xref: /freebsd/sys/arm/arm/pmap-v6.c (revision 6abad5b6)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause AND BSD-2-Clause
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1994 David Greenman
7  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
8  * Copyright (c) 2014-2016 Svatopluk Kraus <skra@FreeBSD.org>
9  * Copyright (c) 2014-2016 Michal Meloun <mmel@FreeBSD.org>
10  * All rights reserved.
11  *
12  * This code is derived from software contributed to Berkeley by
13  * the Systems Programming Group of the University of Utah Computer
14  * Science Department and William Jolitz of UUNET Technologies Inc.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  */
40 /*-
41  * Copyright (c) 2003 Networks Associates Technology, Inc.
42  * All rights reserved.
43  *
44  * This software was developed for the FreeBSD Project by Jake Burkholder,
45  * Safeport Network Services, and Network Associates Laboratories, the
46  * Security Research Division of Network Associates, Inc. under
47  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
48  * CHATS research program.
49  *
50  * Redistribution and use in source and binary forms, with or without
51  * modification, are permitted provided that the following conditions
52  * are met:
53  * 1. Redistributions of source code must retain the above copyright
54  *    notice, this list of conditions and the following disclaimer.
55  * 2. Redistributions in binary form must reproduce the above copyright
56  *    notice, this list of conditions and the following disclaimer in the
57  *    documentation and/or other materials provided with the distribution.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  */
71 
72 #include <sys/cdefs.h>
73 /*
74  *	Manages physical address maps.
75  *
76  *	Since the information managed by this module is
77  *	also stored by the logical address mapping module,
78  *	this module may throw away valid virtual-to-physical
79  *	mappings at almost any time.  However, invalidations
80  *	of virtual-to-physical mappings must be done as
81  *	requested.
82  *
83  *	In order to cope with hardware architectures which
84  *	make virtual-to-physical map invalidates expensive,
85  *	this module may delay invalidate or reduced protection
86  *	operations until such time as they are actually
87  *	necessary.  This module is given full information as
88  *	to which processors are currently using which maps,
89  *	and to when physical maps must be made correct.
90  */
91 
92 #include "opt_vm.h"
93 #include "opt_pmap.h"
94 #include "opt_ddb.h"
95 
96 #include <sys/param.h>
97 #include <sys/systm.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/proc.h>
102 #include <sys/rwlock.h>
103 #include <sys/malloc.h>
104 #include <sys/vmmeter.h>
105 #include <sys/malloc.h>
106 #include <sys/mman.h>
107 #include <sys/sf_buf.h>
108 #include <sys/smp.h>
109 #include <sys/sched.h>
110 #include <sys/sysctl.h>
111 
112 #ifdef DDB
113 #include <ddb/ddb.h>
114 #endif
115 
116 #include <vm/vm.h>
117 #include <vm/uma.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_param.h>
120 #include <vm/vm_kern.h>
121 #include <vm/vm_object.h>
122 #include <vm/vm_map.h>
123 #include <vm/vm_page.h>
124 #include <vm/vm_pageout.h>
125 #include <vm/vm_phys.h>
126 #include <vm/vm_extern.h>
127 #include <vm/vm_reserv.h>
128 #include <sys/lock.h>
129 #include <sys/mutex.h>
130 
131 #include <machine/md_var.h>
132 #include <machine/pmap_var.h>
133 #include <machine/cpu.h>
134 #include <machine/pcb.h>
135 #include <machine/sf_buf.h>
136 #ifdef SMP
137 #include <machine/smp.h>
138 #endif
139 #ifndef PMAP_SHPGPERPROC
140 #define PMAP_SHPGPERPROC 200
141 #endif
142 
143 #ifndef DIAGNOSTIC
144 #define PMAP_INLINE	__inline
145 #else
146 #define PMAP_INLINE
147 #endif
148 
149 #ifdef PMAP_DEBUG
150 static void pmap_zero_page_check(vm_page_t m);
151 void pmap_debug(int level);
152 int pmap_pid_dump(int pid);
153 
154 #define PDEBUG(_lev_,_stat_) \
155 	if (pmap_debug_level >= (_lev_)) \
156 		((_stat_))
157 #define dprintf printf
158 int pmap_debug_level = 1;
159 #else   /* PMAP_DEBUG */
160 #define PDEBUG(_lev_,_stat_) /* Nothing */
161 #define dprintf(x, arg...)
162 #endif  /* PMAP_DEBUG */
163 
164 /*
165  *  Level 2 page tables map definion ('max' is excluded).
166  */
167 
168 #define PT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
169 #define PT2V_MAX_ADDRESS	((vm_offset_t)PT2MAP + PT2MAP_SIZE)
170 
171 #define UPT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
172 #define UPT2V_MAX_ADDRESS \
173     ((vm_offset_t)(PT2MAP + (KERNBASE >> PT2MAP_SHIFT)))
174 
175 /*
176  *  Promotion to a 1MB (PTE1) page mapping requires that the corresponding
177  *  4KB (PTE2) page mappings have identical settings for the following fields:
178  */
179 #define PTE2_PROMOTE	(PTE2_V | PTE2_A | PTE2_NM | PTE2_S | PTE2_NG |	\
180 			 PTE2_NX | PTE2_RO | PTE2_U | PTE2_W |		\
181 			 PTE2_ATTR_MASK)
182 
183 #define PTE1_PROMOTE	(PTE1_V | PTE1_A | PTE1_NM | PTE1_S | PTE1_NG |	\
184 			 PTE1_NX | PTE1_RO | PTE1_U | PTE1_W |		\
185 			 PTE1_ATTR_MASK)
186 
187 #define ATTR_TO_L1(l2_attr)	((((l2_attr) & L2_TEX0) ? L1_S_TEX0 : 0) | \
188 				 (((l2_attr) & L2_C)    ? L1_S_C    : 0) | \
189 				 (((l2_attr) & L2_B)    ? L1_S_B    : 0) | \
190 				 (((l2_attr) & PTE2_A)  ? PTE1_A    : 0) | \
191 				 (((l2_attr) & PTE2_NM) ? PTE1_NM   : 0) | \
192 				 (((l2_attr) & PTE2_S)  ? PTE1_S    : 0) | \
193 				 (((l2_attr) & PTE2_NG) ? PTE1_NG   : 0) | \
194 				 (((l2_attr) & PTE2_NX) ? PTE1_NX   : 0) | \
195 				 (((l2_attr) & PTE2_RO) ? PTE1_RO   : 0) | \
196 				 (((l2_attr) & PTE2_U)  ? PTE1_U    : 0) | \
197 				 (((l2_attr) & PTE2_W)  ? PTE1_W    : 0))
198 
199 #define ATTR_TO_L2(l1_attr)	((((l1_attr) & L1_S_TEX0) ? L2_TEX0 : 0) | \
200 				 (((l1_attr) & L1_S_C)    ? L2_C    : 0) | \
201 				 (((l1_attr) & L1_S_B)    ? L2_B    : 0) | \
202 				 (((l1_attr) & PTE1_A)    ? PTE2_A  : 0) | \
203 				 (((l1_attr) & PTE1_NM)   ? PTE2_NM : 0) | \
204 				 (((l1_attr) & PTE1_S)    ? PTE2_S  : 0) | \
205 				 (((l1_attr) & PTE1_NG)   ? PTE2_NG : 0) | \
206 				 (((l1_attr) & PTE1_NX)   ? PTE2_NX : 0) | \
207 				 (((l1_attr) & PTE1_RO)   ? PTE2_RO : 0) | \
208 				 (((l1_attr) & PTE1_U)    ? PTE2_U  : 0) | \
209 				 (((l1_attr) & PTE1_W)    ? PTE2_W  : 0))
210 
211 /*
212  *  PTE2 descriptors creation macros.
213  */
214 #define PTE2_ATTR_DEFAULT	vm_memattr_to_pte2(VM_MEMATTR_DEFAULT)
215 #define PTE2_ATTR_PT		vm_memattr_to_pte2(pt_memattr)
216 
217 #define PTE2_KPT(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
218 #define PTE2_KPT_NG(pa)	PTE2_KERN_NG(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
219 
220 #define PTE2_KRW(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT)
221 #define PTE2_KRO(pa)	PTE2_KERN(pa, PTE2_AP_KR, PTE2_ATTR_DEFAULT)
222 
223 #define PV_STATS
224 #ifdef PV_STATS
225 #define PV_STAT(x)	do { x ; } while (0)
226 #else
227 #define PV_STAT(x)	do { } while (0)
228 #endif
229 
230 /*
231  *  The boot_pt1 is used temporary in very early boot stage as L1 page table.
232  *  We can init many things with no memory allocation thanks to its static
233  *  allocation and this brings two main advantages:
234  *  (1) other cores can be started very simply,
235  *  (2) various boot loaders can be supported as its arguments can be processed
236  *      in virtual address space and can be moved to safe location before
237  *      first allocation happened.
238  *  Only disadvantage is that boot_pt1 is used only in very early boot stage.
239  *  However, the table is uninitialized and so lays in bss. Therefore kernel
240  *  image size is not influenced.
241  *
242  *  QQQ: In the future, maybe, boot_pt1 can be used for soft reset and
243  *       CPU suspend/resume game.
244  */
245 extern pt1_entry_t boot_pt1[];
246 
247 vm_paddr_t base_pt1;
248 pt1_entry_t *kern_pt1;
249 pt2_entry_t *kern_pt2tab;
250 pt2_entry_t *PT2MAP;
251 
252 static uint32_t ttb_flags;
253 static vm_memattr_t pt_memattr;
254 ttb_entry_t pmap_kern_ttb;
255 
256 struct pmap kernel_pmap_store;
257 LIST_HEAD(pmaplist, pmap);
258 static struct pmaplist allpmaps;
259 static struct mtx allpmaps_lock;
260 
261 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
262 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
263 
264 static vm_offset_t kernel_vm_end_new;
265 vm_offset_t kernel_vm_end = KERNBASE + NKPT2PG * NPT2_IN_PG * PTE1_SIZE;
266 vm_offset_t vm_max_kernel_address;
267 vm_paddr_t kernel_l1pa;
268 
269 static struct rwlock __aligned(CACHE_LINE_SIZE) pvh_global_lock;
270 
271 /*
272  *  Data for the pv entry allocation mechanism
273  */
274 static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
275 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
276 static struct md_page *pv_table; /* XXX: Is it used only the list in md_page? */
277 static int shpgperproc = PMAP_SHPGPERPROC;
278 
279 struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
280 int pv_maxchunks;			/* How many chunks we have KVA for */
281 vm_offset_t pv_vafree;			/* freelist stored in the PTE */
282 
283 vm_paddr_t first_managed_pa;
284 #define	pa_to_pvh(pa)	(&pv_table[pte1_index(pa - first_managed_pa)])
285 
286 /*
287  *  All those kernel PT submaps that BSD is so fond of
288  */
289 caddr_t _tmppt = 0;
290 
291 /*
292  *  Crashdump maps.
293  */
294 static caddr_t crashdumpmap;
295 
296 static pt2_entry_t *PMAP1 = NULL, *PMAP2;
297 static pt2_entry_t *PADDR1 = NULL, *PADDR2;
298 #ifdef DDB
299 static pt2_entry_t *PMAP3;
300 static pt2_entry_t *PADDR3;
301 static int PMAP3cpu __unused; /* for SMP only */
302 #endif
303 #ifdef SMP
304 static int PMAP1cpu;
305 static int PMAP1changedcpu;
306 SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
307     &PMAP1changedcpu, 0,
308     "Number of times pmap_pte2_quick changed CPU with same PMAP1");
309 #endif
310 static int PMAP1changed;
311 SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
312     &PMAP1changed, 0,
313     "Number of times pmap_pte2_quick changed PMAP1");
314 static int PMAP1unchanged;
315 SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
316     &PMAP1unchanged, 0,
317     "Number of times pmap_pte2_quick didn't change PMAP1");
318 static struct mtx PMAP2mutex;
319 
320 /*
321  * Internal flags for pmap_enter()'s helper functions.
322  */
323 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
324 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
325 
326 static __inline void pt2_wirecount_init(vm_page_t m);
327 static bool pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p,
328     vm_offset_t va);
329 static int pmap_enter_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1,
330     u_int flags, vm_page_t m);
331 void cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size);
332 
333 /*
334  *  Function to set the debug level of the pmap code.
335  */
336 #ifdef PMAP_DEBUG
337 void
pmap_debug(int level)338 pmap_debug(int level)
339 {
340 
341 	pmap_debug_level = level;
342 	dprintf("pmap_debug: level=%d\n", pmap_debug_level);
343 }
344 #endif /* PMAP_DEBUG */
345 
346 /*
347  *  This table must corespond with memory attribute configuration in vm.h.
348  *  First entry is used for normal system mapping.
349  *
350  *  Device memory is always marked as shared.
351  *  Normal memory is shared only in SMP .
352  *  Not outer shareable bits are not used yet.
353  *  Class 6 cannot be used on ARM11.
354  */
355 #define TEXDEF_TYPE_SHIFT	0
356 #define TEXDEF_TYPE_MASK	0x3
357 #define TEXDEF_INNER_SHIFT	2
358 #define TEXDEF_INNER_MASK	0x3
359 #define TEXDEF_OUTER_SHIFT	4
360 #define TEXDEF_OUTER_MASK	0x3
361 #define TEXDEF_NOS_SHIFT	6
362 #define TEXDEF_NOS_MASK		0x1
363 
364 #define TEX(t, i, o, s) 			\
365 		((t) << TEXDEF_TYPE_SHIFT) |	\
366 		((i) << TEXDEF_INNER_SHIFT) |	\
367 		((o) << TEXDEF_OUTER_SHIFT | 	\
368 		((s) << TEXDEF_NOS_SHIFT))
369 
370 static uint32_t tex_class[8] = {
371 /*	    type      inner cache outer cache */
372 	TEX(PRRR_MEM, NMRR_WB_WA, NMRR_WB_WA, 0),  /* 0 - ATTR_WB_WA	*/
373 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 1 - ATTR_NOCACHE	*/
374 	TEX(PRRR_DEV, NMRR_NC,	  NMRR_NC,    0),  /* 2 - ATTR_DEVICE	*/
375 	TEX(PRRR_SO,  NMRR_NC,	  NMRR_NC,    0),  /* 3 - ATTR_SO	*/
376 	TEX(PRRR_MEM, NMRR_WT,	  NMRR_WT,    0),  /* 4 - ATTR_WT	*/
377 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 5 - NOT USED YET	*/
378 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 6 - NOT USED YET	*/
379 	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 7 - NOT USED YET	*/
380 };
381 #undef TEX
382 
383 static uint32_t pte2_attr_tab[8] = {
384 	PTE2_ATTR_WB_WA,	/* 0 - VM_MEMATTR_WB_WA */
385 	PTE2_ATTR_NOCACHE,	/* 1 - VM_MEMATTR_NOCACHE */
386 	PTE2_ATTR_DEVICE,	/* 2 - VM_MEMATTR_DEVICE */
387 	PTE2_ATTR_SO,		/* 3 - VM_MEMATTR_SO */
388 	PTE2_ATTR_WT,		/* 4 - VM_MEMATTR_WRITE_THROUGH */
389 	0,			/* 5 - NOT USED YET */
390 	0,			/* 6 - NOT USED YET */
391 	0			/* 7 - NOT USED YET */
392 };
393 CTASSERT(VM_MEMATTR_WB_WA == 0);
394 CTASSERT(VM_MEMATTR_NOCACHE == 1);
395 CTASSERT(VM_MEMATTR_DEVICE == 2);
396 CTASSERT(VM_MEMATTR_SO == 3);
397 CTASSERT(VM_MEMATTR_WRITE_THROUGH == 4);
398 #define	VM_MEMATTR_END	(VM_MEMATTR_WRITE_THROUGH + 1)
399 
400 bool
pmap_is_valid_memattr(pmap_t pmap __unused,vm_memattr_t mode)401 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
402 {
403 
404 	return (mode >= 0 && mode < VM_MEMATTR_END);
405 }
406 
407 static inline uint32_t
vm_memattr_to_pte2(vm_memattr_t ma)408 vm_memattr_to_pte2(vm_memattr_t ma)
409 {
410 
411 	KASSERT((u_int)ma < VM_MEMATTR_END,
412 	    ("%s: bad vm_memattr_t %d", __func__, ma));
413 	return (pte2_attr_tab[(u_int)ma]);
414 }
415 
416 static inline uint32_t
vm_page_pte2_attr(vm_page_t m)417 vm_page_pte2_attr(vm_page_t m)
418 {
419 
420 	return (vm_memattr_to_pte2(m->md.pat_mode));
421 }
422 
423 /*
424  * Convert TEX definition entry to TTB flags.
425  */
426 static uint32_t
encode_ttb_flags(int idx)427 encode_ttb_flags(int idx)
428 {
429 	uint32_t inner, outer, nos, reg;
430 
431 	inner = (tex_class[idx] >> TEXDEF_INNER_SHIFT) &
432 		TEXDEF_INNER_MASK;
433 	outer = (tex_class[idx] >> TEXDEF_OUTER_SHIFT) &
434 		TEXDEF_OUTER_MASK;
435 	nos = (tex_class[idx] >> TEXDEF_NOS_SHIFT) &
436 		TEXDEF_NOS_MASK;
437 
438 	reg = nos << 5;
439 	reg |= outer << 3;
440 	if (cpuinfo.coherent_walk)
441 		reg |= (inner & 0x1) << 6;
442 	reg |= (inner & 0x2) >> 1;
443 #ifdef SMP
444 	ARM_SMP_UP(
445 		reg |= 1 << 1,
446 	);
447 #endif
448 	return reg;
449 }
450 
451 /*
452  *  Set TEX remapping registers in current CPU.
453  */
454 void
pmap_set_tex(void)455 pmap_set_tex(void)
456 {
457 	uint32_t prrr, nmrr;
458 	uint32_t type, inner, outer, nos;
459 	int i;
460 
461 #ifdef PMAP_PTE_NOCACHE
462 	/* XXX fixme */
463 	if (cpuinfo.coherent_walk) {
464 		pt_memattr = VM_MEMATTR_WB_WA;
465 		ttb_flags = encode_ttb_flags(0);
466 	}
467 	else {
468 		pt_memattr = VM_MEMATTR_NOCACHE;
469 		ttb_flags = encode_ttb_flags(1);
470 	}
471 #else
472 	pt_memattr = VM_MEMATTR_WB_WA;
473 	ttb_flags = encode_ttb_flags(0);
474 #endif
475 
476 	prrr = 0;
477 	nmrr = 0;
478 
479 	/* Build remapping register from TEX classes. */
480 	for (i = 0; i < 8; i++) {
481 		type = (tex_class[i] >> TEXDEF_TYPE_SHIFT) &
482 			TEXDEF_TYPE_MASK;
483 		inner = (tex_class[i] >> TEXDEF_INNER_SHIFT) &
484 			TEXDEF_INNER_MASK;
485 		outer = (tex_class[i] >> TEXDEF_OUTER_SHIFT) &
486 			TEXDEF_OUTER_MASK;
487 		nos = (tex_class[i] >> TEXDEF_NOS_SHIFT) &
488 			TEXDEF_NOS_MASK;
489 
490 		prrr |= type  << (i * 2);
491 		prrr |= nos   << (i + 24);
492 		nmrr |= inner << (i * 2);
493 		nmrr |= outer << (i * 2 + 16);
494 	}
495 	/* Add shareable bits for device memory. */
496 	prrr |= PRRR_DS0 | PRRR_DS1;
497 
498 	/* Add shareable bits for normal memory in SMP case. */
499 #ifdef SMP
500 	ARM_SMP_UP(
501 		prrr |= PRRR_NS1,
502 	);
503 #endif
504 	cp15_prrr_set(prrr);
505 	cp15_nmrr_set(nmrr);
506 
507 	/* Caches are disabled, so full TLB flush should be enough. */
508 	tlb_flush_all_local();
509 }
510 
511 /*
512  * Remap one vm_meattr class to another one. This can be useful as
513  * workaround for SOC errata, e.g. if devices must be accessed using
514  * SO memory class.
515  *
516  * !!! Please note that this function is absolutely last resort thing.
517  * It should not be used under normal circumstances. !!!
518  *
519  * Usage rules:
520  * - it shall be called after pmap_bootstrap_prepare() and before
521  *   cpu_mp_start() (thus only on boot CPU). In practice, it's expected
522  *   to be called from platform_attach() or platform_late_init().
523  *
524  * - if remapping doesn't change caching mode, or until uncached class
525  *   is remapped to any kind of cached one, then no other restriction exists.
526  *
527  * - if pmap_remap_vm_attr() changes caching mode, but both (original and
528  *   remapped) remain cached, then caller is resposible for calling
529  *   of dcache_wbinv_poc_all().
530  *
531  * - remapping of any kind of cached class to uncached is not permitted.
532  */
533 void
pmap_remap_vm_attr(vm_memattr_t old_attr,vm_memattr_t new_attr)534 pmap_remap_vm_attr(vm_memattr_t old_attr, vm_memattr_t new_attr)
535 {
536 	int old_idx, new_idx;
537 
538 	/* Map VM memattrs to indexes to tex_class table. */
539 	old_idx = PTE2_ATTR2IDX(pte2_attr_tab[(int)old_attr]);
540 	new_idx = PTE2_ATTR2IDX(pte2_attr_tab[(int)new_attr]);
541 
542 	/* Replace TEX attribute and apply it. */
543 	tex_class[old_idx] = tex_class[new_idx];
544 	pmap_set_tex();
545 }
546 
547 /*
548  * KERNBASE must be multiple of NPT2_IN_PG * PTE1_SIZE. In other words,
549  * KERNBASE is mapped by first L2 page table in L2 page table page. It
550  * meets same constrain due to PT2MAP being placed just under KERNBASE.
551  */
552 CTASSERT((KERNBASE & (NPT2_IN_PG * PTE1_SIZE - 1)) == 0);
553 CTASSERT((KERNBASE - VM_MAXUSER_ADDRESS) >= PT2MAP_SIZE);
554 
555 /*
556  *  In crazy dreams, PAGE_SIZE could be a multiple of PTE2_SIZE in general.
557  *  For now, anyhow, the following check must be fulfilled.
558  */
559 CTASSERT(PAGE_SIZE == PTE2_SIZE);
560 /*
561  *  We don't want to mess up MI code with all MMU and PMAP definitions,
562  *  so some things, which depend on other ones, are defined independently.
563  *  Now, it is time to check that we don't screw up something.
564  */
565 CTASSERT(PDRSHIFT == PTE1_SHIFT);
566 /*
567  *  Check L1 and L2 page table entries definitions consistency.
568  */
569 CTASSERT(NB_IN_PT1 == (sizeof(pt1_entry_t) * NPTE1_IN_PT1));
570 CTASSERT(NB_IN_PT2 == (sizeof(pt2_entry_t) * NPTE2_IN_PT2));
571 /*
572  *  Check L2 page tables page consistency.
573  */
574 CTASSERT(PAGE_SIZE == (NPT2_IN_PG * NB_IN_PT2));
575 CTASSERT((1 << PT2PG_SHIFT) == NPT2_IN_PG);
576 /*
577  *  Check PT2TAB consistency.
578  *  PT2TAB_ENTRIES is defined as a division of NPTE1_IN_PT1 by NPT2_IN_PG.
579  *  This should be done without remainder.
580  */
581 CTASSERT(NPTE1_IN_PT1 == (PT2TAB_ENTRIES * NPT2_IN_PG));
582 
583 /*
584  *	A PT2MAP magic.
585  *
586  *  All level 2 page tables (PT2s) are mapped continuously and accordingly
587  *  into PT2MAP address space. As PT2 size is less than PAGE_SIZE, this can
588  *  be done only if PAGE_SIZE is a multiple of PT2 size. All PT2s in one page
589  *  must be used together, but not necessary at once. The first PT2 in a page
590  *  must map things on correctly aligned address and the others must follow
591  *  in right order.
592  */
593 #define NB_IN_PT2TAB	(PT2TAB_ENTRIES * sizeof(pt2_entry_t))
594 #define NPT2_IN_PT2TAB	(NB_IN_PT2TAB / NB_IN_PT2)
595 #define NPG_IN_PT2TAB	(NB_IN_PT2TAB / PAGE_SIZE)
596 
597 /*
598  *  Check PT2TAB consistency.
599  *  NPT2_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by NB_IN_PT2.
600  *  NPG_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by PAGE_SIZE.
601  *  The both should be done without remainder.
602  */
603 CTASSERT(NB_IN_PT2TAB == (NPT2_IN_PT2TAB * NB_IN_PT2));
604 CTASSERT(NB_IN_PT2TAB == (NPG_IN_PT2TAB * PAGE_SIZE));
605 /*
606  *  The implementation was made general, however, with the assumption
607  *  bellow in mind. In case of another value of NPG_IN_PT2TAB,
608  *  the code should be once more rechecked.
609  */
610 CTASSERT(NPG_IN_PT2TAB == 1);
611 
612 /*
613  *  Get offset of PT2 in a page
614  *  associated with given PT1 index.
615  */
616 static __inline u_int
page_pt2off(u_int pt1_idx)617 page_pt2off(u_int pt1_idx)
618 {
619 
620 	return ((pt1_idx & PT2PG_MASK) * NB_IN_PT2);
621 }
622 
623 /*
624  *  Get physical address of PT2
625  *  associated with given PT2s page and PT1 index.
626  */
627 static __inline vm_paddr_t
page_pt2pa(vm_paddr_t pgpa,u_int pt1_idx)628 page_pt2pa(vm_paddr_t pgpa, u_int pt1_idx)
629 {
630 
631 	return (pgpa + page_pt2off(pt1_idx));
632 }
633 
634 /*
635  *  Get first entry of PT2
636  *  associated with given PT2s page and PT1 index.
637  */
638 static __inline pt2_entry_t *
page_pt2(vm_offset_t pgva,u_int pt1_idx)639 page_pt2(vm_offset_t pgva, u_int pt1_idx)
640 {
641 
642 	return ((pt2_entry_t *)(pgva + page_pt2off(pt1_idx)));
643 }
644 
645 /*
646  *  Get virtual address of PT2s page (mapped in PT2MAP)
647  *  which holds PT2 which holds entry which maps given virtual address.
648  */
649 static __inline vm_offset_t
pt2map_pt2pg(vm_offset_t va)650 pt2map_pt2pg(vm_offset_t va)
651 {
652 
653 	va &= ~(NPT2_IN_PG * PTE1_SIZE - 1);
654 	return ((vm_offset_t)pt2map_entry(va));
655 }
656 
657 /*****************************************************************************
658  *
659  *     THREE pmap initialization milestones exist:
660  *
661  *  locore.S
662  *    -> fundamental init (including MMU) in ASM
663  *
664  *  initarm()
665  *    -> fundamental init continues in C
666  *    -> first available physical address is known
667  *
668  *    pmap_bootstrap_prepare() -> FIRST PMAP MILESTONE (first epoch begins)
669  *      -> basic (safe) interface for physical address allocation is made
670  *      -> basic (safe) interface for virtual mapping is made
671  *      -> limited not SMP coherent work is possible
672  *
673  *    -> more fundamental init continues in C
674  *    -> locks and some more things are available
675  *    -> all fundamental allocations and mappings are done
676  *
677  *    pmap_bootstrap() -> SECOND PMAP MILESTONE (second epoch begins)
678  *      -> phys_avail[] and virtual_avail is set
679  *      -> control is passed to vm subsystem
680  *      -> physical and virtual address allocation are off limit
681  *      -> low level mapping functions, some SMP coherent,
682  *         are available, which cannot be used before vm subsystem
683  *         is being inited
684  *
685  *  mi_startup()
686  *    -> vm subsystem is being inited
687  *
688  *      pmap_init() -> THIRD PMAP MILESTONE (third epoch begins)
689  *        -> pmap is fully inited
690  *
691  *****************************************************************************/
692 
693 /*****************************************************************************
694  *
695  *	PMAP first stage initialization and utility functions
696  *	for pre-bootstrap epoch.
697  *
698  *  After pmap_bootstrap_prepare() is called, the following functions
699  *  can be used:
700  *
701  *  (1) strictly only for this stage functions for physical page allocations,
702  *      virtual space allocations, and mappings:
703  *
704  *  vm_paddr_t pmap_preboot_get_pages(u_int num);
705  *  void pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num);
706  *  vm_offset_t pmap_preboot_reserve_pages(u_int num);
707  *  vm_offset_t pmap_preboot_get_vpages(u_int num);
708  *  void pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
709  *      vm_prot_t prot, vm_memattr_t attr);
710  *
711  *  (2) for all stages:
712  *
713  *  vm_paddr_t pmap_kextract(vm_offset_t va);
714  *
715  *  NOTE: This is not SMP coherent stage.
716  *
717  *****************************************************************************/
718 
719 #define KERNEL_P2V(pa) \
720     ((vm_offset_t)((pa) - arm_physmem_kernaddr + KERNVIRTADDR))
721 #define KERNEL_V2P(va) \
722     ((vm_paddr_t)((va) - KERNVIRTADDR + arm_physmem_kernaddr))
723 
724 static vm_paddr_t last_paddr;
725 
726 /*
727  *  Pre-bootstrap epoch page allocator.
728  */
729 vm_paddr_t
pmap_preboot_get_pages(u_int num)730 pmap_preboot_get_pages(u_int num)
731 {
732 	vm_paddr_t ret;
733 
734 	ret = last_paddr;
735 	last_paddr += num * PAGE_SIZE;
736 
737 	return (ret);
738 }
739 
740 /*
741  *	The fundamental initialization of PMAP stuff.
742  *
743  *  Some things already happened in locore.S and some things could happen
744  *  before pmap_bootstrap_prepare() is called, so let's recall what is done:
745  *  1. Caches are disabled.
746  *  2. We are running on virtual addresses already with 'boot_pt1'
747  *     as L1 page table.
748  *  3. So far, all virtual addresses can be converted to physical ones and
749  *     vice versa by the following macros:
750  *       KERNEL_P2V(pa) .... physical to virtual ones,
751  *       KERNEL_V2P(va) .... virtual to physical ones.
752  *
753  *  What is done herein:
754  *  1. The 'boot_pt1' is replaced by real kernel L1 page table 'kern_pt1'.
755  *  2. PT2MAP magic is brought to live.
756  *  3. Basic preboot functions for page allocations and mappings can be used.
757  *  4. Everything is prepared for L1 cache enabling.
758  *
759  *  Variations:
760  *  1. To use second TTB register, so kernel and users page tables will be
761  *     separated. This way process forking - pmap_pinit() - could be faster,
762  *     it saves physical pages and KVA per a process, and it's simple change.
763  *     However, it will lead, due to hardware matter, to the following:
764  *     (a) 2G space for kernel and 2G space for users.
765  *     (b) 1G space for kernel in low addresses and 3G for users above it.
766  *     A question is: Is the case (b) really an option? Note that case (b)
767  *     does save neither physical memory and KVA.
768  */
769 void
pmap_bootstrap_prepare(vm_paddr_t last)770 pmap_bootstrap_prepare(vm_paddr_t last)
771 {
772 	vm_paddr_t pt2pg_pa, pt2tab_pa, pa, size;
773 	vm_offset_t pt2pg_va;
774 	pt1_entry_t *pte1p;
775 	pt2_entry_t *pte2p;
776 	u_int i;
777 	uint32_t l1_attr;
778 
779 	/*
780 	 * Now, we are going to make real kernel mapping. Note that we are
781 	 * already running on some mapping made in locore.S and we expect
782 	 * that it's large enough to ensure nofault access to physical memory
783 	 * allocated herein before switch.
784 	 *
785 	 * As kernel image and everything needed before are and will be mapped
786 	 * by section mappings, we align last physical address to PTE1_SIZE.
787 	 */
788 	last_paddr = pte1_roundup(last);
789 
790 	/*
791 	 * Allocate and zero page(s) for kernel L1 page table.
792 	 *
793 	 * Note that it's first allocation on space which was PTE1_SIZE
794 	 * aligned and as such base_pt1 is aligned to NB_IN_PT1 too.
795 	 */
796 	base_pt1 = pmap_preboot_get_pages(NPG_IN_PT1);
797 	kern_pt1 = (pt1_entry_t *)KERNEL_P2V(base_pt1);
798 	bzero((void*)kern_pt1, NB_IN_PT1);
799 	pte1_sync_range(kern_pt1, NB_IN_PT1);
800 
801 	/* Allocate and zero page(s) for kernel PT2TAB. */
802 	pt2tab_pa = pmap_preboot_get_pages(NPG_IN_PT2TAB);
803 	kern_pt2tab = (pt2_entry_t *)KERNEL_P2V(pt2tab_pa);
804 	bzero(kern_pt2tab, NB_IN_PT2TAB);
805 	pte2_sync_range(kern_pt2tab, NB_IN_PT2TAB);
806 
807 	/* Allocate and zero page(s) for kernel L2 page tables. */
808 	pt2pg_pa = pmap_preboot_get_pages(NKPT2PG);
809 	pt2pg_va = KERNEL_P2V(pt2pg_pa);
810 	size = NKPT2PG * PAGE_SIZE;
811 	bzero((void*)pt2pg_va, size);
812 	pte2_sync_range((pt2_entry_t *)pt2pg_va, size);
813 
814 	/*
815 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
816 	 * preallocated pages for kernel L2 page tables so that vm_page
817 	 * structures representing these pages will be created. The vm_page
818 	 * structures are required for promotion of the corresponding kernel
819 	 * virtual addresses to section mappings.
820 	 */
821 	vm_phys_add_seg(pt2tab_pa, pmap_preboot_get_pages(0));
822 
823 	/*
824 	 * Insert allocated L2 page table pages to PT2TAB and make
825 	 * link to all PT2s in L1 page table. See how kernel_vm_end
826 	 * is initialized.
827 	 *
828 	 * We play simple and safe. So every KVA will have underlaying
829 	 * L2 page table, even kernel image mapped by sections.
830 	 */
831 	pte2p = kern_pt2tab_entry(KERNBASE);
832 	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += PTE2_SIZE)
833 		pt2tab_store(pte2p++, PTE2_KPT(pa));
834 
835 	pte1p = kern_pte1(KERNBASE);
836 	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += NB_IN_PT2)
837 		pte1_store(pte1p++, PTE1_LINK(pa));
838 
839 	/* Make section mappings for kernel. */
840 	l1_attr = ATTR_TO_L1(PTE2_ATTR_DEFAULT);
841 	pte1p = kern_pte1(KERNBASE);
842 	for (pa = KERNEL_V2P(KERNBASE); pa < last; pa += PTE1_SIZE)
843 		pte1_store(pte1p++, PTE1_KERN(pa, PTE1_AP_KRW, l1_attr));
844 
845 	/*
846 	 * Get free and aligned space for PT2MAP and make L1 page table links
847 	 * to L2 page tables held in PT2TAB.
