    *            each original elements can reference its derived elements
338    */
339   Mesh *me = (Mesh *)ob->data;
340   bool use_modifier_stack = psys->part->use_modifier_stack;
341   PARTICLE_P;
342 
343   /* CACHE LOCATIONS */
344   if (!mesh_final->runtime.deformed_only) {
345     /* Will use later to speed up subsurf/evaluated mesh. */
346     LinkNode *node, *nodedmelem, **nodearray;
347     int totdmelem, totelem, i, *origindex, *origindex_poly = NULL;
348 
349     if (psys->part->from == PART_FROM_VERT) {
350       totdmelem = mesh_final->totvert;
351 
352       if (use_modifier_stack) {
353         totelem = totdmelem;
354         origindex = NULL;
355       }
356       else {
357         totelem = me->totvert;
358         origindex = CustomData_get_layer(&mesh_final->vdata, CD_ORIGINDEX);
359       }
360     }
361     else { /* FROM_FACE/FROM_VOLUME */
362       totdmelem = mesh_final->totface;
363 
364       if (use_modifier_stack) {
365         totelem = totdmelem;
366         origindex = NULL;
367         origindex_poly = NULL;
368       }
369       else {
370         totelem = mesh_original->totface;
371         origindex = CustomData_get_layer(&mesh_final->fdata, CD_ORIGINDEX);
372 
373         /* for face lookups we need the poly origindex too */
374         origindex_poly = CustomData_get_layer(&mesh_final->pdata, CD_ORIGINDEX);
375         if (origindex_poly == NULL) {
376           origindex = NULL;
377         }
378       }
379     }
380 
381     nodedmelem = MEM_callocN(sizeof(LinkNode) * totdmelem, "psys node elems");
382     nodearray = MEM_callocN(sizeof(LinkNode *) * totelem, "psys node array");
383 
384     for (i = 0, node = nodedmelem; i < totdmelem; i++, node++) {
385       int origindex_final;
386       node->link = POINTER_FROM_INT(i);
387 
388       /* may be vertex or face origindex */
389       if (use_modifier_stack) {
390         origindex_final = i;
391       }
392       else {
393         origindex_final = origindex ? origindex[i] : ORIGINDEX_NONE;
394 
395         /* if we have a poly source, do an index lookup */
396         if (origindex_poly && origindex_final != ORIGINDEX_NONE) {
397           origindex_final = origindex_poly[origindex_final];
398         }
399       }
400 
401       if (origindex_final != ORIGINDEX_NONE && origindex_final < totelem) {
402         if (nodearray[origindex_final]) {
403           /* prepend */
404           node->next = nodearray[origindex_final];
405           nodearray[origindex_final] = node;
406         }
407         else {
408           nodearray[origindex_final] = node;
409         }
410       }
411     }
412 
413     /* cache the verts/faces! */
414     LOOP_PARTICLES
415     {
416       if (pa->num < 0) {
417         pa->num_dmcache = DMCACHE_NOTFOUND;
418         continue;
419       }
420 
421       if (use_modifier_stack) {
422         if (pa->num < totelem) {
423           pa->num_dmcache = DMCACHE_ISCHILD;
424         }
425         else {
426           pa->num_dmcache = DMCACHE_NOTFOUND;
427         }
428       }
429       else {
430         if (psys->part->from == PART_FROM_VERT) {
431           if (pa->num < totelem && nodearray[pa->num]) {
432             pa->num_dmcache = POINTER_AS_INT(nodearray[pa->num]->link);
433           }
434           else {
435             pa->num_dmcache = DMCACHE_NOTFOUND;
436           }
437         }
438         else { /* FROM_FACE/FROM_VOLUME */
439           pa->num_dmcache = psys_particle_dm_face_lookup(
440               mesh_final, mesh_original, pa->num, pa->fuv, nodearray);
441         }
442       }
443     }
444 
445     MEM_freeN(nodearray);
446     MEM_freeN(nodedmelem);
447   }
448   else {
449     /* TODO PARTICLE, make the following line unnecessary, each function
450      * should know to use the num or num_dmcache, set the num_dmcache to
451      * an invalid value, just in case */
452 
453     LOOP_PARTICLES
454     {
455       pa->num_dmcache = DMCACHE_NOTFOUND;
456     }
457   }
458 }
459 
460 /* threaded child particle distribution and path caching */
psys_thread_context_init(ParticleThreadContext * ctx,ParticleSimulationData * sim)461 void psys_thread_context_init(ParticleThreadContext *ctx, ParticleSimulationData *sim)
462 {
463   memset(ctx, 0, sizeof(ParticleThreadContext));
464   ctx->sim = *sim;
465   ctx->mesh = ctx->sim.psmd->mesh_final;
466   ctx->ma = BKE_object_material_get(sim->ob, sim->psys->part->omat);
467 }
468 
psys_tasks_create(ParticleThreadContext * ctx,int startpart,int endpart,ParticleTask ** r_tasks,int * r_numtasks)469 void psys_tasks_create(ParticleThreadContext *ctx,
470                        int startpart,
471                        int endpart,
472                        ParticleTask **r_tasks,
473                        int *r_numtasks)
474 {
475   ParticleTask *tasks;
476   int numtasks = min_ii(BLI_system_thread_count() * 4, endpart - startpart);
477   float particles_per_task = (float)(endpart - startpart) / (float)numtasks, p, pnext;
478   int i;
479 
480   tasks = MEM_callocN(sizeof(ParticleTask) * numtasks, "ParticleThread");
481   *r_numtasks = numtasks;
482   *r_tasks = tasks;
483 
484   p = (float)startpart;
485   for (i = 0; i < numtasks; i++, p = pnext) {
486     pnext = p + particles_per_task;
487 
488     tasks[i].ctx = ctx;
489     tasks[i].begin = (int)p;
490     tasks[i].end = min_ii((int)pnext, endpart);
491   }
492 }
493 
psys_tasks_free(ParticleTask * tasks,int numtasks)494 void psys_tasks_free(ParticleTask *tasks, int numtasks)
495 {
496   int i;
497 
498   /* threads */
499   for (i = 0; i < numtasks; i++) {
500     if (tasks[i].rng) {
501       BLI_rng_free(tasks[i].rng);
502     }
503     if (tasks[i].rng_path) {
504       BLI_rng_free(tasks[i].rng_path);
505     }
506   }
507 
508   MEM_freeN(tasks);
509 }
510 
psys_thread_context_free(ParticleThreadContext * ctx)511 void psys_thread_context_free(ParticleThreadContext *ctx)
512 {
513   /* path caching */
514   if (ctx->vg_length) {
515     MEM_freeN(ctx->vg_length);
516   }
517   if (ctx->vg_clump) {
518     MEM_freeN(ctx->vg_clump);
519   }
520   if (ctx->vg_kink) {
521     MEM_freeN(ctx->vg_kink);
522   }
523   if (ctx->vg_rough1) {
524     MEM_freeN(ctx->vg_rough1);
525   }
526   if (ctx->vg_rough2) {
527     MEM_freeN(ctx->vg_rough2);
528   }
529   if (ctx->vg_roughe) {
530     MEM_freeN(ctx->vg_roughe);
531   }
532   if (ctx->vg_twist) {
533     MEM_freeN(ctx->vg_twist);
534   }
535 
536   if (ctx->sim.psys->lattice_deform_data) {
537     BKE_lattice_deform_data_destroy(ctx->sim.psys->lattice_deform_data);
538     ctx->sim.psys->lattice_deform_data = NULL;
539   }
540 
541   /* distribution */
542   if (ctx->jit) {
543     MEM_freeN(ctx->jit);
544   }
545   if (ctx->jitoff) {
546     MEM_freeN(ctx->jitoff);
547   }
548   if (ctx->weight) {
549     MEM_freeN(ctx->weight);
550   }
551   if (ctx->index) {
552     MEM_freeN(ctx->index);
553   }
554   if (ctx->seams) {
555     MEM_freeN(ctx->seams);
556   }
557   // if (ctx->vertpart) MEM_freeN(ctx->vertpart);
558   BLI_kdtree_3d_free(ctx->tree);
559 
560   if (ctx->clumpcurve != NULL) {
561     BKE_curvemapping_free(ctx->clumpcurve);
562   }
563   if (ctx->roughcurve != NULL) {
564     BKE_curvemapping_free(ctx->roughcurve);
565   }
566   if (ctx->twistcurve != NULL) {
567     BKE_curvemapping_free(ctx->twistcurve);
568   }
569 }
570 
init_particle_texture(ParticleSimulationData * sim,ParticleData * pa,int p)571 static void init_particle_texture(ParticleSimulationData *sim, ParticleData *pa, int p)
572 {
573   ParticleSystem *psys = sim->psys;
574   ParticleSettings *part = psys->part;
575   ParticleTexture ptex;
576 
577   psys_get_texture(sim, pa, &ptex, PAMAP_INIT, 0.f);
578 
579   switch (part->type) {
580     case PART_EMITTER:
581       if (ptex.exist < psys_frand(psys, p + 125)) {
582         pa->flag |= PARS_UNEXIST;
583       }
584       pa->time = part->sta + (part->end - part->sta) * ptex.time;
585       break;
586     case PART_HAIR:
587       if (ptex.exist < psys_frand(psys, p + 125)) {
588         pa->flag |= PARS_UNEXIST;
589       }
590       pa->time = 0.f;
591       break;
592   }
593 }
594 
595 /* set particle parameters that don't change during particle's life */
init_particle(ParticleSimulationData * sim,ParticleData * pa)596 void init_particle(ParticleSimulationData *sim, ParticleData *pa)
597 {
598   ParticleSettings *part = sim->psys->part;
599   float birth_time = (float)(pa - sim->psys->particles) / (float)sim->psys->totpart;
600 
601   pa->flag &= ~PARS_UNEXIST;
602   pa->time = part->sta + (part->end - part->sta) * birth_time;
603 
604   pa->hair_index = 0;
605   /* we can't reset to -1 anymore since we've figured out correct index in distribute_particles */
606   /* usage other than straight after distribute has to handle this index by itself - jahka*/
607   // pa->num_dmcache = DMCACHE_NOTFOUND; /* assume we don't have a derived mesh face */
608 }
609 
initialize_all_particles(ParticleSimulationData * sim)610 static void initialize_all_particles(ParticleSimulationData *sim)
611 {
612   ParticleSystem *psys = sim->psys;
613   ParticleSettings *part = psys->part;
614   /* Grid distributionsets UNEXIST flag, need to take care of
615    * it here because later this flag is being reset.
616    *
617    * We can't do it for any distribution, because it'll then
618    * conflict with texture influence, which does not free
619    * unexisting particles and only sets flag.
620    *
621    * It's not so bad, because only grid distribution sets
622    * UNEXIST flag.
623    */
624   const bool emit_from_volume_grid = (part->distr == PART_DISTR_GRID) &&
625                                      (!ELEM(part->from, PART_FROM_VERT, PART_FROM_CHILD));
626   PARTICLE_P;
627   LOOP_PARTICLES
628   {
629     if (!(emit_from_volume_grid && (pa->flag & PARS_UNEXIST) != 0)) {
630       init_particle(sim, pa);
631     }
632   }
633 }
634 
free_unexisting_particles(ParticleSimulationData * sim)635 static void free_unexisting_particles(ParticleSimulationData *sim)
636 {
637   ParticleSystem *psys = sim->psys;
638   PARTICLE_P;
639 
640   psys->totunexist = 0;
641 
642   LOOP_PARTICLES
643   {
644     if (pa->flag & PARS_UNEXIST) {
645       psys->totunexist++;
646     }
647   }
648 
649   if (psys->totpart && psys->totunexist == psys->totpart) {
650     if (psys->particles->boid) {
651       MEM_freeN(psys->particles->boid);
652     }
653 
654     MEM_freeN(psys->particles);
655     psys->particles = NULL;
656     psys->totpart = psys->totunexist = 0;
657   }
658 
659   if (psys->totunexist) {
660     int newtotpart = psys->totpart - psys->totunexist;
661     ParticleData *npa, *newpars;
662 
663     npa = newpars = MEM_callocN(newtotpart * sizeof(ParticleData), "particles");
664 
665     for (p = 0, pa = psys->particles; p < newtotpart; p++, pa++, npa++) {
666       while (pa->flag & PARS_UNEXIST) {
667         pa++;
668       }
669 
670       memcpy(npa, pa, sizeof(ParticleData));
671     }
672 
673     if (psys->particles->boid) {
674       MEM_freeN(psys->particles->boid);
675     }
676     MEM_freeN(psys->particles);
677     psys->particles = newpars;
678     psys->totpart -= psys->totunexist;
679 
680     if (psys->particles->boid) {
681       BoidParticle *newboids = MEM_callocN(psys->totpart * sizeof(BoidParticle), "boid particles");
682 
683       LOOP_PARTICLES
684       {
685         pa->boid = newboids++;
686       }
687     }
688   }
689 }
690 
get_angular_velocity_vector(short avemode,ParticleKey * state,float vec[3])691 static void get_angular_velocity_vector(short avemode, ParticleKey *state, float vec[3])
692 {
693   switch (avemode) {
694     case PART_AVE_VELOCITY:
695       copy_v3_v3(vec, state->vel);
696       break;
697     case PART_AVE_HORIZONTAL: {
698       float zvec[3];
699       zvec[0] = zvec[1] = 0;
700       zvec[2] = 1.f;
701       cross_v3_v3v3(vec, state->vel, zvec);
702       break;
703     }
704     case PART_AVE_VERTICAL: {
705       float zvec[3], temp[3];
706       zvec[0] = zvec[1] = 0;
707       zvec[2] = 1.f;
708       cross_v3_v3v3(temp, state->vel, zvec);
709       cross_v3_v3v3(vec, temp, state->vel);
710       break;
711     }
712     case PART_AVE_GLOBAL_X:
713       vec[0] = 1.f;
714       vec[1] = vec[2] = 0;
715       break;
716     case PART_AVE_GLOBAL_Y:
717       vec[1] = 1.f;
718       vec[0] = vec[2] = 0;
719       break;
720     case PART_AVE_GLOBAL_Z:
721       vec[2] = 1.f;
722       vec[0] = vec[1] = 0;
723       break;
724   }
725 }
726 
psys_get_birth_coords(ParticleSimulationData * sim,ParticleData * pa,ParticleKey * state,float dtime,float cfra)727 void psys_get_birth_coords(
728     ParticleSimulationData *sim, ParticleData *pa, ParticleKey *state, float dtime, float cfra)
729 {
730   Object *ob = sim->ob;
731   ParticleSystem *psys = sim->psys;
732   ParticleSettings *part = psys->part;
733   ParticleTexture ptex;
734   float fac, phasefac, nor[3] = {0, 0, 0}, loc[3], vel[3] = {0.0, 0.0, 0.0}, rot[4], q2[4];
735   float r_vel[3], r_ave[3], r_rot[4], vec[3], p_vel[3] = {0.0, 0.0, 0.0};
736   float x_vec[3] = {1.0, 0.0, 0.0}, utan[3] = {0.0, 1.0, 0.0}, vtan[3] = {0.0, 0.0, 1.0},
737         rot_vec[3] = {0.0, 0.0, 0.0};
738   float q_phase[4];
739 
740   const bool use_boids = ((part->phystype == PART_PHYS_BOIDS) && (pa->boid != NULL));
741   const bool use_tangents = ((use_boids == false) &&
742                              ((part->tanfac != 0.0f) || (part->rotmode == PART_ROT_NOR_TAN)));
743 
744   int p = pa - psys->particles;
745 
746   /* get birth location from object       */
747   if (use_tangents) {
748     psys_particle_on_emitter(sim->psmd,
749                              part->from,
750                              pa->num,
751                              pa->num_dmcache,
752                              pa->fuv,
753                              pa->foffset,
754                              loc,
755                              nor,
756                              utan,
757                              vtan,
758                              0);
759   }
760   else {
761     psys_particle_on_emitter(
762         sim->psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, loc, nor, 0, 0, 0);
763   }
764 
765   /* get possible textural influence */
766   psys_get_texture(sim, pa, &ptex, PAMAP_IVEL, cfra);
767 
768   /* particles live in global space so    */
769   /* let's convert:                       */
770   /* -location                            */
771   mul_m4_v3(ob->obmat, loc);
772 
773   /* -normal                              */
774   mul_mat3_m4_v3(ob->obmat, nor);
775   normalize_v3(nor);
776 
777   /* -tangent                             */
778   if (use_tangents) {
779 #if 0
780     float phase = vg_rot ?
781                       2.0f *
782                           (psys_particle_value_from_verts(sim->psmd->dm, part->from, pa, vg_rot) -
783                            0.5f) :
784                       0.0f;
785 #else
786     float phase = 0.0f;
787 #endif
788     mul_v3_fl(vtan, -cosf((float)M_PI * (part->tanphase + phase)));
789     fac = -sinf((float)M_PI * (part->tanphase + phase));
790     madd_v3_v3fl(vtan, utan, fac);
791 
792     mul_mat3_m4_v3(ob->obmat, vtan);
793 
794     copy_v3_v3(utan, nor);
795     mul_v3_fl(utan, dot_v3v3(vtan, nor));
796     sub_v3_v3(vtan, utan);
797 
798     normalize_v3(vtan);
799   }
800 
801   /* -velocity (boids need this even if there's no random velocity) */
802   if (part->randfac != 0.0f || (part->phystype == PART_PHYS_BOIDS && pa->boid)) {
803     r_vel[0] = 2.0f * (psys_frand(psys, p + 10) - 0.5f);
804     r_vel[1] = 2.0f * (psys_frand(psys, p + 11) - 0.5f);
805     r_vel[2] = 2.0f * (psys_frand(psys, p + 12) - 0.5f);
806 
807     mul_mat3_m4_v3(ob->obmat, r_vel);
808     normalize_v3(r_vel);
809   }
810 
811   /* -angular velocity                    */
812   if (part->avemode == PART_AVE_RAND) {
813     r_ave[0] = 2.0f * (psys_frand(psys, p + 13) - 0.5f);
814     r_ave[1] = 2.0f * (psys_frand(psys, p + 14) - 0.5f);
815     r_ave[2] = 2.0f * (psys_frand(psys, p + 15) - 0.5f);
816 
817     mul_mat3_m4_v3(ob->obmat, r_ave);
818     normalize_v3(r_ave);
819   }
820 
821   /* -rotation                            */
822   if (part->randrotfac != 0.0f) {
823     r_rot[0] = 2.0f * (psys_frand(psys, p + 16) - 0.5f);
824     r_rot[1] = 2.0f * (psys_frand(psys, p + 17) - 0.5f);
825     r_rot[2] = 2.0f * (psys_frand(psys, p + 18) - 0.5f);
826     r_rot[3] = 2.0f * (psys_frand(psys, p + 19) - 0.5f);
827     normalize_qt(r_rot);
828 
829     mat4_to_quat(rot, ob->obmat);
830     mul_qt_qtqt(r_rot, r_rot, rot);
831   }
832 
833   if (use_boids) {
834     float dvec[3], q[4], mat[3][3];
835 
836     copy_v3_v3(state->co, loc);
837 
838     /* boids don't get any initial velocity  */
839     zero_v3(state->vel);
840 
841     /* boids store direction in ave */
842     if (fabsf(nor[2]) == 1.0f) {
843       sub_v3_v3v3(state->ave, loc, ob->obmat[3]);
844       normalize_v3(state->ave);
845     }
846     else {
847       copy_v3_v3(state->ave, nor);
848     }
849 
850     /* calculate rotation matrix */
851     project_v3_v3v3(dvec, r_vel, state->ave);
852     sub_v3_v3v3(mat[0], state->ave, dvec);
853     normalize_v3(mat[0]);
854     negate_v3_v3(mat[2], r_vel);
855     normalize_v3(mat[2]);
856     cross_v3_v3v3(mat[1], mat[2], mat[0]);
857 
858     /* apply rotation */
859     mat3_to_quat_is_ok(q, mat);
860     copy_qt_qt(state->rot, q);
861   }
862   else {
863     /* conversion done so now we apply new: */
864     /* -velocity from:                      */
865 
866     /*      *reactions                      */
867     if (dtime > 0.f) {
868       sub_v3_v3v3(vel, pa->state.vel, pa->prev_state.vel);
869     }
870 
871     /*      *emitter velocity               */
872     if (dtime != 0.f && part->obfac != 0.f) {
873       sub_v3_v3v3(vel, loc, state->co);
874       mul_v3_fl(vel, part->obfac / dtime);
875     }
876 
877     /*      *emitter normal                 */
878     if (part->normfac != 0.f) {
879       madd_v3_v3fl(vel, nor, part->normfac);
880     }
881 
882     /*      *emitter tangent                */
883     if (sim->psmd && part->tanfac != 0.f) {
884       madd_v3_v3fl(vel, vtan, part->tanfac);
885     }
886 
887     /*      *emitter object orientation     */
888     if (part->ob_vel[0] != 0.f) {
889       normalize_v3_v3(vec, ob->obmat[0]);
890       madd_v3_v3fl(vel, vec, part->ob_vel[0]);
891     }
892     if (part->ob_vel[1] != 0.f) {
893       normalize_v3_v3(vec, ob->obmat[1]);
894       madd_v3_v3fl(vel, vec, part->ob_vel[1]);
895     }
896     if (part->ob_vel[2] != 0.f) {
897       normalize_v3_v3(vec, ob->obmat[2]);
898       madd_v3_v3fl(vel, vec, part->ob_vel[2]);
899     }
900 
901     /*      *texture                        */
902     /* TODO */
903 
904     /*      *random                         */
905     if (part->randfac != 0.f) {
906       madd_v3_v3fl(vel, r_vel, part->randfac);
907     }
908 
909     /*      *particle                       */
910     if (part->partfac != 0.f) {
911       madd_v3_v3fl(vel, p_vel, part->partfac);
912     }
913 
914     mul_v3_v3fl(state->vel, vel, ptex.ivel);
915 
916     /* -location from emitter               */
917     copy_v3_v3(state->co, loc);
918 
919     /* -rotation                            */
920     unit_qt(state->rot);
921 
922     if (part->rotmode) {
923       bool use_global_space;
924 
925       /* create vector into which rotation is aligned */
926       switch (part->rotmode) {
927         case PART_ROT_NOR:
928         case PART_ROT_NOR_TAN:
929           copy_v3_v3(rot_vec, nor);
930           use_global_space = false;
931           break;
932         case PART_ROT_VEL:
933           copy_v3_v3(rot_vec, vel);
934           use_global_space = true;
935           break;
936         case PART_ROT_GLOB_X:
937         case PART_ROT_GLOB_Y:
938         case PART_ROT_GLOB_Z:
939           rot_vec[part->rotmode - PART_ROT_GLOB_X] = 1.0f;
940           use_global_space = true;
941           break;
942         case PART_ROT_OB_X:
943         case PART_ROT_OB_Y:
944         case PART_ROT_OB_Z:
945           copy_v3_v3(rot_vec, ob->obmat[part->rotmode - PART_ROT_OB_X]);
946           use_global_space = false;
947           break;
948         default:
949           use_global_space = true;
950           break;
951       }
952 
953       /* create rotation quat */
954 
955       if (use_global_space) {
956         negate_v3(rot_vec);
957         vec_to_quat(q2, rot_vec, OB_POSX, OB_POSZ);
958 
959         /* randomize rotation quat */
960         if (part->randrotfac != 0.0f) {
961           interp_qt_qtqt(rot, q2, r_rot, part->randrotfac);
962         }
963         else {
964           copy_qt_qt(rot, q2);
965         }
966       }
967       else {
968         /* calculate rotation in local-space */
969         float q_obmat[4];
970         float q_imat[4];
971 
972         mat4_to_quat(q_obmat, ob->obmat);
973         invert_qt_qt_normalized(q_imat, q_obmat);
974 
975         if (part->rotmode != PART_ROT_NOR_TAN) {
976           float rot_vec_local[3];
977 
978           /* rot_vec */
979           negate_v3(rot_vec);
980           copy_v3_v3(rot_vec_local, rot_vec);
981           mul_qt_v3(q_imat, rot_vec_local);
982           normalize_v3(rot_vec_local);
983 
984           vec_to_quat(q2, rot_vec_local, OB_POSX, OB_POSZ);
985         }
986         else {
987           /* (part->rotmode == PART_ROT_NOR_TAN) */
988           float tmat[3][3];
989 
990           /* note: utan_local is not taken from 'utan', we calculate from rot_vec/vtan */
991           /* note: it looks like rotation phase may be applied twice (once with vtan, again below)
992            * however this isn't the case - campbell */
993           float *rot_vec_local = tmat[0];
994           float *vtan_local = tmat[1];
995           float *utan_local = tmat[2];
996 
997           /* use tangents */
998           BLI_assert(use_tangents == true);
999 
1000           /* rot_vec */
1001           copy_v3_v3(rot_vec_local, rot_vec);
1002           mul_qt_v3(q_imat, rot_vec_local);
1003 
1004           /* vtan_local */
1005           copy_v3_v3(vtan_local, vtan); /* flips, cant use */
1006           mul_qt_v3(q_imat, vtan_local);
1007 
1008           /* ensure orthogonal matrix (rot_vec aligned) */
1009           cross_v3_v3v3(utan_local, vtan_local, rot_vec_local);
1010           cross_v3_v3v3(vtan_local, utan_local, rot_vec_local);
1011 
1012           /* note: no need to normalize */
1013           mat3_to_quat(q2, tmat);
1014         }
1015 
1016         /* randomize rotation quat */
1017         if (part->randrotfac != 0.0f) {
1018           mul_qt_qtqt(r_rot, r_rot, q_imat);
1019           interp_qt_qtqt(rot, q2, r_rot, part->randrotfac);
1020         }
1021         else {
1022           copy_qt_qt(rot, q2);
1023         }
1024 
1025         mul_qt_qtqt(rot, q_obmat, rot);
1026       }
1027 
1028       /* rotation phase */
1029       phasefac = part->phasefac;
1030       if (part->randphasefac != 0.0f) {
1031         phasefac += part->randphasefac * psys_frand(psys, p + 20);
1032       }
1033       axis_angle_to_quat(q_phase, x_vec, phasefac * (float)M_PI);
1034 
1035       /* combine base rotation & phase */
1036       mul_qt_qtqt(state->rot, rot, q_phase);
1037     }
1038 
1039     /* -angular velocity                    */
1040 
1041     zero_v3(state->ave);
1042 
1043     if (part->avemode) {
1044       if (part->avemode == PART_AVE_RAND) {
1045         copy_v3_v3(state->ave, r_ave);
1046       }
1047       else {
1048         get_angular_velocity_vector(part->avemode, state, state->ave);
1049       }
1050 
1051       normalize_v3(state->ave);
1052       mul_v3_fl(state->ave, part->avefac);
1053     }
1054   }
1055 }
1056 
1057 /* recursively evaluate emitter parent anim at cfra */
evaluate_emitter_anim(struct Depsgraph * depsgraph,Scene * scene,Object * ob,float cfra)1058 static void evaluate_emitter_anim(struct Depsgraph *depsgraph,
1059                                   Scene *scene,
1060                                   Object *ob,
1061                                   float cfra)
1062 {
1063   if (ob->parent) {
1064     evaluate_emitter_anim(depsgraph, scene, ob->parent, cfra);
1065   }
1066 
1067   BKE_object_where_is_calc_time(depsgraph, scene, ob, cfra);
1068 }
1069 
1070 /* sets particle to the emitter surface with initial velocity & rotation */
reset_particle(ParticleSimulationData * sim,ParticleData * pa,float dtime,float cfra)1071 void reset_particle(ParticleSimulationData *sim, ParticleData *pa, float dtime, float cfra)
1072 {
1073   ParticleSystem *psys = sim->psys;
1074   ParticleSettings *part;
1075   ParticleTexture ptex;
1076   int p = pa - psys->particles;
1077   part = psys->part;
1078 
1079   /* get precise emitter matrix if particle is born */
1080   if (part->type != PART_HAIR && dtime > 0.f && pa->time < cfra && pa->time >= sim->psys->cfra) {
1081     evaluate_emitter_anim(sim->depsgraph, sim->scene, sim->ob, pa->time);
1082 
1083     psys->flag |= PSYS_OB_ANIM_RESTORE;
1084   }
1085 
1086   psys_get_birth_coords(sim, pa, &pa->state, dtime, cfra);
1087 
1088   /* Initialize particle settings which depends on texture.