848 	 *
849 	 * Note that pages holding PT2s are stored in PT2TAB as pt2_entry_t
850 	 * descriptors and PT2TAB page(s) itself is(are) used as PT2s. Thus
851 	 * each entry in PT2TAB maps all PT2s in a page. This implies that
852 	 * virtual address of PT2MAP must be aligned to NPT2_IN_PG * PTE1_SIZE.
853 	 */
854 	PT2MAP = (pt2_entry_t *)(KERNBASE - PT2MAP_SIZE);
855 	pte1p = kern_pte1((vm_offset_t)PT2MAP);
856 	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
857 		pte1_store(pte1p++, PTE1_LINK(pa));
858 	}
859 
860 	/*
861 	 * Store PT2TAB in PT2TAB itself, i.e. self reference mapping.
862 	 * Each pmap will hold own PT2TAB, so the mapping should be not global.
863 	 */
864 	pte2p = kern_pt2tab_entry((vm_offset_t)PT2MAP);
865 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
866 		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
867 	}
868 
869 	/*
870 	 * Choose correct L2 page table and make mappings for allocations
871 	 * made herein which replaces temporary locore.S mappings after a while.
872 	 * Note that PT2MAP cannot be used until we switch to kern_pt1.
873 	 *
874 	 * Note, that these allocations started aligned on 1M section and
875 	 * kernel PT1 was allocated first. Making of mappings must follow
876 	 * order of physical allocations as we've used KERNEL_P2V() macro
877 	 * for virtual addresses resolution.
878 	 */
879 	pte2p = kern_pt2tab_entry((vm_offset_t)kern_pt1);
880 	pt2pg_va = KERNEL_P2V(pte2_pa(pte2_load(pte2p)));
881 
882 	pte2p = page_pt2(pt2pg_va, pte1_index((vm_offset_t)kern_pt1));
883 
884 	/* Make mapping for kernel L1 page table. */
885 	for (pa = base_pt1, i = 0; i < NPG_IN_PT1; i++, pa += PTE2_SIZE)
886 		pte2_store(pte2p++, PTE2_KPT(pa));
887 
888 	/* Make mapping for kernel PT2TAB. */
889 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE)
890 		pte2_store(pte2p++, PTE2_KPT(pa));
891 
892 	/* Finally, switch from 'boot_pt1' to 'kern_pt1'. */
893 	pmap_kern_ttb = base_pt1 | ttb_flags;
894 	cpuinfo_reinit_mmu(pmap_kern_ttb);
895 	/*
896 	 * Initialize the first available KVA. As kernel image is mapped by
897 	 * sections, we are leaving some gap behind.
898 	 */
899 	virtual_avail = (vm_offset_t)kern_pt2tab + NPG_IN_PT2TAB * PAGE_SIZE;
900 }
901 
902 /*
903  *  Setup L2 page table page for given KVA.
904  *  Used in pre-bootstrap epoch.
905  *
906  *  Note that we have allocated NKPT2PG pages for L2 page tables in advance
907  *  and used them for mapping KVA starting from KERNBASE. However, this is not
908  *  enough. Vectors and devices need L2 page tables too. Note that they are
909  *  even above VM_MAX_KERNEL_ADDRESS.
910  */
911 static __inline vm_paddr_t
pmap_preboot_pt2pg_setup(vm_offset_t va)912 pmap_preboot_pt2pg_setup(vm_offset_t va)
913 {
914 	pt2_entry_t *pte2p, pte2;
915 	vm_paddr_t pt2pg_pa;
916 
917 	/* Get associated entry in PT2TAB. */
918 	pte2p = kern_pt2tab_entry(va);
919 
920 	/* Just return, if PT2s page exists already. */
921 	pte2 = pt2tab_load(pte2p);
922 	if (pte2_is_valid(pte2))
923 		return (pte2_pa(pte2));
924 
925 	KASSERT(va >= VM_MAX_KERNEL_ADDRESS,
926 	    ("%s: NKPT2PG too small", __func__));
927 
928 	/*
929 	 * Allocate page for PT2s and insert it to PT2TAB.
930 	 * In other words, map it into PT2MAP space.
931 	 */
932 	pt2pg_pa = pmap_preboot_get_pages(1);
933 	pt2tab_store(pte2p, PTE2_KPT(pt2pg_pa));
934 
935 	/* Zero all PT2s in allocated page. */
936 	bzero((void*)pt2map_pt2pg(va), PAGE_SIZE);
937 	pte2_sync_range((pt2_entry_t *)pt2map_pt2pg(va), PAGE_SIZE);
938 
939 	return (pt2pg_pa);
940 }
941 
942 /*
943  *  Setup L2 page table for given KVA.
944  *  Used in pre-bootstrap epoch.
945  */
946 static void
pmap_preboot_pt2_setup(vm_offset_t va)947 pmap_preboot_pt2_setup(vm_offset_t va)
948 {
949 	pt1_entry_t *pte1p;
950 	vm_paddr_t pt2pg_pa, pt2_pa;
951 
952 	/* Setup PT2's page. */
953 	pt2pg_pa = pmap_preboot_pt2pg_setup(va);
954 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(va));
955 
956 	/* Insert PT2 to PT1. */
957 	pte1p = kern_pte1(va);
958 	pte1_store(pte1p, PTE1_LINK(pt2_pa));
959 }
960 
961 /*
962  *  Get L2 page entry associated with given KVA.
963  *  Used in pre-bootstrap epoch.
964  */
965 static __inline pt2_entry_t*
pmap_preboot_vtopte2(vm_offset_t va)966 pmap_preboot_vtopte2(vm_offset_t va)
967 {
968 	pt1_entry_t *pte1p;
969 
970 	/* Setup PT2 if needed. */
971 	pte1p = kern_pte1(va);
972 	if (!pte1_is_valid(pte1_load(pte1p))) /* XXX - sections ?! */
973 		pmap_preboot_pt2_setup(va);
974 
975 	return (pt2map_entry(va));
976 }
977 
978 /*
979  *  Pre-bootstrap epoch page(s) mapping(s).
980  */
981 void
pmap_preboot_map_pages(vm_paddr_t pa,vm_offset_t va,u_int num)982 pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num)
983 {
984 	u_int i;
985 	pt2_entry_t *pte2p;
986 
987 	/* Map all the pages. */
988 	for (i = 0; i < num; i++) {
989 		pte2p = pmap_preboot_vtopte2(va);
990 		pte2_store(pte2p, PTE2_KRW(pa));
991 		va += PAGE_SIZE;
992 		pa += PAGE_SIZE;
993 	}
994 }
995 
996 /*
997  *  Pre-bootstrap epoch virtual space alocator.
998  */
999 vm_offset_t
pmap_preboot_reserve_pages(u_int num)1000 pmap_preboot_reserve_pages(u_int num)
1001 {
1002 	u_int i;
1003 	vm_offset_t start, va;
1004 	pt2_entry_t *pte2p;
1005 
1006 	/* Allocate virtual space. */
1007 	start = va = virtual_avail;
1008 	virtual_avail += num * PAGE_SIZE;
1009 
1010 	/* Zero the mapping. */
1011 	for (i = 0; i < num; i++) {
1012 		pte2p = pmap_preboot_vtopte2(va);
1013 		pte2_store(pte2p, 0);
1014 		va += PAGE_SIZE;
1015 	}
1016 
1017 	return (start);
1018 }
1019 
1020 /*
1021  *  Pre-bootstrap epoch page(s) allocation and mapping(s).
1022  */
1023 vm_offset_t
pmap_preboot_get_vpages(u_int num)1024 pmap_preboot_get_vpages(u_int num)
1025 {
1026 	vm_paddr_t  pa;
1027 	vm_offset_t va;
1028 
1029 	/* Allocate physical page(s). */
1030 	pa = pmap_preboot_get_pages(num);
1031 
1032 	/* Allocate virtual space. */
1033 	va = virtual_avail;
1034 	virtual_avail += num * PAGE_SIZE;
1035 
1036 	/* Map and zero all. */
1037 	pmap_preboot_map_pages(pa, va, num);
1038 	bzero((void *)va, num * PAGE_SIZE);
1039 
1040 	return (va);
1041 }
1042 
1043 /*
1044  *  Pre-bootstrap epoch page mapping(s) with attributes.
1045  */
1046 void
pmap_preboot_map_attr(vm_paddr_t pa,vm_offset_t va,vm_size_t size,vm_prot_t prot,vm_memattr_t attr)1047 pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
1048     vm_prot_t prot, vm_memattr_t attr)
1049 {
1050 	u_int num;
1051 	u_int l1_attr, l1_prot, l2_prot, l2_attr;
1052 	pt1_entry_t *pte1p;
1053 	pt2_entry_t *pte2p;
1054 
1055 	l2_prot = prot & VM_PROT_WRITE ? PTE2_AP_KRW : PTE2_AP_KR;
1056 	l2_prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1057 	l2_attr = vm_memattr_to_pte2(attr);
1058 	l1_prot = ATTR_TO_L1(l2_prot);
1059 	l1_attr = ATTR_TO_L1(l2_attr);
1060 
1061 	/* Map all the pages. */
1062 	num = round_page(size);
1063 	while (num > 0) {
1064 		if ((((va | pa) & PTE1_OFFSET) == 0) && (num >= PTE1_SIZE)) {
1065 			pte1p = kern_pte1(va);
1066 			pte1_store(pte1p, PTE1_KERN(pa, l1_prot, l1_attr));
1067 			va += PTE1_SIZE;
1068 			pa += PTE1_SIZE;
1069 			num -= PTE1_SIZE;
1070 		} else {
1071 			pte2p = pmap_preboot_vtopte2(va);
1072 			pte2_store(pte2p, PTE2_KERN(pa, l2_prot, l2_attr));
1073 			va += PAGE_SIZE;
1074 			pa += PAGE_SIZE;
1075 			num -= PAGE_SIZE;
1076 		}
1077 	}
1078 }
1079 
1080 /*
1081  *  Extract from the kernel page table the physical address
1082  *  that is mapped by the given virtual address "va".
1083  */
1084 vm_paddr_t
pmap_kextract(vm_offset_t va)1085 pmap_kextract(vm_offset_t va)
1086 {
1087 	vm_paddr_t pa;
1088 	pt1_entry_t pte1;
1089 	pt2_entry_t pte2;
1090 
1091 	pte1 = pte1_load(kern_pte1(va));
1092 	if (pte1_is_section(pte1)) {
1093 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1094 	} else if (pte1_is_link(pte1)) {
1095 		/*
1096 		 * We should beware of concurrent promotion that changes
1097 		 * pte1 at this point. However, it's not a problem as PT2
1098 		 * page is preserved by promotion in PT2TAB. So even if
1099 		 * it happens, using of PT2MAP is still safe.
1100 		 *
1101 		 * QQQ: However, concurrent removing is a problem which
1102 		 *      ends in abort on PT2MAP space. Locking must be used
1103 		 *      to deal with this.
1104 		 */
1105 		pte2 = pte2_load(pt2map_entry(va));
1106 		pa = pte2_pa(pte2) | (va & PTE2_OFFSET);
1107 	}
1108 	else {
1109 		panic("%s: va %#x pte1 %#x", __func__, va, pte1);
1110 	}
1111 	return (pa);
1112 }
1113 
1114 /*
1115  *  Extract from the kernel page table the physical address
1116  *  that is mapped by the given virtual address "va". Also
1117  *  return L2 page table entry which maps the address.
1118  *
1119  *  This is only intended to be used for panic dumps.
1120  */
1121 vm_paddr_t
pmap_dump_kextract(vm_offset_t va,pt2_entry_t * pte2p)1122 pmap_dump_kextract(vm_offset_t va, pt2_entry_t *pte2p)
1123 {
1124 	vm_paddr_t pa;
1125 	pt1_entry_t pte1;
1126 	pt2_entry_t pte2;
1127 
1128 	pte1 = pte1_load(kern_pte1(va));
1129 	if (pte1_is_section(pte1)) {
1130 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1131 		pte2 = pa | ATTR_TO_L2(pte1) | PTE2_V;
1132 	} else if (pte1_is_link(pte1)) {
1133 		pte2 = pte2_load(pt2map_entry(va));
1134 		pa = pte2_pa(pte2);
1135 	} else {
1136 		pte2 = 0;
1137 		pa = 0;
1138 	}
1139 	if (pte2p != NULL)
1140 		*pte2p = pte2;
1141 	return (pa);
1142 }
1143 
1144 /*****************************************************************************
1145  *
1146  *	PMAP second stage initialization and utility functions
1147  *	for bootstrap epoch.
1148  *
1149  *  After pmap_bootstrap() is called, the following functions for
1150  *  mappings can be used:
1151  *
1152  *  void pmap_kenter(vm_offset_t va, vm_paddr_t pa);
1153  *  void pmap_kremove(vm_offset_t va);
1154  *  vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
1155  *      int prot);
1156  *
1157  *  NOTE: This is not SMP coherent stage. And physical page allocation is not
1158  *        allowed during this stage.
1159  *
1160  *****************************************************************************/
1161 
1162 /*
1163  *  Initialize kernel PMAP locks and lists, kernel_pmap itself, and
1164  *  reserve various virtual spaces for temporary mappings.
1165  */
1166 void
pmap_bootstrap(vm_offset_t firstaddr)1167 pmap_bootstrap(vm_offset_t firstaddr)
1168 {
1169 	pt2_entry_t *unused __unused;
1170 	struct pcpu *pc;
1171 
1172 	/*
1173 	 * Initialize the kernel pmap (which is statically allocated).
1174 	 */
1175 	PMAP_LOCK_INIT(kernel_pmap);
1176 	kernel_l1pa = (vm_paddr_t)kern_pt1;  /* for libkvm */
1177 	kernel_pmap->pm_pt1 = kern_pt1;
1178 	kernel_pmap->pm_pt2tab = kern_pt2tab;
1179 	CPU_FILL(&kernel_pmap->pm_active);  /* don't allow deactivation */
1180 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1181 
1182 	/*
1183 	 * Initialize the global pv list lock.
1184 	 */
1185 	rw_init(&pvh_global_lock, "pmap pv global");
1186 
1187 	LIST_INIT(&allpmaps);
1188 
1189 	/*
1190 	 * Request a spin mutex so that changes to allpmaps cannot be
1191 	 * preempted by smp_rendezvous_cpus().
1192 	 */
1193 	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
1194 	mtx_lock_spin(&allpmaps_lock);
1195 	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
1196 	mtx_unlock_spin(&allpmaps_lock);
1197 
1198 	/*
1199 	 * Reserve some special page table entries/VA space for temporary
1200 	 * mapping of pages.
1201 	 */
1202 #define	SYSMAP(c, p, v, n)  do {		\
1203 	v = (c)pmap_preboot_reserve_pages(n);	\
1204 	p = pt2map_entry((vm_offset_t)v);	\
1205 	} while (0)
1206 
1207 	/*
1208 	 * Local CMAP1/CMAP2 are used for zeroing and copying pages.
1209 	 * Local CMAP2 is also used for data cache cleaning.
1210 	 */
1211 	pc = get_pcpu();
1212 	mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1213 	SYSMAP(caddr_t, pc->pc_cmap1_pte2p, pc->pc_cmap1_addr, 1);
1214 	SYSMAP(caddr_t, pc->pc_cmap2_pte2p, pc->pc_cmap2_addr, 1);
1215 	SYSMAP(vm_offset_t, pc->pc_qmap_pte2p, pc->pc_qmap_addr, 1);
1216 
1217 	/*
1218 	 * Crashdump maps.
1219 	 */
1220 	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS);
1221 
1222 	/*
1223 	 * _tmppt is used for reading arbitrary physical pages via /dev/mem.
1224 	 */
1225 	SYSMAP(caddr_t, unused, _tmppt, 1);
1226 
1227 	/*
1228 	 * PADDR1 and PADDR2 are used by pmap_pte2_quick() and pmap_pte2(),
1229 	 * respectively. PADDR3 is used by pmap_pte2_ddb().
1230 	 */
1231 	SYSMAP(pt2_entry_t *, PMAP1, PADDR1, 1);
1232 	SYSMAP(pt2_entry_t *, PMAP2, PADDR2, 1);
1233 #ifdef DDB
1234 	SYSMAP(pt2_entry_t *, PMAP3, PADDR3, 1);
1235 #endif
1236 	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
1237 
1238 	/*
1239 	 * Note that in very short time in initarm(), we are going to
1240 	 * initialize phys_avail[] array and no further page allocation
1241 	 * can happen after that until vm subsystem will be initialized.
1242 	 */
1243 	kernel_vm_end_new = kernel_vm_end;
1244 	virtual_end = vm_max_kernel_address;
1245 }
1246 
1247 static void
pmap_init_reserved_pages(void)1248 pmap_init_reserved_pages(void)
1249 {
1250 	struct pcpu *pc;
1251 	vm_offset_t pages;
1252 	int i;
1253 
1254 	CPU_FOREACH(i) {
1255 		pc = pcpu_find(i);
1256 		/*
1257 		 * Skip if the mapping has already been initialized,
1258 		 * i.e. this is the BSP.
1259 		 */
1260 		if (pc->pc_cmap1_addr != 0)
1261 			continue;
1262 		mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1263 		pages = kva_alloc(PAGE_SIZE * 3);
1264 		if (pages == 0)
1265 			panic("%s: unable to allocate KVA", __func__);
1266 		pc->pc_cmap1_pte2p = pt2map_entry(pages);
1267 		pc->pc_cmap2_pte2p = pt2map_entry(pages + PAGE_SIZE);
1268 		pc->pc_qmap_pte2p = pt2map_entry(pages + (PAGE_SIZE * 2));
1269 		pc->pc_cmap1_addr = (caddr_t)pages;
1270 		pc->pc_cmap2_addr = (caddr_t)(pages + PAGE_SIZE);
1271 		pc->pc_qmap_addr = pages + (PAGE_SIZE * 2);
1272 	}
1273 }
1274 SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
1275 
1276 /*
1277  *  The function can already be use in second initialization stage.
1278  *  As such, the function DOES NOT call pmap_growkernel() where PT2
1279  *  allocation can happen. So if used, be sure that PT2 for given
1280  *  virtual address is allocated already!
1281  *
1282  *  Add a wired page to the kva.
1283  *  Note: not SMP coherent.
1284  */
1285 static __inline void
pmap_kenter_prot_attr(vm_offset_t va,vm_paddr_t pa,uint32_t prot,uint32_t attr)1286 pmap_kenter_prot_attr(vm_offset_t va, vm_paddr_t pa, uint32_t prot,
1287     uint32_t attr)
1288 {
1289 	pt1_entry_t *pte1p;
1290 	pt2_entry_t *pte2p;
1291 
1292 	pte1p = kern_pte1(va);
1293 	if (!pte1_is_valid(pte1_load(pte1p))) { /* XXX - sections ?! */
1294 		/*
1295 		 * This is a very low level function, so PT2 and particularly
1296 		 * PT2PG associated with given virtual address must be already
1297 		 * allocated. It's a pain mainly during pmap initialization
1298 		 * stage. However, called after pmap initialization with
1299 		 * virtual address not under kernel_vm_end will lead to
1300 		 * the same misery.
1301 		 */
1302 		if (!pte2_is_valid(pte2_load(kern_pt2tab_entry(va))))
1303 			panic("%s: kernel PT2 not allocated!", __func__);
1304 	}
1305 
1306 	pte2p = pt2map_entry(va);
1307 	pte2_store(pte2p, PTE2_KERN(pa, prot, attr));
1308 }
1309 
1310 PMAP_INLINE void
pmap_kenter(vm_offset_t va,vm_paddr_t pa)1311 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1312 {
1313 
1314 	pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT);
1315 }
1316 
1317 /*
1318  *  Remove a page from the kernel pagetables.
1319  *  Note: not SMP coherent.
1320  */
1321 PMAP_INLINE void
pmap_kremove(vm_offset_t va)1322 pmap_kremove(vm_offset_t va)
1323 {
1324 	pt1_entry_t *pte1p;
1325 	pt2_entry_t *pte2p;
1326 
1327 	pte1p = kern_pte1(va);
1328 	if (pte1_is_section(pte1_load(pte1p))) {
1329 		pte1_clear(pte1p);
1330 	} else {
1331 		pte2p = pt2map_entry(va);
1332 		pte2_clear(pte2p);
1333 	}
1334 }
1335 
1336 /*
1337  *  Share new kernel PT2PG with all pmaps.
1338  *  The caller is responsible for maintaining TLB consistency.
1339  */
1340 static void
pmap_kenter_pt2tab(vm_offset_t va,pt2_entry_t npte2)1341 pmap_kenter_pt2tab(vm_offset_t va, pt2_entry_t npte2)
1342 {
1343 	pmap_t pmap;
1344 	pt2_entry_t *pte2p;
1345 
1346 	mtx_lock_spin(&allpmaps_lock);
1347 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1348 		pte2p = pmap_pt2tab_entry(pmap, va);
1349 		pt2tab_store(pte2p, npte2);
1350 	}
1351 	mtx_unlock_spin(&allpmaps_lock);
1352 }
1353 
1354 /*
1355  *  Share new kernel PTE1 with all pmaps.
1356  *  The caller is responsible for maintaining TLB consistency.
1357  */
1358 static void
pmap_kenter_pte1(vm_offset_t va,pt1_entry_t npte1)1359 pmap_kenter_pte1(vm_offset_t va, pt1_entry_t npte1)
1360 {
1361 	pmap_t pmap;
1362 	pt1_entry_t *pte1p;
1363 
1364 	mtx_lock_spin(&allpmaps_lock);
1365 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1366 		pte1p = pmap_pte1(pmap, va);
1367 		pte1_store(pte1p, npte1);
1368 	}
1369 	mtx_unlock_spin(&allpmaps_lock);
1370 }
1371 
1372 /*
1373  *  Used to map a range of physical addresses into kernel
1374  *  virtual address space.
1375  *
1376  *  The value passed in '*virt' is a suggested virtual address for
1377  *  the mapping. Architectures which can support a direct-mapped
1378  *  physical to virtual region can return the appropriate address
1379  *  within that region, leaving '*virt' unchanged. Other
1380  *  architectures should map the pages starting at '*virt' and
1381  *  update '*virt' with the first usable address after the mapped
1382  *  region.
1383  *
1384  *  NOTE: Read the comments above pmap_kenter_prot_attr() as
1385  *        the function is used herein!
1386  */
1387 vm_offset_t
pmap_map(vm_offset_t * virt,vm_paddr_t start,vm_paddr_t end,int prot)1388 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1389 {
1390 	vm_offset_t va, sva;
1391 	vm_paddr_t pte1_offset;
1392 	pt1_entry_t npte1;
1393 	uint32_t l1prot, l2prot;
1394 	uint32_t l1attr, l2attr;
1395 
1396 	PDEBUG(1, printf("%s: virt = %#x, start = %#x, end = %#x (size = %#x),"
1397 	    " prot = %d\n", __func__, *virt, start, end, end - start,  prot));
1398 
1399 	l2prot = (prot & VM_PROT_WRITE) ? PTE2_AP_KRW : PTE2_AP_KR;
1400 	l2prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1401 	l1prot = ATTR_TO_L1(l2prot);
1402 
1403 	l2attr = PTE2_ATTR_DEFAULT;
1404 	l1attr = ATTR_TO_L1(l2attr);
1405 
1406 	va = *virt;
1407 	/*
1408 	 * Does the physical address range's size and alignment permit at
1409 	 * least one section mapping to be created?
1410 	 */
1411 	pte1_offset = start & PTE1_OFFSET;
1412 	if ((end - start) - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) >=
1413 	    PTE1_SIZE) {
1414 		/*
1415 		 * Increase the starting virtual address so that its alignment
1416 		 * does not preclude the use of section mappings.
1417 		 */
1418 		if ((va & PTE1_OFFSET) < pte1_offset)
1419 			va = pte1_trunc(va) + pte1_offset;
1420 		else if ((va & PTE1_OFFSET) > pte1_offset)
1421 			va = pte1_roundup(va) + pte1_offset;
1422 	}
1423 	sva = va;
1424 	while (start < end) {
1425 		if ((start & PTE1_OFFSET) == 0 && end - start >= PTE1_SIZE) {
1426 			KASSERT((va & PTE1_OFFSET) == 0,
1427 			    ("%s: misaligned va %#x", __func__, va));
1428 			npte1 = PTE1_KERN(start, l1prot, l1attr);
1429 			pmap_kenter_pte1(va, npte1);
1430 			va += PTE1_SIZE;
1431 			start += PTE1_SIZE;
1432 		} else {
1433 			pmap_kenter_prot_attr(va, start, l2prot, l2attr);
1434 			va += PAGE_SIZE;
1435 			start += PAGE_SIZE;
1436 		}
1437 	}
1438 	tlb_flush_range(sva, va - sva);
1439 	*virt = va;
1440 	return (sva);
1441 }
1442 
1443 /*
1444  *  Make a temporary mapping for a physical address.
1445  *  This is only intended to be used for panic dumps.
1446  */
1447 void *
pmap_kenter_temporary(vm_paddr_t pa,int i)1448 pmap_kenter_temporary(vm_paddr_t pa, int i)
1449 {
1450 	vm_offset_t va;
1451 
1452 	/* QQQ: 'i' should be less or equal to MAXDUMPPGS. */
1453 
1454 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
1455 	pmap_kenter(va, pa);
1456 	tlb_flush_local(va);
1457 	return ((void *)crashdumpmap);
1458 }
1459 
1460 /*************************************
1461  *
1462  *  TLB & cache maintenance routines.
1463  *
1464  *************************************/
1465 
1466 /*
1467  *  We inline these within pmap.c for speed.
1468  */
1469 PMAP_INLINE void
pmap_tlb_flush(pmap_t pmap,vm_offset_t va)1470 pmap_tlb_flush(pmap_t pmap, vm_offset_t va)
1471 {
1472 
1473 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1474 		tlb_flush(va);
1475 }
1476 
1477 PMAP_INLINE void
pmap_tlb_flush_range(pmap_t pmap,vm_offset_t sva,vm_size_t size)1478 pmap_tlb_flush_range(pmap_t pmap, vm_offset_t sva, vm_size_t size)
1479 {
1480 
1481 	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1482 		tlb_flush_range(sva, size);
1483 }
1484 
1485 /*
1486  *  Abuse the pte2 nodes for unmapped kva to thread a kva freelist through.
1487  *  Requirements:
1488  *   - Must deal with pages in order to ensure that none of the PTE2_* bits
1489  *     are ever set, PTE2_V in particular.
1490  *   - Assumes we can write to pte2s without pte2_store() atomic ops.
1491  *   - Assumes nothing will ever test these addresses for 0 to indicate
1492  *     no mapping instead of correctly checking PTE2_V.
1493  *   - Assumes a vm_offset_t will fit in a pte2 (true for arm).
1494  *  Because PTE2_V is never set, there can be no mappings to invalidate.
1495  */
1496 static vm_offset_t
pmap_pte2list_alloc(vm_offset_t * head)1497 pmap_pte2list_alloc(vm_offset_t *head)
1498 {
1499 	pt2_entry_t *pte2p;
1500 	vm_offset_t va;
1501 
1502 	va = *head;
1503 	if (va == 0)
1504 		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
1505 	pte2p = pt2map_entry(va);
1506 	*head = *pte2p;
1507 	if (*head & PTE2_V)
1508 		panic("%s: va with PTE2_V set!", __func__);
1509 	*pte2p = 0;
1510 	return (va);
1511 }
1512 
1513 static void
pmap_pte2list_free(vm_offset_t * head,vm_offset_t va)1514 pmap_pte2list_free(vm_offset_t *head, vm_offset_t va)
1515 {
1516 	pt2_entry_t *pte2p;
1517 
1518 	if (va & PTE2_V)
1519 		panic("%s: freeing va with PTE2_V set!", __func__);
1520 	pte2p = pt2map_entry(va);
1521 	*pte2p = *head;		/* virtual! PTE2_V is 0 though */
1522 	*head = va;
1523 }
1524 
1525 static void
pmap_pte2list_init(vm_offset_t * head,void * base,int npages)1526 pmap_pte2list_init(vm_offset_t *head, void *base, int npages)
1527 {
1528 	int i;
1529 	vm_offset_t va;
1530 
1531 	*head = 0;
1532 	for (i = npages - 1; i >= 0; i--) {
1533 		va = (vm_offset_t)base + i * PAGE_SIZE;
1534 		pmap_pte2list_free(head, va);
1535 	}
1536 }
1537 
1538 /*****************************************************************************
1539  *
1540  *	PMAP third and final stage initialization.
1541  *
1542  *  After pmap_init() is called, PMAP subsystem is fully initialized.
1543  *
1544  *****************************************************************************/
1545 
1546 SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1547     "VM/pmap parameters");
1548 
1549 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
1550     "Max number of PV entries");
1551 SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
1552     "Page share factor per proc");
1553 
1554 static u_long nkpt2pg = NKPT2PG;
1555 SYSCTL_ULONG(_vm_pmap, OID_AUTO, nkpt2pg, CTLFLAG_RD,
1556     &nkpt2pg, 0, "Pre-allocated pages for kernel PT2s");
1557 
1558 static int sp_enabled = 1;
1559 SYSCTL_INT(_vm_pmap, OID_AUTO, sp_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
1560     &sp_enabled, 0, "Are large page mappings enabled?");
1561 
1562 bool
pmap_ps_enabled(pmap_t pmap __unused)1563 pmap_ps_enabled(pmap_t pmap __unused)
1564 {
1565 
1566 	return (sp_enabled != 0);
1567 }
1568 
1569 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pte1, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1570     "1MB page mapping counters");
1571 
1572 static u_long pmap_pte1_demotions;
1573 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, demotions, CTLFLAG_RD,
1574     &pmap_pte1_demotions, 0, "1MB page demotions");
1575 
1576 static u_long pmap_pte1_mappings;
1577 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, mappings, CTLFLAG_RD,
1578     &pmap_pte1_mappings, 0, "1MB page mappings");
1579 
1580 static u_long pmap_pte1_p_failures;
1581 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, p_failures, CTLFLAG_RD,
1582     &pmap_pte1_p_failures, 0, "1MB page promotion failures");
1583 
1584 static u_long pmap_pte1_promotions;
1585 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, promotions, CTLFLAG_RD,
1586     &pmap_pte1_promotions, 0, "1MB page promotions");
1587 
1588 static u_long pmap_pte1_kern_demotions;
1589 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_demotions, CTLFLAG_RD,
1590     &pmap_pte1_kern_demotions, 0, "1MB page kernel demotions");
1591 
1592 static u_long pmap_pte1_kern_promotions;
1593 SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_promotions, CTLFLAG_RD,
1594     &pmap_pte1_kern_promotions, 0, "1MB page kernel promotions");
1595 
1596 static __inline ttb_entry_t
pmap_ttb_get(pmap_t pmap)1597 pmap_ttb_get(pmap_t pmap)
1598 {
1599 
1600 	return (vtophys(pmap->pm_pt1) | ttb_flags);
1601 }
1602 
1603 /*
1604  *  Initialize a vm_page's machine-dependent fields.
1605  *
1606  *  Variations:
1607  *  1. Pages for L2 page tables are always not managed. So, pv_list and
1608  *     pt2_wirecount can share same physical space. However, proper
1609  *     initialization on a page alloc for page tables and reinitialization
1610  *     on the page free must be ensured.
1611  */
1612 void
pmap_page_init(vm_page_t m)1613 pmap_page_init(vm_page_t m)
1614 {
1615 
1616 	TAILQ_INIT(&m->md.pv_list);
1617 	pt2_wirecount_init(m);
1618 	m->md.pat_mode = VM_MEMATTR_DEFAULT;
1619 }
1620 
1621 /*
1622  *  Virtualization for faster way how to zero whole page.
1623  */
1624 static __inline void
pagezero(void * page)1625 pagezero(void *page)
1626 {
1627 
1628 	bzero(page, PAGE_SIZE);
1629 }
1630 
1631 /*
1632  *  Zero L2 page table page.
1633  *  Use same KVA as in pmap_zero_page().
1634  */
1635 static __inline vm_paddr_t
pmap_pt2pg_zero(vm_page_t m)1636 pmap_pt2pg_zero(vm_page_t m)
1637 {
1638 	pt2_entry_t *cmap2_pte2p;
1639 	vm_paddr_t pa;
1640 	struct pcpu *pc;
1641 
1642 	pa = VM_PAGE_TO_PHYS(m);
1643 
1644 	/*
1645 	 * XXX: For now, we map whole page even if it's already zero,
1646 	 *      to sync it even if the sync is only DSB.
1647 	 */
1648 	sched_pin();
1649 	pc = get_pcpu();
1650 	cmap2_pte2p = pc->pc_cmap2_pte2p;
1651 	mtx_lock(&pc->pc_cmap_lock);
1652 	if (pte2_load(cmap2_pte2p) != 0)
1653 		panic("%s: CMAP2 busy", __func__);
1654 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
1655 	    vm_page_pte2_attr(m)));
1656 	/*  Even VM_ALLOC_ZERO request is only advisory. */
1657 	if ((m->flags & PG_ZERO) == 0)
1658 		pagezero(pc->pc_cmap2_addr);
1659 	pte2_sync_range((pt2_entry_t *)pc->pc_cmap2_addr, PAGE_SIZE);
1660 	pte2_clear(cmap2_pte2p);
1661 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
1662 
1663 	/*
1664 	 * Unpin the thread before releasing the lock.  Otherwise the thread
1665 	 * could be rescheduled while still bound to the current CPU, only
1666 	 * to unpin itself immediately upon resuming execution.
1667 	 */
1668 	sched_unpin();
1669 	mtx_unlock(&pc->pc_cmap_lock);
1670 
1671 	return (pa);
1672 }
1673 
1674 /*
1675  *  Init just allocated page as L2 page table(s) holder
1676  *  and return its physical address.
1677  */
1678 static __inline vm_paddr_t
pmap_pt2pg_init(pmap_t pmap,vm_offset_t va,vm_page_t m)1679 pmap_pt2pg_init(pmap_t pmap, vm_offset_t va, vm_page_t m)
1680 {
1681 	vm_paddr_t pa;
1682 	pt2_entry_t *pte2p;
1683 
1684 	/* Check page attributes. */
1685 	if (m->md.pat_mode != pt_memattr)
1686 		pmap_page_set_memattr(m, pt_memattr);
1687 
1688 	/* Zero page and init wire counts. */
1689 	pa = pmap_pt2pg_zero(m);
1690 	pt2_wirecount_init(m);
1691 
1692 	/*
1693 	 * Map page to PT2MAP address space for given pmap.
1694 	 * Note that PT2MAP space is shared with all pmaps.
1695 	 */
1696 	if (pmap == kernel_pmap)
1697 		pmap_kenter_pt2tab(va, PTE2_KPT(pa));
1698 	else {
1699 		pte2p = pmap_pt2tab_entry(pmap, va);
1700 		pt2tab_store(pte2p, PTE2_KPT_NG(pa));
1701 	}
1702 
1703 	return (pa);
1704 }
1705 
1706 /*
1707  *  Initialize the pmap module.
1708  *
1709  *  Called by vm_mem_init(), to initialize any structures that the pmap system
1710  *  needs to map virtual memory.
1711  */
1712 void
pmap_init(void)1713 pmap_init(void)
1714 {
1715 	vm_size_t s;
1716 	pt2_entry_t *pte2p, pte2;
1717 	u_int i, pte1_idx, pv_npg;
1718 
1719 	PDEBUG(1, printf("%s: phys_start = %#x\n", __func__, PHYSADDR));
1720 
1721 	/*
1722 	 * Initialize the vm page array entries for kernel pmap's
1723 	 * L2 page table pages allocated in advance.
1724 	 */
1725 	pte1_idx = pte1_index(KERNBASE - PT2MAP_SIZE);
1726 	pte2p = kern_pt2tab_entry(KERNBASE - PT2MAP_SIZE);
1727 	for (i = 0; i < nkpt2pg + NPG_IN_PT2TAB; i++, pte2p++) {
1728 		vm_paddr_t pa;
1729 		vm_page_t m;
1730 
1731 		pte2 = pte2_load(pte2p);
1732 		KASSERT(pte2_is_valid(pte2), ("%s: no valid entry", __func__));
1733 
1734 		pa = pte2_pa(pte2);
1735 		m = PHYS_TO_VM_PAGE(pa);
1736 		KASSERT(m >= vm_page_array &&
1737 		    m < &vm_page_array[vm_page_array_size],
1738 		    ("%s: L2 page table page is out of range", __func__));
1739 
1740 		m->pindex = pte1_idx;
1741 		m->phys_addr = pa;
1742 		pte1_idx += NPT2_IN_PG;
1743 	}
1744 
1745 	/*
1746 	 * Initialize the address space (zone) for the pv entries.  Set a
1747 	 * high water mark so that the system can recover from excessive
1748 	 * numbers of pv entries.
1749 	 */
1750 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1751 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1752 	TUNABLE_INT_FETCH("vm.pmap.pv_entry_max", &pv_entry_max);
1753 	pv_entry_max = roundup(pv_entry_max, _NPCPV);
1754 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1755 
1756 	/*
1757 	 * Are large page mappings enabled?
1758 	 */
1759 	TUNABLE_INT_FETCH("vm.pmap.sp_enabled", &sp_enabled);
1760 	if (sp_enabled) {
1761 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1762 		    ("%s: can't assign to pagesizes[1]", __func__));
1763 		pagesizes[1] = PTE1_SIZE;
1764 	}
1765 
1766 	/*
1767 	 * Calculate the size of the pv head table for sections.
1768 	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
1769 	 * Note that the table is only for sections which could be promoted.
1770 	 */
1771 	first_managed_pa = pte1_trunc(vm_phys_segs[0].start);
1772 	pv_npg = (pte1_trunc(vm_phys_segs[vm_phys_nsegs - 1].end - PAGE_SIZE)
1773 	    - first_managed_pa) / PTE1_SIZE + 1;
1774 
1775 	/*
1776 	 * Allocate memory for the pv head table for sections.
1777 	 */
1778 	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1779 	s = round_page(s);
1780 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
1781 	for (i = 0; i < pv_npg; i++)
1782 		TAILQ_INIT(&pv_table[i].pv_list);
1783 
1784 	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
1785 	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
1786 	if (pv_chunkbase == NULL)
1787 		panic("%s: not enough kvm for pv chunks", __func__);
1788 	pmap_pte2list_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
1789 }
1790 
1791 /*
1792  *  Add a list of wired pages to the kva
1793  *  this routine is only used for temporary
1794  *  kernel mappings that do not need to have
1795  *  page modification or references recorded.
1796  *  Note that old mappings are simply written
1797  *  over.  The page *must* be wired.
1798  *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1799  */
1800 void
pmap_qenter(vm_offset_t sva,vm_page_t * ma,int count)1801 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1802 {
1803 	u_int anychanged;
1804 	pt2_entry_t *epte2p, *pte2p, pte2;
1805 	vm_page_t m;
1806 	vm_paddr_t pa;
1807 
1808 	anychanged = 0;
1809 	pte2p = pt2map_entry(sva);
1810 	epte2p = pte2p + count;
1811 	while (pte2p < epte2p) {
1812 		m = *ma++;
1813 		pa = VM_PAGE_TO_PHYS(m);
1814 		pte2 = pte2_load(pte2p);
1815 		if ((pte2_pa(pte2) != pa) ||
1816 		    (pte2_attr(pte2) != vm_page_pte2_attr(m))) {
1817 			anychanged++;
1818 			pte2_store(pte2p, PTE2_KERN(pa, PTE2_AP_KRW,
1819 			    vm_page_pte2_attr(m)));
1820 		}
1821 		pte2p++;
1822 	}
1823 	if (__predict_false(anychanged))
1824 		tlb_flush_range(sva, count * PAGE_SIZE);
1825 }
1826 
1827 /*
1828  *  This routine tears out page mappings from the
1829  *  kernel -- it is meant only for temporary mappings.
1830  *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1831  */
1832 void
pmap_qremove(vm_offset_t sva,int count)1833 pmap_qremove(vm_offset_t sva, int count)
1834 {
1835 	vm_offset_t va;
1836 
1837 	va = sva;
1838 	while (count-- > 0) {
1839 		pmap_kremove(va);
1840 		va += PAGE_SIZE;
1841 	}
1842 	tlb_flush_range(sva, va - sva);
1843 }
1844 
1845 /*
1846  *  Are we current address space or kernel?
1847  */
1848 static __inline int
pmap_is_current(pmap_t pmap)1849 pmap_is_current(pmap_t pmap)
1850 {
1851 
1852 	return (pmap == kernel_pmap ||
1853 		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace)));
1854 }
1855 
1856 /*
1857  *  If the given pmap is not the current or kernel pmap, the returned
1858  *  pte2 must be released by passing it to pmap_pte2_release().
1859  */
1860 static pt2_entry_t *
pmap_pte2(pmap_t pmap,vm_offset_t va)1861 pmap_pte2(pmap_t pmap, vm_offset_t va)
1862 {
1863 	pt1_entry_t pte1;
1864 	vm_paddr_t pt2pg_pa;
1865 
1866 	pte1 = pte1_load(pmap_pte1(pmap, va));
1867 	if (pte1_is_section(pte1))
1868 		panic("%s: attempt to map PTE1", __func__);
1869 	if (pte1_is_link(pte1)) {
1870 		/* Are we current address space or kernel? */
1871 		if (pmap_is_current(pmap))
1872 			return (pt2map_entry(va));
1873 		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1874 		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1875 		mtx_lock(&PMAP2mutex);
1876 		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
1877 			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
1878 			tlb_flush((vm_offset_t)PADDR2);
1879 		}
1880 		return (PADDR2 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1881 	}
1882 	return (NULL);
1883 }
1884 
1885 /*
1886  *  Releases a pte2 that was obtained from pmap_pte2().
1887  *  Be prepared for the pte2p being NULL.
1888  */
1889 static __inline void
pmap_pte2_release(pt2_entry_t * pte2p)1890 pmap_pte2_release(pt2_entry_t *pte2p)
1891 {
1892 
1893 	if ((pt2_entry_t *)(trunc_page((vm_offset_t)pte2p)) == PADDR2) {
1894 		mtx_unlock(&PMAP2mutex);
1895 	}
1896 }
1897 
1898 /*
1899  *  Super fast pmap_pte2 routine best used when scanning
1900  *  the pv lists.  This eliminates many coarse-grained
1901  *  invltlb calls.  Note that many of the pv list
1902  *  scans are across different pmaps.  It is very wasteful
1903  *  to do an entire tlb flush for checking a single mapping.
1904  *
1905  *  If the given pmap is not the current pmap, pvh_global_lock
1906  *  must be held and curthread pinned to a CPU.
1907  */
1908 static pt2_entry_t *
pmap_pte2_quick(pmap_t pmap,vm_offset_t va)1909 pmap_pte2_quick(pmap_t pmap, vm_offset_t va)
1910 {
1911 	pt1_entry_t pte1;
1912 	vm_paddr_t pt2pg_pa;
1913 
1914 	pte1 = pte1_load(pmap_pte1(pmap, va));
1915 	if (pte1_is_section(pte1))
1916 		panic("%s: attempt to map PTE1", __func__);
1917 	if (pte1_is_link(pte1)) {
1918 		/* Are we current address space or kernel? */
1919 		if (pmap_is_current(pmap))
1920 			return (pt2map_entry(va));
1921 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1922 		KASSERT(curthread->td_pinned > 0,
1923 		    ("%s: curthread not pinned", __func__));
1924 		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1925 		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1926 		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
1927 			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
1928 #ifdef SMP
1929 			PMAP1cpu = PCPU_GET(cpuid);
1930 #endif
1931 			tlb_flush_local((vm_offset_t)PADDR1);
1932 			PMAP1changed++;
1933 		} else
1934 #ifdef SMP
1935 		if (PMAP1cpu != PCPU_GET(cpuid)) {
1936 			PMAP1cpu = PCPU_GET(cpuid);
1937 			tlb_flush_local((vm_offset_t)PADDR1);
1938 			PMAP1changedcpu++;
1939 		} else
1940 #endif
1941 			PMAP1unchanged++;
1942 		return (PADDR1 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1943 	}
1944 	return (NULL);
1945 }
1946 
1947 /*
1948  *  Routine: pmap_extract
1949  *  Function:
1950  * 	Extract the physical page address associated
1951  *	with the given map/virtual_address pair.
1952  */
1953 vm_paddr_t
pmap_extract(pmap_t pmap,vm_offset_t va)1954 pmap_extract(pmap_t pmap, vm_offset_t va)
1955 {
1956 	vm_paddr_t pa;
1957 	pt1_entry_t pte1;
1958 	pt2_entry_t *pte2p;
1959 
1960 	PMAP_LOCK(pmap);
1961 	pte1 = pte1_load(pmap_pte1(pmap, va));
1962 	if (pte1_is_section(pte1))
1963 		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1964 	else if (pte1_is_link(pte1)) {
1965 		pte2p = pmap_pte2(pmap, va);
1966 		pa = pte2_pa(pte2_load(pte2p)) | (va & PTE2_OFFSET);
1967 		pmap_pte2_release(pte2p);
1968 	} else
1969 		pa = 0;
1970 	PMAP_UNLOCK(pmap);
1971 	return (pa);
1972 }
1973 
1974 /*
1975  *  Routine: pmap_extract_and_hold
1976  *  Function:
1977  *	Atomically extract and hold the physical page
1978  *	with the given pmap and virtual address pair
1979  *	if that mapping permits the given protection.
1980  */
1981 vm_page_t
pmap_extract_and_hold(pmap_t pmap,vm_offset_t va,vm_prot_t prot)1982 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1983 {
1984 	vm_paddr_t pa;
1985 	pt1_entry_t pte1;
1986 	pt2_entry_t pte2, *pte2p;
1987 	vm_page_t m;
1988 
1989 	m = NULL;
1990 	PMAP_LOCK(pmap);
1991 	pte1 = pte1_load(pmap_pte1(pmap, va));
1992 	if (pte1_is_section(pte1)) {
1993 		if (!(pte1 & PTE1_RO) || !(prot & VM_PROT_WRITE)) {
1994 			pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1995 			m = PHYS_TO_VM_PAGE(pa);
1996 			if (!vm_page_wire_mapped(m))
1997 				m = NULL;
1998 		}
1999 	} else if (pte1_is_link(pte1)) {
2000 		pte2p = pmap_pte2(pmap, va);
2001 		pte2 = pte2_load(pte2p);
2002 		pmap_pte2_release(pte2p);
2003 		if (pte2_is_valid(pte2) &&
2004 		    (!(pte2 & PTE2_RO) || !(prot & VM_PROT_WRITE))) {
2005 			pa = pte2_pa(pte2);
2006 			m = PHYS_TO_VM_PAGE(pa);
2007 			if (!vm_page_wire_mapped(m))
2008 				m = NULL;
2009 		}
2010 	}
2011 	PMAP_UNLOCK(pmap);
2012 	return (m);
2013 }
2014 
2015 /*
2016  *  Grow the number of kernel L2 page table entries, if needed.
2017  */
2018 void
pmap_growkernel(vm_offset_t addr)2019 pmap_growkernel(vm_offset_t addr)
2020 {
2021 	vm_page_t m;
2022 	vm_paddr_t pt2pg_pa, pt2_pa;
2023 	pt1_entry_t pte1;
2024 	pt2_entry_t pte2;
2025 
2026 	PDEBUG(1, printf("%s: addr = %#x\n", __func__, addr));
2027 	/*
2028 	 * All the time kernel_vm_end is first KVA for which underlying
2029 	 * L2 page table is either not allocated or linked from L1 page table
2030 	 * (not considering sections). Except for two possible cases:
2031 	 *
2032 	 *   (1) in the very beginning as long as pmap_growkernel() was
2033 	 *       not called, it could be first unused KVA (which is not
2034 	 *       rounded up to PTE1_SIZE),
2035 	 *
2036 	 *   (2) when all KVA space is mapped and vm_map_max(kernel_map)
2037 	 *       address is not rounded up to PTE1_SIZE. (For example,
2038 	 *       it could be 0xFFFFFFFF.)
2039 	 */
2040 	kernel_vm_end = pte1_roundup(kernel_vm_end);
2041 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2042 	addr = roundup2(addr, PTE1_SIZE);
2043 	if (addr - 1 >= vm_map_max(kernel_map))
2044 		addr = vm_map_max(kernel_map);
2045 	while (kernel_vm_end < addr) {
2046 		pte1 = pte1_load(kern_pte1(kernel_vm_end));
2047 		if (pte1_is_valid(pte1)) {
2048 			kernel_vm_end += PTE1_SIZE;
2049 			if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2050 				kernel_vm_end = vm_map_max(kernel_map);
2051 				break;
2052 			}
2053 			continue;
2054 		}
2055 
2056 		/*
2057 		 * kernel_vm_end_new is used in pmap_pinit() when kernel
2058 		 * mappings are entered to new pmap all at once to avoid race
2059 		 * between pmap_kenter_pte1() and kernel_vm_end increase.
2060 		 * The same aplies to pmap_kenter_pt2tab().
2061 		 */
2062 		kernel_vm_end_new = kernel_vm_end + PTE1_SIZE;
2063 
2064 		pte2 = pt2tab_load(kern_pt2tab_entry(kernel_vm_end));
2065 		if (!pte2_is_valid(pte2)) {
2066 			/*
2067 			 * Install new PT2s page into kernel PT2TAB.
2068 			 */
2069 			m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT |
2070 			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2071 			if (m == NULL)
2072 				panic("%s: no memory to grow kernel", __func__);
2073 			m->pindex = pte1_index(kernel_vm_end) & ~PT2PG_MASK;
2074 
2075 			/*
2076 			 * QQQ: To link all new L2 page tables from L1 page
2077 			 *      table now and so pmap_kenter_pte1() them
2078 			 *      at once together with pmap_kenter_pt2tab()
2079 			 *      could be nice speed up. However,
2080 			 *      pmap_growkernel() does not happen so often...
2081 			 * QQQ: The other TTBR is another option.
2082 			 */
2083 			pt2pg_pa = pmap_pt2pg_init(kernel_pmap, kernel_vm_end,
2084 			    m);
2085 		} else
2086 			pt2pg_pa = pte2_pa(pte2);
2087 
2088 		pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(kernel_vm_end));
2089 		pmap_kenter_pte1(kernel_vm_end, PTE1_LINK(pt2_pa));
2090 
2091 		kernel_vm_end = kernel_vm_end_new;
2092 		if (kernel_vm_end - 1 >= vm_map_max(kernel_map)) {
2093 			kernel_vm_end = vm_map_max(kernel_map);
2094 			break;
2095 		}
2096 	}
2097 }
2098 
2099 static int
kvm_size(SYSCTL_HANDLER_ARGS)2100 kvm_size(SYSCTL_HANDLER_ARGS)
2101 {
2102 	unsigned long ksize = vm_max_kernel_address - KERNBASE;
2103 
2104 	return (sysctl_handle_long(oidp, &ksize, 0, req));
2105 }
2106 SYSCTL_PROC(_vm, OID_AUTO, kvm_size,
2107     CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 0, 0, kvm_size, "IU",
2108     "Size of KVM");
2109 
2110 static int
kvm_free(SYSCTL_HANDLER_ARGS)2111 kvm_free(SYSCTL_HANDLER_ARGS)
2112 {
2113 	unsigned long kfree = vm_max_kernel_address - kernel_vm_end;
2114 
2115 	return (sysctl_handle_long(oidp, &kfree, 0, req));
2116 }
2117 SYSCTL_PROC(_vm, OID_AUTO, kvm_free,
2118     CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 0, 0, kvm_free, "IU",
2119     "Amount of KVM free");
2120 
2121 /***********************************************
2122  *
2123  *  Pmap allocation/deallocation routines.
2124  *
2125  ***********************************************/
2126 
2127 /*
2128  *  Initialize the pmap for the swapper process.
2129  */
2130 void
pmap_pinit0(pmap_t pmap)2131 pmap_pinit0(pmap_t pmap)
2132 {
2133 	PDEBUG(1, printf("%s: pmap = %p\n", __func__, pmap));
2134 
2135 	PMAP_LOCK_INIT(pmap);
2136 
2137 	/*
2138 	 * Kernel page table directory and pmap stuff around is already
2139 	 * initialized, we are using it right now and here. So, finish
2140 	 * only PMAP structures initialization for process0 ...
2141 	 *
2142 	 * Since the L1 page table and PT2TAB is shared with the kernel pmap,
2143 	 * which is already included in the list "allpmaps", this pmap does
2144 	 * not need to be inserted into that list.
2145 	 */
2146 	pmap->pm_pt1 = kern_pt1;
2147 	pmap->pm_pt2tab = kern_pt2tab;
2148 	CPU_ZERO(&pmap->pm_active);
2149 	PCPU_SET(curpmap, pmap);
2150 	TAILQ_INIT(&pmap->pm_pvchunk);
2151 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2152 	CPU_SET(0, &pmap->pm_active);
2153 }
2154 
2155 static __inline void
pte1_copy_nosync(pt1_entry_t * spte1p,pt1_entry_t * dpte1p,vm_offset_t sva,vm_offset_t eva)2156 pte1_copy_nosync(pt1_entry_t *spte1p, pt1_entry_t *dpte1p, vm_offset_t sva,
2157     vm_offset_t eva)
2158 {
2159 	u_int idx, count;
2160 
2161 	idx = pte1_index(sva);
2162 	count = (pte1_index(eva) - idx + 1) * sizeof(pt1_entry_t);
2163 	bcopy(spte1p + idx, dpte1p + idx, count);
2164 }
2165 
2166 static __inline void
pt2tab_copy_nosync(pt2_entry_t * spte2p,pt2_entry_t * dpte2p,vm_offset_t sva,vm_offset_t eva)2167 pt2tab_copy_nosync(pt2_entry_t *spte2p, pt2_entry_t *dpte2p, vm_offset_t sva,
2168     vm_offset_t eva)
2169 {
2170 	u_int idx, count;
2171 
2172 	idx = pt2tab_index(sva);
2173 	count = (pt2tab_index(eva) - idx + 1) * sizeof(pt2_entry_t);
2174 	bcopy(spte2p + idx, dpte2p + idx, count);
2175 }
2176 
2177 /*
2178  *  Initialize a preallocated and zeroed pmap structure,
2179  *  such as one in a vmspace structure.
2180  */
2181 int
pmap_pinit(pmap_t pmap)2182 pmap_pinit(pmap_t pmap)
2183 {
2184 	pt1_entry_t *pte1p;
2185 	pt2_entry_t *pte2p;
2186 	vm_paddr_t pa, pt2tab_pa;
2187 	u_int i;
2188 
2189 	PDEBUG(6, printf("%s: pmap = %p, pm_pt1 = %p\n", __func__, pmap,
2190 	    pmap->pm_pt1));
2191 
2192 	/*
2193 	 * No need to allocate L2 page table space yet but we do need
2194 	 * a valid L1 page table and PT2TAB table.
2195 	 *
2196 	 * Install shared kernel mappings to these tables. It's a little
2197 	 * tricky as some parts of KVA are reserved for vectors, devices,
2198 	 * and whatever else. These parts are supposed to be above
2199 	 * vm_max_kernel_address. Thus two regions should be installed:
2200 	 *
2201 	 *   (1) <KERNBASE, kernel_vm_end),
2202 	 *   (2) <vm_max_kernel_address, 0xFFFFFFFF>.
2203 	 *
2204 	 * QQQ: The second region should be stable enough to be installed
2205 	 *      only once in time when the tables are allocated.
2206 	 * QQQ: Maybe copy of both regions at once could be faster ...
2207 	 * QQQ: Maybe the other TTBR is an option.
2208 	 *
2209 	 * Finally, install own PT2TAB table to these tables.
2210 	 */
2211 
2212 	if (pmap->pm_pt1 == NULL) {
2213 		pmap->pm_pt1 = kmem_alloc_contig(NB_IN_PT1,
2214 		    M_NOWAIT | M_ZERO, 0, -1UL, NB_IN_PT1, 0, pt_memattr);
2215 		if (pmap->pm_pt1 == NULL)
2216 			return (0);
2217 	}
2218 	if (pmap->pm_pt2tab == NULL) {
2219 		/*
2220 		 * QQQ: (1) PT2TAB must be contiguous. If PT2TAB is one page
2221 		 *      only, what should be the only size for 32 bit systems,
2222 		 *      then we could allocate it with vm_page_alloc() and all
2223 		 *      the stuff needed as other L2 page table pages.
2224 		 *      (2) Note that a process PT2TAB is special L2 page table
2225 		 *      page. Its mapping in kernel_arena is permanent and can
2226 		 *      be used no matter which process is current. Its mapping
2227 		 *      in PT2MAP can be used only for current process.
2228 		 */
2229 		pmap->pm_pt2tab = kmem_alloc_attr(NB_IN_PT2TAB,
2230 		    M_NOWAIT | M_ZERO, 0, -1UL, pt_memattr);
2231 		if (pmap->pm_pt2tab == NULL) {
2232 			/*
2233 			 * QQQ: As struct pmap is allocated from UMA with
2234 			 *      UMA_ZONE_NOFREE flag, it's important to leave
2235 			 *      no allocation in pmap if initialization failed.
2236 			 */
2237 			kmem_free(pmap->pm_pt1, NB_IN_PT1);
2238 			pmap->pm_pt1 = NULL;
2239 			return (0);
2240 		}
2241 		/*
2242 		 * QQQ: Each L2 page table page vm_page_t has pindex set to
2243 		 *      pte1 index of virtual address mapped by this page.
2244 		 *      It's not valid for non kernel PT2TABs themselves.
2245 		 *      The pindex of these pages can not be altered because
2246 		 *      of the way how they are allocated now. However, it
2247 		 *      should not be a problem.
2248 		 */
2249 	}
2250 
2251 	mtx_lock_spin(&allpmaps_lock);
2252 	/*
2253 	 * To avoid race with pmap_kenter_pte1() and pmap_kenter_pt2tab(),
2254 	 * kernel_vm_end_new is used here instead of kernel_vm_end.
2255 	 */
2256 	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, KERNBASE,
2257 	    kernel_vm_end_new - 1);
2258 	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, vm_max_kernel_address,
2259 	    0xFFFFFFFF);
2260 	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, KERNBASE,
2261 	    kernel_vm_end_new - 1);
2262 	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, vm_max_kernel_address,
2263 	    0xFFFFFFFF);
2264 	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
2265 	mtx_unlock_spin(&allpmaps_lock);
2266 
2267 	/*
2268 	 * Store PT2MAP PT2 pages (a.k.a. PT2TAB) in PT2TAB itself.
2269 	 * I.e. self reference mapping.  The PT2TAB is private, however mapped
2270 	 * into shared PT2MAP space, so the mapping should be not global.
2271 	 */
2272 	pt2tab_pa = vtophys(pmap->pm_pt2tab);
2273 	pte2p = pmap_pt2tab_entry(pmap, (vm_offset_t)PT2MAP);
2274 	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
2275 		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
2276 	}
2277 
2278 	/* Insert PT2MAP PT2s into pmap PT1. */
2279 	pte1p = pmap_pte1(pmap, (vm_offset_t)PT2MAP);
2280 	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
2281 		pte1_store(pte1p++, PTE1_LINK(pa));
2282 	}
2283 
2284 	/*
2285 	 * Now synchronize new mapping which was made above.
2286 	 */
2287 	pte1_sync_range(pmap->pm_pt1, NB_IN_PT1);
2288 	pte2_sync_range(pmap->pm_pt2tab, NB_IN_PT2TAB);
2289 
2290 	CPU_ZERO(&pmap->pm_active);
2291 	TAILQ_INIT(&pmap->pm_pvchunk);
2292 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2293 
2294 	return (1);
2295 }
2296 
2297 #ifdef INVARIANTS
2298 static bool
pt2tab_user_is_empty(pt2_entry_t * tab)2299 pt2tab_user_is_empty(pt2_entry_t *tab)
2300 {
2301 	u_int i, end;
2302 
2303 	end = pt2tab_index(VM_MAXUSER_ADDRESS);
2304 	for (i = 0; i < end; i++)
2305 		if (tab[i] != 0) return (false);
2306 	return (true);
2307 }
2308 #endif
2309 /*
2310  *  Release any resources held by the given physical map.
2311  *  Called when a pmap initialized by pmap_pinit is being released.
2312  *  Should only be called if the map contains no valid mappings.
2313  */
2314 void
pmap_release(pmap_t pmap)2315 pmap_release(pmap_t pmap)
2316 {
2317 #ifdef INVARIANTS
2318 	vm_offset_t start, end;
2319 #endif
2320 	KASSERT(pmap->pm_stats.resident_count == 0,
2321 	    ("%s: pmap resident count %ld != 0", __func__,
2322 	    pmap->pm_stats.resident_count));
2323 	KASSERT(pt2tab_user_is_empty(pmap->pm_pt2tab),
2324 	    ("%s: has allocated user PT2(s)", __func__));
2325 	KASSERT(CPU_EMPTY(&pmap->pm_active),
2326 	    ("%s: pmap %p is active on some CPU(s)", __func__, pmap));
2327 
2328 	mtx_lock_spin(&allpmaps_lock);
2329 	LIST_REMOVE(pmap, pm_list);
2330 	mtx_unlock_spin(&allpmaps_lock);
2331 
2332 #ifdef INVARIANTS
2333 	start = pte1_index(KERNBASE) * sizeof(pt1_entry_t);
2334 	end = (pte1_index(0xFFFFFFFF) + 1) * sizeof(pt1_entry_t);
2335 	bzero((char *)pmap->pm_pt1 + start, end - start);
2336 
2337 	start = pt2tab_index(KERNBASE) * sizeof(pt2_entry_t);
2338 	end = (pt2tab_index(0xFFFFFFFF) + 1) * sizeof(pt2_entry_t);
2339 	bzero((char *)pmap->pm_pt2tab + start, end - start);
2340 #endif
2341 	/*
2342 	 * We are leaving PT1 and PT2TAB allocated on released pmap,
2343 	 * so hopefully UMA vmspace_zone will always be inited with
2344 	 * UMA_ZONE_NOFREE flag.
2345 	 */
2346 }
2347 
2348 /*********************************************************
2349  *
2350  *  L2 table pages and their pages management routines.
2351  *
2352  *********************************************************/
2353 
2354 /*
2355  *  Virtual interface for L2 page table wire counting.
2356  *
2357  *  Each L2 page table in a page has own counter which counts a number of
2358  *  valid mappings in a table. Global page counter counts mappings in all
2359  *  tables in a page plus a single itself mapping in PT2TAB.
2360  *
2361  *  During a promotion we leave the associated L2 page table counter
2362  *  untouched, so the table (strictly speaking a page which holds it)
2363  *  is never freed if promoted.
2364  *
2365  *  If a page m->ref_count == 1 then no valid mappings exist in any L2 page
2366  *  table in the page and the page itself is only mapped in PT2TAB.
2367  */
2368 
2369 static __inline void
pt2_wirecount_init(vm_page_t m)2370 pt2_wirecount_init(vm_page_t m)
2371 {
2372 	u_int i;
2373 
2374 	/*
2375 	 * Note: A page m is allocated with VM_ALLOC_WIRED flag and
2376 	 *       m->ref_count should be already set correctly.
2377 	 *       So, there is no need to set it again herein.
2378 	 */
2379 	for (i = 0; i < NPT2_IN_PG; i++)
2380 		m->md.pt2_wirecount[i] = 0;
2381 }
2382 
2383 static __inline void
pt2_wirecount_inc(vm_page_t m,uint32_t pte1_idx)2384 pt2_wirecount_inc(vm_page_t m, uint32_t pte1_idx)
2385 {
2386 
2387 	/*
2388 	 * Note: A just modificated pte2 (i.e. already allocated)
2389 	 *       is acquiring one extra reference which must be
2390 	 *       explicitly cleared. It influences the KASSERTs herein.
2391 	 *       All L2 page tables in a page always belong to the same
2392 	 *       pmap, so we allow only one extra reference for the page.
2393 	 */
2394 	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] < (NPTE2_IN_PT2 + 1),
2395 	    ("%s: PT2 is overflowing ...", __func__));
2396 	KASSERT(m->ref_count <= (NPTE2_IN_PG + 1),
2397 	    ("%s: PT2PG is overflowing ...", __func__));
2398 
2399 	m->ref_count++;
2400 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]++;
2401 }
2402 
2403 static __inline void
pt2_wirecount_dec(vm_page_t m,uint32_t pte1_idx)2404 pt2_wirecount_dec(vm_page_t m, uint32_t pte1_idx)
2405 {
2406 
2407 	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] != 0,
2408 	    ("%s: PT2 is underflowing ...", __func__));
2409 	KASSERT(m->ref_count > 1,
2410 	    ("%s: PT2PG is underflowing ...", __func__));
2411 
2412 	m->ref_count--;
2413 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]--;
2414 }
2415 
2416 static __inline void
pt2_wirecount_set(vm_page_t m,uint32_t pte1_idx,uint16_t count)2417 pt2_wirecount_set(vm_page_t m, uint32_t pte1_idx, uint16_t count)
2418 {
2419 
2420 	KASSERT(count <= NPTE2_IN_PT2,
2421 	    ("%s: invalid count %u", __func__, count));
2422 	KASSERT(m->ref_count >  m->md.pt2_wirecount[pte1_idx & PT2PG_MASK],
2423 	    ("%s: PT2PG corrupting (%u, %u) ...", __func__, m->ref_count,
2424 	    m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]));
2425 
2426 	m->ref_count -= m->md.pt2_wirecount[pte1_idx & PT2PG_MASK];
2427 	m->ref_count += count;
2428 	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] = count;
2429 
2430 	KASSERT(m->ref_count <= (NPTE2_IN_PG + 1),
2431 	    ("%s: PT2PG is overflowed (%u) ...", __func__, m->ref_count));
2432 }
2433 
2434 static __inline uint32_t
pt2_wirecount_get(vm_page_t m,uint32_t pte1_idx)2435 pt2_wirecount_get(vm_page_t m, uint32_t pte1_idx)
2436 {
2437 
2438 	return (m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]);
2439 }
2440 
2441 static __inline bool
pt2_is_empty(vm_page_t m,vm_offset_t va)2442 pt2_is_empty(vm_page_t m, vm_offset_t va)
2443 {
2444 
2445 	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] == 0);
2446 }
2447 
2448 static __inline bool
pt2_is_full(vm_page_t m,vm_offset_t va)2449 pt2_is_full(vm_page_t m, vm_offset_t va)
2450 {
2451 
2452 	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] ==
2453 	    NPTE2_IN_PT2);
2454 }
2455 
2456 static __inline bool
pt2pg_is_empty(vm_page_t m)2457 pt2pg_is_empty(vm_page_t m)
2458 {
2459 
2460 	return (m->ref_count == 1);
2461 }
2462 
2463 /*
2464  *  This routine is called if the L2 page table
2465  *  is not mapped correctly.
2466  */
2467 static vm_page_t
_pmap_allocpte2(pmap_t pmap,vm_offset_t va,u_int flags)2468 _pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2469 {
2470 	uint32_t pte1_idx;
2471 	pt1_entry_t *pte1p;
2472 	pt2_entry_t pte2;
2473 	vm_page_t  m;
2474 	vm_paddr_t pt2pg_pa, pt2_pa;
2475 
2476 	pte1_idx = pte1_index(va);
2477 	pte1p = pmap->pm_pt1 + pte1_idx;
2478 
2479 	KASSERT(pte1_load(pte1p) == 0,
2480 	    ("%s: pm_pt1[%#x] is not zero: %#x", __func__, pte1_idx,
2481 	    pte1_load(pte1p)));
2482 
2483 	pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, va));
2484 	if (!pte2_is_valid(pte2)) {
2485 		/*
2486 		 * Install new PT2s page into pmap PT2TAB.
2487 		 */
2488 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2489 		if (m == NULL) {
2490 			if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
2491 				PMAP_UNLOCK(pmap);
2492 				rw_wunlock(&pvh_global_lock);
2493 				vm_wait(NULL);
2494 				rw_wlock(&pvh_global_lock);
2495 				PMAP_LOCK(pmap);
2496 			}
2497 
2498 			/*
2499 			 * Indicate the need to retry.  While waiting,
2500 			 * the L2 page table page may have been allocated.
2501 			 */
2502 			return (NULL);
2503 		}
2504 		m->pindex = pte1_idx & ~PT2PG_MASK;
2505 		pmap->pm_stats.resident_count++;
2506 		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
2507 	} else {
2508 		pt2pg_pa = pte2_pa(pte2);
2509 		m = PHYS_TO_VM_PAGE(pt2pg_pa);
2510 	}
2511 
2512 	pt2_wirecount_inc(m, pte1_idx);
2513 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
2514 	pte1_store(pte1p, PTE1_LINK(pt2_pa));
2515 
2516 	return (m);
2517 }
2518 
2519 static vm_page_t
pmap_allocpte2(pmap_t pmap,vm_offset_t va,u_int flags)2520 pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2521 {
2522 	u_int pte1_idx;
2523 	pt1_entry_t *pte1p, pte1;
2524 	vm_page_t m;
2525 
2526 	pte1_idx = pte1_index(va);
2527 retry:
2528 	pte1p = pmap->pm_pt1 + pte1_idx;
2529 	pte1 = pte1_load(pte1p);
2530 
2531 	/*
2532 	 * This supports switching from a 1MB page to a
2533 	 * normal 4K page.
2534 	 */
2535 	if (pte1_is_section(pte1)) {
2536 		(void)pmap_demote_pte1(pmap, pte1p, va);
2537 		/*
2538 		 * Reload pte1 after demotion.
2539 		 *
2540 		 * Note: Demotion can even fail as either PT2 is not find for
2541 		 *       the virtual address or PT2PG can not be allocated.