1089    *
1090    * We could only do it now because we'll need to know coordinate
1091    * before sampling the texture.
1092    */
1093   init_particle_texture(sim, pa, p);
1094 
1095   if (part->phystype == PART_PHYS_BOIDS && pa->boid) {
1096     BoidParticle *bpa = pa->boid;
1097 
1098     /* and gravity in r_ve */
1099     bpa->gravity[0] = bpa->gravity[1] = 0.0f;
1100     bpa->gravity[2] = -1.0f;
1101     if ((sim->scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY) &&
1102         (sim->scene->physics_settings.gravity[2] != 0.0f)) {
1103       bpa->gravity[2] = sim->scene->physics_settings.gravity[2];
1104     }
1105 
1106     bpa->data.health = part->boids->health;
1107     bpa->data.mode = eBoidMode_InAir;
1108     bpa->data.state_id = ((BoidState *)part->boids->states.first)->id;
1109     bpa->data.acc[0] = bpa->data.acc[1] = bpa->data.acc[2] = 0.0f;
1110   }
1111 
1112   if (part->type == PART_HAIR) {
1113     pa->lifetime = 100.0f;
1114   }
1115   else {
1116     /* initialize the lifetime, in case the texture coordinates
1117      * are from Particles/Strands, which would cause undefined values
1118      */
1119     pa->lifetime = part->lifetime * (1.0f - part->randlife * psys_frand(psys, p + 21));
1120     pa->dietime = pa->time + pa->lifetime;
1121 
1122     /* get possible textural influence */
1123     psys_get_texture(sim, pa, &ptex, PAMAP_LIFE, cfra);
1124 
1125     pa->lifetime = part->lifetime * ptex.life;
1126 
1127     if (part->randlife != 0.0f) {
1128       pa->lifetime *= 1.0f - part->randlife * psys_frand(psys, p + 21);
1129     }
1130   }
1131 
1132   pa->dietime = pa->time + pa->lifetime;
1133 
1134   if ((sim->psys->pointcache) && (sim->psys->pointcache->flag & PTCACHE_BAKED) &&
1135       (sim->psys->pointcache->mem_cache.first)) {
1136     float dietime = psys_get_dietime_from_cache(sim->psys->pointcache, p);
1137     pa->dietime = MIN2(pa->dietime, dietime);
1138   }
1139 
1140   if (pa->time > cfra) {
1141     pa->alive = PARS_UNBORN;
1142   }
1143   else if (pa->dietime <= cfra) {
1144     pa->alive = PARS_DEAD;
1145   }
1146   else {
1147     pa->alive = PARS_ALIVE;
1148   }
1149 
1150   pa->state.time = cfra;
1151 }
reset_all_particles(ParticleSimulationData * sim,float dtime,float cfra,int from)1152 static void reset_all_particles(ParticleSimulationData *sim, float dtime, float cfra, int from)
1153 {
1154   ParticleData *pa;
1155   int p, totpart = sim->psys->totpart;
1156 
1157   for (p = from, pa = sim->psys->particles + from; p < totpart; p++, pa++) {
1158     reset_particle(sim, pa, dtime, cfra);
1159   }
1160 }
1161 /************************************************/
1162 /*          Particle targets                    */
1163 /************************************************/
psys_get_target_system(Object * ob,ParticleTarget * pt)1164 ParticleSystem *psys_get_target_system(Object *ob, ParticleTarget *pt)
1165 {
1166   ParticleSystem *psys = NULL;
1167 
1168   if (pt->ob == NULL || pt->ob == ob) {
1169     psys = BLI_findlink(&ob->particlesystem, pt->psys - 1);
1170   }
1171   else {
1172     psys = BLI_findlink(&pt->ob->particlesystem, pt->psys - 1);
1173   }
1174 
1175   if (psys) {
1176     pt->flag |= PTARGET_VALID;
1177   }
1178   else {
1179     pt->flag &= ~PTARGET_VALID;
1180   }
1181 
1182   return psys;
1183 }
1184 /************************************************/
1185 /*          Keyed particles                     */
1186 /************************************************/
1187 /* Counts valid keyed targets */
psys_count_keyed_targets(ParticleSimulationData * sim)1188 void psys_count_keyed_targets(ParticleSimulationData *sim)
1189 {
1190   ParticleSystem *psys = sim->psys, *kpsys;
1191   ParticleTarget *pt = psys->targets.first;
1192   int keys_valid = 1;
1193   psys->totkeyed = 0;
1194 
1195   for (; pt; pt = pt->next) {
1196     kpsys = psys_get_target_system(sim->ob, pt);
1197 
1198     if (kpsys && kpsys->totpart) {
1199       psys->totkeyed += keys_valid;
1200       if (psys->flag & PSYS_KEYED_TIMING && pt->duration != 0.0f) {
1201         psys->totkeyed += 1;
1202       }
1203     }
1204     else {
1205       keys_valid = 0;
1206     }
1207   }
1208 
1209   psys->totkeyed *= psys->flag & PSYS_KEYED_TIMING ? 1 : psys->part->keyed_loops;
1210 }
1211 
set_keyed_keys(ParticleSimulationData * sim)1212 static void set_keyed_keys(ParticleSimulationData *sim)
1213 {
1214   ParticleSystem *psys = sim->psys;
1215   ParticleSimulationData ksim = {0};
1216   ParticleTarget *pt;
1217   PARTICLE_P;
1218   ParticleKey *key;
1219   int totpart = psys->totpart, k, totkeys = psys->totkeyed;
1220   int keyed_flag = 0;
1221 
1222   ksim.depsgraph = sim->depsgraph;
1223   ksim.scene = sim->scene;
1224 
1225   /* no proper targets so let's clear and bail out */
1226   if (psys->totkeyed == 0) {
1227     free_keyed_keys(psys);
1228     psys->flag &= ~PSYS_KEYED;
1229     return;
1230   }
1231 
1232   if (totpart && psys->particles->totkey != totkeys) {
1233     free_keyed_keys(psys);
1234 
1235     key = MEM_callocN(totpart * totkeys * sizeof(ParticleKey), "Keyed keys");
1236 
1237     LOOP_PARTICLES
1238     {
1239       pa->keys = key;
1240       pa->totkey = totkeys;
1241       key += totkeys;
1242     }
1243   }
1244 
1245   psys->flag &= ~PSYS_KEYED;
1246 
1247   pt = psys->targets.first;
1248   for (k = 0; k < totkeys; k++) {
1249     ksim.ob = pt->ob ? pt->ob : sim->ob;
1250     ksim.psys = BLI_findlink(&ksim.ob->particlesystem, pt->psys - 1);
1251     keyed_flag = (ksim.psys->flag & PSYS_KEYED);
1252     ksim.psys->flag &= ~PSYS_KEYED;
1253 
1254     LOOP_PARTICLES
1255     {
1256       key = pa->keys + k;
1257       key->time = -1.0; /* use current time */
1258 
1259       const int p_ksim = (ksim.psys->totpart) ? p % ksim.psys->totpart : 0;
1260       psys_get_particle_state(&ksim, p_ksim, key, 1);
1261 
1262       if (psys->flag & PSYS_KEYED_TIMING) {
1263         key->time = pa->time + pt->time;
1264         if (pt->duration != 0.0f && k + 1 < totkeys) {
1265           copy_particle_key(key + 1, key, 1);
1266           (key + 1)->time = pa->time + pt->time + pt->duration;
1267         }
1268       }
1269       else if (totkeys > 1) {
1270         key->time = pa->time + (float)k / (float)(totkeys - 1) * pa->lifetime;
1271       }
1272       else {
1273         key->time = pa->time;
1274       }
1275     }
1276 
1277     if (psys->flag & PSYS_KEYED_TIMING && pt->duration != 0.0f) {
1278       k++;
1279     }
1280 
1281     ksim.psys->flag |= keyed_flag;
1282 
1283     pt = (pt->next && pt->next->flag & PTARGET_VALID) ? pt->next : psys->targets.first;
1284   }
1285 
1286   psys->flag |= PSYS_KEYED;
1287 }
1288 
1289 /************************************************/
1290 /*          Point Cache                         */
1291 /************************************************/
psys_make_temp_pointcache(Object * ob,ParticleSystem * psys)1292 void psys_make_temp_pointcache(Object *ob, ParticleSystem *psys)
1293 {
1294   PointCache *cache = psys->pointcache;
1295 
1296   if (cache->flag & PTCACHE_DISK_CACHE && BLI_listbase_is_empty(&cache->mem_cache)) {
1297     PTCacheID pid;
1298     BKE_ptcache_id_from_particles(&pid, ob, psys);
1299     cache->flag &= ~PTCACHE_DISK_CACHE;
1300     BKE_ptcache_disk_to_mem(&pid);
1301     cache->flag |= PTCACHE_DISK_CACHE;
1302   }
1303 }
psys_clear_temp_pointcache(ParticleSystem * psys)1304 static void psys_clear_temp_pointcache(ParticleSystem *psys)
1305 {
1306   if (psys->pointcache->flag & PTCACHE_DISK_CACHE) {
1307     BKE_ptcache_free_mem(&psys->pointcache->mem_cache);
1308   }
1309 }
psys_get_pointcache_start_end(Scene * scene,ParticleSystem * psys,int * sfra,int * efra)1310 void psys_get_pointcache_start_end(Scene *scene, ParticleSystem *psys, int *sfra, int *efra)
1311 {
1312   ParticleSettings *part = psys->part;
1313 
1314   *sfra = max_ii(1, (int)part->sta);
1315   *efra = min_ii((int)(part->end + part->lifetime + 1.0f), max_ii(scene->r.pefra, scene->r.efra));
1316 }
1317 
1318 /************************************************/
1319 /*          Effectors                           */
1320 /************************************************/
psys_update_particle_bvhtree(ParticleSystem * psys,float cfra)1321 static void psys_update_particle_bvhtree(ParticleSystem *psys, float cfra)
1322 {
1323   if (psys) {
1324     PARTICLE_P;
1325     int totpart = 0;
1326     bool need_rebuild;
1327 
1328     BLI_rw_mutex_lock(&psys_bvhtree_rwlock, THREAD_LOCK_READ);
1329     need_rebuild = !psys->bvhtree || psys->bvhtree_frame != cfra;
1330     BLI_rw_mutex_unlock(&psys_bvhtree_rwlock);
1331 
1332     if (need_rebuild) {
1333       LOOP_SHOWN_PARTICLES
1334       {
1335         totpart++;
1336       }
1337 
1338       BLI_rw_mutex_lock(&psys_bvhtree_rwlock, THREAD_LOCK_WRITE);
1339 
1340       BLI_bvhtree_free(psys->bvhtree);
1341       psys->bvhtree = BLI_bvhtree_new(totpart, 0.0, 4, 6);
1342 
1343       LOOP_SHOWN_PARTICLES
1344       {
1345         if (pa->alive == PARS_ALIVE) {
1346           if (pa->state.time == cfra) {
1347             BLI_bvhtree_insert(psys->bvhtree, p, pa->prev_state.co, 1);
1348           }
1349           else {
1350             BLI_bvhtree_insert(psys->bvhtree, p, pa->state.co, 1);
1351           }
1352         }
1353       }
1354       BLI_bvhtree_balance(psys->bvhtree);
1355 
1356       psys->bvhtree_frame = cfra;
1357 
1358       BLI_rw_mutex_unlock(&psys_bvhtree_rwlock);
1359     }
1360   }
1361 }
psys_update_particle_tree(ParticleSystem * psys,float cfra)1362 void psys_update_particle_tree(ParticleSystem *psys, float cfra)
1363 {
1364   if (psys) {
1365     PARTICLE_P;
1366     int totpart = 0;
1367 
1368     if (!psys->tree || psys->tree_frame != cfra) {
1369       LOOP_SHOWN_PARTICLES
1370       {
1371         totpart++;
1372       }
1373 
1374       BLI_kdtree_3d_free(psys->tree);
1375       psys->tree = BLI_kdtree_3d_new(psys->totpart);
1376 
1377       LOOP_SHOWN_PARTICLES
1378       {
1379         if (pa->alive == PARS_ALIVE) {
1380           if (pa->state.time == cfra) {
1381             BLI_kdtree_3d_insert(psys->tree, p, pa->prev_state.co);
1382           }
1383           else {
1384             BLI_kdtree_3d_insert(psys->tree, p, pa->state.co);
1385           }
1386         }
1387       }
1388       BLI_kdtree_3d_balance(psys->tree);
1389 
1390       psys->tree_frame = cfra;
1391     }
1392   }
1393 }
1394 
psys_update_effectors(ParticleSimulationData * sim)1395 static void psys_update_effectors(ParticleSimulationData *sim)
1396 {
1397   BKE_effectors_free(sim->psys->effectors);
1398   sim->psys->effectors = BKE_effectors_create(
1399       sim->depsgraph, sim->ob, sim->psys, sim->psys->part->effector_weights);
1400   precalc_guides(sim, sim->psys->effectors);
1401 }
1402 
integrate_particle(ParticleSettings * part,ParticleData * pa,float dtime,float * external_acceleration,void (* force_func)(void * forcedata,ParticleKey * state,float * force,float * impulse),void * forcedata)1403 static void integrate_particle(
1404     ParticleSettings *part,
1405     ParticleData *pa,
1406     float dtime,
1407     float *external_acceleration,
1408     void (*force_func)(void *forcedata, ParticleKey *state, float *force, float *impulse),
1409     void *forcedata)
1410 {
1411 #define ZERO_F43 \
1412   { \
1413     {0.0f, 0.0f, 0.0f}, {0.0f, 0.0f, 0.0f}, {0.0f, 0.0f, 0.0f}, \
1414     { \
1415       0.0f, 0.0f, 0.0f \
1416     } \
1417   }
1418 
1419   ParticleKey states[5];
1420   float force[3], acceleration[3], impulse[3], dx[4][3] = ZERO_F43, dv[4][3] = ZERO_F43, oldpos[3];
1421   float pa_mass = (part->flag & PART_SIZEMASS ? part->mass * pa->size : part->mass);
1422   int i, steps = 1;
1423   int integrator = part->integrator;
1424 
1425 #undef ZERO_F43
1426 
1427   copy_v3_v3(oldpos, pa->state.co);
1428 
1429   /* Verlet integration behaves strangely with moving emitters, so do first step with euler. */
1430   if (pa->prev_state.time < 0.f && integrator == PART_INT_VERLET) {
1431     integrator = PART_INT_EULER;
1432   }
1433 
1434   switch (integrator) {
1435     case PART_INT_EULER:
1436       steps = 1;
1437       break;
1438     case PART_INT_MIDPOINT:
1439       steps = 2;
1440       break;
1441     case PART_INT_RK4:
1442       steps = 4;
1443       break;
1444     case PART_INT_VERLET:
1445       steps = 1;
1446       break;
1447   }
1448 
1449   for (i = 0; i < steps; i++) {
1450     copy_particle_key(states + i, &pa->state, 1);
1451   }
1452 
1453   states->time = 0.f;
1454 
1455   for (i = 0; i < steps; i++) {
1456     zero_v3(force);
1457     zero_v3(impulse);
1458 
1459     force_func(forcedata, states + i, force, impulse);
1460 
1461     /* force to acceleration*/
1462     mul_v3_v3fl(acceleration, force, 1.0f / pa_mass);
1463 
1464     if (external_acceleration) {
1465       add_v3_v3(acceleration, external_acceleration);
1466     }
1467 
1468     /* calculate next state */
1469     add_v3_v3(states[i].vel, impulse);
1470 
1471     switch (integrator) {
1472       case PART_INT_EULER:
1473         madd_v3_v3v3fl(pa->state.co, states->co, states->vel, dtime);
1474         madd_v3_v3v3fl(pa->state.vel, states->vel, acceleration, dtime);
1475         break;
1476       case PART_INT_MIDPOINT:
1477         if (i == 0) {
1478           madd_v3_v3v3fl(states[1].co, states->co, states->vel, dtime * 0.5f);
1479           madd_v3_v3v3fl(states[1].vel, states->vel, acceleration, dtime * 0.5f);
1480           states[1].time = dtime * 0.5f;
1481           /*fra=sim->psys->cfra+0.5f*dfra;*/
1482         }
1483         else {
1484           madd_v3_v3v3fl(pa->state.co, states->co, states[1].vel, dtime);
1485           madd_v3_v3v3fl(pa->state.vel, states->vel, acceleration, dtime);
1486         }
1487         break;
1488       case PART_INT_RK4:
1489         switch (i) {
1490           case 0:
1491             copy_v3_v3(dx[0], states->vel);
1492             mul_v3_fl(dx[0], dtime);
1493             copy_v3_v3(dv[0], acceleration);
1494             mul_v3_fl(dv[0], dtime);
1495 
1496             madd_v3_v3v3fl(states[1].co, states->co, dx[0], 0.5f);
1497             madd_v3_v3v3fl(states[1].vel, states->vel, dv[0], 0.5f);
1498             states[1].time = dtime * 0.5f;
1499             /*fra=sim->psys->cfra+0.5f*dfra;*/
1500             break;
1501           case 1:
1502             madd_v3_v3v3fl(dx[1], states->vel, dv[0], 0.5f);
1503             mul_v3_fl(dx[1], dtime);
1504             copy_v3_v3(dv[1], acceleration);
1505             mul_v3_fl(dv[1], dtime);
1506 
1507             madd_v3_v3v3fl(states[2].co, states->co, dx[1], 0.5f);
1508             madd_v3_v3v3fl(states[2].vel, states->vel, dv[1], 0.5f);
1509             states[2].time = dtime * 0.5f;
1510             break;
1511           case 2:
1512             madd_v3_v3v3fl(dx[2], states->vel, dv[1], 0.5f);
1513             mul_v3_fl(dx[2], dtime);
1514             copy_v3_v3(dv[2], acceleration);
1515             mul_v3_fl(dv[2], dtime);
1516 
1517             add_v3_v3v3(states[3].co, states->co, dx[2]);
1518             add_v3_v3v3(states[3].vel, states->vel, dv[2]);
1519             states[3].time = dtime;
1520             /*fra=cfra;*/
1521             break;
1522           case 3:
1523             add_v3_v3v3(dx[3], states->vel, dv[2]);
1524             mul_v3_fl(dx[3], dtime);
1525             copy_v3_v3(dv[3], acceleration);
1526             mul_v3_fl(dv[3], dtime);
1527 
1528             madd_v3_v3v3fl(pa->state.co, states->co, dx[0], 1.0f / 6.0f);
1529             madd_v3_v3fl(pa->state.co, dx[1], 1.0f / 3.0f);
1530             madd_v3_v3fl(pa->state.co, dx[2], 1.0f / 3.0f);
1531             madd_v3_v3fl(pa->state.co, dx[3], 1.0f / 6.0f);
1532 
1533             madd_v3_v3v3fl(pa->state.vel, states->vel, dv[0], 1.0f / 6.0f);
1534             madd_v3_v3fl(pa->state.vel, dv[1], 1.0f / 3.0f);
1535             madd_v3_v3fl(pa->state.vel, dv[2], 1.0f / 3.0f);
1536             madd_v3_v3fl(pa->state.vel, dv[3], 1.0f / 6.0f);
1537         }
1538         break;
1539       case PART_INT_VERLET: /* Verlet integration */
1540         madd_v3_v3v3fl(pa->state.vel, pa->prev_state.vel, acceleration, dtime);
1541         madd_v3_v3v3fl(pa->state.co, pa->prev_state.co, pa->state.vel, dtime);
1542 
1543         sub_v3_v3v3(pa->state.vel, pa->state.co, oldpos);
1544         mul_v3_fl(pa->state.vel, 1.0f / dtime);
1545         break;
1546     }
1547   }
1548 }
1549 
1550 /* -------------------------------------------------------------------- */
1551 /** \name SPH fluid physics
1552  *
1553  * In theory, there could be unlimited implementation of SPH simulators
1554  *
1555  * This code uses in some parts adapted algorithms
1556  * from the pseudo code as outlined in the Research paper:
1557  *
1558  * Titled: Particle-based Viscoelastic Fluid Simulation.