2542 		 */
2543 		pte1 = pte1_load(pte1p);
2544 	}
2545 
2546 	/*
2547 	 * If the L2 page table page is mapped, we just increment the
2548 	 * hold count, and activate it.
2549 	 */
2550 	if (pte1_is_link(pte1)) {
2551 		m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2552 		pt2_wirecount_inc(m, pte1_idx);
2553 	} else  {
2554 		/*
2555 		 * Here if the PT2 isn't mapped, or if it has
2556 		 * been deallocated.
2557 		 */
2558 		m = _pmap_allocpte2(pmap, va, flags);
2559 		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2560 			goto retry;
2561 	}
2562 
2563 	return (m);
2564 }
2565 
2566 /*
2567  *  Schedule the specified unused L2 page table page to be freed. Specifically,
2568  *  add the page to the specified list of pages that will be released to the
2569  *  physical memory manager after the TLB has been updated.
2570  */
2571 static __inline void
pmap_add_delayed_free_list(vm_page_t m,struct spglist * free)2572 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free)
2573 {
2574 
2575 	/*
2576 	 * Put page on a list so that it is released after
2577 	 * *ALL* TLB shootdown is done
2578 	 */
2579 #ifdef PMAP_DEBUG
2580 	pmap_zero_page_check(m);
2581 #endif
2582 	m->flags |= PG_ZERO;
2583 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
2584 }
2585 
2586 /*
2587  *  Unwire L2 page tables page.
2588  */
2589 static void
pmap_unwire_pt2pg(pmap_t pmap,vm_offset_t va,vm_page_t m)2590 pmap_unwire_pt2pg(pmap_t pmap, vm_offset_t va, vm_page_t m)
2591 {
2592 	pt1_entry_t *pte1p, opte1 __unused;
2593 	pt2_entry_t *pte2p;
2594 	uint32_t i;
2595 
2596 	KASSERT(pt2pg_is_empty(m),
2597 	    ("%s: pmap %p PT2PG %p wired", __func__, pmap, m));
2598 
2599 	/*
2600 	 * Unmap all L2 page tables in the page from L1 page table.
2601 	 *
2602 	 * QQQ: Individual L2 page tables (except the last one) can be unmapped
2603 	 * earlier. However, we are doing that this way.
2604 	 */
2605 	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
2606 	    ("%s: pmap %p va %#x PT2PG %p bad index", __func__, pmap, va, m));
2607 	pte1p = pmap->pm_pt1 + m->pindex;
2608 	for (i = 0; i < NPT2_IN_PG; i++, pte1p++) {
2609 		KASSERT(m->md.pt2_wirecount[i] == 0,
2610 		    ("%s: pmap %p PT2 %u (PG %p) wired", __func__, pmap, i, m));
2611 		opte1 = pte1_load(pte1p);
2612 		if (pte1_is_link(opte1)) {
2613 			pte1_clear(pte1p);
2614 			/*
2615 			 * Flush intermediate TLB cache.
2616 			 */
2617 			pmap_tlb_flush(pmap, (m->pindex + i) << PTE1_SHIFT);
2618 		}
2619 #ifdef INVARIANTS
2620 		else
2621 			KASSERT((opte1 == 0) || pte1_is_section(opte1),
2622 			    ("%s: pmap %p va %#x bad pte1 %x at %u", __func__,
2623 			    pmap, va, opte1, i));
2624 #endif
2625 	}
2626 
2627 	/*
2628 	 * Unmap the page from PT2TAB.
2629 	 */
2630 	pte2p = pmap_pt2tab_entry(pmap, va);
2631 	(void)pt2tab_load_clear(pte2p);
2632 	pmap_tlb_flush(pmap, pt2map_pt2pg(va));
2633 
2634 	m->ref_count = 0;
2635 	pmap->pm_stats.resident_count--;
2636 
2637 	/*
2638 	 * This barrier is so that the ordinary store unmapping
2639 	 * the L2 page table page is globally performed before TLB shoot-
2640 	 * down is begun.
2641 	 */
2642 	wmb();
2643 	vm_wire_sub(1);
2644 }
2645 
2646 /*
2647  *  Decrements a L2 page table page's wire count, which is used to record the
2648  *  number of valid page table entries within the page.  If the wire count
2649  *  drops to zero, then the page table page is unmapped.  Returns true if the
2650  *  page table page was unmapped and false otherwise.
2651  */
2652 static __inline bool
pmap_unwire_pt2(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)2653 pmap_unwire_pt2(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2654 {
2655 	pt2_wirecount_dec(m, pte1_index(va));
2656 	if (pt2pg_is_empty(m)) {
2657 		/*
2658 		 * QQQ: Wire count is zero, so whole page should be zero and
2659 		 *      we can set PG_ZERO flag to it.
2660 		 *      Note that when promotion is enabled, it takes some
2661 		 *      more efforts. See pmap_unwire_pt2_all() below.
2662 		 */
2663 		pmap_unwire_pt2pg(pmap, va, m);
2664 		pmap_add_delayed_free_list(m, free);
2665 		return (true);
2666 	} else
2667 		return (false);
2668 }
2669 
2670 /*
2671  *  Drop a L2 page table page's wire count at once, which is used to record
2672  *  the number of valid L2 page table entries within the page. If the wire
2673  *  count drops to zero, then the L2 page table page is unmapped.
2674  */
2675 static __inline void
pmap_unwire_pt2_all(pmap_t pmap,vm_offset_t va,vm_page_t m,struct spglist * free)2676 pmap_unwire_pt2_all(pmap_t pmap, vm_offset_t va, vm_page_t m,
2677     struct spglist *free)
2678 {
2679 	u_int pte1_idx = pte1_index(va);
2680 
2681 	KASSERT(m->pindex == (pte1_idx & ~PT2PG_MASK),
2682 		("%s: PT2 page's pindex is wrong", __func__));
2683 	KASSERT(m->ref_count > pt2_wirecount_get(m, pte1_idx),
2684 	    ("%s: bad pt2 wire count %u > %u", __func__, m->ref_count,
2685 	    pt2_wirecount_get(m, pte1_idx)));
2686 
2687 	/*
2688 	 * It's possible that the L2 page table was never used.
2689 	 * It happened in case that a section was created without promotion.
2690 	 */
2691 	if (pt2_is_full(m, va)) {
2692 		pt2_wirecount_set(m, pte1_idx, 0);
2693 
2694 		/*
2695 		 * QQQ: We clear L2 page table now, so when L2 page table page
2696 		 *      is going to be freed, we can set it PG_ZERO flag ...
2697 		 *      This function is called only on section mappings, so
2698 		 *      hopefully it's not to big overload.
2699 		 *
2700 		 * XXX: If pmap is current, existing PT2MAP mapping could be
2701 		 *      used for zeroing.
2702 		 */
2703 		pmap_zero_page_area(m, page_pt2off(pte1_idx), NB_IN_PT2);
2704 	}
2705 #ifdef INVARIANTS
2706 	else
2707 		KASSERT(pt2_is_empty(m, va), ("%s: PT2 is not empty (%u)",
2708 		    __func__, pt2_wirecount_get(m, pte1_idx)));
2709 #endif
2710 	if (pt2pg_is_empty(m)) {
2711 		pmap_unwire_pt2pg(pmap, va, m);
2712 		pmap_add_delayed_free_list(m, free);
2713 	}
2714 }
2715 
2716 /*
2717  *  After removing a L2 page table entry, this routine is used to
2718  *  conditionally free the page, and manage the hold/wire counts.
2719  */
2720 static bool
pmap_unuse_pt2(pmap_t pmap,vm_offset_t va,struct spglist * free)2721 pmap_unuse_pt2(pmap_t pmap, vm_offset_t va, struct spglist *free)
2722 {
2723 	pt1_entry_t pte1;
2724 	vm_page_t mpte;
2725 
2726 	if (va >= VM_MAXUSER_ADDRESS)
2727 		return (false);
2728 	pte1 = pte1_load(pmap_pte1(pmap, va));
2729 	mpte = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2730 	return (pmap_unwire_pt2(pmap, va, mpte, free));
2731 }
2732 
2733 /*************************************
2734  *
2735  *  Page management routines.
2736  *
2737  *************************************/
2738 
2739 static const uint32_t pc_freemask[_NPCM] = {
2740 	[0 ... _NPCM - 2] = PC_FREEN,
2741 	[_NPCM - 1] = PC_FREEL
2742 };
2743 
2744 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2745 	"Current number of pv entries");
2746 
2747 #ifdef PV_STATS
2748 static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2749 
2750 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2751     "Current number of pv entry chunks");
2752 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2753     "Current number of pv entry chunks allocated");
2754 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2755     "Current number of pv entry chunks frees");
2756 SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail,
2757     0, "Number of times tried to get a chunk page but failed.");
2758 
2759 static long pv_entry_frees, pv_entry_allocs;
2760 static int pv_entry_spare;
2761 
2762 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2763     "Current number of pv entry frees");
2764 SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs,
2765     0, "Current number of pv entry allocs");
2766 SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2767     "Current number of spare pv entries");
2768 #endif
2769 
2770 /*
2771  *  Is given page managed?
2772  */
2773 static __inline bool
is_managed(vm_paddr_t pa)2774 is_managed(vm_paddr_t pa)
2775 {
2776 	vm_page_t m;
2777 
2778 	m = PHYS_TO_VM_PAGE(pa);
2779 	if (m == NULL)
2780 		return (false);
2781 	return ((m->oflags & VPO_UNMANAGED) == 0);
2782 }
2783 
2784 static __inline bool
pte1_is_managed(pt1_entry_t pte1)2785 pte1_is_managed(pt1_entry_t pte1)
2786 {
2787 
2788 	return (is_managed(pte1_pa(pte1)));
2789 }
2790 
2791 static __inline bool
pte2_is_managed(pt2_entry_t pte2)2792 pte2_is_managed(pt2_entry_t pte2)
2793 {
2794 
2795 	return (is_managed(pte2_pa(pte2)));
2796 }
2797 
2798 /*
2799  *  We are in a serious low memory condition.  Resort to
2800  *  drastic measures to free some pages so we can allocate
2801  *  another pv entry chunk.
2802  */
2803 static vm_page_t
pmap_pv_reclaim(pmap_t locked_pmap)2804 pmap_pv_reclaim(pmap_t locked_pmap)
2805 {
2806 	struct pch newtail;
2807 	struct pv_chunk *pc;
2808 	struct md_page *pvh;
2809 	pt1_entry_t *pte1p;
2810 	pmap_t pmap;
2811 	pt2_entry_t *pte2p, tpte2;
2812 	pv_entry_t pv;
2813 	vm_offset_t va;
2814 	vm_page_t m, m_pc;
2815 	struct spglist free;
2816 	uint32_t inuse;
2817 	int bit, field, freed;
2818 
2819 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2820 	pmap = NULL;
2821 	m_pc = NULL;
2822 	SLIST_INIT(&free);
2823 	TAILQ_INIT(&newtail);
2824 	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2825 	    SLIST_EMPTY(&free))) {
2826 		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2827 		if (pmap != pc->pc_pmap) {
2828 			if (pmap != NULL) {
2829 				if (pmap != locked_pmap)
2830 					PMAP_UNLOCK(pmap);
2831 			}
2832 			pmap = pc->pc_pmap;
2833 			/* Avoid deadlock and lock recursion. */
2834 			if (pmap > locked_pmap)
2835 				PMAP_LOCK(pmap);
2836 			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2837 				pmap = NULL;
2838 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2839 				continue;
2840 			}
2841 		}
2842 
2843 		/*
2844 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2845 		 */
2846 		freed = 0;
2847 		for (field = 0; field < _NPCM; field++) {
2848 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2849 			    inuse != 0; inuse &= ~(1UL << bit)) {
2850 				bit = ffs(inuse) - 1;
2851 				pv = &pc->pc_pventry[field * 32 + bit];
2852 				va = pv->pv_va;
2853 				pte1p = pmap_pte1(pmap, va);
2854 				if (pte1_is_section(pte1_load(pte1p)))
2855 					continue;
2856 				pte2p = pmap_pte2(pmap, va);
2857 				tpte2 = pte2_load(pte2p);
2858 				if ((tpte2 & PTE2_W) == 0)
2859 					tpte2 = pte2_load_clear(pte2p);
2860 				pmap_pte2_release(pte2p);
2861 				if ((tpte2 & PTE2_W) != 0)
2862 					continue;
2863 				KASSERT(tpte2 != 0,
2864 				    ("pmap_pv_reclaim: pmap %p va %#x zero pte",
2865 				    pmap, va));
2866 				pmap_tlb_flush(pmap, va);
2867 				m = PHYS_TO_VM_PAGE(pte2_pa(tpte2));
2868 				if (pte2_is_dirty(tpte2))
2869 					vm_page_dirty(m);
2870 				if ((tpte2 & PTE2_A) != 0)
2871 					vm_page_aflag_set(m, PGA_REFERENCED);
2872 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2873 				if (TAILQ_EMPTY(&m->md.pv_list) &&
2874 				    (m->flags & PG_FICTITIOUS) == 0) {
2875 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2876 					if (TAILQ_EMPTY(&pvh->pv_list)) {
2877 						vm_page_aflag_clear(m,
2878 						    PGA_WRITEABLE);
2879 					}
2880 				}
2881 				pc->pc_map[field] |= 1UL << bit;
2882 				pmap_unuse_pt2(pmap, va, &free);
2883 				freed++;
2884 			}
2885 		}
2886 		if (freed == 0) {
2887 			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2888 			continue;
2889 		}
2890 		/* Every freed mapping is for a 4 KB page. */
2891 		pmap->pm_stats.resident_count -= freed;
2892 		PV_STAT(pv_entry_frees += freed);
2893 		PV_STAT(pv_entry_spare += freed);
2894 		pv_entry_count -= freed;
2895 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2896 		for (field = 0; field < _NPCM; field++)
2897 			if (pc->pc_map[field] != pc_freemask[field]) {
2898 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2899 				    pc_list);
2900 				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2901 
2902 				/*
2903 				 * One freed pv entry in locked_pmap is
2904 				 * sufficient.
2905 				 */
2906 				if (pmap == locked_pmap)
2907 					goto out;
2908 				break;
2909 			}
2910 		if (field == _NPCM) {
2911 			PV_STAT(pv_entry_spare -= _NPCPV);
2912 			PV_STAT(pc_chunk_count--);
2913 			PV_STAT(pc_chunk_frees++);
2914 			/* Entire chunk is free; return it. */
2915 			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2916 			pmap_qremove((vm_offset_t)pc, 1);
2917 			pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2918 			break;
2919 		}
2920 	}
2921 out:
2922 	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2923 	if (pmap != NULL) {
2924 		if (pmap != locked_pmap)
2925 			PMAP_UNLOCK(pmap);
2926 	}
2927 	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2928 		m_pc = SLIST_FIRST(&free);
2929 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2930 		/* Recycle a freed page table page. */
2931 		m_pc->ref_count = 1;
2932 		vm_wire_add(1);
2933 	}
2934 	vm_page_free_pages_toq(&free, false);
2935 	return (m_pc);
2936 }
2937 
2938 static void
free_pv_chunk(struct pv_chunk * pc)2939 free_pv_chunk(struct pv_chunk *pc)
2940 {
2941 	vm_page_t m;
2942 
2943 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2944 	PV_STAT(pv_entry_spare -= _NPCPV);
2945 	PV_STAT(pc_chunk_count--);
2946 	PV_STAT(pc_chunk_frees++);
2947 	/* entire chunk is free, return it */
2948 	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2949 	pmap_qremove((vm_offset_t)pc, 1);
2950 	vm_page_unwire_noq(m);
2951 	vm_page_free(m);
2952 	pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2953 }
2954 
2955 /*
2956  *  Free the pv_entry back to the free list.
2957  */
2958 static void
free_pv_entry(pmap_t pmap,pv_entry_t pv)2959 free_pv_entry(pmap_t pmap, pv_entry_t pv)
2960 {
2961 	struct pv_chunk *pc;
2962 	int idx, field, bit;
2963 
2964 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2965 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2966 	PV_STAT(pv_entry_frees++);
2967 	PV_STAT(pv_entry_spare++);
2968 	pv_entry_count--;
2969 	pc = pv_to_chunk(pv);
2970 	idx = pv - &pc->pc_pventry[0];
2971 	field = idx / 32;
2972 	bit = idx % 32;
2973 	pc->pc_map[field] |= 1ul << bit;
2974 	for (idx = 0; idx < _NPCM; idx++)
2975 		if (pc->pc_map[idx] != pc_freemask[idx]) {
2976 			/*
2977 			 * 98% of the time, pc is already at the head of the
2978 			 * list.  If it isn't already, move it to the head.
2979 			 */
2980 			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2981 			    pc)) {
2982 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2983 				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2984 				    pc_list);
2985 			}
2986 			return;
2987 		}
2988 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2989 	free_pv_chunk(pc);
2990 }
2991 
2992 /*
2993  *  Get a new pv_entry, allocating a block from the system
2994  *  when needed.
2995  */
2996 static pv_entry_t
get_pv_entry(pmap_t pmap,bool try)2997 get_pv_entry(pmap_t pmap, bool try)
2998 {
2999 	static const struct timeval printinterval = { 60, 0 };
3000 	static struct timeval lastprint;
3001 	int bit, field;
3002 	pv_entry_t pv;
3003 	struct pv_chunk *pc;
3004 	vm_page_t m;
3005 
3006 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3007 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3008 	PV_STAT(pv_entry_allocs++);
3009 	pv_entry_count++;
3010 	if (pv_entry_count > pv_entry_high_water)
3011 		if (ratecheck(&lastprint, &printinterval))
3012 			printf("Approaching the limit on PV entries, consider "
3013 			    "increasing either the vm.pmap.shpgperproc or the "
3014 			    "vm.pmap.pv_entry_max tunable.\n");
3015 retry:
3016 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
3017 	if (pc != NULL) {
3018 		for (field = 0; field < _NPCM; field++) {
3019 			if (pc->pc_map[field]) {
3020 				bit = ffs(pc->pc_map[field]) - 1;
3021 				break;
3022 			}
3023 		}
3024 		if (field < _NPCM) {
3025 			pv = &pc->pc_pventry[field * 32 + bit];
3026 			pc->pc_map[field] &= ~(1ul << bit);
3027 			/* If this was the last item, move it to tail */
3028 			for (field = 0; field < _NPCM; field++)
3029 				if (pc->pc_map[field] != 0) {
3030 					PV_STAT(pv_entry_spare--);
3031 					return (pv);	/* not full, return */
3032 				}
3033 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3034 			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3035 			PV_STAT(pv_entry_spare--);
3036 			return (pv);
3037 		}
3038 	}
3039 	/*
3040 	 * Access to the pte2list "pv_vafree" is synchronized by the pvh
3041 	 * global lock.  If "pv_vafree" is currently non-empty, it will
3042 	 * remain non-empty until pmap_pte2list_alloc() completes.
3043 	 */
3044 	if (pv_vafree == 0 ||
3045 	    (m = vm_page_alloc_noobj(VM_ALLOC_WIRED)) == NULL) {
3046 		if (try) {
3047 			pv_entry_count--;
3048 			PV_STAT(pc_chunk_tryfail++);
3049 			return (NULL);
3050 		}
3051 		m = pmap_pv_reclaim(pmap);
3052 		if (m == NULL)
3053 			goto retry;
3054 	}
3055 	PV_STAT(pc_chunk_count++);
3056 	PV_STAT(pc_chunk_allocs++);
3057 	pc = (struct pv_chunk *)pmap_pte2list_alloc(&pv_vafree);
3058 	pmap_qenter((vm_offset_t)pc, &m, 1);
3059 	pc->pc_pmap = pmap;
3060 	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
3061 	for (field = 1; field < _NPCM; field++)
3062 		pc->pc_map[field] = pc_freemask[field];
3063 	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
3064 	pv = &pc->pc_pventry[0];
3065 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3066 	PV_STAT(pv_entry_spare += _NPCPV - 1);
3067 	return (pv);
3068 }
3069 
3070 /*
3071  *  Create a pv entry for page at pa for
3072  *  (pmap, va).
3073  */
3074 static void
pmap_insert_entry(pmap_t pmap,vm_offset_t va,vm_page_t m)3075 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3076 {
3077 	pv_entry_t pv;
3078 
3079 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3080 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3081 	pv = get_pv_entry(pmap, false);
3082 	pv->pv_va = va;
3083 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3084 }
3085 
3086 static __inline pv_entry_t
pmap_pvh_remove(struct md_page * pvh,pmap_t pmap,vm_offset_t va)3087 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3088 {
3089 	pv_entry_t pv;
3090 
3091 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3092 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3093 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
3094 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
3095 			break;
3096 		}
3097 	}
3098 	return (pv);
3099 }
3100 
3101 static void
pmap_pvh_free(struct md_page * pvh,pmap_t pmap,vm_offset_t va)3102 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3103 {
3104 	pv_entry_t pv;
3105 
3106 	pv = pmap_pvh_remove(pvh, pmap, va);
3107 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
3108 	free_pv_entry(pmap, pv);
3109 }
3110 
3111 static void
pmap_remove_entry(pmap_t pmap,vm_page_t m,vm_offset_t va)3112 pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
3113 {
3114 	struct md_page *pvh;
3115 
3116 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3117 	pmap_pvh_free(&m->md, pmap, va);
3118 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
3119 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3120 		if (TAILQ_EMPTY(&pvh->pv_list))
3121 			vm_page_aflag_clear(m, PGA_WRITEABLE);
3122 	}
3123 }
3124 
3125 static void
pmap_pv_demote_pte1(pmap_t pmap,vm_offset_t va,vm_paddr_t pa)3126 pmap_pv_demote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3127 {
3128 	struct md_page *pvh;
3129 	pv_entry_t pv;
3130 	vm_offset_t va_last;
3131 	vm_page_t m;
3132 
3133 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3134 	KASSERT((pa & PTE1_OFFSET) == 0,
3135 	    ("pmap_pv_demote_pte1: pa is not 1mpage aligned"));
3136 
3137 	/*
3138 	 * Transfer the 1mpage's pv entry for this mapping to the first
3139 	 * page's pv list.
3140 	 */
3141 	pvh = pa_to_pvh(pa);
3142 	va = pte1_trunc(va);
3143 	pv = pmap_pvh_remove(pvh, pmap, va);
3144 	KASSERT(pv != NULL, ("pmap_pv_demote_pte1: pv not found"));
3145 	m = PHYS_TO_VM_PAGE(pa);
3146 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3147 	/* Instantiate the remaining NPTE2_IN_PT2 - 1 pv entries. */
3148 	va_last = va + PTE1_SIZE - PAGE_SIZE;
3149 	do {
3150 		m++;
3151 		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3152 		    ("pmap_pv_demote_pte1: page %p is not managed", m));
3153 		va += PAGE_SIZE;
3154 		pmap_insert_entry(pmap, va, m);
3155 	} while (va < va_last);
3156 }
3157 
3158 #if VM_NRESERVLEVEL > 0
3159 static void
pmap_pv_promote_pte1(pmap_t pmap,vm_offset_t va,vm_paddr_t pa)3160 pmap_pv_promote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3161 {
3162 	struct md_page *pvh;
3163 	pv_entry_t pv;
3164 	vm_offset_t va_last;
3165 	vm_page_t m;
3166 
3167 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3168 	KASSERT((pa & PTE1_OFFSET) == 0,
3169 	    ("pmap_pv_promote_pte1: pa is not 1mpage aligned"));
3170 
3171 	/*
3172 	 * Transfer the first page's pv entry for this mapping to the
3173 	 * 1mpage's pv list.  Aside from avoiding the cost of a call
3174 	 * to get_pv_entry(), a transfer avoids the possibility that
3175 	 * get_pv_entry() calls pmap_pv_reclaim() and that pmap_pv_reclaim()
3176 	 * removes one of the mappings that is being promoted.
3177 	 */
3178 	m = PHYS_TO_VM_PAGE(pa);
3179 	va = pte1_trunc(va);
3180 	pv = pmap_pvh_remove(&m->md, pmap, va);
3181 	KASSERT(pv != NULL, ("pmap_pv_promote_pte1: pv not found"));
3182 	pvh = pa_to_pvh(pa);
3183 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3184 	/* Free the remaining NPTE2_IN_PT2 - 1 pv entries. */
3185 	va_last = va + PTE1_SIZE - PAGE_SIZE;
3186 	do {
3187 		m++;
3188 		va += PAGE_SIZE;
3189 		pmap_pvh_free(&m->md, pmap, va);
3190 	} while (va < va_last);
3191 }
3192 #endif
3193 
3194 /*
3195  *  Conditionally create a pv entry.
3196  */
3197 static bool
pmap_try_insert_pv_entry(pmap_t pmap,vm_offset_t va,vm_page_t m)3198 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3199 {
3200 	pv_entry_t pv;
3201 
3202 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3203 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3204 	if (pv_entry_count < pv_entry_high_water &&
3205 	    (pv = get_pv_entry(pmap, true)) != NULL) {
3206 		pv->pv_va = va;
3207 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3208 		return (true);
3209 	} else
3210 		return (false);
3211 }
3212 
3213 /*
3214  *  Create the pv entries for each of the pages within a section.
3215  */
3216 static bool
pmap_pv_insert_pte1(pmap_t pmap,vm_offset_t va,pt1_entry_t pte1,u_int flags)3217 pmap_pv_insert_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1, u_int flags)
3218 {
3219 	struct md_page *pvh;
3220 	pv_entry_t pv;
3221 	bool noreclaim;
3222 
3223 	rw_assert(&pvh_global_lock, RA_WLOCKED);
3224 	noreclaim = (flags & PMAP_ENTER_NORECLAIM) != 0;
3225 	if ((noreclaim && pv_entry_count >= pv_entry_high_water) ||
3226 	    (pv = get_pv_entry(pmap, noreclaim)) == NULL)
3227 		return (false);
3228 	pv->pv_va = va;
3229 	pvh = pa_to_pvh(pte1_pa(pte1));
3230 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3231 	return (true);
3232 }
3233 
3234 static inline void
pmap_tlb_flush_pte1(pmap_t pmap,vm_offset_t va,pt1_entry_t npte1)3235 pmap_tlb_flush_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t npte1)
3236 {
3237 
3238 	/* Kill all the small mappings or the big one only. */
3239 	if (pte1_is_section(npte1))
3240 		pmap_tlb_flush_range(pmap, pte1_trunc(va), PTE1_SIZE);
3241 	else
3242 		pmap_tlb_flush(pmap, pte1_trunc(va));
3243 }
3244 
3245 /*
3246  *  Update kernel pte1 on all pmaps.
3247  *
3248  *  The following function is called only on one cpu with disabled interrupts.
3249  *  In SMP case, smp_rendezvous_cpus() is used to stop other cpus. This way
3250  *  nobody can invoke explicit hardware table walk during the update of pte1.
3251  *  Unsolicited hardware table walk can still happen, invoked by speculative
3252  *  data or instruction prefetch or even by speculative hardware table walk.
3253  *
3254  *  The break-before-make approach should be implemented here. However, it's
3255  *  not so easy to do that for kernel mappings as it would be unhappy to unmap
3256  *  itself unexpectedly but voluntarily.
3257  */
3258 static void
pmap_update_pte1_kernel(vm_offset_t va,pt1_entry_t npte1)3259 pmap_update_pte1_kernel(vm_offset_t va, pt1_entry_t npte1)
3260 {
3261 	pmap_t pmap;
3262 	pt1_entry_t *pte1p;
3263 
3264 	/*
3265 	 * Get current pmap. Interrupts should be disabled here
3266 	 * so PCPU_GET() is done atomically.
3267 	 */
3268 	pmap = PCPU_GET(curpmap);
3269 	if (pmap == NULL)
3270 		pmap = kernel_pmap;
3271 
3272 	/*
3273 	 * (1) Change pte1 on current pmap.
3274 	 * (2) Flush all obsolete TLB entries on current CPU.
3275 	 * (3) Change pte1 on all pmaps.
3276 	 * (4) Flush all obsolete TLB entries on all CPUs in SMP case.
3277 	 */
3278 
3279 	pte1p = pmap_pte1(pmap, va);
3280 	pte1_store(pte1p, npte1);
3281 
3282 	/* Kill all the small mappings or the big one only. */
3283 	if (pte1_is_section(npte1)) {
3284 		pmap_pte1_kern_promotions++;
3285 		tlb_flush_range_local(pte1_trunc(va), PTE1_SIZE);
3286 	} else {
3287 		pmap_pte1_kern_demotions++;
3288 		tlb_flush_local(pte1_trunc(va));
3289 	}
3290 
3291 	/*
3292 	 * In SMP case, this function is called when all cpus are at smp
3293 	 * rendezvous, so there is no need to use 'allpmaps_lock' lock here.
3294 	 * In UP case, the function is called with this lock locked.
3295 	 */
3296 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
3297 		pte1p = pmap_pte1(pmap, va);
3298 		pte1_store(pte1p, npte1);
3299 	}
3300 
3301 #ifdef SMP
3302 	/* Kill all the small mappings or the big one only. */
3303 	if (pte1_is_section(npte1))
3304 		tlb_flush_range(pte1_trunc(va), PTE1_SIZE);
3305 	else
3306 		tlb_flush(pte1_trunc(va));
3307 #endif
3308 }
3309 
3310 #ifdef SMP
3311 struct pte1_action {
3312 	vm_offset_t va;
3313 	pt1_entry_t npte1;
3314 	u_int update;		/* CPU that updates the PTE1 */
3315 };
3316 
3317 static void
pmap_update_pte1_action(void * arg)3318 pmap_update_pte1_action(void *arg)
3319 {
3320 	struct pte1_action *act = arg;
3321 
3322 	if (act->update == PCPU_GET(cpuid))
3323 		pmap_update_pte1_kernel(act->va, act->npte1);
3324 }
3325 
3326 /*
3327  *  Change pte1 on current pmap.
3328  *  Note that kernel pte1 must be changed on all pmaps.
3329  *
3330  *  According to the architecture reference manual published by ARM,
3331  *  the behaviour is UNPREDICTABLE when two or more TLB entries map the same VA.
3332  *  According to this manual, UNPREDICTABLE behaviours must never happen in
3333  *  a viable system. In contrast, on x86 processors, it is not specified which
3334  *  TLB entry mapping the virtual address will be used, but the MMU doesn't
3335  *  generate a bogus translation the way it does on Cortex-A8 rev 2 (Beaglebone
3336  *  Black).
3337  *
3338  *  It's a problem when either promotion or demotion is being done. The pte1
3339  *  update and appropriate TLB flush must be done atomically in general.
3340  */
3341 static void
pmap_change_pte1(pmap_t pmap,pt1_entry_t * pte1p,vm_offset_t va,pt1_entry_t npte1)3342 pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3343     pt1_entry_t npte1)
3344 {
3345 
3346 	if (pmap == kernel_pmap) {
3347 		struct pte1_action act;
3348 
3349 		sched_pin();
3350 		act.va = va;
3351 		act.npte1 = npte1;
3352 		act.update = PCPU_GET(cpuid);
3353 		smp_rendezvous_cpus(all_cpus, smp_no_rendezvous_barrier,
3354 		    pmap_update_pte1_action, NULL, &act);
3355 		sched_unpin();
3356 	} else {
3357 		register_t cspr;
3358 
3359 		/*
3360 		 * Use break-before-make approach for changing userland
3361 		 * mappings. It can cause L1 translation aborts on other
3362 		 * cores in SMP case. So, special treatment is implemented
3363 		 * in pmap_fault(). To reduce the likelihood that another core
3364 		 * will be affected by the broken mapping, disable interrupts
3365 		 * until the mapping change is completed.
3366 		 */
3367 		cspr = disable_interrupts(PSR_I);
3368 		pte1_clear(pte1p);
3369 		pmap_tlb_flush_pte1(pmap, va, npte1);
3370 		pte1_store(pte1p, npte1);
3371 		restore_interrupts(cspr);
3372 	}
3373 }
3374 #else
3375 static void
pmap_change_pte1(pmap_t pmap,pt1_entry_t * pte1p,vm_offset_t va,pt1_entry_t npte1)3376 pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3377     pt1_entry_t npte1)
3378 {
3379 
3380 	if (pmap == kernel_pmap) {
3381 		mtx_lock_spin(&allpmaps_lock);
3382 		pmap_update_pte1_kernel(va, npte1);
3383 		mtx_unlock_spin(&allpmaps_lock);
3384 	} else {
3385 		register_t cspr;
3386 
3387 		/*
3388 		 * Use break-before-make approach for changing userland
3389 		 * mappings. It's absolutely safe in UP case when interrupts
3390 		 * are disabled.
3391 		 */
3392 		cspr = disable_interrupts(PSR_I);
3393 		pte1_clear(pte1p);
3394 		pmap_tlb_flush_pte1(pmap, va, npte1);
3395 		pte1_store(pte1p, npte1);
3396 		restore_interrupts(cspr);
3397 	}
3398 }
3399 #endif
3400 
3401 #if VM_NRESERVLEVEL > 0
3402 /*
3403  *  Tries to promote the NPTE2_IN_PT2, contiguous 4KB page mappings that are
3404  *  within a single page table page (PT2) to a single 1MB page mapping.
3405  *  For promotion to occur, two conditions must be met: (1) the 4KB page
3406  *  mappings must map aligned, contiguous physical memory and (2) the 4KB page
3407  *  mappings must have identical characteristics.
3408  *
3409  *  Managed (PG_MANAGED) mappings within the kernel address space are not
3410  *  promoted.  The reason is that kernel PTE1s are replicated in each pmap but
3411  *  pmap_remove_write(), pmap_clear_modify(), and pmap_clear_reference() only
3412  *  read the PTE1 from the kernel pmap.
3413  */
3414 static void
pmap_promote_pte1(pmap_t pmap,pt1_entry_t * pte1p,vm_offset_t va)3415 pmap_promote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3416 {
3417 	pt1_entry_t npte1;
3418 	pt2_entry_t *fpte2p, fpte2, fpte2_fav;
3419 	pt2_entry_t *pte2p, pte2;
3420 	vm_offset_t pteva __unused;
3421 	vm_page_t m __unused;
3422 
3423 	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3424 	    pmap, va, pte1_load(pte1p), pte1p));
3425 
3426 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3427 
3428 	/*
3429 	 * Examine the first PTE2 in the specified PT2. Abort if this PTE2 is
3430 	 * either invalid, unused, or does not map the first 4KB physical page
3431 	 * within a 1MB page.
3432 	 */
3433 	fpte2p = pmap_pte2_quick(pmap, pte1_trunc(va));
3434 	fpte2 = pte2_load(fpte2p);
3435 	if ((fpte2 & ((PTE2_FRAME & PTE1_OFFSET) | PTE2_A | PTE2_V)) !=
3436 	    (PTE2_A | PTE2_V)) {
3437 		pmap_pte1_p_failures++;
3438 		CTR3(KTR_PMAP, "%s: failure(1) for va %#x in pmap %p",
3439 		    __func__, va, pmap);
3440 		return;
3441 	}
3442 	if (pte2_is_managed(fpte2) && pmap == kernel_pmap) {
3443 		pmap_pte1_p_failures++;
3444 		CTR3(KTR_PMAP, "%s: failure(2) for va %#x in pmap %p",
3445 		    __func__, va, pmap);
3446 		return;
3447 	}
3448 	if ((fpte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3449 		/*
3450 		 * When page is not modified, PTE2_RO can be set without
3451 		 * a TLB invalidation.
3452 		 */
3453 		fpte2 |= PTE2_RO;
3454 		pte2_store(fpte2p, fpte2);
3455 	}
3456 
3457 	/*
3458 	 * Examine each of the other PTE2s in the specified PT2. Abort if this
3459 	 * PTE2 maps an unexpected 4KB physical page or does not have identical
3460 	 * characteristics to the first PTE2.
3461 	 */
3462 	fpte2_fav = (fpte2 & (PTE2_FRAME | PTE2_A | PTE2_V));
3463 	fpte2_fav += PTE1_SIZE - PTE2_SIZE; /* examine from the end */
3464 	for (pte2p = fpte2p + NPTE2_IN_PT2 - 1; pte2p > fpte2p; pte2p--) {
3465 		pte2 = pte2_load(pte2p);
3466 		if ((pte2 & (PTE2_FRAME | PTE2_A | PTE2_V)) != fpte2_fav) {
3467 			pmap_pte1_p_failures++;
3468 			CTR3(KTR_PMAP, "%s: failure(3) for va %#x in pmap %p",
3469 			    __func__, va, pmap);
3470 			return;
3471 		}
3472 		if ((pte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3473 			/*
3474 			 * When page is not modified, PTE2_RO can be set
3475 			 * without a TLB invalidation. See note above.
3476 			 */
3477 			pte2 |= PTE2_RO;
3478 			pte2_store(pte2p, pte2);
3479 			pteva = pte1_trunc(va) | (pte2 & PTE1_OFFSET &
3480 			    PTE2_FRAME);
3481 			CTR3(KTR_PMAP, "%s: protect for va %#x in pmap %p",
3482 			    __func__, pteva, pmap);
3483 		}
3484 		if ((pte2 & PTE2_PROMOTE) != (fpte2 & PTE2_PROMOTE)) {
3485 			pmap_pte1_p_failures++;
3486 			CTR3(KTR_PMAP, "%s: failure(4) for va %#x in pmap %p",
3487 			    __func__, va, pmap);
3488 			return;
3489 		}
3490 
3491 		fpte2_fav -= PTE2_SIZE;
3492 	}
3493 	/*
3494 	 * The page table page in its current state will stay in PT2TAB
3495 	 * until the PTE1 mapping the section is demoted by pmap_demote_pte1()
3496 	 * or destroyed by pmap_remove_pte1().
3497 	 *
3498 	 * Note that L2 page table size is not equal to PAGE_SIZE.
3499 	 */
3500 	m = PHYS_TO_VM_PAGE(trunc_page(pte1_link_pa(pte1_load(pte1p))));
3501 	KASSERT(m >= vm_page_array && m < &vm_page_array[vm_page_array_size],
3502 	    ("%s: PT2 page is out of range", __func__));
3503 	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
3504 	    ("%s: PT2 page's pindex is wrong", __func__));
3505 
3506 	/*
3507 	 * Get pte1 from pte2 format.
3508 	 */
3509 	npte1 = (fpte2 & PTE1_FRAME) | ATTR_TO_L1(fpte2) | PTE1_V;
3510 
3511 	/*
3512 	 * Promote the pv entries.
3513 	 */
3514 	if (pte2_is_managed(fpte2))
3515 		pmap_pv_promote_pte1(pmap, va, pte1_pa(npte1));
3516 
3517 	/*
3518 	 * Promote the mappings.
3519 	 */
3520 	pmap_change_pte1(pmap, pte1p, va, npte1);
3521 
3522 	pmap_pte1_promotions++;
3523 	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3524 	    __func__, va, pmap);
3525 
3526 	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3527 	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3528 }
3529 #endif /* VM_NRESERVLEVEL > 0 */
3530 
3531 /*
3532  *  Zero L2 page table page.
3533  */
3534 static __inline void
pmap_clear_pt2(pt2_entry_t * fpte2p)3535 pmap_clear_pt2(pt2_entry_t *fpte2p)
3536 {
3537 	pt2_entry_t *pte2p;
3538 
3539 	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++)
3540 		pte2_clear(pte2p);
3541 
3542 }
3543 
3544 /*
3545  *  Removes a 1MB page mapping from the kernel pmap.
3546  */
3547 static void
pmap_remove_kernel_pte1(pmap_t pmap,pt1_entry_t * pte1p,vm_offset_t va)3548 pmap_remove_kernel_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3549 {
3550 	vm_page_t m;
3551 	uint32_t pte1_idx;
3552 	pt2_entry_t *fpte2p;
3553 	vm_paddr_t pt2_pa;
3554 
3555 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3556 	m = pmap_pt2_page(pmap, va);
3557 	if (m == NULL)
3558 		/*
3559 		 * QQQ: Is this function called only on promoted pte1?
3560 		 *      We certainly do section mappings directly
3561 		 *      (without promotion) in kernel !!!
3562 		 */
3563 		panic("%s: missing pt2 page", __func__);
3564 
3565 	pte1_idx = pte1_index(va);
3566 
3567 	/*
3568 	 * Initialize the L2 page table.
3569 	 */
3570 	fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3571 	pmap_clear_pt2(fpte2p);
3572 
3573 	/*
3574 	 * Remove the mapping.
3575 	 */
3576 	pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(m), pte1_idx);
3577 	pmap_kenter_pte1(va, PTE1_LINK(pt2_pa));
3578 
3579 	/*
3580 	 * QQQ: We do not need to invalidate PT2MAP mapping
3581 	 * as we did not change it. I.e. the L2 page table page
3582 	 * was and still is mapped the same way.
3583 	 */
3584 }
3585 
3586 /*
3587  *  Do the things to unmap a section in a process
3588  */
3589 static void
pmap_remove_pte1(pmap_t pmap,pt1_entry_t * pte1p,vm_offset_t sva,struct spglist * free)3590 pmap_remove_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
3591     struct spglist *free)
3592 {
3593 	pt1_entry_t opte1;
3594 	struct md_page *pvh;
3595 	vm_offset_t eva, va;
3596 	vm_page_t m;
3597 
3598 	PDEBUG(6, printf("%s(%p): va %#x pte1 %#x at %p\n", __func__, pmap, sva,
3599 	    pte1_load(pte1p), pte1p));
3600 
3601 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3602 	KASSERT((sva & PTE1_OFFSET) == 0,
3603 	    ("%s: sva is not 1mpage aligned", __func__));
3604 
3605 	/*
3606 	 * Clear and invalidate the mapping. It should occupy one and only TLB
3607 	 * entry. So, pmap_tlb_flush() called with aligned address should be
3608 	 * sufficient.
3609 	 */
3610 	opte1 = pte1_load_clear(pte1p);
3611 	pmap_tlb_flush(pmap, sva);
3612 
3613 	if (pte1_is_wired(opte1))
3614 		pmap->pm_stats.wired_count -= PTE1_SIZE / PAGE_SIZE;
3615 	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
3616 	if (pte1_is_managed(opte1)) {
3617 		pvh = pa_to_pvh(pte1_pa(opte1));
3618 		pmap_pvh_free(pvh, pmap, sva);
3619 		eva = sva + PTE1_SIZE;
3620 		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
3621 		    va < eva; va += PAGE_SIZE, m++) {
3622 			if (pte1_is_dirty(opte1))
3623 				vm_page_dirty(m);
3624 			if (opte1 & PTE1_A)
3625 				vm_page_aflag_set(m, PGA_REFERENCED);
3626 			if (TAILQ_EMPTY(&m->md.pv_list) &&
3627 			    TAILQ_EMPTY(&pvh->pv_list))
3628 				vm_page_aflag_clear(m, PGA_WRITEABLE);
3629 		}
3630 	}
3631 	if (pmap == kernel_pmap) {
3632 		/*
3633 		 * L2 page table(s) can't be removed from kernel map as
3634 		 * kernel counts on it (stuff around pmap_growkernel()).
3635 		 */
3636 		 pmap_remove_kernel_pte1(pmap, pte1p, sva);
3637 	} else {
3638 		/*
3639 		 * Get associated L2 page table page.
3640 		 * It's possible that the page was never allocated.
3641 		 */
3642 		m = pmap_pt2_page(pmap, sva);
3643 		if (m != NULL)
3644 			pmap_unwire_pt2_all(pmap, sva, m, free);
3645 	}
3646 }
3647 
3648 /*
3649  *  Fills L2 page table page with mappings to consecutive physical pages.
3650  */
3651 static __inline void
pmap_fill_pt2(pt2_entry_t * fpte2p,pt2_entry_t npte2)3652 pmap_fill_pt2(pt2_entry_t *fpte2p, pt2_entry_t npte2)
3653 {
3654 	pt2_entry_t *pte2p;
3655 
3656 	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++) {
3657 		pte2_store(pte2p, npte2);
3658 		npte2 += PTE2_SIZE;
3659 	}
3660 }
3661 
3662 /*
3663  *  Tries to demote a 1MB page mapping. If demotion fails, the
3664  *  1MB page mapping is invalidated.
3665  */
3666 static bool
pmap_demote_pte1(pmap_t pmap,pt1_entry_t * pte1p,vm_offset_t va)3667 pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3668 {
3669 	pt1_entry_t opte1, npte1;
3670 	pt2_entry_t *fpte2p, npte2;
3671 	vm_paddr_t pt2pg_pa, pt2_pa;
3672 	vm_page_t m;
3673 	struct spglist free;
3674 	uint32_t pte1_idx, isnew = 0;
3675 
3676 	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3677 	    pmap, va, pte1_load(pte1p), pte1p));
3678 
3679 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3680 
3681 	opte1 = pte1_load(pte1p);
3682 	KASSERT(pte1_is_section(opte1), ("%s: opte1 not a section", __func__));
3683 
3684 	if ((opte1 & PTE1_A) == 0 || (m = pmap_pt2_page(pmap, va)) == NULL) {
3685 		KASSERT(!pte1_is_wired(opte1),
3686 		    ("%s: PT2 page for a wired mapping is missing", __func__));
3687 
3688 		/*
3689 		 * Invalidate the 1MB page mapping and return
3690 		 * "failure" if the mapping was never accessed or the
3691 		 * allocation of the new page table page fails.
3692 		 */
3693 		if ((opte1 & PTE1_A) == 0 ||
3694 		    (m = vm_page_alloc_noobj(VM_ALLOC_WIRED)) == NULL) {
3695 			SLIST_INIT(&free);
3696 			pmap_remove_pte1(pmap, pte1p, pte1_trunc(va), &free);
3697 			vm_page_free_pages_toq(&free, false);
3698 			CTR3(KTR_PMAP, "%s: failure for va %#x in pmap %p",
3699 			    __func__, va, pmap);
3700 			return (false);
3701 		}
3702 		m->pindex = pte1_index(va) & ~PT2PG_MASK;
3703 		if (va < VM_MAXUSER_ADDRESS)
3704 			pmap->pm_stats.resident_count++;
3705 
3706 		isnew = 1;
3707 
3708 		/*
3709 		 * We init all L2 page tables in the page even if
3710 		 * we are going to change everything for one L2 page
3711 		 * table in a while.
3712 		 */
3713 		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
3714 	} else {
3715 		if (va < VM_MAXUSER_ADDRESS) {
3716 			if (pt2_is_empty(m, va))
3717 				isnew = 1; /* Demoting section w/o promotion. */
3718 #ifdef INVARIANTS
3719 			else
3720 				KASSERT(pt2_is_full(m, va), ("%s: bad PT2 wire"
3721 				    " count %u", __func__,
3722 				    pt2_wirecount_get(m, pte1_index(va))));
3723 #endif
3724 		}
3725 	}
3726 
3727 	pt2pg_pa = VM_PAGE_TO_PHYS(m);
3728 	pte1_idx = pte1_index(va);
3729 	/*
3730 	 * If the pmap is current, then the PT2MAP can provide access to
3731 	 * the page table page (promoted L2 page tables are not unmapped).
3732 	 * Otherwise, temporarily map the L2 page table page (m) into
3733 	 * the kernel's address space at either PADDR1 or PADDR2.
3734 	 *
3735 	 * Note that L2 page table size is not equal to PAGE_SIZE.
3736 	 */
3737 	if (pmap_is_current(pmap))
3738 		fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3739 	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
3740 		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
3741 			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
3742 #ifdef SMP
3743 			PMAP1cpu = PCPU_GET(cpuid);
3744 #endif
3745 			tlb_flush_local((vm_offset_t)PADDR1);
3746 			PMAP1changed++;
3747 		} else
3748 #ifdef SMP
3749 		if (PMAP1cpu != PCPU_GET(cpuid)) {
3750 			PMAP1cpu = PCPU_GET(cpuid);
3751 			tlb_flush_local((vm_offset_t)PADDR1);
3752 			PMAP1changedcpu++;
3753 		} else
3754 #endif
3755 			PMAP1unchanged++;
3756 		fpte2p = page_pt2((vm_offset_t)PADDR1, pte1_idx);
3757 	} else {
3758 		mtx_lock(&PMAP2mutex);
3759 		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
3760 			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
3761 			tlb_flush((vm_offset_t)PADDR2);
3762 		}
3763 		fpte2p = page_pt2((vm_offset_t)PADDR2, pte1_idx);
3764 	}
3765 	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
3766 	npte1 = PTE1_LINK(pt2_pa);
3767 
3768 	KASSERT((opte1 & PTE1_A) != 0,
3769 	    ("%s: opte1 is missing PTE1_A", __func__));
3770 	KASSERT((opte1 & (PTE1_NM | PTE1_RO)) != PTE1_NM,
3771 	    ("%s: opte1 has PTE1_NM", __func__));
3772 
3773 	/*
3774 	 *  Get pte2 from pte1 format.
3775 	*/
3776 	npte2 = pte1_pa(opte1) | ATTR_TO_L2(opte1) | PTE2_V;
3777 
3778 	/*
3779 	 * If the L2 page table page is new, initialize it. If the mapping
3780 	 * has changed attributes, update the page table entries.
3781 	 */
3782 	if (isnew != 0) {
3783 		pt2_wirecount_set(m, pte1_idx, NPTE2_IN_PT2);
3784 		pmap_fill_pt2(fpte2p, npte2);
3785 	} else if ((pte2_load(fpte2p) & PTE2_PROMOTE) !=
3786 		    (npte2 & PTE2_PROMOTE))
3787 		pmap_fill_pt2(fpte2p, npte2);
3788 
3789 	KASSERT(pte2_pa(pte2_load(fpte2p)) == pte2_pa(npte2),
3790 	    ("%s: fpte2p and npte2 map different physical addresses",
3791 	    __func__));
3792 
3793 	if (fpte2p == PADDR2)
3794 		mtx_unlock(&PMAP2mutex);
3795 
3796 	/*
3797 	 * Demote the mapping. This pmap is locked. The old PTE1 has
3798 	 * PTE1_A set. If the old PTE1 has not PTE1_RO set, it also
3799 	 * has not PTE1_NM set. Thus, there is no danger of a race with
3800 	 * another processor changing the setting of PTE1_A and/or PTE1_NM
3801 	 * between the read above and the store below.
3802 	 */
3803 	pmap_change_pte1(pmap, pte1p, va, npte1);
3804 
3805 	/*
3806 	 * Demote the pv entry. This depends on the earlier demotion
3807 	 * of the mapping. Specifically, the (re)creation of a per-
3808 	 * page pv entry might trigger the execution of pmap_pv_reclaim(),
3809 	 * which might reclaim a newly (re)created per-page pv entry
3810 	 * and destroy the associated mapping. In order to destroy
3811 	 * the mapping, the PTE1 must have already changed from mapping
3812 	 * the 1mpage to referencing the page table page.
3813 	 */
3814 	if (pte1_is_managed(opte1))
3815 		pmap_pv_demote_pte1(pmap, va, pte1_pa(opte1));
3816 
3817 	pmap_pte1_demotions++;
3818 	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3819 	    __func__, va, pmap);
3820 
3821 	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3822 	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3823 	return (true);
3824 }
3825 
3826 /*
3827  *	Insert the given physical page (p) at
3828  *	the specified virtual address (v) in the
3829  *	target physical map with the protection requested.
3830  *
3831  *	If specified, the page will be wired down, meaning
3832  *	that the related pte can not be reclaimed.
3833  *
3834  *	NB:  This is the only routine which MAY NOT lazy-evaluate
3835  *	or lose information.  That is, this routine must actually
3836  *	insert this page into the given map NOW.
3837  */
3838 int
pmap_enter(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,u_int flags,int8_t psind)3839 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3840     u_int flags, int8_t psind)
3841 {
3842 	pt1_entry_t *pte1p;
3843 	pt2_entry_t *pte2p;
3844 	pt2_entry_t npte2, opte2;
3845 	pv_entry_t pv;
3846 	vm_paddr_t opa, pa;
3847 	vm_page_t mpte2, om;
3848 	int rv;
3849 
3850 	va = trunc_page(va);
3851 	KASSERT(va <= vm_max_kernel_address, ("%s: toobig", __func__));
3852 	KASSERT(va < UPT2V_MIN_ADDRESS || va >= UPT2V_MAX_ADDRESS,
3853 	    ("%s: invalid to pmap_enter page table pages (va: 0x%x)", __func__,
3854 	    va));
3855 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
3856 	    ("%s: managed mapping within the clean submap", __func__));
3857 	if ((m->oflags & VPO_UNMANAGED) == 0)
3858 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
3859 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
3860 	    ("%s: flags %u has reserved bits set", __func__, flags));
3861 	pa = VM_PAGE_TO_PHYS(m);
3862 	npte2 = PTE2(pa, PTE2_A, vm_page_pte2_attr(m));
3863 	if ((flags & VM_PROT_WRITE) == 0)
3864 		npte2 |= PTE2_NM;
3865 	if ((prot & VM_PROT_WRITE) == 0)
3866 		npte2 |= PTE2_RO;
3867 	KASSERT((npte2 & (PTE2_NM | PTE2_RO)) != PTE2_RO,
3868 	    ("%s: flags includes VM_PROT_WRITE but prot doesn't", __func__));
3869 	if ((prot & VM_PROT_EXECUTE) == 0)
3870 		npte2 |= PTE2_NX;
3871 	if ((flags & PMAP_ENTER_WIRED) != 0)
3872 		npte2 |= PTE2_W;
3873 	if (va < VM_MAXUSER_ADDRESS)
3874 		npte2 |= PTE2_U;
3875 	if (pmap != kernel_pmap)
3876 		npte2 |= PTE2_NG;
3877 
3878 	rw_wlock(&pvh_global_lock);
3879 	PMAP_LOCK(pmap);
3880 	sched_pin();
3881 	if (psind == 1) {
3882 		/* Assert the required virtual and physical alignment. */
3883 		KASSERT((va & PTE1_OFFSET) == 0,
3884 		    ("%s: va unaligned", __func__));
3885 		KASSERT(m->psind > 0, ("%s: m->psind < psind", __func__));
3886 		rv = pmap_enter_pte1(pmap, va, PTE1_PA(pa) | ATTR_TO_L1(npte2) |
3887 		    PTE1_V, flags, m);
3888 		goto out;
3889 	}
3890 
3891 	/*
3892 	 * In the case that a page table page is not
3893 	 * resident, we are creating it here.
3894 	 */
3895 	if (va < VM_MAXUSER_ADDRESS) {
3896 		mpte2 = pmap_allocpte2(pmap, va, flags);
3897 		if (mpte2 == NULL) {
3898 			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3899 			    ("pmap_allocpte2 failed with sleep allowed"));
3900 			rv = KERN_RESOURCE_SHORTAGE;
3901 			goto out;
3902 		}
3903 	} else
3904 		mpte2 = NULL;
3905 	pte1p = pmap_pte1(pmap, va);
3906 	if (pte1_is_section(pte1_load(pte1p)))
3907 		panic("%s: attempted on 1MB page", __func__);
3908 	pte2p = pmap_pte2_quick(pmap, va);
3909 	if (pte2p == NULL)
3910 		panic("%s: invalid L1 page table entry va=%#x", __func__, va);
3911 
3912 	om = NULL;
3913 	opte2 = pte2_load(pte2p);
3914 	opa = pte2_pa(opte2);
3915 	/*
3916 	 * Mapping has not changed, must be protection or wiring change.
3917 	 */
3918 	if (pte2_is_valid(opte2) && (opa == pa)) {
3919 		/*
3920 		 * Wiring change, just update stats. We don't worry about
3921 		 * wiring PT2 pages as they remain resident as long as there
3922 		 * are valid mappings in them. Hence, if a user page is wired,
3923 		 * the PT2 page will be also.
3924 		 */
3925 		if (pte2_is_wired(npte2) && !pte2_is_wired(opte2))
3926 			pmap->pm_stats.wired_count++;
3927 		else if (!pte2_is_wired(npte2) && pte2_is_wired(opte2))
3928 			pmap->pm_stats.wired_count--;
3929 
3930 		/*
3931 		 * Remove extra pte2 reference
3932 		 */
3933 		if (mpte2)
3934 			pt2_wirecount_dec(mpte2, pte1_index(va));
3935 		if ((m->oflags & VPO_UNMANAGED) == 0)
3936 			om = m;
3937 		goto validate;
3938 	}
3939 
3940 	/*
3941 	 * QQQ: We think that changing physical address on writeable mapping
3942 	 *      is not safe. Well, maybe on kernel address space with correct
3943 	 *      locking, it can make a sense. However, we have no idea why
3944 	 *      anyone should do that on user address space. Are we wrong?
3945 	 */
3946 	KASSERT((opa == 0) || (opa == pa) ||
3947 	    !pte2_is_valid(opte2) || ((opte2 & PTE2_RO) != 0),
3948 	    ("%s: pmap %p va %#x(%#x) opa %#x pa %#x - gotcha %#x %#x!",
3949 	    __func__, pmap, va, opte2, opa, pa, flags, prot));
3950 
3951 	pv = NULL;
3952 
3953 	/*
3954 	 * Mapping has changed, invalidate old range and fall through to
3955 	 * handle validating new mapping.
3956 	 */
3957 	if (opa) {
3958 		if (pte2_is_wired(opte2))
3959 			pmap->pm_stats.wired_count--;
3960 		om = PHYS_TO_VM_PAGE(opa);
3961 		if (om != NULL && (om->oflags & VPO_UNMANAGED) != 0)
3962 			om = NULL;
3963 		if (om != NULL)
3964 			pv = pmap_pvh_remove(&om->md, pmap, va);
3965 
3966 		/*
3967 		 * Remove extra pte2 reference
3968 		 */
3969 		if (mpte2 != NULL)
3970 			pt2_wirecount_dec(mpte2, va >> PTE1_SHIFT);
3971 	} else
3972 		pmap->pm_stats.resident_count++;
3973 
3974 	/*
3975 	 * Enter on the PV list if part of our managed memory.
3976 	 */
3977 	if ((m->oflags & VPO_UNMANAGED) == 0) {
3978 		if (pv == NULL) {
3979 			pv = get_pv_entry(pmap, false);
3980 			pv->pv_va = va;
3981 		}
3982 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3983 	} else if (pv != NULL)
3984 		free_pv_entry(pmap, pv);
3985 
3986 	/*
3987 	 * Increment counters
3988 	 */
3989 	if (pte2_is_wired(npte2))
3990 		pmap->pm_stats.wired_count++;
3991 
3992 validate:
3993 	/*
3994 	 * Now validate mapping with desired protection/wiring.
3995 	 */
3996 	if (prot & VM_PROT_WRITE) {
3997 		if ((m->oflags & VPO_UNMANAGED) == 0)
3998 			vm_page_aflag_set(m, PGA_WRITEABLE);
3999 	}
4000 
4001 	/*
4002 	 * If the mapping or permission bits are different, we need
4003 	 * to update the pte2.
4004 	 *
4005 	 * QQQ: Think again and again what to do
4006 	 *      if the mapping is going to be changed!
4007 	 */
4008 	if ((opte2 & ~(PTE2_NM | PTE2_A)) != (npte2 & ~(PTE2_NM | PTE2_A))) {
4009 		/*
4010 		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4011 		 * is set. Do it now, before the mapping is stored and made
4012 		 * valid for hardware table walk. If done later, there is a race
4013 		 * for other threads of current process in lazy loading case.
4014 		 * Don't do it for kernel memory which is mapped with exec
4015 		 * permission even if the memory isn't going to hold executable
4016 		 * code. The only time when icache sync is needed is after
4017 		 * kernel module is loaded and the relocation info is processed.
4018 		 * And it's done in elf_cpu_load_file().
4019 		 *
4020 		 * QQQ: (1) Does it exist any better way where
4021 		 *          or how to sync icache?
4022 		 *      (2) Now, we do it on a page basis.
4023 		 */
4024 		if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
4025 		    m->md.pat_mode == VM_MEMATTR_WB_WA &&
4026 		    (opa != pa || (opte2 & PTE2_NX)))
4027 			cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4028 
4029 		if (opte2 & PTE2_V) {
4030 			/* Change mapping with break-before-make approach. */
4031 			opte2 = pte2_load_clear(pte2p);
4032 			pmap_tlb_flush(pmap, va);
4033 			pte2_store(pte2p, npte2);
4034 			if (om != NULL) {
4035 				KASSERT((om->oflags & VPO_UNMANAGED) == 0,
4036 				    ("%s: om %p unmanaged", __func__, om));
4037 				if ((opte2 & PTE2_A) != 0)
4038 					vm_page_aflag_set(om, PGA_REFERENCED);
4039 				if (pte2_is_dirty(opte2))
4040 					vm_page_dirty(om);
4041 				if (TAILQ_EMPTY(&om->md.pv_list) &&
4042 				    ((om->flags & PG_FICTITIOUS) != 0 ||
4043 				    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
4044 					vm_page_aflag_clear(om, PGA_WRITEABLE);
4045 			}
4046 		} else
4047 			pte2_store(pte2p, npte2);
4048 	}
4049 #if 0
4050 	else {
4051 		/*
4052 		 * QQQ: In time when both access and not mofified bits are
4053 		 *      emulated by software, this should not happen. Some
4054 		 *      analysis is need, if this really happen. Missing
4055 		 *      tlb flush somewhere could be the reason.
4056 		 */
4057 		panic("%s: pmap %p va %#x opte2 %x npte2 %x !!", __func__, pmap,
4058 		    va, opte2, npte2);
4059 	}
4060 #endif
4061 
4062 #if VM_NRESERVLEVEL > 0
4063 	/*
4064 	 * If both the L2 page table page and the reservation are fully
4065 	 * populated, then attempt promotion.
4066 	 */
4067 	if ((mpte2 == NULL || pt2_is_full(mpte2, va)) &&
4068 	    sp_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
4069 	    vm_reserv_level_iffullpop(m) == 0)
4070 		pmap_promote_pte1(pmap, pte1p, va);
4071 #endif
4072 
4073 	rv = KERN_SUCCESS;
4074 out:
4075 	sched_unpin();
4076 	rw_wunlock(&pvh_global_lock);
4077 	PMAP_UNLOCK(pmap);
4078 	return (rv);
4079 }
4080 
4081 /*
4082  *  Do the things to unmap a page in a process.
4083  */
4084 static int
pmap_remove_pte2(pmap_t pmap,pt2_entry_t * pte2p,vm_offset_t va,struct spglist * free)4085 pmap_remove_pte2(pmap_t pmap, pt2_entry_t *pte2p, vm_offset_t va,
4086     struct spglist *free)
4087 {
4088 	pt2_entry_t opte2;
4089 	vm_page_t m;
4090 
4091 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4092 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4093 
4094 	/* Clear and invalidate the mapping. */
4095 	opte2 = pte2_load_clear(pte2p);
4096 	pmap_tlb_flush(pmap, va);
4097 
4098 	KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %#x not link pte2 %#x",
4099 	    __func__, pmap, va, opte2));
4100 
4101 	if (opte2 & PTE2_W)
4102 		pmap->pm_stats.wired_count -= 1;
4103 	pmap->pm_stats.resident_count -= 1;
4104 	if (pte2_is_managed(opte2)) {
4105 		m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
4106 		if (pte2_is_dirty(opte2))
4107 			vm_page_dirty(m);
4108 		if (opte2 & PTE2_A)
4109 			vm_page_aflag_set(m, PGA_REFERENCED);
4110 		pmap_remove_entry(pmap, m, va);
4111 	}
4112 	return (pmap_unuse_pt2(pmap, va, free));
4113 }
4114 
4115 /*
4116  *  Remove a single page from a process address space.
4117  */
4118 static void
pmap_remove_page(pmap_t pmap,vm_offset_t va,struct spglist * free)4119 pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
4120 {
4121 	pt2_entry_t *pte2p;
4122 
4123 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4124 	KASSERT(curthread->td_pinned > 0,
4125 	    ("%s: curthread not pinned", __func__));
4126 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4127 	if ((pte2p = pmap_pte2_quick(pmap, va)) == NULL ||
4128 	    !pte2_is_valid(pte2_load(pte2p)))
4129 		return;
4130 	pmap_remove_pte2(pmap, pte2p, va, free);
4131 }
4132 
4133 /*
4134  *  Remove the given range of addresses from the specified map.
4135  *
4136  *  It is assumed that the start and end are properly
4137  *  rounded to the page size.
4138  */
4139 void
pmap_remove(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)4140 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4141 {
4142 	vm_offset_t nextva;
4143 	pt1_entry_t *pte1p, pte1;
4144 	pt2_entry_t *pte2p, pte2;
4145 	struct spglist free;
4146 
4147 	/*
4148 	 * Perform an unsynchronized read. This is, however, safe.
4149 	 */
4150 	if (pmap->pm_stats.resident_count == 0)
4151 		return;
4152 
4153 	SLIST_INIT(&free);
4154 
4155 	rw_wlock(&pvh_global_lock);
4156 	sched_pin();
4157 	PMAP_LOCK(pmap);
4158 
4159 	/*
4160 	 * Special handling of removing one page. A very common
4161 	 * operation and easy to short circuit some code.
4162 	 */
4163 	if (sva + PAGE_SIZE == eva) {
4164 		pte1 = pte1_load(pmap_pte1(pmap, sva));
4165 		if (pte1_is_link(pte1)) {
4166 			pmap_remove_page(pmap, sva, &free);
4167 			goto out;
4168 		}
4169 	}
4170 
4171 	for (; sva < eva; sva = nextva) {
4172 		/*
4173 		 * Calculate address for next L2 page table.
4174 		 */
4175 		nextva = pte1_trunc(sva + PTE1_SIZE);
4176 		if (nextva < sva)
4177 			nextva = eva;
4178 		if (pmap->pm_stats.resident_count == 0)
4179 			break;
4180 
4181 		pte1p = pmap_pte1(pmap, sva);
4182 		pte1 = pte1_load(pte1p);
4183 
4184 		/*
4185 		 * Weed out invalid mappings. Note: we assume that the L1 page
4186 		 * table is always allocated, and in kernel virtual.
4187 		 */
4188 		if (pte1 == 0)
4189 			continue;
4190 
4191 		if (pte1_is_section(pte1)) {
4192 			/*
4193 			 * Are we removing the entire large page?  If not,
4194 			 * demote the mapping and fall through.
4195 			 */
4196 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
4197 				pmap_remove_pte1(pmap, pte1p, sva, &free);
4198 				continue;
4199 			} else if (!pmap_demote_pte1(pmap, pte1p, sva)) {
4200 				/* The large page mapping was destroyed. */
4201 				continue;
4202 			}
4203 #ifdef INVARIANTS
4204 			else {
4205 				/* Update pte1 after demotion. */
4206 				pte1 = pte1_load(pte1p);
4207 			}
4208 #endif
4209 		}
4210 
4211 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
4212 		    " is not link", __func__, pmap, sva, pte1, pte1p));
4213 
4214 		/*
4215 		 * Limit our scan to either the end of the va represented
4216 		 * by the current L2 page table page, or to the end of the
4217 		 * range being removed.
4218 		 */
4219 		if (nextva > eva)
4220 			nextva = eva;
4221 
4222 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva;
4223 		    pte2p++, sva += PAGE_SIZE) {
4224 			pte2 = pte2_load(pte2p);
4225 			if (!pte2_is_valid(pte2))
4226 				continue;
4227 			if (pmap_remove_pte2(pmap, pte2p, sva, &free))
4228 				break;
4229 		}
4230 	}
4231 out:
4232 	sched_unpin();
4233 	rw_wunlock(&pvh_global_lock);
4234 	PMAP_UNLOCK(pmap);
4235 	vm_page_free_pages_toq(&free, false);
4236 }
4237 
4238 /*
4239  *	Routine:	pmap_remove_all
4240  *	Function:
4241  *		Removes this physical page from
4242  *		all physical maps in which it resides.
4243  *		Reflects back modify bits to the pager.
4244  *
4245  *	Notes:
4246  *		Original versions of this routine were very
4247  *		inefficient because they iteratively called
4248  *		pmap_remove (slow...)
4249  */
4250 
4251 void
pmap_remove_all(vm_page_t m)4252 pmap_remove_all(vm_page_t m)
4253 {
4254 	struct md_page *pvh;
4255 	pv_entry_t pv;
4256 	pmap_t pmap;
4257 	pt2_entry_t *pte2p, opte2;
4258 	pt1_entry_t *pte1p;
4259 	vm_offset_t va;
4260 	struct spglist free;
4261 
4262 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4263 	    ("%s: page %p is not managed", __func__, m));
4264 	SLIST_INIT(&free);
4265 	rw_wlock(&pvh_global_lock);
4266 	sched_pin();
4267 	if ((m->flags & PG_FICTITIOUS) != 0)
4268 		goto small_mappings;
4269 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4270 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
4271 		va = pv->pv_va;
4272 		pmap = PV_PMAP(pv);
4273 		PMAP_LOCK(pmap);
4274 		pte1p = pmap_pte1(pmap, va);
4275 		(void)pmap_demote_pte1(pmap, pte1p, va);
4276 		PMAP_UNLOCK(pmap);
4277 	}
4278 small_mappings:
4279 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4280 		pmap = PV_PMAP(pv);
4281 		PMAP_LOCK(pmap);
4282 		pmap->pm_stats.resident_count--;
4283 		pte1p = pmap_pte1(pmap, pv->pv_va);
4284 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found "
4285 		    "a 1mpage in page %p's pv list", __func__, m));
4286 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
4287 		opte2 = pte2_load_clear(pte2p);
4288 		pmap_tlb_flush(pmap, pv->pv_va);
4289 		KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %x zero pte2",
4290 		    __func__, pmap, pv->pv_va));
4291 		if (pte2_is_wired(opte2))
4292 			pmap->pm_stats.wired_count--;
4293 		if (opte2 & PTE2_A)
4294 			vm_page_aflag_set(m, PGA_REFERENCED);
4295 
4296 		/*
4297 		 * Update the vm_page_t clean and reference bits.