1559  * Authors: Simon Clavet, Philippe Beaudoin and Pierre Poulin
1560  * Website: http://www.iro.umontreal.ca/labs/infographie/papers/Clavet-2005-PVFS/
1561  *
1562  * Presented at Siggraph, (2005)
1563  *
1564  * \{ */
1565 
1566 #define PSYS_FLUID_SPRINGS_INITIAL_SIZE 256
sph_spring_add(ParticleSystem * psys,ParticleSpring * spring)1567 static ParticleSpring *sph_spring_add(ParticleSystem *psys, ParticleSpring *spring)
1568 {
1569   /* Are more refs required? */
1570   if (psys->alloc_fluidsprings == 0 || psys->fluid_springs == NULL) {
1571     psys->alloc_fluidsprings = PSYS_FLUID_SPRINGS_INITIAL_SIZE;
1572     psys->fluid_springs = (ParticleSpring *)MEM_callocN(
1573         psys->alloc_fluidsprings * sizeof(ParticleSpring), "Particle Fluid Springs");
1574   }
1575   else if (psys->tot_fluidsprings == psys->alloc_fluidsprings) {
1576     /* Double the number of refs allocated */
1577     psys->alloc_fluidsprings *= 2;
1578     psys->fluid_springs = (ParticleSpring *)MEM_reallocN(
1579         psys->fluid_springs, psys->alloc_fluidsprings * sizeof(ParticleSpring));
1580   }
1581 
1582   memcpy(psys->fluid_springs + psys->tot_fluidsprings, spring, sizeof(ParticleSpring));
1583   psys->tot_fluidsprings++;
1584 
1585   return psys->fluid_springs + psys->tot_fluidsprings - 1;
1586 }
sph_spring_delete(ParticleSystem * psys,int j)1587 static void sph_spring_delete(ParticleSystem *psys, int j)
1588 {
1589   if (j != psys->tot_fluidsprings - 1) {
1590     psys->fluid_springs[j] = psys->fluid_springs[psys->tot_fluidsprings - 1];
1591   }
1592 
1593   psys->tot_fluidsprings--;
1594 
1595   if (psys->tot_fluidsprings < psys->alloc_fluidsprings / 2 &&
1596       psys->alloc_fluidsprings > PSYS_FLUID_SPRINGS_INITIAL_SIZE) {
1597     psys->alloc_fluidsprings /= 2;
1598     psys->fluid_springs = (ParticleSpring *)MEM_reallocN(
1599         psys->fluid_springs, psys->alloc_fluidsprings * sizeof(ParticleSpring));
1600   }
1601 }
sph_springs_modify(ParticleSystem * psys,float dtime)1602 static void sph_springs_modify(ParticleSystem *psys, float dtime)
1603 {
1604   SPHFluidSettings *fluid = psys->part->fluid;
1605   ParticleData *pa1, *pa2;
1606   ParticleSpring *spring = psys->fluid_springs;
1607 
1608   float h, d, Rij[3], rij, Lij;
1609   int i;
1610 
1611   float yield_ratio = fluid->yield_ratio;
1612   float plasticity = fluid->plasticity_constant;
1613   /* scale things according to dtime */
1614   float timefix = 25.f * dtime;
1615 
1616   if ((fluid->flag & SPH_VISCOELASTIC_SPRINGS) == 0 || fluid->spring_k == 0.f) {
1617     return;
1618   }
1619 
1620   /* Loop through the springs */
1621   for (i = 0; i < psys->tot_fluidsprings; i++, spring++) {
1622     pa1 = psys->particles + spring->particle_index[0];
1623     pa2 = psys->particles + spring->particle_index[1];
1624 
1625     sub_v3_v3v3(Rij, pa2->prev_state.co, pa1->prev_state.co);
1626     rij = normalize_v3(Rij);
1627 
1628     /* adjust rest length */
1629     Lij = spring->rest_length;
1630     d = yield_ratio * timefix * Lij;
1631 
1632     if (rij > Lij + d) {  // Stretch
1633       spring->rest_length += plasticity * (rij - Lij - d) * timefix;
1634     }
1635     else if (rij < Lij - d) {  // Compress
1636       spring->rest_length -= plasticity * (Lij - d - rij) * timefix;
1637     }
1638 
1639     h = 4.f * pa1->size;
1640 
1641     if (spring->rest_length > h) {
1642       spring->delete_flag = 1;
1643     }
1644   }
1645 
1646   /* Loop through springs backwaqrds - for efficient delete function */
1647   for (i = psys->tot_fluidsprings - 1; i >= 0; i--) {
1648     if (psys->fluid_springs[i].delete_flag) {
1649       sph_spring_delete(psys, i);
1650     }
1651   }
1652 }
sph_springhash_build(ParticleSystem * psys)1653 static EdgeHash *sph_springhash_build(ParticleSystem *psys)
1654 {
1655   EdgeHash *springhash = NULL;
1656   ParticleSpring *spring;
1657   int i = 0;
1658 
1659   springhash = BLI_edgehash_new_ex(__func__, psys->tot_fluidsprings);
1660 
1661   for (i = 0, spring = psys->fluid_springs; i < psys->tot_fluidsprings; i++, spring++) {
1662     BLI_edgehash_insert(
1663         springhash, spring->particle_index[0], spring->particle_index[1], POINTER_FROM_INT(i + 1));
1664   }
1665 
1666   return springhash;
1667 }
1668 
1669 #define SPH_NEIGHBORS 512
1670 typedef struct SPHNeighbor {
1671   ParticleSystem *psys;
1672   int index;
1673 } SPHNeighbor;
1674 
1675 typedef struct SPHRangeData {
1676   SPHNeighbor neighbors[SPH_NEIGHBORS];
1677   int tot_neighbors;
1678 
1679   float *data;
1680 
1681   ParticleSystem *npsys;
1682   ParticleData *pa;
1683 
1684   float h;
1685   float mass;
1686   float massfac;
1687   int use_size;
1688 } SPHRangeData;
1689 
sph_evaluate_func(BVHTree * tree,ParticleSystem ** psys,const float co[3],SPHRangeData * pfr,float interaction_radius,BVHTree_RangeQuery callback)1690 static void sph_evaluate_func(BVHTree *tree,
1691                               ParticleSystem **psys,
1692                               const float co[3],
1693                               SPHRangeData *pfr,
1694                               float interaction_radius,
1695                               BVHTree_RangeQuery callback)
1696 {
1697   int i;
1698 
1699   pfr->tot_neighbors = 0;
1700 
1701   for (i = 0; i < 10 && psys[i]; i++) {
1702     pfr->npsys = psys[i];
1703     pfr->massfac = psys[i]->part->mass / pfr->mass;
1704     pfr->use_size = psys[i]->part->flag & PART_SIZEMASS;
1705 
1706     if (tree) {
1707       BLI_bvhtree_range_query(tree, co, interaction_radius, callback, pfr);
1708       break;
1709     }
1710 
1711     BLI_rw_mutex_lock(&psys_bvhtree_rwlock, THREAD_LOCK_READ);
1712 
1713     BLI_bvhtree_range_query(psys[i]->bvhtree, co, interaction_radius, callback, pfr);
1714 
1715     BLI_rw_mutex_unlock(&psys_bvhtree_rwlock);
1716   }
1717 }
sph_density_accum_cb(void * userdata,int index,const float co[3],float squared_dist)1718 static void sph_density_accum_cb(void *userdata, int index, const float co[3], float squared_dist)
1719 {
1720   SPHRangeData *pfr = (SPHRangeData *)userdata;
1721   ParticleData *npa = pfr->npsys->particles + index;
1722   float q;
1723   float dist;
1724 
1725   UNUSED_VARS(co);
1726 
1727   if (npa == pfr->pa || squared_dist < FLT_EPSILON) {
1728     return;
1729   }
1730 
1731   /* Ugh! One particle has too many neighbors! If some aren't taken into
1732    * account, the forces will be biased by the tree search order. This
1733    * effectively adds energy to the system, and results in a churning motion.
1734    * But, we have to stop somewhere, and it's not the end of the world.
1735    * - jahka and z0r
1736    */
1737   if (pfr->tot_neighbors >= SPH_NEIGHBORS) {
1738     return;
1739   }
1740 
1741   pfr->neighbors[pfr->tot_neighbors].index = index;
1742   pfr->neighbors[pfr->tot_neighbors].psys = pfr->npsys;
1743   pfr->tot_neighbors++;
1744 
1745   dist = sqrtf(squared_dist);
1746   q = (1.f - dist / pfr->h) * pfr->massfac;
1747 
1748   if (pfr->use_size) {
1749     q *= npa->size;
1750   }
1751 
1752   pfr->data[0] += q * q;
1753   pfr->data[1] += q * q * q;
1754 }
1755 
1756 /*
1757  * Find the Courant number for an SPH particle (used for adaptive time step).
1758  */
sph_particle_courant(SPHData * sphdata,SPHRangeData * pfr)1759 static void sph_particle_courant(SPHData *sphdata, SPHRangeData *pfr)
1760 {
1761   ParticleData *pa, *npa;
1762   int i;
1763   float flow[3], offset[3], dist;
1764 
1765   zero_v3(flow);
1766 
1767   dist = 0.0f;
1768   if (pfr->tot_neighbors > 0) {
1769     pa = pfr->pa;
1770     for (i = 0; i < pfr->tot_neighbors; i++) {
1771       npa = pfr->neighbors[i].psys->particles + pfr->neighbors[i].index;
1772       sub_v3_v3v3(offset, pa->prev_state.co, npa->prev_state.co);
1773       dist += len_v3(offset);
1774       add_v3_v3(flow, npa->prev_state.vel);
1775     }
1776     dist += sphdata->psys[0]->part->fluid->radius;  // TODO: remove this? - z0r
1777     sphdata->element_size = dist / pfr->tot_neighbors;
1778     mul_v3_v3fl(sphdata->flow, flow, 1.0f / pfr->tot_neighbors);
1779   }
1780   else {
1781     sphdata->element_size = FLT_MAX;
1782     copy_v3_v3(sphdata->flow, flow);
1783   }
1784 }
sph_force_cb(void * sphdata_v,ParticleKey * state,float * force,float * UNUSED (impulse))1785 static void sph_force_cb(void *sphdata_v, ParticleKey *state, float *force, float *UNUSED(impulse))
1786 {
1787   SPHData *sphdata = (SPHData *)sphdata_v;
1788   ParticleSystem **psys = sphdata->psys;
1789   ParticleData *pa = sphdata->pa;
1790   SPHFluidSettings *fluid = psys[0]->part->fluid;
1791   ParticleSpring *spring = NULL;
1792   SPHRangeData pfr;
1793   SPHNeighbor *pfn;
1794   float *gravity = sphdata->gravity;
1795   EdgeHash *springhash = sphdata->eh;
1796 
1797   float q, u, rij, dv[3];
1798   float pressure, near_pressure;
1799 
1800   float visc = fluid->viscosity_omega;
1801   float stiff_visc = fluid->viscosity_beta *
1802                      (fluid->flag & SPH_FAC_VISCOSITY ? fluid->viscosity_omega : 1.f);
1803 
1804   float inv_mass = 1.0f / sphdata->mass;
1805   float spring_constant = fluid->spring_k;
1806 
1807   /* 4.0 seems to be a pretty good value */
1808   float interaction_radius = fluid->radius *
1809                              (fluid->flag & SPH_FAC_RADIUS ? 4.0f * pa->size : 1.0f);
1810   float h = interaction_radius * sphdata->hfac;
1811   /* 4.77 is an experimentally determined density factor */
1812   float rest_density = fluid->rest_density * (fluid->flag & SPH_FAC_DENSITY ? 4.77f : 1.f);
1813   float rest_length = fluid->rest_length *
1814                       (fluid->flag & SPH_FAC_REST_LENGTH ? 2.588f * pa->size : 1.f);
1815 
1816   float stiffness = fluid->stiffness_k;
1817   float stiffness_near_fac = fluid->stiffness_knear *
1818                              (fluid->flag & SPH_FAC_REPULSION ? fluid->stiffness_k : 1.f);
1819 
1820   ParticleData *npa;
1821   float vec[3];
1822   float vel[3];
1823   float co[3];
1824   float data[2];
1825   float density, near_density;
1826 
1827   int i, spring_index, index = pa - psys[0]->particles;
1828 
1829   data[0] = data[1] = 0;
1830   pfr.data = data;
1831   pfr.h = h;
1832   pfr.pa = pa;
1833   pfr.mass = sphdata->mass;
1834 
1835   sph_evaluate_func(NULL, psys, state->co, &pfr, interaction_radius, sph_density_accum_cb);
1836 
1837   density = data[0];
1838   near_density = data[1];
1839 
1840   pressure = stiffness * (density - rest_density);
1841   near_pressure = stiffness_near_fac * near_density;
1842 
1843   pfn = pfr.neighbors;
1844   for (i = 0; i < pfr.tot_neighbors; i++, pfn++) {
1845     npa = pfn->psys->particles + pfn->index;
1846 
1847     madd_v3_v3v3fl(co, npa->prev_state.co, npa->prev_state.vel, state->time);
1848 
1849     sub_v3_v3v3(vec, co, state->co);
1850     rij = normalize_v3(vec);
1851 
1852     q = (1.f - rij / h) * pfn->psys->part->mass * inv_mass;
1853 
1854     if (pfn->psys->part->flag & PART_SIZEMASS) {
1855       q *= npa->size;
1856     }
1857 
1858     copy_v3_v3(vel, npa->prev_state.vel);
1859 
1860     /* Double Density Relaxation */
1861     madd_v3_v3fl(force, vec, -(pressure + near_pressure * q) * q);
1862 
1863     /* Viscosity */
1864     if (visc > 0.f || stiff_visc > 0.f) {
1865       sub_v3_v3v3(dv, vel, state->vel);
1866       u = dot_v3v3(vec, dv);
1867 
1868       if (u < 0.f && visc > 0.f) {
1869         madd_v3_v3fl(force, vec, 0.5f * q * visc * u);
1870       }
1871 
1872       if (u > 0.f && stiff_visc > 0.f) {
1873         madd_v3_v3fl(force, vec, 0.5f * q * stiff_visc * u);
1874       }
1875     }
1876 
1877     if (spring_constant > 0.f) {
1878       /* Viscoelastic spring force */
1879       if (pfn->psys == psys[0] && fluid->flag & SPH_VISCOELASTIC_SPRINGS && springhash) {
1880         /* BLI_edgehash_lookup appears to be thread-safe. - z0r */
1881         spring_index = POINTER_AS_INT(BLI_edgehash_lookup(springhash, index, pfn->index));
1882 
1883         if (spring_index) {
1884           spring = psys[0]->fluid_springs + spring_index - 1;
1885 
1886           madd_v3_v3fl(
1887               force, vec, -10.f * spring_constant * (1.f - rij / h) * (spring->rest_length - rij));
1888         }
1889         else if (fluid->spring_frames == 0 ||
1890                  (pa->prev_state.time - pa->time) <= fluid->spring_frames) {
1891           ParticleSpring temp_spring;
1892           temp_spring.particle_index[0] = index;
1893           temp_spring.particle_index[1] = pfn->index;
1894           temp_spring.rest_length = (fluid->flag & SPH_CURRENT_REST_LENGTH) ? rij : rest_length;
1895           temp_spring.delete_flag = 0;
1896 
1897           BLI_buffer_append(&sphdata->new_springs, ParticleSpring, temp_spring);
1898         }
1899       }
1900       else { /* PART_SPRING_HOOKES - Hooke's spring force */
1901         madd_v3_v3fl(force, vec, -10.f * spring_constant * (1.f - rij / h) * (rest_length - rij));
1902       }
1903     }
1904   }
1905 
1906   /* Artificial buoyancy force in negative gravity direction  */
1907   if (fluid->buoyancy > 0.f && gravity) {
1908     madd_v3_v3fl(force, gravity, fluid->buoyancy * (density - rest_density));
1909   }
1910 
1911   if (sphdata->pass == 0 && psys[0]->part->time_flag & PART_TIME_AUTOSF) {
1912     sph_particle_courant(sphdata, &pfr);
1913   }
1914   sphdata->pass++;
1915 }
1916 
sphclassical_density_accum_cb(void * userdata,int index,const float co[3],float UNUSED (squared_dist))1917 static void sphclassical_density_accum_cb(void *userdata,
1918                                           int index,
1919                                           const float co[3],
1920                                           float UNUSED(squared_dist))
1921 {
1922   SPHRangeData *pfr = (SPHRangeData *)userdata;
1923   ParticleData *npa = pfr->npsys->particles + index;
1924   float q;
1925   float qfac = 21.0f / (256.f * (float)M_PI);
1926   float rij, rij_h;
1927   float vec[3];
1928 
1929   /* Exclude particles that are more than 2h away. Can't use squared_dist here
1930    * because it is not accurate enough. Use current state, i.e. the output of
1931    * basic_integrate() - z0r */
1932   sub_v3_v3v3(vec, npa->state.co, co);
1933   rij = len_v3(vec);
1934   rij_h = rij / pfr->h;
1935   if (rij_h > 2.0f) {
1936     return;
1937   }
1938 
1939   /* Smoothing factor. Utilize the Wendland kernel. gnuplot:
1940    *     q1(x) = (2.0 - x)**4 * ( 1.0 + 2.0 * x)
1941    *     plot [0:2] q1(x) */
1942   q = qfac / pow3f(pfr->h) * pow4f(2.0f - rij_h) * (1.0f + 2.0f * rij_h);
1943   q *= pfr->npsys->part->mass;
1944 
1945   if (pfr->use_size) {
1946     q *= pfr->pa->size;
1947   }
1948 
1949   pfr->data[0] += q;
1950   pfr->data[1] += q / npa->sphdensity;
1951 }
1952 
sphclassical_neighbor_accum_cb(void * userdata,int index,const float co[3],float UNUSED (squared_dist))1953 static void sphclassical_neighbor_accum_cb(void *userdata,
1954                                            int index,
1955                                            const float co[3],
1956                                            float UNUSED(squared_dist))
1957 {
1958   SPHRangeData *pfr = (SPHRangeData *)userdata;
1959   ParticleData *npa = pfr->npsys->particles + index;
1960   float rij, rij_h;
1961   float vec[3];
1962 
1963   if (pfr->tot_neighbors >= SPH_NEIGHBORS) {
1964     return;
1965   }
1966 
1967   /* Exclude particles that are more than 2h away. Can't use squared_dist here
1968    * because it is not accurate enough. Use current state, i.e. the output of
1969    * basic_integrate() - z0r */
1970   sub_v3_v3v3(vec, npa->state.co, co);
1971   rij = len_v3(vec);
1972   rij_h = rij / pfr->h;
1973   if (rij_h > 2.0f) {
1974     return;
1975   }
1976 
1977   pfr->neighbors[pfr->tot_neighbors].index = index;
1978   pfr->neighbors[pfr->tot_neighbors].psys = pfr->npsys;
1979   pfr->tot_neighbors++;
1980 }
sphclassical_force_cb(void * sphdata_v,ParticleKey * state,float * force,float * UNUSED (impulse))1981 static void sphclassical_force_cb(void *sphdata_v,
1982                                   ParticleKey *state,
1983                                   float *force,
1984                                   float *UNUSED(impulse))
1985 {
1986   SPHData *sphdata = (SPHData *)sphdata_v;
1987   ParticleSystem **psys = sphdata->psys;
1988   ParticleData *pa = sphdata->pa;
1989   SPHFluidSettings *fluid = psys[0]->part->fluid;
1990   SPHRangeData pfr;
1991   SPHNeighbor *pfn;
1992   float *gravity = sphdata->gravity;
1993 
1994   float dq, u, rij, dv[3];
1995   float pressure, npressure;
1996 
1997   float visc = fluid->viscosity_omega;
1998 
1999   float interaction_radius;
2000   float h, hinv;
2001   /* 4.77 is an experimentally determined density factor */
2002   float rest_density = fluid->rest_density * (fluid->flag & SPH_FAC_DENSITY ? 4.77f : 1.0f);
2003 
2004   /* Use speed of sound squared */
2005   float stiffness = pow2f(fluid->stiffness_k);
2006 
2007   ParticleData *npa;
2008   float vec[3];
2009   float co[3];
2010   float pressureTerm;
2011 
2012   int i;
2013 
2014   float qfac2 = 42.0f / (256.0f * (float)M_PI);
2015   float rij_h;
2016 
2017   /* 4.0 here is to be consistent with previous formulation/interface */
2018   interaction_radius = fluid->radius * (fluid->flag & SPH_FAC_RADIUS ? 4.0f * pa->size : 1.0f);
2019   h = interaction_radius * sphdata->hfac;
2020   hinv = 1.0f / h;
2021 
2022   pfr.h = h;
2023   pfr.pa = pa;
2024 
2025   sph_evaluate_func(
2026       NULL, psys, state->co, &pfr, interaction_radius, sphclassical_neighbor_accum_cb);
2027   pressure = stiffness * (pow7f(pa->sphdensity / rest_density) - 1.0f);
2028 
2029   /* multiply by mass so that we return a force, not accel */
2030   qfac2 *= sphdata->mass / pow3f(pfr.h);
2031 
2032   pfn = pfr.neighbors;
2033   for (i = 0; i < pfr.tot_neighbors; i++, pfn++) {
2034     npa = pfn->psys->particles + pfn->index;
2035     if (npa == pa) {
2036       /* we do not contribute to ourselves */
2037       continue;
2038     }
2039 
2040     /* Find vector to neighbor. Exclude particles that are more than 2h
2041      * away. Can't use current state here because it may have changed on
2042      * another thread - so do own mini integration. Unlike basic_integrate,
2043      * SPH integration depends on neighboring particles. - z0r */
2044     madd_v3_v3v3fl(co, npa->prev_state.co, npa->prev_state.vel, state->time);
2045     sub_v3_v3v3(vec, co, state->co);
2046     rij = normalize_v3(vec);
2047     rij_h = rij / pfr.h;
2048     if (rij_h > 2.0f) {
2049       continue;
2050     }
2051 
2052     npressure = stiffness * (pow7f(npa->sphdensity / rest_density) - 1.0f);
2053 
2054     /* First derivative of smoothing factor. Utilize the Wendland kernel.
2055      * gnuplot:
2056      *     q2(x) = 2.0 * (2.0 - x)**4 - 4.0 * (2.0 - x)**3 * (1.0 + 2.0 * x)
2057      *     plot [0:2] q2(x)
2058      * Particles > 2h away are excluded above. */
2059     dq = qfac2 * (2.0f * pow4f(2.0f - rij_h) - 4.0f * pow3f(2.0f - rij_h) * (1.0f + 2.0f * rij_h));
2060 
2061     if (pfn->psys->part->flag & PART_SIZEMASS) {
2062       dq *= npa->size;
2063     }
2064 
2065     pressureTerm = pressure / pow2f(pa->sphdensity) + npressure / pow2f(npa->sphdensity);
2066 
2067     /* Note that 'minus' is removed, because vec = vecBA, not vecAB.