4298 		 */
4299 		if (pte2_is_dirty(opte2))
4300 			vm_page_dirty(m);
4301 		pmap_unuse_pt2(pmap, pv->pv_va, &free);
4302 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4303 		free_pv_entry(pmap, pv);
4304 		PMAP_UNLOCK(pmap);
4305 	}
4306 	vm_page_aflag_clear(m, PGA_WRITEABLE);
4307 	sched_unpin();
4308 	rw_wunlock(&pvh_global_lock);
4309 	vm_page_free_pages_toq(&free, false);
4310 }
4311 
4312 /*
4313  *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4314  *  good coding style, a.k.a. 80 character line width limit hell.
4315  */
4316 static __inline void
pmap_remove_pte1_quick(pmap_t pmap,pt1_entry_t pte1,pv_entry_t pv,struct spglist * free)4317 pmap_remove_pte1_quick(pmap_t pmap, pt1_entry_t pte1, pv_entry_t pv,
4318     struct spglist *free)
4319 {
4320 	vm_paddr_t pa;
4321 	vm_page_t m, mt, mpt2pg;
4322 	struct md_page *pvh;
4323 
4324 	pa = pte1_pa(pte1);
4325 	m = PHYS_TO_VM_PAGE(pa);
4326 
4327 	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4328 	    __func__, m, m->phys_addr, pa));
4329 	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4330 	    m < &vm_page_array[vm_page_array_size],
4331 	    ("%s: bad pte1 %#x", __func__, pte1));
4332 
4333 	if (pte1_is_dirty(pte1)) {
4334 		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4335 			vm_page_dirty(mt);
4336 	}
4337 
4338 	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
4339 	pvh = pa_to_pvh(pa);
4340 	TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4341 	if (TAILQ_EMPTY(&pvh->pv_list)) {
4342 		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4343 			if (TAILQ_EMPTY(&mt->md.pv_list))
4344 				vm_page_aflag_clear(mt, PGA_WRITEABLE);
4345 	}
4346 	mpt2pg = pmap_pt2_page(pmap, pv->pv_va);
4347 	if (mpt2pg != NULL)
4348 		pmap_unwire_pt2_all(pmap, pv->pv_va, mpt2pg, free);
4349 }
4350 
4351 /*
4352  *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4353  *  good coding style, a.k.a. 80 character line width limit hell.
4354  */
4355 static __inline void
pmap_remove_pte2_quick(pmap_t pmap,pt2_entry_t pte2,pv_entry_t pv,struct spglist * free)4356 pmap_remove_pte2_quick(pmap_t pmap, pt2_entry_t pte2, pv_entry_t pv,
4357     struct spglist *free)
4358 {
4359 	vm_paddr_t pa;
4360 	vm_page_t m;
4361 	struct md_page *pvh;
4362 
4363 	pa = pte2_pa(pte2);
4364 	m = PHYS_TO_VM_PAGE(pa);
4365 
4366 	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4367 	    __func__, m, m->phys_addr, pa));
4368 	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4369 	    m < &vm_page_array[vm_page_array_size],
4370 	    ("%s: bad pte2 %#x", __func__, pte2));
4371 
4372 	if (pte2_is_dirty(pte2))
4373 		vm_page_dirty(m);
4374 
4375 	pmap->pm_stats.resident_count--;
4376 	TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4377 	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
4378 		pvh = pa_to_pvh(pa);
4379 		if (TAILQ_EMPTY(&pvh->pv_list))
4380 			vm_page_aflag_clear(m, PGA_WRITEABLE);
4381 	}
4382 	pmap_unuse_pt2(pmap, pv->pv_va, free);
4383 }
4384 
4385 /*
4386  *  Remove all pages from specified address space this aids process
4387  *  exit speeds. Also, this code is special cased for current process
4388  *  only, but can have the more generic (and slightly slower) mode enabled.
4389  *  This is much faster than pmap_remove in the case of running down
4390  *  an entire address space.
4391  */
4392 void
pmap_remove_pages(pmap_t pmap)4393 pmap_remove_pages(pmap_t pmap)
4394 {
4395 	pt1_entry_t *pte1p, pte1;
4396 	pt2_entry_t *pte2p, pte2;
4397 	pv_entry_t pv;
4398 	struct pv_chunk *pc, *npc;
4399 	struct spglist free;
4400 	int field, idx;
4401 	int32_t bit;
4402 	uint32_t inuse, bitmask;
4403 	bool allfree;
4404 
4405 	/*
4406 	 * Assert that the given pmap is only active on the current
4407 	 * CPU.  Unfortunately, we cannot block another CPU from
4408 	 * activating the pmap while this function is executing.
4409 	 */
4410 	KASSERT(pmap == vmspace_pmap(curthread->td_proc->p_vmspace),
4411 	    ("%s: non-current pmap %p", __func__, pmap));
4412 #if defined(SMP) && defined(INVARIANTS)
4413 	{
4414 		cpuset_t other_cpus;
4415 
4416 		sched_pin();
4417 		other_cpus = pmap->pm_active;
4418 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
4419 		sched_unpin();
4420 		KASSERT(CPU_EMPTY(&other_cpus),
4421 		    ("%s: pmap %p active on other cpus", __func__, pmap));
4422 	}
4423 #endif
4424 	SLIST_INIT(&free);
4425 	rw_wlock(&pvh_global_lock);
4426 	PMAP_LOCK(pmap);
4427 	sched_pin();
4428 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4429 		KASSERT(pc->pc_pmap == pmap, ("%s: wrong pmap %p %p",
4430 		    __func__, pmap, pc->pc_pmap));
4431 		allfree = true;
4432 		for (field = 0; field < _NPCM; field++) {
4433 			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4434 			while (inuse != 0) {
4435 				bit = ffs(inuse) - 1;
4436 				bitmask = 1UL << bit;
4437 				idx = field * 32 + bit;
4438 				pv = &pc->pc_pventry[idx];
4439 				inuse &= ~bitmask;
4440 
4441 				/*
4442 				 * Note that we cannot remove wired pages
4443 				 * from a process' mapping at this time
4444 				 */
4445 				pte1p = pmap_pte1(pmap, pv->pv_va);
4446 				pte1 = pte1_load(pte1p);
4447 				if (pte1_is_section(pte1)) {
4448 					if (pte1_is_wired(pte1))  {
4449 						allfree = false;
4450 						continue;
4451 					}
4452 					pte1_clear(pte1p);
4453 					pmap_remove_pte1_quick(pmap, pte1, pv,
4454 					    &free);
4455 				}
4456 				else if (pte1_is_link(pte1)) {
4457 					pte2p = pt2map_entry(pv->pv_va);
4458 					pte2 = pte2_load(pte2p);
4459 
4460 					if (!pte2_is_valid(pte2)) {
4461 						printf("%s: pmap %p va %#x "
4462 						    "pte2 %#x\n", __func__,
4463 						    pmap, pv->pv_va, pte2);
4464 						panic("bad pte2");
4465 					}
4466 
4467 					if (pte2_is_wired(pte2))   {
4468 						allfree = false;
4469 						continue;
4470 					}
4471 					pte2_clear(pte2p);
4472 					pmap_remove_pte2_quick(pmap, pte2, pv,
4473 					    &free);
4474 				} else {
4475 					printf("%s: pmap %p va %#x pte1 %#x\n",
4476 					    __func__, pmap, pv->pv_va, pte1);
4477 					panic("bad pte1");
4478 				}
4479 
4480 				/* Mark free */
4481 				PV_STAT(pv_entry_frees++);
4482 				PV_STAT(pv_entry_spare++);
4483 				pv_entry_count--;
4484 				pc->pc_map[field] |= bitmask;
4485 			}
4486 		}
4487 		if (allfree) {
4488 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4489 			free_pv_chunk(pc);
4490 		}
4491 	}
4492 	tlb_flush_all_ng_local();
4493 	sched_unpin();
4494 	rw_wunlock(&pvh_global_lock);
4495 	PMAP_UNLOCK(pmap);
4496 	vm_page_free_pages_toq(&free, false);
4497 }
4498 
4499 /*
4500  *  This code makes some *MAJOR* assumptions:
4501  *  1. Current pmap & pmap exists.
4502  *  2. Not wired.
4503  *  3. Read access.
4504  *  4. No L2 page table pages.
4505  *  but is *MUCH* faster than pmap_enter...
4506  */
4507 static vm_page_t
pmap_enter_quick_locked(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot,vm_page_t mpt2pg)4508 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4509     vm_prot_t prot, vm_page_t mpt2pg)
4510 {
4511 	pt2_entry_t *pte2p, pte2;
4512 	vm_paddr_t pa;
4513 	struct spglist free;
4514 	uint32_t l2prot;
4515 
4516 	KASSERT(!VA_IS_CLEANMAP(va) ||
4517 	    (m->oflags & VPO_UNMANAGED) != 0,
4518 	    ("%s: managed mapping within the clean submap", __func__));
4519 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4520 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4521 
4522 	/*
4523 	 * In the case that a L2 page table page is not
4524 	 * resident, we are creating it here.
4525 	 */
4526 	if (va < VM_MAXUSER_ADDRESS) {
4527 		u_int pte1_idx;
4528 		pt1_entry_t pte1, *pte1p;
4529 		vm_paddr_t pt2_pa;
4530 
4531 		/*
4532 		 * Get L1 page table things.
4533 		 */
4534 		pte1_idx = pte1_index(va);
4535 		pte1p = pmap_pte1(pmap, va);
4536 		pte1 = pte1_load(pte1p);
4537 
4538 		if (mpt2pg && (mpt2pg->pindex == (pte1_idx & ~PT2PG_MASK))) {
4539 			/*
4540 			 * Each of NPT2_IN_PG L2 page tables on the page can
4541 			 * come here. Make sure that associated L1 page table
4542 			 * link is established.
4543 			 *
4544 			 * QQQ: It comes that we don't establish all links to
4545 			 *      L2 page tables for newly allocated L2 page
4546 			 *      tables page.
4547 			 */
4548 			KASSERT(!pte1_is_section(pte1),
4549 			    ("%s: pte1 %#x is section", __func__, pte1));
4550 			if (!pte1_is_link(pte1)) {
4551 				pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(mpt2pg),
4552 				    pte1_idx);
4553 				pte1_store(pte1p, PTE1_LINK(pt2_pa));
4554 			}
4555 			pt2_wirecount_inc(mpt2pg, pte1_idx);
4556 		} else {
4557 			/*
4558 			 * If the L2 page table page is mapped, we just
4559 			 * increment the hold count, and activate it.
4560 			 */
4561 			if (pte1_is_section(pte1)) {
4562 				return (NULL);
4563 			} else if (pte1_is_link(pte1)) {
4564 				mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
4565 				pt2_wirecount_inc(mpt2pg, pte1_idx);
4566 			} else {
4567 				mpt2pg = _pmap_allocpte2(pmap, va,
4568 				    PMAP_ENTER_NOSLEEP);
4569 				if (mpt2pg == NULL)
4570 					return (NULL);
4571 			}
4572 		}
4573 	} else {
4574 		mpt2pg = NULL;
4575 	}
4576 
4577 	/*
4578 	 * This call to pt2map_entry() makes the assumption that we are
4579 	 * entering the page into the current pmap.  In order to support
4580 	 * quick entry into any pmap, one would likely use pmap_pte2_quick().
4581 	 * But that isn't as quick as pt2map_entry().
4582 	 */
4583 	pte2p = pt2map_entry(va);
4584 	pte2 = pte2_load(pte2p);
4585 	if (pte2_is_valid(pte2)) {
4586 		if (mpt2pg != NULL) {
4587 			/*
4588 			 * Remove extra pte2 reference
4589 			 */
4590 			pt2_wirecount_dec(mpt2pg, pte1_index(va));
4591 			mpt2pg = NULL;
4592 		}
4593 		return (NULL);
4594 	}
4595 
4596 	/*
4597 	 * Enter on the PV list if part of our managed memory.
4598 	 */
4599 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4600 	    !pmap_try_insert_pv_entry(pmap, va, m)) {
4601 		if (mpt2pg != NULL) {
4602 			SLIST_INIT(&free);
4603 			if (pmap_unwire_pt2(pmap, va, mpt2pg, &free)) {
4604 				pmap_tlb_flush(pmap, va);
4605 				vm_page_free_pages_toq(&free, false);
4606 			}
4607 
4608 			mpt2pg = NULL;
4609 		}
4610 		return (NULL);
4611 	}
4612 
4613 	/*
4614 	 * Increment counters
4615 	 */
4616 	pmap->pm_stats.resident_count++;
4617 
4618 	/*
4619 	 * Now validate mapping with RO protection
4620 	 */
4621 	pa = VM_PAGE_TO_PHYS(m);
4622 	l2prot = PTE2_RO | PTE2_NM;
4623 	if (va < VM_MAXUSER_ADDRESS)
4624 		l2prot |= PTE2_U | PTE2_NG;
4625 	if ((prot & VM_PROT_EXECUTE) == 0)
4626 		l2prot |= PTE2_NX;
4627 	else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
4628 		/*
4629 		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4630 		 * is set. QQQ: For more info, see comments in pmap_enter().
4631 		 */
4632 		cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4633 	}
4634 	pte2_store(pte2p, PTE2(pa, l2prot, vm_page_pte2_attr(m)));
4635 
4636 	return (mpt2pg);
4637 }
4638 
4639 void
pmap_enter_quick(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)4640 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4641 {
4642 
4643 	rw_wlock(&pvh_global_lock);
4644 	PMAP_LOCK(pmap);
4645 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
4646 	rw_wunlock(&pvh_global_lock);
4647 	PMAP_UNLOCK(pmap);
4648 }
4649 
4650 /*
4651  *  Tries to create a read- and/or execute-only 1 MB page mapping.  Returns
4652  *  true if successful.  Returns false if (1) a mapping already exists at the
4653  *  specified virtual address or (2) a PV entry cannot be allocated without
4654  *  reclaiming another PV entry.
4655  */
4656 static bool
pmap_enter_1mpage(pmap_t pmap,vm_offset_t va,vm_page_t m,vm_prot_t prot)4657 pmap_enter_1mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4658 {
4659 	pt1_entry_t pte1;
4660 	vm_paddr_t pa;
4661 
4662 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4663 	pa = VM_PAGE_TO_PHYS(m);
4664 	pte1 = PTE1(pa, PTE1_NM | PTE1_RO, ATTR_TO_L1(vm_page_pte2_attr(m)));
4665 	if ((prot & VM_PROT_EXECUTE) == 0)
4666 		pte1 |= PTE1_NX;
4667 	if (va < VM_MAXUSER_ADDRESS)
4668 		pte1 |= PTE1_U;
4669 	if (pmap != kernel_pmap)
4670 		pte1 |= PTE1_NG;
4671 	return (pmap_enter_pte1(pmap, va, pte1, PMAP_ENTER_NOSLEEP |
4672 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, m) == KERN_SUCCESS);
4673 }
4674 
4675 /*
4676  *  Tries to create the specified 1 MB page mapping.  Returns KERN_SUCCESS if
4677  *  the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
4678  *  otherwise.  Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
4679  *  a mapping already exists at the specified virtual address.  Returns
4680  *  KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NORECLAIM was specified and PV entry
4681  *  allocation failed.
4682  */
4683 static int
pmap_enter_pte1(pmap_t pmap,vm_offset_t va,pt1_entry_t pte1,u_int flags,vm_page_t m)4684 pmap_enter_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t pte1, u_int flags,
4685     vm_page_t m)
4686 {
4687 	struct spglist free;
4688 	pt1_entry_t opte1, *pte1p;
4689 	pt2_entry_t pte2, *pte2p;
4690 	vm_offset_t cur, end;
4691 	vm_page_t mt;
4692 
4693 	rw_assert(&pvh_global_lock, RA_WLOCKED);
4694 	KASSERT((pte1 & (PTE1_NM | PTE1_RO)) == 0 ||
4695 	    (pte1 & (PTE1_NM | PTE1_RO)) == (PTE1_NM | PTE1_RO),
4696 	    ("%s: pte1 has inconsistent NM and RO attributes", __func__));
4697 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4698 	pte1p = pmap_pte1(pmap, va);
4699 	opte1 = pte1_load(pte1p);
4700 	if (pte1_is_valid(opte1)) {
4701 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
4702 			CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p",
4703 			    __func__, va, pmap);
4704 			return (KERN_FAILURE);
4705 		}
4706 		/* Break the existing mapping(s). */
4707 		SLIST_INIT(&free);
4708 		if (pte1_is_section(opte1)) {
4709 			/*
4710 			 * If the section resulted from a promotion, then a
4711 			 * reserved PT page could be freed.
4712 			 */
4713 			pmap_remove_pte1(pmap, pte1p, va, &free);
4714 		} else {
4715 			sched_pin();
4716 			end = va + PTE1_SIZE;
4717 			for (cur = va, pte2p = pmap_pte2_quick(pmap, va);
4718 			    cur != end; cur += PAGE_SIZE, pte2p++) {
4719 				pte2 = pte2_load(pte2p);
4720 				if (!pte2_is_valid(pte2))
4721 					continue;
4722 				if (pmap_remove_pte2(pmap, pte2p, cur, &free))
4723 					break;
4724 			}
4725 			sched_unpin();
4726 		}
4727 		vm_page_free_pages_toq(&free, false);
4728 	}
4729 	if ((m->oflags & VPO_UNMANAGED) == 0) {
4730 		/*
4731 		 * Abort this mapping if its PV entry could not be created.
4732 		 */
4733 		if (!pmap_pv_insert_pte1(pmap, va, pte1, flags)) {
4734 			CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p",
4735 			    __func__, va, pmap);
4736 			return (KERN_RESOURCE_SHORTAGE);
4737 		}
4738 		if ((pte1 & PTE1_RO) == 0) {
4739 			for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4740 				vm_page_aflag_set(mt, PGA_WRITEABLE);
4741 		}
4742 	}
4743 
4744 	/*
4745 	 * Increment counters.
4746 	 */
4747 	if (pte1_is_wired(pte1))
4748 		pmap->pm_stats.wired_count += PTE1_SIZE / PAGE_SIZE;
4749 	pmap->pm_stats.resident_count += PTE1_SIZE / PAGE_SIZE;
4750 
4751 	/*
4752 	 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4753 	 * is set.  QQQ: For more info, see comments in pmap_enter().
4754 	 */
4755 	if ((pte1 & PTE1_NX) == 0 && m->md.pat_mode == VM_MEMATTR_WB_WA &&
4756 	    pmap != kernel_pmap && (!pte1_is_section(opte1) ||
4757 	    pte1_pa(opte1) != VM_PAGE_TO_PHYS(m) || (opte1 & PTE2_NX) != 0))
4758 		cache_icache_sync_fresh(va, VM_PAGE_TO_PHYS(m), PTE1_SIZE);
4759 
4760 	/*
4761 	 * Map the section.
4762 	 */
4763 	pte1_store(pte1p, pte1);
4764 
4765 	pmap_pte1_mappings++;
4766 	CTR3(KTR_PMAP, "%s: success for va %#lx in pmap %p", __func__, va,
4767 	    pmap);
4768 	return (KERN_SUCCESS);
4769 }
4770 
4771 /*
4772  *  Maps a sequence of resident pages belonging to the same object.
4773  *  The sequence begins with the given page m_start.  This page is
4774  *  mapped at the given virtual address start.  Each subsequent page is
4775  *  mapped at a virtual address that is offset from start by the same
4776  *  amount as the page is offset from m_start within the object.  The
4777  *  last page in the sequence is the page with the largest offset from
4778  *  m_start that can be mapped at a virtual address less than the given
4779  *  virtual address end.  Not every virtual page between start and end
4780  *  is mapped; only those for which a resident page exists with the
4781  *  corresponding offset from m_start are mapped.
4782  */
4783 void
pmap_enter_object(pmap_t pmap,vm_offset_t start,vm_offset_t end,vm_page_t m_start,vm_prot_t prot)4784 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4785     vm_page_t m_start, vm_prot_t prot)
4786 {
4787 	vm_offset_t va;
4788 	vm_page_t m, mpt2pg;
4789 	vm_pindex_t diff, psize;
4790 
4791 	PDEBUG(6, printf("%s: pmap %p start %#x end  %#x m %p prot %#x\n",
4792 	    __func__, pmap, start, end, m_start, prot));
4793 
4794 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4795 	psize = atop(end - start);
4796 	mpt2pg = NULL;
4797 	m = m_start;
4798 	rw_wlock(&pvh_global_lock);
4799 	PMAP_LOCK(pmap);
4800 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4801 		va = start + ptoa(diff);
4802 		if ((va & PTE1_OFFSET) == 0 && va + PTE1_SIZE <= end &&
4803 		    m->psind == 1 && sp_enabled &&
4804 		    pmap_enter_1mpage(pmap, va, m, prot))
4805 			m = &m[PTE1_SIZE / PAGE_SIZE - 1];
4806 		else
4807 			mpt2pg = pmap_enter_quick_locked(pmap, va, m, prot,
4808 			    mpt2pg);
4809 		m = TAILQ_NEXT(m, listq);
4810 	}
4811 	rw_wunlock(&pvh_global_lock);
4812 	PMAP_UNLOCK(pmap);
4813 }
4814 
4815 /*
4816  *  This code maps large physical mmap regions into the
4817  *  processor address space.  Note that some shortcuts
4818  *  are taken, but the code works.
4819  */
4820 void
pmap_object_init_pt(pmap_t pmap,vm_offset_t addr,vm_object_t object,vm_pindex_t pindex,vm_size_t size)4821 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
4822     vm_pindex_t pindex, vm_size_t size)
4823 {
4824 	pt1_entry_t *pte1p;
4825 	vm_paddr_t pa, pte2_pa;
4826 	vm_page_t p;
4827 	vm_memattr_t pat_mode;
4828 	u_int l1attr, l1prot;
4829 
4830 	VM_OBJECT_ASSERT_WLOCKED(object);
4831 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4832 	    ("%s: non-device object", __func__));
4833 	if ((addr & PTE1_OFFSET) == 0 && (size & PTE1_OFFSET) == 0) {
4834 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4835 			return;
4836 		p = vm_page_lookup(object, pindex);
4837 		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4838 		    ("%s: invalid page %p", __func__, p));
4839 		pat_mode = p->md.pat_mode;
4840 
4841 		/*
4842 		 * Abort the mapping if the first page is not physically
4843 		 * aligned to a 1MB page boundary.
4844 		 */
4845 		pte2_pa = VM_PAGE_TO_PHYS(p);
4846 		if (pte2_pa & PTE1_OFFSET)
4847 			return;
4848 
4849 		/*
4850 		 * Skip the first page. Abort the mapping if the rest of
4851 		 * the pages are not physically contiguous or have differing
4852 		 * memory attributes.
4853 		 */
4854 		p = TAILQ_NEXT(p, listq);
4855 		for (pa = pte2_pa + PAGE_SIZE; pa < pte2_pa + size;
4856 		    pa += PAGE_SIZE) {
4857 			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4858 			    ("%s: invalid page %p", __func__, p));
4859 			if (pa != VM_PAGE_TO_PHYS(p) ||
4860 			    pat_mode != p->md.pat_mode)
4861 				return;
4862 			p = TAILQ_NEXT(p, listq);
4863 		}
4864 
4865 		/*
4866 		 * Map using 1MB pages.
4867 		 *
4868 		 * QQQ: Well, we are mapping a section, so same condition must
4869 		 * be hold like during promotion. It looks that only RW mapping
4870 		 * is done here, so readonly mapping must be done elsewhere.
4871 		 */
4872 		l1prot = PTE1_U | PTE1_NG | PTE1_RW | PTE1_M | PTE1_A;
4873 		l1attr = ATTR_TO_L1(vm_memattr_to_pte2(pat_mode));
4874 		PMAP_LOCK(pmap);
4875 		for (pa = pte2_pa; pa < pte2_pa + size; pa += PTE1_SIZE) {
4876 			pte1p = pmap_pte1(pmap, addr);
4877 			if (!pte1_is_valid(pte1_load(pte1p))) {
4878 				pte1_store(pte1p, PTE1(pa, l1prot, l1attr));
4879 				pmap->pm_stats.resident_count += PTE1_SIZE /
4880 				    PAGE_SIZE;
4881 				pmap_pte1_mappings++;
4882 			}
4883 			/* Else continue on if the PTE1 is already valid. */
4884 			addr += PTE1_SIZE;
4885 		}
4886 		PMAP_UNLOCK(pmap);
4887 	}
4888 }
4889 
4890 /*
4891  *  Do the things to protect a 1mpage in a process.
4892  */
4893 static void
pmap_protect_pte1(pmap_t pmap,pt1_entry_t * pte1p,vm_offset_t sva,vm_prot_t prot)4894 pmap_protect_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
4895     vm_prot_t prot)
4896 {
4897 	pt1_entry_t npte1, opte1;
4898 	vm_offset_t eva, va;
4899 	vm_page_t m;
4900 
4901 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4902 	KASSERT((sva & PTE1_OFFSET) == 0,
4903 	    ("%s: sva is not 1mpage aligned", __func__));
4904 
4905 	opte1 = npte1 = pte1_load(pte1p);
4906 	if (pte1_is_managed(opte1) && pte1_is_dirty(opte1)) {
4907 		eva = sva + PTE1_SIZE;
4908 		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
4909 		    va < eva; va += PAGE_SIZE, m++)
4910 			vm_page_dirty(m);
4911 	}
4912 	if ((prot & VM_PROT_WRITE) == 0)
4913 		npte1 |= PTE1_RO | PTE1_NM;
4914 	if ((prot & VM_PROT_EXECUTE) == 0)
4915 		npte1 |= PTE1_NX;
4916 
4917 	/*
4918 	 * QQQ: Herein, execute permission is never set.
4919 	 *      It only can be cleared. So, no icache
4920 	 *      syncing is needed.
4921 	 */
4922 
4923 	if (npte1 != opte1) {
4924 		pte1_store(pte1p, npte1);
4925 		pmap_tlb_flush(pmap, sva);
4926 	}
4927 }
4928 
4929 /*
4930  *	Set the physical protection on the
4931  *	specified range of this map as requested.
4932  */
4933 void
pmap_protect(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,vm_prot_t prot)4934 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4935 {
4936 	bool pv_lists_locked;
4937 	vm_offset_t nextva;
4938 	pt1_entry_t *pte1p, pte1;
4939 	pt2_entry_t *pte2p, opte2, npte2;
4940 
4941 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4942 	if (prot == VM_PROT_NONE) {
4943 		pmap_remove(pmap, sva, eva);
4944 		return;
4945 	}
4946 
4947 	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
4948 	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
4949 		return;
4950 
4951 	if (pmap_is_current(pmap))
4952 		pv_lists_locked = false;
4953 	else {
4954 		pv_lists_locked = true;
4955 resume:
4956 		rw_wlock(&pvh_global_lock);
4957 		sched_pin();
4958 	}
4959 
4960 	PMAP_LOCK(pmap);
4961 	for (; sva < eva; sva = nextva) {
4962 		/*
4963 		 * Calculate address for next L2 page table.
4964 		 */
4965 		nextva = pte1_trunc(sva + PTE1_SIZE);
4966 		if (nextva < sva)
4967 			nextva = eva;
4968 
4969 		pte1p = pmap_pte1(pmap, sva);
4970 		pte1 = pte1_load(pte1p);
4971 
4972 		/*
4973 		 * Weed out invalid mappings. Note: we assume that L1 page
4974 		 * page table is always allocated, and in kernel virtual.
4975 		 */
4976 		if (pte1 == 0)
4977 			continue;
4978 
4979 		if (pte1_is_section(pte1)) {
4980 			/*
4981 			 * Are we protecting the entire large page?  If not,
4982 			 * demote the mapping and fall through.
4983 			 */
4984 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
4985 				pmap_protect_pte1(pmap, pte1p, sva, prot);
4986 				continue;
4987 			} else {
4988 				if (!pv_lists_locked) {
4989 					pv_lists_locked = true;
4990 					if (!rw_try_wlock(&pvh_global_lock)) {
4991 						PMAP_UNLOCK(pmap);
4992 						goto resume;
4993 					}
4994 					sched_pin();
4995 				}
4996 				if (!pmap_demote_pte1(pmap, pte1p, sva)) {
4997 					/*
4998 					 * The large page mapping
4999 					 * was destroyed.
5000 					 */
5001 					continue;
5002 				}
5003 #ifdef INVARIANTS
5004 				else {
5005 					/* Update pte1 after demotion */
5006 					pte1 = pte1_load(pte1p);
5007 				}
5008 #endif
5009 			}
5010 		}
5011 
5012 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
5013 		    " is not link", __func__, pmap, sva, pte1, pte1p));
5014 
5015 		/*
5016 		 * Limit our scan to either the end of the va represented
5017 		 * by the current L2 page table page, or to the end of the
5018 		 * range being protected.
5019 		 */
5020 		if (nextva > eva)
5021 			nextva = eva;
5022 
5023 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
5024 		    sva += PAGE_SIZE) {
5025 			vm_page_t m;
5026 
5027 			opte2 = npte2 = pte2_load(pte2p);
5028 			if (!pte2_is_valid(opte2))
5029 				continue;
5030 
5031 			if ((prot & VM_PROT_WRITE) == 0) {
5032 				if (pte2_is_managed(opte2) &&
5033 				    pte2_is_dirty(opte2)) {
5034 					m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
5035 					vm_page_dirty(m);
5036 				}
5037 				npte2 |= PTE2_RO | PTE2_NM;
5038 			}
5039 
5040 			if ((prot & VM_PROT_EXECUTE) == 0)
5041 				npte2 |= PTE2_NX;
5042 
5043 			/*
5044 			 * QQQ: Herein, execute permission is never set.
5045 			 *      It only can be cleared. So, no icache
5046 			 *      syncing is needed.
5047 			 */
5048 
5049 			if (npte2 != opte2) {
5050 				pte2_store(pte2p, npte2);
5051 				pmap_tlb_flush(pmap, sva);
5052 			}
5053 		}
5054 	}
5055 	if (pv_lists_locked) {
5056 		sched_unpin();
5057 		rw_wunlock(&pvh_global_lock);
5058 	}
5059 	PMAP_UNLOCK(pmap);
5060 }
5061 
5062 /*
5063  *	pmap_pvh_wired_mappings:
5064  *
5065  *	Return the updated number "count" of managed mappings that are wired.
5066  */
5067 static int
pmap_pvh_wired_mappings(struct md_page * pvh,int count)5068 pmap_pvh_wired_mappings(struct md_page *pvh, int count)
5069 {
5070 	pmap_t pmap;
5071 	pt1_entry_t pte1;
5072 	pt2_entry_t pte2;
5073 	pv_entry_t pv;
5074 
5075 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5076 	sched_pin();
5077 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5078 		pmap = PV_PMAP(pv);
5079 		PMAP_LOCK(pmap);
5080 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5081 		if (pte1_is_section(pte1)) {
5082 			if (pte1_is_wired(pte1))
5083 				count++;
5084 		} else {
5085 			KASSERT(pte1_is_link(pte1),
5086 			    ("%s: pte1 %#x is not link", __func__, pte1));
5087 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5088 			if (pte2_is_wired(pte2))
5089 				count++;
5090 		}
5091 		PMAP_UNLOCK(pmap);
5092 	}
5093 	sched_unpin();
5094 	return (count);
5095 }
5096 
5097 /*
5098  *	pmap_page_wired_mappings:
5099  *
5100  *	Return the number of managed mappings to the given physical page
5101  *	that are wired.
5102  */
5103 int
pmap_page_wired_mappings(vm_page_t m)5104 pmap_page_wired_mappings(vm_page_t m)
5105 {
5106 	int count;
5107 
5108 	count = 0;
5109 	if ((m->oflags & VPO_UNMANAGED) != 0)
5110 		return (count);
5111 	rw_wlock(&pvh_global_lock);
5112 	count = pmap_pvh_wired_mappings(&m->md, count);
5113 	if ((m->flags & PG_FICTITIOUS) == 0) {
5114 		count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
5115 		    count);
5116 	}
5117 	rw_wunlock(&pvh_global_lock);
5118 	return (count);
5119 }
5120 
5121 /*
5122  *  Returns true if any of the given mappings were used to modify
5123  *  physical memory.  Otherwise, returns false.  Both page and 1mpage
5124  *  mappings are supported.
5125  */
5126 static bool
pmap_is_modified_pvh(struct md_page * pvh)5127 pmap_is_modified_pvh(struct md_page *pvh)
5128 {
5129 	pv_entry_t pv;
5130 	pt1_entry_t pte1;
5131 	pt2_entry_t pte2;
5132 	pmap_t pmap;
5133 	bool rv;
5134 
5135 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5136 	rv = false;
5137 	sched_pin();
5138 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5139 		pmap = PV_PMAP(pv);
5140 		PMAP_LOCK(pmap);
5141 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5142 		if (pte1_is_section(pte1)) {
5143 			rv = pte1_is_dirty(pte1);
5144 		} else {
5145 			KASSERT(pte1_is_link(pte1),
5146 			    ("%s: pte1 %#x is not link", __func__, pte1));
5147 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5148 			rv = pte2_is_dirty(pte2);
5149 		}
5150 		PMAP_UNLOCK(pmap);
5151 		if (rv)
5152 			break;
5153 	}
5154 	sched_unpin();
5155 	return (rv);
5156 }
5157 
5158 /*
5159  *	pmap_is_modified:
5160  *
5161  *	Return whether or not the specified physical page was modified
5162  *	in any physical maps.
5163  */
5164 bool
pmap_is_modified(vm_page_t m)5165 pmap_is_modified(vm_page_t m)
5166 {
5167 	bool rv;
5168 
5169 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5170 	    ("%s: page %p is not managed", __func__, m));
5171 
5172 	/*
5173 	 * If the page is not busied then this check is racy.
5174 	 */
5175 	if (!pmap_page_is_write_mapped(m))
5176 		return (false);
5177 	rw_wlock(&pvh_global_lock);
5178 	rv = pmap_is_modified_pvh(&m->md) ||
5179 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5180 	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5181 	rw_wunlock(&pvh_global_lock);
5182 	return (rv);
5183 }
5184 
5185 /*
5186  *	pmap_is_prefaultable:
5187  *
5188  *	Return whether or not the specified virtual address is eligible
5189  *	for prefault.
5190  */
5191 bool
pmap_is_prefaultable(pmap_t pmap,vm_offset_t addr)5192 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
5193 {
5194 	pt1_entry_t pte1;
5195 	pt2_entry_t pte2;
5196 	bool rv;
5197 
5198 	rv = false;
5199 	PMAP_LOCK(pmap);
5200 	pte1 = pte1_load(pmap_pte1(pmap, addr));
5201 	if (pte1_is_link(pte1)) {
5202 		pte2 = pte2_load(pt2map_entry(addr));
5203 		rv = !pte2_is_valid(pte2) ;
5204 	}
5205 	PMAP_UNLOCK(pmap);
5206 	return (rv);
5207 }
5208 
5209 /*
5210  *  Returns true if any of the given mappings were referenced and false
5211  *  otherwise. Both page and 1mpage mappings are supported.