2068      * This applies to the viscosity calculation below, too. */
2069     madd_v3_v3fl(force, vec, pressureTerm * dq);
2070 
2071     /* Viscosity */
2072     if (visc > 0.0f) {
2073       sub_v3_v3v3(dv, npa->prev_state.vel, pa->prev_state.vel);
2074       u = dot_v3v3(vec, dv);
2075       /* Apply parameters */
2076       u *= -dq * hinv * visc / (0.5f * npa->sphdensity + 0.5f * pa->sphdensity);
2077       madd_v3_v3fl(force, vec, u);
2078     }
2079   }
2080 
2081   /* Artificial buoyancy force in negative gravity direction  */
2082   if (fluid->buoyancy > 0.f && gravity) {
2083     madd_v3_v3fl(force, gravity, fluid->buoyancy * (pa->sphdensity - rest_density));
2084   }
2085 
2086   if (sphdata->pass == 0 && psys[0]->part->time_flag & PART_TIME_AUTOSF) {
2087     sph_particle_courant(sphdata, &pfr);
2088   }
2089   sphdata->pass++;
2090 }
2091 
sphclassical_calc_dens(ParticleData * pa,float UNUSED (dfra),SPHData * sphdata)2092 static void sphclassical_calc_dens(ParticleData *pa, float UNUSED(dfra), SPHData *sphdata)
2093 {
2094   ParticleSystem **psys = sphdata->psys;
2095   SPHFluidSettings *fluid = psys[0]->part->fluid;
2096   /* 4.0 seems to be a pretty good value */
2097   float interaction_radius = fluid->radius *
2098                              (fluid->flag & SPH_FAC_RADIUS ? 4.0f * psys[0]->part->size : 1.0f);
2099   SPHRangeData pfr;
2100   float data[2];
2101 
2102   data[0] = 0;
2103   data[1] = 0;
2104   pfr.data = data;
2105   pfr.h = interaction_radius * sphdata->hfac;
2106   pfr.pa = pa;
2107   pfr.mass = sphdata->mass;
2108 
2109   sph_evaluate_func(
2110       NULL, psys, pa->state.co, &pfr, interaction_radius, sphclassical_density_accum_cb);
2111   pa->sphdensity = min_ff(max_ff(data[0], fluid->rest_density * 0.9f), fluid->rest_density * 1.1f);
2112 }
2113 
psys_sph_init(ParticleSimulationData * sim,SPHData * sphdata)2114 void psys_sph_init(ParticleSimulationData *sim, SPHData *sphdata)
2115 {
2116   ParticleTarget *pt;
2117   int i;
2118 
2119   BLI_buffer_field_init(&sphdata->new_springs, ParticleSpring);
2120 
2121   /* Add other coupled particle systems. */
2122   sphdata->psys[0] = sim->psys;
2123   for (i = 1, pt = sim->psys->targets.first; i < 10; i++, pt = (pt ? pt->next : NULL)) {
2124     sphdata->psys[i] = pt ? psys_get_target_system(sim->ob, pt) : NULL;
2125   }
2126 
2127   if (psys_uses_gravity(sim)) {
2128     sphdata->gravity = sim->scene->physics_settings.gravity;
2129   }
2130   else {
2131     sphdata->gravity = NULL;
2132   }
2133   sphdata->eh = sph_springhash_build(sim->psys);
2134 
2135   /* These per-particle values should be overridden later, but just for
2136    * completeness we give them default values now. */
2137   sphdata->pa = NULL;
2138   sphdata->mass = 1.0f;
2139 
2140   if (sim->psys->part->fluid->solver == SPH_SOLVER_DDR) {
2141     sphdata->force_cb = sph_force_cb;
2142     sphdata->density_cb = sph_density_accum_cb;
2143     sphdata->hfac = 1.0f;
2144   }
2145   else {
2146     /* SPH_SOLVER_CLASSICAL */
2147     sphdata->force_cb = sphclassical_force_cb;
2148     sphdata->density_cb = sphclassical_density_accum_cb;
2149     sphdata->hfac = 0.5f;
2150   }
2151 }
2152 
psys_sph_flush_springs(SPHData * sphdata)2153 static void psys_sph_flush_springs(SPHData *sphdata)
2154 {
2155   for (int i = 0; i < sphdata->new_springs.count; i++) {
2156     /* sph_spring_add is not thread-safe. - z0r */
2157     sph_spring_add(sphdata->psys[0], &BLI_buffer_at(&sphdata->new_springs, ParticleSpring, i));
2158   }
2159 
2160   BLI_buffer_field_free(&sphdata->new_springs);
2161 }
2162 
psys_sph_finalize(SPHData * sphdata)2163 void psys_sph_finalize(SPHData *sphdata)
2164 {
2165   psys_sph_flush_springs(sphdata);
2166 
2167   if (sphdata->eh) {
2168     BLI_edgehash_free(sphdata->eh, NULL);
2169     sphdata->eh = NULL;
2170   }
2171 }
2172 
2173 /* Sample the density field at a point in space. */
psys_sph_density(BVHTree * tree,SPHData * sphdata,float co[3],float vars[2])2174 void psys_sph_density(BVHTree *tree, SPHData *sphdata, float co[3], float vars[2])
2175 {
2176   ParticleSystem **psys = sphdata->psys;
2177   SPHFluidSettings *fluid = psys[0]->part->fluid;
2178   /* 4.0 seems to be a pretty good value */
2179   float interaction_radius = fluid->radius *
2180                              (fluid->flag & SPH_FAC_RADIUS ? 4.0f * psys[0]->part->size : 1.0f);
2181   SPHRangeData pfr;
2182   float density[2];
2183 
2184   density[0] = density[1] = 0.0f;
2185   pfr.data = density;
2186   pfr.h = interaction_radius * sphdata->hfac;
2187   pfr.mass = sphdata->mass;
2188 
2189   sph_evaluate_func(tree, psys, co, &pfr, interaction_radius, sphdata->density_cb);
2190 
2191   vars[0] = pfr.data[0];
2192   vars[1] = pfr.data[1];
2193 }
2194 
sph_integrate(ParticleSimulationData * sim,ParticleData * pa,float dfra,SPHData * sphdata)2195 static void sph_integrate(ParticleSimulationData *sim,
2196                           ParticleData *pa,
2197                           float dfra,
2198                           SPHData *sphdata)
2199 {
2200   ParticleSettings *part = sim->psys->part;
2201   // float timestep = psys_get_timestep(sim); // UNUSED
2202   float pa_mass = part->mass * (part->flag & PART_SIZEMASS ? pa->size : 1.f);
2203   float dtime = dfra * psys_get_timestep(sim);
2204   // int steps = 1; // UNUSED
2205   float effector_acceleration[3];
2206 
2207   sphdata->pa = pa;
2208   sphdata->mass = pa_mass;
2209   sphdata->pass = 0;
2210   // sphdata.element_size and sphdata.flow are set in the callback.
2211 
2212   /* restore previous state and treat gravity & effectors as external acceleration*/
2213   sub_v3_v3v3(effector_acceleration, pa->state.vel, pa->prev_state.vel);
2214   mul_v3_fl(effector_acceleration, 1.f / dtime);
2215 
2216   copy_particle_key(&pa->state, &pa->prev_state, 0);
2217 
2218   integrate_particle(part, pa, dtime, effector_acceleration, sphdata->force_cb, sphdata);
2219 }
2220 
2221 /** \} */
2222 
2223 /************************************************/
2224 /*          Basic physics                       */
2225 /************************************************/
2226 typedef struct EfData {
2227   ParticleTexture ptex;
2228   ParticleSimulationData *sim;
2229   ParticleData *pa;
2230 } EfData;
basic_force_cb(void * efdata_v,ParticleKey * state,float * force,float * impulse)2231 static void basic_force_cb(void *efdata_v, ParticleKey *state, float *force, float *impulse)
2232 {
2233   EfData *efdata = (EfData *)efdata_v;
2234   ParticleSimulationData *sim = efdata->sim;
2235   ParticleSettings *part = sim->psys->part;
2236   ParticleData *pa = efdata->pa;
2237   EffectedPoint epoint;
2238   RNG *rng = sim->rng;
2239 
2240   /* add effectors */
2241   pd_point_from_particle(efdata->sim, efdata->pa, state, &epoint);
2242   if (part->type != PART_HAIR || part->effector_weights->flag & EFF_WEIGHT_DO_HAIR) {
2243     BKE_effectors_apply(sim->psys->effectors,
2244                         sim->colliders,
2245                         part->effector_weights,
2246                         &epoint,
2247                         force,
2248                         NULL,
2249                         impulse);
2250   }
2251 
2252   mul_v3_fl(force, efdata->ptex.field);
2253   mul_v3_fl(impulse, efdata->ptex.field);
2254 
2255   /* calculate air-particle interaction */
2256   if (part->dragfac != 0.0f) {
2257     madd_v3_v3fl(force, state->vel, -part->dragfac * pa->size * pa->size * len_v3(state->vel));
2258   }
2259 
2260   /* brownian force */
2261   if (part->brownfac != 0.0f) {
2262     force[0] += (BLI_rng_get_float(rng) - 0.5f) * part->brownfac;
2263     force[1] += (BLI_rng_get_float(rng) - 0.5f) * part->brownfac;
2264     force[2] += (BLI_rng_get_float(rng) - 0.5f) * part->brownfac;
2265   }
2266 
2267   if (part->flag & PART_ROT_DYN && epoint.ave) {
2268     copy_v3_v3(pa->state.ave, epoint.ave);
2269   }
2270 }
2271 /* gathers all forces that effect particles and calculates a new state for the particle */
basic_integrate(ParticleSimulationData * sim,int p,float dfra,float cfra)2272 static void basic_integrate(ParticleSimulationData *sim, int p, float dfra, float cfra)
2273 {
2274   ParticleSettings *part = sim->psys->part;
2275   ParticleData *pa = sim->psys->particles + p;
2276   ParticleKey tkey;
2277   float dtime = dfra * psys_get_timestep(sim), time;
2278   float *gravity = NULL, gr[3];
2279   EfData efdata;
2280 
2281   psys_get_texture(sim, pa, &efdata.ptex, PAMAP_PHYSICS, cfra);
2282 
2283   efdata.pa = pa;
2284   efdata.sim = sim;
2285 
2286   /* add global acceleration (gravitation) */
2287   if (psys_uses_gravity(sim) &&
2288       /* normal gravity is too strong for hair so it's disabled by default */
2289       (part->type != PART_HAIR || part->effector_weights->flag & EFF_WEIGHT_DO_HAIR)) {
2290     zero_v3(gr);
2291     madd_v3_v3fl(gr,
2292                  sim->scene->physics_settings.gravity,
2293                  part->effector_weights->global_gravity * efdata.ptex.gravity);
2294     gravity = gr;
2295   }
2296 
2297   /* maintain angular velocity */
2298   copy_v3_v3(pa->state.ave, pa->prev_state.ave);
2299 
2300   integrate_particle(part, pa, dtime, gravity, basic_force_cb, &efdata);
2301 
2302   /* damp affects final velocity */
2303   if (part->dampfac != 0.f) {
2304     mul_v3_fl(pa->state.vel, 1.f - part->dampfac * efdata.ptex.damp * 25.f * dtime);
2305   }
2306 
2307   // copy_v3_v3(pa->state.ave, states->ave);
2308 
2309   /* finally we do guides */
2310   time = (cfra - pa->time) / pa->lifetime;
2311   CLAMP(time, 0.0f, 1.0f);
2312 
2313   copy_v3_v3(tkey.co, pa->state.co);
2314   copy_v3_v3(tkey.vel, pa->state.vel);
2315   tkey.time = pa->state.time;
2316 
2317   if (part->type != PART_HAIR) {
2318     if (do_guides(sim->depsgraph, sim->psys->part, sim->psys->effectors, &tkey, p, time)) {
2319       copy_v3_v3(pa->state.co, tkey.co);
2320       /* guides don't produce valid velocity */
2321       sub_v3_v3v3(pa->state.vel, tkey.co, pa->prev_state.co);
2322       mul_v3_fl(pa->state.vel, 1.0f / dtime);
2323       pa->state.time = tkey.time;
2324     }
2325   }
2326 }
basic_rotate(ParticleSettings * part,ParticleData * pa,float dfra,float timestep)2327 static void basic_rotate(ParticleSettings *part, ParticleData *pa, float dfra, float timestep)
2328 {
2329   float rotfac, rot1[4], rot2[4] = {1.0, 0.0, 0.0, 0.0}, dtime = dfra * timestep, extrotfac;
2330 
2331   if ((part->flag & PART_ROTATIONS) == 0) {
2332     unit_qt(pa->state.rot);
2333     return;
2334   }
2335 
2336   if (part->flag & PART_ROT_DYN) {
2337     extrotfac = len_v3(pa->state.ave);
2338   }
2339   else {
2340     extrotfac = 0.0f;
2341   }
2342 
2343   if ((part->flag & PART_ROT_DYN) &&
2344       ELEM(part->avemode, PART_AVE_VELOCITY, PART_AVE_HORIZONTAL, PART_AVE_VERTICAL)) {
2345     float angle;
2346     float len1 = len_v3(pa->prev_state.vel);
2347     float len2 = len_v3(pa->state.vel);
2348     float vec[3];
2349 
2350     if (len1 == 0.0f || len2 == 0.0f) {
2351       zero_v3(pa->state.ave);
2352     }
2353     else {
2354       cross_v3_v3v3(pa->state.ave, pa->prev_state.vel, pa->state.vel);
2355       normalize_v3(pa->state.ave);
2356       angle = dot_v3v3(pa->prev_state.vel, pa->state.vel) / (len1 * len2);
2357       mul_v3_fl(pa->state.ave, saacos(angle) / dtime);
2358     }
2359 
2360     get_angular_velocity_vector(part->avemode, &pa->state, vec);
2361     axis_angle_to_quat(rot2, vec, dtime * part->avefac);
2362   }
2363 
2364   rotfac = len_v3(pa->state.ave);
2365   if (rotfac == 0.0f || (part->flag & PART_ROT_DYN) == 0 || extrotfac == 0.0f) {
2366     unit_qt(rot1);
2367   }
2368   else {
2369     axis_angle_to_quat(rot1, pa->state.ave, rotfac * dtime);
2370   }
2371   mul_qt_qtqt(pa->state.rot, rot1, pa->prev_state.rot);
2372   mul_qt_qtqt(pa->state.rot, rot2, pa->state.rot);
2373 
2374   /* keep rotation quat in good health */
2375   normalize_qt(pa->state.rot);
2376 }
2377 
2378 /************************************************
2379  * Collisions
2380  *
2381  * The algorithm is roughly:
2382  *  1. Use a BVH tree to search for faces that a particle may collide with.
2383  *  2. Use Newton's method to find the exact time at which the collision occurs.
2384  *     https://en.wikipedia.org/wiki/Newton's_method
2385  *
2386  ************************************************/
2387 #define COLLISION_MIN_RADIUS 0.001f
2388 #define COLLISION_MIN_DISTANCE 0.0001f
2389 #define COLLISION_ZERO 0.00001f
2390 #define COLLISION_INIT_STEP 0.00008f
2391 typedef float (*NRDistanceFunc)(float *p, float radius, ParticleCollisionElement *pce, float *nor);
nr_signed_distance_to_plane(float * p,float radius,ParticleCollisionElement * pce,float * nor)2392 static float nr_signed_distance_to_plane(float *p,
2393                                          float radius,
2394                                          ParticleCollisionElement *pce,
2395                                          float *nor)
2396 {
2397   float p0[3], e1[3], e2[3], d;
2398 
2399   sub_v3_v3v3(e1, pce->x1, pce->x0);
2400   sub_v3_v3v3(e2, pce->x2, pce->x0);
2401   sub_v3_v3v3(p0, p, pce->x0);
2402 
2403   cross_v3_v3v3(nor, e1, e2);
2404   normalize_v3(nor);
2405 
2406   d = dot_v3v3(p0, nor);
2407 
2408   if (pce->inv_nor == -1) {
2409     if (d < 0.f) {
2410       pce->inv_nor = 1;
2411     }
2412     else {
2413       pce->inv_nor = 0;
2414     }
2415   }
2416 
2417   if (pce->inv_nor == 1) {
2418     negate_v3(nor);
2419     d = -d;
2420   }
2421 
2422   return d - radius;
2423 }
nr_distance_to_edge(float * p,float radius,ParticleCollisionElement * pce,float * UNUSED (nor))2424 static float nr_distance_to_edge(float *p,
2425                                  float radius,
2426                                  ParticleCollisionElement *pce,
2427                                  float *UNUSED(nor))
2428 {
2429   float v0[3], v1[3], v2[3], c[3];
2430 
2431   sub_v3_v3v3(v0, pce->x1, pce->x0);
2432   sub_v3_v3v3(v1, p, pce->x0);
2433   sub_v3_v3v3(v2, p, pce->x1);
2434 
2435   cross_v3_v3v3(c, v1, v2);
2436 
2437   return fabsf(len_v3(c) / len_v3(v0)) - radius;
2438 }
nr_distance_to_vert(float * p,float radius,ParticleCollisionElement * pce,float * UNUSED (nor))2439 static float nr_distance_to_vert(float *p,
2440                                  float radius,
2441                                  ParticleCollisionElement *pce,
2442                                  float *UNUSED(nor))
2443 {
2444   return len_v3v3(p, pce->x0) - radius;
2445 }
collision_interpolate_element(ParticleCollisionElement * pce,float t,float fac,ParticleCollision * col)2446 static void collision_interpolate_element(ParticleCollisionElement *pce,
2447                                           float t,
2448                                           float fac,
2449                                           ParticleCollision *col)
2450 {
2451   /* t is the current time for newton rhapson */
2452   /* fac is the starting factor for current collision iteration */
2453   /* The col->fac's are factors for the particle subframe step start
2454    * and end during collision modifier step. */
2455   float f = fac + t * (1.f - fac);
2456   float mul = col->fac1 + f * (col->fac2 - col->fac1);
2457   if (pce->tot > 0) {
2458     madd_v3_v3v3fl(pce->x0, pce->x[0], pce->v[0], mul);
2459 
2460     if (pce->tot > 1) {
2461       madd_v3_v3v3fl(pce->x1, pce->x[1], pce->v[1], mul);
2462 
2463       if (pce->tot > 2) {
2464         madd_v3_v3v3fl(pce->x2, pce->x[2], pce->v[2], mul);
2465       }
2466     }
2467   }
2468 }
collision_point_velocity(ParticleCollisionElement * pce)2469 static void collision_point_velocity(ParticleCollisionElement *pce)
2470 {
2471   float v[3];
2472 
2473   copy_v3_v3(pce->vel, pce->v[0]);
2474 
2475   if (pce->tot > 1) {
2476     sub_v3_v3v3(v, pce->v[1], pce->v[0]);
2477     madd_v3_v3fl(pce->vel, v, pce->uv[0]);
2478 
2479     if (pce->tot > 2) {
2480       sub_v3_v3v3(v, pce->v[2], pce->v[0]);
2481       madd_v3_v3fl(pce->vel, v, pce->uv[1]);
2482     }
2483   }
2484 }
collision_point_distance_with_normal(float p[3],ParticleCollisionElement * pce,float fac,ParticleCollision * col,float * nor)2485 static float collision_point_distance_with_normal(
2486     float p[3], ParticleCollisionElement *pce, float fac, ParticleCollision *col, float *nor)
2487 {
2488   if (fac >= 0.f) {
2489     collision_interpolate_element(pce, 0.f, fac, col);
2490   }
2491 
2492   switch (pce->tot) {
2493     case 1: {
2494       sub_v3_v3v3(nor, p, pce->x0);
2495       return normalize_v3(nor);
2496     }
2497     case 2: {
2498       float u, e[3], vec[3];
2499       sub_v3_v3v3(e, pce->x1, pce->x0);
2500       sub_v3_v3v3(vec, p, pce->x0);
2501       u = dot_v3v3(vec, e) / dot_v3v3(e, e);
2502 
2503       madd_v3_v3v3fl(nor, vec, e, -u);
2504       return normalize_v3(nor);
2505     }
2506     case 3:
2507       return nr_signed_distance_to_plane(p, 0.f, pce, nor);
2508   }
2509   return 0;
2510 }
collision_point_on_surface(const float p[3],ParticleCollisionElement * pce,float fac,ParticleCollision * col,float * co)2511 static void collision_point_on_surface(
2512     const float p[3], ParticleCollisionElement *pce, float fac, ParticleCollision *col, float *co)
2513 {
2514   collision_interpolate_element(pce, 0.f, fac, col);
2515 
2516   switch (pce->tot) {
2517     case 1: {
2518       sub_v3_v3v3(co, p, pce->x0);
2519       normalize_v3(co);
2520       madd_v3_v3v3fl(co, pce->x0, co, col->radius);
2521       break;
2522     }
2523     case 2: {
2524       float u, e[3], vec[3], nor[3];
2525       sub_v3_v3v3(e, pce->x1, pce->x0);
2526       sub_v3_v3v3(vec, p, pce->x0);
2527       u = dot_v3v3(vec, e) / dot_v3v3(e, e);
2528 
2529       madd_v3_v3v3fl(nor, vec, e, -u);
2530       normalize_v3(nor);
2531 
2532       madd_v3_v3v3fl(co, pce->x0, e, pce->uv[0]);
2533       madd_v3_v3fl(co, nor, col->radius);
2534       break;
2535     }
2536     case 3: {
2537       float p0[3], e1[3], e2[3], nor[3];
2538 
2539       sub_v3_v3v3(e1, pce->x1, pce->x0);
2540       sub_v3_v3v3(e2, pce->x2, pce->x0);
2541       sub_v3_v3v3(p0, p, pce->x0);
2542 
2543       cross_v3_v3v3(nor, e1, e2);
2544       normalize_v3(nor);
2545 
2546       if (pce->inv_nor == 1) {
2547         negate_v3(nor);
2548       }
2549 
2550       madd_v3_v3v3fl(co, pce->x0, nor, col->radius);
2551       madd_v3_v3fl(co, e1, pce->uv[0]);
2552       madd_v3_v3fl(co, e2, pce->uv[1]);
2553       break;
2554     }
2555   }
2556 }
2557 /* find first root in range [0-1] starting from 0 */
collision_newton_rhapson(ParticleCollision * col,float radius,ParticleCollisionElement * pce,NRDistanceFunc distance_func)2558 static float collision_newton_rhapson(ParticleCollision *col,
2559                                       float radius,
2560                                       ParticleCollisionElement *pce,
2561                                       NRDistanceFunc distance_func)
2562 {
2563   float t0, t1, dt_init, d0, d1, dd, n[3];
2564   int iter;
2565 
2566   pce->inv_nor = -1;
2567 
2568   if (col->inv_total_time > 0.0f) {
2569     /* Initial step size should be small, but not too small or floating point
2570      * precision errors will appear. - z0r */
2571     dt_init = COLLISION_INIT_STEP * col->inv_total_time;
2572   }
2573   else {
2574     dt_init = 0.001f;
2575   }
2576 
2577   /* start from the beginning */
2578   t0 = 0.f;
2579   collision_interpolate_element(pce, t0, col->f, col);
2580   d0 = distance_func(col->co1, radius, pce, n);
2581   t1 = dt_init;
2582   d1 = 0.f;
2583 
2584   for (iter = 0; iter < 10; iter++) {  //, itersum++) {
2585     /* get current location */
2586     collision_interpolate_element(pce, t1, col->f, col);
2587     interp_v3_v3v3(pce->p, col->co1, col->co2, t1);
2588 
2589     d1 = distance_func(pce->p, radius, pce, n);
2590 
2591     /* particle already inside face, so report collision */
2592     if (iter == 0 && d0 < 0.f && d0 > -radius) {
2593       copy_v3_v3(pce->p, col->co1);
2594       copy_v3_v3(pce->nor, n);
2595       pce->inside = 1;
2596       return 0.f;
2597     }
2598 
2599     /* Zero gradient (no movement relative to element). Can't step from
2600      * here. */
2601     if (d1 == d0) {
2602       /* If first iteration, try from other end where the gradient may be
2603        * greater. Note: code duplicated below. */
2604       if (iter == 0) {
2605         t0 = 1.f;
2606         collision_interpolate_element(pce, t0, col->f, col);
2607         d0 = distance_func(col->co2, radius, pce, n);
2608         t1 = 1.0f - dt_init;
2609         d1 = 0.f;
2610         continue;
2611       }
2612 
2613       return -1.f;
2614     }
2615 
2616     dd = (t1 - t0) / (d1 - d0);
2617 
2618     t0 = t1;
2619     d0 = d1;
2620 
2621     t1 -= d1 * dd;
2622 
2623     /* Particle moving away from plane could also mean a strangely rotating
2624      * face, so check from end. Note: code duplicated above. */
2625     if (iter == 0 && t1 < 0.f) {
2626       t0 = 1.f;
2627       collision_interpolate_element(pce, t0, col->f, col);
2628       d0 = distance_func(col->co2, radius, pce, n);
2629       t1 = 1.0f - dt_init;
2630       d1 = 0.f;
2631       continue;
2632     }
2633     if (iter == 1 && (t1 < -COLLISION_ZERO || t1 > 1.f)) {
2634       return -1.f;
2635     }
2636 
2637     if (d1 <= COLLISION_ZERO && d1 >= -COLLISION_ZERO) {
2638       if (t1 >= -COLLISION_ZERO && t1 <= 1.f) {
2639         if (distance_func == nr_signed_distance_to_plane) {
2640           copy_v3_v3(pce->nor, n);
2641         }
2642 
2643         CLAMP(t1, 0.f, 1.f);
2644 
2645         return t1;
2646       }
2647 
2648       return -1.f;
2649     }
2650   }
2651   return -1.0;
2652 }
collision_sphere_to_tri(ParticleCollision * col,float radius,ParticleCollisionElement * pce,float * t)2653 static int collision_sphere_to_tri(ParticleCollision *col,
2654                                    float radius,
2655                                    ParticleCollisionElement *pce,
2656                                    float *t)
2657 {
2658   ParticleCollisionElement *result = &col->pce;
2659   float ct, u, v;
2660 
2661   pce->inv_nor = -1;
2662   pce->inside = 0;
2663 
2664   ct = collision_newton_rhapson(col, radius, pce, nr_signed_distance_to_plane);
2665 
2666   if (ct >= 0.f && ct < *t && (result->inside == 0 || pce->inside == 1)) {
2667     float e1[3], e2[3], p0[3];
2668     float e1e1, e1e2, e1p0, e2e2, e2p0, inv;
2669 
2670     sub_v3_v3v3(e1, pce->x1, pce->x0);
2671     sub_v3_v3v3(e2, pce->x2, pce->x0);
2672     /* XXX: add radius correction here? */
2673     sub_v3_v3v3(p0, pce->p, pce->x0);
2674 
2675     e1e1 = dot_v3v3(e1, e1);
2676     e1e2 = dot_v3v3(e1, e2);
2677     e1p0 = dot_v3v3(e1, p0);
2678     e2e2 = dot_v3v3(e2, e2);
2679     e2p0 = dot_v3v3(e2, p0);
2680 
2681     inv = 1.f / (e1e1 * e2e2 - e1e2 * e1e2);
2682     u = (e2e2 * e1p0 - e1e2 * e2p0) * inv;
2683     v = (e1e1 * e2p0 - e1e2 * e1p0) * inv;
2684 
2685     if (u >= 0.f && u <= 1.f && v >= 0.f && u + v <= 1.f) {
2686       *result = *pce;
2687 
2688       /* normal already calculated in pce */
2689 
2690       result->uv[0] = u;
2691       result->uv[1] = v;
2692 
2693       *t = ct;
2694       return 1;
2695     }
2696   }
2697   return 0;
2698 }
collision_sphere_to_edges(ParticleCollision * col,float radius,ParticleCollisionElement * pce,float * t)2699 static int collision_sphere_to_edges(ParticleCollision *col,
2700                                      float radius,
2701                                      ParticleCollisionElement *pce,
2702                                      float *t)
2703 {
2704   ParticleCollisionElement edge[3], *cur = NULL, *hit = NULL;
2705   ParticleCollisionElement *result = &col->pce;
2706 
2707   float ct;
2708   int i;
2709 
2710   for (i = 0; i < 3; i++) {
2711     cur = edge + i;
2712     cur->x[0] = pce->x[i];
2713     cur->x[1] = pce->x[(i + 1) % 3];
2714     cur->v[0] = pce->v[i];
2715     cur->v[1] = pce->v[(i + 1) % 3];
2716     cur->tot = 2;
2717     cur->inside = 0;
2718 
2719     ct = collision_newton_rhapson(col, radius, cur, nr_distance_to_edge);
2720 
2721     if (ct >= 0.f && ct < *t) {
2722       float u, e[3], vec[3];
2723 
2724       sub_v3_v3v3(e, cur->x1, cur->x0);
2725       sub_v3_v3v3(vec, cur->p, cur->x0);
2726       u = dot_v3v3(vec, e) / dot_v3v3(e, e);
2727 
2728       if (u < 0.f || u > 1.f) {
2729         break;
2730       }
2731 
2732       *result = *cur;
2733 
2734       madd_v3_v3v3fl(result->nor, vec, e, -u);
2735       normalize_v3(result->nor);
2736 
2737       result->uv[0] = u;
2738 
2739       hit = cur;
2740       *t = ct;
2741     }
2742   }
2743 
2744   return hit != NULL;
2745 }
collision_sphere_to_verts(ParticleCollision * col,float radius,ParticleCollisionElement * pce,float * t)2746 static int collision_sphere_to_verts(ParticleCollision *col,
2747                                      float radius,
2748                                      ParticleCollisionElement *pce,
2749                                      float *t)
2750 {
2751   ParticleCollisionElement vert[3], *cur = NULL, *hit = NULL;
2752   ParticleCollisionElement *result = &col->pce;
2753 
2754   float ct;
2755   int i;
2756 
2757   for (i = 0; i < 3; i++) {
2758     cur = vert + i;
2759     cur->x[0] = pce->x[i];
2760     cur->v[0] = pce->v[i];
2761     cur->tot = 1;
2762     cur->inside = 0;
2763 
2764     ct = collision_newton_rhapson(col, radius, cur, nr_distance_to_vert);
2765 
2766     if (ct >= 0.f && ct < *t) {
2767       *result = *cur;
2768 
2769       sub_v3_v3v3(result->nor, cur->p, cur->x0);
2770       normalize_v3(result->nor);
2771 
2772       hit = cur;
2773       *t = ct;
2774     }
2775   }
2776 
2777   return hit != NULL;
2778 }
2779 /* Callback for BVHTree near test */
BKE_psys_collision_neartest_cb(void * userdata,int index,const BVHTreeRay * ray,BVHTreeRayHit * hit)2780 void BKE_psys_collision_neartest_cb(void *userdata,
2781                                     int index,
2782                                     const BVHTreeRay *ray,
2783                                     BVHTreeRayHit *hit)
2784 {
2785   ParticleCollision *col = (ParticleCollision *)userdata;
2786   ParticleCollisionElement pce;
2787   const MVertTri *vt = &col->md->tri[index];
2788   MVert *x = col->md->x;
2789   MVert *v = col->md->current_v;
2790   float t = hit->dist / col->original_ray_length;
2791   int collision = 0;
2792 
2793   pce.x[0] = x[vt->tri[0]].co;
2794   pce.x[1] = x[vt->tri[1]].co;
2795   pce.x[2] = x[vt->tri[2]].co;
2796 
2797   pce.v[0] = v[vt->tri[0]].co;
2798   pce.v[1] = v[vt->tri[1]].co;
2799   pce.v[2] = v[vt->tri[2]].co;
2800 
2801   pce.tot = 3;
2802   pce.inside = 0;
2803   pce.index = index;
2804 
2805   collision = collision_sphere_to_tri(col, ray->radius, &pce, &t);
2806   if (col->pce.inside == 0) {
2807     collision += collision_sphere_to_edges(col, ray->radius, &pce, &t);
2808     collision += collision_sphere_to_verts(col, ray->radius, &pce, &t);
2809   }
2810 
2811   if (collision) {
2812     hit->dist = col->original_ray_length * t;
2813     hit->index = index;
2814 
2815     collision_point_velocity(&col->pce);
2816 
2817     col->hit = col->current;
2818   }
2819 }
collision_detect(ParticleData * pa,ParticleCollision * col,BVHTreeRayHit * hit,ListBase * colliders)2820 static int collision_detect(ParticleData *pa,
2821                             ParticleCollision *col,
2822                             BVHTreeRayHit *hit,
2823                             ListBase *colliders)
2824 {
2825   const int raycast_flag = BVH_RAYCAST_DEFAULT & ~(BVH_RAYCAST_WATERTIGHT);
2826   ColliderCache *coll;
2827   float ray_dir[3];
2828 
2829   if (BLI_listbase_is_empty(colliders)) {
2830     return 0;
2831   }
2832 
2833   sub_v3_v3v3(ray_dir, col->co2, col->co1);
2834   hit->index = -1;
2835   hit->dist = col->original_ray_length = normalize_v3(ray_dir);
2836   col->pce.inside = 0;
2837 
2838   /* even if particle is stationary we want to check for moving colliders */
2839   /* if hit.dist is zero the bvhtree_ray_cast will just ignore everything */
2840   if (hit->dist == 0.0f) {
2841     hit->dist = col->original_ray_length = 0.000001f;
2842   }
2843 
2844   for (coll = colliders->first; coll; coll = coll->next) {
2845     /* for boids: don't check with current ground object; also skip if permeated */
2846     bool skip = false;
2847 
2848     for (int i = 0; i < col->skip_count; i++) {
2849       if (coll->ob == col->skip[i]) {
2850         skip = true;
2851         break;
2852       }
2853     }
2854 
2855     if (skip) {
2856       continue;
2857     }
2858 
2859     /* particles should not collide with emitter at birth */
2860     if (coll->ob == col->emitter && pa->time < col->cfra && pa->time >= col->old_cfra) {
2861       continue;
2862     }
2863 
2864     col->current = coll->ob;
2865     col->md = coll->collmd;
2866     col->fac1 = (col->old_cfra - coll->collmd->time_x) /
2867                 (coll->collmd->time_xnew - coll->collmd->time_x);
2868     col->fac2 = (col->cfra - coll->collmd->time_x) /
2869                 (coll->collmd->time_xnew - coll->collmd->time_x);
2870 
2871     if (col->md && col->md->bvhtree) {
2872       BLI_bvhtree_ray_cast_ex(col->md->bvhtree,
2873                               col->co1,
2874                               ray_dir,
2875                               col->radius,
2876                               hit,
2877                               BKE_psys_collision_neartest_cb,
2878                               col,
2879                               raycast_flag);
2880     }
2881   }
2882 
2883   return hit->index >= 0;
2884 }
collision_response(ParticleSimulationData * sim,ParticleData * pa,ParticleCollision * col,BVHTreeRayHit * hit,int kill,int dynamic_rotation)2885 static int collision_response(ParticleSimulationData *sim,
2886                               ParticleData *pa,
2887                               ParticleCollision *col,
2888                               BVHTreeRayHit *hit,
2889                               int kill,
2890                               int dynamic_rotation)
2891 {
2892   ParticleCollisionElement *pce = &col->pce;
2893   PartDeflect *pd = col->hit->pd;
2894   RNG *rng = sim->rng;
2895   /* point of collision */
2896   float co[3];
2897   /* location factor of collision between this iteration */
2898   float x = hit->dist / col->original_ray_length;
2899   /* time factor of collision between timestep */
2900   float f = col->f + x * (1.0f - col->f);
2901   /* time since previous collision (in seconds) */
2902   float dt1 = (f - col->f) * col->total_time;
2903   /* time left after collision (in seconds) */
2904   float dt2 = (1.0f - f) * col->total_time;
2905   /* did particle pass through the collision surface? */
2906   int through = (BLI_rng_get_float(rng) < pd->pdef_perm) ? 1 : 0;
2907 
2908   /* calculate exact collision location */
2909   interp_v3_v3v3(co, col->co1, col->co2, x);
2910 
2911   /* particle dies in collision */
2912   if (through == 0 && (kill || pd->flag & PDEFLE_KILL_PART)) {
2913     pa->alive = PARS_DYING;
2914     pa->dietime = col->old_cfra + (col->cfra - col->old_cfra) * f;
2915 
2916     copy_v3_v3(pa->state.co, co);
2917     interp_v3_v3v3(pa->state.vel, pa->prev_state.vel, pa->state.vel, f);
2918     interp_qt_qtqt(pa->state.rot, pa->prev_state.rot, pa->state.rot, f);
2919     interp_v3_v3v3(pa->state.ave, pa->prev_state.ave, pa->state.ave, f);
2920 
2921     /* particle is dead so we don't need to calculate further */
2922     return 0;
2923   }
2924   /* figure out velocity and other data after collision */
2925 
2926   /* velocity directly before collision to be modified into velocity directly after collision */
2927   float v0[3];
2928   /* normal component of v0 */
2929   float v0_nor[3];
2930   /* tangential component of v0 */
2931   float v0_tan[3];
2932   /* tangential component of collision surface velocity */
2933   float vc_tan[3];
2934   float v0_dot, vc_dot;
2935   float damp = pd->pdef_damp + pd->pdef_rdamp * 2 * (BLI_rng_get_float(rng) - 0.5f);
2936   float frict = pd->pdef_frict + pd->pdef_rfrict * 2 * (BLI_rng_get_float(rng) - 0.5f);
2937   float distance, nor[3], dot;
2938 
2939   CLAMP(damp, 0.0f, 1.0f);
2940   CLAMP(frict, 0.0f, 1.0f);
2941 
2942   /* get exact velocity right before collision */
2943   madd_v3_v3v3fl(v0, col->ve1, col->acc, dt1);
2944 
2945   /* Convert collider velocity from `1/frame_step` to `1/s` TODO:
2946    * here we assume 1 frame step for collision modifier. */
2947   mul_v3_fl(pce->vel, col->inv_timestep);
2948 
2949   /* calculate tangential particle velocity */
2950   v0_dot = dot_v3v3(pce->nor, v0);
2951   madd_v3_v3v3fl(v0_tan, v0, pce->nor, -v0_dot);
2952 
2953   /* calculate tangential collider velocity */
2954   vc_dot = dot_v3v3(pce->nor, pce->vel);
2955   madd_v3_v3v3fl(vc_tan, pce->vel, pce->nor, -vc_dot);
2956 
2957   /* handle friction effects (tangential and angular velocity) */
2958   if (frict > 0.0f) {
2959     /* angular <-> linear velocity */
2960     if (dynamic_rotation) {
2961       float vr_tan[3], v1_tan[3], ave[3];
2962 
2963       /* linear velocity of particle surface */
2964       cross_v3_v3v3(vr_tan, pce->nor, pa->state.ave);
2965       mul_v3_fl(vr_tan, pa->size);
2966 
2967       /* change to coordinates that move with the collision plane */
2968       sub_v3_v3v3(v1_tan, v0_tan, vc_tan);
2969 
2970       /* The resulting velocity is a weighted average of particle cm & surface
2971        * velocity. This weight (related to particle's moment of inertia) could
2972        * be made a parameter for angular <-> linear conversion.
2973        */
2974       madd_v3_v3fl(v1_tan, vr_tan, -0.4);
2975       mul_v3_fl(v1_tan, 1.0f / 1.4f); /* 1/(1+0.4) */
2976 
2977       /* rolling friction is around 0.01 of sliding friction
2978        * (could be made a parameter) */
2979       mul_v3_fl(v1_tan, 1.0f - 0.01f * frict);
2980 
2981       /* surface_velocity is opposite to cm velocity */
2982       negate_v3_v3(vr_tan, v1_tan);
2983 
2984       /* get back to global coordinates */
2985       add_v3_v3(v1_tan, vc_tan);
2986 
2987       /* convert to angular velocity*/
2988       cross_v3_v3v3(ave, vr_tan, pce->nor);
2989       mul_v3_fl(ave, 1.0f / MAX2(pa->size, 0.001f));
2990 
2991       /* only friction will cause change in linear & angular velocity */
2992       interp_v3_v3v3(pa->state.ave, pa->state.ave, ave, frict);
2993       interp_v3_v3v3(v0_tan, v0_tan, v1_tan, frict);
2994     }
2995     else {
2996       /* just basic friction (unphysical due to the friction model used in Blender) */
2997       interp_v3_v3v3(v0_tan, v0_tan, vc_tan, frict);
2998     }
2999   }
3000 
3001   /* Stickiness was possibly added before,
3002    * so cancel that before calculating new normal velocity.
3003    * Otherwise particles go flying out of the surface
3004    * because of high reversed sticky velocity. */
3005   if (v0_dot < 0.0f) {
3006     v0_dot += pd->pdef_stickness;
3007     if (v0_dot > 0.0f) {
3008       v0_dot = 0.0f;
3009     }
3010   }
3011 
3012   /* damping and flipping of velocity around normal */
3013   v0_dot *= 1.0f - damp;
3014   vc_dot *= through ? damp : 1.0f;
3015 
3016   /* calculate normal particle velocity */
3017   /* special case for object hitting the particle from behind */
3018   if (through == 0 && ((vc_dot > 0.0f && v0_dot > 0.0f && vc_dot > v0_dot) ||
3019                        (vc_dot < 0.0f && v0_dot < 0.0f && vc_dot < v0_dot))) {
3020     mul_v3_v3fl(v0_nor, pce->nor, vc_dot);
3021   }
3022   else if (v0_dot > 0.f) {
3023     mul_v3_v3fl(v0_nor, pce->nor, vc_dot + v0_dot);
3024   }
3025   else {
3026     mul_v3_v3fl(v0_nor, pce->nor, vc_dot + (through ? 1.0f : -1.0f) * v0_dot);
3027   }
3028 
3029   /* combine components together again */
3030   add_v3_v3v3(v0, v0_nor, v0_tan);
3031 
3032   if (col->boid) {
3033     /* keep boids above ground */
3034     BoidParticle *bpa = pa->boid;
3035     if (bpa->data.mode == eBoidMode_OnLand || co[2] <= col->boid_z) {
3036       co[2] = col->boid_z;
3037       v0[2] = 0.0f;
3038     }
3039   }
3040 
3041   /* re-apply acceleration to final location and velocity */
3042   madd_v3_v3v3fl(pa->state.co, co, v0, dt2);
3043   madd_v3_v3fl(pa->state.co, col->acc, 0.5f * dt2 * dt2);
3044   madd_v3_v3v3fl(pa->state.vel, v0, col->acc, dt2);
3045 
3046   /* make sure particle stays on the right side of the surface */
3047   if (!through) {
3048     distance = collision_point_distance_with_normal(co, pce, -1.f, col, nor);
3049 
3050     if (distance < col->radius + COLLISION_MIN_DISTANCE) {
3051       madd_v3_v3fl(co, nor, col->radius + COLLISION_MIN_DISTANCE - distance);
3052     }
3053 
3054     dot = dot_v3v3(nor, v0);
3055     if (dot < 0.f) {
3056       madd_v3_v3fl(v0, nor, -dot);
3057     }
3058 
3059     distance = collision_point_distance_with_normal(pa->state.co, pce, 1.f, col, nor);
3060 
3061     if (distance < col->radius + COLLISION_MIN_DISTANCE) {
3062       madd_v3_v3fl(pa->state.co, nor, col->radius + COLLISION_MIN_DISTANCE - distance);
3063     }
3064 
3065     dot = dot_v3v3(nor, pa->state.vel);
3066     if (dot < 0.f) {
3067       madd_v3_v3fl(pa->state.vel, nor, -dot);
3068     }
3069   }
3070 
3071   /* add stickiness to surface */
3072   madd_v3_v3fl(pa->state.vel, pce->nor, -pd->pdef_stickness);
3073 
3074   /* set coordinates for next iteration */
3075   copy_v3_v3(col->co1, co);
3076   copy_v3_v3(col->co2, pa->state.co);
3077 
3078   copy_v3_v3(col->ve1, v0);
3079   copy_v3_v3(col->ve2, pa->state.vel);
3080 
3081   col->f = f;
3082 
3083   /* if permeability random roll succeeded, disable collider for this sim step */
3084   if (through) {
3085     col->skip[col->skip_count++] = col->hit;
3086   }
3087 
3088   return 1;
3089 }
collision_fail(ParticleData * pa,ParticleCollision * col)3090 static void collision_fail(ParticleData *pa, ParticleCollision *col)
3091 {
3092   /* final chance to prevent total failure, so stick to the surface and hope for the best */
3093   collision_point_on_surface(col->co1, &col->pce, 1.f, col, pa->state.co);
3094 
3095   copy_v3_v3(pa->state.vel, col->pce.vel);
3096   mul_v3_fl(pa->state.vel, col->inv_timestep);
3097 
3098   /* printf("max iterations\n"); */
3099 }
3100 
3101 /* Particle - Mesh collision detection and response
3102  * Features:
3103  * -friction and damping
3104  * -angular momentum <-> linear momentum
3105  * -high accuracy by re-applying particle acceleration after collision
3106  * -handles moving, rotating and deforming meshes
3107  * -uses Newton-Rhapson iteration to find the collisions
3108  * -handles spherical particles and (nearly) point like particles
3109  */
collision_check(ParticleSimulationData * sim,int p,float dfra,float cfra)3110 static void collision_check(ParticleSimulationData *sim, int p, float dfra, float cfra)
3111 {
3112   ParticleSettings *part = sim->psys->part;
3113   ParticleData *pa = sim->psys->particles + p;
3114   ParticleCollision col;
3115   BVHTreeRayHit hit;
3116   int collision_count = 0;
3117 
3118   float timestep = psys_get_timestep(sim);
3119 
3120   memset(&col, 0, sizeof(ParticleCollision));
3121 
3122   col.total_time = timestep * dfra;
3123   col.inv_total_time = 1.0f / col.total_time;
3124   col.inv_timestep = 1.0f / timestep;
3125 
3126   col.cfra = cfra;
3127   col.old_cfra = sim->psys->cfra;
3128 
3129   /* get acceleration (from gravity, forcefields etc. to be re-applied in collision response) */
3130   sub_v3_v3v3(col.acc, pa->state.vel, pa->prev_state.vel);
3131   mul_v3_fl(col.acc, 1.f / col.total_time);
3132 
3133   /* set values for first iteration */
3134   copy_v3_v3(col.co1, pa->prev_state.co);
3135   copy_v3_v3(col.co2, pa->state.co);
3136   copy_v3_v3(col.ve1, pa->prev_state.vel);
3137   copy_v3_v3(col.ve2, pa->state.vel);
3138   col.f = 0.0f;
3139 
3140   col.radius = ((part->flag & PART_SIZE_DEFL) || (part->phystype == PART_PHYS_BOIDS)) ?
3141                    pa->size :
3142                    COLLISION_MIN_RADIUS;
3143 
3144   /* override for boids */
3145   if (part->phystype == PART_PHYS_BOIDS && part->boids->options & BOID_ALLOW_LAND) {
3146     col.boid = 1;
3147     col.boid_z = pa->state.co[2];
3148     col.skip[col.skip_count++] = pa->boid->ground;
3149   }
3150 
3151   /* 10 iterations to catch multiple collisions */
3152   while (collision_count < PARTICLE_COLLISION_MAX_COLLISIONS) {
3153     if (collision_detect(pa, &col, &hit, sim->colliders)) {
3154 
3155       collision_count++;
3156 
3157       if (collision_count == PARTICLE_COLLISION_MAX_COLLISIONS) {
3158         collision_fail(pa, &col);
3159       }
3160       else if (collision_response(
3161                    sim, pa, &col, &hit, part->flag & PART_DIE_ON_COL, part->flag & PART_ROT_DYN) ==
3162                0) {
3163         return;
3164       }
3165     }
3166     else {
3167       return;
3168     }
3169   }
3170 }
3171 /************************************************/
3172 /*          Hair                                */
3173 /************************************************/
3174 /* check if path cache or children need updating and do it if needed */
psys_update_path_cache(ParticleSimulationData * sim,float cfra,const bool use_render_params)3175 static void psys_update_path_cache(ParticleSimulationData *sim,
3176                                    float cfra,
3177                                    const bool use_render_params)
3178 {
3179   ParticleSystem *psys = sim->psys;
3180   ParticleSettings *part = psys->part;
3181   ParticleEditSettings *pset = &sim->scene->toolsettings->particle;
3182   int distr = 0, alloc = 0, skip = 0;
3183 
3184   if ((psys->part->childtype &&
3185        psys->totchild != psys_get_tot_child(sim->scene, psys, use_render_params)) ||
3186       psys->recalc & ID_RECALC_PSYS_RESET) {
3187     alloc = 1;
3188   }
3189 
3190   if (alloc || psys->recalc & ID_RECALC_PSYS_CHILD ||
3191       (psys->vgroup[PSYS_VG_DENSITY] && (sim->ob && sim->ob->mode & OB_MODE_WEIGHT_PAINT))) {
3192     distr = 1;
3193   }
3194 
3195   if (distr) {
3196     if (alloc) {
3197       realloc_particles(sim, sim->psys->totpart);
3198     }
3199 
3200     if (psys_get_tot_child(sim->scene, psys, use_render_params)) {
3201       /* don't generate children while computing the hair keys */
3202       if (!(psys->part->type == PART_HAIR) || (psys->flag & PSYS_HAIR_DONE)) {
3203         distribute_particles(sim, PART_FROM_CHILD);
3204 
3205         if (part->childtype == PART_CHILD_FACES && part->parents != 0.0f) {
3206           psys_find_parents(sim, use_render_params);
3207         }
3208       }
3209     }
3210     else {
3211       psys_free_children(psys);
3212     }
3213   }
3214 
3215   if ((part->type == PART_HAIR || psys->flag & PSYS_KEYED ||
3216        psys->pointcache->flag & PTCACHE_BAKED) == 0) {
3217     skip = 1; /* only hair, keyed and baked stuff can have paths */
3218   }
3219   else if (part->ren_as != PART_DRAW_PATH &&
3220            !(part->type == PART_HAIR && ELEM(part->ren_as, PART_DRAW_OB, PART_DRAW_GR))) {
3221     skip = 1; /* particle visualization must be set as path */
3222   }
3223   else if (DEG_get_mode(sim->depsgraph) != DAG_EVAL_RENDER) {
3224     if (part->draw_as != PART_DRAW_REND) {
3225       skip = 1; /* draw visualization */
3226     }
3227     else if (psys->pointcache->flag & PTCACHE_BAKING) {
3228       skip = 1; /* no need to cache paths while baking dynamics */
3229     }
3230     else if (psys_in_edit_mode(sim->depsgraph, psys)) {
3231       if ((pset->flag & PE_DRAW_PART) == 0) {
3232         skip = 1;
3233       }
3234       else if (part->childtype == 0 &&
3235                (psys->flag & PSYS_HAIR_DYNAMICS && psys->pointcache->flag & PTCACHE_BAKED) == 0) {
3236         skip = 1; /* in edit mode paths are needed for child particles and dynamic hair */
3237       }
3238     }
3239   }
3240 
3241   if (!skip) {
3242     psys_cache_paths(sim, cfra, use_render_params);
3243 
3244     /* for render, child particle paths are computed on the fly */
3245     if (part->childtype) {
3246       if (!psys->totchild) {
3247         skip = 1;
3248       }
3249       else if (psys->part->type == PART_HAIR && (psys->flag & PSYS_HAIR_DONE) == 0) {
3250         skip = 1;
3251       }
3252 
3253       if (!skip) {
3254         psys_cache_child_paths(sim, cfra, 0, use_render_params);
3255       }
3256     }
3257   }
3258   else if (psys->pathcache) {
3259     psys_free_path_cache(psys, NULL);
3260   }
3261 }
3262 
psys_hair_use_simulation(ParticleData * pa,float max_length)3263 static bool psys_hair_use_simulation(ParticleData *pa, float max_length)
3264 {
3265   /* Minimum segment length relative to average length.
3266    * Hairs with segments below this length will be excluded from the simulation,
3267    * because otherwise the solver will become unstable.