5212  */
5213 static bool
pmap_is_referenced_pvh(struct md_page * pvh)5214 pmap_is_referenced_pvh(struct md_page *pvh)
5215 {
5216 
5217 	pv_entry_t pv;
5218 	pt1_entry_t pte1;
5219 	pt2_entry_t pte2;
5220 	pmap_t pmap;
5221 	bool rv;
5222 
5223 	rw_assert(&pvh_global_lock, RA_WLOCKED);
5224 	rv = false;
5225 	sched_pin();
5226 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5227 		pmap = PV_PMAP(pv);
5228 		PMAP_LOCK(pmap);
5229 		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5230 		if (pte1_is_section(pte1)) {
5231 			rv = (pte1 & (PTE1_A | PTE1_V)) == (PTE1_A | PTE1_V);
5232 		} else {
5233 			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5234 			rv = (pte2 & (PTE2_A | PTE2_V)) == (PTE2_A | PTE2_V);
5235 		}
5236 		PMAP_UNLOCK(pmap);
5237 		if (rv)
5238 			break;
5239 	}
5240 	sched_unpin();
5241 	return (rv);
5242 }
5243 
5244 /*
5245  *	pmap_is_referenced:
5246  *
5247  *	Return whether or not the specified physical page was referenced
5248  *	in any physical maps.
5249  */
5250 bool
pmap_is_referenced(vm_page_t m)5251 pmap_is_referenced(vm_page_t m)
5252 {
5253 	bool rv;
5254 
5255 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5256 	    ("%s: page %p is not managed", __func__, m));
5257 	rw_wlock(&pvh_global_lock);
5258 	rv = pmap_is_referenced_pvh(&m->md) ||
5259 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5260 	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5261 	rw_wunlock(&pvh_global_lock);
5262 	return (rv);
5263 }
5264 
5265 /*
5266  *	pmap_ts_referenced:
5267  *
5268  *	Return a count of reference bits for a page, clearing those bits.
5269  *	It is not necessary for every reference bit to be cleared, but it
5270  *	is necessary that 0 only be returned when there are truly no
5271  *	reference bits set.
5272  *
5273  *	As an optimization, update the page's dirty field if a modified bit is
5274  *	found while counting reference bits.  This opportunistic update can be
5275  *	performed at low cost and can eliminate the need for some future calls
5276  *	to pmap_is_modified().  However, since this function stops after
5277  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5278  *	dirty pages.  Those dirty pages will only be detected by a future call
5279  *	to pmap_is_modified().
5280  */
5281 int
pmap_ts_referenced(vm_page_t m)5282 pmap_ts_referenced(vm_page_t m)
5283 {
5284 	struct md_page *pvh;
5285 	pv_entry_t pv, pvf;
5286 	pmap_t pmap;
5287 	pt1_entry_t  *pte1p, opte1;
5288 	pt2_entry_t *pte2p, opte2;
5289 	vm_paddr_t pa;
5290 	int rtval = 0;
5291 
5292 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5293 	    ("%s: page %p is not managed", __func__, m));
5294 	pa = VM_PAGE_TO_PHYS(m);
5295 	pvh = pa_to_pvh(pa);
5296 	rw_wlock(&pvh_global_lock);
5297 	sched_pin();
5298 	if ((m->flags & PG_FICTITIOUS) != 0 ||
5299 	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5300 		goto small_mappings;
5301 	pv = pvf;
5302 	do {
5303 		pmap = PV_PMAP(pv);
5304 		PMAP_LOCK(pmap);
5305 		pte1p = pmap_pte1(pmap, pv->pv_va);
5306 		opte1 = pte1_load(pte1p);
5307 		if (pte1_is_dirty(opte1)) {
5308 			/*
5309 			 * Although "opte1" is mapping a 1MB page, because
5310 			 * this function is called at a 4KB page granularity,
5311 			 * we only update the 4KB page under test.
5312 			 */
5313 			vm_page_dirty(m);
5314 		}
5315 		if ((opte1 & PTE1_A) != 0) {
5316 			/*
5317 			 * Since this reference bit is shared by 256 4KB pages,
5318 			 * it should not be cleared every time it is tested.
5319 			 * Apply a simple "hash" function on the physical page
5320 			 * number, the virtual section number, and the pmap
5321 			 * address to select one 4KB page out of the 256
5322 			 * on which testing the reference bit will result
5323 			 * in clearing that bit. This function is designed
5324 			 * to avoid the selection of the same 4KB page
5325 			 * for every 1MB page mapping.
5326 			 *
5327 			 * On demotion, a mapping that hasn't been referenced
5328 			 * is simply destroyed.  To avoid the possibility of a
5329 			 * subsequent page fault on a demoted wired mapping,
5330 			 * always leave its reference bit set.  Moreover,
5331 			 * since the section is wired, the current state of
5332 			 * its reference bit won't affect page replacement.
5333 			 */
5334 			 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PTE1_SHIFT) ^
5335 			    (uintptr_t)pmap) & (NPTE2_IN_PG - 1)) == 0 &&
5336 			    !pte1_is_wired(opte1)) {
5337 				pte1_clear_bit(pte1p, PTE1_A);
5338 				pmap_tlb_flush(pmap, pv->pv_va);
5339 			}
5340 			rtval++;
5341 		}
5342 		PMAP_UNLOCK(pmap);
5343 		/* Rotate the PV list if it has more than one entry. */
5344 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5345 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5346 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5347 		}
5348 		if (rtval >= PMAP_TS_REFERENCED_MAX)
5349 			goto out;
5350 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5351 small_mappings:
5352 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5353 		goto out;
5354 	pv = pvf;
5355 	do {
5356 		pmap = PV_PMAP(pv);
5357 		PMAP_LOCK(pmap);
5358 		pte1p = pmap_pte1(pmap, pv->pv_va);
5359 		KASSERT(pte1_is_link(pte1_load(pte1p)),
5360 		    ("%s: not found a link in page %p's pv list", __func__, m));
5361 
5362 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5363 		opte2 = pte2_load(pte2p);
5364 		if (pte2_is_dirty(opte2))
5365 			vm_page_dirty(m);
5366 		if ((opte2 & PTE2_A) != 0) {
5367 			pte2_clear_bit(pte2p, PTE2_A);
5368 			pmap_tlb_flush(pmap, pv->pv_va);
5369 			rtval++;
5370 		}
5371 		PMAP_UNLOCK(pmap);
5372 		/* Rotate the PV list if it has more than one entry. */
5373 		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5374 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5375 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5376 		}
5377 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
5378 	    PMAP_TS_REFERENCED_MAX);
5379 out:
5380 	sched_unpin();
5381 	rw_wunlock(&pvh_global_lock);
5382 	return (rtval);
5383 }
5384 
5385 /*
5386  *	Clear the wired attribute from the mappings for the specified range of
5387  *	addresses in the given pmap.  Every valid mapping within that range
5388  *	must have the wired attribute set.  In contrast, invalid mappings
5389  *	cannot have the wired attribute set, so they are ignored.
5390  *
5391  *	The wired attribute of the page table entry is not a hardware feature,
5392  *	so there is no need to invalidate any TLB entries.
5393  */
5394 void
pmap_unwire(pmap_t pmap,vm_offset_t sva,vm_offset_t eva)5395 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5396 {
5397 	vm_offset_t nextva;
5398 	pt1_entry_t *pte1p, pte1;
5399 	pt2_entry_t *pte2p, pte2;
5400 	bool pv_lists_locked;
5401 
5402 	if (pmap_is_current(pmap))
5403 		pv_lists_locked = false;
5404 	else {
5405 		pv_lists_locked = true;
5406 resume:
5407 		rw_wlock(&pvh_global_lock);
5408 		sched_pin();
5409 	}
5410 	PMAP_LOCK(pmap);
5411 	for (; sva < eva; sva = nextva) {
5412 		nextva = pte1_trunc(sva + PTE1_SIZE);
5413 		if (nextva < sva)
5414 			nextva = eva;
5415 
5416 		pte1p = pmap_pte1(pmap, sva);
5417 		pte1 = pte1_load(pte1p);
5418 
5419 		/*
5420 		 * Weed out invalid mappings. Note: we assume that L1 page
5421 		 * page table is always allocated, and in kernel virtual.
5422 		 */
5423 		if (pte1 == 0)
5424 			continue;
5425 
5426 		if (pte1_is_section(pte1)) {
5427 			if (!pte1_is_wired(pte1))
5428 				panic("%s: pte1 %#x not wired", __func__, pte1);
5429 
5430 			/*
5431 			 * Are we unwiring the entire large page?  If not,
5432 			 * demote the mapping and fall through.
5433 			 */
5434 			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
5435 				pte1_clear_bit(pte1p, PTE1_W);
5436 				pmap->pm_stats.wired_count -= PTE1_SIZE /
5437 				    PAGE_SIZE;
5438 				continue;
5439 			} else {
5440 				if (!pv_lists_locked) {
5441 					pv_lists_locked = true;
5442 					if (!rw_try_wlock(&pvh_global_lock)) {
5443 						PMAP_UNLOCK(pmap);
5444 						/* Repeat sva. */
5445 						goto resume;
5446 					}
5447 					sched_pin();
5448 				}
5449 				if (!pmap_demote_pte1(pmap, pte1p, sva))
5450 					panic("%s: demotion failed", __func__);
5451 #ifdef INVARIANTS
5452 				else {
5453 					/* Update pte1 after demotion */
5454 					pte1 = pte1_load(pte1p);
5455 				}
5456 #endif
5457 			}
5458 		}
5459 
5460 		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
5461 		    " is not link", __func__, pmap, sva, pte1, pte1p));
5462 
5463 		/*
5464 		 * Limit our scan to either the end of the va represented
5465 		 * by the current L2 page table page, or to the end of the
5466 		 * range being protected.
5467 		 */
5468 		if (nextva > eva)
5469 			nextva = eva;
5470 
5471 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
5472 		    sva += PAGE_SIZE) {
5473 			pte2 = pte2_load(pte2p);
5474 			if (!pte2_is_valid(pte2))
5475 				continue;
5476 			if (!pte2_is_wired(pte2))
5477 				panic("%s: pte2 %#x is missing PTE2_W",
5478 				    __func__, pte2);
5479 
5480 			/*
5481 			 * PTE2_W must be cleared atomically. Although the pmap
5482 			 * lock synchronizes access to PTE2_W, another processor
5483 			 * could be changing PTE2_NM and/or PTE2_A concurrently.
5484 			 */
5485 			pte2_clear_bit(pte2p, PTE2_W);
5486 			pmap->pm_stats.wired_count--;
5487 		}
5488 	}
5489 	if (pv_lists_locked) {
5490 		sched_unpin();
5491 		rw_wunlock(&pvh_global_lock);
5492 	}
5493 	PMAP_UNLOCK(pmap);
5494 }
5495 
5496 /*
5497  *  Clear the write and modified bits in each of the given page's mappings.
5498  */
5499 void
pmap_remove_write(vm_page_t m)5500 pmap_remove_write(vm_page_t m)
5501 {
5502 	struct md_page *pvh;
5503 	pv_entry_t next_pv, pv;
5504 	pmap_t pmap;
5505 	pt1_entry_t *pte1p;
5506 	pt2_entry_t *pte2p, opte2;
5507 	vm_offset_t va;
5508 
5509 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5510 	    ("%s: page %p is not managed", __func__, m));
5511 	vm_page_assert_busied(m);
5512 
5513 	if (!pmap_page_is_write_mapped(m))
5514 		return;
5515 	rw_wlock(&pvh_global_lock);
5516 	sched_pin();
5517 	if ((m->flags & PG_FICTITIOUS) != 0)
5518 		goto small_mappings;
5519 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5520 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5521 		va = pv->pv_va;
5522 		pmap = PV_PMAP(pv);
5523 		PMAP_LOCK(pmap);
5524 		pte1p = pmap_pte1(pmap, va);
5525 		if (!(pte1_load(pte1p) & PTE1_RO))
5526 			(void)pmap_demote_pte1(pmap, pte1p, va);
5527 		PMAP_UNLOCK(pmap);
5528 	}
5529 small_mappings:
5530 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5531 		pmap = PV_PMAP(pv);
5532 		PMAP_LOCK(pmap);
5533 		pte1p = pmap_pte1(pmap, pv->pv_va);
5534 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5535 		    " a section in page %p's pv list", __func__, m));
5536 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5537 		opte2 = pte2_load(pte2p);
5538 		if (!(opte2 & PTE2_RO)) {
5539 			pte2_store(pte2p, opte2 | PTE2_RO | PTE2_NM);
5540 			if (pte2_is_dirty(opte2))
5541 				vm_page_dirty(m);
5542 			pmap_tlb_flush(pmap, pv->pv_va);
5543 		}
5544 		PMAP_UNLOCK(pmap);
5545 	}
5546 	vm_page_aflag_clear(m, PGA_WRITEABLE);
5547 	sched_unpin();
5548 	rw_wunlock(&pvh_global_lock);
5549 }
5550 
5551 /*
5552  *	Apply the given advice to the specified range of addresses within the
5553  *	given pmap.  Depending on the advice, clear the referenced and/or
5554  *	modified flags in each mapping and set the mapped page's dirty field.
5555  */
5556 void
pmap_advise(pmap_t pmap,vm_offset_t sva,vm_offset_t eva,int advice)5557 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
5558 {
5559 	pt1_entry_t *pte1p, opte1;
5560 	pt2_entry_t *pte2p, pte2;
5561 	vm_offset_t pdnxt;
5562 	vm_page_t m;
5563 	bool pv_lists_locked;
5564 
5565 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5566 		return;
5567 	if (pmap_is_current(pmap))
5568 		pv_lists_locked = false;
5569 	else {
5570 		pv_lists_locked = true;
5571 resume:
5572 		rw_wlock(&pvh_global_lock);
5573 		sched_pin();
5574 	}
5575 	PMAP_LOCK(pmap);
5576 	for (; sva < eva; sva = pdnxt) {
5577 		pdnxt = pte1_trunc(sva + PTE1_SIZE);
5578 		if (pdnxt < sva)
5579 			pdnxt = eva;
5580 		pte1p = pmap_pte1(pmap, sva);
5581 		opte1 = pte1_load(pte1p);
5582 		if (!pte1_is_valid(opte1)) /* XXX */
5583 			continue;
5584 		else if (pte1_is_section(opte1)) {
5585 			if (!pte1_is_managed(opte1))
5586 				continue;
5587 			if (!pv_lists_locked) {
5588 				pv_lists_locked = true;
5589 				if (!rw_try_wlock(&pvh_global_lock)) {
5590 					PMAP_UNLOCK(pmap);
5591 					goto resume;
5592 				}
5593 				sched_pin();
5594 			}
5595 			if (!pmap_demote_pte1(pmap, pte1p, sva)) {
5596 				/*
5597 				 * The large page mapping was destroyed.
5598 				 */
5599 				continue;
5600 			}
5601 
5602 			/*
5603 			 * Unless the page mappings are wired, remove the
5604 			 * mapping to a single page so that a subsequent
5605 			 * access may repromote.  Since the underlying L2 page
5606 			 * table is fully populated, this removal never
5607 			 * frees a L2 page table page.
5608 			 */
5609 			if (!pte1_is_wired(opte1)) {
5610 				pte2p = pmap_pte2_quick(pmap, sva);
5611 				KASSERT(pte2_is_valid(pte2_load(pte2p)),
5612 				    ("%s: invalid PTE2", __func__));
5613 				pmap_remove_pte2(pmap, pte2p, sva, NULL);
5614 			}
5615 		}
5616 		if (pdnxt > eva)
5617 			pdnxt = eva;
5618 		for (pte2p = pmap_pte2_quick(pmap, sva); sva != pdnxt; pte2p++,
5619 		    sva += PAGE_SIZE) {
5620 			pte2 = pte2_load(pte2p);
5621 			if (!pte2_is_valid(pte2) || !pte2_is_managed(pte2))
5622 				continue;
5623 			else if (pte2_is_dirty(pte2)) {
5624 				if (advice == MADV_DONTNEED) {
5625 					/*
5626 					 * Future calls to pmap_is_modified()
5627 					 * can be avoided by making the page
5628 					 * dirty now.
5629 					 */
5630 					m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
5631 					vm_page_dirty(m);
5632 				}
5633 				pte2_set_bit(pte2p, PTE2_NM);
5634 				pte2_clear_bit(pte2p, PTE2_A);
5635 			} else if ((pte2 & PTE2_A) != 0)
5636 				pte2_clear_bit(pte2p, PTE2_A);
5637 			else
5638 				continue;
5639 			pmap_tlb_flush(pmap, sva);
5640 		}
5641 	}
5642 	if (pv_lists_locked) {
5643 		sched_unpin();
5644 		rw_wunlock(&pvh_global_lock);
5645 	}
5646 	PMAP_UNLOCK(pmap);
5647 }
5648 
5649 /*
5650  *	Clear the modify bits on the specified physical page.
5651  */
5652 void
pmap_clear_modify(vm_page_t m)5653 pmap_clear_modify(vm_page_t m)
5654 {
5655 	struct md_page *pvh;
5656 	pv_entry_t next_pv, pv;
5657 	pmap_t pmap;
5658 	pt1_entry_t *pte1p, opte1;
5659 	pt2_entry_t *pte2p, opte2;
5660 	vm_offset_t va;
5661 
5662 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5663 	    ("%s: page %p is not managed", __func__, m));
5664 	vm_page_assert_busied(m);
5665 
5666 	if (!pmap_page_is_write_mapped(m))
5667 		return;
5668 	rw_wlock(&pvh_global_lock);
5669 	sched_pin();
5670 	if ((m->flags & PG_FICTITIOUS) != 0)
5671 		goto small_mappings;
5672 	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5673 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5674 		va = pv->pv_va;
5675 		pmap = PV_PMAP(pv);
5676 		PMAP_LOCK(pmap);
5677 		pte1p = pmap_pte1(pmap, va);
5678 		opte1 = pte1_load(pte1p);
5679 		if (!(opte1 & PTE1_RO)) {
5680 			if (pmap_demote_pte1(pmap, pte1p, va) &&
5681 			    !pte1_is_wired(opte1)) {
5682 				/*
5683 				 * Write protect the mapping to a
5684 				 * single page so that a subsequent
5685 				 * write access may repromote.
5686 				 */
5687 				va += VM_PAGE_TO_PHYS(m) - pte1_pa(opte1);
5688 				pte2p = pmap_pte2_quick(pmap, va);
5689 				opte2 = pte2_load(pte2p);
5690 				if ((opte2 & PTE2_V)) {
5691 					pte2_set_bit(pte2p, PTE2_NM | PTE2_RO);
5692 					vm_page_dirty(m);
5693 					pmap_tlb_flush(pmap, va);
5694 				}
5695 			}
5696 		}
5697 		PMAP_UNLOCK(pmap);
5698 	}
5699 small_mappings:
5700 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5701 		pmap = PV_PMAP(pv);
5702 		PMAP_LOCK(pmap);
5703 		pte1p = pmap_pte1(pmap, pv->pv_va);
5704 		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5705 		    " a section in page %p's pv list", __func__, m));
5706 		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5707 		if (pte2_is_dirty(pte2_load(pte2p))) {
5708 			pte2_set_bit(pte2p, PTE2_NM);
5709 			pmap_tlb_flush(pmap, pv->pv_va);
5710 		}
5711 		PMAP_UNLOCK(pmap);
5712 	}
5713 	sched_unpin();
5714 	rw_wunlock(&pvh_global_lock);
5715 }
5716 
5717 /*
5718  *  Sets the memory attribute for the specified page.
5719  */
5720 void
pmap_page_set_memattr(vm_page_t m,vm_memattr_t ma)5721 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5722 {
5723 	pt2_entry_t *cmap2_pte2p;
5724 	vm_memattr_t oma;
5725 	vm_paddr_t pa;
5726 	struct pcpu *pc;
5727 
5728 	oma = m->md.pat_mode;
5729 	m->md.pat_mode = ma;
5730 
5731 	CTR5(KTR_PMAP, "%s: page %p - 0x%08X oma: %d, ma: %d", __func__, m,
5732 	    VM_PAGE_TO_PHYS(m), oma, ma);
5733 	if ((m->flags & PG_FICTITIOUS) != 0)
5734 		return;
5735 #if 0
5736 	/*
5737 	 * If "m" is a normal page, flush it from the cache.
5738 	 *
5739 	 * First, try to find an existing mapping of the page by sf
5740 	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5741 	 * flushes the cache.
5742 	 */
5743 	if (sf_buf_invalidate_cache(m, oma))
5744 		return;
5745 #endif
5746 	/*
5747 	 * If page is not mapped by sf buffer, map the page
5748 	 * transient and do invalidation.
5749 	 */
5750 	if (ma != oma) {
5751 		pa = VM_PAGE_TO_PHYS(m);
5752 		sched_pin();
5753 		pc = get_pcpu();
5754 		cmap2_pte2p = pc->pc_cmap2_pte2p;
5755 		mtx_lock(&pc->pc_cmap_lock);
5756 		if (pte2_load(cmap2_pte2p) != 0)
5757 			panic("%s: CMAP2 busy", __func__);
5758 		pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
5759 		    vm_memattr_to_pte2(ma)));
5760 		dcache_wbinv_poc((vm_offset_t)pc->pc_cmap2_addr, pa, PAGE_SIZE);
5761 		pte2_clear(cmap2_pte2p);
5762 		tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5763 		sched_unpin();
5764 		mtx_unlock(&pc->pc_cmap_lock);
5765 	}
5766 }
5767 
5768 /*
5769  *  Miscellaneous support routines follow
5770  */
5771 
5772 /*
5773  *  Returns true if the given page is mapped individually or as part of
5774  *  a 1mpage.  Otherwise, returns false.
5775  */
5776 bool
pmap_page_is_mapped(vm_page_t m)5777 pmap_page_is_mapped(vm_page_t m)
5778 {
5779 	bool rv;
5780 
5781 	if ((m->oflags & VPO_UNMANAGED) != 0)
5782 		return (false);
5783 	rw_wlock(&pvh_global_lock);
5784 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
5785 	    ((m->flags & PG_FICTITIOUS) == 0 &&
5786 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
5787 	rw_wunlock(&pvh_global_lock);
5788 	return (rv);
5789 }
5790 
5791 /*
5792  *  Returns true if the pmap's pv is one of the first
5793  *  16 pvs linked to from this page.  This count may
5794  *  be changed upwards or downwards in the future; it
5795  *  is only necessary that true be returned for a small
5796  *  subset of pmaps for proper page aging.
5797  */
5798 bool
pmap_page_exists_quick(pmap_t pmap,vm_page_t m)5799 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5800 {
5801 	struct md_page *pvh;
5802 	pv_entry_t pv;
5803 	int loops = 0;
5804 	bool rv;
5805 
5806 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5807 	    ("%s: page %p is not managed", __func__, m));
5808 	rv = false;
5809 	rw_wlock(&pvh_global_lock);
5810 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5811 		if (PV_PMAP(pv) == pmap) {
5812 			rv = true;
5813 			break;
5814 		}
5815 		loops++;
5816 		if (loops >= 16)
5817 			break;
5818 	}
5819 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
5820 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5821 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5822 			if (PV_PMAP(pv) == pmap) {
5823 				rv = true;
5824 				break;
5825 			}
5826 			loops++;
5827 			if (loops >= 16)
5828 				break;
5829 		}
5830 	}
5831 	rw_wunlock(&pvh_global_lock);
5832 	return (rv);
5833 }
5834 
5835 /*
5836  *	pmap_zero_page zeros the specified hardware page by mapping
5837  *	the page into KVM and using bzero to clear its contents.
5838  */
5839 void
pmap_zero_page(vm_page_t m)5840 pmap_zero_page(vm_page_t m)
5841 {
5842 	pt2_entry_t *cmap2_pte2p;
5843 	struct pcpu *pc;
5844 
5845 	sched_pin();
5846 	pc = get_pcpu();
5847 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5848 	mtx_lock(&pc->pc_cmap_lock);
5849 	if (pte2_load(cmap2_pte2p) != 0)
5850 		panic("%s: CMAP2 busy", __func__);
5851 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5852 	    vm_page_pte2_attr(m)));
5853 	pagezero(pc->pc_cmap2_addr);
5854 	pte2_clear(cmap2_pte2p);
5855 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5856 	sched_unpin();
5857 	mtx_unlock(&pc->pc_cmap_lock);
5858 }
5859 
5860 /*
5861  *	pmap_zero_page_area zeros the specified hardware page by mapping
5862  *	the page into KVM and using bzero to clear its contents.
5863  *
5864  *	off and size may not cover an area beyond a single hardware page.
5865  */
5866 void
pmap_zero_page_area(vm_page_t m,int off,int size)5867 pmap_zero_page_area(vm_page_t m, int off, int size)
5868 {
5869 	pt2_entry_t *cmap2_pte2p;
5870 	struct pcpu *pc;
5871 
5872 	sched_pin();
5873 	pc = get_pcpu();
5874 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5875 	mtx_lock(&pc->pc_cmap_lock);
5876 	if (pte2_load(cmap2_pte2p) != 0)
5877 		panic("%s: CMAP2 busy", __func__);
5878 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5879 	    vm_page_pte2_attr(m)));
5880 	if (off == 0 && size == PAGE_SIZE)
5881 		pagezero(pc->pc_cmap2_addr);
5882 	else
5883 		bzero(pc->pc_cmap2_addr + off, size);
5884 	pte2_clear(cmap2_pte2p);
5885 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5886 	sched_unpin();
5887 	mtx_unlock(&pc->pc_cmap_lock);
5888 }
5889 
5890 /*
5891  *	pmap_copy_page copies the specified (machine independent)
5892  *	page by mapping the page into virtual memory and using
5893  *	bcopy to copy the page, one machine dependent page at a
5894  *	time.
5895  */
5896 void
pmap_copy_page(vm_page_t src,vm_page_t dst)5897 pmap_copy_page(vm_page_t src, vm_page_t dst)
5898 {
5899 	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5900 	struct pcpu *pc;
5901 
5902 	sched_pin();
5903 	pc = get_pcpu();
5904 	cmap1_pte2p = pc->pc_cmap1_pte2p;
5905 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5906 	mtx_lock(&pc->pc_cmap_lock);
5907 	if (pte2_load(cmap1_pte2p) != 0)
5908 		panic("%s: CMAP1 busy", __func__);
5909 	if (pte2_load(cmap2_pte2p) != 0)
5910 		panic("%s: CMAP2 busy", __func__);
5911 	pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(src),
5912 	    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(src)));
5913 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(dst),
5914 	    PTE2_AP_KRW, vm_page_pte2_attr(dst)));
5915 	bcopy(pc->pc_cmap1_addr, pc->pc_cmap2_addr, PAGE_SIZE);
5916 	pte2_clear(cmap1_pte2p);
5917 	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5918 	pte2_clear(cmap2_pte2p);
5919 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5920 	sched_unpin();
5921 	mtx_unlock(&pc->pc_cmap_lock);
5922 }
5923 
5924 int unmapped_buf_allowed = 1;
5925 
5926 void
pmap_copy_pages(vm_page_t ma[],vm_offset_t a_offset,vm_page_t mb[],vm_offset_t b_offset,int xfersize)5927 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
5928     vm_offset_t b_offset, int xfersize)
5929 {
5930 	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5931 	vm_page_t a_pg, b_pg;
5932 	char *a_cp, *b_cp;
5933 	vm_offset_t a_pg_offset, b_pg_offset;
5934 	struct pcpu *pc;
5935 	int cnt;
5936 
5937 	sched_pin();
5938 	pc = get_pcpu();
5939 	cmap1_pte2p = pc->pc_cmap1_pte2p;
5940 	cmap2_pte2p = pc->pc_cmap2_pte2p;
5941 	mtx_lock(&pc->pc_cmap_lock);
5942 	if (pte2_load(cmap1_pte2p) != 0)
5943 		panic("pmap_copy_pages: CMAP1 busy");
5944 	if (pte2_load(cmap2_pte2p) != 0)
5945 		panic("pmap_copy_pages: CMAP2 busy");
5946 	while (xfersize > 0) {
5947 		a_pg = ma[a_offset >> PAGE_SHIFT];
5948 		a_pg_offset = a_offset & PAGE_MASK;
5949 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
5950 		b_pg = mb[b_offset >> PAGE_SHIFT];
5951 		b_pg_offset = b_offset & PAGE_MASK;
5952 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
5953 		pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(a_pg),
5954 		    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(a_pg)));
5955 		tlb_flush_local((vm_offset_t)pc->pc_cmap1_addr);
5956 		pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(b_pg),
5957 		    PTE2_AP_KRW, vm_page_pte2_attr(b_pg)));
5958 		tlb_flush_local((vm_offset_t)pc->pc_cmap2_addr);
5959 		a_cp = pc->pc_cmap1_addr + a_pg_offset;
5960 		b_cp = pc->pc_cmap2_addr + b_pg_offset;
5961 		bcopy(a_cp, b_cp, cnt);
5962 		a_offset += cnt;
5963 		b_offset += cnt;
5964 		xfersize -= cnt;
5965 	}
5966 	pte2_clear(cmap1_pte2p);
5967 	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5968 	pte2_clear(cmap2_pte2p);
5969 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5970 	sched_unpin();
5971 	mtx_unlock(&pc->pc_cmap_lock);
5972 }
5973 
5974 vm_offset_t
pmap_quick_enter_page(vm_page_t m)5975 pmap_quick_enter_page(vm_page_t m)
5976 {
5977 	struct pcpu *pc;
5978 	pt2_entry_t *pte2p;
5979 
5980 	critical_enter();
5981 	pc = get_pcpu();
5982 	pte2p = pc->pc_qmap_pte2p;
5983 
5984 	KASSERT(pte2_load(pte2p) == 0, ("%s: PTE2 busy", __func__));
5985 
5986 	pte2_store(pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5987 	    vm_page_pte2_attr(m)));
5988 	return (pc->pc_qmap_addr);
5989 }
5990 
5991 void
pmap_quick_remove_page(vm_offset_t addr)5992 pmap_quick_remove_page(vm_offset_t addr)
5993 {
5994 	struct pcpu *pc;
5995 	pt2_entry_t *pte2p;
5996 
5997 	pc = get_pcpu();
5998 	pte2p = pc->pc_qmap_pte2p;
5999 
6000 	KASSERT(addr == pc->pc_qmap_addr, ("%s: invalid address", __func__));
6001 	KASSERT(pte2_load(pte2p) != 0, ("%s: PTE2 not in use", __func__));
6002 
6003 	pte2_clear(pte2p);
6004 	tlb_flush(pc->pc_qmap_addr);
6005 	critical_exit();
6006 }
6007 
6008 /*
6009  *	Copy the range specified by src_addr/len
6010  *	from the source map to the range dst_addr/len
6011  *	in the destination map.
6012  *
6013  *	This routine is only advisory and need not do anything.
6014  */
6015 void
pmap_copy(pmap_t dst_pmap,pmap_t src_pmap,vm_offset_t dst_addr,vm_size_t len,vm_offset_t src_addr)6016 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
6017     vm_offset_t src_addr)
6018 {
6019 	struct spglist free;
6020 	vm_offset_t addr;
6021 	vm_offset_t end_addr = src_addr + len;
6022 	vm_offset_t nextva;
6023 
6024 	if (dst_addr != src_addr)
6025 		return;
6026 
6027 	if (!pmap_is_current(src_pmap))
6028 		return;
6029 
6030 	rw_wlock(&pvh_global_lock);
6031 	if (dst_pmap < src_pmap) {
6032 		PMAP_LOCK(dst_pmap);
6033 		PMAP_LOCK(src_pmap);
6034 	} else {
6035 		PMAP_LOCK(src_pmap);
6036 		PMAP_LOCK(dst_pmap);
6037 	}
6038 	sched_pin();
6039 	for (addr = src_addr; addr < end_addr; addr = nextva) {
6040 		pt2_entry_t *src_pte2p, *dst_pte2p;
6041 		vm_page_t dst_mpt2pg, src_mpt2pg;
6042 		pt1_entry_t src_pte1;
6043 		u_int pte1_idx;
6044 
6045 		KASSERT(addr < VM_MAXUSER_ADDRESS,
6046 		    ("%s: invalid to pmap_copy page tables", __func__));
6047 
6048 		nextva = pte1_trunc(addr + PTE1_SIZE);
6049 		if (nextva < addr)
6050 			nextva = end_addr;
6051 
6052 		pte1_idx = pte1_index(addr);
6053 		src_pte1 = src_pmap->pm_pt1[pte1_idx];
6054 		if (pte1_is_section(src_pte1)) {
6055 			if ((addr & PTE1_OFFSET) != 0 ||
6056 			    (addr + PTE1_SIZE) > end_addr)
6057 				continue;
6058 			if (dst_pmap->pm_pt1[pte1_idx] == 0 &&
6059 			    (!pte1_is_managed(src_pte1) ||
6060 			    pmap_pv_insert_pte1(dst_pmap, addr, src_pte1,
6061 			    PMAP_ENTER_NORECLAIM))) {
6062 				dst_pmap->pm_pt1[pte1_idx] = src_pte1 &
6063 				    ~PTE1_W;
6064 				dst_pmap->pm_stats.resident_count +=
6065 				    PTE1_SIZE / PAGE_SIZE;
6066 				pmap_pte1_mappings++;
6067 			}
6068 			continue;
6069 		} else if (!pte1_is_link(src_pte1))
6070 			continue;
6071 
6072 		src_mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(src_pte1));
6073 
6074 		/*
6075 		 * We leave PT2s to be linked from PT1 even if they are not
6076 		 * referenced until all PT2s in a page are without reference.
6077 		 *
6078 		 * QQQ: It could be changed ...
6079 		 */
6080 #if 0 /* single_pt2_link_is_cleared */
6081 		KASSERT(pt2_wirecount_get(src_mpt2pg, pte1_idx) > 0,
6082 		    ("%s: source page table page is unused", __func__));
6083 #else
6084 		if (pt2_wirecount_get(src_mpt2pg, pte1_idx) == 0)
6085 			continue;
6086 #endif
6087 		if (nextva > end_addr)
6088 			nextva = end_addr;
6089 
6090 		src_pte2p = pt2map_entry(addr);
6091 		while (addr < nextva) {
6092 			pt2_entry_t temp_pte2;
6093 			temp_pte2 = pte2_load(src_pte2p);
6094 			/*
6095 			 * we only virtual copy managed pages
6096 			 */
6097 			if (pte2_is_managed(temp_pte2)) {
6098 				dst_mpt2pg = pmap_allocpte2(dst_pmap, addr,
6099 				    PMAP_ENTER_NOSLEEP);
6100 				if (dst_mpt2pg == NULL)
6101 					goto out;
6102 				dst_pte2p = pmap_pte2_quick(dst_pmap, addr);
6103 				if (!pte2_is_valid(pte2_load(dst_pte2p)) &&
6104 				    pmap_try_insert_pv_entry(dst_pmap, addr,
6105 				    PHYS_TO_VM_PAGE(pte2_pa(temp_pte2)))) {
6106 					/*
6107 					 * Clear the wired, modified, and
6108 					 * accessed (referenced) bits
6109 					 * during the copy.