3268    * The hair system should always make sure the hair segments have reasonable length ratios,
3269    * but this can happen in old files when e.g. cutting hair.
3270    */
3271   const float min_length = 0.1f * max_length;
3272 
3273   HairKey *key;
3274   int k;
3275 
3276   if (pa->totkey < 2) {
3277     return false;
3278   }
3279 
3280   for (k = 1, key = pa->hair + 1; k < pa->totkey; k++, key++) {
3281     float length = len_v3v3(key->co, (key - 1)->co);
3282     if (length < min_length) {
3283       return false;
3284     }
3285   }
3286 
3287   return true;
3288 }
3289 
hair_set_pinning(MDeformVert * dvert,float weight)3290 static MDeformVert *hair_set_pinning(MDeformVert *dvert, float weight)
3291 {
3292   if (dvert) {
3293     if (!dvert->totweight) {
3294       dvert->dw = MEM_callocN(sizeof(MDeformWeight), "deformWeight");
3295       dvert->totweight = 1;
3296     }
3297 
3298     dvert->dw->weight = weight;
3299     dvert++;
3300   }
3301   return dvert;
3302 }
3303 
hair_create_input_mesh(ParticleSimulationData * sim,int totpoint,int totedge,Mesh ** r_mesh,ClothHairData ** r_hairdata)3304 static void hair_create_input_mesh(ParticleSimulationData *sim,
3305                                    int totpoint,
3306                                    int totedge,
3307                                    Mesh **r_mesh,
3308                                    ClothHairData **r_hairdata)
3309 {
3310   ParticleSystem *psys = sim->psys;
3311   ParticleSettings *part = psys->part;
3312   Mesh *mesh;
3313   ClothHairData *hairdata;
3314   MVert *mvert;
3315   MEdge *medge;
3316   MDeformVert *dvert;
3317   HairKey *key;
3318   PARTICLE_P;
3319   int k, hair_index;
3320   float hairmat[4][4];
3321   float max_length;
3322   float hair_radius;
3323 
3324   mesh = *r_mesh;
3325   if (!mesh) {
3326     *r_mesh = mesh = BKE_mesh_new_nomain(totpoint, totedge, 0, 0, 0);
3327     CustomData_add_layer(&mesh->vdata, CD_MDEFORMVERT, CD_CALLOC, NULL, mesh->totvert);
3328     BKE_mesh_update_customdata_pointers(mesh, false);
3329   }
3330   mvert = mesh->mvert;
3331   medge = mesh->medge;
3332   dvert = mesh->dvert;
3333 
3334   hairdata = *r_hairdata;
3335   if (!hairdata) {
3336     *r_hairdata = hairdata = MEM_mallocN(sizeof(ClothHairData) * totpoint, "hair data");
3337   }
3338 
3339   /* calculate maximum segment length */
3340   max_length = 0.0f;
3341   LOOP_PARTICLES
3342   {
3343     if (!(pa->flag & PARS_UNEXIST)) {
3344       for (k = 1, key = pa->hair + 1; k < pa->totkey; k++, key++) {
3345         float length = len_v3v3(key->co, (key - 1)->co);
3346         if (max_length < length) {
3347           max_length = length;
3348         }
3349       }
3350     }
3351   }
3352 
3353   psys->clmd->sim_parms->vgroup_mass = 1;
3354 
3355   /* XXX placeholder for more flexible future hair settings */
3356   hair_radius = part->size;
3357 
3358   /* make vgroup for pin roots etc.. */
3359   hair_index = 1;
3360   LOOP_PARTICLES
3361   {
3362     if (!(pa->flag & PARS_UNEXIST)) {
3363       float root_mat[4][4];
3364       float bending_stiffness;
3365       bool use_hair;
3366 
3367       pa->hair_index = hair_index;
3368       use_hair = psys_hair_use_simulation(pa, max_length);
3369 
3370       psys_mat_hair_to_object(sim->ob, sim->psmd->mesh_final, psys->part->from, pa, hairmat);
3371       mul_m4_m4m4(root_mat, sim->ob->obmat, hairmat);
3372       normalize_m4(root_mat);
3373 
3374       bending_stiffness = CLAMPIS(
3375           1.0f - part->bending_random * psys_frand(psys, p + 666), 0.0f, 1.0f);
3376 
3377       for (k = 0, key = pa->hair; k < pa->totkey; k++, key++) {
3378         ClothHairData *hair;
3379         float *co, *co_next;
3380 
3381         co = key->co;
3382         co_next = (key + 1)->co;
3383 
3384         /* create fake root before actual root to resist bending */
3385         if (k == 0) {
3386           hair = &psys->clmd->hairdata[pa->hair_index - 1];
3387           copy_v3_v3(hair->loc, root_mat[3]);
3388           copy_m3_m4(hair->rot, root_mat);
3389 
3390           hair->radius = hair_radius;
3391           hair->bending_stiffness = bending_stiffness;
3392 
3393           add_v3_v3v3(mvert->co, co, co);
3394           sub_v3_v3(mvert->co, co_next);
3395           mul_m4_v3(hairmat, mvert->co);
3396 
3397           medge->v1 = pa->hair_index - 1;
3398           medge->v2 = pa->hair_index;
3399 
3400           dvert = hair_set_pinning(dvert, 1.0f);
3401 
3402           mvert++;
3403           medge++;
3404         }
3405 
3406         /* store root transform in cloth data */
3407         hair = &psys->clmd->hairdata[pa->hair_index + k];
3408         copy_v3_v3(hair->loc, root_mat[3]);
3409         copy_m3_m4(hair->rot, root_mat);
3410 
3411         hair->radius = hair_radius;
3412         hair->bending_stiffness = bending_stiffness;
3413 
3414         copy_v3_v3(mvert->co, co);
3415         mul_m4_v3(hairmat, mvert->co);
3416 
3417         if (k) {
3418           medge->v1 = pa->hair_index + k - 1;
3419           medge->v2 = pa->hair_index + k;
3420         }
3421 
3422         /* roots and disabled hairs should be 1.0, the rest can be anything from 0.0 to 1.0 */
3423         if (use_hair) {
3424           dvert = hair_set_pinning(dvert, key->weight);
3425         }
3426         else {
3427           dvert = hair_set_pinning(dvert, 1.0f);
3428         }
3429 
3430         mvert++;
3431         if (k) {
3432           medge++;
3433         }
3434       }
3435 
3436       hair_index += pa->totkey + 1;
3437     }
3438   }
3439 }
3440 
do_hair_dynamics(ParticleSimulationData * sim)3441 static void do_hair_dynamics(ParticleSimulationData *sim)
3442 {
3443   ParticleSystem *psys = sim->psys;
3444   PARTICLE_P;
3445   EffectorWeights *clmd_effweights;
3446   int totpoint;
3447   int totedge;
3448   float(*deformedVerts)[3];
3449   bool realloc_roots;
3450 
3451   if (!psys->clmd) {
3452     psys->clmd = (ClothModifierData *)BKE_modifier_new(eModifierType_Cloth);
3453     psys->clmd->sim_parms->goalspring = 0.0f;
3454     psys->clmd->sim_parms->flags |= CLOTH_SIMSETTINGS_FLAG_RESIST_SPRING_COMPRESS;
3455     psys->clmd->coll_parms->flags &= ~CLOTH_COLLSETTINGS_FLAG_SELF;
3456   }
3457 
3458   /* count simulated points */
3459   totpoint = 0;
3460   totedge = 0;
3461   LOOP_PARTICLES
3462   {
3463     if (!(pa->flag & PARS_UNEXIST)) {
3464       /* "out" dm contains all hairs */
3465       totedge += pa->totkey;
3466       totpoint += pa->totkey + 1; /* +1 for virtual root point */
3467     }
3468   }
3469 
3470   /* whether hair root info array has to be reallocated */
3471   realloc_roots = false;
3472   if (psys->hair_in_mesh) {
3473     Mesh *mesh = psys->hair_in_mesh;
3474     if (totpoint != mesh->totvert || totedge != mesh->totedge) {
3475       BKE_id_free(NULL, mesh);
3476       psys->hair_in_mesh = NULL;
3477       realloc_roots = true;
3478     }
3479   }
3480 
3481   if (!psys->hair_in_mesh || !psys->clmd->hairdata || realloc_roots) {
3482     if (psys->clmd->hairdata) {
3483       MEM_freeN(psys->clmd->hairdata);
3484       psys->clmd->hairdata = NULL;
3485     }
3486   }
3487 
3488   hair_create_input_mesh(sim, totpoint, totedge, &psys->hair_in_mesh, &psys->clmd->hairdata);
3489 
3490   if (psys->hair_out_mesh) {
3491     BKE_id_free(NULL, psys->hair_out_mesh);
3492   }
3493 
3494   psys->clmd->point_cache = psys->pointcache;
3495   /* for hair sim we replace the internal cloth effector weights temporarily
3496    * to use the particle settings
3497    */
3498   clmd_effweights = psys->clmd->sim_parms->effector_weights;
3499   psys->clmd->sim_parms->effector_weights = psys->part->effector_weights;
3500 
3501   BKE_id_copy_ex(NULL, &psys->hair_in_mesh->id, (ID **)&psys->hair_out_mesh, LIB_ID_COPY_LOCALIZE);
3502   deformedVerts = BKE_mesh_vert_coords_alloc(psys->hair_out_mesh, NULL);
3503   clothModifier_do(
3504       psys->clmd, sim->depsgraph, sim->scene, sim->ob, psys->hair_in_mesh, deformedVerts);
3505   BKE_mesh_vert_coords_apply(psys->hair_out_mesh, deformedVerts);
3506 
3507   MEM_freeN(deformedVerts);
3508 
3509   /* restore cloth effector weights */
3510   psys->clmd->sim_parms->effector_weights = clmd_effweights;
3511 }
hair_step(ParticleSimulationData * sim,float cfra,const bool use_render_params)3512 static void hair_step(ParticleSimulationData *sim, float cfra, const bool use_render_params)
3513 {
3514   ParticleSystem *psys = sim->psys;
3515   ParticleSettings *part = psys->part;
3516   PARTICLE_P;
3517   float disp = psys_get_current_display_percentage(psys, use_render_params);
3518 
3519   LOOP_PARTICLES
3520   {
3521     pa->size = part->size;
3522     if (part->randsize > 0.0f) {
3523       pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
3524     }
3525 
3526     if (psys_frand(psys, p) > disp) {
3527       pa->flag |= PARS_NO_DISP;
3528     }
3529     else {
3530       pa->flag &= ~PARS_NO_DISP;
3531     }
3532   }
3533 
3534   if (psys->recalc & ID_RECALC_PSYS_RESET) {
3535     /* need this for changing subsurf levels */
3536     psys_calc_dmcache(sim->ob, sim->psmd->mesh_final, sim->psmd->mesh_original, psys);
3537 
3538     if (psys->clmd) {
3539       cloth_free_modifier(psys->clmd);
3540     }
3541   }
3542 
3543   /* dynamics with cloth simulation, psys->particles can be NULL with 0 particles T25519. */
3544   if (psys->part->type == PART_HAIR && psys->flag & PSYS_HAIR_DYNAMICS && psys->particles) {
3545     do_hair_dynamics(sim);
3546   }
3547 
3548   /* following lines were removed r29079 but cause bug T22811, see report for details */
3549   psys_update_effectors(sim);
3550   psys_update_path_cache(sim, cfra, use_render_params);
3551 
3552   psys->flag |= PSYS_HAIR_UPDATED;
3553 }
3554 
save_hair(ParticleSimulationData * sim,float UNUSED (cfra))3555 static void save_hair(ParticleSimulationData *sim, float UNUSED(cfra))
3556 {
3557   Object *ob = sim->ob;
3558   ParticleSystem *psys = sim->psys;
3559   HairKey *key, *root;
3560   PARTICLE_P;
3561 
3562   invert_m4_m4(ob->imat, ob->obmat);
3563 
3564   psys->lattice_deform_data = psys_create_lattice_deform_data(sim);
3565 
3566   if (psys->totpart == 0) {
3567     return;
3568   }
3569 
3570   /* save new keys for elements if needed */
3571   LOOP_PARTICLES
3572   {
3573     /* first time alloc */
3574     if (pa->totkey == 0 || pa->hair == NULL) {
3575       pa->hair = MEM_callocN((psys->part->hair_step + 1) * sizeof(HairKey), "HairKeys");
3576       pa->totkey = 0;
3577     }
3578 
3579     key = root = pa->hair;
3580     key += pa->totkey;
3581 
3582     /* convert from global to geometry space */
3583     copy_v3_v3(key->co, pa->state.co);
3584     mul_m4_v3(ob->imat, key->co);
3585 
3586     if (pa->totkey) {
3587       sub_v3_v3(key->co, root->co);
3588       psys_vec_rot_to_face(sim->psmd->mesh_final, pa, key->co);
3589     }
3590 
3591     key->time = pa->state.time;
3592 
3593     key->weight = 1.0f - key->time / 100.0f;
3594 
3595     pa->totkey++;
3596 
3597     /* Root is always in the origin of hair space
3598      * so we set it to be so after the last key is saved. */
3599     if (pa->totkey == psys->part->hair_step + 1) {
3600       zero_v3(root->co);
3601     }
3602   }
3603 }
3604 
3605 /* Code for an adaptive time step based on the Courant-Friedrichs-Lewy
3606  * condition. */
3607 static const float MIN_TIMESTEP = 1.0f / 101.0f;
3608 /* Tolerance of 1.5 means the last subframe neither favors growing nor
3609  * shrinking (e.g if it were 1.3, the last subframe would tend to be too
3610  * small). */
3611 static const float TIMESTEP_EXPANSION_FACTOR = 0.1f;
3612 static const float TIMESTEP_EXPANSION_TOLERANCE = 1.5f;
3613 
3614 /* Calculate the speed of the particle relative to the local scale of the
3615  * simulation. This should be called once per particle during a simulation
3616  * step, after the velocity has been updated. element_size defines the scale of
3617  * the simulation, and is typically the distance to neighboring particles. */
update_courant_num(ParticleSimulationData * sim,ParticleData * pa,float dtime,SPHData * sphdata,SpinLock * spin)3618 static void update_courant_num(
3619     ParticleSimulationData *sim, ParticleData *pa, float dtime, SPHData *sphdata, SpinLock *spin)
3620 {
3621   float relative_vel[3];
3622 
3623   sub_v3_v3v3(relative_vel, pa->prev_state.vel, sphdata->flow);
3624 
3625   const float courant_num = len_v3(relative_vel) * dtime / sphdata->element_size;
3626   if (sim->courant_num < courant_num) {
3627     BLI_spin_lock(spin);
3628     if (sim->courant_num < courant_num) {
3629       sim->courant_num = courant_num;
3630     }
3631     BLI_spin_unlock(spin);
3632   }
3633 }
get_base_time_step(ParticleSettings * part)3634 static float get_base_time_step(ParticleSettings *part)
3635 {
3636   return 1.0f / (float)(part->subframes + 1);
3637 }
3638 /* Update time step size to suit current conditions. */
update_timestep(ParticleSystem * psys,ParticleSimulationData * sim)3639 static void update_timestep(ParticleSystem *psys, ParticleSimulationData *sim)
3640 {
3641   float dt_target;
3642   if (sim->courant_num == 0.0f) {
3643     dt_target = 1.0f;
3644   }
3645   else {
3646     dt_target = psys->dt_frac * (psys->part->courant_target / sim->courant_num);
3647   }
3648 
3649   /* Make sure the time step is reasonable. For some reason, the CLAMP macro
3650    * doesn't work here. The time step becomes too large. - z0r */
3651   if (dt_target < MIN_TIMESTEP) {
3652     dt_target = MIN_TIMESTEP;
3653   }
3654   else if (dt_target > get_base_time_step(psys->part)) {
3655     dt_target = get_base_time_step(psys->part);
3656   }
3657 
3658   /* Decrease time step instantly, but increase slowly. */
3659   if (dt_target > psys->dt_frac) {
3660     psys->dt_frac = interpf(dt_target, psys->dt_frac, TIMESTEP_EXPANSION_FACTOR);
3661   }
3662   else {
3663     psys->dt_frac = dt_target;
3664   }
3665 }
3666 
sync_timestep(ParticleSystem * psys,float t_frac)3667 static float sync_timestep(ParticleSystem *psys, float t_frac)
3668 {
3669   /* Sync with frame end if it's close. */
3670   if (t_frac == 1.0f) {
3671     return psys->dt_frac;
3672   }
3673   if (t_frac + (psys->dt_frac * TIMESTEP_EXPANSION_TOLERANCE) >= 1.0f) {
3674     return 1.0f - t_frac;
3675   }
3676 
3677   return psys->dt_frac;
3678 }
3679 
3680 /************************************************/
3681 /*          System Core                         */
3682 /************************************************/
3683 
3684 typedef struct DynamicStepSolverTaskData {
3685   ParticleSimulationData *sim;
3686 
3687   float cfra;
3688   float timestep;
3689   float dtime;
3690 
3691   SpinLock spin;
3692 } DynamicStepSolverTaskData;
3693 
dynamics_step_sphdata_reduce(const void * __restrict UNUSED (userdata),void * __restrict UNUSED (join_v),void * __restrict chunk_v)3694 static void dynamics_step_sphdata_reduce(const void *__restrict UNUSED(userdata),
3695                                          void *__restrict UNUSED(join_v),
3696                                          void *__restrict chunk_v)
3697 {
3698   SPHData *sphdata = chunk_v;
3699 
3700   psys_sph_flush_springs(sphdata);
3701 }
3702 
dynamics_step_sph_ddr_task_cb_ex(void * __restrict userdata,const int p,const TaskParallelTLS * __restrict tls)3703 static void dynamics_step_sph_ddr_task_cb_ex(void *__restrict userdata,
3704                                              const int p,
3705                                              const TaskParallelTLS *__restrict tls)
3706 {
3707   DynamicStepSolverTaskData *data = userdata;
3708   ParticleSimulationData *sim = data->sim;
3709   ParticleSystem *psys = sim->psys;
3710   ParticleSettings *part = psys->part;
3711 
3712   SPHData *sphdata = tls->userdata_chunk;
3713 
3714   ParticleData *pa;
3715 
3716   if ((pa = psys->particles + p)->state.time <= 0.0f) {
3717     return;
3718   }
3719 
3720   /* do global forces & effectors */
3721   basic_integrate(sim, p, pa->state.time, data->cfra);
3722 
3723   /* actual fluids calculations */
3724   sph_integrate(sim, pa, pa->state.time, sphdata);
3725 
3726   if (sim->colliders) {
3727     collision_check(sim, p, pa->state.time, data->cfra);
3728   }
3729 
3730   /* SPH particles are not physical particles, just interpolation
3731    * particles,  thus rotation has not a direct sense for them */
3732   basic_rotate(part, pa, pa->state.time, data->timestep);
3733 
3734   if (part->time_flag & PART_TIME_AUTOSF) {
3735     update_courant_num(sim, pa, data->dtime, sphdata, &data->spin);
3736   }
3737 }
3738 
dynamics_step_sph_classical_basic_integrate_task_cb_ex(void * __restrict userdata,const int p,const TaskParallelTLS * __restrict UNUSED (tls))3739 static void dynamics_step_sph_classical_basic_integrate_task_cb_ex(
3740     void *__restrict userdata, const int p, const TaskParallelTLS *__restrict UNUSED(tls))
3741 {
3742   DynamicStepSolverTaskData *data = userdata;
3743   ParticleSimulationData *sim = data->sim;
3744   ParticleSystem *psys = sim->psys;
3745 
3746   ParticleData *pa;
3747 
3748   if ((pa = psys->particles + p)->state.time <= 0.0f) {
3749     return;
3750   }
3751 
3752   basic_integrate(sim, p, pa->state.time, data->cfra);
3753 }
3754 
dynamics_step_sph_classical_calc_density_task_cb_ex(void * __restrict userdata,const int p,const TaskParallelTLS * __restrict tls)3755 static void dynamics_step_sph_classical_calc_density_task_cb_ex(
3756     void *__restrict userdata, const int p, const TaskParallelTLS *__restrict tls)
3757 {
3758   DynamicStepSolverTaskData *data = userdata;
3759   ParticleSimulationData *sim = data->sim;
3760   ParticleSystem *psys = sim->psys;
3761 
3762   SPHData *sphdata = tls->userdata_chunk;
3763 
3764   ParticleData *pa;
3765 
3766   if ((pa = psys->particles + p)->state.time <= 0.0f) {
3767     return;
3768   }
3769 
3770   sphclassical_calc_dens(pa, pa->state.time, sphdata);
3771 }
3772 
dynamics_step_sph_classical_integrate_task_cb_ex(void * __restrict userdata,const int p,const TaskParallelTLS * __restrict tls)3773 static void dynamics_step_sph_classical_integrate_task_cb_ex(void *__restrict userdata,
3774                                                              const int p,
3775                                                              const TaskParallelTLS *__restrict tls)
3776 {
3777   DynamicStepSolverTaskData *data = userdata;
3778   ParticleSimulationData *sim = data->sim;
3779   ParticleSystem *psys = sim->psys;
3780   ParticleSettings *part = psys->part;
3781 
3782   SPHData *sphdata = tls->userdata_chunk;
3783 
3784   ParticleData *pa;
3785 
3786   if ((pa = psys->particles + p)->state.time <= 0.0f) {
3787     return;
3788   }
3789 
3790   /* actual fluids calculations */
3791   sph_integrate(sim, pa, pa->state.time, sphdata);
3792 
3793   if (sim->colliders) {
3794     collision_check(sim, p, pa->state.time, data->cfra);
3795   }
3796 
3797   /* SPH particles are not physical particles, just interpolation
3798    * particles,  thus rotation has not a direct sense for them */
3799   basic_rotate(part, pa, pa->state.time, data->timestep);
3800 
3801   if (part->time_flag & PART_TIME_AUTOSF) {
3802     update_courant_num(sim, pa, data->dtime, sphdata, &data->spin);
3803   }
3804 }
3805 
3806 /* unbaked particles are calculated dynamically */
dynamics_step(ParticleSimulationData * sim,float cfra)3807 static void dynamics_step(ParticleSimulationData *sim, float cfra)
3808 {
3809   ParticleSystem *psys = sim->psys;
3810   ParticleSettings *part = psys->part;
3811   BoidBrainData bbd;
3812   ParticleTexture ptex;
3813   PARTICLE_P;
3814   float timestep;
3815   /* frame & time changes */
3816   float dfra, dtime;
3817   float birthtime, dietime;
3818 
3819   /* where have we gone in time since last time */
3820   dfra = cfra - psys->cfra;
3821 
3822   timestep = psys_get_timestep(sim);
3823   dtime = dfra * timestep;
3824 
3825   if (dfra < 0.0f) {
3826     LOOP_EXISTING_PARTICLES
3827     {
3828       psys_get_texture(sim, pa, &ptex, PAMAP_SIZE, cfra);
3829       pa->size = part->size * ptex.size;
3830       if (part->randsize > 0.0f) {
3831         pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
3832       }
3833 
3834       reset_particle(sim, pa, dtime, cfra);
3835     }
3836     return;
3837   }
3838 
3839   /* for now do both, boids us 'rng' */
3840   sim->rng = BLI_rng_new_srandom(31415926 + (int)cfra + psys->seed);
3841 
3842   psys_update_effectors(sim);
3843 
3844   if (part->type != PART_HAIR) {
3845     sim->colliders = BKE_collider_cache_create(sim->depsgraph, sim->ob, part->collision_group);
3846   }
3847 
3848   /* initialize physics type specific stuff */
3849   switch (part->phystype) {
3850     case PART_PHYS_BOIDS: {
3851       ParticleTarget *pt = psys->targets.first;
3852       bbd.sim = sim;
3853       bbd.part = part;
3854       bbd.cfra = cfra;
3855       bbd.dfra = dfra;
3856       bbd.timestep = timestep;
3857       bbd.rng = sim->rng;
3858 
3859       psys_update_particle_tree(psys, cfra);
3860 
3861       boids_precalc_rules(part, cfra);
3862 
3863       for (; pt; pt = pt->next) {
3864         ParticleSystem *psys_target = psys_get_target_system(sim->ob, pt);
3865         if (psys_target && psys_target != psys) {
3866           psys_update_particle_tree(psys_target, cfra);
3867         }
3868       }
3869       break;
3870     }
3871     case PART_PHYS_FLUID: {
3872       ParticleTarget *pt = psys->targets.first;
3873       psys_update_particle_bvhtree(psys, cfra);
3874 
3875       for (; pt;
3876            pt = pt->next) { /* Updating others systems particle tree for fluid-fluid interaction */
3877         if (pt->ob) {
3878           psys_update_particle_bvhtree(BLI_findlink(&pt->ob->particlesystem, pt->psys - 1), cfra);
3879         }
3880       }
3881       break;
3882     }
3883   }
3884   /* initialize all particles for dynamics */
3885   LOOP_SHOWN_PARTICLES
3886   {
3887     copy_particle_key(&pa->prev_state, &pa->state, 1);
3888 
3889     psys_get_texture(sim, pa, &ptex, PAMAP_SIZE, cfra);
3890 
3891     pa->size = part->size * ptex.size;
3892     if (part->randsize > 0.0f) {
3893       pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
3894     }
3895 
3896     birthtime = pa->time;
3897     dietime = pa->dietime;
3898 
3899     /* store this, so we can do multiple loops over particles */
3900     pa->state.time = dfra;
3901 
3902     if (dietime <= cfra && psys->cfra < dietime) {
3903       /* particle dies some time between this and last step */
3904       pa->state.time = dietime - ((birthtime > psys->cfra) ? birthtime : psys->cfra);
3905       pa->alive = PARS_DYING;
3906     }
3907     else if (birthtime <= cfra && birthtime >= psys->cfra) {
3908       /* particle is born some time between this and last step*/
3909       reset_particle(sim, pa, dfra * timestep, cfra);
3910       pa->alive = PARS_ALIVE;
3911       pa->state.time = cfra - birthtime;
3912     }
3913     else if (dietime < cfra) {
3914       /* nothing to be done when particle is dead */
3915     }
3916 
3917     /* only reset unborn particles if they're shown or if the particle is born soon*/
3918     if (pa->alive == PARS_UNBORN &&
3919         (part->flag & PART_UNBORN || (cfra + psys->pointcache->step > pa->time))) {
3920       reset_particle(sim, pa, dtime, cfra);
3921     }
3922     else if (part->phystype == PART_PHYS_NO) {
3923       reset_particle(sim, pa, dtime, cfra);
3924     }
3925 
3926     if (ELEM(pa->alive, PARS_ALIVE, PARS_DYING) == 0 ||
3927         (pa->flag & (PARS_UNEXIST | PARS_NO_DISP))) {
3928       pa->state.time = -1.f;
3929     }
3930   }
3931 
3932   switch (part->phystype) {
3933     case PART_PHYS_NEWTON: {
3934       LOOP_DYNAMIC_PARTICLES
3935       {
3936         /* do global forces & effectors */
3937         basic_integrate(sim, p, pa->state.time, cfra);
3938 
3939         /* deflection */
3940         if (sim->colliders) {
3941           collision_check(sim, p, pa->state.time, cfra);
3942         }
3943 
3944         /* rotations */
3945         basic_rotate(part, pa, pa->state.time, timestep);
3946       }
3947       break;
3948     }
3949     case PART_PHYS_BOIDS: {
3950       LOOP_DYNAMIC_PARTICLES
3951       {
3952         bbd.goal_ob = NULL;
3953 
3954         boid_brain(&bbd, p, pa);
3955 
3956         if (pa->alive != PARS_DYING) {
3957           boid_body(&bbd, pa);
3958 
3959           /* deflection */
3960           if (sim->colliders) {
3961             collision_check(sim, p, pa->state.time, cfra);
3962           }
3963         }
3964       }
3965       break;
3966     }
3967     case PART_PHYS_FLUID: {
3968       SPHData sphdata;
3969       psys_sph_init(sim, &sphdata);
3970 
3971       DynamicStepSolverTaskData task_data = {
3972           .sim = sim,
3973           .cfra = cfra,
3974           .timestep = timestep,
3975           .dtime = dtime,
3976       };
3977 
3978       BLI_spin_init(&task_data.spin);
3979 
3980       if (part->fluid->solver == SPH_SOLVER_DDR) {
3981         /* Apply SPH forces using double-density relaxation algorithm
3982          * (Clavat et. al.) */
3983 
3984         TaskParallelSettings settings;
3985         BLI_parallel_range_settings_defaults(&settings);
3986         settings.use_threading = (psys->totpart > 100);
3987         settings.userdata_chunk = &sphdata;
3988         settings.userdata_chunk_size = sizeof(sphdata);
3989         settings.func_reduce = dynamics_step_sphdata_reduce;
3990         BLI_task_parallel_range(
3991             0, psys->totpart, &task_data, dynamics_step_sph_ddr_task_cb_ex, &settings);
3992 
3993         sph_springs_modify(psys, timestep);
3994       }
3995       else {
3996         /* SPH_SOLVER_CLASSICAL */
3997         /* Apply SPH forces using classical algorithm (due to Gingold
3998          * and Monaghan). Note that, unlike double-density relaxation,
3999          * this algorithm is separated into distinct loops. */
4000 
4001         {
4002           TaskParallelSettings settings;
4003           BLI_parallel_range_settings_defaults(&settings);
4004           settings.use_threading = (psys->totpart > 100);
4005           BLI_task_parallel_range(0,
4006                                   psys->totpart,
4007                                   &task_data,
4008                                   dynamics_step_sph_classical_basic_integrate_task_cb_ex,
4009                                   &settings);
4010         }
4011 
4012         /* calculate summation density */
4013         /* Note that we could avoid copying sphdata for each thread here (it's only read here),
4014          * but doubt this would gain us anything except confusion... */
4015         {
4016           TaskParallelSettings settings;
4017           BLI_parallel_range_settings_defaults(&settings);
4018           settings.use_threading = (psys->totpart > 100);
4019           settings.userdata_chunk = &sphdata;
4020           settings.userdata_chunk_size = sizeof(sphdata);
4021           settings.func_reduce = dynamics_step_sphdata_reduce;
4022           BLI_task_parallel_range(0,
4023                                   psys->totpart,
4024                                   &task_data,
4025                                   dynamics_step_sph_classical_calc_density_task_cb_ex,
4026                                   &settings);
4027         }
4028 
4029         /* do global forces & effectors */
4030         {
4031           TaskParallelSettings settings;
4032           BLI_parallel_range_settings_defaults(&settings);
4033           settings.use_threading = (psys->totpart > 100);
4034           settings.userdata_chunk = &sphdata;
4035           settings.userdata_chunk_size = sizeof(sphdata);
4036           settings.func_reduce = dynamics_step_sphdata_reduce;
4037           BLI_task_parallel_range(0,
4038                                   psys->totpart,
4039                                   &task_data,
4040                                   dynamics_step_sph_classical_integrate_task_cb_ex,
4041                                   &settings);
4042         }
4043       }
4044 
4045       BLI_spin_end(&task_data.spin);
4046 
4047       psys_sph_finalize(&sphdata);
4048       break;
4049     }
4050   }
4051 
4052   /* finalize particle state and time after dynamics */
4053   LOOP_DYNAMIC_PARTICLES
4054   {
4055     if (pa->alive == PARS_DYING) {
4056       pa->alive = PARS_DEAD;
4057       pa->state.time = pa->dietime;
4058     }
4059     else {
4060       pa->state.time = cfra;
4061     }
4062   }
4063 
4064   BKE_collider_cache_free(&sim->colliders);
4065   BLI_rng_free(sim->rng);
4066   sim->rng = NULL;
4067 }
4068 
update_children(ParticleSimulationData * sim,const bool use_render_params)4069 static void update_children(ParticleSimulationData *sim, const bool use_render_params)
4070 {
4071   if ((sim->psys->part->type == PART_HAIR) && (sim->psys->flag & PSYS_HAIR_DONE) == 0) {
4072     /* don't generate children while growing hair - waste of time */
4073     psys_free_children(sim->psys);
4074   }
4075   else if (sim->psys->part->childtype) {
4076     if (sim->psys->totchild != psys_get_tot_child(sim->scene, sim->psys, use_render_params)) {
4077       distribute_particles(sim, PART_FROM_CHILD);
4078     }
4079     else {
4080       /* Children are up to date, nothing to do. */
4081     }
4082   }
4083   else {
4084     psys_free_children(sim->psys);
4085   }
4086 }
4087 /* updates cached particles' alive & other flags etc..*/
cached_step(ParticleSimulationData * sim,float cfra,const bool use_render_params)4088 static void cached_step(ParticleSimulationData *sim, float cfra, const bool use_render_params)
4089 {
4090   ParticleSystem *psys = sim->psys;
4091   ParticleSettings *part = psys->part;
4092   ParticleTexture ptex;
4093   PARTICLE_P;
4094   float disp, dietime;
4095 
4096   psys_update_effectors(sim);
4097 
4098   disp = psys_get_current_display_percentage(psys, use_render_params);
4099 
4100   LOOP_PARTICLES
4101   {
4102     psys_get_texture(sim, pa, &ptex, PAMAP_SIZE, cfra);
4103     pa->size = part->size * ptex.size;
4104     if (part->randsize > 0.0f) {
4105       pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
4106     }
4107 
4108     psys->lattice_deform_data = psys_create_lattice_deform_data(sim);
4109 
4110     dietime = pa->dietime;
4111 
4112     /* update alive status and push events */
4113     if (pa->time > cfra) {
4114       pa->alive = PARS_UNBORN;
4115       if (part->flag & PART_UNBORN && (psys->pointcache->flag & PTCACHE_EXTERNAL) == 0) {
4116         reset_particle(sim, pa, 0.0f, cfra);
4117       }
4118     }
4119     else if (dietime <= cfra) {
4120       pa->alive = PARS_DEAD;
4121     }
4122     else {
4123       pa->alive = PARS_ALIVE;
4124     }
4125 
4126     if (psys->lattice_deform_data) {
4127       BKE_lattice_deform_data_destroy(psys->lattice_deform_data);
4128       psys->lattice_deform_data = NULL;
4129     }
4130 
4131     if (psys_frand(psys, p) > disp) {
4132       pa->flag |= PARS_NO_DISP;
4133     }
4134     else {
4135       pa->flag &= ~PARS_NO_DISP;
4136     }
4137   }
4138 }
4139 
particles_has_flip(short parttype)4140 static bool particles_has_flip(short parttype)
4141 {
4142   return (parttype == PART_FLUID_FLIP);
4143 }
4144 
particles_has_tracer(short parttype)4145 static bool particles_has_tracer(short parttype)
4146 {
4147   return (parttype == PART_FLUID_TRACER);
4148 }
4149 
particles_has_spray(short parttype)4150 static bool particles_has_spray(short parttype)
4151 {
4152   return ((parttype == PART_FLUID_SPRAY) || (parttype == PART_FLUID_SPRAYFOAM) ||
4153           (parttype == PART_FLUID_SPRAYFOAMBUBBLE));
4154 }
4155 
particles_has_bubble(short parttype)4156 static bool particles_has_bubble(short parttype)
4157 {
4158   return ((parttype == PART_FLUID_BUBBLE) || (parttype == PART_FLUID_FOAMBUBBLE) ||
4159           (parttype == PART_FLUID_SPRAYFOAMBUBBLE));
4160 }
4161 
particles_has_foam(short parttype)4162 static bool particles_has_foam(short parttype)
4163 {
4164   return ((parttype == PART_FLUID_FOAM) || (parttype == PART_FLUID_SPRAYFOAM) ||
4165           (parttype == PART_FLUID_SPRAYFOAMBUBBLE));
4166 }
4167 
particles_fluid_step(ParticleSimulationData * sim,int cfra,const bool use_render_params)4168 static void particles_fluid_step(ParticleSimulationData *sim,
4169                                  int cfra,
4170                                  const bool use_render_params)
4171 {
4172   ParticleSystem *psys = sim->psys;
4173   if (psys->particles) {
4174     MEM_freeN(psys->particles);
4175     psys->particles = 0;
4176     psys->totpart = 0;
4177   }
4178 
4179 #ifndef WITH_FLUID
4180   UNUSED_VARS(use_render_params, cfra);
4181 #else
4182   {
4183     Object *ob = sim->ob;
4184     FluidModifierData *fmd = (FluidModifierData *)BKE_modifiers_findby_type(ob,
4185                                                                             eModifierType_Fluid);
4186 
4187     if (fmd && fmd->domain && fmd->domain->fluid) {
4188       FluidDomainSettings *fds = fmd->domain;
4189 
4190       ParticleSettings *part = psys->part;
4191       ParticleData *pa = NULL;
4192 
4193       int p, totpart = 0, tottypepart = 0;
4194       int flagActivePart, activeParts = 0;
4195       float posX, posY, posZ, velX, velY, velZ;
4196       float resX, resY, resZ;
4197       int upres = 1;
4198       char debugStrBuffer[256];
4199       float tmp[3] = {0}, tmp2[3] = {0};
4200 
4201       /* Helper variables for scaling. */
4202       float min[3], max[3], size[3], cell_size_scaled[3], max_size;
4203 
4204       /* Sanity check: parts also enabled in fluid domain? */
4205       if ((particles_has_flip(part->type) &&
4206            (fds->particle_type & FLUID_DOMAIN_PARTICLE_FLIP) == 0) ||
4207           (particles_has_spray(part->type) &&
4208            (fds->particle_type & FLUID_DOMAIN_PARTICLE_SPRAY) == 0) ||
4209           (particles_has_bubble(part->type) &&
4210            (fds->particle_type & FLUID_DOMAIN_PARTICLE_BUBBLE) == 0) ||
4211           (particles_has_foam(part->type) &&
4212            (fds->particle_type & FLUID_DOMAIN_PARTICLE_FOAM) == 0) ||
4213           (particles_has_tracer(part->type) &&
4214            (fds->particle_type & FLUID_DOMAIN_PARTICLE_TRACER) == 0)) {
4215         BLI_snprintf(debugStrBuffer,
4216                      sizeof(debugStrBuffer),
4217                      "particles_fluid_step::error - found particle system that is not enabled in "
4218                      "fluid domain\n");
4219         return;
4220       }
4221 
4222       /* Count particle amount. tottypepart is only important for snd particles. */
4223       if (part->type == PART_FLUID_FLIP) {
4224         tottypepart = totpart = manta_liquid_get_num_flip_particles(fds->fluid);
4225       }
4226       if (particles_has_spray(part->type) || particles_has_bubble(part->type) ||
4227           particles_has_foam(part->type) || particles_has_tracer(part->type)) {
4228         totpart = manta_liquid_get_num_snd_particles(fds->fluid);
4229 
4230         /* tottypepart is the amount of particles of a snd particle type. */
4231         for (p = 0; p < totpart; p++) {
4232           flagActivePart = manta_liquid_get_snd_particle_flag_at(fds->fluid, p);
4233           if (particles_has_spray(part->type) && (flagActivePart & PARTICLE_TYPE_SPRAY)) {
4234             tottypepart++;
4235           }
4236           if (particles_has_bubble(part->type) && (flagActivePart & PARTICLE_TYPE_BUBBLE)) {
4237             tottypepart++;
4238           }
4239           if (particles_has_foam(part->type) && (flagActivePart & PARTICLE_TYPE_FOAM)) {
4240             tottypepart++;
4241           }
4242           if (particles_has_tracer(part->type) && (flagActivePart & PARTICLE_TYPE_TRACER)) {
4243             tottypepart++;
4244           }
4245         }
4246       }
4247       /* Sanity check: no particles present. */
4248       if (!totpart || !tottypepart) {
4249         return;
4250       }
4251 
4252       /* How many particles to display? */
4253       tottypepart = (use_render_params) ? tottypepart : (part->disp * tottypepart) / 100;
4254 
4255       part->totpart = tottypepart;
4256       part->sta = part->end = 1.0f;
4257       part->lifetime = sim->scene->r.efra + 1;
4258 
4259       /* Allocate particles. */
4260       realloc_particles(sim, part->totpart);
4261 
4262       /* Set some randomness when choosing which particles to display. */
4263       sim->rng = BLI_rng_new_srandom(31415926 + (int)cfra + psys->seed);
4264       double r, dispProb = (double)part->disp / 100.0;
4265 
4266       /* Loop over *all* particles. Will break out of loop before tottypepart amount exceeded. */
4267       for (p = 0, pa = psys->particles; p < totpart; p++) {
4268 
4269         /* Apply some randomness and determine which particles to skip. */
4270         r = BLI_rng_get_double(sim->rng);
4271         if (r > dispProb) {
4272           continue;
4273         }
4274 
4275         /* flag, res, upres, pos, vel for FLIP and snd particles have different getters. */
4276         if (part->type == PART_FLUID_FLIP) {
4277           flagActivePart = manta_liquid_get_flip_particle_flag_at(fds->fluid, p);
4278 
4279           resX = (float)manta_get_res_x(fds->fluid);
4280           resY = (float)manta_get_res_y(fds->fluid);
4281           resZ = (float)manta_get_res_z(fds->fluid);
4282 
4283           upres = 1;
4284 
4285           posX = manta_liquid_get_flip_particle_position_x_at(fds->fluid, p);
4286           posY = manta_liquid_get_flip_particle_position_y_at(fds->fluid, p);
4287           posZ = manta_liquid_get_flip_particle_position_z_at(fds->fluid, p);
4288 
4289           velX = manta_liquid_get_flip_particle_velocity_x_at(fds->fluid, p);
4290           velY = manta_liquid_get_flip_particle_velocity_y_at(fds->fluid, p);
4291           velZ = manta_liquid_get_flip_particle_velocity_z_at(fds->fluid, p);
4292         }
4293         else if (particles_has_spray(part->type) || particles_has_bubble(part->type) ||
4294                  particles_has_foam(part->type) || particles_has_tracer(part->type)) {
4295           flagActivePart = manta_liquid_get_snd_particle_flag_at(fds->fluid, p);
4296 
4297           resX = (float)manta_liquid_get_particle_res_x(fds->fluid);
4298           resY = (float)manta_liquid_get_particle_res_y(fds->fluid);
4299           resZ = (float)manta_liquid_get_particle_res_z(fds->fluid);
4300 
4301           upres = manta_liquid_get_particle_upres(fds->fluid);
4302 
4303           posX = manta_liquid_get_snd_particle_position_x_at(fds->fluid, p);
4304           posY = manta_liquid_get_snd_particle_position_y_at(fds->fluid, p);
4305           posZ = manta_liquid_get_snd_particle_position_z_at(fds->fluid, p);
4306 
4307           velX = manta_liquid_get_snd_particle_velocity_x_at(fds->fluid, p);
4308           velY = manta_liquid_get_snd_particle_velocity_y_at(fds->fluid, p);
4309           velZ = manta_liquid_get_snd_particle_velocity_z_at(fds->fluid, p);
4310         }
4311         else {
4312           BLI_snprintf(debugStrBuffer,
4313                        sizeof(debugStrBuffer),
4314                        "particles_fluid_step::error - unknown particle system type\n");
4315           return;
4316         }
4317 #  if 0
4318         /* Debugging: Print type of particle system and current particles. */
4319         printf("system type is %d and particle type is %d\n", part->type, flagActivePart);
4320 #  endif
4321 
4322         /* Type of particle must match current particle system type
4323          * (only important for snd particles). */
4324         if ((flagActivePart & PARTICLE_TYPE_SPRAY) && !particles_has_spray(part->type)) {
4325           continue;
4326         }
4327         if ((flagActivePart & PARTICLE_TYPE_BUBBLE) && !particles_has_bubble(part->type)) {
4328           continue;
4329         }
4330         if ((flagActivePart & PARTICLE_TYPE_FOAM) && !particles_has_foam(part->type)) {
4331           continue;
4332         }
4333         if ((flagActivePart & PARTICLE_TYPE_TRACER) && !particles_has_tracer(part->type)) {
4334           continue;
4335         }
4336 #  if 0
4337         /* Debugging: Print type of particle system and current particles. */
4338         printf("system type is %d and particle type is %d\n", part->type, flagActivePart);
4339 #  endif
4340         /* Particle system has allocated 'tottypepart' particles - so break early before exceeded.
4341          */
4342         if (activeParts >= tottypepart) {
4343           break;
4344         }
4345 
4346         /* Only show active particles, i.e. filter out dead particles that just Mantaflow needs.
4347          * Mantaflow convention: PARTICLE_TYPE_DELETE == inactive particle. */
4348         if ((flagActivePart & PARTICLE_TYPE_DELETE) == 0) {
4349           activeParts++;
4350 
4351           /* Use particle system settings for particle size. */
4352           pa->size = part->size;
4353           if (part->randsize > 0.0f) {
4354             pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
4355           }
4356 
4357           /* Get size (dimension) but considering scaling */
4358           copy_v3_v3(cell_size_scaled, fds->cell_size);
4359           mul_v3_v3(cell_size_scaled, ob->scale);
4360           madd_v3fl_v3fl_v3fl_v3i(min, fds->p0, cell_size_scaled, fds->res_min);
4361           madd_v3fl_v3fl_v3fl_v3i(max, fds->p0, cell_size_scaled, fds->res_max);
4362           sub_v3_v3v3(size, max, min);
4363 
4364           /* Biggest dimension will be used for up-scaling. */
4365           max_size = MAX3(size[0] / (float)upres, size[1] / (float)upres, size[2] / (float)upres);
4366 
4367           /* Set particle position. */
4368           const float posParticle[3] = {posX, posY, posZ};
4369           copy_v3_v3(pa->state.co, posParticle);
4370 
4371           /* Normalize to unit cube around 0. */
4372           float resDomain[3] = {resX, resY, resZ};
4373           mul_v3_fl(resDomain, 0.5f);
4374           sub_v3_v3(pa->state.co, resDomain);
4375           mul_v3_fl(pa->state.co, fds->dx);
4376 
4377           /* Match domain dimension / size. */
4378           float scaleAbs[3] = {
4379               1. / fabsf(ob->scale[0]), 1. / fabsf(ob->scale[1]), 1. / fabsf(ob->scale[2])};
4380           mul_v3_fl(scaleAbs, max_size);
4381           mul_v3_v3(pa->state.co, scaleAbs);
4382 
4383           /* Match domain scale. */
4384           mul_m4_v3(ob->obmat, pa->state.co);
4385 
4386           /* Add origin offset to particle position. */
4387           zero_v3(tmp);
4388           zero_v3(tmp2);
4389           sub_v3_v3v3(tmp2, fds->p1, fds->p0);
4390           mul_v3_fl(tmp2, 0.5f);
4391           add_v3_v3v3(tmp, tmp, fds->p1);
4392           sub_v3_v3(tmp, tmp2);
4393           mul_v3_v3(tmp, ob->scale);
4394           add_v3_v3(pa->state.co, tmp);
4395 #  if 0
4396           /* Debugging: Print particle coordinates. */
4397           printf("pa->state.co[0]: %f, pa->state.co[1]: %f, pa->state.co[2]: %f\n",
4398           pa->state.co[0], pa->state.co[1], pa->state.co[2]);
4399 #  endif
4400           /* Set particle velocity. */
4401           const float velParticle[3] = {velX, velY, velZ};
4402           copy_v3_v3(pa->state.vel, velParticle);
4403           mul_v3_fl(pa->state.vel, fds->dx);
4404 #  if 0
4405           /* Debugging: Print particle velocity. */
4406           printf("pa->state.vel[0]: %f, pa->state.vel[1]: %f, pa->state.vel[2]: %f\n",
4407           pa->state.vel[0], pa->state.vel[1], pa->state.vel[2]);
4408 #  endif
4409           /* Set default angular velocity and particle rotation. */
4410           zero_v3(pa->state.ave);
4411           unit_qt(pa->state.rot);
4412 
4413           pa->time = 1.f;
4414           pa->dietime = sim->scene->r.efra + 1;
4415           pa->lifetime = sim->scene->r.efra;
4416           pa->alive = PARS_ALIVE;
4417 
4418           /* Increasing particle settings pointer only for active particles. */
4419           pa++;
4420         }
4421       }
4422 #  if 0
4423       /* Debugging: Print number of active particles. */
4424       printf("active parts: %d\n", activeParts);
4425 #  endif
4426       totpart = psys->totpart = part->totpart = activeParts;
4427 
4428       BLI_rng_free(sim->rng);
4429       sim->rng = NULL;
4430 
4431     } /* Fluid sim particles done. */
4432   }
4433 #endif /* WITH_FLUID */
4434 }
4435 
emit_particles(ParticleSimulationData * sim,PTCacheID * pid,float UNUSED (cfra))4436 static int emit_particles(ParticleSimulationData *sim, PTCacheID *pid, float UNUSED(cfra))
4437 {
4438   ParticleSystem *psys = sim->psys;
4439   int oldtotpart = psys->totpart;
4440   int totpart = tot_particles(psys, pid);
4441 
4442   if (totpart != oldtotpart) {
4443     realloc_particles(sim, totpart);
4444   }
4445 
4446   return totpart - oldtotpart;
4447 }
4448 
4449 /**
4450  * Calculates the next state for all particles of the system.
4451  * In particles code most 'cfra - ending' are frames,
4452  * 'time - ending' are 'cfra * timestep' (seconds).