6110 					 */
6111 					temp_pte2 &=  ~(PTE2_W | PTE2_A);
6112 					temp_pte2 |= PTE2_NM;
6113 					pte2_store(dst_pte2p, temp_pte2);
6114 					dst_pmap->pm_stats.resident_count++;
6115 				} else {
6116 					SLIST_INIT(&free);
6117 					if (pmap_unwire_pt2(dst_pmap, addr,
6118 					    dst_mpt2pg, &free)) {
6119 						pmap_tlb_flush(dst_pmap, addr);
6120 						vm_page_free_pages_toq(&free,
6121 						    false);
6122 					}
6123 					goto out;
6124 				}
6125 				if (pt2_wirecount_get(dst_mpt2pg, pte1_idx) >=
6126 				    pt2_wirecount_get(src_mpt2pg, pte1_idx))
6127 					break;
6128 			}
6129 			addr += PAGE_SIZE;
6130 			src_pte2p++;
6131 		}
6132 	}
6133 out:
6134 	sched_unpin();
6135 	rw_wunlock(&pvh_global_lock);
6136 	PMAP_UNLOCK(src_pmap);
6137 	PMAP_UNLOCK(dst_pmap);
6138 }
6139 
6140 /*
6141  *	Increase the starting virtual address of the given mapping if a
6142  *	different alignment might result in more section mappings.
6143  */
6144 void
pmap_align_superpage(vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t size)6145 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
6146     vm_offset_t *addr, vm_size_t size)
6147 {
6148 	vm_offset_t pte1_offset;
6149 
6150 	if (size < PTE1_SIZE)
6151 		return;
6152 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
6153 		offset += ptoa(object->pg_color);
6154 	pte1_offset = offset & PTE1_OFFSET;
6155 	if (size - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) < PTE1_SIZE ||
6156 	    (*addr & PTE1_OFFSET) == pte1_offset)
6157 		return;
6158 	if ((*addr & PTE1_OFFSET) < pte1_offset)
6159 		*addr = pte1_trunc(*addr) + pte1_offset;
6160 	else
6161 		*addr = pte1_roundup(*addr) + pte1_offset;
6162 }
6163 
6164 void
pmap_activate(struct thread * td)6165 pmap_activate(struct thread *td)
6166 {
6167 	pmap_t pmap, oldpmap;
6168 	u_int cpuid, ttb;
6169 
6170 	PDEBUG(9, printf("%s: td = %08x\n", __func__, (uint32_t)td));
6171 
6172 	critical_enter();
6173 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
6174 	oldpmap = PCPU_GET(curpmap);
6175 	cpuid = PCPU_GET(cpuid);
6176 
6177 #if defined(SMP)
6178 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
6179 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
6180 #else
6181 	CPU_CLR(cpuid, &oldpmap->pm_active);
6182 	CPU_SET(cpuid, &pmap->pm_active);
6183 #endif
6184 
6185 	ttb = pmap_ttb_get(pmap);
6186 
6187 	/*
6188 	 * pmap_activate is for the current thread on the current cpu
6189 	 */
6190 	td->td_pcb->pcb_pagedir = ttb;
6191 	cp15_ttbr_set(ttb);
6192 	PCPU_SET(curpmap, pmap);
6193 	critical_exit();
6194 }
6195 
6196 void
pmap_active_cpus(pmap_t pmap,cpuset_t * res)6197 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
6198 {
6199 	*res = pmap->pm_active;
6200 }
6201 
6202 /*
6203  * Perform the pmap work for mincore(2).  If the page is not both referenced and
6204  * modified by this pmap, returns its physical address so that the caller can
6205  * find other mappings.
6206  */
6207 int
pmap_mincore(pmap_t pmap,vm_offset_t addr,vm_paddr_t * pap)6208 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
6209 {
6210 	pt1_entry_t *pte1p, pte1;
6211 	pt2_entry_t *pte2p, pte2;
6212 	vm_paddr_t pa;
6213 	bool managed;
6214 	int val;
6215 
6216 	PMAP_LOCK(pmap);
6217 	pte1p = pmap_pte1(pmap, addr);
6218 	pte1 = pte1_load(pte1p);
6219 	if (pte1_is_section(pte1)) {
6220 		pa = trunc_page(pte1_pa(pte1) | (addr & PTE1_OFFSET));
6221 		managed = pte1_is_managed(pte1);
6222 		val = MINCORE_PSIND(1) | MINCORE_INCORE;
6223 		if (pte1_is_dirty(pte1))
6224 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6225 		if (pte1 & PTE1_A)
6226 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6227 	} else if (pte1_is_link(pte1)) {
6228 		pte2p = pmap_pte2(pmap, addr);
6229 		pte2 = pte2_load(pte2p);
6230 		pmap_pte2_release(pte2p);
6231 		pa = pte2_pa(pte2);
6232 		managed = pte2_is_managed(pte2);
6233 		val = MINCORE_INCORE;
6234 		if (pte2_is_dirty(pte2))
6235 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6236 		if (pte2 & PTE2_A)
6237 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6238 	} else {
6239 		managed = false;
6240 		val = 0;
6241 	}
6242 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
6243 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
6244 		*pap = pa;
6245 	}
6246 	PMAP_UNLOCK(pmap);
6247 	return (val);
6248 }
6249 
6250 void
pmap_kenter_device(vm_offset_t va,vm_size_t size,vm_paddr_t pa)6251 pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa)
6252 {
6253 	vm_offset_t sva;
6254 	uint32_t l2attr;
6255 
6256 	KASSERT((size & PAGE_MASK) == 0,
6257 	    ("%s: device mapping not page-sized", __func__));
6258 
6259 	sva = va;
6260 	l2attr = vm_memattr_to_pte2(VM_MEMATTR_DEVICE);
6261 	while (size != 0) {
6262 		pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, l2attr);
6263 		va += PAGE_SIZE;
6264 		pa += PAGE_SIZE;
6265 		size -= PAGE_SIZE;
6266 	}
6267 	tlb_flush_range(sva, va - sva);
6268 }
6269 
6270 void
pmap_kremove_device(vm_offset_t va,vm_size_t size)6271 pmap_kremove_device(vm_offset_t va, vm_size_t size)
6272 {
6273 	vm_offset_t sva;
6274 
6275 	KASSERT((size & PAGE_MASK) == 0,
6276 	    ("%s: device mapping not page-sized", __func__));
6277 
6278 	sva = va;
6279 	while (size != 0) {
6280 		pmap_kremove(va);
6281 		va += PAGE_SIZE;
6282 		size -= PAGE_SIZE;
6283 	}
6284 	tlb_flush_range(sva, va - sva);
6285 }
6286 
6287 void
pmap_set_pcb_pagedir(pmap_t pmap,struct pcb * pcb)6288 pmap_set_pcb_pagedir(pmap_t pmap, struct pcb *pcb)
6289 {
6290 
6291 	pcb->pcb_pagedir = pmap_ttb_get(pmap);
6292 }
6293 
6294 /*
6295  *  Clean L1 data cache range by physical address.
6296  *  The range must be within a single page.
6297  */
6298 static void
pmap_dcache_wb_pou(vm_paddr_t pa,vm_size_t size,uint32_t attr)6299 pmap_dcache_wb_pou(vm_paddr_t pa, vm_size_t size, uint32_t attr)
6300 {
6301 	pt2_entry_t *cmap2_pte2p;
6302 	struct pcpu *pc;
6303 
6304 	KASSERT(((pa & PAGE_MASK) + size) <= PAGE_SIZE,
6305 	    ("%s: not on single page", __func__));
6306 
6307 	sched_pin();
6308 	pc = get_pcpu();
6309 	cmap2_pte2p = pc->pc_cmap2_pte2p;
6310 	mtx_lock(&pc->pc_cmap_lock);
6311 	if (pte2_load(cmap2_pte2p) != 0)
6312 		panic("%s: CMAP2 busy", __func__);
6313 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW, attr));
6314 	dcache_wb_pou((vm_offset_t)pc->pc_cmap2_addr + (pa & PAGE_MASK), size);
6315 	pte2_clear(cmap2_pte2p);
6316 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6317 	sched_unpin();
6318 	mtx_unlock(&pc->pc_cmap_lock);
6319 }
6320 
6321 /*
6322  *  Sync instruction cache range which is not mapped yet.
6323  */
6324 void
cache_icache_sync_fresh(vm_offset_t va,vm_paddr_t pa,vm_size_t size)6325 cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
6326 {
6327 	uint32_t len, offset;
6328 	vm_page_t m;
6329 
6330 	/* Write back d-cache on given address range. */
6331 	offset = pa & PAGE_MASK;
6332 	for ( ; size != 0; size -= len, pa += len, offset = 0) {
6333 		len = min(PAGE_SIZE - offset, size);
6334 		m = PHYS_TO_VM_PAGE(pa);
6335 		KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6336 		  __func__, pa));
6337 		pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6338 	}
6339 	/*
6340 	 * I-cache is VIPT. Only way how to flush all virtual mappings
6341 	 * on given physical address is to invalidate all i-cache.
6342 	 */
6343 	icache_inv_all();
6344 }
6345 
6346 void
pmap_sync_icache(pmap_t pmap,vm_offset_t va,vm_size_t size)6347 pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t size)
6348 {
6349 
6350 	/* Write back d-cache on given address range. */
6351 	if (va >= VM_MIN_KERNEL_ADDRESS) {
6352 		dcache_wb_pou(va, size);
6353 	} else {
6354 		uint32_t len, offset;
6355 		vm_paddr_t pa;
6356 		vm_page_t m;
6357 
6358 		offset = va & PAGE_MASK;
6359 		for ( ; size != 0; size -= len, va += len, offset = 0) {
6360 			pa = pmap_extract(pmap, va); /* offset is preserved */
6361 			len = min(PAGE_SIZE - offset, size);
6362 			m = PHYS_TO_VM_PAGE(pa);
6363 			KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6364 				__func__, pa));
6365 			pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6366 		}
6367 	}
6368 	/*
6369 	 * I-cache is VIPT. Only way how to flush all virtual mappings
6370 	 * on given physical address is to invalidate all i-cache.
6371 	 */
6372 	icache_inv_all();
6373 }
6374 
6375 /*
6376  *  The implementation of pmap_fault() uses IN_RANGE2() macro which
6377  *  depends on the fact that given range size is a power of 2.
6378  */
6379 CTASSERT(powerof2(NB_IN_PT1));
6380 CTASSERT(powerof2(PT2MAP_SIZE));
6381 
6382 #define IN_RANGE2(addr, start, size)	\
6383     ((vm_offset_t)(start) == ((vm_offset_t)(addr) & ~((size) - 1)))
6384 
6385 /*
6386  *  Handle access and R/W emulation faults.
6387  */
6388 int
pmap_fault(pmap_t pmap,vm_offset_t far,uint32_t fsr,int idx,bool usermode)6389 pmap_fault(pmap_t pmap, vm_offset_t far, uint32_t fsr, int idx, bool usermode)
6390 {
6391 	pt1_entry_t *pte1p, pte1;
6392 	pt2_entry_t *pte2p, pte2;
6393 
6394 	if (pmap == NULL)
6395 		pmap = kernel_pmap;
6396 
6397 	/*
6398 	 * In kernel, we should never get abort with FAR which is in range of
6399 	 * pmap->pm_pt1 or PT2MAP address spaces. If it happens, stop here
6400 	 * and print out a useful abort message and even get to the debugger
6401 	 * otherwise it likely ends with never ending loop of aborts.
6402 	 */
6403 	if (__predict_false(IN_RANGE2(far, pmap->pm_pt1, NB_IN_PT1))) {
6404 		/*
6405 		 * All L1 tables should always be mapped and present.
6406 		 * However, we check only current one herein. For user mode,
6407 		 * only permission abort from malicious user is not fatal.
6408 		 * And alignment abort as it may have higher priority.
6409 		 */
6410 		if (!usermode || (idx != FAULT_ALIGN && idx != FAULT_PERM_L2)) {
6411 			CTR4(KTR_PMAP, "%s: pmap %#x pm_pt1 %#x far %#x",
6412 			    __func__, pmap, pmap->pm_pt1, far);
6413 			panic("%s: pm_pt1 abort", __func__);
6414 		}
6415 		return (KERN_INVALID_ADDRESS);
6416 	}
6417 	if (__predict_false(IN_RANGE2(far, PT2MAP, PT2MAP_SIZE))) {
6418 		/*
6419 		 * PT2MAP should be always mapped and present in current
6420 		 * L1 table. However, only existing L2 tables are mapped
6421 		 * in PT2MAP. For user mode, only L2 translation abort and
6422 		 * permission abort from malicious user is not fatal.
6423 		 * And alignment abort as it may have higher priority.
6424 		 */
6425 		if (!usermode || (idx != FAULT_ALIGN &&
6426 		    idx != FAULT_TRAN_L2 && idx != FAULT_PERM_L2)) {
6427 			CTR4(KTR_PMAP, "%s: pmap %#x PT2MAP %#x far %#x",
6428 			    __func__, pmap, PT2MAP, far);
6429 			panic("%s: PT2MAP abort", __func__);
6430 		}
6431 		return (KERN_INVALID_ADDRESS);
6432 	}
6433 
6434 	/*
6435 	 * A pmap lock is used below for handling of access and R/W emulation
6436 	 * aborts. They were handled by atomic operations before so some
6437 	 * analysis of new situation is needed to answer the following question:
6438 	 * Is it safe to use the lock even for these aborts?
6439 	 *
6440 	 * There may happen two cases in general:
6441 	 *
6442 	 * (1) Aborts while the pmap lock is locked already - this should not
6443 	 * happen as pmap lock is not recursive. However, under pmap lock only
6444 	 * internal kernel data should be accessed and such data should be
6445 	 * mapped with A bit set and NM bit cleared. If double abort happens,
6446 	 * then a mapping of data which has caused it must be fixed. Further,
6447 	 * all new mappings are always made with A bit set and the bit can be
6448 	 * cleared only on managed mappings.
6449 	 *
6450 	 * (2) Aborts while another lock(s) is/are locked - this already can
6451 	 * happen. However, there is no difference here if it's either access or
6452 	 * R/W emulation abort, or if it's some other abort.
6453 	 */
6454 
6455 	PMAP_LOCK(pmap);
6456 #ifdef INVARIANTS
6457 	pte1 = pte1_load(pmap_pte1(pmap, far));
6458 	if (pte1_is_link(pte1)) {
6459 		/*
6460 		 * Check in advance that associated L2 page table is mapped into
6461 		 * PT2MAP space. Note that faulty access to not mapped L2 page
6462 		 * table is caught in more general check above where "far" is
6463 		 * checked that it does not lay in PT2MAP space. Note also that
6464 		 * L1 page table and PT2TAB always exist and are mapped.
6465 		 */
6466 		pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, far));
6467 		if (!pte2_is_valid(pte2))
6468 			panic("%s: missing L2 page table (%p, %#x)",
6469 			    __func__, pmap, far);
6470 	}
6471 #endif
6472 #ifdef SMP
6473 	/*
6474 	 * Special treatment is due to break-before-make approach done when
6475 	 * pte1 is updated for userland mapping during section promotion or
6476 	 * demotion. If not caught here, pmap_enter() can find a section
6477 	 * mapping on faulting address. That is not allowed.
6478 	 */
6479 	if (idx == FAULT_TRAN_L1 && usermode && cp15_ats1cur_check(far) == 0) {
6480 		PMAP_UNLOCK(pmap);
6481 		return (KERN_SUCCESS);
6482 	}
6483 #endif
6484 	/*
6485 	 * Access bits for page and section. Note that the entry
6486 	 * is not in TLB yet, so TLB flush is not necessary.
6487 	 *
6488 	 * QQQ: This is hardware emulation, we do not call userret()
6489 	 *      for aborts from user mode.
6490 	 */
6491 	if (idx == FAULT_ACCESS_L2) {
6492 		pte1 = pte1_load(pmap_pte1(pmap, far));
6493 		if (pte1_is_link(pte1)) {
6494 			/* L2 page table should exist and be mapped. */
6495 			pte2p = pt2map_entry(far);
6496 			pte2 = pte2_load(pte2p);
6497 			if (pte2_is_valid(pte2)) {
6498 				pte2_store(pte2p, pte2 | PTE2_A);
6499 				PMAP_UNLOCK(pmap);
6500 				return (KERN_SUCCESS);
6501 			}
6502 		} else {
6503 			/*
6504 			 * We got L2 access fault but PTE1 is not a link.
6505 			 * Probably some race happened, do nothing.
6506 			 */
6507 			CTR3(KTR_PMAP, "%s: FAULT_ACCESS_L2 - pmap %#x far %#x",
6508 			    __func__, pmap, far);
6509 			PMAP_UNLOCK(pmap);
6510 			return (KERN_SUCCESS);
6511 		}
6512 	}
6513 	if (idx == FAULT_ACCESS_L1) {
6514 		pte1p = pmap_pte1(pmap, far);
6515 		pte1 = pte1_load(pte1p);
6516 		if (pte1_is_section(pte1)) {
6517 			pte1_store(pte1p, pte1 | PTE1_A);
6518 			PMAP_UNLOCK(pmap);
6519 			return (KERN_SUCCESS);
6520 		} else {
6521 			/*
6522 			 * We got L1 access fault but PTE1 is not section
6523 			 * mapping. Probably some race happened, do nothing.
6524 			 */
6525 			CTR3(KTR_PMAP, "%s: FAULT_ACCESS_L1 - pmap %#x far %#x",
6526 			    __func__, pmap, far);
6527 			PMAP_UNLOCK(pmap);
6528 			return (KERN_SUCCESS);
6529 		}
6530 	}
6531 
6532 	/*
6533 	 * Handle modify bits for page and section. Note that the modify
6534 	 * bit is emulated by software. So PTEx_RO is software read only
6535 	 * bit and PTEx_NM flag is real hardware read only bit.
6536 	 *
6537 	 * QQQ: This is hardware emulation, we do not call userret()
6538 	 *      for aborts from user mode.
6539 	 */
6540 	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L2)) {
6541 		pte1 = pte1_load(pmap_pte1(pmap, far));
6542 		if (pte1_is_link(pte1)) {
6543 			/* L2 page table should exist and be mapped. */
6544 			pte2p = pt2map_entry(far);
6545 			pte2 = pte2_load(pte2p);
6546 			if (pte2_is_valid(pte2) && !(pte2 & PTE2_RO) &&
6547 			    (pte2 & PTE2_NM)) {
6548 				pte2_store(pte2p, pte2 & ~PTE2_NM);
6549 				tlb_flush(trunc_page(far));
6550 				PMAP_UNLOCK(pmap);
6551 				return (KERN_SUCCESS);
6552 			}
6553 		} else {
6554 			/*
6555 			 * We got L2 permission fault but PTE1 is not a link.
6556 			 * Probably some race happened, do nothing.
6557 			 */
6558 			CTR3(KTR_PMAP, "%s: FAULT_PERM_L2 - pmap %#x far %#x",
6559 			    __func__, pmap, far);
6560 			PMAP_UNLOCK(pmap);
6561 			return (KERN_SUCCESS);
6562 		}
6563 	}
6564 	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L1)) {
6565 		pte1p = pmap_pte1(pmap, far);
6566 		pte1 = pte1_load(pte1p);
6567 		if (pte1_is_section(pte1)) {
6568 			if (!(pte1 & PTE1_RO) && (pte1 & PTE1_NM)) {
6569 				pte1_store(pte1p, pte1 & ~PTE1_NM);
6570 				tlb_flush(pte1_trunc(far));
6571 				PMAP_UNLOCK(pmap);
6572 				return (KERN_SUCCESS);
6573 			}
6574 		} else {
6575 			/*
6576 			 * We got L1 permission fault but PTE1 is not section
6577 			 * mapping. Probably some race happened, do nothing.
6578 			 */
6579 			CTR3(KTR_PMAP, "%s: FAULT_PERM_L1 - pmap %#x far %#x",
6580 			    __func__, pmap, far);
6581 			PMAP_UNLOCK(pmap);
6582 			return (KERN_SUCCESS);
6583 		}
6584 	}
6585 
6586 	/*
6587 	 * QQQ: The previous code, mainly fast handling of access and
6588 	 *      modify bits aborts, could be moved to ASM. Now we are
6589 	 *      starting to deal with not fast aborts.
6590 	 */
6591 	PMAP_UNLOCK(pmap);
6592 	return (KERN_FAILURE);
6593 }
6594 
6595 #if defined(PMAP_DEBUG)
6596 /*
6597  *  Reusing of KVA used in pmap_zero_page function !!!
6598  */
6599 static void
pmap_zero_page_check(vm_page_t m)6600 pmap_zero_page_check(vm_page_t m)
6601 {
6602 	pt2_entry_t *cmap2_pte2p;
6603 	uint32_t *p, *end;
6604 	struct pcpu *pc;
6605 
6606 	sched_pin();
6607 	pc = get_pcpu();
6608 	cmap2_pte2p = pc->pc_cmap2_pte2p;
6609 	mtx_lock(&pc->pc_cmap_lock);
6610 	if (pte2_load(cmap2_pte2p) != 0)
6611 		panic("%s: CMAP2 busy", __func__);
6612 	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
6613 	    vm_page_pte2_attr(m)));
6614 	end = (uint32_t*)(pc->pc_cmap2_addr + PAGE_SIZE);
6615 	for (p = (uint32_t*)pc->pc_cmap2_addr; p < end; p++)
6616 		if (*p != 0)
6617 			panic("%s: page %p not zero, va: %p", __func__, m,
6618 			    pc->pc_cmap2_addr);
6619 	pte2_clear(cmap2_pte2p);
6620 	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6621 	sched_unpin();
6622 	mtx_unlock(&pc->pc_cmap_lock);
6623 }
6624 
6625 int
pmap_pid_dump(int pid)6626 pmap_pid_dump(int pid)
6627 {
6628 	pmap_t pmap;
6629 	struct proc *p;
6630 	int npte2 = 0;
6631 	int i, j, index;
6632 
6633 	sx_slock(&allproc_lock);
6634 	FOREACH_PROC_IN_SYSTEM(p) {
6635 		if (p->p_pid != pid || p->p_vmspace == NULL)
6636 			continue;
6637 		index = 0;
6638 		pmap = vmspace_pmap(p->p_vmspace);
6639 		for (i = 0; i < NPTE1_IN_PT1; i++) {
6640 			pt1_entry_t pte1;
6641 			pt2_entry_t *pte2p, pte2;
6642 			vm_offset_t base, va;
6643 			vm_paddr_t pa;
6644 			vm_page_t m;
6645 
6646 			base = i << PTE1_SHIFT;
6647 			pte1 = pte1_load(&pmap->pm_pt1[i]);
6648 
6649 			if (pte1_is_section(pte1)) {
6650 				/*
6651 				 * QQQ: Do something here!
6652 				 */
6653 			} else if (pte1_is_link(pte1)) {
6654 				for (j = 0; j < NPTE2_IN_PT2; j++) {
6655 					va = base + (j << PAGE_SHIFT);
6656 					if (va >= VM_MIN_KERNEL_ADDRESS) {
6657 						if (index) {
6658 							index = 0;
6659 							printf("\n");
6660 						}
6661 						sx_sunlock(&allproc_lock);
6662 						return (npte2);
6663 					}
6664 					pte2p = pmap_pte2(pmap, va);
6665 					pte2 = pte2_load(pte2p);
6666 					pmap_pte2_release(pte2p);
6667 					if (!pte2_is_valid(pte2))
6668 						continue;
6669 
6670 					pa = pte2_pa(pte2);
6671 					m = PHYS_TO_VM_PAGE(pa);
6672 					printf("va: 0x%x, pa: 0x%x, w: %d, "
6673 					    "f: 0x%x", va, pa,
6674 					    m->ref_count, m->flags);
6675 					npte2++;
6676 					index++;
6677 					if (index >= 2) {
6678 						index = 0;
6679 						printf("\n");
6680 					} else {
6681 						printf(" ");
6682 					}
6683 				}
6684 			}
6685 		}
6686 	}
6687 	sx_sunlock(&allproc_lock);
6688 	return (npte2);
6689 }
6690 
6691 #endif
6692 
6693 #ifdef DDB
6694 static pt2_entry_t *
pmap_pte2_ddb(pmap_t pmap,vm_offset_t va)6695 pmap_pte2_ddb(pmap_t pmap, vm_offset_t va)
6696 {
6697 	pt1_entry_t pte1;
6698 	vm_paddr_t pt2pg_pa;
6699 
6700 	pte1 = pte1_load(pmap_pte1(pmap, va));
6701 	if (!pte1_is_link(pte1))
6702 		return (NULL);
6703 
6704 	if (pmap_is_current(pmap))
6705 		return (pt2map_entry(va));
6706 
6707 	/* Note that L2 page table size is not equal to PAGE_SIZE. */
6708 	pt2pg_pa = trunc_page(pte1_link_pa(pte1));
6709 	if (pte2_pa(pte2_load(PMAP3)) != pt2pg_pa) {
6710 		pte2_store(PMAP3, PTE2_KPT(pt2pg_pa));
6711 #ifdef SMP
6712 		PMAP3cpu = PCPU_GET(cpuid);
6713 #endif
6714 		tlb_flush_local((vm_offset_t)PADDR3);
6715 	}
6716 #ifdef SMP
6717 	else if (PMAP3cpu != PCPU_GET(cpuid)) {
6718 		PMAP3cpu = PCPU_GET(cpuid);
6719 		tlb_flush_local((vm_offset_t)PADDR3);
6720 	}
6721 #endif
6722 	return (PADDR3 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
6723 }
6724 
6725 static void
dump_pmap(pmap_t pmap)6726 dump_pmap(pmap_t pmap)
6727 {
6728 
6729 	printf("pmap %p\n", pmap);
6730 	printf("  pm_pt1: %p\n", pmap->pm_pt1);
6731 	printf("  pm_pt2tab: %p\n", pmap->pm_pt2tab);
6732 	printf("  pm_active: 0x%08lX\n", pmap->pm_active.__bits[0]);
6733 }
6734 
DB_SHOW_COMMAND(pmaps,pmap_list_pmaps)6735 DB_SHOW_COMMAND(pmaps, pmap_list_pmaps)
6736 {
6737 
6738 	pmap_t pmap;
6739 	LIST_FOREACH(pmap, &allpmaps, pm_list) {
6740 		dump_pmap(pmap);
6741 	}
6742 }
6743 
6744 static int
pte2_class(pt2_entry_t pte2)6745 pte2_class(pt2_entry_t pte2)
6746 {
6747 	int cls;
6748 
6749 	cls = (pte2 >> 2) & 0x03;
6750 	cls |= (pte2 >> 4) & 0x04;
6751 	return (cls);
6752 }
6753 
6754 static void
dump_section(pmap_t pmap,uint32_t pte1_idx)6755 dump_section(pmap_t pmap, uint32_t pte1_idx)
6756 {
6757 }
6758 
6759 static void
dump_link(pmap_t pmap,uint32_t pte1_idx,bool invalid_ok)6760 dump_link(pmap_t pmap, uint32_t pte1_idx, bool invalid_ok)
6761 {
6762 	uint32_t i;
6763 	vm_offset_t va;
6764 	pt2_entry_t *pte2p, pte2;
6765 	vm_page_t m;
6766 
6767 	va = pte1_idx << PTE1_SHIFT;
6768 	pte2p = pmap_pte2_ddb(pmap, va);
6769 	for (i = 0; i < NPTE2_IN_PT2; i++, pte2p++, va += PAGE_SIZE) {
6770 		pte2 = pte2_load(pte2p);
6771 		if (pte2 == 0)
6772 			continue;
6773 		if (!pte2_is_valid(pte2)) {
6774 			printf(" 0x%08X: 0x%08X", va, pte2);
6775 			if (!invalid_ok)
6776 				printf(" - not valid !!!");
6777 			printf("\n");
6778 			continue;
6779 		}
6780 		m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
6781 		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, g:%d, m:%p", va , pte2,
6782 		    pte2_class(pte2), !!(pte2 & PTE2_S), !(pte2 & PTE2_NG), m);
6783 		if (m != NULL) {
6784 			printf(" v:%d w:%d f:0x%04X\n", m->valid,
6785 			    m->ref_count, m->flags);
6786 		} else {
6787 			printf("\n");
6788 		}
6789 	}
6790 }
6791 
6792 static __inline bool
is_pv_chunk_space(vm_offset_t va)6793 is_pv_chunk_space(vm_offset_t va)
6794 {
6795 
6796 	if ((((vm_offset_t)pv_chunkbase) <= va) &&
6797 	    (va < ((vm_offset_t)pv_chunkbase + PAGE_SIZE * pv_maxchunks)))
6798 		return (true);
6799 	return (false);
6800 }
6801 
DB_SHOW_COMMAND(pmap,pmap_pmap_print)6802 DB_SHOW_COMMAND(pmap, pmap_pmap_print)
6803 {
6804 	/* XXX convert args. */
6805 	pmap_t pmap = (pmap_t)addr;
6806 	pt1_entry_t pte1;
6807 	pt2_entry_t pte2;
6808 	vm_offset_t va, eva;
6809 	vm_page_t m;
6810 	uint32_t i;
6811 	bool invalid_ok, dump_link_ok, dump_pv_chunk;
6812 
6813 	if (have_addr) {
6814 		pmap_t pm;
6815 
6816 		LIST_FOREACH(pm, &allpmaps, pm_list)
6817 			if (pm == pmap) break;
6818 		if (pm == NULL) {
6819 			printf("given pmap %p is not in allpmaps list\n", pmap);
6820 			return;
6821 		}
6822 	} else
6823 		pmap = PCPU_GET(curpmap);
6824 
6825 	eva = (modif[0] == 'u') ? VM_MAXUSER_ADDRESS : 0xFFFFFFFF;
6826 	dump_pv_chunk = false; /* XXX evaluate from modif[] */
6827 
6828 	printf("pmap: 0x%08X\n", (uint32_t)pmap);
6829 	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6830 	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6831 
6832 	for(i = 0; i < NPTE1_IN_PT1; i++) {
6833 		pte1 = pte1_load(&pmap->pm_pt1[i]);
6834 		if (pte1 == 0)
6835 			continue;
6836 		va = i << PTE1_SHIFT;
6837 		if (va >= eva)
6838 			break;
6839 
6840 		if (pte1_is_section(pte1)) {
6841 			printf("0x%08X: Section 0x%08X, s:%d g:%d\n", va, pte1,
6842 			    !!(pte1 & PTE1_S), !(pte1 & PTE1_NG));
6843 			dump_section(pmap, i);
6844 		} else if (pte1_is_link(pte1)) {
6845 			dump_link_ok = true;
6846 			invalid_ok = false;
6847 			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6848 			m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
6849 			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X m: %p",
6850 			    va, pte1, pte2, m);
6851 			if (is_pv_chunk_space(va)) {
6852 				printf(" - pv_chunk space");
6853 				if (dump_pv_chunk)
6854 					invalid_ok = true;
6855 				else
6856 					dump_link_ok = false;
6857 			}
6858 			else if (m != NULL)
6859 				printf(" w:%d w2:%u", m->ref_count,
6860 				    pt2_wirecount_get(m, pte1_index(va)));
6861 			if (pte2 == 0)
6862 				printf(" !!! pt2tab entry is ZERO");
6863 			else if (pte2_pa(pte1) != pte2_pa(pte2))
6864 				printf(" !!! pt2tab entry is DIFFERENT - m: %p",
6865 				    PHYS_TO_VM_PAGE(pte2_pa(pte2)));
6866 			printf("\n");
6867 			if (dump_link_ok)
6868 				dump_link(pmap, i, invalid_ok);
6869 		} else
6870 			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6871 	}
6872 }
6873 
6874 static void
dump_pt2tab(pmap_t pmap)6875 dump_pt2tab(pmap_t pmap)
6876 {
6877 	uint32_t i;
6878 	pt2_entry_t pte2;
6879 	vm_offset_t va;
6880 	vm_paddr_t pa;
6881 	vm_page_t m;
6882 
6883 	printf("PT2TAB:\n");
6884 	for (i = 0; i < PT2TAB_ENTRIES; i++) {
6885 		pte2 = pte2_load(&pmap->pm_pt2tab[i]);
6886 		if (!pte2_is_valid(pte2))
6887 			continue;
6888 		va = i << PT2TAB_SHIFT;
6889 		pa = pte2_pa(pte2);
6890 		m = PHYS_TO_VM_PAGE(pa);
6891 		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, m:%p", va, pte2,
6892 		    pte2_class(pte2), !!(pte2 & PTE2_S), m);
6893 		if (m != NULL)
6894 			printf(" , w: %d, f: 0x%04X pidx: %lld",
6895 			    m->ref_count, m->flags, m->pindex);
6896 		printf("\n");
6897 	}
6898 }
6899 
DB_SHOW_COMMAND(pmap_pt2tab,pmap_pt2tab_print)6900 DB_SHOW_COMMAND(pmap_pt2tab, pmap_pt2tab_print)
6901 {
6902 	/* XXX convert args. */
6903 	pmap_t pmap = (pmap_t)addr;
6904 	pt1_entry_t pte1;
6905 	pt2_entry_t pte2;
6906 	vm_offset_t va;
6907 	uint32_t i, start;
6908 
6909 	if (have_addr) {
6910 		printf("supported only on current pmap\n");
6911 		return;
6912 	}
6913 
6914 	pmap = PCPU_GET(curpmap);
6915 	printf("curpmap: 0x%08X\n", (uint32_t)pmap);
6916 	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6917 	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6918 
6919 	start = pte1_index((vm_offset_t)PT2MAP);
6920 	for (i = start; i < (start + NPT2_IN_PT2TAB); i++) {
6921 		pte1 = pte1_load(&pmap->pm_pt1[i]);
6922 		if (pte1 == 0)
6923 			continue;
6924 		va = i << PTE1_SHIFT;
6925 		if (pte1_is_section(pte1)) {
6926 			printf("0x%08X: Section 0x%08X, s:%d\n", va, pte1,
6927 			    !!(pte1 & PTE1_S));
6928 			dump_section(pmap, i);
6929 		} else if (pte1_is_link(pte1)) {
6930 			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6931 			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X\n", va,
6932 			    pte1, pte2);
6933 			if (pte2 == 0)
6934 				printf("  !!! pt2tab entry is ZERO\n");
6935 		} else
6936 			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6937 	}
6938 	dump_pt2tab(pmap);
6939 }
6940 #endif
6941