4453  *
4454  * 1. Emit particles
4455  * 2. Check cache (if used) and return if frame is cached
4456  * 3. Do dynamics
4457  * 4. Save to cache
4458  */
system_step(ParticleSimulationData * sim,float cfra,const bool use_render_params)4459 static void system_step(ParticleSimulationData *sim, float cfra, const bool use_render_params)
4460 {
4461   ParticleSystem *psys = sim->psys;
4462   ParticleSettings *part = psys->part;
4463   PointCache *cache = psys->pointcache;
4464   PTCacheID ptcacheid, *pid = NULL;
4465   PARTICLE_P;
4466   float disp, cache_cfra = cfra; /*, *vg_vel= 0, *vg_tan= 0, *vg_rot= 0, *vg_size= 0; */
4467   int startframe = 0, endframe = 100, oldtotpart = 0;
4468 
4469   /* cache shouldn't be used for hair or "continue physics" */
4470   if (part->type != PART_HAIR) {
4471     psys_clear_temp_pointcache(psys);
4472 
4473     /* set suitable cache range automatically */
4474     if ((cache->flag & (PTCACHE_BAKING | PTCACHE_BAKED)) == 0) {
4475       psys_get_pointcache_start_end(sim->scene, psys, &cache->startframe, &cache->endframe);
4476     }
4477 
4478     pid = &ptcacheid;
4479     BKE_ptcache_id_from_particles(pid, sim->ob, psys);
4480 
4481     BKE_ptcache_id_time(pid, sim->scene, 0.0f, &startframe, &endframe, NULL);
4482 
4483     /* clear everything on start frame, or when psys needs full reset! */
4484     if ((cfra == startframe) || (psys->recalc & ID_RECALC_PSYS_RESET)) {
4485       BKE_ptcache_id_reset(sim->scene, pid, PTCACHE_RESET_OUTDATED);
4486       BKE_ptcache_validate(cache, startframe);
4487       cache->flag &= ~PTCACHE_REDO_NEEDED;
4488     }
4489 
4490     CLAMP(cache_cfra, startframe, endframe);
4491   }
4492 
4493   /* 1. emit particles and redo particles if needed */
4494   oldtotpart = psys->totpart;
4495   if (emit_particles(sim, pid, cfra) || psys->recalc & ID_RECALC_PSYS_RESET) {
4496     distribute_particles(sim, part->from);
4497     initialize_all_particles(sim);
4498     /* reset only just created particles (on startframe all particles are recreated) */
4499     reset_all_particles(sim, 0.0, cfra, oldtotpart);
4500     free_unexisting_particles(sim);
4501 
4502     if (psys->fluid_springs) {
4503       MEM_freeN(psys->fluid_springs);
4504       psys->fluid_springs = NULL;
4505     }
4506 
4507     psys->tot_fluidsprings = psys->alloc_fluidsprings = 0;
4508 
4509     /* flag for possible explode modifiers after this system */
4510     sim->psmd->flag |= eParticleSystemFlag_Pars;
4511 
4512     BKE_ptcache_id_clear(pid, PTCACHE_CLEAR_AFTER, cfra);
4513   }
4514 
4515   /* 2. try to read from the cache */
4516   if (pid) {
4517     int cache_result = BKE_ptcache_read(pid, cache_cfra, true);
4518 
4519     if (ELEM(cache_result, PTCACHE_READ_EXACT, PTCACHE_READ_INTERPOLATED)) {
4520       cached_step(sim, cfra, use_render_params);
4521       update_children(sim, use_render_params);
4522       psys_update_path_cache(sim, cfra, use_render_params);
4523 
4524       BKE_ptcache_validate(cache, (int)cache_cfra);
4525 
4526       if (cache_result == PTCACHE_READ_INTERPOLATED && cache->flag & PTCACHE_REDO_NEEDED) {
4527         BKE_ptcache_write(pid, (int)cache_cfra);
4528       }
4529 
4530       return;
4531     }
4532     /* Cache is supposed to be baked, but no data was found so bail out */
4533     if (cache->flag & PTCACHE_BAKED) {
4534       psys_reset(psys, PSYS_RESET_CACHE_MISS);
4535       return;
4536     }
4537     if (cache_result == PTCACHE_READ_OLD) {
4538       psys->cfra = (float)cache->simframe;
4539       cached_step(sim, psys->cfra, use_render_params);
4540     }
4541 
4542     /* if on second frame, write cache for first frame */
4543     if (psys->cfra == startframe && (cache->flag & PTCACHE_OUTDATED || cache->last_exact == 0)) {
4544       BKE_ptcache_write(pid, startframe);
4545     }
4546   }
4547   else {
4548     BKE_ptcache_invalidate(cache);
4549   }
4550 
4551   /* 3. do dynamics */
4552   /* set particles to be not calculated TODO: can't work with pointcache */
4553   disp = psys_get_current_display_percentage(psys, use_render_params);
4554 
4555   LOOP_PARTICLES
4556   {
4557     if (psys_frand(psys, p) > disp) {
4558       pa->flag |= PARS_NO_DISP;
4559     }
4560     else {
4561       pa->flag &= ~PARS_NO_DISP;
4562     }
4563   }
4564 
4565   if (psys->totpart) {
4566     int dframe, totframesback = 0;
4567     float t_frac, dt_frac;
4568 
4569     /* handle negative frame start at the first frame by doing
4570      * all the steps before the first frame */
4571     if ((int)cfra == startframe && part->sta < startframe) {
4572       totframesback = (startframe - (int)part->sta);
4573     }
4574 
4575     if (!(part->time_flag & PART_TIME_AUTOSF)) {
4576       /* Constant time step */
4577       psys->dt_frac = get_base_time_step(part);
4578     }
4579     else if ((int)cfra == startframe) {
4580       /* Variable time step; initialize to sub-frames. */
4581       psys->dt_frac = get_base_time_step(part);
4582     }
4583     else if (psys->dt_frac < MIN_TIMESTEP) {
4584       /* Variable time step; subsequent frames */
4585       psys->dt_frac = MIN_TIMESTEP;
4586     }
4587 
4588     for (dframe = -totframesback; dframe <= 0; dframe++) {
4589       /* simulate each subframe */
4590       dt_frac = psys->dt_frac;
4591       for (t_frac = dt_frac; t_frac <= 1.0f; t_frac += dt_frac) {
4592         sim->courant_num = 0.0f;
4593         dynamics_step(sim, cfra + dframe + t_frac - 1.f);
4594         psys->cfra = cfra + dframe + t_frac - 1.f;
4595 
4596         if (part->time_flag & PART_TIME_AUTOSF) {
4597           update_timestep(psys, sim);
4598         }
4599         /* Even without AUTOSF dt_frac may not add up to 1.0 due to float precision. */
4600         dt_frac = sync_timestep(psys, t_frac);
4601       }
4602     }
4603   }
4604 
4605   /* 4. only write cache starting from second frame */
4606   if (pid) {
4607     BKE_ptcache_validate(cache, (int)cache_cfra);
4608     if ((int)cache_cfra != startframe) {
4609       BKE_ptcache_write(pid, (int)cache_cfra);
4610     }
4611   }
4612 
4613   update_children(sim, use_render_params);
4614 
4615   /* cleanup */
4616   if (psys->lattice_deform_data) {
4617     BKE_lattice_deform_data_destroy(psys->lattice_deform_data);
4618     psys->lattice_deform_data = NULL;
4619   }
4620 }
4621 
4622 /* system type has changed so set sensible defaults and clear non applicable flags */
psys_changed_type(Object * ob,ParticleSystem * psys)4623 void psys_changed_type(Object *ob, ParticleSystem *psys)
4624 {
4625   ParticleSettings *part = psys->part;
4626   PTCacheID pid;
4627 
4628   BKE_ptcache_id_from_particles(&pid, ob, psys);
4629 
4630   if (part->phystype != PART_PHYS_KEYED) {
4631     psys->flag &= ~PSYS_KEYED;
4632   }
4633 
4634   if (part->type == PART_HAIR) {
4635     if (ELEM(part->ren_as, PART_DRAW_NOT, PART_DRAW_PATH, PART_DRAW_OB, PART_DRAW_GR) == 0) {
4636       part->ren_as = PART_DRAW_PATH;
4637     }
4638 
4639     if (part->distr == PART_DISTR_GRID) {
4640       part->distr = PART_DISTR_JIT;
4641     }
4642 
4643     if (ELEM(part->draw_as, PART_DRAW_NOT, PART_DRAW_REND, PART_DRAW_PATH) == 0) {
4644       part->draw_as = PART_DRAW_REND;
4645     }
4646 
4647     CLAMP(part->path_start, 0.0f, 100.0f);
4648     CLAMP(part->path_end, 0.0f, 100.0f);
4649 
4650     BKE_ptcache_id_clear(&pid, PTCACHE_CLEAR_ALL, 0);
4651   }
4652   else {
4653     free_hair(ob, psys, 1);
4654 
4655     CLAMP(part->path_start, 0.0f, MAX2(100.0f, part->end + part->lifetime));
4656     CLAMP(part->path_end, 0.0f, MAX2(100.0f, part->end + part->lifetime));
4657   }
4658 
4659   psys_reset(psys, PSYS_RESET_ALL);
4660 }
psys_check_boid_data(ParticleSystem * psys)4661 void psys_check_boid_data(ParticleSystem *psys)
4662 {
4663   BoidParticle *bpa;
4664   PARTICLE_P;
4665 
4666   pa = psys->particles;
4667 
4668   if (!pa) {
4669     return;
4670   }
4671 
4672   if (psys->part && psys->part->phystype == PART_PHYS_BOIDS) {
4673     if (!pa->boid) {
4674       bpa = MEM_callocN(psys->totpart * sizeof(BoidParticle), "Boid Data");
4675 
4676       LOOP_PARTICLES
4677       {
4678         pa->boid = bpa++;
4679       }
4680     }
4681   }
4682   else if (pa->boid) {
4683     MEM_freeN(pa->boid);
4684     LOOP_PARTICLES
4685     {
4686       pa->boid = NULL;
4687     }
4688   }
4689 }
4690 
BKE_particlesettings_fluid_default_settings(ParticleSettings * part)4691 void BKE_particlesettings_fluid_default_settings(ParticleSettings *part)
4692 {
4693   SPHFluidSettings *fluid = part->fluid;
4694 
4695   fluid->spring_k = 0.f;
4696   fluid->plasticity_constant = 0.1f;
4697   fluid->yield_ratio = 0.1f;
4698   fluid->rest_length = 1.f;
4699   fluid->viscosity_omega = 2.f;
4700   fluid->viscosity_beta = 0.1f;
4701   fluid->stiffness_k = 1.f;
4702   fluid->stiffness_knear = 1.f;
4703   fluid->rest_density = 1.f;
4704   fluid->buoyancy = 0.f;
4705   fluid->radius = 1.f;
4706   fluid->flag |= SPH_FAC_REPULSION | SPH_FAC_DENSITY | SPH_FAC_RADIUS | SPH_FAC_VISCOSITY |
4707                  SPH_FAC_REST_LENGTH;
4708 }
4709 
psys_prepare_physics(ParticleSimulationData * sim)4710 static void psys_prepare_physics(ParticleSimulationData *sim)
4711 {
4712   ParticleSettings *part = sim->psys->part;
4713 
4714   if (ELEM(part->phystype, PART_PHYS_NO, PART_PHYS_KEYED)) {
4715     PTCacheID pid;
4716     BKE_ptcache_id_from_particles(&pid, sim->ob, sim->psys);
4717     BKE_ptcache_id_clear(&pid, PTCACHE_CLEAR_ALL, 0);
4718   }
4719   else {
4720     free_keyed_keys(sim->psys);
4721     sim->psys->flag &= ~PSYS_KEYED;
4722   }
4723 
4724   /* RNA Update must ensure this is true. */
4725   if (part->phystype == PART_PHYS_BOIDS) {
4726     BLI_assert(part->boids != NULL);
4727   }
4728   else if (part->phystype == PART_PHYS_FLUID) {
4729     BLI_assert(part->fluid != NULL);
4730   }
4731 
4732   psys_check_boid_data(sim->psys);
4733 }
hair_needs_recalc(ParticleSystem * psys)4734 static int hair_needs_recalc(ParticleSystem *psys)
4735 {
4736   if (!(psys->flag & PSYS_EDITED) && (!psys->edit || !psys->edit->edited) &&
4737       ((psys->flag & PSYS_HAIR_DONE) == 0 || psys->recalc & ID_RECALC_PSYS_RESET ||
4738        (psys->part->flag & PART_HAIR_REGROW && !psys->edit))) {
4739     return 1;
4740   }
4741 
4742   return 0;
4743 }
4744 
particle_settings_localize(ParticleSettings * particle_settings)4745 static ParticleSettings *particle_settings_localize(ParticleSettings *particle_settings)
4746 {
4747   ParticleSettings *particle_settings_local = (ParticleSettings *)BKE_id_copy_ex(
4748       NULL, (ID *)&particle_settings->id, NULL, LIB_ID_COPY_LOCALIZE);
4749   return particle_settings_local;
4750 }
4751 
particle_settings_free_local(ParticleSettings * particle_settings)4752 static void particle_settings_free_local(ParticleSettings *particle_settings)
4753 {
4754   BKE_libblock_free_datablock(&particle_settings->id, 0);
4755   BKE_libblock_free_data(&particle_settings->id, false);
4756   MEM_freeN(particle_settings);
4757 }
4758 
4759 /* main particle update call, checks that things are ok on the large scale and
4760  * then advances in to actual particle calculations depending on particle type */
particle_system_update(struct Depsgraph * depsgraph,Scene * scene,Object * ob,ParticleSystem * psys,const bool use_render_params)4761 void particle_system_update(struct Depsgraph *depsgraph,
4762                             Scene *scene,
4763                             Object *ob,
4764                             ParticleSystem *psys,
4765                             const bool use_render_params)
4766 {
4767   ParticleSimulationData sim = {0};
4768   ParticleSettings *part = psys->part;
4769   ParticleSystem *psys_orig = psys_orig_get(psys);
4770   float cfra;
4771   ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys);
4772 
4773   /* drawdata is outdated after ANY change */
4774   if (psys->pdd) {
4775     psys->pdd->flag &= ~PARTICLE_DRAW_DATA_UPDATED;
4776   }
4777 
4778   if (!psys_check_enabled(ob, psys, use_render_params)) {
4779     return;
4780   }
4781 
4782   cfra = DEG_get_ctime(depsgraph);
4783 
4784   sim.depsgraph = depsgraph;
4785   sim.scene = scene;
4786   sim.ob = ob;
4787   sim.psys = psys;
4788   sim.psmd = psmd;
4789 
4790   /* system was already updated from modifier stack */
4791   if (sim.psmd->flag & eParticleSystemFlag_psys_updated) {
4792     sim.psmd->flag &= ~eParticleSystemFlag_psys_updated;
4793     /* make sure it really was updated to cfra */
4794     if (psys->cfra == cfra) {
4795       return;
4796     }
4797   }
4798 
4799   if (!sim.psmd->mesh_final) {
4800     return;
4801   }
4802 
4803   if (part->from != PART_FROM_VERT) {
4804     BKE_mesh_tessface_ensure(sim.psmd->mesh_final);
4805   }
4806 
4807   /* to verify if we need to restore object afterwards */
4808   psys->flag &= ~PSYS_OB_ANIM_RESTORE;
4809 
4810   if (psys->recalc & ID_RECALC_PSYS_RESET) {
4811     psys->totunexist = 0;
4812   }
4813 
4814   /* setup necessary physics type dependent additional data if it doesn't yet exist */
4815   psys_prepare_physics(&sim);
4816 
4817   if (part->type == PART_HAIR) {
4818     /* nothing to do so bail out early */
4819     if (psys->totpart == 0 && part->totpart == 0) {
4820       psys_free_path_cache(psys, NULL);
4821       free_hair(ob, psys, 0);
4822       psys->flag |= PSYS_HAIR_DONE;
4823     }
4824     /* (re-)create hair */
4825     else if (hair_needs_recalc(psys)) {
4826       float hcfra = 0.0f;
4827       int i, recalc = psys->recalc;
4828 
4829       free_hair(ob, psys, 0);
4830 
4831       if (psys_orig->edit && psys_orig->free_edit) {
4832         psys_orig->free_edit(psys_orig->edit);
4833         psys_orig->edit = NULL;
4834         psys_orig->free_edit = NULL;
4835       }
4836 
4837       /* first step is negative so particles get killed and reset */
4838       psys->cfra = 1.0f;
4839 
4840       ParticleSettings *part_local = part;
4841       if ((part->flag & PART_HAIR_REGROW) == 0) {
4842         part_local = particle_settings_localize(part);
4843         psys->part = part_local;
4844       }
4845 
4846       for (i = 0; i <= part->hair_step; i++) {
4847         hcfra = 100.0f * (float)i / (float)psys->part->hair_step;
4848         if ((part->flag & PART_HAIR_REGROW) == 0) {
4849           const AnimationEvalContext anim_eval_context = BKE_animsys_eval_context_construct(
4850               depsgraph, hcfra);
4851           BKE_animsys_evaluate_animdata(
4852               &part_local->id, part_local->adt, &anim_eval_context, ADT_RECALC_ANIM, false);
4853         }
4854         system_step(&sim, hcfra, use_render_params);
4855         psys->cfra = hcfra;
4856         psys->recalc = 0;
4857         save_hair(&sim, hcfra);
4858       }
4859 
4860       if (part_local != part) {
4861         particle_settings_free_local(part_local);
4862         psys->part = part;
4863       }
4864 
4865       psys->flag |= PSYS_HAIR_DONE;
4866       psys->recalc = recalc;
4867     }
4868     else if (psys->flag & PSYS_EDITED) {
4869       psys->flag |= PSYS_HAIR_DONE;
4870     }
4871 
4872     if (psys->flag & PSYS_HAIR_DONE) {
4873       hair_step(&sim, cfra, use_render_params);
4874     }
4875   }
4876   else if (particles_has_flip(part->type) || particles_has_spray(part->type) ||
4877            particles_has_bubble(part->type) || particles_has_foam(part->type) ||
4878            particles_has_tracer(part->type)) {
4879     particles_fluid_step(&sim, (int)cfra, use_render_params);
4880   }
4881   else {
4882     switch (part->phystype) {
4883       case PART_PHYS_NO:
4884       case PART_PHYS_KEYED: {
4885         PARTICLE_P;
4886         float disp = psys_get_current_display_percentage(psys, use_render_params);
4887         bool free_unexisting = false;
4888 
4889         /* Particles without dynamics haven't been reset yet because they don't use pointcache */
4890         if (psys->recalc & ID_RECALC_PSYS_RESET) {
4891           psys_reset(psys, PSYS_RESET_ALL);
4892         }
4893 
4894         if (emit_particles(&sim, NULL, cfra) || (psys->recalc & ID_RECALC_PSYS_RESET)) {
4895           free_keyed_keys(psys);
4896           distribute_particles(&sim, part->from);
4897           initialize_all_particles(&sim);
4898           free_unexisting = true;
4899 
4900           /* flag for possible explode modifiers after this system */
4901           sim.psmd->flag |= eParticleSystemFlag_Pars;
4902         }
4903 
4904         LOOP_EXISTING_PARTICLES
4905         {
4906           pa->size = part->size;
4907           if (part->randsize > 0.0f) {
4908             pa->size *= 1.0f - part->randsize * psys_frand(psys, p + 1);
4909           }
4910 
4911           reset_particle(&sim, pa, 0.0, cfra);
4912 
4913           if (psys_frand(psys, p) > disp) {
4914             pa->flag |= PARS_NO_DISP;
4915           }
4916           else {
4917             pa->flag &= ~PARS_NO_DISP;
4918           }
4919         }
4920 
4921         /* free unexisting after resetting particles */
4922         if (free_unexisting) {
4923           free_unexisting_particles(&sim);
4924         }
4925 
4926         if (part->phystype == PART_PHYS_KEYED) {
4927           psys_count_keyed_targets(&sim);
4928           set_keyed_keys(&sim);
4929           psys_update_path_cache(&sim, (int)cfra, use_render_params);
4930         }
4931         break;
4932       }
4933       default: {
4934         /* the main dynamic particle system step */
4935         system_step(&sim, cfra, use_render_params);
4936         break;
4937       }
4938     }
4939   }
4940 
4941   /* make sure emitter is left at correct time (particle emission can change this) */
4942   if (psys->flag & PSYS_OB_ANIM_RESTORE) {
4943     evaluate_emitter_anim(depsgraph, scene, ob, cfra);
4944     psys->flag &= ~PSYS_OB_ANIM_RESTORE;
4945   }
4946 
4947   if (psys_orig->edit) {
4948     psys_orig->edit->flags |= PT_CACHE_EDIT_UPDATE_PARTICLE_FROM_EVAL;
4949   }
4950 
4951   psys->cfra = cfra;
4952   psys->recalc = 0;
4953 
4954   if (DEG_is_active(depsgraph)) {
4955     if (psys_orig != psys) {
4956       if (psys_orig->edit != NULL && psys_orig->edit->psys == psys_orig) {
4957         psys_orig->edit->psys_eval = psys;
4958         psys_orig->edit->psmd_eval = psmd;
4959       }
4960       psys_orig->flag = (psys->flag & ~PSYS_SHARED_CACHES);
4961       psys_orig->cfra = psys->cfra;
4962       psys_orig->recalc = psys->recalc;
4963       psys_orig->part->totpart = part->totpart;
4964     }
4965   }
4966 
4967   /* Save matrix for duplicators,
4968    * at rendertime the actual dupliobject's matrix is used so don't update! */
4969   invert_m4_m4(psys->imat, ob->obmat);
4970 
4971   BKE_particle_batch_cache_dirty_tag(psys, BKE_PARTICLE_BATCH_DIRTY_ALL);
4972 }
4973 
4974 /* ID looper */
4975 
BKE_particlesystem_id_loop(ParticleSystem * psys,ParticleSystemIDFunc func,void * userdata)4976 void BKE_particlesystem_id_loop(ParticleSystem *psys, ParticleSystemIDFunc func, void *userdata)
4977 {
4978   ParticleTarget *pt;
4979 
4980   func(psys, (ID **)&psys->part, userdata, IDWALK_CB_USER | IDWALK_CB_NEVER_NULL);
4981   func(psys, (ID **)&psys->target_ob, userdata, IDWALK_CB_NOP);
4982   func(psys, (ID **)&psys->parent, userdata, IDWALK_CB_NOP);
4983 
4984   for (pt = psys->targets.first; pt; pt = pt->next) {
4985     func(psys, (ID **)&pt->ob, userdata, IDWALK_CB_NOP);
4986   }
4987 
4988   /* Even though psys->part should never be NULL, this can happen as an exception during deletion.
4989    * See ID_REMAP_SKIP/FORCE/FLAG_NEVER_NULL_USAGE in BKE_library_remap. */
4990   if (psys->part && psys->part->phystype == PART_PHYS_BOIDS) {
4991     ParticleData *pa;
4992     int p;
4993 
4994     for (p = 0, pa = psys->particles; p < psys->totpart; p++, pa++) {
4995       func(psys, (ID **)&pa->boid->ground, userdata, IDWALK_CB_NOP);
4996     }
4997   }
4998 }
4999 
BKE_particlesystem_reset_all(struct Object * object)5000 void BKE_particlesystem_reset_all(struct Object *object)
5001 {
5002   for (ModifierData *md = object->modifiers.first; md != NULL; md = md->next) {
5003     if (md->type != eModifierType_ParticleSystem) {
5004       continue;
5005     }
5006     ParticleSystemModifierData *psmd = (ParticleSystemModifierData *)md;
5007     ParticleSystem *psys = psmd->psys;
5008     psys->recalc |= ID_RECALC_PSYS_RESET;
5009   }
5010 }
5011 
5012 /* **** Depsgraph evaluation **** */
5013 
BKE_particle_settings_eval_reset(struct Depsgraph * depsgraph,ParticleSettings * particle_settings)5014 void BKE_particle_settings_eval_reset(struct Depsgraph *depsgraph,
5015                                       ParticleSettings *particle_settings)
5016 {
5017   DEG_debug_print_eval(depsgraph, __func__, particle_settings->id.name, particle_settings);
5018   particle_settings->id.recalc |= ID_RECALC_PSYS_RESET;
5019 }
5020 
BKE_particle_system_eval_init(struct Depsgraph * depsgraph,Object * object)5021 void BKE_particle_system_eval_init(struct Depsgraph *depsgraph, Object *object)
5022 {
5023   DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);
5024   for (ParticleSystem *psys = object->particlesystem.first; psys != NULL; psys = psys->next) {
5025     psys->recalc |= (psys->part->id.recalc & ID_RECALC_PSYS_ALL);
5026   }
5027 }
5028